WO2017033823A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2017033823A1
WO2017033823A1 PCT/JP2016/074081 JP2016074081W WO2017033823A1 WO 2017033823 A1 WO2017033823 A1 WO 2017033823A1 JP 2016074081 W JP2016074081 W JP 2016074081W WO 2017033823 A1 WO2017033823 A1 WO 2017033823A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
sealing member
substrate
layer
sealing
Prior art date
Application number
PCT/JP2016/074081
Other languages
French (fr)
Japanese (ja)
Inventor
勇也 元村
史和 佐藤
亜矢 中山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017033823A1 publication Critical patent/WO2017033823A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Definitions

  • the present invention relates to an electronic device such as an organic electroluminescence device.
  • organic EL devices organic electroluminescence devices
  • organic electroluminescence devices organic electroluminescence devices
  • a sealing member having gas barrier properties
  • Patent Document 1 uses a gas barrier film having a base material, an intermediate layer formed on the base material, and a gas barrier layer obtained by subjecting a layer having polysilazane formed on the intermediate layer to vacuum ultraviolet irradiation.
  • An organic EL device (organic EL panel) for sealing an organic EL element is described.
  • an organic EL element is formed on a gas barrier layer of a gas barrier film, the organic EL element is covered, and an aluminum foil / PET (polyethylene terephthalate) film composite seal is provided via an adhesive layer.
  • an organic EL device in which an organic EL element is sandwiched between a gas barrier film and an aluminum foil / PET film composite sealing member by covering a side surface and sealed by sticking a stop member.
  • Patent Document 2 discloses a base layer, a smooth layer formed by applying a coating solution containing a (meth) acrylate having a phosphate ester group and a polyfunctional (meth) acrylate, and a coating solution containing polysilazane.
  • An organic EL device organic EL panel that seals an organic EL element by using a gas barrier film obtained by laminating a coating film that has been coated and dried with a gas barrier layer that has been subjected to a modification treatment that irradiates vacuum ultraviolet light. ) Is described.
  • Patent Document 2 a transparent electrode is formed on a gas barrier film, an organic EL element is formed on the transparent electrode, and an opposing film is attached via an adhesive layer, thereby organic An organic EL device in which an EL element is sealed is described.
  • metal films such as a gas barrier film which has the above-mentioned base material, a smooth layer, and a gas barrier layer, and aluminum foil, are illustrated as a counter film.
  • the organic EL element in the organic EL device is sealed by covering the entire surface of the organic EL element with an adhesive layer, and covering the entire surface of the adhesive layer with a gas barrier film or the like.
  • the organic EL element is sealed by sticking the sealing substrate.
  • deterioration of the organic EL element due to moisture or the like may not be sufficiently prevented.
  • the organic EL element deteriorates due to moisture entering from the end face of the adhesive layer.
  • the thinner the adhesive layer In terms of preventing moisture from entering from the end face of the adhesive layer, the thinner the adhesive layer, the better. On the other hand, when the adhesive is thinned, the elasticity of the adhesive layer is lowered. Therefore, the thinner the adhesive layer, the lower the adhesion between the organic EL element and the element substrate to be formed and the adhesive layer and / or the adhesion between the adhesive layer and the sealing substrate. As a result, in applications that require flexibility, the adhesive layer and the sealing substrate are peeled off and moisture enters, the interface between the element substrate and the adhesive layer and / or the adhesive layer and the sealing. Problems such as deterioration of the organic EL element occur due to moisture entering from the interface with the substrate.
  • An object of the present invention is to solve such problems of the prior art.
  • flexibility is required. It is an object of the present invention to provide an electronic device that can seal an electronic element with a high adhesive force even when used for a long period of time, and prevent moisture from entering from an interface, thereby preventing deterioration of the electronic element due to moisture over a long period of time.
  • an electronic device of the present invention includes an element substrate, An electronic element formed on the element substrate; A sealing substrate for sealing the electronic element; A sealing member provided between the element substrate and the sealing substrate for sealing the electronic element with the sealing substrate; There is provided an electronic device having a patterned interface adhesion layer provided between at least one of an element substrate and a sealing member and between a sealing substrate and a sealing member.
  • the interfacial adhesion layer is patterned so that it is not positioned closer to the electronic element side than the intermediate position between the end of the sealing member and the electronic element in the surface direction of the element substrate. Is preferred. Moreover, it is preferable that at least one of the contact part between the element substrate and the sealing member by the interface adhesion layer and the adhesion part between the sealing substrate and the sealing member by the interface adhesion layer is not more than the area of the sealing member. .
  • the ratio between the thickness t 1 of the thickness t 0 and the sealing member of the interface adhesion layer, t 1 / t is preferably 0 ⁇ 100.
  • the water vapor permeability of the sealing member is preferably 50 g / (m 2 ⁇ day) or less per 100 ⁇ m thickness at a temperature of 40 ° C. and a relative humidity of 90% RH.
  • attachment layer contains 10 mass% or more of silicon atoms.
  • at least one of the element substrate and the sealing substrate includes a support and one or more combinations of an inorganic layer provided on one surface of the support and an organic layer that forms the inorganic layer formation surface. .
  • a sealing member is a sheet form which covers the whole surface of an electronic element.
  • the sealing member is a frame surrounding the electronic element in the surface direction of the element substrate.
  • the electronic element can be sealed with high adhesion even in applications requiring flexibility, and from between the sealing substrate and the sealing member. It is possible to obtain an electronic device that can prevent moisture from entering and prevent deterioration of the electronic element due to moisture over a long period of time.
  • FIG. 1A is a schematic cross-sectional view of an example in which the electronic device of the present invention is used in an organic electroluminescence device.
  • FIG. 1B is a schematic plan view of the organic electroluminescence device shown in FIG. 1A.
  • FIG. 2 is a view conceptually showing an example of a barrier film used in the electronic device of the present invention.
  • FIG. 3A is a schematic cross-sectional view of another example in which the electronic device of the present invention is used in an organic electroluminescence device.
  • FIG. 3B is a schematic plan view of the organic electroluminescence device shown in FIG. 3A.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate is used in the meaning of at least one of acrylate and methacrylate, or any one of them. The same applies to “(meth) acryloyl”.
  • FIG. 1A and FIG. 1B conceptually show an example in which the electronic device of the present invention is used in an organic electroluminescence device.
  • organic electroluminescence is also referred to as organic EL.
  • the example shown in FIG. 1 is an example which utilized the electronic device of this invention for organic EL apparatuses, such as an organic EL display and organic EL illumination, this invention was formed in the element substrate besides this.
  • the present invention can be used for various electronic devices in which electronic elements are sealed with a sealing substrate.
  • the electronic device of the present invention is suitably used for various electronic devices using various electronic elements such as photoelectric conversion devices such as organic solar cells, displays such as organic transistors and liquid crystal displays, electronic paper, and thermoelectric conversion devices. Is possible.
  • the organic EL device 10 shown in FIG. 1 basically includes an element substrate 12, an organic EL element 14, a sealing substrate 16, a sealing member 18, and an interface adhesion layer 20.
  • an organic EL element 14 is formed on one surface of an element substrate 12, and the organic EL element 14 is sealed with a sealing substrate 16 via a sealing member 18.
  • an interface adhesion layer 20 is provided between the element substrate 12 and the sealing member 18.
  • an interface adhesion layer 20 is provided between the sealing member 18 and the sealing substrate 16.
  • the interfacial adhesion layer 20 is provided not by providing a uniform film (so-called solid film) over the entire surface of the element substrate 12 or the entire surface of the sealing substrate 16 but by patterning. It is done. This will be described in detail later.
  • FIG. 1A is a schematic cross-sectional view of the organic EL device 10 of the present invention
  • FIG. 1B is a schematic plan view (top view) of the organic EL device 10.
  • the sealing substrate 16 is omitted
  • the interface adhesion layer 20 is hatched
  • the organic EL element 14 is shown by a solid line.
  • 1A is a cross-sectional view taken along the line aa of FIG. 1B
  • the plan view of FIG. 1B is a view of the organic EL device 10 as viewed from above FIG. 1A. That is, FIG. 1B is a view of the organic EL device 10 as viewed from a direction orthogonal to the substrate surface of the element substrate 12.
  • hatching is omitted for the sake of brevity.
  • the element substrate 12 various known sheet-like materials and film-like materials used as a substrate for forming various organic EL elements such as an organic EL display and organic EL lighting can be used.
  • the element substrate 12 polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene (PE), polypropylene (PP), polystyrene, polyamide, polyvinyl chloride, polycarbonate, polyacrylonitrile, polyimide, polyacrylate, Films and sheets made of various resin materials (polymer materials) such as polymethacrylate, polycarbonate (PC), cycloolefin polymer (COP), cycloolefin copolymer (COC), triacetylcellulose (TAC), transparent polyimide, etc. Examples include a shape, a glass plate, a thin glass, and a metal plate.
  • a gas barrier film formed by forming a gas barrier layer on a support which is used for a sealing substrate 16 described later, can also be suitably used.
  • a gas barrier layer an organic / inorganic laminate type gas barrier film in which one or more combinations of an inorganic layer that exhibits gas barrier properties and an organic layer serving as a base layer of the inorganic layer are formed on the support, It is preferably used.
  • a gas barrier film in which the gas barrier layer has only an inorganic layer exhibiting gas barrier properties, instead of the organic-inorganic laminated type can also be suitably used.
  • the formation surface of the organic EL element 14 may be on the gas barrier layer side or the support side, but in terms of suitably preventing moisture from entering the organic EL element 14.
  • the organic EL element 14 is preferably formed on the gas barrier layer side.
  • the thickness of the element substrate 12 may be appropriately set according to the type and size of the organic EL device 10.
  • the organic EL element 14 formed on such an element substrate 12 includes a transparent electrode layer (TFT (thin film transistor)), a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, It is a well-known organic EL element (organic EL device) that constitutes an organic EL device (OLED (Organic Light Emitting Diode)) such as an organic EL display or organic EL illumination having a cathode or the like.
  • TFT transparent electrode layer
  • OLED Organic Light Emitting Diode
  • the electronic device of the present invention can be various electronic devices other than the organic EL device. Therefore, what is formed on the element substrate 12 is not only an organic EL element, but also a variety of known electrons such as a photoelectric conversion element such as a solar cell element, an organic semiconductor element such as an organic transistor, a thermoelectric conversion element, and an electronic paper element. The device is available.
  • Such an organic EL element 14 is sealed by a sealing substrate 16.
  • a sealing member 18 for sealing the organic EL element 14 by the sealing substrate 16 is provided between the element substrate 12 and the sealing substrate 16.
  • the sealing substrate 16 is for preventing the organic EL element 14 from being deteriorated by moisture or the like by covering and sealing the organic EL element 14 from the side opposite to the element substrate 12.
  • the sealing substrate 16 is a known sheet used for sealing an organic EL element in an organic EL device as long as it has necessary gas barrier properties and satisfies required characteristics such as required transparency. Various shapes (plate-like / film-like) can be used.
  • the sealing substrate 16 preferably has a water vapor transmission rate of 1 ⁇ 10 ⁇ 2 g / (m 2 ⁇ day) or less, more preferably a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day) or less.
  • the sheet-like material is used.
  • a sealing substrate 16 what was illustrated by the above-mentioned element substrate 12, for example can be utilized variously. Of these, glass plates and thin glass are preferably used in terms of high gas barrier properties and high transparency.
  • a gas barrier film in which a gas barrier layer that exhibits gas barrier properties is formed on the resin film as exemplified in the element substrate 12 is also preferably exemplified.
  • an organic / inorganic laminate type gas barrier film in which one or more combinations of an inorganic layer exhibiting gas barrier properties and an organic layer serving as a formation surface of the inorganic layer are formed on the support is particularly preferable.
  • a gas barrier film in which the gas barrier layer has only an inorganic layer exhibiting gas barrier properties instead of the organic-inorganic laminated type, can also be suitably used.
  • the inorganic layer those similar to the inorganic layer 36 of the gas barrier film 30 described later are preferably exemplified. This also applies to the case where a gas barrier film having only an inorganic layer as the gas barrier layer is used for the element substrate 12 described above.
  • FIG. 2 conceptually shows an example of such an organic-inorganic laminated gas barrier film.
  • the gas barrier film 30 shown in FIG. 2 is obtained by laminating an organic layer 34 and an inorganic layer 36 on a support 32 in this order.
  • the gas barrier film 30 shown in FIG. 2 has one combination of the organic layer 34 and the inorganic layer 36 serving as a base, but has two combinations of the organic layer 34 and the inorganic layer 36. Or it may have three or more sets.
  • the organic-inorganic laminated gas barrier film may have an organic layer that acts as a protective layer for the inorganic layer 36 as the uppermost layer, if necessary.
  • the uppermost layer is a layer on the surface opposite to the support 32.
  • the uppermost layer is the inorganic layer 36
  • the inorganic layer 36 is the organic EL element 14 side, that is, a sealing described later.
  • the member 18 side is preferable.
  • an organic / inorganic laminated gas barrier film is used for the element substrate 12, it is preferable to form the organic EL element 14 on the surface of the inorganic layer 36 with the uppermost layer being the inorganic layer 36.
  • the support 32 is preferably a film or sheet made of various resin materials exemplified for the element substrate 12 described above.
  • the thickness of the support 32 may be appropriately set according to the use of the organic EL device 10 or the like. Specifically, the thickness of the support 32 is preferably 20 to 500 ⁇ m.
  • the organic layer 34 is a layer made of an organic substance, and is obtained by crosslinking (polymerizing) a polymerizable compound that becomes the organic layer 34.
  • the organic layer 34 functions as a base layer for properly forming the inorganic layer 36 that exhibits gas barrier properties.
  • the gas barrier film 30 having an organic-inorganic laminated structure in which the underlying organic layer 34 and the inorganic layer 36 are laminated, thereby making it possible to form a proper inorganic layer 36 on the entire surface without any gaps. Expresses gas barrier properties.
  • the material for forming the organic layer 34 can be used as the material for forming the organic layer 34.
  • Specific examples of the material for forming the organic layer 34 include polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, and polyether.
  • thermoplastic resin is preferably exemplified.
  • polysiloxane and other organosilicon compounds are also preferably exemplified. A plurality of these forming materials may be used in combination.
  • the organic layer 34 composed of a polymer of a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
  • acrylic resin or methacrylic resin having a glass transition temperature of 120 ° C. or higher, mainly composed of an acrylate and / or methacrylate monomer or oligomer polymer in terms of strength, transparency and excellent optical properties.
  • the resin is preferably exemplified as the organic layer 34.
  • An acrylic resin and a methacrylic resin mainly composed of a polymer are preferably exemplified. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
  • the inorganic layer 36 can be formed on a base having a solid skeleton, so that the denser and higher gas barrier property is achieved.
  • the inorganic layer 36 can be formed.
  • the thickness of the organic layer 34 may be set as appropriate according to the thickness of the target gas barrier film 30, the number of combinations of the underlying organic layer 34 and the inorganic layer 36, the type of the inorganic layer 36, and the like.
  • the thickness of the organic layer 34, particularly the thickness of the organic layer 34 formed on the surface of the support 32 is preferably 0.1 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
  • the organic layer 34 acts as a suitable stress buffer layer by setting the thickness of the organic layer 34 to 0.1 ⁇ m or more, the inorganic layer 36 can be prevented from cracking when the organic EL device 10 is bent.
  • the thickness of the organic layer 34 is preferably 3 ⁇ m or less, and more preferably 1.5 ⁇ m or less. By setting the thickness of the organic layer 34 to 3 ⁇ m or less, it is possible to suitably prevent deterioration of the organic EL element 14 due to moisture release from the organic layer 34.
  • the organic layer 34 may be formed by a known method corresponding to the material for forming the organic layer 34.
  • the organic layer 34 is a coating composition (paint) containing an organic solvent, a polymerizable compound (monomer, dimer, trimer, oligomer, polymer, etc.) that becomes the organic layer 34, a surfactant, a silane coupling agent, and the like.
  • the coating solution is applied, dried, and then polymerized (crosslinked) by a UV irradiation or the like as necessary.
  • the organic layer 34 having a very high surface flatness can be formed by a so-called leveling effect.
  • the inorganic layer 36 is formed using such an organic layer 34 as a base layer.
  • the inorganic layer 36 mainly exhibits gas barrier properties in the gas barrier film 30.
  • As the material for forming the inorganic layer 36 various materials made of an inorganic material exhibiting gas barrier properties can be used.
  • metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide and silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
  • silicon nitride, silicon oxide, silicon oxynitride, and aluminum oxide are preferably used because they are highly transparent and can exhibit excellent gas barrier properties.
  • silicon nitride is particularly suitable because it has high transparency in addition to excellent gas barrier properties.
  • the thickness of the inorganic layer 36 may be appropriately set according to the required gas barrier properties, the thickness of the target gas barrier film 30, the number of combinations of the underlying organic layer 34 and the inorganic layer 36, and the like.
  • the thickness of the inorganic layer 36 is preferably 10 nm or more, and more preferably 15 nm or more. By setting the thickness of the inorganic layer 36 to 10 nm or more, good gas barrier properties can be obtained.
  • the thickness of the inorganic layer 36 is preferably 300 nm or less, and more preferably 150 nm or less. By setting the thickness of the inorganic layer 36 to 300 nm or less, cracking of the inorganic layer 36 when the organic EL device 10 is bent can be prevented.
  • the inorganic layer 36 may be formed by a known method depending on the material for forming the inorganic layer 36.
  • the inorganic layer 36 is formed by a vapor deposition method (vapor deposition method) such as plasma CVD (Chemical Vapor Deposition), sputtering, or vacuum deposition.
  • vapor deposition method plasma CVD (Chemical Vapor Deposition), sputtering, or vacuum deposition.
  • the thickness of the sealing substrate 16 may be appropriately set according to the type and size of the organic EL device 10 and the gas barrier properties required for the sealing substrate 16.
  • the thickness of the sealing substrate 16 is preferably set to a thickness that can provide the necessary flexibility according to the forming material and the like in that the organic EL device 10 having flexibility can be realized. .
  • a sealing member 18 is provided between the element substrate 12 and the sealing substrate 16.
  • the sealing member 18 is for sealing the organic EL element 14 with the sealing substrate 16.
  • the sealing member 18 has the same rectangular planar shape as the sealing substrate 16 including the size.
  • the sealing member 18 entirely covers the organic EL element 14, and the sealing substrate 16 is provided on the entire surface of the sealing member 18. The organic EL element 14 is sealed.
  • the organic EL element is sealed with the sealing substrate.
  • a sealing substrate such as a gas barrier film
  • the organic EL element is sealed with the sealing substrate.
  • Various publicly known ones used for the purpose can be used. Examples include (meth) acrylic acid ester resins, polyurethanes, (meth) acrylic resins, ethylene-vinyl acetate copolymers (EVA), polyolefins, silicone resins, epoxy resins, rubber-based materials, adhesive sheets, Examples thereof include an adhesive tape, an adhesive film, an adhesive, and a sealant.
  • a commercially available product can also be used as the sealing member 18.
  • a commercially available product that can be used as the sealing member 18 is preferably a so-called OCA (Optical Clear Adhesive).
  • OCA Optical Clear Adhesive
  • teas Barrier Transfer Tape 3rdG manufactured by TESA Tape, CELVENUS series manufactured by Daicel, and various highly transparent adhesive transfer tape series manufactured by 3M are exemplified.
  • the sealing member 18 preferably has a high gas barrier property. Specifically, the sealing member 18 preferably has a water vapor transmission rate per 100 ⁇ m of 50 g / (m 2 ⁇ day) or less in an environment of a temperature of 40 ° C. and a relative humidity of 90% RH, and 25 g / ( m 2 ⁇ day) or less is more preferable.
  • the gas barrier property of the sealing member 18 By setting the gas barrier property of the sealing member 18 to 50 g / (m 2 ⁇ day) or less, the deterioration of the organic EL element 14 due to moisture can be more suitably prevented.
  • the thickness of the sealing member 18 is sufficient depending on the forming material of the sealing member 18 and the like. ) May be set as appropriate so that the element substrate 12 and the sealing substrate 16 can be attached to each other.
  • the sealing member 18 is preferably thin in order to reduce moisture intrusion from the end face of the sealing member 18.
  • the thicker sealing member 18 is advantageous in terms of adhesion.
  • adherence layer 20 since it has the interface contact
  • the thickness of the sealing member 18 is preferably 0.5 to 100 ⁇ m, and more preferably 1 to 50 ⁇ m.
  • the element substrate 12 is sealed with sufficient adhesion by the interaction with the interface adhesion layer 20 described later while preventing the deterioration of the organic EL element due to moisture.
  • the substrate 16 can be in close contact.
  • the thickness of the sealing member 18 is, in other words, the size of the sealing member 18 in the direction orthogonal to the substrate surface of the element substrate 12.
  • the end surface of the sealing member 18 is an end surface in the substrate surface direction of the element substrate 12 that is not the main surface (maximum surface).
  • the sealing member 18 preferably has an elastic modulus of 0.1 to 520 N / mm 2 , and is preferably 0.2 to 480 N. / Mm 2 is more preferable.
  • the elastic modulus of the sealing member 18 By setting the elastic modulus of the sealing member 18 to 0.1 N / mm 2 or more, the sealing member 18 having good gas barrier properties can be formed.
  • the elastic modulus of the sealing member 18 when a force is applied in a direction in which the sealing substrate 16 is peeled off, if the elastic modulus of the sealing member 18 is low, the sealing member 18 is stretched and broken, and the sealing is broken. Such inconvenience can be prevented by setting the elastic modulus of the member to 0.1 N / mm 2 or more.
  • the elastic modulus of the sealing member 18 By setting the elastic modulus of the sealing member 18 to 520 N / mm 2 or less, it is preferable in that the organic EL device 10 having good flexibility can be obtained.
  • an interface adhesion layer 20 is formed between the element substrate 12 and the sealing member 18 and between the sealing member 18 and the sealing substrate 16.
  • the interface adhesion layer 20 is provided both between the element substrate 12 and the sealing member 18 and between the sealing member 18 and the sealing substrate 16. However, as in the example shown in FIG. 3A and the like described later, when the adhesion is sufficient, the interface adhesion layer 20 is interposed between the element substrate 12 and the sealing member 18 and between the sealing member 18 and the sealing member 18.
  • substrates 16 may be sufficient.
  • the interfacial adhesion layer 20 is formed not by a solid pattern corresponding to the entire surface of the element substrate 12 or the sealing substrate 16 but by patterning.
  • the interfacial adhesion layer 20 has a rectangular frame shape according to the peripheral end portions of the rectangular sealing substrate 16 and the sealing member 18. Patterned.
  • the organic EL device 10 of the present invention has the interface adhesion layer 20 thus patterned between the element substrate 12 and the sealing member 18 and / or between the sealing member 18 and the sealing substrate 16. As a result, sufficient adhesion is ensured, and performance deterioration due to the interface adhesion layer 20 is prevented, thereby realizing a long-life organic EL device 10.
  • a sealing member such as an adhesive layer is usually provided so as to cover the entire surface of the organic EL element.
  • the organic EL element is sealed with the sealing substrate by sticking the sealing substrate to the sealing member.
  • deterioration of the organic EL element may not be sufficiently prevented due to moisture entering from the end face of the sealing member.
  • it is advantageous that the sealing member is thin. However, if the sealing member is thinned, sufficient adhesion cannot be obtained.
  • an interface adhesion layer is used between the element substrate 12 and the sealing member 18 or between the sealing member 18 and the sealing substrate 16 using a silane coupling agent or the like. Can be considered. Although it is not the interface of the sealing member 18, in patent document 1, in a gas barrier film, as an intermediate
