WO2006022264A1 - 画像表示装置およびその駆動方法 - Google Patents

画像表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2006022264A1
WO2006022264A1 PCT/JP2005/015282 JP2005015282W WO2006022264A1 WO 2006022264 A1 WO2006022264 A1 WO 2006022264A1 JP 2005015282 W JP2005015282 W JP 2005015282W WO 2006022264 A1 WO2006022264 A1 WO 2006022264A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
diffusion
display device
image display
circuit
Prior art date
Application number
PCT/JP2005/015282
Other languages
English (en)
French (fr)
Inventor
Yutaka Chiaki
Shunji Ohta
Yuichiro Kimura
Original Assignee
Fujitsu Hitachi Plasma Display Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Hitachi Plasma Display Limited filed Critical Fujitsu Hitachi Plasma Display Limited
Priority to US11/628,059 priority Critical patent/US20070222712A1/en
Publication of WO2006022264A1 publication Critical patent/WO2006022264A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2044Display of intermediate tones using dithering
    • G09G3/2048Display of intermediate tones using dithering with addition of random noise to an image signal or to a gradation threshold
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0266Reduction of sub-frame artefacts
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • G09G2320/103Detection of image changes, e.g. determination of an index representative of the image change

Definitions

  • Image display device and driving method thereof are Image display device and driving method thereof
  • the present invention relates to an image display device and a driving method thereof, and in particular, a field such as a plasma display panel (PDP) is divided into a plurality of weighted subfields, and the plurality of subfields are divided.
  • PDP plasma display panel
  • the present invention relates to an image display apparatus that performs multi-gradation display on a display panel in combination and a driving method thereof.
  • matrix panels that display digital signals as they are, ie, gas discharge panels such as PDP, matrix panels such as DMD (Digital Micromirror Device), EL (Electro-Lumescence) display elements, fluorescent display tubes, and liquid crystal display elements Etc. are provided.
  • the gas discharge panel is a simple process that makes it easy to enlarge the screen, is self-luminous, has good display quality, and has a high response speed. It has been put into practical use as a large-screen direct-view HDTV (high-definition television) display device.
  • a plasma display device is provided with a plurality of weighted subfields (SF: light emitting blocks) each composed of a plurality of sustain discharge pulses (sustainless ⁇ Lus) in each field (frame).
  • SF weighted subfields
  • sustain discharge pulses stainless ⁇ Lus
  • one field is divided into a plurality of subfields having a predetermined luminance ratio (weight), and a subfield unit having a predetermined weight is obtained.
  • an image display device multi-tone image display device
  • An image display that divides one field into a plurality of weighted subfields and combines the plurality of subfields for multi-gradation display on the display panel.
  • the viewer (viewer) watching the image display device can move through the display panel at a certain speed. If you are chasing a moving target that exceeds the limit, you will recognize a false contour.
  • an image display apparatus that divides one field into a plurality of weighted subfields and combines the plurality of subfields to perform multi-gradation display on a display panel, which is accompanied by generation of flickering force.
  • the sustain period of each subfield period is set to approximately the same length within one field period, and the image data is displayed on the display panel at a luminance level from 0 to N N +
  • an image display device that can express one gradation. (For example, see Patent Document 1).
  • an image display apparatus that divides one field into a plurality of weighted subfields and combines the plurality of subfields to perform multi-gradation display on a display panel.
  • an image display device that obtains the possibility as a noise amount and performs a diffusion process to reduce the false contour noise on an area where the occurrence of a false contour is predicted in the image based on the noise amount value. ing. (For example, see Patent Document 2)
  • an image display apparatus that divides one field into a plurality of weighted subfields and combines the plurality of subfields to perform multi-gradation display on a display panel, and reduces false contours.
  • the display image is a pixel having a gradation in which only one of a plurality of subframes having the same luminance weight according to the superposition method is lit.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-031455
  • Patent Document 2 Japanese Patent Laid-Open No. 11-231827
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-372948
  • a false contour is used in an image display apparatus that conventionally divides one field into a plurality of weighted subfields and combines the plurality of subfields to perform multi-gradation display on a display panel.
  • Known techniques for reducing false contours include dithering, overlaying, and path switching.
  • superpositioning recognizes hatched noise in moving images as a side effect of overlaying.
  • This hatch-like noise has a characteristic that is perceived when the image is moving slowly, and is difficult to be recognized when moving relatively quickly. This is thought to be because, when the image is moving fast, the line of sight moves across multiple pixels, thus canceling out the hatched noise.
  • Patent Document 1 described above, false contours can be prevented by switching between the main path and the sub path.
  • the moving image area is large in the moving image and the noise due to the error diffusion of the sub path regardless of the speed of movement.
  • the shock of switching between the sub path and the main path (granular noise of error diffusion of the sub path with respect to the smooth gradation expression of the main path) is large! /, Thus giving the viewer a sense of discomfort as an image It was summer.
  • Patent Document 2 reduces false contour noise in a region where a false contour noise may occur based on a prediction result by a false contour noise detection device. For each subfield, perform a logical operation of the pixel value between each pixel of the input image divided into multiple subfields by the false contour determiner based on the output of This method detects the location of the occurrence of a false contour and performs a false contour reduction modulation process.
  • false contour is a moving image and can be generated when a predetermined gradation is displayed and driven, the false contour noise detection device only needs to be able to detect the amount of motion that is not necessary. It is redundant.
  • Patent Document 3 noise caused by the moving image portion specific gradation superposition method can be reduced, but the false contour is not easily noticeable even for images moving at the same speed. Therefore, if the false contour is conspicuous and does not exceed the threshold for overlapping, the false contour is recognized without being superimposed. Even if the false contour is inconspicuous, if it exceeds the threshold for overlapping, overlapping may be performed and hatched noise may be recognized. The intensity of the hatched noise cannot be controlled and is determined depending on the lighting pattern.
  • An object of the present invention is to provide an image display device and a driving method thereof that can improve image quality.
  • an image display device that divides one field into a plurality of weighted subfields and combines the plurality of subfields to perform multi-gradation display on the display panel.
  • the input image signal force is a motion amount detection circuit for detecting a motion amount from the current field and a field before the current field, and a false contour based on the gradation of the input image signal and the detected motion amount.
  • An image display device comprising: a diffusion amount calculation circuit that calculates a diffusion amount for diffusing noise to the periphery; and a diffusion circuit that performs diffusion processing using the diffusion amount calculated by the diffusion amount calculation circuit.
  • an image display device that divides one field into a plurality of weighted subfields and combines the plurality of subfields to perform multi-gradation display on the display panel.
  • the input image signal power is any of a main path that generates a signal having a predetermined number of gradations, a sub path that generates a signal having a smaller number of gradations than the main node, a generation signal of the main path, and a generation signal of the sub path.
  • a path switch circuit for switching one of the outputs, the input image signal power field, and a field before the current field.
  • a motion amount detection circuit that detects a motion region between the two frames and outputs a motion amount that is a motion amount, and a false contour strength when a video false contour occurs in the main path.
  • a level detection circuit that detects a level amount, and compares the detected amount of motion with a predetermined set value based on the detected level amount, and determines a gray level with a strong false contour generation intensity in a moving image area.
  • a determination circuit a sub-path switch that switches the path switch circuit from the output of the main path to the output of the sub-path according to a determination result of the sub-path determination circuit; and the input image for calculating a diffusion amount that diffuses false contour noise to the periphery
  • a diffusion coefficient generation circuit that generates a diffusion coefficient depending on the tone of the signal, a diffusion amount calculation circuit that calculates a diffusion amount based on the motion amount and the diffusion coefficient, and a calculation performed by the diffusion amount calculation circuit
  • an image display device comprising: a diffusion circuit that performs diffusion processing with the amount of diffusion performed; and controlling the subpath switch and the amount of diffusion to reduce false contours.
  • an image display device that divides one field into a plurality of weighted subfields and combines the plurality of subfields to perform multi-gradation display on a display panel.
  • the image signal power also generates a main path that generates a signal having a predetermined number of gradations, a subpath that generates a signal having a smaller number of gradations than the main node, and a signal obtained by performing diffusion processing on the input image signal.
  • a path switch circuit for switching and outputting one of a diffusion processing path, a generation signal of the main path, a generation signal of the sub path, or a generation signal of the diffusion processing path; and the input image signal power current field
  • a motion detection circuit that detects a motion region between fields before the current field and outputs a motion amount that is a motion amount, and a video false ring in the main path.