  • the interfacial adhesion layer is usually provided corresponding to the entire interface to be bonded.
  • an interface adhesion layer is formed on the entire surface of the element substrate or the sealing substrate.
  • Deterioration of the organic EL element due to degassing from the interfacial adhesion layer degradation of the organic EL element due to the decomposed interfacial adhesion layer, change in the color of irradiation light due to coloring of the interfacial adhesion layer, etc.
  • Inconveniences such as shortening the lifetime of the organic EL device and deteriorating the optical characteristics of the organic EL device occur.
  • the interface adhesion layer 20 is provided by patterning. Therefore, compared with the case where the interfacial adhesion layer is formed on the entire surface, it is possible to prevent deterioration of the organic EL element 14 and optical characteristics due to the interfacial adhesion layer 20. Further, by having the interfacial adhesion layer 20, peeling between the element substrate 12 and the sealing member 18 and peeling between the sealing member 18 and the sealing substrate 16 can be prevented, and intrusion of moisture from the peeling portion can also be prevented. In addition, it is possible to prevent moisture from entering from the interface between the element substrate 12 and the sealing member 18 and from the interface between the sealing member 18 and the sealing substrate 16.
  • the patterning of the interface adhesion layer is not limited to the frame shape in which the organic EL element 14 is surrounded by the surface direction of the element substrate 12 like the interface adhesion layer 20 in the illustrated example.
  • Various patterns can be used according to the shape of the apparatus 10 and the shape of the organic EL element 14.
  • the interfacial adhesion layer 20 is more organic than the intermediate position S between the end of the sealing member 18 and the organic EL element 14 in the surface direction of the element substrate 12. Patterning is preferably performed so as not to exist on the 14 side.
  • the interface adhesion layer 20 is L / 2 or more from the organic EL element 14 when the shortest distance between the end of the sealing member 18 and the organic EL element 14 is L in the surface direction of the element substrate 12. Patterning is preferably performed so as to be separated from each other.
  • an adhesion portion between the element substrate 12 and the sealing member 18 by the interface adhesion layer 20 and an adhesion portion between the sealing substrate 16 and the sealing member 18 by the interface adhesion layer 20 is not more than the area of the sealing member 18.
  • the interfacial adhesion layer 20 is more preferably a frame-like pattern that surrounds the organic EL element 14 in the surface direction of the element substrate 12 as shown in the example in that moisture can be prevented from entering the organic EL element 14. Is preferred.
  • the formation pattern of the interfacial adhesion layer 20 may be a pattern formed to the outside in the surface direction of the element substrate 12 rather than at least one of the element substrate 12 and the sealing member 18. The pattern may be formed to the outside in the surface direction of the element substrate 12 rather than at least one of the sealing substrate 16.
  • the sealing member 18 covers the organic EL element 14 in its entirety, if there is no optical problem, interfacial adhesion provided between the sealing substrate 16 and the sealing member 18.
  • the layer may be formed as a uniform layer on the entire surface of the sealing member 18 without patterning. That is, in the embodiment shown in FIG. 1A in which the sealing member 18 covers the entire surface of the organic EL element 14, only the interface adhesion layer 20 provided between the element substrate 12 and the sealing member 18 is patterned. Good.
  • the thickness of the interfacial adhesion layer 20 depends on the forming material of the interfacial adhesion layer 20, the adhesion between the interfacial adhesion layer 20 and the sealing substrate 16, the sealing member 18, the element substrate 12, and the like. Accordingly, it may be set appropriately.
  • the thickness of the interface adhesion layer 20 t when the thickness t 1 of the sealing member 18, the thickness t 0 of the interface adhesion layer 20 and the sealing
  • the ratio of the member 18 to the thickness t 1 is preferably t 1 / t 0 ⁇ 50, and more preferably t 1 / t 0 ⁇ 150.
  • the interfacial adhesion layer 20 is preferably much thinner than the sealing member 18.
  • t 1 / t 0 ⁇ 50 moisture can be prevented from entering the organic EL element 14 through the interfacial adhesion layer 20, and deterioration of the organic EL element 14 due to moisture can be more suitably prevented. It is preferable in that it can be performed.
  • the material for forming the interface adhesion layer 20 may be appropriately selected according to the material for forming the element substrate 12, the sealing substrate 16, and the sealing member 18.
  • a silane coupling agent is illustrated as an example. Various known silane coupling agents can be used. Moreover, a commercial item can also be suitably used for the silane coupling agent. Specifically, Z series made by Toray Dow Corning, KBM series made by Shin-Etsu Silicone, KBE series, and the like are exemplified.
  • an active layer made of one or more of silicon, germanium, iron, nickel, palladium, titanium, gold, silver, copper, aluminum, indium and the like is formed as the interfacial adhesion layer 20, So-called normal temperature bonding in which the sealing member 18 is bonded to the element substrate 12 and / or the sealing substrate 16 can also be suitably used.
  • Room temperature bonding may be performed by a known method using a vacuum chamber or the like.
  • an active layer serving as the interface adhesion layer 20 may be formed on both the sealing member 18 and the element substrate 12 and / or the sealing substrate 16 to perform room temperature bonding.
  • room temperature bonding for example, “Room Temperature SiO 2 Wafer Bonding by Adhesion Layer Method Source: Proceedings of the 61st Electronic Components and Technology Conference (ECTC) 2011, May 31-June 3, 2011” may be referred to.
  • the interfacial adhesion layer 20 preferably contains 10% by mass or more of silicon atoms. It is preferable that the interfacial adhesion layer 20 contains 10% by mass or more of silicon atoms in that the adhesion between the sealing member 18 and the element substrate 12 and / or the sealing substrate 16 can be increased.
  • Such an organic EL device 10 can be manufactured using various known methods.
  • the interface adhesion layer 20 is formed on the surface of the element substrate 12, and then the organic EL element 14 is formed on the element substrate 12.
  • the formation of the interfacial adhesion layer 20 may be performed by a known method according to the forming material such as a coating method. Further, the organic EL element 14 may be formed by a known method.
  • the interfacial adhesion layer 20 is formed on the sealing substrate 16, and then the sealing member 18 is formed on the sealing substrate 16 by positioning.
  • the formation of the interfacial adhesion layer 20 and the sealing member 18 may be performed by a known method according to the forming material of the interfacial adhesion layer 20 and the sealing member 18 such as a coating method or sticking.
  • the element substrate 12 and the sealing substrate 16 are aligned and bonded through the sealing member 18, and the sealing member 18 is cured by ultraviolet irradiation or the like as necessary, thereby organic EL.
  • Device 10 is fabricated.
  • 3A and 3B conceptually show another example of the organic EL device of the present invention.
  • 3B is a schematic plan view similar to FIG. 1B
  • FIG. 3A is a schematic cross-sectional view of FIG. 3B similar to FIG. 1A.
  • a sealing member 18 for sealing the organic EL element 14 by the sealing substrate 16 is provided so as to cover the organic EL element 14 entirely.
  • the organic EL element 14 is sealed by the sealing substrate 16 by sticking the sealing substrate 16 to the sealing member 18.
  • the organic EL device 40 shown in FIGS. 3A and 3B uses a frame-shaped sealing member 42 surrounding the organic EL element 14 in the substrate surface direction of the element substrate 12, and a frame is formed on the upper surface of the sealing member 42.
  • the organic EL element 14 is sealed by the sealing substrate 16 by providing the sealing substrate 16 on the sealing member 42 on which the interface adhesive layer 20 is formed. is doing.
  • the interface adhesion layer 20 is not provided between the element substrate 12 and the sealing member 42.
  • the organic EL element 14 is not covered by the adhesive sealing member 18 but by the frame-shaped sealing member 42 having necessary gas barrier properties. And the upper surface of the sealing member 42 is closed with the sealing substrate 16, thereby sealing the organic EL element 14 with the sealing substrate 16 and preventing deterioration due to moisture or the like. Therefore, in this example, the thickness (height) of the sealing member 42 may be set as appropriate according to the thickness required for the organic EL device 40 and the like.
  • the frame-shaped sealing member 42 may be formed by a known method according to a forming material, using various known materials such as a resin material or an inorganic material, as long as it has a required gas barrier property.
  • a sealing member 42 in which a resin frame is formed by a coating method, adhesion, or the like, and the surface of the frame is covered with an inorganic material is exemplified. According to this method, it is possible to obtain an adhesive force between the high element substrate 12 and the sealing member 42, eliminate the need for an interfacial adhesive layer therebetween, and form the sealing member 42 having a high gas barrier property.
  • the various inorganic compounds illustrated by the inorganic layer 36 of the above-mentioned gas barrier film 30 are illustrated suitably.
  • this inorganic compound is used, not only the frame but also the organic EL element 14 may be covered with this inorganic compound. Thereby, deterioration of the organic EL element 14 due to moisture can be more suitably prevented.
  • metals and the like can be used as the inorganic material for covering the frame made of the resin material. Covering the resin frame with an inorganic material may be performed by a known method according to the forming material, such as plasma CVD, sputtering, or vacuum deposition.
  • the water vapor permeability of the inorganic material covering the frame is 100 ⁇ m under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH. It is preferably 50 g / (m 2 ⁇ day) or less per unit.
  • the active layer which consists of silicon etc. is formed as the interface adhesion layer 20, and a sealing member is carried out by normal temperature joining A configuration in which the substrate 18 and the sealing substrate 16 are bonded together is preferably used.
  • the sealing member 42 preferably has an elastic modulus of 0.1 to 520 N / mm 2 , and is preferably 0.2 to 480 N / mm 2 . Is more preferable.
  • the elastic modulus of the sealing member 42 By setting the elastic modulus of the sealing member 42 to 0.1 N / mm 2 or more, the sealing member 42 with good gas barrier properties can be formed.
  • the elastic modulus of the sealing member 42 is low, the sealing member 42 is extended and broken, and the sealing is broken.
  • Such inconvenience can be prevented by setting the elastic modulus of the material to 0.1 N / mm 2 or more.
  • the elastic modulus of the sealing member 42 By setting the elastic modulus of the sealing member 42 to 520 N / mm 2 or less, it is preferable in that the organic EL device 40 having good flexibility can be obtained.
  • the interfacial adhesion layer 20 has an intermediate position S between the end of the sealing member 42 and the organic EL element 14 in the surface direction of the element substrate 12. It is preferable that the patterning is performed so as not to exist on the organic EL element 14 side.
  • the end of the sealing member 42 is on the organic EL element 14 side of the sealing member 42. Point to the end.
  • the interfacial adhesion layer 20 includes the organic EL and the inner end of the sealing member 42 in the surface direction of the element substrate 12. It is preferable that patterning is performed so that the organic EL element 14 side does not exist with respect to the intermediate position S with respect to the element 14.
  • the interface adhesion layer 20 has an organic EL element of L / 2 or more when the shortest distance between the inner end of the sealing member 42 and the organic EL element 14 is L in the surface direction of the element substrate 12. The patterning is preferably performed so as to be away from 14.
  • the interface adhesion layer 20 is not only from the upper surface of the sealing member 42 but also from the inner side surface of the sealing member 42. This includes the case where it reaches the surface.
  • Such an organic EL device 40 can also be manufactured using various known methods.
  • the sealing member 42 is formed on the surface of the element substrate 12, and then the organic EL element 14 is formed on the element substrate 12.
  • the sealing member 42 may be formed by a known method according to the forming material such as a coating method. Further, the organic EL element 14 may be formed by a known method.
  • the entire surface of the sealing member 42 or the element substrate 12 is coated with an inorganic material such as silicon nitride.
  • the sealing member 42 may be coated with an inorganic material by a known method such as sputtering according to the forming material.
  • an active layer made of silicon or the like is formed as the interfacial adhesion layer 20 on the upper surface of the sealing member 42.
  • the formation of the interfacial adhesion layer 20 may be performed by a known method such as sputtering according to the forming material.
  • an active layer made of silicon or the like is similarly formed on the sealing substrate 16 as the interface adhesion layer 20 in alignment with the interface adhesion layer 20 previously formed on the sealing member 42.
  • the interfacial adhesion layers 20 are face-to-face and aligned, the element substrate 12 and the sealing substrate 16 are stacked, and are bonded at room temperature in a vacuum to produce the organic EL device 10. .
  • Example 1 ⁇ Preparation of gas barrier film 30> A PET film (A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was prepared as the support 32.
  • TMPTA manufactured by Daicel Celltech
  • silane coupling agent KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.
  • polymerizable acidic compound KARAMER PM-21, manufactured by Nippon Kayaku Co., Ltd.
  • a composition was prepared by mixing at 5: 1. 18.6 g of this composition, 1.4 g of an ultraviolet polymerization initiator (ESACURE KTO46, manufactured by Lamberti) and 180 g of 2-butanone were mixed to prepare a coating material for forming the organic layer 34.
  • ESACURE KTO46 manufactured by Lamberti
  • the prepared paint was applied to the surface of the prepared support 32 (PET film).
  • the coating was applied using a wire bar so that the coating thickness was 5 ⁇ m.
  • the paint was dried by allowing it to stand at room temperature.
  • the composition of the coating was cured by irradiating with ultraviolet rays from a high-pressure mercury lamp (integrated irradiation amount: about 1 J / cm 2 ) in a chamber in which the oxygen concentration was 0.1% by a nitrogen substitution method. Thereby, an organic layer 34 having a thickness of 1 ⁇ m was formed on the surface of the support 32.
  • a silicon nitride film having a thickness of 35 nm was formed as an inorganic layer 36 on the organic layer 34.
  • the inorganic layer 36 (silicon nitride film) was formed using a general CCP (capacitively coupled plasma) -CVD apparatus.
  • source gases silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used.
  • the film forming pressure was 40 Pa.
  • the power supply was a high frequency power supply with a frequency of 13.56 MHz, and the plasma excitation power was 2.5 kW.
  • the gas barrier film 30 as shown in FIG. 2 which had the organic layer 34 on the support body 32 and had the inorganic layer 36 on it was produced.
  • Example 1 The produced gas barrier film 30 was cut into a 50 mm square to form an element substrate 12.
  • the element substrate 12 was bonded to a glass substrate of 50 mm square for transportation, and a laminate film (PAC3, manufactured by Sanei Kaken Co., Ltd.) cut out to 38 mm square was bonded to the center to make a mask.
  • the element substrate 12 to which the mask was bonded was set on a spin coater, and a silane coupling agent (KBM-403, manufactured by Shin-Etsu Silicone) diluted to 1 w% with pure water was applied. This silane coupling agent contains 10% by mass of silicon atoms.
  • the silane coupling agent was wiped off with a dry cotton swab at a width of 4 mm from the end, and patterned so that the silane coupling agent remained in a frame shape. Then, the element board
  • the organic EL element 14 was formed on the surface of the element substrate 12 where the interface adhesion layer 20 was formed as follows. First, ITO was formed on the surface of the element substrate 12 by sputtering so as to have a film thickness of 60 nm, thereby forming an anode.
  • HAT-CN layer (2,3,6,7,10,11-Hexacyano-1,4,5,8,9,12-hexaazatriphenylene layer) into the formed anode surface using a vacuum evaporation system
  • the layer was formed to a thickness of 2 nm, and a hole transport layer ( ⁇ -NPD: Bis [N- (1-naphthyl) -N-phenyl] benzidine) was formed on the surface of the HAT-CN layer in order of 29 nm and CBP ( The emission layer doped with 5% Ir (ppy) 3 (Tris (2-phenylpyridinato) iridium) with 4,4'-Bis (carbazol-9-yl) biphenyl) as the host material and 20 nm as the hole blocking layer and BAlq
  • the (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminium (III)) layer is 10 nm, and the Al
  • An organic electroluminescent layer was formed by vapor deposition with each film thickness. Subsequently, on the surface of the obtained organic light emitting layer, LiF was deposited to a thickness of 1.5 nm and Al was deposited to a thickness of 200 nm in this order to form a cathode, and an organic EL element 14 was formed on the surface of the element substrate 12. .
  • the produced gas barrier film 30 was cut into a 42 mm square to form a sealing substrate 16.
  • An interfacial adhesion layer 20 made of a silane coupling agent patterned in a frame shape having a width of 2 mm was formed on the sealing substrate 16 in the same manner as the element substrate 12.
  • an adhesive titanium (teas Barrier Transfer Tape 3rdG, manufactured by TESA Tape) was bonded as a sealing member 18 to the sealing substrate 16 on which the interfacial adhesion layer 20 was formed.
  • the element substrate 12 on which the organic EL element 14 was formed was conveyed into the glove box and bonded to the sealing substrate 16 to which the sealing member 18 was bonded. Thereafter, an ultraviolet ray having a wavelength of 365 nm was irradiated from the sealing substrate 16 side in an integrated amount of 400 mJ / cm 2 to produce an organic EL device 10 as shown in FIGS. 1A and 1B.
  • Example 2 As the element substrate 12, a 50 mm square glass substrate (OA-10G, manufactured by Nippon Electric Glass Co., Ltd.) was prepared. An ITO film having a thickness of 100 nm was formed on the surface of the element substrate 12 as an anode. A PI varnish (polyimide varnish) was applied to the element substrate 12 on which the anode was formed and dried, followed by patterning to form a frame shape having an outer dimension of 42 mm and an inner dimension of 38 mm. In this way, a frame-shaped sealing member 42 was formed on the element substrate 12.
  • OA-10G manufactured by Nippon Electric Glass Co., Ltd.
  • the organic EL element 14 was formed on the element substrate 12 on which the sealing member 42 was formed in the same manner as in Example 1 except that the anode was formed.
  • the element substrate 12 on which the organic EL element 14 was formed was introduced into a vacuum chamber (pressure 10 ⁇ 4 Pa or less), and a silicon nitride film having a thickness of 20 nm was formed on the entire surface by sputtering.
  • the mask was set using the frame-shaped mask whose opening part is 42 mm in outer dimension and 38 mm in inner dimension so that an opening part and the upper surface of the sealing member 42 may overlap.
  • a patterned interface adhesion layer 20 made of silicon was formed on the upper surface of the sealing member 42 by forming a silicon film having a thickness of 10 nm by sputtering.
  • the produced gas barrier film 30 was cut into a 44 mm square to form a sealing substrate 16.
  • This sealing substrate 16 was bonded to a glass substrate for conveyance.
  • the sealing substrate 16 is introduced into a vacuum chamber, a rectangular frame mask having an opening of 42 mm and an inner dimension of 38 mm is bonded to the center, and silicon is deposited to a thickness of 10 nm by sputtering.
  • a patterned interface adhesion layer 20 made of silicon was formed on the upper surface of the member 42.
  • An organic EL device 14 is formed, and an element substrate 12 formed by patterning the interface adhesion layer 20 made of silicon and a sealing substrate 16 formed by patterning the interface adhesion layer 20 made of silicon are connected to the interface.
  • the adhesion layer 20 was aligned and faced, and bonded at room temperature under reduced pressure in a vacuum chamber to produce an organic EL device 40 as shown in FIGS. 3A and 3B.
  • Example 1 An organic EL device was produced in the same manner as in Example 1 except that the interface adhesion layer 20 was not formed on the element substrate 12 and the sealing substrate 16.
  • Comparative Example 2 An organic EL device was produced in the same manner as in Example 1 except that the interface adhesion layer was formed on the entire surface of the element substrate 12 and the sealing substrate 16 without patterning.
  • Example 3 The element substrate 12 was formed in the same manner as in Example 1, and the organic EL element 14 was formed without providing the interface adhesion layer 20.
  • the produced gas barrier film 30 was cut into a 42 mm square to form a sealing substrate 16.
  • the sealing substrate 16 was bonded to a glass substrate for transportation.
  • a UV adhesive (XNR5516Z, manufactured by Nagase ChemteX Corporation) is applied in a frame shape along four sides to a position 1 mm inside from the edge of the barrier film of the sealing substrate 16 by a dispenser, and the sealing member 42 ( Uncured) was formed.
  • the element substrate 12 on which the organic EL element 14 was formed and the sealing substrate 16 on which the sealing member 42 was formed were conveyed into a glove box, aligned, and bonded together. Thereafter, an ultraviolet ray having a wavelength of 365 nm was applied from the sealing substrate 16 side in an integrated manner to 6000 mJ / cm 2 to cure the uncured sealing member 42 to produce an organic EL device.
  • the thickness of the sealing member was measured as follows. ⁇ Thickness of sealing member> Example 1 and Comparative Examples 1 and 2 were measured using a micrometer, and Example 2 and Comparative Example 3 were measured using a contact-type step gauge (Dectaku, manufactured by VEECO).
  • Example 1 and Comparative Examples 1 and 2 since the sealing member was a sheet, it was bonded to a TAC film, and in JIS Z 0208: 1976 by the cup method in an environment of a temperature of 40 ° C. and a relative humidity of 90% RH. Measured in conformity.
  • Comparative Example 3 a UV adhesive was applied to a Teflon (registered trademark) sheet in the form of a sheet, and cured by irradiation with ultraviolet rays. After curing, the sample was peeled from the Teflon (registered trademark) sheet and measured according to JIS Z 0208: 1976 by the cup method in an environment of a temperature of 40 ° C. and a relative humidity of 90% RH.
  • Example 2 a device having the same configuration as that of the organic EL device was produced except that a calcium film having a thickness of 100 nm was used instead of the organic EL element 14, and an environment having a temperature of 40 ° C. and a relative humidity of 90% RH was prepared.
  • the water vapor transmission rate of the sealing member was estimated from the corrosion rate of calcium below.
  • the water vapor transmission rate is a water vapor transmission rate per 100 ⁇ m thickness.
  • Example 1 and Comparative Examples 1 and 2 20 layers of sealing members were stacked to a thickness of 1 mm, and this was cut into a 5 mm ⁇ 4 cm strip.
  • the elastic modulus was measured by pulling both ends of the strip sample with a 180 ° C. tensile tester (Autograph, manufactured by Shimadzu Corporation).
  • Example 2 and Comparative Example 3 as well, a film formed so as to have a thickness of 1 mm was cut out into a 5 mm ⁇ 4 cm strip and measured.
  • the produced organic EL device was evaluated as follows.
  • a sealing member / interface adhesion layer / sealing substrate is formed on a glass substrate in the same manner as each organic EL device, and the sealing substrate and the sealing member are formed by a 180 ° C. tensile tester (Autograph, manufactured by Shimadzu Corporation). The peel strength was measured. Evaluation was performed as follows. A: Peel strength is over 3 N / cm B: Peel strength is 1 to 3 N / cm C: Peel strength is less than 1 N / cm
  • the organic EL device was allowed to stand for 100 hours in a high-temperature and high-humidity environment (temperature 60 ° C., relative humidity 90% RH). Evaluation was performed as follows. A: Total area of dark spots with respect to light emitting surface is less than 3% B: Total area of dark spots with respect to light emitting surface is 3% to 40% C: Total area of dark spots on the light emitting surface exceeds 40% or does not light up
  • a frame-shaped sealing member having a width of 2 mm and a side of 2 cm is formed of the same material as each organic EL device on a glass substrate on which a calcium film is deposited, and an interfacial adhesion layer is formed thereon, as in each organic EL device.
  • the frame of the sealing member was sealed with a sealing substrate similarly to each organic EL device.
  • the amount of moisture that permeates was determined by the corrosion rate of the calcium film in the frame, and the water vapor permeability at the end was estimated.
  • the interface adhesion layer is formed on the entire surface, and the end portion cannot be defined. The results are shown in the table below.
  • Example 1 uses a patterned silane coupling agent as an interfacial adhesion layer. For this reason, the adhesion is high and moisture permeation at the interface is suppressed, and the organic EL device has good durability because it is patterned.
  • Example 2 since patterned Si was used as an interfacial adhesion layer and sealing was performed using a room temperature bonding technique, strong adhesion was exhibited. Moreover, since moisture permeation from between the element substrate 12 and the sealing substrate 16 is suppressed, the organic EL durability is also good.
  • Comparative Example 1 compared with Example 1, since there is no interfacial adhesion layer, moisture permeation from the interface occurs and the durability of the organic EL device is C.
  • Comparative Example 2 since the interface adhesion layer is not patterned, the silane coupling agent damages the organic EL element, and the durability of the organic EL device is C.
  • Comparative Example 3 uses a UV curable resin as a sealing material and is hard because of its low adhesion, and, similarly to Comparative Example 1, moisture penetration from the interface occurs due to the absence of the interface adhesion layer, and the durability of the organic EL device Sex is also C. From the above results, the effects of the present invention are clear.
  • organic EL devices such as organic EL displays and organic EL lighting.
  • Organic EL device Organic electroluminescence device
  • element substrate organic EL element (organic electroluminescence element)
  • sealing substrate sealing substrate
  • 42 sealing member 20
  • interface adhesion layer 30
  • gas barrier film support 34 organic layer 36 inorganic layer