  • a level detection circuit for detecting the level amount of the false contour strength in the case of occurrence of the image, and comparing the detected motion amount and the detected level amount with a predetermined set value, And a path switching determination circuit for determining a gradation with a strong false contour generation intensity, and the path switch circuit based on the determination result of the sub path determination circuit, the output of the main path, the output of the sub path or the diffusion processing path
  • a path switching circuit for switching to any one of them, a diffusion coefficient generation circuit for generating a diffusion coefficient depending on the gradation of the input image signal for calculating a diffusion amount for diffusing a false contour noise to the periphery, and the motion A diffusion amount calculation circuit for calculating a diffusion amount based on the amount and the diffusion coefficient, and a diffusion amount calculated by the diffusion amount calculation circuit
  • the image display apparatus includes a diffusion circuit that performs a diffusion process in step 1 and controls the path switching circuit and the diffusion amount to reduce false contours.
  • one field is divided into a plurality of weighted subfields, and the plurality of subfields are combined to perform multi-gradation display on the display panel.
  • a method is provided.
  • one field is divided into a plurality of weighted subfields, and the plurality of subfields are combined to perform multi-gradation display on the display panel.
  • a motion amount detection step for outputting a motion amount that is a motion amount, a level detection step for detecting a level amount of false contour strength when a moving image false contour occurs in the main path, A sub-pass determination step for comparing the detected motion amount and the detected level amount with a predetermined set value to determine the tone intensity of the false contour in the moving image area and
  • the subpath switching stage for switching the path switching stage from the output of the main path to the output of the subpath according to the judgment result of the subpath judgment stage, and the input for calculating the diffusion amount for diffusing false contour noise to the periphery
  • a diffusion coefficient generation stage for generating a diffusion coefficient depending on the gradation of the image signal, a diffusion amount calculation stage for calculating a diffusion amount based on the motion amount and the diffusion coefficient, and a diffusion process based on the diffusion amount.
  • a plurality of subfields weighted by one field And a plurality of subfields are combined to perform multi-gradation display on the display panel, and a main path for generating a signal having a predetermined number of gradations from the input image signal, and a smaller number than the main path.
  • a sub-path that generates a signal of the number of gradations, a diffusion processing path that generates a signal obtained by performing diffusion processing on the input image signal, a generation signal of the main path, a generation signal of the sub-path, or a signal of the diffusion processing path
  • a path switching stage for switching and outputting any one of the generated signals, wherein the input image signal power is moved between the current field and a field before the current field.
  • a motion detection stage that detects a moving region and outputs a motion amount that is a moving amount, and a level that detects a level level of false contour strength when a motion false contour occurs in the main path.
  • a path switching determination stage for comparing a predetermined set value based on the detected motion amount and the detected level amount, and determining a gradation having a strong false contour generation intensity in the moving image region
  • a path switching stage for switching the path switching stage to one of the output of the main path, the output of the sub node, or the diffusion processing path according to the judgment result of the judgment stage; and the amount of diffusion for spreading the false contour noise to the periphery
  • a diffusion coefficient generation stage for generating a diffusion coefficient depending on the gradation of the input image signal for calculating the diffusion amount, and a diffusion amount calculation stage for calculating a diffusion amount based on the movement amount and the diffusion coefficient!
  • a diffusion stage that performs diffusion processing with the diffusion amount calculated in the diffusion amount calculation stage, and controls the path switching stage and the diffusion amount to reduce false contours.
  • an image display device and a driving method thereof that can improve the image quality of moving image display by reducing false contours that are not accompanied by generation of new noise or increase in circuit scale. it can.
  • FIG. 1 is a block diagram schematically showing an example of an image display device to which the present invention is applied.
  • FIG. 2 is a block diagram showing an example of a multi-gradation signal processing circuit as a first embodiment of the image display device according to the present invention.
  • FIG. 3 A program showing an example of a path (main path) in the multi-gradation signal processing circuit shown in FIG. FIG.
  • FIG. 4 is a block diagram showing an example of a motion amount detection circuit in the multi-gradation signal processing circuit shown in FIG.
  • FIG. 5 is a diagram showing an example of SF conversion data stored in the SF code signal circuit in the multi-gradation signal processing circuit shown in FIG.
  • FIG. 6 is a diagram showing an example of a drive sequence of the drive control circuit in the image display device according to the present invention.
  • FIG. 7 is a block diagram showing another example of a path (main path) in the multi-gradation signal processing circuit as the second embodiment of the image display apparatus according to the present invention.