Abstract

The present invention address the problem of providing an electronic device formed by sealing an electronic element such as an organic electro-luminescence element, the electronic device being capable of preventing deterioration of the electronic element due to moisture and the like over a long period of time. The problem is solved by including: an element substrate; an electronic element formed in the element substrate; a sealing substrate which seals the electronic element; a sealing member provided between the element substrate and the sealing substrate, in order to seal the electronic element by the sealing substrate; and a patterned interface adhesion layer disposed between the element substrate and the sealing member and/or between the sealing substrate and the sealing member.

Description

電子装置Electronic equipment
 本発明は、有機エレクトロルミネッセンス装置等の電子装置に関する。 The present invention relates to an electronic device such as an organic electroluminescence device.
 有機EL素子(有機エレクトロルミネッセンス素子)などの電子素子は、水分に弱い場合が多い。そのため、例えば、有機EL素子を用いる有機エレクトロルミネッセンス装置(有機EL装置)では、有機EL素子をガスバリア性を有する封止部材によって封止することが提案されている。 Electronic devices such as organic EL devices (organic electroluminescence devices) are often vulnerable to moisture. Therefore, for example, in an organic electroluminescence device (organic EL device) using an organic EL element, it has been proposed to seal the organic EL element with a sealing member having gas barrier properties.
 例えば、特許文献1には、基材と、基材上に形成される中間層と、中間層上に形成されるポリシラザンを有する層に真空紫外線照射を施したガスバリア層とを有するガスバリアフィルムを用いて、有機EL素子を封止する有機EL装置(有機ELパネル)が記載されている。
 具体的には、特許文献1には、ガスバリアフィルムのガスバリア層上に有機EL素子を形成して、有機EL素子を覆って、接着剤層を介してアルミニウム箔/PET(ポリエチレンテレフタレート)フィルム複合封止部材を貼着することにより、有機EL素子を、ガスバリアフィルムとアルミニウム箔/PETフィルム複合封止部材で挟むと共に、側面まで覆って封止した有機EL装置が記載されている。
For example, Patent Document 1 uses a gas barrier film having a base material, an intermediate layer formed on the base material, and a gas barrier layer obtained by subjecting a layer having polysilazane formed on the intermediate layer to vacuum ultraviolet irradiation. An organic EL device (organic EL panel) for sealing an organic EL element is described.
Specifically, in Patent Document 1, an organic EL element is formed on a gas barrier layer of a gas barrier film, the organic EL element is covered, and an aluminum foil / PET (polyethylene terephthalate) film composite seal is provided via an adhesive layer. There is described an organic EL device in which an organic EL element is sandwiched between a gas barrier film and an aluminum foil / PET film composite sealing member by covering a side surface and sealed by sticking a stop member.
 特許文献2には、基材、リン酸エステル基を有する(メタ)アクリレートと多官能(メタ)アクリレートとを含有する塗布液を塗布して形成された平滑層、および、ポリシラザンを含有する塗布液を塗布、乾燥した塗膜に真空紫外光を照射する改質処理を施したガスバリア層とを、この順で積層したガスバリアフィルムを用いて、有機EL素子を封止する有機EL装置(有機ELパネル)が記載されている。
 具体的には、特許文献2には、ガスバリアフィルムの上に透明電極を形成し、透明電極の上に有機EL素子を形成し、接着剤層を介して対向フィルムを貼着することで、有機EL素子を封止した有機EL装置が記載されている。また、特許文献2では、対向フィルムとして、前述の基材、平滑層およびガスバリア層を有するガスバリアフィルムや、アルミ箔等の金属フィルムが例示されている。
Patent Document 2 discloses a base layer, a smooth layer formed by applying a coating solution containing a (meth) acrylate having a phosphate ester group and a polyfunctional (meth) acrylate, and a coating solution containing polysilazane. An organic EL device (organic EL panel) that seals an organic EL element by using a gas barrier film obtained by laminating a coating film that has been coated and dried with a gas barrier layer that has been subjected to a modification treatment that irradiates vacuum ultraviolet light. ) Is described.
Specifically, in Patent Document 2, a transparent electrode is formed on a gas barrier film, an organic EL element is formed on the transparent electrode, and an opposing film is attached via an adhesive layer, thereby organic An organic EL device in which an EL element is sealed is described. Moreover, in patent document 2, metal films, such as a gas barrier film which has the above-mentioned base material, a smooth layer, and a gas barrier layer, and aluminum foil, are illustrated as a counter film.
国際公開第2013/077255号International Publication No. 2013/075255 特開2014-76590号公報JP 2014-76590 A
 特許文献1および2にも示されるように、有機EL装置における有機EL素子の封止は、接着剤層によって有機EL素子を全面的に覆って、接着剤層の上に全面的にガスバリアフィルムなどの封止基板を貼着することで、有機EL素子を封止している。
 しかしながら、このような封止方法では、水分等による有機EL素子の劣化を十分に防止できない場合も有る。
As shown in Patent Documents 1 and 2, the organic EL element in the organic EL device is sealed by covering the entire surface of the organic EL element with an adhesive layer, and covering the entire surface of the adhesive layer with a gas barrier film or the like. The organic EL element is sealed by sticking the sealing substrate.
However, with such a sealing method, deterioration of the organic EL element due to moisture or the like may not be sufficiently prevented.
 本発明者らの検討によれば、その一因として、接着剤層の端面から侵入する水分によって、有機EL素子が劣化してしまうことが挙げられる。 According to the study by the present inventors, one reason is that the organic EL element deteriorates due to moisture entering from the end face of the adhesive layer.
 接着剤層の端面からの水分の侵入を防止という点では、接着剤層は薄いほど好ましい。
 その反面、接着剤を薄くすると、接着剤層の弾性が低くなってしまう。そのため、接着剤層が薄くなる程、有機EL素子と形成する素子基板と接着剤層との密着力、および/または接着剤層と封止基板との密着力が低くなってしまう。
 その結果、可撓性を要求される用途では接着剤層と封止基板との剥離が生じて此処から侵入する水分や、素子基板と接着剤層との界面および/または接着剤層と封止基板との界面から侵入する水分によって、有機EL素子が劣化する等の問題が生じる。
In terms of preventing moisture from entering from the end face of the adhesive layer, the thinner the adhesive layer, the better.
On the other hand, when the adhesive is thinned, the elasticity of the adhesive layer is lowered. Therefore, the thinner the adhesive layer, the lower the adhesion between the organic EL element and the element substrate to be formed and the adhesive layer and / or the adhesion between the adhesive layer and the sealing substrate.
As a result, in applications that require flexibility, the adhesive layer and the sealing substrate are peeled off and moisture enters, the interface between the element substrate and the adhesive layer and / or the adhesive layer and the sealing. Problems such as deterioration of the organic EL element occur due to moisture entering from the interface with the substrate.
 本発明の目的は、このような従来技術の問題点を解決することにあり、ガスバリアフィルム等の封止基板によって有機EL素子等の電子素子を封止した電子装置において、可撓性を要求される用途であっても高い密着力で電子素子を封止でき、かつ、界面からの水分の侵入も防止して、長期にわたって水分による電子素子の劣化を防止できる電子装置を提供することにある。 An object of the present invention is to solve such problems of the prior art. In an electronic device in which an electronic element such as an organic EL element is sealed with a sealing substrate such as a gas barrier film, flexibility is required. It is an object of the present invention to provide an electronic device that can seal an electronic element with a high adhesive force even when used for a long period of time, and prevent moisture from entering from an interface, thereby preventing deterioration of the electronic element due to moisture over a long period of time.
 この目的を達成するために、本発明の電子装置は、素子基板と、
 素子基板に形成される電子素子と、
 電子素子を封止する封止基板と、
 封止基板によって電子素子を封止するために、素子基板と封止基板との間に設けられる封止部材と、
 素子基板と封止部材との間および封止基板と封止部材との間の少なくとも一方に設けられる、パターニングされた界面密着層とを有することを特徴とする電子装置を提供する。
In order to achieve this object, an electronic device of the present invention includes an element substrate,
An electronic element formed on the element substrate;
A sealing substrate for sealing the electronic element;
A sealing member provided between the element substrate and the sealing substrate for sealing the electronic element with the sealing substrate;
There is provided an electronic device having a patterned interface adhesion layer provided between at least one of an element substrate and a sealing member and between a sealing substrate and a sealing member.
 このような本発明の電子装置において、界面密着層が、素子基板の面方向において、封止部材の端部と電子素子との中間位置よりも、電子素子側には位置しないようにパターニングされるのが好ましい。
 また、界面密着層による素子基板と封止部材との密着部、および、界面密着層による封止基板と封止部材との密着部の少なくとも一方が、封止部材の面積以下であるのが好ましい。
 また、界面密着層の厚さt0と封止部材の厚さt1との比が、t1/t0≧100であるのが好ましい。
 また、封止部材の水蒸気透過率が、温度40℃、相対湿度90%RHで、厚さ100μm当たり50g/(m2・day)以下であるのが好ましい。
 また、界面密着層が、ケイ素原子を10質量%以上含むのが好ましい。
 また、素子基板および封止基板の少なくとも一方が、支持体と、支持体の一方の面に設けられる無機層および無機層の形成面となる有機層の組み合わせの1組以上とを有するのが好ましい。
 また、封止部材が、電子素子の全面を覆うシート状であるのが好ましい。
 さらに、封止部材が、素子基板の面方向に電子素子を囲む枠体であるのが好ましい。
In such an electronic device of the present invention, the interfacial adhesion layer is patterned so that it is not positioned closer to the electronic element side than the intermediate position between the end of the sealing member and the electronic element in the surface direction of the element substrate. Is preferred.
Moreover, it is preferable that at least one of the contact part between the element substrate and the sealing member by the interface adhesion layer and the adhesion part between the sealing substrate and the sealing member by the interface adhesion layer is not more than the area of the sealing member. .
The ratio between the thickness t 1 of the thickness t 0 and the sealing member of the interface adhesion layer, t 1 / t is preferably 0 ≧ 100.
The water vapor permeability of the sealing member is preferably 50 g / (m 2 · day) or less per 100 μm thickness at a temperature of 40 ° C. and a relative humidity of 90% RH.
Moreover, it is preferable that an interface contact | attachment layer contains 10 mass% or more of silicon atoms.
Moreover, it is preferable that at least one of the element substrate and the sealing substrate includes a support and one or more combinations of an inorganic layer provided on one surface of the support and an organic layer that forms the inorganic layer formation surface. .
Moreover, it is preferable that a sealing member is a sheet form which covers the whole surface of an electronic element.
Furthermore, it is preferable that the sealing member is a frame surrounding the electronic element in the surface direction of the element substrate.
 このような本発明の電子装置によれば、可撓性を要求される用途であっても高い密着力で電子素子を封止でき、かつ、封止基板と封止部材との間等からの水分の侵入も防止して、長期にわたって水分による電子素子の劣化を防止できる電子装置が得られる。 According to such an electronic device of the present invention, the electronic element can be sealed with high adhesion even in applications requiring flexibility, and from between the sealing substrate and the sealing member. It is possible to obtain an electronic device that can prevent moisture from entering and prevent deterioration of the electronic element due to moisture over a long period of time.
図1Aは、本発明の電子装置を有機エレクトロルミネッセンス装置に利用した一例の概略断面図である。FIG. 1A is a schematic cross-sectional view of an example in which the electronic device of the present invention is used in an organic electroluminescence device. 図1Bは、図1Aに示す有機エレクトロルミネッセンス装置の概略平面図である。FIG. 1B is a schematic plan view of the organic electroluminescence device shown in FIG. 1A. 図2は、本発明の電子装置に利用されるがスバリアフィルムの一例を概念的に示す図である。FIG. 2 is a view conceptually showing an example of a barrier film used in the electronic device of the present invention. 図3Aは、本発明の電子装置を有機エレクトロルミネッセンス装置に利用した別の例の概略断面図である。FIG. 3A is a schematic cross-sectional view of another example in which the electronic device of the present invention is used in an organic electroluminescence device. 図3Bは、図3Aに示す有機エレクトロルミネッセンス装置の概略平面図である。FIG. 3B is a schematic plan view of the organic electroluminescence device shown in FIG. 3A.
 以下、本発明の電子装置について、添付の図面に示される好適例を基に、詳細に説明する。
 なお、本明細書において、『~』を用いて表される数値範囲は、『~』の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、『(メタ)アクリレート』とは、アクリレートとメタクリレートとの少なくとも一方、または、いずれかの意味で用いるものとする。『(メタ)アクリロイル』等も同様である。
Hereinafter, the electronic device of the present invention will be described in detail based on a preferred example shown in the accompanying drawings.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, “(meth) acrylate” is used in the meaning of at least one of acrylate and methacrylate, or any one of them. The same applies to “(meth) acryloyl”.
 図1Aおよび図1Bに、本発明の電子装置を有機エレクトロルミネッセンス装置に利用した一例を概念的に示す。なお、以下の説明では、有機エレクトロルミネッセンスを有機ELとも言う。 FIG. 1A and FIG. 1B conceptually show an example in which the electronic device of the present invention is used in an organic electroluminescence device. In the following description, organic electroluminescence is also referred to as organic EL.
 なお、図1に示す例は、本発明の電子装置を有機ELディスプレイや有機EL照明などの有機EL装置に利用した例であるが、本発明は、これ以外にも、素子基板に形成された電子素子を封止基板で封止してなる、各種の電子装置に利用可能である。
 一例として、本発明の電子装置は、有機太陽電池などの光電変換装置、有機トランジスタ、液晶ディスプレイなどのディスプレイ、電子ペーパ、熱電変換装置など、各種の電子素子を用いる各種の電子装置に好適に利用可能である。
In addition, although the example shown in FIG. 1 is an example which utilized the electronic device of this invention for organic EL apparatuses, such as an organic EL display and organic EL illumination, this invention was formed in the element substrate besides this. The present invention can be used for various electronic devices in which electronic elements are sealed with a sealing substrate.
As an example, the electronic device of the present invention is suitably used for various electronic devices using various electronic elements such as photoelectric conversion devices such as organic solar cells, displays such as organic transistors and liquid crystal displays, electronic paper, and thermoelectric conversion devices. Is possible.
 図1に示す有機EL装置10は、基本的に、素子基板12と、有機EL素子14と、封止基板16と、封止部材18と、界面密着層20とを有して構成される。
 有機EL装置10は、素子基板12の一方の表面に有機EL素子14を形成し、この有機EL素子14を、封止部材18を介して封止基板16で封止したものである。
 ここで、本発明の有機EL装置10は、素子基板12と封止部材18との間には界面密着層20が設けられる。また、封止部材18と封止基板16との間にも界面密着層20が設けられる。本発明において、界面密着層20は、共に、素子基板12の全面や封止基板16の全面に対応して、均一な膜(いわゆるベタ膜)を全面的に設けるのではなく、パターニングされて設けられる。この点に関しては、後に詳述する。
The organic EL device 10 shown in FIG. 1 basically includes an element substrate 12, an organic EL element 14, a sealing substrate 16, a sealing member 18, and an interface adhesion layer 20.
In the organic EL device 10, an organic EL element 14 is formed on one surface of an element substrate 12, and the organic EL element 14 is sealed with a sealing substrate 16 via a sealing member 18.
Here, in the organic EL device 10 of the present invention, an interface adhesion layer 20 is provided between the element substrate 12 and the sealing member 18. In addition, an interface adhesion layer 20 is provided between the sealing member 18 and the sealing substrate 16. In the present invention, the interfacial adhesion layer 20 is provided not by providing a uniform film (so-called solid film) over the entire surface of the element substrate 12 or the entire surface of the sealing substrate 16 but by patterning. It is done. This will be described in detail later.
 なお、図1Aは、本発明の有機EL装置10の概略断面図、図1Bは、有機EL装置10の概略平面図(上面図)である。図1Bにおいては、構成を明確に示すために、封止基板16は省略して、界面密着層20に斜線を付し、有機EL素子14を実線で示している。
 図1Aは、図1Bのa-a線断面であり、図1Bの平面図は、有機EL装置10を図1Aの上方から見た図である。すなわち、図1Bは、有機EL装置10を素子基板12の基板面と直交する方向から見た図である。
 また、図1Aにおいては、図面を簡潔にするためにハッチは省略している。
1A is a schematic cross-sectional view of the organic EL device 10 of the present invention, and FIG. 1B is a schematic plan view (top view) of the organic EL device 10. In FIG. 1B, in order to clearly show the configuration, the sealing substrate 16 is omitted, the interface adhesion layer 20 is hatched, and the organic EL element 14 is shown by a solid line.
1A is a cross-sectional view taken along the line aa of FIG. 1B, and the plan view of FIG. 1B is a view of the organic EL device 10 as viewed from above FIG. 1A. That is, FIG. 1B is a view of the organic EL device 10 as viewed from a direction orthogonal to the substrate surface of the element substrate 12.
In FIG. 1A, hatching is omitted for the sake of brevity.
 素子基板12は、有機ELディスプレイや有機EL照明など、各種の有機EL素子の形成基板として用いられる公知のシート状物やフィルム状物が、各種、利用可能である。
 素子基板12としては、一例として、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート、ポリアクリロニトリル、ポリイミド、ポリアクリレート、ポリメタクリレート、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、トリアセチルセルロース(TAC)、透明ポリイミドなどの、各種の樹脂材料(高分子材料)からなるフィルム状物やシート状物、ガラス板、薄ガラス、金属板等が例示される。
As the element substrate 12, various known sheet-like materials and film-like materials used as a substrate for forming various organic EL elements such as an organic EL display and organic EL lighting can be used.
As an example of the element substrate 12, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene (PE), polypropylene (PP), polystyrene, polyamide, polyvinyl chloride, polycarbonate, polyacrylonitrile, polyimide, polyacrylate, Films and sheets made of various resin materials (polymer materials) such as polymethacrylate, polycarbonate (PC), cycloolefin polymer (COP), cycloolefin copolymer (COC), triacetylcellulose (TAC), transparent polyimide, etc. Examples include a shape, a glass plate, a thin glass, and a metal plate.
 素子基板12としては、後述する封止基板16に用いられる、支持体にガスバリア層を形成してなるガスバリアフィルムも好適に利用可能である。
 中でも、支持体に、ガスバリア層として、ガスバリア性を発現する無機層と、この無機層の下地層となる有機層との組み合わせを、1組以上、形成した、有機無機積層型のガスバリアフィルムは、好適に利用される。なお、本発明においては、有機無機の積層型ではなく、ガスバリア層が、ガスバリア性を発現する無機層のみを有するガスバリアフィルムも、好適に利用可能である。
 ガスバリアフィルム、特に、有機無機積層型のガスバリアフィルムを素子基板12として用いることにより、素子基板12側からの水分の侵入を防止して、より長寿命な有機EL装置10を得られる。
 ガスバリアフィルムを素子基板12として用いる際には、有機EL素子14の形成面は、ガスバリア層側でも支持体側でも良いが、有機EL素子14に水分が侵入するのを好適に防止できる等の点で、ガスバリア層側に有機EL素子14を形成するのが好ましい。
As the element substrate 12, a gas barrier film formed by forming a gas barrier layer on a support, which is used for a sealing substrate 16 described later, can also be suitably used.
Among them, as a gas barrier layer, an organic / inorganic laminate type gas barrier film in which one or more combinations of an inorganic layer that exhibits gas barrier properties and an organic layer serving as a base layer of the inorganic layer are formed on the support, It is preferably used. In the present invention, a gas barrier film in which the gas barrier layer has only an inorganic layer exhibiting gas barrier properties, instead of the organic-inorganic laminated type, can also be suitably used.
By using a gas barrier film, in particular, an organic / inorganic laminated type gas barrier film as the element substrate 12, it is possible to prevent moisture from entering from the element substrate 12 side and obtain a longer-life organic EL device 10.
When the gas barrier film is used as the element substrate 12, the formation surface of the organic EL element 14 may be on the gas barrier layer side or the support side, but in terms of suitably preventing moisture from entering the organic EL element 14. The organic EL element 14 is preferably formed on the gas barrier layer side.
 素子基板12の厚さは、有機EL装置10の種類や大きさ等に応じて、適宜、設定すればよい。
 ここで、可撓性を有する有機EL装置10が実現できる等の点で、素子基板12の厚さは、形成材料等に応じて、必要な可撓性が得られる厚さとするのが好ましい。
The thickness of the element substrate 12 may be appropriately set according to the type and size of the organic EL device 10.
Here, it is preferable that the thickness of the element substrate 12 is set to a thickness that can provide necessary flexibility in accordance with a forming material or the like in that the organic EL device 10 having flexibility can be realized.
 このような素子基板12に形成される有機EL素子14は、透明電極層(TFT(薄膜トランジスタ))、ホール注入層、ホール輸送層、発光層、正孔阻止層、電子輸送層、電子注入層、陰極等を有する、有機ELディスプレイや有機EL照明等の有機EL装置(OLED(Organic Light Emitting Diode))を構成する、公知の有機EL素子(有機ELデバイス)である。 The organic EL element 14 formed on such an element substrate 12 includes a transparent electrode layer (TFT (thin film transistor)), a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, It is a well-known organic EL element (organic EL device) that constitutes an organic EL device (OLED (Organic Light Emitting Diode)) such as an organic EL display or organic EL illumination having a cathode or the like.
 なお、本発明の電子装置は、有機EL装置以外にも、各種の電子装置が可能であるのは、前述のとおりである。
 従って、素子基板12に形成されるのは、有機EL素子以外にも、太陽電池素子などの光電変換素子、有機トランジスタなどの有機半導体素子、熱電変換素子、電子ペーパ素子など、公知の各種の電子素子が利用可能である。
As described above, the electronic device of the present invention can be various electronic devices other than the organic EL device.
Therefore, what is formed on the element substrate 12 is not only an organic EL element, but also a variety of known electrons such as a photoelectric conversion element such as a solar cell element, an organic semiconductor element such as an organic transistor, a thermoelectric conversion element, and an electronic paper element. The device is available.
 このような有機EL素子14は、封止基板16によって封止される。また、素子基板12と封止基板16との間には、封止基板16によって有機EL素子14を封止するための封止部材18が設けられる。 Such an organic EL element 14 is sealed by a sealing substrate 16. In addition, a sealing member 18 for sealing the organic EL element 14 by the sealing substrate 16 is provided between the element substrate 12 and the sealing substrate 16.
 封止基板16は、素子基板12と逆側から有機EL素子14を覆って封止することにより、有機EL素子14が水分等によって劣化することを防止するためのものである。
 封止基板16は、必要なガスバリア性を有し、かつ、必要な透明性等の要求される特性を満たすものであれば、有機EL装置において、有機EL素子の封止に用いられる公知のシート状物(板状物/フィルム状物)が、各種、利用可能である。
 封止基板16としては、好ましくは、水蒸気透過率が1×10-2g/(m2・day)以下、より好ましくは水蒸気透過率が1×10-3g/(m2・day)以下のシート状物が利用される。
The sealing substrate 16 is for preventing the organic EL element 14 from being deteriorated by moisture or the like by covering and sealing the organic EL element 14 from the side opposite to the element substrate 12.
The sealing substrate 16 is a known sheet used for sealing an organic EL element in an organic EL device as long as it has necessary gas barrier properties and satisfies required characteristics such as required transparency. Various shapes (plate-like / film-like) can be used.
The sealing substrate 16 preferably has a water vapor transmission rate of 1 × 10 −2 g / (m 2 · day) or less, more preferably a water vapor transmission rate of 1 × 10 −3 g / (m 2 · day) or less. The sheet-like material is used.
 このような封止基板16としては、例えば、前述の素子基板12で例示したものが、各種、利用可能である。中でも、高いガスバリア性を有する、透明性が高い等の点で、ガラス板や薄ガラスは好適に利用される。
 また、封止基板16としては、前述の素子基板12で例示したような樹脂フィルムに、ガスバリア性を発現するガスバリア層を形成した、ガスバリアフィルムも好適に例示される。中でも、支持体に、ガスバリア性を発現する無機層と、無機層の下地層すなわち形成面となる有機層との組み合わせを1組以上形成してなる、有機無機積層型のガスバリアフィルムは、特に好適に利用される。
 なお、本発明においては、有機無機の積層型ではなく、ガスバリア層が、ガスバリア性を発現する無機層のみを有するガスバリアフィルムも、好適に利用可能である。この際において、無機層としては、後述するガスバリアフィルム30の無機層36と同様のものが、好適に例示される。この点に関しては、前述の素子基板12にガスバリア層として無機層のみ有するガスバリアフィルムを用いる場合も、同様である。
As such a sealing substrate 16, what was illustrated by the above-mentioned element substrate 12, for example can be utilized variously. Of these, glass plates and thin glass are preferably used in terms of high gas barrier properties and high transparency.
Moreover, as the sealing substrate 16, a gas barrier film in which a gas barrier layer that exhibits gas barrier properties is formed on the resin film as exemplified in the element substrate 12 is also preferably exemplified. Among them, an organic / inorganic laminate type gas barrier film in which one or more combinations of an inorganic layer exhibiting gas barrier properties and an organic layer serving as a formation surface of the inorganic layer are formed on the support is particularly preferable. Used for
In the present invention, a gas barrier film in which the gas barrier layer has only an inorganic layer exhibiting gas barrier properties, instead of the organic-inorganic laminated type, can also be suitably used. In this case, as the inorganic layer, those similar to the inorganic layer 36 of the gas barrier film 30 described later are preferably exemplified. This also applies to the case where a gas barrier film having only an inorganic layer as the gas barrier layer is used for the element substrate 12 described above.
 図2に、このような有機無機積層型のガスバリアフィルムの一例を概念的に示す。
 図2に示すガスバリアフィルム30は、支持体32の上に、有機層34と、無機層36とを、この順番で積層したものである。
FIG. 2 conceptually shows an example of such an organic-inorganic laminated gas barrier film.
The gas barrier film 30 shown in FIG. 2 is obtained by laminating an organic layer 34 and an inorganic layer 36 on a support 32 in this order.
 なお、図2に示すガスバリアフィルム30は、下地となる有機層34と無機層36との組み合わせを、1組有するものであるが、有機層34と無機層36との組み合わせを、2組有するものでもよく、3組以上有するものでもよい。
 有機層34と無機層36との組み合わせは、多いほど、ガスバリア性は高くなる。その反面、有機層34と無機層36との組み合わせが多いほど、バリアフィルムは厚くなり、透明性や可撓性も低下する。従って、有機層34と無機層36との組み合わせの数は、要求されるガスバリア性、可撓性や光学特性等に応じて、適宜、設定すればよい。
The gas barrier film 30 shown in FIG. 2 has one combination of the organic layer 34 and the inorganic layer 36 serving as a base, but has two combinations of the organic layer 34 and the inorganic layer 36. Or it may have three or more sets.
The greater the number of combinations of the organic layer 34 and the inorganic layer 36, the higher the gas barrier property. On the other hand, the greater the number of combinations of the organic layer 34 and the inorganic layer 36, the thicker the barrier film and the lower the transparency and flexibility. Therefore, the number of combinations of the organic layer 34 and the inorganic layer 36 may be appropriately set according to required gas barrier properties, flexibility, optical characteristics, and the like.
 また、有機無機積層型のガスバリアフィルムは、必要に応じて、最上層に無機層36の保護層等として作用する有機層を有してもよい。なお、最上層とは、支持体32と逆側の表面となる層である。
 しかしながら、最上層の有機層の端面から侵入する水分による有機EL素子14の劣化を防止できる等の点で、最上層を無機層36として、無機層36を有機EL素子14側すなわち後述する封止部材18側にするのが好ましい。同様の理由で、有機無機積層型のガスバリアフィルムを素子基板12に用いる場合にも、最上層を無機層36として、無機層36の表面に有機EL素子14を形成するのが好ましい。
Moreover, the organic-inorganic laminated gas barrier film may have an organic layer that acts as a protective layer for the inorganic layer 36 as the uppermost layer, if necessary. The uppermost layer is a layer on the surface opposite to the support 32.
However, in view of preventing deterioration of the organic EL element 14 due to moisture entering from the end face of the uppermost organic layer, the uppermost layer is the inorganic layer 36, and the inorganic layer 36 is the organic EL element 14 side, that is, a sealing described later. The member 18 side is preferable. For the same reason, when an organic / inorganic laminated gas barrier film is used for the element substrate 12, it is preferable to form the organic EL element 14 on the surface of the inorganic layer 36 with the uppermost layer being the inorganic layer 36.
 ガスバリアフィルム30において、支持体32としては、前述の素子基板12で例示した各種の樹脂材料からなるフィルム状物やシート状物が、好適に例示される。 In the gas barrier film 30, the support 32 is preferably a film or sheet made of various resin materials exemplified for the element substrate 12 described above.
 支持体32の厚さは、有機EL装置10の用途等に応じて、適宜、設定すればよい。具体的には、支持体32の厚さは、20~500μmが好ましい。 The thickness of the support 32 may be appropriately set according to the use of the organic EL device 10 or the like. Specifically, the thickness of the support 32 is preferably 20 to 500 μm.
 支持体32の一面には、バリア層を構成する有機層34と無機層36とが形成される。
 有機層34は、有機物からなる層で、有機層34となる重合性化合物を、架橋(重合)したものである。
 有機層34は、ガスバリア性を発現する無機層36を適正に形成するための、下地層として機能する。このような下地の有機層34を有することにより、無機層36の形成面の平坦化や均一化を図って、無機層36の形成に適した状態にできる。下地の有機層34および無機層36を積層した有機-無機の積層構造を有するガスバリアフィルム30は、これにより、全面に、隙間無く、適正な無機層36を形成することが可能になり、優れたガスバリア性を発現する。
On one surface of the support 32, an organic layer 34 and an inorganic layer 36 constituting a barrier layer are formed.
The organic layer 34 is a layer made of an organic substance, and is obtained by crosslinking (polymerizing) a polymerizable compound that becomes the organic layer 34.
The organic layer 34 functions as a base layer for properly forming the inorganic layer 36 that exhibits gas barrier properties. By having such a base organic layer 34, the surface on which the inorganic layer 36 is formed can be flattened and made uniform, and a state suitable for the formation of the inorganic layer 36 can be achieved. The gas barrier film 30 having an organic-inorganic laminated structure in which the underlying organic layer 34 and the inorganic layer 36 are laminated, thereby making it possible to form a proper inorganic layer 36 on the entire surface without any gaps. Expresses gas barrier properties.
 有機層34の形成材料は、公知の有機物が、各種、利用可能である。
 有機層34の形成材料としては、具体的には、ポリエステル、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、(メタ)アクリロイル化合物などの熱可塑性樹脂が好適に例示される。また、有機層34の形成材料としては、ポリシロキサン、その他の有機ケイ素化合物も、好適に例示される。これらの形成材料は、複数を併用してもよい。
Various known organic materials can be used as the material for forming the organic layer 34.
Specific examples of the material for forming the organic layer 34 include polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, and polyether. Imido, cellulose acylate, polyurethane, polyether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic ring modified polycarbonate, fluorene ring modified polyester, (meth) acryloyl compound, etc. The thermoplastic resin is preferably exemplified. Moreover, as a forming material of the organic layer 34, polysiloxane and other organosilicon compounds are also preferably exemplified. A plurality of these forming materials may be used in combination.
 中でも、ガラス転移温度や強度に優れる等の点で、ラジカル重合性化合物および/またはエーテル基を官能基に有するカチオン重合性化合物の重合物から構成された有機層34は、好適である。 Among these, the organic layer 34 composed of a polymer of a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
 中でも特に、強度に加え、透明性が高く光学特性に優れる等の点で、アクリレートおよび/またはメタクリレートのモノマーやオリゴマの重合体を主成分とする、ガラス転移温度が120℃以上のアクリル樹脂やメタクリル樹脂は、有機層34として好適に例示される。
 その中でも特に、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、1,9-ノナンジオールジ(メタ)アクリレート(A-NOD-N)、1,6ヘキサンジオールジアクリレート(A-HD-N)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、(変性)ビスフェノールAジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上のアクリレートおよび/またはメタクリレートのモノマー等の重合体を主成分とする、アクリル樹脂やメタクリル樹脂は、好適に例示される。また、これらのアクリル樹脂やメタクリル樹脂を、複数、用いるのも好ましい。
In particular, acrylic resin or methacrylic resin having a glass transition temperature of 120 ° C. or higher, mainly composed of an acrylate and / or methacrylate monomer or oligomer polymer in terms of strength, transparency and excellent optical properties. The resin is preferably exemplified as the organic layer 34.
Among them, dipropylene glycol di (meth) acrylate (DPGDA), 1,9-nonanediol di (meth) acrylate (A-NOD-N), 1,6 hexanediol diacrylate (A-HD-N), Bifunctional or higher acrylate and / or methacrylate monomers such as trimethylolpropane tri (meth) acrylate (TMPTA), (modified) bisphenol A di (meth) acrylate, dipentaerythritol hexa (meth) acrylate (DPHA), etc. An acrylic resin and a methacrylic resin mainly composed of a polymer are preferably exemplified. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
 有機層34を、アクリル樹脂やメタクリル樹脂、特に2官能以上のアクリル樹脂やメタクリル樹脂で形成することにより、骨格がしっかりした下地の上に無機層36を形成できるので、より緻密でガスバリア性が高い無機層36を形成できる。 By forming the organic layer 34 with an acrylic resin or a methacrylic resin, particularly an acrylic resin or a methacrylic resin having a bifunctional or higher functionality, the inorganic layer 36 can be formed on a base having a solid skeleton, so that the denser and higher gas barrier property is achieved. The inorganic layer 36 can be formed.
 有機層34の厚さは、目的とするガスバリアフィルム30の厚さ、下地の有機層34と無機層36との組み合わせの数、無機層36の種類等に応じて、適宜、設定すればよい。
 具体的には、有機層34の厚さ、中でも特に支持体32の表面に形成される有機層34の厚さは、0.1μm以上が好ましく、0.5μm以上がより好ましい。有機層34の厚さを0.1μm以上とすることにより、支持体32の表面の凹凸を好適に埋めて、表面平坦性の高い有機層34が得られる。また、有機層34の厚さを0.1μm以上とすることにより、有機層34が好適な応力緩衝層として作用するため、有機EL装置10を折り曲げた際等における無機層36の割れを防止できる。
 また、有機層34の厚さは、3μm以下が好ましく、1.5μm以下がより好ましい。有機層34の厚さを3μm以下とすることにより、有機層34からの水分放出に起因する有機EL素子14の劣化を好適に防止できる。
The thickness of the organic layer 34 may be set as appropriate according to the thickness of the target gas barrier film 30, the number of combinations of the underlying organic layer 34 and the inorganic layer 36, the type of the inorganic layer 36, and the like.
Specifically, the thickness of the organic layer 34, particularly the thickness of the organic layer 34 formed on the surface of the support 32 is preferably 0.1 μm or more, and more preferably 0.5 μm or more. By setting the thickness of the organic layer 34 to 0.1 μm or more, the unevenness on the surface of the support 32 is suitably filled, and the organic layer 34 having high surface flatness can be obtained. Moreover, since the organic layer 34 acts as a suitable stress buffer layer by setting the thickness of the organic layer 34 to 0.1 μm or more, the inorganic layer 36 can be prevented from cracking when the organic EL device 10 is bent. .
Further, the thickness of the organic layer 34 is preferably 3 μm or less, and more preferably 1.5 μm or less. By setting the thickness of the organic layer 34 to 3 μm or less, it is possible to suitably prevent deterioration of the organic EL element 14 due to moisture release from the organic layer 34.
 有機層34は、有機層34の形成材料に応じた公知の方法で形成すればよい。
 一般的に、有機層34は、有機溶剤、有機層34となる重合性化合物(モノマ、ダイマ、トリマ、オリゴマ、ポリマ等)、界面活性剤、シランカップリング剤などを含む塗布組成物(塗料)を調製して、この塗布液を塗布、乾燥して、さらに、必要に応じて紫外線照射等によって重合性化合物を重合(架橋)する、いわゆる塗布法によって形成される。また、塗布法を利用することにより、いわゆるレベリングの効果によって、非常に表面平坦性が高い有機層34を形成できる。
The organic layer 34 may be formed by a known method corresponding to the material for forming the organic layer 34.
Generally, the organic layer 34 is a coating composition (paint) containing an organic solvent, a polymerizable compound (monomer, dimer, trimer, oligomer, polymer, etc.) that becomes the organic layer 34, a surfactant, a silane coupling agent, and the like. The coating solution is applied, dried, and then polymerized (crosslinked) by a UV irradiation or the like as necessary. In addition, by using a coating method, the organic layer 34 having a very high surface flatness can be formed by a so-called leveling effect.
 このような有機層34を下地層として、無機層36が形成される。無機層36は、ガスバリアフィルム30におけるガスバリア性を、主に発現するものである。
 無機層36の形成材料は、ガスバリア性を発現する無機物からなるものが、各種、利用可能である。
 具体的には、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 炭化アルミニウムなどの金属炭化物; 酸化ケイ素、酸化窒化ケイ素、酸炭化ケイ素、酸化窒化炭化ケイ素などのケイ素酸化物; 窒化ケイ素、窒化炭化ケイ素などのケイ素窒化物; 炭化ケイ素等のケイ素炭化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物等の、無機化合物が、好適に例示される。
 特に、窒化ケイ素、酸化ケイ素、酸窒化ケイ素、酸化アルミニウムは、透明性が高く、かつ、優れたガスバリア性を発現できる点で、好適に利用される。中でも特に、窒化ケイ素は、優れたガスバリア性に加え、透明性も高く、好適に利用される。
The inorganic layer 36 is formed using such an organic layer 34 as a base layer. The inorganic layer 36 mainly exhibits gas barrier properties in the gas barrier film 30.
As the material for forming the inorganic layer 36, various materials made of an inorganic material exhibiting gas barrier properties can be used.
Specifically, metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide and silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
In particular, silicon nitride, silicon oxide, silicon oxynitride, and aluminum oxide are preferably used because they are highly transparent and can exhibit excellent gas barrier properties. Among these, silicon nitride is particularly suitable because it has high transparency in addition to excellent gas barrier properties.
 無機層36の厚さは、要求されるガスバリア性、目的とするガスバリアフィルム30の厚さ、下地の有機層34と無機層36との組み合わせの数等に応じて、適宜、設定すればよい。
 具体的には、無機層36の厚さは、10nm以上が好ましく、15nm以上がより好ましい。無機層36の厚さを10nm以上とすることにより、良好なガスバリア性を得ることができる。
 また、無機層36の厚さは、300nm以下が好ましく、150nm以下がより好ましい。無機層36の厚さを300nm以下とすることにより、有機EL装置10を折り曲げた際における無機層36の割れを防止できる。
The thickness of the inorganic layer 36 may be appropriately set according to the required gas barrier properties, the thickness of the target gas barrier film 30, the number of combinations of the underlying organic layer 34 and the inorganic layer 36, and the like.
Specifically, the thickness of the inorganic layer 36 is preferably 10 nm or more, and more preferably 15 nm or more. By setting the thickness of the inorganic layer 36 to 10 nm or more, good gas barrier properties can be obtained.
In addition, the thickness of the inorganic layer 36 is preferably 300 nm or less, and more preferably 150 nm or less. By setting the thickness of the inorganic layer 36 to 300 nm or less, cracking of the inorganic layer 36 when the organic EL device 10 is bent can be prevented.
 無機層36は、無機層36の形成材料に応じて、公知の方法で形成すればよい。
 一般的に、無機層36は、プラズマCVD(Chemical Vapor Deposition)、スパッタリング、真空蒸着等の気相堆積法(気相成膜法)によって形成される。
The inorganic layer 36 may be formed by a known method depending on the material for forming the inorganic layer 36.
In general, the inorganic layer 36 is formed by a vapor deposition method (vapor deposition method) such as plasma CVD (Chemical Vapor Deposition), sputtering, or vacuum deposition.
 封止基板16の厚さは、有機EL装置10の種類や大きさ、封止基板16に要求されるガスバリア性等に応じて、適宜、設定すればよい。
 ここで、可撓性を有する有機EL装置10が実現できる等の点で、封止基板16の厚さは、形成材料等に応じて、必要な可撓性が得られる厚さとするのが好ましい。
The thickness of the sealing substrate 16 may be appropriately set according to the type and size of the organic EL device 10 and the gas barrier properties required for the sealing substrate 16.
Here, the thickness of the sealing substrate 16 is preferably set to a thickness that can provide the necessary flexibility according to the forming material and the like in that the organic EL device 10 having flexibility can be realized. .
 素子基板12と封止基板16との間には、封止部材18が設けられる。封止部材18は、封止基板16によって有機EL素子14を封止するためのものである。図示例において、封止部材18は、サイズも含め封止基板16と同じ矩形の平面形状を有する。
 図示例の有機EL装置10においては、封止部材18が有機EL素子14を全面的に覆って、封止部材18の上に全面的に封止基板16を設けることにより、封止基板16によって有機EL素子14を封止している。
A sealing member 18 is provided between the element substrate 12 and the sealing substrate 16. The sealing member 18 is for sealing the organic EL element 14 with the sealing substrate 16. In the illustrated example, the sealing member 18 has the same rectangular planar shape as the sealing substrate 16 including the size.
In the illustrated organic EL device 10, the sealing member 18 entirely covers the organic EL element 14, and the sealing substrate 16 is provided on the entire surface of the sealing member 18. The organic EL element 14 is sealed.
 封止部材18としては、十分な透明性を有するものであれば、ガスバリアフィルム等の封止基板によって有機EL素子を封止している有機EL装置において、封止基板で有機EL素子を封止するために用いられている公知のものが、各種、利用可能である。
 一例として、(メタ)アクリル酸エステル樹脂、ポリウレタン、(メタ)アクリル樹脂、エチレン-酢酸ビニル共重合体(EVA)、ポリオレフィン、シリコーン樹脂、エポキシ樹脂、ゴム系材料等からなる粘着剤、粘着シート、粘着テープ、粘着フィルム、接着剤、封止剤等が例示される。
 また、封止部材18としては、市販品も利用可能である。封止部材18として利用可能な市販品としては、いわゆるOCA(Optical Clear Adhesive)と呼ばれるものが、好適に例示される。一例として、TESAテープ社製のteas Barrier Transfer Tape 3rdG、ダイセル社製のCELVENUSシリーズ、3M社製の各種の高透明性接着剤転写テープシリーズ等が例示される。
As the sealing member 18, as long as it has sufficient transparency, in the organic EL device in which the organic EL element is sealed with a sealing substrate such as a gas barrier film, the organic EL element is sealed with the sealing substrate. Various publicly known ones used for the purpose can be used.
Examples include (meth) acrylic acid ester resins, polyurethanes, (meth) acrylic resins, ethylene-vinyl acetate copolymers (EVA), polyolefins, silicone resins, epoxy resins, rubber-based materials, adhesive sheets, Examples thereof include an adhesive tape, an adhesive film, an adhesive, and a sealant.
A commercially available product can also be used as the sealing member 18. A commercially available product that can be used as the sealing member 18 is preferably a so-called OCA (Optical Clear Adhesive). As an example, teas Barrier Transfer Tape 3rdG manufactured by TESA Tape, CELVENUS series manufactured by Daicel, and various highly transparent adhesive transfer tape series manufactured by 3M are exemplified.
 封止部材18は、ガスバリア性が高いのが好ましい。具体的には、封止部材18は、温度40℃、相対湿度90%RHの環境下において、100μm当たりの水蒸気透過率が50g/(m2・day)以下であるのが好ましく、25g/(m2・day)以下であるのがより好ましい。
 封止部材18のガスバリア性を50g/(m2・day)以下にすることにより、水分による有機EL素子14の劣化を、より好適に防止できる。
The sealing member 18 preferably has a high gas barrier property. Specifically, the sealing member 18 preferably has a water vapor transmission rate per 100 μm of 50 g / (m 2 · day) or less in an environment of a temperature of 40 ° C. and a relative humidity of 90% RH, and 25 g / ( m 2 · day) or less is more preferable.
By setting the gas barrier property of the sealing member 18 to 50 g / (m 2 · day) or less, the deterioration of the organic EL element 14 due to moisture can be more suitably prevented.
 封止部材18が有機EL素子14を全面的に覆う図1A等に示す態様において、封止部材18の厚さは、封止部材18の形成材料等に応じて、十分な密着力(密着性)で素子基板12と封止基板16とを貼着できる厚さを、適宜、設定すればよい。
 水分による有機EL素子14の劣化の防止という点では、封止部材18の端面からの水分の侵入を少なくするために、封止部材18は、薄い方が好ましい。
 他方で、密着力の点では、封止部材18は厚い方が有利である。ここで、本発明においては、後述する界面密着層20を有するので、封止部材が薄くても、十分な密着力を得ることができる。
 この点を考慮すると、封止部材18の厚さは、0.5~100μmが好ましく、1~50μmがより好ましい。
 封止部材18の厚さを、この範囲とすることにより、水分による有機EL素子の劣化を防止しつつ、後述する界面密着層20との相互作用によって十分な密着力で素子基板12と封止基板16とを密着できる。
In the embodiment shown in FIG. 1A and the like in which the sealing member 18 covers the organic EL element 14 in its entirety, the thickness of the sealing member 18 is sufficient depending on the forming material of the sealing member 18 and the like. ) May be set as appropriate so that the element substrate 12 and the sealing substrate 16 can be attached to each other.
In order to prevent deterioration of the organic EL element 14 due to moisture, the sealing member 18 is preferably thin in order to reduce moisture intrusion from the end face of the sealing member 18.
On the other hand, the thicker sealing member 18 is advantageous in terms of adhesion. Here, in this invention, since it has the interface contact | adherence layer 20 mentioned later, even if the sealing member is thin, sufficient adhesive force can be obtained.
Considering this point, the thickness of the sealing member 18 is preferably 0.5 to 100 μm, and more preferably 1 to 50 μm.
By setting the thickness of the sealing member 18 within this range, the element substrate 12 is sealed with sufficient adhesion by the interaction with the interface adhesion layer 20 described later while preventing the deterioration of the organic EL element due to moisture. The substrate 16 can be in close contact.
 なお、封止部材18の厚さとは、言い換えれば、素子基板12の基板面と直交する方向の封止部材18のサイズである。また、封止部材18の端面とは、すなわち、主面(最大面)では無い、素子基板12の基板面方向の端面である。 In addition, the thickness of the sealing member 18 is, in other words, the size of the sealing member 18 in the direction orthogonal to the substrate surface of the element substrate 12. Further, the end surface of the sealing member 18 is an end surface in the substrate surface direction of the element substrate 12 that is not the main surface (maximum surface).
 封止部材18が有機EL素子14を全面的に覆う図1A等に示す態様において、封止部材18は、弾性率が0.1~520N/mm2であるのが好ましく、0.2~480N/mm2であるのがより好ましい。
 封止部材18の弾性率を0.1N/mm2以上とすることにより、ガスバリア性の良好な封止部材18を形成できる。また、封止基板16を剥離する方向に力が働いた場合、封止部材18の弾性率が低いと、封止部材18が伸びて千切れてしまい、封止が破れてしまうが、封止部材の弾性率を0.1N/mm2以上とすることにより、このような不都合も防止できる。
 封止部材18の弾性率を520N/mm2以下とすることにより、可撓性の良好な有機EL装置10が得られる等の点で好ましい。
In the embodiment shown in FIG. 1A and the like in which the sealing member 18 covers the organic EL element 14 in its entirety, the sealing member 18 preferably has an elastic modulus of 0.1 to 520 N / mm 2 , and is preferably 0.2 to 480 N. / Mm 2 is more preferable.
By setting the elastic modulus of the sealing member 18 to 0.1 N / mm 2 or more, the sealing member 18 having good gas barrier properties can be formed. In addition, when a force is applied in a direction in which the sealing substrate 16 is peeled off, if the elastic modulus of the sealing member 18 is low, the sealing member 18 is stretched and broken, and the sealing is broken. Such inconvenience can be prevented by setting the elastic modulus of the member to 0.1 N / mm 2 or more.
By setting the elastic modulus of the sealing member 18 to 520 N / mm 2 or less, it is preferable in that the organic EL device 10 having good flexibility can be obtained.
 有機EL装置10において、素子基板12と封止部材18との間、および、封止部材18と封止基板16との間には、界面密着層20が形成される。 In the organic EL device 10, an interface adhesion layer 20 is formed between the element substrate 12 and the sealing member 18 and between the sealing member 18 and the sealing substrate 16.
 図示例の有機EL装置10においては、界面密着層20は、素子基板12と封止部材18との間、および、封止部材18と封止基板16との間の両方に設けられる。
 しかしながら、後述する図3A等に示す例のように、密着力が十分である場合には、界面密着層20は、素子基板12と封止部材18との間、および、封止部材18と封止基板16との間の一方のみに設ける構成でもよい。
In the illustrated organic EL device 10, the interface adhesion layer 20 is provided both between the element substrate 12 and the sealing member 18 and between the sealing member 18 and the sealing substrate 16.
However, as in the example shown in FIG. 3A and the like described later, when the adhesion is sufficient, the interface adhesion layer 20 is interposed between the element substrate 12 and the sealing member 18 and between the sealing member 18 and the sealing member 18. The structure provided only in one side between the stop board | substrates 16 may be sufficient.
 ここで、本発明においては、界面密着層20は、素子基板12や封止基板16の全面に対応してベタで形成されるのではなく、パターニングして形成される。図1Aおよび図1Bに示すように、有機EL装置10においては、界面密着層20は、共に、矩形である封止基板16および封止部材18の周辺端部に応じて、矩形の枠状にパターニングされる。
 本発明の有機EL装置10は、素子基板12と封止部材18との間、および/または、封止部材18と封止基板16との間に、このようにパターニングした界面密着層20を有することにより、十分な密着性を確保すると共に、界面密着層20に起因する性能劣化も防止して、長寿命な有機EL装置10を実現している。
Here, in the present invention, the interfacial adhesion layer 20 is formed not by a solid pattern corresponding to the entire surface of the element substrate 12 or the sealing substrate 16 but by patterning. As shown in FIGS. 1A and 1B, in the organic EL device 10, the interfacial adhesion layer 20 has a rectangular frame shape according to the peripheral end portions of the rectangular sealing substrate 16 and the sealing member 18. Patterned.
The organic EL device 10 of the present invention has the interface adhesion layer 20 thus patterned between the element substrate 12 and the sealing member 18 and / or between the sealing member 18 and the sealing substrate 16. As a result, sufficient adhesion is ensured, and performance deterioration due to the interface adhesion layer 20 is prevented, thereby realizing a long-life organic EL device 10.
 特許文献1および2にも示されるように、有機EL素子を封止基板によって封止する有機EL装置においては、通常、有機EL素子を全面的に覆って接着剤層等の封止部材を設け、この封止部材に封止基板を貼着することにより、封止基板によって有機EL素子を封止している。
 ところが、前述のように、本発明者らの検討によれば、このような有機EL装置では、封止部材の端面から侵入する水分によって、有機EL素子の劣化を十分に防止できない場合も有る。
 端面からの水分の侵入を防止するためには、封止部材は薄い方が有利である。しかしながら、封止部材を薄くすると、十分な密着力が得られなくなってしまう。
As shown in Patent Documents 1 and 2, in an organic EL device that seals an organic EL element with a sealing substrate, a sealing member such as an adhesive layer is usually provided so as to cover the entire surface of the organic EL element. The organic EL element is sealed with the sealing substrate by sticking the sealing substrate to the sealing member.