  • FIG. 8 is a block diagram showing an example of a motion adaptive dither circuit at the nose of the multi-gradation signal processing circuit shown in FIG.
  • FIG. 9A is a diagram for explaining dither calculation within one field performed by the dither amount calculation circuit in the motion adaptive dither circuit shown in FIG. 8.
  • FIG. 9B is a diagram for explaining dither calculation within one field performed by the dither amount calculation circuit in the motion adaptive dither circuit shown in FIG. 8.
  • FIG. 10A is a diagram for explaining the relationship between gradation and dither coefficient in the driving method of the image display apparatus according to the present invention.
  • FIG. 10B is a diagram for explaining the relationship between the gradation and the dither coefficient in the driving method of the image display device according to the present invention.
  • FIG. 10C is a diagram for explaining the relationship between the gradation and the dither coefficient in the driving method of the image display device according to the present invention.
  • FIG. 11 is a block diagram showing another example of the motion adaptive dither circuit in the path of the multi-gradation signal processing circuit shown in FIG.
  • FIG. 12A is a diagram showing the relationship between the amount of motion of an input image signal and the amount of motion calculated in the image display device according to the present invention.
  • FIG. 12B is a diagram showing the relationship between the motion amount of the input image signal and the calculated motion amount in the image display apparatus according to the present invention.
  • FIG. 12C shows the amount of motion of the input image signal and the amount of motion calculated in the image display device according to the present invention. It is a figure which shows the relationship.
  • FIG. 12D is a diagram showing the relationship between the motion amount of the input image signal and the calculated motion amount in the image display device according to the present invention.
  • FIG. 13 is a block diagram showing an example of a multi-gradation signal processing circuit as a third embodiment of the image display apparatus according to the present invention.
  • FIG. 14 is a block diagram showing an example of a subpath in the multi-gradation signal processing circuit shown in FIG.
  • FIG. 15 is a block diagram showing an example of a path switch circuit in the multi-gradation signal processing circuit shown in FIG.
  • FIG. 16 is a flowchart showing an example of a path (main path) process in the multi-gradation signal processing circuit as the first embodiment of the image display apparatus according to the present invention shown in FIG.
  • FIG. 17 is a flowchart showing an example of a path (main path) process in the multi-gradation signal processing circuit as the second embodiment of the image display apparatus according to the present invention shown in FIG.
  • FIG. 18 is a flowchart showing an example of processing in the multi-gradation signal processing circuit as the third embodiment of the image display apparatus according to the present invention shown in FIG.
  • FIG. 19 is a block diagram showing still another example of a path (main path) in the multi-gradation signal processing circuit as the fourth embodiment of the image display apparatus according to the present invention.
  • FIG. 20 is a block diagram showing an example of a multi-gradation signal processing circuit as a fifth embodiment of the image display device according to the present invention.
  • 21 is a block diagram showing an example of a main path in the multi-gradation signal processing circuit shown in FIG.
  • FIG. 22 is a block diagram showing an example of a path switch circuit in the multi-gradation signal processing circuit shown in FIG.
  • FIG. 21 is a block diagram showing an example of a diffusion path in the multi-gradation signal processing circuit shown in FIG.
  • FIG. 24 is a flowchart showing an example of processing in the multi-gradation signal processing circuit as the fifth embodiment of the image display apparatus according to the present invention shown in FIG.
  • FIG. 1 is a block diagram schematically showing an example of an image display device to which the present invention is applied.
  • reference numeral 1 is a digital video (image) signal input terminal
  • 2 is a horizontal synchronization signal, vertical synchronization signal, a display period signal indicating a display period and a synchronization signal input terminal such as a clock signal
  • 3 is a multi-level signal.
  • the adjustment signal processing circuit 4 is a field memory
  • 5 is a drive control circuit
  • 6 is a timing generation circuit
  • 7 is a display panel.
  • the field memory 4 can store image data for two fields. After storing one field of data, the same subfield (SF) for one field stored in the next field period is stored. Data is read sequentially every time.
  • the timing generation circuit 6 is a circuit that generates various timing signals such as a synchronization signal, and for the multi-gradation signal processing circuit 3, the clock signal CLK, the horizontal synchronization signal Hsync, and the vertical signal via the terminal 6T. Synchronous signal Vsync etc. are supplied.