However, as described above, according to the study by the present inventors, in such an organic EL device, deterioration of the organic EL element may not be sufficiently prevented due to moisture entering from the end face of the sealing member.
In order to prevent moisture from entering from the end face, it is advantageous that the sealing member is thin. However, if the sealing member is thinned, sufficient adhesion cannot be obtained.
 この密着力の低下を防止するためには、素子基板12と封止部材18との間や、封止部材18と封止基板16との間に、シランカップリング剤などを用いて界面密着層を形成することが考えられる。
 封止部材18の界面では無いが、特許文献1には、ガスバリアフィルムにおいて、基材とガスバリア層との間に設けられる中間層として、基材とガスバリア層との密着力を向上するための界面密着層(アンカーコート層)を設けることが記載されている。
In order to prevent this reduction in adhesion, an interface adhesion layer is used between the element substrate 12 and the sealing member 18 or between the sealing member 18 and the sealing substrate 16 using a silane coupling agent or the like. Can be considered.
Although it is not the interface of the sealing member 18, in patent document 1, in a gas barrier film, as an intermediate | middle layer provided between a base material and a gas barrier layer, the interface for improving the adhesive force of a base material and a gas barrier layer It is described that an adhesion layer (anchor coat layer) is provided.
 ここで、特許文献1にも示されるように、界面密着層は、貼り合わせる界面の全面に対応して設けられるのが通常である。
 ところが、本発明者らの検討によれば、封止部材を用いて封止基板によって有機EL素子を封止する有機EL装置では、素子基板や封止基板の全面に界面密着層を形成すると、界面密着層からの脱ガスに起因する有機EL素子の劣化、分解した界面密着層に起因する有機EL素子の劣化、界面密着層の着色による照射光の色味の変化等が生じ、有機EL装置の寿命が短くなる、有機EL装置の光学特性が劣化する等の不都合が生じる。
Here, as shown in Patent Document 1, the interfacial adhesion layer is usually provided corresponding to the entire interface to be bonded.
However, according to studies by the present inventors, in an organic EL device that seals an organic EL element with a sealing substrate using a sealing member, when an interface adhesion layer is formed on the entire surface of the element substrate or the sealing substrate, Deterioration of the organic EL element due to degassing from the interfacial adhesion layer, degradation of the organic EL element due to the decomposed interfacial adhesion layer, change in the color of irradiation light due to coloring of the interfacial adhesion layer, etc. Inconveniences such as shortening the lifetime of the organic EL device and deteriorating the optical characteristics of the organic EL device occur.
 これに対して、本発明の有機EL装置10においては、界面密着層20をパターニングして設ける。
 そのため、界面密着層を全面に形成した場合に比して、界面密着層20に起因する有機EL素子14の劣化や、光学特性の劣化を防止できる。
 また、界面密着層20を有することにより、素子基板12と封止部材18との剥離、封止部材18と封止基板16との剥離も防止して、剥離部からの水分の侵入も防止できると共に、素子基板12と封止部材18との界面や、封止部材18と封止基板16との界面からの水分の侵入も防止できる。
On the other hand, in the organic EL device 10 of the present invention, the interface adhesion layer 20 is provided by patterning.
Therefore, compared with the case where the interfacial adhesion layer is formed on the entire surface, it is possible to prevent deterioration of the organic EL element 14 and optical characteristics due to the interfacial adhesion layer 20.
Further, by having the interfacial adhesion layer 20, peeling between the element substrate 12 and the sealing member 18 and peeling between the sealing member 18 and the sealing substrate 16 can be prevented, and intrusion of moisture from the peeling portion can also be prevented. In addition, it is possible to prevent moisture from entering from the interface between the element substrate 12 and the sealing member 18 and from the interface between the sealing member 18 and the sealing substrate 16.
 本発明の有機EL装置10において、界面密着層のパターニングは、図示例の界面密着層20のような、有機EL素子14を素子基板12の面方向で囲むような枠状以外にも、有機EL装置10の形状や、有機EL素子14の形状等に応じた、各種のパターンが利用可能である。
 好ましくは、図1Bに概念的に示すように、界面密着層20は、素子基板12の面方向において、封止部材18の端部と有機EL素子14との中間位置Sよりも、有機EL素子14側に存在しないようにパターニングされるのが好ましい。言い換えれば、界面密着層20は、素子基板12の面方向において、封止部材18の端部と有機EL素子14との最短距離をLとした際に、L/2以上、有機EL素子14から離間するように、パターニングされるのが好ましい。
In the organic EL device 10 of the present invention, the patterning of the interface adhesion layer is not limited to the frame shape in which the organic EL element 14 is surrounded by the surface direction of the element substrate 12 like the interface adhesion layer 20 in the illustrated example. Various patterns can be used according to the shape of the apparatus 10 and the shape of the organic EL element 14.
Preferably, as conceptually shown in FIG. 1B, the interfacial adhesion layer 20 is more organic than the intermediate position S between the end of the sealing member 18 and the organic EL element 14 in the surface direction of the element substrate 12. Patterning is preferably performed so as not to exist on the 14 side. In other words, the interface adhesion layer 20 is L / 2 or more from the organic EL element 14 when the shortest distance between the end of the sealing member 18 and the organic EL element 14 is L in the surface direction of the element substrate 12. Patterning is preferably performed so as to be separated from each other.
 また、図1Aおよび図1Bに示すように、界面密着層20による素子基板12と封止部材18との密着部、および、界面密着層20による封止基板16と封止部材18との密着部の少なくとも一方が、封止部材18の面積以下であるのが好ましい。 Further, as shown in FIGS. 1A and 1B, an adhesion portion between the element substrate 12 and the sealing member 18 by the interface adhesion layer 20 and an adhesion portion between the sealing substrate 16 and the sealing member 18 by the interface adhesion layer 20. It is preferable that at least one of these is not more than the area of the sealing member 18.
 このような構成を有することにより、前述の界面密着層20に起因する有機EL素子14の短寿命化や有機EL装置10の光学特性の劣化等を、好適に防止できる。 By having such a configuration, it is possible to suitably prevent the lifetime of the organic EL element 14 due to the interface adhesion layer 20 described above, the deterioration of the optical characteristics of the organic EL device 10, and the like.
 また、より好適に有機EL素子14への水分の侵入を防止できるという点で、界面密着層20は、図示例のように、有機EL素子14を素子基板12の面方向に囲む枠状のパターンであるのが好ましい。
 さらに、界面密着層20の形成パターンは、素子基板12および封止部材18の少なくとも一方よりも、素子基板12の面方向の外側まで形成されるパターンであってもよく、また、封止部材18および封止基板16の少なくとも一方よりも、素子基板12の面方向の外側まで形成されるパターンであってもよい。
In addition, the interfacial adhesion layer 20 is more preferably a frame-like pattern that surrounds the organic EL element 14 in the surface direction of the element substrate 12 as shown in the example in that moisture can be prevented from entering the organic EL element 14. Is preferred.
Further, the formation pattern of the interfacial adhesion layer 20 may be a pattern formed to the outside in the surface direction of the element substrate 12 rather than at least one of the element substrate 12 and the sealing member 18. The pattern may be formed to the outside in the surface direction of the element substrate 12 rather than at least one of the sealing substrate 16.
 なお、封止部材18が有機EL素子14を全面的に覆う図1A等に示す態様においては、光学的に問題がなければ、封止基板16と封止部材18との間に設けられる界面密着層は、パターニングせずに、封止部材18の全面に、均一な層として形成してもよい。
 すなわち、封止部材18が有機EL素子14を全面的に覆う図1A等に示す態様においては、パターニングするのは、素子基板12と封止部材18との間に設けられる界面密着層20のみでもよい。
In the embodiment shown in FIG. 1A in which the sealing member 18 covers the organic EL element 14 in its entirety, if there is no optical problem, interfacial adhesion provided between the sealing substrate 16 and the sealing member 18. The layer may be formed as a uniform layer on the entire surface of the sealing member 18 without patterning.
That is, in the embodiment shown in FIG. 1A in which the sealing member 18 covers the entire surface of the organic EL element 14, only the interface adhesion layer 20 provided between the element substrate 12 and the sealing member 18 is patterned. Good.
 本発明の有機EL装置10において、界面密着層20の厚さは、界面密着層20の形成材料、界面密着層20と封止基板16、封止部材18、素子基板12との密着力等に応じて、適宜、設定すればよい。
 ここで、本発明者らの検討によれば、界面密着層20の厚さをt0、封止部材18の厚さt1とした際に、界面密着層20の厚さt0と封止部材18の厚さt1との比が、t1/t0≧50であるのが好ましく、t1/t0≧150であるのがより好ましい。すなわち、界面密着層20は、封止部材18に比して、遥かに薄いのが好ましい。
 t1/t0≧50とすることにより、界面密着層20を通って水分が有機EL素子14に侵入することを防止して、水分に起因する有機EL素子14の劣化を、より好適に防止できる等の点で好ましい。
In the organic EL device 10 of the present invention, the thickness of the interfacial adhesion layer 20 depends on the forming material of the interfacial adhesion layer 20, the adhesion between the interfacial adhesion layer 20 and the sealing substrate 16, the sealing member 18, the element substrate 12, and the like. Accordingly, it may be set appropriately.
Here, according to the study by the present inventors, the thickness of the interface adhesion layer 20 t 0, when the thickness t 1 of the sealing member 18, the thickness t 0 of the interface adhesion layer 20 and the sealing The ratio of the member 18 to the thickness t 1 is preferably t 1 / t 0 ≧ 50, and more preferably t 1 / t 0 ≧ 150. That is, the interfacial adhesion layer 20 is preferably much thinner than the sealing member 18.
By setting t 1 / t 0 ≧ 50, moisture can be prevented from entering the organic EL element 14 through the interfacial adhesion layer 20, and deterioration of the organic EL element 14 due to moisture can be more suitably prevented. It is preferable in that it can be performed.
 本発明において、界面密着層20の形成材料は、素子基板12、封止基板16および封止部材18の形成材料に応じて、適宜、選択すればよい。
 一例として、シランカップリング剤が例示される。シランカップリング剤は、公知のものが、各種、利用可能である。また、シランカップリング剤は、市販品も好適に利用可能である。具体的には、東レダウコーニング社製のZシリーズ、信越シリコーン社製のKBMシリーズ、および、KBEシリーズ等が例示される。
In the present invention, the material for forming the interface adhesion layer 20 may be appropriately selected according to the material for forming the element substrate 12, the sealing substrate 16, and the sealing member 18.
A silane coupling agent is illustrated as an example. Various known silane coupling agents can be used. Moreover, a commercial item can also be suitably used for the silane coupling agent. Specifically, Z series made by Toray Dow Corning, KBM series made by Shin-Etsu Silicone, KBE series, and the like are exemplified.
 また、本発明においては、例えば、ケイ素、ゲルマニウム、鉄、ニッケル、パラジウム、チタン、金、銀、銅、アルミニウムおよびインジウム等の1以上からなる活性層を界面密着層20として形成し、真空下において、封止部材18と、素子基板12および/または封止基板16とを貼り合わせする、いわゆる常温接合も、好適に利用可能である。
 常温接合は、真空チャンバ等を用いる公知の方法で行えばよい。また、常温接合を行う場合には、界面密着層20となる活性層を、封止部材18と、素子基板12および/または封止基板16との両者に形成して、常温接合を行ってもよい。
 なお、常温接合に関しては、例えば、『Room Temperature SiO2 Wafer Bonding by Adhesion Layer Method 出典:Proceedings of the 61st Electronic Components and Technology Conference (ECTC) 2011, May 31- June 3, 2011』を参考にすればよい。
In the present invention, for example, an active layer made of one or more of silicon, germanium, iron, nickel, palladium, titanium, gold, silver, copper, aluminum, indium and the like is formed as the interfacial adhesion layer 20, So-called normal temperature bonding in which the sealing member 18 is bonded to the element substrate 12 and / or the sealing substrate 16 can also be suitably used.
Room temperature bonding may be performed by a known method using a vacuum chamber or the like. In addition, when performing room temperature bonding, an active layer serving as the interface adhesion layer 20 may be formed on both the sealing member 18 and the element substrate 12 and / or the sealing substrate 16 to perform room temperature bonding. Good.
Regarding room temperature bonding, for example, “Room Temperature SiO 2 Wafer Bonding by Adhesion Layer Method Source: Proceedings of the 61st Electronic Components and Technology Conference (ECTC) 2011, May 31-June 3, 2011” may be referred to.
 ここで、本発明の有機EL装置10においては、界面密着層20は、ケイ素原子を10質量%以上含むのが好ましい。
 界面密着層20がケイ素原子を10質量%以上含むことにより、封止部材18と、素子基板12および/または封止基板16との密着力を高くできる等の点で好ましい。
Here, in the organic EL device 10 of the present invention, the interfacial adhesion layer 20 preferably contains 10% by mass or more of silicon atoms.
It is preferable that the interfacial adhesion layer 20 contains 10% by mass or more of silicon atoms in that the adhesion between the sealing member 18 and the element substrate 12 and / or the sealing substrate 16 can be increased.
 このような有機EL装置10は、公知の各種の方法を利用して製造できる。
 一例として、素子基板12の表面に界面密着層20を形成し、次いで、素子基板12に有機EL素子14を形成する。界面密着層20の形成は、塗布法等、形成材料に応じた公知の方法で行えばよい。また、有機EL素子14の形成も、公知の方法で行えばよい。
 一方で、封止基板16に界面密着層20を形成し、その後、位置合わせして封止基板16に封止部材18を形成する。界面密着層20および封止部材18の形成は、塗布法や貼着等、界面密着層20および封止部材18の形成材料に応じた公知の方法で行えばよい。
 最後に、封止部材18を介して、素子基板12と封止基板16とを位置合わせして貼り合わせし、必要に応じて、紫外線照射等によって封止部材18を硬化することで、有機EL装置10を作製する。
Such an organic EL device 10 can be manufactured using various known methods.
As an example, the interface adhesion layer 20 is formed on the surface of the element substrate 12, and then the organic EL element 14 is formed on the element substrate 12. The formation of the interfacial adhesion layer 20 may be performed by a known method according to the forming material such as a coating method. Further, the organic EL element 14 may be formed by a known method.
On the other hand, the interfacial adhesion layer 20 is formed on the sealing substrate 16, and then the sealing member 18 is formed on the sealing substrate 16 by positioning. The formation of the interfacial adhesion layer 20 and the sealing member 18 may be performed by a known method according to the forming material of the interfacial adhesion layer 20 and the sealing member 18 such as a coating method or sticking.
Finally, the element substrate 12 and the sealing substrate 16 are aligned and bonded through the sealing member 18, and the sealing member 18 is cured by ultraviolet irradiation or the like as necessary, thereby organic EL. Device 10 is fabricated.
 図3Aおよび図3Bに、本発明の有機EL装置の別の例を概念的に示す。
 図3Bは、図1Bと同様の概略平面図であり、図3Aは、図1Aと同様の図3Bの概略断面図である。
3A and 3B conceptually show another example of the organic EL device of the present invention.
3B is a schematic plan view similar to FIG. 1B, and FIG. 3A is a schematic cross-sectional view of FIG. 3B similar to FIG. 1A.
 前述の図1A等に示す有機EL装置10は、封止基板16によって有機EL素子14を封止するための封止部材18が、有機EL素子14を全面的に覆って設けられており、この封止部材18に封止基板16を貼着することにより、封止基板16によって有機EL素子14を封止している。
 これに対し、図3Aおよび図3Bに示す有機EL装置40は、素子基板12の基板面方向に有機EL素子14を囲む枠状の封止部材42を用い、この封止部材42の上面に枠状にパターニングして界面密着層20を形成して、界面密着層20を形成した封止部材42の上に、封止基板16を設けることにより、封止基板16によって有機EL素子14を封止している。
 また、有機EL装置40では、一例として、素子基板12と封止部材42との間には、界面密着層20を設けていない。
In the organic EL device 10 shown in FIG. 1A and the like described above, a sealing member 18 for sealing the organic EL element 14 by the sealing substrate 16 is provided so as to cover the organic EL element 14 entirely. The organic EL element 14 is sealed by the sealing substrate 16 by sticking the sealing substrate 16 to the sealing member 18.
On the other hand, the organic EL device 40 shown in FIGS. 3A and 3B uses a frame-shaped sealing member 42 surrounding the organic EL element 14 in the substrate surface direction of the element substrate 12, and a frame is formed on the upper surface of the sealing member 42. The organic EL element 14 is sealed by the sealing substrate 16 by providing the sealing substrate 16 on the sealing member 42 on which the interface adhesive layer 20 is formed. is doing.
In the organic EL device 40, as an example, the interface adhesion layer 20 is not provided between the element substrate 12 and the sealing member 42.
 すなわち、図3A等に示す有機EL装置40では、粘着性を有する封止部材18で有機EL素子14を覆うのではなく、必要なガスバリア性を有する枠状の封止部材42によって有機EL素子14を囲み、封止部材42の上面を封止基板16で閉塞することで、封止基板16によって有機EL素子14を封止し、水分等による劣化を防止している。
 従って、本例においては、封止部材42の厚さ(高さ)は、有機EL装置40に要求される厚さ等に応じて、適宜、設定すればよい。
That is, in the organic EL device 40 shown in FIG. 3A and the like, the organic EL element 14 is not covered by the adhesive sealing member 18 but by the frame-shaped sealing member 42 having necessary gas barrier properties. And the upper surface of the sealing member 42 is closed with the sealing substrate 16, thereby sealing the organic EL element 14 with the sealing substrate 16 and preventing deterioration due to moisture or the like.
Therefore, in this example, the thickness (height) of the sealing member 42 may be set as appropriate according to the thickness required for the organic EL device 40 and the like.
 枠状の封止部材42は、要求されるガスバリア性を有するものであれば、樹脂材料や無機物などの公知の各種の材料によって、形成材料に応じた公知の方法で形成すればよい。
 好適な一例として、塗布法や接着等によって樹脂製の枠体を形成し、この枠体の表面を無機物で被覆した封止部材42が例示される。
 この方法によれば、高い素子基板12と封止部材42との密着力を得て、この間の界面密着層を不要にし、かつ、ガスバリア性の高い封止部材42を形成できる。
The frame-shaped sealing member 42 may be formed by a known method according to a forming material, using various known materials such as a resin material or an inorganic material, as long as it has a required gas barrier property.
As a suitable example, a sealing member 42 in which a resin frame is formed by a coating method, adhesion, or the like, and the surface of the frame is covered with an inorganic material is exemplified.
According to this method, it is possible to obtain an adhesive force between the high element substrate 12 and the sealing member 42, eliminate the need for an interfacial adhesive layer therebetween, and form the sealing member 42 having a high gas barrier property.
 樹脂材料からなる枠体を被覆する無機物としては、前述のガスバリアフィルム30の無機層36で例示した各種の無機化合物が好適に例示される。また、この無機化合物を用いる場合には、枠体のみならず、有機EL素子14も、この無機化合物で被覆してもよい。これにより、水分による有機EL素子14の劣化を、より好適に防止できる。
 樹脂材料からなる枠体を被覆する無機物としては、上記無機化合物以外にも、金属等も利用可能である。
 無機物による樹脂製の枠体の被覆は、プラズマCVD、スパッタリング、真空蒸着等、形成材料に応じた公知の方法で行えばよい。
As an inorganic substance which coat | covers the frame which consists of resin materials, the various inorganic compounds illustrated by the inorganic layer 36 of the above-mentioned gas barrier film 30 are illustrated suitably. When this inorganic compound is used, not only the frame but also the organic EL element 14 may be covered with this inorganic compound. Thereby, deterioration of the organic EL element 14 due to moisture can be more suitably prevented.
In addition to the above inorganic compounds, metals and the like can be used as the inorganic material for covering the frame made of the resin material.
Covering the resin frame with an inorganic material may be performed by a known method according to the forming material, such as plasma CVD, sputtering, or vacuum deposition.
 なお、このような樹脂製の枠体の表面を無機物で被覆した封止部材42では、枠体を被覆する無機物の水蒸気透過率が、温度40℃、相対湿度90%RHの条件下で、100μm当たり50g/(m2・day)以下であるのが好ましい。 In the sealing member 42 in which the surface of such a resin frame is covered with an inorganic material, the water vapor permeability of the inorganic material covering the frame is 100 μm under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH. It is preferably 50 g / (m 2 · day) or less per unit.
 また、樹脂製の枠体の表面を無機物で被覆した封止部材42を用いる構成では、界面密着層20として、ケイ素等からなる活性層を界面密着層20として形成し、常温接合によって封止部材18と封止基板16とを貼り合わせする構成は、好適に利用される。 Moreover, in the structure using the sealing member 42 which coat | covered the surface of the resin-made frame body with the inorganic substance, as the interface adhesion layer 20, the active layer which consists of silicon etc. is formed as the interface adhesion layer 20, and a sealing member is carried out by normal temperature joining A configuration in which the substrate 18 and the sealing substrate 16 are bonded together is preferably used.
 枠状の封止部材42を用いる図3A等に示す態様において、封止部材42は、弾性率が0.1~520N/mm2であるのが好ましく、0.2~480N/mm2であるのがより好ましい。
 封止部材42の弾性率を0.1N/mm2以上とすることにより、ガスバリア性の良好な封止部材42を形成できる。また、封止基板16を剥離する方向に力が働いた場合、封止部材42の弾性率が低いと封止部材42が伸びて千切れてしまい、封止が破れてしまうが、封止部材の弾性率を0.1N/mm2以上とすることにより、このような不都合も防止できる。
 封止部材42の弾性率を520N/mm2以下とすることにより、可撓性の良好な有機EL装置40が得られる等の点で好ましい。
In the embodiment shown in FIG. 3A using the frame-shaped sealing member 42, the sealing member 42 preferably has an elastic modulus of 0.1 to 520 N / mm 2 , and is preferably 0.2 to 480 N / mm 2 . Is more preferable.
By setting the elastic modulus of the sealing member 42 to 0.1 N / mm 2 or more, the sealing member 42 with good gas barrier properties can be formed. In addition, when a force is applied in a direction in which the sealing substrate 16 is peeled off, if the elastic modulus of the sealing member 42 is low, the sealing member 42 is extended and broken, and the sealing is broken. Such inconvenience can be prevented by setting the elastic modulus of the material to 0.1 N / mm 2 or more.
By setting the elastic modulus of the sealing member 42 to 520 N / mm 2 or less, it is preferable in that the organic EL device 40 having good flexibility can be obtained.
 図3A等に示される、枠状の封止部材42を用いる構成でも、界面密着層20は、素子基板12の面方向において、封止部材42の端部と有機EL素子14との中間位置Sよりも有機EL素子14側に存在しないように、パターニングされるのが好ましい。
 ここで、このような枠状の封止部材42を用いる場合には、図3Bに概念的に示すように、封止部材42の端部とは、封止部材42の有機EL素子14側の端部を指す。
Even in the configuration using the frame-shaped sealing member 42 shown in FIG. 3A and the like, the interfacial adhesion layer 20 has an intermediate position S between the end of the sealing member 42 and the organic EL element 14 in the surface direction of the element substrate 12. It is preferable that the patterning is performed so as not to exist on the organic EL element 14 side.
Here, when such a frame-shaped sealing member 42 is used, as conceptually shown in FIG. 3B, the end of the sealing member 42 is on the organic EL element 14 side of the sealing member 42. Point to the end.
 すなわち、枠状の封止部材42を用いる構成では、図3Bに概念的に示すように、界面密着層20は、素子基板12の面方向において、封止部材42の内側の端部と有機EL素子14との中間位置Sよりも有機EL素子14側に存在しないように、パターニングされるのが好ましい。
 言い換えれば、界面密着層20は、素子基板12の面方向において、封止部材42の内側の端部と有機EL素子14との最短距離をLとした際に、L/2以上、有機EL素子14から離間するように、パターニングされるのが好ましい。
That is, in the configuration using the frame-shaped sealing member 42, as shown conceptually in FIG. 3B, the interfacial adhesion layer 20 includes the organic EL and the inner end of the sealing member 42 in the surface direction of the element substrate 12. It is preferable that patterning is performed so that the organic EL element 14 side does not exist with respect to the intermediate position S with respect to the element 14.
In other words, the interface adhesion layer 20 has an organic EL element of L / 2 or more when the shortest distance between the inner end of the sealing member 42 and the organic EL element 14 is L in the surface direction of the element substrate 12. The patterning is preferably performed so as to be away from 14.
 従って、有機EL装置40のように、枠状の封止部材42を用いる構成では、界面密着層20が、封止部材42の上面のみならず、封止部材42の内側側面から素子基板12の表面に至って形成される場合も含む。 Therefore, in the configuration using the frame-shaped sealing member 42 as in the organic EL device 40, the interface adhesion layer 20 is not only from the upper surface of the sealing member 42 but also from the inner side surface of the sealing member 42. This includes the case where it reaches the surface.
 このような有機EL装置40も、公知の各種の方法を利用して製造できる。
 一例として、まず、素子基板12の表面に封止部材42を形成し、次いで、素子基板12に有機EL素子14を形成する。封止部材42の形成は塗布法等、形成材料に応じた公知の方法で行えばよい。また、有機EL素子14の形成も、公知の方法で行えばよい。
 次いで、必要に応じて、封止部材42あるいは素子基板12の全面を、窒化ケイ素等の無機物で被覆する。封止部材42の無機物による被覆は、形成材料に応じてスパッタリング等の公知の方法で行えばよいのは、前述のとおりである。
 次いで、封止部材42の上面に、ケイ素等からなる活性層を界面密着層20として形成する。界面密着層20の形成も、形成材料に応じてスパッタリング等の公知の方法で行えばよい。
 一方で、封止基板16に、先に封止部材42に形成した界面密着層20と位置合わせして、同様にケイ素等からなる活性層を界面密着層20として形成する。
 最後に、真空チャンバ内において、界面密着層20同士を対面かつ位置合わせして、素子基板12と封止基板16とを積層し、真空中で常温接合することで、有機EL装置10を作製する。
Such an organic EL device 40 can also be manufactured using various known methods.
As an example, first, the sealing member 42 is formed on the surface of the element substrate 12, and then the organic EL element 14 is formed on the element substrate 12. The sealing member 42 may be formed by a known method according to the forming material such as a coating method. Further, the organic EL element 14 may be formed by a known method.
Next, if necessary, the entire surface of the sealing member 42 or the element substrate 12 is coated with an inorganic material such as silicon nitride. As described above, the sealing member 42 may be coated with an inorganic material by a known method such as sputtering according to the forming material.
Next, an active layer made of silicon or the like is formed as the interfacial adhesion layer 20 on the upper surface of the sealing member 42. The formation of the interfacial adhesion layer 20 may be performed by a known method such as sputtering according to the forming material.
On the other hand, an active layer made of silicon or the like is similarly formed on the sealing substrate 16 as the interface adhesion layer 20 in alignment with the interface adhesion layer 20 previously formed on the sealing member 42.
Finally, in the vacuum chamber, the interfacial adhesion layers 20 are face-to-face and aligned, the element substrate 12 and the sealing substrate 16 are stacked, and are bonded at room temperature in a vacuum to produce the organic EL device 10. .
 以上、本発明の電子装置について詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。 The electronic device of the present invention has been described in detail above. However, the present invention is not limited to the above-described example, and various improvements and modifications may be made without departing from the gist of the present invention. Of course.
 以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。 Hereinafter, specific examples of the present invention will be given and the present invention will be described in more detail.
 [実施例1]
 <ガスバリアフィルム30の作製>
 支持体32として厚さ100μmのPETフィルム(A4300、東洋紡社製)を用意した。
[Example 1]
<Preparation of gas barrier film 30>
A PET film (A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm was prepared as the support 32.
 TMPTA(ダイセルセルテック社製)、シランカップリング剤(KBM-5103、信越化学社製)および重合性酸性化合物(KARAMER PM-21、日本化薬社製)を、質量比で14.1:3.5:1で混合してなる組成物を調製した。
 この組成物18.6gと、紫外線重合開始剤(ESACURE KTO46、ランベルティ社製)1.4gと、2-ブタノン180gとを混合して、有機層34を形成するための塗料を調製した。
TMPTA (manufactured by Daicel Celltech), silane coupling agent (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) and polymerizable acidic compound (KARAMER PM-21, manufactured by Nippon Kayaku Co., Ltd.) in a mass ratio of 14.1: 3. A composition was prepared by mixing at 5: 1.
18.6 g of this composition, 1.4 g of an ultraviolet polymerization initiator (ESACURE KTO46, manufactured by Lamberti) and 180 g of 2-butanone were mixed to prepare a coating material for forming the organic layer 34.
 調製した塗料を、用意した支持体32(PETフィルム)の表面に塗布した。塗料の塗布は、ワイヤーバーを用い、塗膜厚が5μmとなるように行った。
 塗料を塗布した後、室温で放置することにより、塗料を乾燥した。
 次いで、窒素置換法により酸素濃度を0.1%としたチャンバー内で高圧水銀ランプの紫外線を照射(積算照射量約1J/cm2)することで、塗料の組成物を硬化させた。これにより、支持体32の表面に厚さ1μmの有機層34を形成した。
The prepared paint was applied to the surface of the prepared support 32 (PET film). The coating was applied using a wire bar so that the coating thickness was 5 μm.
After applying the paint, the paint was dried by allowing it to stand at room temperature.
Next, the composition of the coating was cured by irradiating with ultraviolet rays from a high-pressure mercury lamp (integrated irradiation amount: about 1 J / cm 2 ) in a chamber in which the oxygen concentration was 0.1% by a nitrogen substitution method. Thereby, an organic layer 34 having a thickness of 1 μm was formed on the surface of the support 32.
 この有機層34の上に、無機層36として、厚さ35nmの窒化ケイ素膜を形成した。
 無機層36(窒化ケイ素膜)の形成は、一般的なCCP(容量結合プラズマ方式)-CVD装置を用いて行った。原料ガスは、シランガス(流量160sccm)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および窒素ガス(流量240sccm)を用いた。成膜圧力は40Paとした。電源は周波数13.56MHzの高周波電源を用い、プラズマ励起電力を2.5kWとした。
 これにより、支持体32の上に有機層34を有し、その上に無機層36を有する、図2に示すようなガスバリアフィルム30を作製した。
A silicon nitride film having a thickness of 35 nm was formed as an inorganic layer 36 on the organic layer 34.
The inorganic layer 36 (silicon nitride film) was formed using a general CCP (capacitively coupled plasma) -CVD apparatus. As source gases, silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used. The film forming pressure was 40 Pa. The power supply was a high frequency power supply with a frequency of 13.56 MHz, and the plasma excitation power was 2.5 kW.
Thereby, the gas barrier film 30 as shown in FIG. 2 which had the organic layer 34 on the support body 32 and had the inorganic layer 36 on it was produced.
 [実施例1]
 作製したガスバリアフィルム30を50mm四方に切り出して、素子基板12とした。
 素子基板12を運搬用の50mm四方のガラス基板に貼り合わせして、38mm四方に切り出したラミネートフィルム(PAC3、サンエー化研社製)を、中心同士を合わせ貼り合わせし、マスクとした。
 マスクを貼り合わせした素子基板12をスピンコーターにセットし、純水で1w%に希釈したシランカップリング剤(KBM-403、信越シリコーン社製)を塗布した。このシランカップリグ剤は、ケイ素原子を10質量%含む。
 その後、乾燥した綿棒で端部から4mmの幅でシランカップリング剤を拭き取り、枠状にシランカップリング剤が残るようにパターニングした。その後、110℃のオーブンで1時間乾燥させて、2mm幅の枠状にパターニングしたシランカップリング剤からなる界面密着層20を形成した素子基板12を得た。
[Example 1]
The produced gas barrier film 30 was cut into a 50 mm square to form an element substrate 12.
The element substrate 12 was bonded to a glass substrate of 50 mm square for transportation, and a laminate film (PAC3, manufactured by Sanei Kaken Co., Ltd.) cut out to 38 mm square was bonded to the center to make a mask.
The element substrate 12 to which the mask was bonded was set on a spin coater, and a silane coupling agent (KBM-403, manufactured by Shin-Etsu Silicone) diluted to 1 w% with pure water was applied. This silane coupling agent contains 10% by mass of silicon atoms.
Then, the silane coupling agent was wiped off with a dry cotton swab at a width of 4 mm from the end, and patterned so that the silane coupling agent remained in a frame shape. Then, the element board | substrate 12 which dried in 110 degreeC oven for 1 hour and formed the interface adhesion layer 20 which consists of a silane coupling agent patterned into the frame shape of 2 mm width was obtained.
 この素子基板12の界面密着層20の形成面に、以下のようにして、有機EL素子14を形成した。
 まず、素子基板12の表面に、60nmの膜厚になるようにITOをスパッタリングによって成膜して、陽極を形成した。形成された陽極表面に、真空蒸着装置により、HAT-CN層(2,3,6,7,10,11-Hexacyano-1,4,5,8,9,12-hexaazatriphenylene層)を正孔注入層として2nmの膜厚で形成し、さらに、HAT-CN層の表面に順に正孔輸送層(α-NPD:Bis[N-(1-naphthyl)-N-phenyl]benzidine)を29nm、CBP(4,4'-Bis(carbazol-9-yl)biphenyl)をホスト材料として5%のIr(ppy)3(Tris(2-phenylpyridinato)iridium)をドープした発光層を20nm、正孔ブロック層としてBAlq(Bis-(2-methyl-8- quinolinolato)-4-(phenyl-phenolate)-aluminium(III))層を10nm、電子輸送層としてAlq3(Tris(8-hydroxy-quinolinato)aluminium)層を20nmの膜厚でそれぞれ蒸着して有機電界発光層を形成した。
 続けて、得られた有機発光層の表面にLiFを1.5nm、Alを200nmの膜厚で、この順に蒸着して陰極を成膜し、素子基板12の表面に有機EL素子14を形成した。
The organic EL element 14 was formed on the surface of the element substrate 12 where the interface adhesion layer 20 was formed as follows.
First, ITO was formed on the surface of the element substrate 12 by sputtering so as to have a film thickness of 60 nm, thereby forming an anode. Hole injection of HAT-CN layer (2,3,6,7,10,11-Hexacyano-1,4,5,8,9,12-hexaazatriphenylene layer) into the formed anode surface using a vacuum evaporation system The layer was formed to a thickness of 2 nm, and a hole transport layer (α-NPD: Bis [N- (1-naphthyl) -N-phenyl] benzidine) was formed on the surface of the HAT-CN layer in order of 29 nm and CBP ( The emission layer doped with 5% Ir (ppy) 3 (Tris (2-phenylpyridinato) iridium) with 4,4'-Bis (carbazol-9-yl) biphenyl) as the host material and 20 nm as the hole blocking layer and BAlq The (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminium (III)) layer is 10 nm, and the Alq3 (Tris (8-hydroxy-quinolinato) aluminium) layer is 20 nm as the electron transport layer. An organic electroluminescent layer was formed by vapor deposition with each film thickness.
Subsequently, on the surface of the obtained organic light emitting layer, LiF was deposited to a thickness of 1.5 nm and Al was deposited to a thickness of 200 nm in this order to form a cathode, and an organic EL element 14 was formed on the surface of the element substrate 12. .
 一方、作製したガスバリアフィルム30を42mm四方に切り出して封止基板16とした。この封止基板16に、素子基板12と同様にして、2mm幅の枠状にパターニングしたシランカップリング剤からなる界面密着層20を形成した。
 グローブボックス内で、界面密着層20を形成した封止基板16に、封止部材18として粘着剤(teas Barrier Transfer Tape 3rdG、TESAテープ社製)を貼り合わせした。
 さらに、有機EL素子14を形成した素子基板12をグローブボックス内に搬送し、封止部材18を貼り合わせした封止基板16と貼り合わせした。
 その後、封止基板16側から波長365nmの紫外線を積算で400mJ/cm2照射して、図1Aおよび図1Bに示すような有機EL装置10を作製した。
On the other hand, the produced gas barrier film 30 was cut into a 42 mm square to form a sealing substrate 16. An interfacial adhesion layer 20 made of a silane coupling agent patterned in a frame shape having a width of 2 mm was formed on the sealing substrate 16 in the same manner as the element substrate 12.
In the glove box, an adhesive (teas Barrier Transfer Tape 3rdG, manufactured by TESA Tape) was bonded as a sealing member 18 to the sealing substrate 16 on which the interfacial adhesion layer 20 was formed.
Furthermore, the element substrate 12 on which the organic EL element 14 was formed was conveyed into the glove box and bonded to the sealing substrate 16 to which the sealing member 18 was bonded.
Thereafter, an ultraviolet ray having a wavelength of 365 nm was irradiated from the sealing substrate 16 side in an integrated amount of 400 mJ / cm 2 to produce an organic EL device 10 as shown in FIGS. 1A and 1B.
 [実施例2]
 素子基板12として、50mm四方のガラス基板(OA-10G、日本電気硝子社製)を用意した。この素子基板12の表面に、陽極としてITOを100nm成膜した。
 陽極を形成した素子基板12にPIワニス(ポリイミドワニス)を塗布して乾燥し、外寸42mm、内寸38mmの枠状になるようにパターニングを行った。このようにして、素子基板12に、枠状の封止部材42を形成した。
[Example 2]
As the element substrate 12, a 50 mm square glass substrate (OA-10G, manufactured by Nippon Electric Glass Co., Ltd.) was prepared. An ITO film having a thickness of 100 nm was formed on the surface of the element substrate 12 as an anode.
A PI varnish (polyimide varnish) was applied to the element substrate 12 on which the anode was formed and dried, followed by patterning to form a frame shape having an outer dimension of 42 mm and an inner dimension of 38 mm. In this way, a frame-shaped sealing member 42 was formed on the element substrate 12.
 封止部材42を形成した素子基板12に、陽極の形成以外は実施例1と同様にして有機EL素子14を形成した。 The organic EL element 14 was formed on the element substrate 12 on which the sealing member 42 was formed in the same manner as in Example 1 except that the anode was formed.
 有機EL素子14を形成した素子基板12を真空チャンバー(圧力10-4Pa以下)に導入し、スパッタリングによって、全面に厚さ20nmの窒化ケイ素膜を成膜した。
 その後、開口部が外寸42mm、内寸38mmの枠状マスクを用いて、開口部と封止部材42の上面とが重なるようにマスクをセットした。そこに、スパッタリングによってケイ素を10nm成膜することにより、封止部材42の上面に、ケイ素からなるパターニングした界面密着層20を形成した。
The element substrate 12 on which the organic EL element 14 was formed was introduced into a vacuum chamber (pressure 10 −4 Pa or less), and a silicon nitride film having a thickness of 20 nm was formed on the entire surface by sputtering.
Then, the mask was set using the frame-shaped mask whose opening part is 42 mm in outer dimension and 38 mm in inner dimension so that an opening part and the upper surface of the sealing member 42 may overlap. Then, a patterned interface adhesion layer 20 made of silicon was formed on the upper surface of the sealing member 42 by forming a silicon film having a thickness of 10 nm by sputtering.
 作製したガスバリアフィルム30を44mm四方に切り出して封止基板16とした。この封止基板16を、搬送用のガラス基板に貼り合わせした。
 この封止基板16を真空チャンバーに導入し、開口部が外寸42mm、内寸38mmの矩形の枠状マスクを中心を合わせて貼り合わせし、スパッタリングによってケイ素を10nm成膜することにより、封止部材42の上面に、ケイ素からなるパターニングした界面密着層20を形成した。
The produced gas barrier film 30 was cut into a 44 mm square to form a sealing substrate 16. This sealing substrate 16 was bonded to a glass substrate for conveyance.
The sealing substrate 16 is introduced into a vacuum chamber, a rectangular frame mask having an opening of 42 mm and an inner dimension of 38 mm is bonded to the center, and silicon is deposited to a thickness of 10 nm by sputtering. A patterned interface adhesion layer 20 made of silicon was formed on the upper surface of the member 42.
 有機EL素子14を形成して、さらに、ケイ素からなる界面密着層20をパターニングして形成した素子基板12と、ケイ素からなる界面密着層20をパターニングして形成した封止基板16とを、界面密着層20を位置合わせして対面させて、真空チャンバー内で減圧下で常温接合して貼り合わせ、図3Aおよび図3Bに示すような有機EL装置40を作製した。 An organic EL device 14 is formed, and an element substrate 12 formed by patterning the interface adhesion layer 20 made of silicon and a sealing substrate 16 formed by patterning the interface adhesion layer 20 made of silicon are connected to the interface. The adhesion layer 20 was aligned and faced, and bonded at room temperature under reduced pressure in a vacuum chamber to produce an organic EL device 40 as shown in FIGS. 3A and 3B.
 [比較例1]
 素子基板12および封止基板16に界面密着層20を形成しない以外は、実施例1と同様に有機EL装置を作製した。
 [比較例2]
 界面密着層を、パターニングせずに、素子基板12および封止基板16の全面に形成した以外は、実施例1と同様に有機EL装置を作製した。
[Comparative Example 1]
An organic EL device was produced in the same manner as in Example 1 except that the interface adhesion layer 20 was not formed on the element substrate 12 and the sealing substrate 16.
[Comparative Example 2]
An organic EL device was produced in the same manner as in Example 1 except that the interface adhesion layer was formed on the entire surface of the element substrate 12 and the sealing substrate 16 without patterning.
 [比較例3]
 実施例1と同様に素子基板12を形成し、界面密着層20を設けずに、有機EL素子14を形成した。
 作製したガスバリアフィルム30を42mm四方に切り出して封止基板16とした。
 封止基板16を運搬用のガラス基板に貼り合わせした。この封止基板16のバリアフィルムの端部から1mm内側の位置に、ディスペンサーによってUV接着剤(XNR5516Z、ナガセケムテックス社製)を4辺に沿って枠状に塗布して、封止部材42(未硬化)を形成した。
 有機EL素子14を形成した素子基板12と、封止部材42を形成した封止基板16とを、グローブボックス内に搬送し、位置合わせして貼り合わせした。
 その後、封止基板16側から波長365nmの紫外線を積算で6000mJ/cm2照射して、未硬化の封止部材42を硬化して、有機EL装置を作製した。
[Comparative Example 3]
The element substrate 12 was formed in the same manner as in Example 1, and the organic EL element 14 was formed without providing the interface adhesion layer 20.
The produced gas barrier film 30 was cut into a 42 mm square to form a sealing substrate 16.
The sealing substrate 16 was bonded to a glass substrate for transportation. A UV adhesive (XNR5516Z, manufactured by Nagase ChemteX Corporation) is applied in a frame shape along four sides to a position 1 mm inside from the edge of the barrier film of the sealing substrate 16 by a dispenser, and the sealing member 42 ( Uncured) was formed.
The element substrate 12 on which the organic EL element 14 was formed and the sealing substrate 16 on which the sealing member 42 was formed were conveyed into a glove box, aligned, and bonded together.
Thereafter, an ultraviolet ray having a wavelength of 365 nm was applied from the sealing substrate 16 side in an integrated manner to 6000 mJ / cm 2 to cure the uncured sealing member 42 to produce an organic EL device.
 なお、作製した各有機EL装置について、封止部材の厚さ、封止部材の水蒸気透過率、封止部材の弾性率、および、界面密着層の厚さは、以下のように測定した。
 <封止部材の厚さ>
 実施例1、比較例1および2はマイクロメーターを用いて、実施例2および比較例3は接触型の段差計(デクタク、VEECO社製)を用いて、それぞれ測定した。
In addition, about each produced organic EL apparatus, the thickness of the sealing member, the water vapor transmission rate of the sealing member, the elasticity modulus of the sealing member, and the thickness of the interface adhesion layer were measured as follows.
<Thickness of sealing member>
Example 1 and Comparative Examples 1 and 2 were measured using a micrometer, and Example 2 and Comparative Example 3 were measured using a contact-type step gauge (Dectaku, manufactured by VEECO).
 <封止部材の水蒸気透過率>
 実施例1、比較例1および2は、封止部材がシート状のため、TACフィルムに貼り合わせして、温度40℃、相対湿度90%RHの環境下でカップ法によってJIS Z 0208:1976に準拠して測定した。
 比較例3は、テフロン(登録商標)シートにUV接着剤をシート状に塗布し、紫外線を照射して硬化した。硬化後、テフロン(登録商標)シートから剥離して、温度40℃、相対湿度90%RHの環境下でカップ法によってJIS Z 0208:1976に準拠して測定した。
 実施例2は、有機EL素子14の代わりにカルシウム膜を100nm成膜したものを用いる他は、有機EL装置と同様の構成を有する装置を作製し、温度40℃、相対湿度90%RHの環境下におけるカルシウムの腐食速度によって封止部材の水蒸気透過率を見積もった。
 なお、水蒸気透過率は、いずれも、厚さ100μm当たりの水蒸気透過率である。
<Water vapor transmission rate of sealing member>
In Example 1 and Comparative Examples 1 and 2, since the sealing member was a sheet, it was bonded to a TAC film, and in JIS Z 0208: 1976 by the cup method in an environment of a temperature of 40 ° C. and a relative humidity of 90% RH. Measured in conformity.
In Comparative Example 3, a UV adhesive was applied to a Teflon (registered trademark) sheet in the form of a sheet, and cured by irradiation with ultraviolet rays. After curing, the sample was peeled from the Teflon (registered trademark) sheet and measured according to JIS Z 0208: 1976 by the cup method in an environment of a temperature of 40 ° C. and a relative humidity of 90% RH.
In Example 2, a device having the same configuration as that of the organic EL device was produced except that a calcium film having a thickness of 100 nm was used instead of the organic EL element 14, and an environment having a temperature of 40 ° C. and a relative humidity of 90% RH was prepared. The water vapor transmission rate of the sealing member was estimated from the corrosion rate of calcium below.
The water vapor transmission rate is a water vapor transmission rate per 100 μm thickness.
 <封止部材の弾性率>
 実施例1、比較例1および2は、封止部材を20層重ねて1mm厚とし、これを5mm×4cmの短冊形に切り出した。短冊形サンプルの両端を180℃引張試験機(オートグラフ、島津製作所製)にて引っ張ることで弾性率を測定した。
 実施例2および比較例3も、厚さ1mmとなるように成膜したものを、5mm×4cmの短冊形となるようにを切り出し、測定を行った。
<Elastic modulus of sealing member>
In Example 1 and Comparative Examples 1 and 2, 20 layers of sealing members were stacked to a thickness of 1 mm, and this was cut into a 5 mm × 4 cm strip. The elastic modulus was measured by pulling both ends of the strip sample with a 180 ° C. tensile tester (Autograph, manufactured by Shimadzu Corporation).
In Example 2 and Comparative Example 3 as well, a film formed so as to have a thickness of 1 mm was cut out into a 5 mm × 4 cm strip and measured.
 <界面密着層の厚さ>
 断面を走査型電子顕微鏡で撮影することによって測定した。
<Thickness of interfacial adhesion layer>
The cross section was measured by photographing with a scanning electron microscope.
 作製した有機EL装置について、以下の評価を行った
 <密着力>
 ガラス基板上に、各有機EL装置と同様に封止部材/界面密着層/封止基板を形成して、180℃引張試験機(オートグラフ、島津製作所製)によって、封止基板と封止部材との剥離強度を測定した。評価は、以下のように行った。
 A: 剥離強度が3N/cm超
 B: 剥離強度が1~3N/cm
 C: 剥離強度が1N/cm未満
The produced organic EL device was evaluated as follows.
A sealing member / interface adhesion layer / sealing substrate is formed on a glass substrate in the same manner as each organic EL device, and the sealing substrate and the sealing member are formed by a 180 ° C. tensile tester (Autograph, manufactured by Shimadzu Corporation). The peel strength was measured. Evaluation was performed as follows.
A: Peel strength is over 3 N / cm B: Peel strength is 1 to 3 N / cm
C: Peel strength is less than 1 N / cm
 <耐久性>
 有機EL装置を高温高湿環境下(温度60℃、相対湿度90%RH)にて100時間放置し、放置後の発光面のダークスポットの面積によって、耐久性を評価した。評価は、以下のように行った。
 A: 発光面に対してのダークスポット総面積が3%未満
 B: 発光面に対してのダークスポット総面積が3%~40%
 C: 発光面に対してのダークスポット総面積が40%超または点灯しない
<Durability>
The organic EL device was allowed to stand for 100 hours in a high-temperature and high-humidity environment (temperature 60 ° C., relative humidity 90% RH). Evaluation was performed as follows.
A: Total area of dark spots with respect to light emitting surface is less than 3% B: Total area of dark spots with respect to light emitting surface is 3% to 40%
C: Total area of dark spots on the light emitting surface exceeds 40% or does not light up
 <端部の水蒸気透過率>
 カルシウム膜を蒸着したガラス基板上に、各有機EL装置と同じ材料で幅2mm、1辺2cmの枠状の封止部材を形成し、その上に、各有機EL装置と同様に界面密着層を形成し、封止部材の枠を各有機EL装置と同様に封止基板で封止した。
 この状態で、温度40℃、相対湿度90%RHの環境下で、枠内のカルシウム膜の腐食速度によって浸入する水分量を求め、端部の水蒸気透過率を見積もった。
 なお、比較例2は、界面密着層が全面に形成されており、端部が定義できない。
 結果を、下記の表に示す。
<Water vapor transmission rate at the end>
A frame-shaped sealing member having a width of 2 mm and a side of 2 cm is formed of the same material as each organic EL device on a glass substrate on which a calcium film is deposited, and an interfacial adhesion layer is formed thereon, as in each organic EL device. After forming, the frame of the sealing member was sealed with a sealing substrate similarly to each organic EL device.
In this state, in an environment of a temperature of 40 ° C. and a relative humidity of 90% RH, the amount of moisture that permeates was determined by the corrosion rate of the calcium film in the frame, and the water vapor permeability at the end was estimated.
In Comparative Example 2, the interface adhesion layer is formed on the entire surface, and the end portion cannot be defined.
The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1は、パターニングしたシランカップリング剤を界面密着層としている。そのため、密着力が高く界面の水分浸入が抑制されており、また、パターニングしてあるため有機EL装置の耐久性も良好である。実施例2は、パターニングしたSiを界面密着層として用いて、常温接合技術を用いて封止を行ったため、強固な密着力を示す。また、素子基板12と封止基板16との間からの水分浸入が抑制されているため、有機EL耐久性も良好である。
 これに対し、比較例1は実施例1に比べ、界面密着層がない分、界面からの水分浸入が起こり有機EL装置の耐久性がCである。また、密着力も低く、曲げに対して弱い。比較例2は、界面密着層がパターニングされていないため、シランカップリング剤が有機EL素子へのダメージを与え有機EL装置の耐久性がCである。比較例3は、封止材料としてUV硬化樹脂を用いており硬いため密着力が低く、また、比較例1と同様、界面密着層がない分、界面からの水分浸入が起こり有機EL装置の耐久性もCである。
 以上の結果より、本発明の効果は明らかである。
As shown in Table 1, Example 1 uses a patterned silane coupling agent as an interfacial adhesion layer. For this reason, the adhesion is high and moisture permeation at the interface is suppressed, and the organic EL device has good durability because it is patterned. In Example 2, since patterned Si was used as an interfacial adhesion layer and sealing was performed using a room temperature bonding technique, strong adhesion was exhibited. Moreover, since moisture permeation from between the element substrate 12 and the sealing substrate 16 is suppressed, the organic EL durability is also good.
On the other hand, in Comparative Example 1, compared with Example 1, since there is no interfacial adhesion layer, moisture permeation from the interface occurs and the durability of the organic EL device is C. Also, the adhesion is low and weak against bending. In Comparative Example 2, since the interface adhesion layer is not patterned, the silane coupling agent damages the organic EL element, and the durability of the organic EL device is C. Comparative Example 3 uses a UV curable resin as a sealing material and is hard because of its low adhesion, and, similarly to Comparative Example 1, moisture penetration from the interface occurs due to the absence of the interface adhesion layer, and the durability of the organic EL device Sex is also C.
From the above results, the effects of the present invention are clear.
 有機ELディスプレイや有機EL照明などの有機EL装置等、各種の電子装置に好適に利用可能である。 It can be suitably used for various electronic devices such as organic EL devices such as organic EL displays and organic EL lighting.
 10,40 有機EL装置(有機エレクトロルミネッセンス装置)
 12 素子基板
 14 有機EL素子(有機エレクトロルミネッセンス素子)
 16 封止基板
 18,42 封止部材
 20 界面密着層
 30 ガスバリアフィルム
 32 支持体
 34 有機層
 36 無機層
10,40 Organic EL device (Organic electroluminescence device)
12 element substrate 14 organic EL element (organic electroluminescence element)
16 sealing substrate 18, 42 sealing member 20 interface adhesion layer 30 gas barrier film 32 support 34 organic layer 36 inorganic layer