  • the display panel 7 is, for example, a display panel such as a plasma display panel (PDP).
  • various drivers for example, an X driver, a Y driver, and an address driver in a three-electrode AC drive type PDP). Etc.
  • FIG. 2 is a block diagram showing an example of the multi-gradation signal processing circuit 3 as the first embodiment of the image display apparatus according to the present invention.
  • the multi-gradation signal processing circuit 3 includes three primary color video signals (red: Ri, green: Gi, blue: Bi) supplied from the video signal input terminal 1 and terminals from the timing generation circuit 6.
  • the clock signal CLK, horizontal sync signal Hsync, vertical sync signal Vsync, etc. supplied via 6T are received, converted into multi-gradation processing for each primary color, and converted into sub-field lighting Z non-lighting data ( Red: Ro, Green: Go, Blue: Bo) are output to field memory 4.
  • the multi-gradation signal processing circuit 3 of the first embodiment includes a path (main path) 20 provided for each primary color (for example, red: R) and An SF encoding circuit 40 and a motion amount detection circuit 50 are provided.
  • the motion detection circuit 50 receives the input video signals of three primary colors (input image signals) Ri, Gi, Bi and timing signals (synchronization signals) CLK, Hsync, Vsync, and the input video signal power is also measured in the current field in units of pixels. And the amount of motion MV is detected from the field before the current field.
  • the path 20 receives the input video signal (for example, Ri) of the corresponding primary color, the timing signal, and the motion amount MV detected by the motion amount detection circuit 50, and outputs the signal MP to the SF code circuit 40.
  • the SF code key means 40 receives the signal MP from the path 20 and outputs a signal (for example, Ro) converted into lighting Z non-lighting data for each corresponding primary color subfield.
  • a path 20 and SF encoding circuit 40 are provided for each primary color, and SF-encoded signals Ro, Go, and Bo for each primary color are obtained.
  • FIG. 3 is a block diagram showing an example of a path (main path) 20 in the multi-gradation signal processing circuit shown in FIG.
  • the case where the diffusion circuit is dither will be described as an example.
  • the configuration of the nose 20 is the same for each of the three primary color signals.
  • red (R) is mainly described as an example.
  • the path 20 includes a gain control circuit 200, an error diffusion circuit 201, a dither circuit 202, a dither switching circuit 203, and a dither switching determination circuit 204.
  • the gain control circuit 200 receives the input video signal (Ri) of each primary color, performs gain control, and supplies the gain-controlled video signal to the error diffusion circuit 201.
  • the error diffusion circuit 201 performs error diffusion processing on the gain-controlled video signal and supplies the signal MPL on which error diffusion processing has been performed to the dither circuit 202 and the dither switching circuit 203.
  • the dither circuit 202 performs dither processing known in the art!
  • the signal MPD that has been dithered by the dither amount DL by the dither circuit 202 is also supplied to the dither switching circuit 203.
  • the dither switching determination circuit 204 Based on the motion amount MV detected by the motion amount detection circuit 50, the dither switching determination circuit 204 outputs “1” if the motion amount MV is equal to or greater than a predetermined threshold TD, and the motion amount MV is predetermined. If it is smaller than the threshold TD, “0” is output.
  • the dither switching circuit 203 selects the output signal MPL of the error diffusion circuit 201 according to the output of the dither switching determination circuit 204 when the output of the dither switching determination circuit 204 is “0”, and the dither switching determination circuit 204 When the output power is “l”, the output MPD of the dither circuit 202 is selected and supplied to the SF code circuit 40 as the output signal MP of the nose 20.
  • FIG. 4 is a block diagram showing an example of the motion amount detection circuit 50 in the multi-gradation signal processing circuit shown in FIG.
  • the motion amount detection circuit 50 includes an RGB matrix circuit 500, an edge detection circuit 501, a motion region detection circuit 502, and a motion amount determination circuit 503.
  • the RGB matrix circuit 500 generates the luminance signal Y for the three primary color video signals Ri, Gi, and B supplied from the video signal input terminal 1 and supplies them to the edge detection circuit 501 and the motion region detection circuit 502.
  • the motion amount determination circuit 503 outputs the motion amount MV based on the output of the edge detection circuit 501 and the output of the motion region detection circuit 502.
  • FIG. 4 shows a case where the motion amount MV is judged and output from the luminance signal ⁇ , and the signals for the primary colors R, G, ⁇ that use the R GB matrix circuit 500 are shown.