Claims (9)

  1.  素子基板と、
     前記素子基板に形成される電子素子と、
     前記電子素子を封止する封止基板と、
     前記封止基板によって前記電子素子を封止するために、前記素子基板と封止基板との間に設けられる封止部材と、
     前記素子基板と封止部材との間および前記封止基板と封止部材との間の、少なくとも一方に設けられる、パターニングされた界面密着層とを有することを特徴とする電子装置。
    An element substrate;
    An electronic element formed on the element substrate;
    A sealing substrate for sealing the electronic element;
    A sealing member provided between the element substrate and the sealing substrate to seal the electronic element with the sealing substrate;
    An electronic device comprising a patterned interface adhesion layer provided on at least one of the element substrate and the sealing member and between the sealing substrate and the sealing member.
  2.  前記界面密着層が、前記素子基板の面方向において、前記封止部材の端部と前記電子素子との中間位置よりも、前記電子素子側には位置しないようにパターニングされる請求項1に記載の電子装置。 The interface adhesion layer is patterned so as not to be positioned closer to the electronic element than an intermediate position between the end of the sealing member and the electronic element in the surface direction of the element substrate. Electronic devices.
  3.  前記界面密着層による前記素子基板と封止部材との密着部、および、前記界面密着層による前記封止基板と封止部材との密着部の少なくとも一方が、前記封止部材の面積以下である請求項1または2に記載の電子装置。 At least one of the adhesion portion between the element substrate and the sealing member by the interface adhesion layer and the adhesion portion between the sealing substrate and the sealing member by the interface adhesion layer is equal to or less than the area of the sealing member. The electronic device according to claim 1.
  4.  前記界面密着層の厚さt0と前記封止部材の厚さt1との比が、t1/t0≧100である請求項1~3のいずれか1項に記載の電子装置。 The electronic device according to any one of claims 1 to 3, wherein a ratio between a thickness t 0 of the interface adhesion layer and a thickness t 1 of the sealing member is t 1 / t 0 ≥100.
  5.  前記封止部材の水蒸気透過率が、温度40℃、相対湿度90%RHで、厚さ100μm当たり50g/(m2・day)以下である請求項1~4のいずれか1項に記載の電子装置。 The electron according to any one of claims 1 to 4, wherein the sealing member has a water vapor transmission rate of 50 g / (m 2 · day) or less per 100 µm thickness at a temperature of 40 ° C and a relative humidity of 90% RH. apparatus.
  6.  前記界面密着層が、ケイ素原子を10質量%以上含む請求項1~5のいずれか1項に記載の電子装置。 6. The electronic device according to claim 1, wherein the interfacial adhesion layer contains 10 mass% or more of silicon atoms.
  7.  前記素子基板および封止基板の少なくとも一方が、支持体と、前記支持体の一方の面に設けられる無機層および前記無機層の形成面となる有機層の組み合わせの1組以上とを有する請求項1~6のいずれか1項に記載の電子装置。 The at least one of the element substrate and the sealing substrate has a support and one or more combinations of an inorganic layer provided on one surface of the support and an organic layer serving as a formation surface of the inorganic layer. 7. The electronic device according to any one of 1 to 6.
  8.  前記封止部材が、前記電子素子の全面を覆うシート状である請求項1~7のいずれか1項に記載の電子装置。 The electronic device according to any one of claims 1 to 7, wherein the sealing member has a sheet shape covering the entire surface of the electronic element.
  9.  前記封止部材が、前記素子基板の面方向に前記電子素子を囲む枠体である請求項1~7のいずれか1項に記載の電子装置。 The electronic device according to any one of claims 1 to 7, wherein the sealing member is a frame surrounding the electronic element in a surface direction of the element substrate.
PCT/JP2016/074081 2015-08-21 2016-08-18 Electronic device WO2017033823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-164096 2015-08-21
JP2015164096A JP2017041412A (en) 2015-08-21 2015-08-21 Electronic device

Publications (1)

Publication Number Publication Date
WO2017033823A1 true WO2017033823A1 (en) 2017-03-02

Family

ID=58100210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074081 WO2017033823A1 (en) 2015-08-21 2016-08-18 Electronic device

Country Status (2)

Country Link
JP (1) JP2017041412A (en)
WO (1) WO2017033823A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373533B1 (en) * 2017-11-29 2018-08-15 堺ディスプレイプロダクト株式会社 Organic EL display device and manufacturing method thereof
WO2019106769A1 (en) * 2017-11-29 2019-06-06 堺ディスプレイプロダクト株式会社 Organic el display device and method for manufacturing same
JP2019102423A (en) * 2018-07-17 2019-06-24 堺ディスプレイプロダクト株式会社 Organic el display element and method for manufacturing the same
JP2019102417A (en) * 2018-05-24 2019-06-24 堺ディスプレイプロダクト株式会社 Organic el display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254743A (en) * 2002-06-17 2007-10-04 Sekisui Chem Co Ltd Adhesive for sealing organic electroluminescent device, adhesive tape for sealing organic electroluminescent device, double-coated adhesive tape for sealing organic electroluminescent device, sealing method for organic electroluminescent device and organic electroluminescent device
JP2007335365A (en) * 2006-06-19 2007-12-27 Hitachi Displays Ltd Organic el display device
JP2011018479A (en) * 2009-07-07 2011-01-27 Panasonic Corp Organic electroluminescent display device and method of manufacturing the same
WO2012114616A1 (en) * 2011-02-22 2012-08-30 パナソニック株式会社 Organic el device
WO2013051230A1 (en) * 2011-10-04 2013-04-11 パナソニック株式会社 Organic el element and method for manufacturing same
WO2013187500A1 (en) * 2012-06-15 2013-12-19 ランテクニカルサービス株式会社 Electronic element sealing method and substrate junction
JP2014225356A (en) * 2013-05-15 2014-12-04 パイオニア株式会社 Light-emitting element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254743A (en) * 2002-06-17 2007-10-04 Sekisui Chem Co Ltd Adhesive for sealing organic electroluminescent device, adhesive tape for sealing organic electroluminescent device, double-coated adhesive tape for sealing organic electroluminescent device, sealing method for organic electroluminescent device and organic electroluminescent device
JP2007335365A (en) * 2006-06-19 2007-12-27 Hitachi Displays Ltd Organic el display device
JP2011018479A (en) * 2009-07-07 2011-01-27 Panasonic Corp Organic electroluminescent display device and method of manufacturing the same
WO2012114616A1 (en) * 2011-02-22 2012-08-30 パナソニック株式会社 Organic el device
WO2013051230A1 (en) * 2011-10-04 2013-04-11 パナソニック株式会社 Organic el element and method for manufacturing same
WO2013187500A1 (en) * 2012-06-15 2013-12-19 ランテクニカルサービス株式会社 Electronic element sealing method and substrate junction
JP2014225356A (en) * 2013-05-15 2014-12-04 パイオニア株式会社 Light-emitting element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373533B1 (en) * 2017-11-29 2018-08-15 堺ディスプレイプロダクト株式会社 Organic EL display device and manufacturing method thereof
WO2019106769A1 (en) * 2017-11-29 2019-06-06 堺ディスプレイプロダクト株式会社 Organic el display device and method for manufacturing same
WO2019106771A1 (en) * 2017-11-29 2019-06-06 堺ディスプレイプロダクト株式会社 Organic el display device and method for manufacturing same
US10581028B2 (en) 2017-11-29 2020-03-03 Sakai Display Products Corporation Method for producing organic electroluminescent display device
US10637003B2 (en) 2017-11-29 2020-04-28 Sakai Display Products Corporation Organic electroluminescent display device and method for producing same
US10637009B1 (en) 2017-11-29 2020-04-28 Sakai Display Products Corporation Organic electroluminescent display device
JP2019102417A (en) * 2018-05-24 2019-06-24 堺ディスプレイプロダクト株式会社 Organic el display device
JP2019102423A (en) * 2018-07-17 2019-06-24 堺ディスプレイプロダクト株式会社 Organic el display element and method for manufacturing the same

Also Published As

Publication number Publication date
JP2017041412A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
US20190127612A1 (en) Pressure sensitive adhesive composition, pressure sensitive adhesive film, and method of manufacturing organic electronic device using the same
JP5497787B2 (en) Method for encapsulating environmentally sensitive elements
TWI637542B (en) Organic electroluminescence laminate
JP2009541939A (en) Moisture-proof coating for organic light-emitting diode devices
KR102116035B1 (en) Method of manufacturing an organic light emitting display device
WO2017033823A1 (en) Electronic device
US20170100926A1 (en) Method of manufacturing electronic device and composite film
KR101894168B1 (en) Sealed laminate and organic electronic device
KR102496772B1 (en) Gas barrier film, and encapsulation body
JP6377541B2 (en) Flexible device manufacturing method and flexible device laminate
JP2005235743A (en) Composite material article having diffusion barrier and element incorporating it
KR101917552B1 (en) Organic electroluminescence device
JP6026331B2 (en) Organic EL laminate
US9444073B2 (en) Organic light emitting display device and manufacturing method thereof
WO2019021616A1 (en) Gas barrier laminate and electronic device
JP6196944B2 (en) SEALING MEMBER AND ELECTRONIC DEVICE MANUFACTURING METHOD
KR102396457B1 (en) Flexible Substrate, Flexible Display Device Using the Same and Method for Manufacturing the Same
WO2018221116A1 (en) Organic electroluminescent light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839170

Country of ref document: EP

Kind code of ref document: A1