  • the movement amount may be determined and output every time.
  • an edge detection circuit 501, a motion region detection circuit 502, and a motion amount determination circuit 503 are required for each primary color signal.
  • FIG. 5 is a diagram showing an example of SF conversion data stored in the SF encoding circuit in the multi-gradation signal processing circuit shown in FIG. This shows an example of the contents of the conversion data table and the dither coefficients that are level amounts and diffusion coefficients.
  • symbol O indicates lighting. Specifically, in FIG.
  • subfields SF1, SF3, and SF5 are turned on in gradation 17, and gradation 87 is shown in which subfields SF1 to SF8 are turned on.
  • the level amount (LV) is set to 3 for gradation 17
  • the dither coefficient (DK) is set to 2 for gradation 87.
  • SF indicates the order of driving by the drive control circuit 5
  • SF1 is a subfield driven first
  • SF2 is a subfield driven second
  • SF9 Is the 9th driven subfield
  • SF10 is the last driven subfield.
  • Each subfield SF1 to SF10 is weighted
  • SF1: SF2: SF3: SF4: SF5: SF6: SF7: SF8: SF9: SF10 1: 2: 4: 8: 1 2:16:20 : 24: 28: Weighted to be 32! /
  • the weighting of each of the subfields SF1 to SF10 corresponds to the ratio of the amount of light emission between the subfields.
  • the number of gradations of the input video signal (Ri) supplied to the gain control circuit 200 in pass 20 is 9
  • the gain control circuit 200 performs gain control to increase 147Z511 times.
  • FIG. 6 is a diagram showing an example of a drive sequence of the drive control circuit 5 in the image display apparatus according to the present invention.
  • each subfield SF1 to SF10 is set in a state corresponding to a reset period TS for initializing all display cells and an image for displaying all display cells.
  • the sustain period (number of sustain pulses) of each of the subfields SF1 to SF10 corresponds to the ratio of the light emission amount (weighting) between the subfields.
  • SF1: SF2: SF3: SF4 : SF5: SF6: SF 7: 3 8: 3 9: 3 10 1: 2: 4: 8: 12: 16: 20: 24: 28: 32 It has become.
  • the reset period TR, the address period TA, and the sustain period TS in each of the subfields SF1 to SF10 are generated by the timing generation circuit 6.
  • FIG. 7 is a block diagram showing another example of the path (main path) 20 in the multi-gradation signal processing circuit as the second embodiment of the image display apparatus according to the present invention.
  • the path 20 in the multi-gradation signal processing circuit 3 of the second embodiment is the same as that in the first embodiment described above with reference to FIG.
  • a motion adaptive dither circuit 205 is provided. Note that the gain control circuit 200 and the error diffusion circuit 201 are the same as those described above, and a description thereof will be omitted.
  • the motion adaptive dither circuit 205 varies the dither amount in accordance with the motion amount MV that is the output of the motion amount detection circuit 50 and outputs the signal MP to the field memory 40.
  • FIG. 8 is a block diagram showing an example of the motion adaptive dither circuit 205 in the path 20 of the multi-gradation signal processing circuit shown in FIG.
  • the motion adaptive dither circuit 205 includes a dither coefficient generation circuit 51, a dither amount calculation circuit 52, and a dither circuit 53.
  • the dither circuit 53 includes a dither amount addition circuit 531, a dither amount subtraction circuit 532, a horizontal counter 533, a vertical counter 534, and an addition / subtraction selection circuit 535.
  • the output signal (video signal) MP L of the error diffusion circuit 201 is supplied to a dither coefficient generation circuit 51, a dither amount addition circuit 531, a dither amount subtraction circuit 532, and an addition / subtraction selection circuit 535.
  • the dither coefficient generation circuit 51 outputs a certain dither coefficient DK with a so-called modulation amount to the dither amount calculation circuit 52 at a ratio of the strength with which it is desired to apply the dither for spreading.
  • a predetermined modulation amount may be output with respect to the gradation.
  • the dither amount calculation circuit 52 calculates the dither amount DL, which is the diffusion amount based on the motion amount MV and the dither coefficient DK, which are the outputs of the motion amount detection circuit 50, and the dither amount addition circuit 531 and the dither amount Output to subtraction circuit 532.
  • the dither amount adding circuit 531 adds the dither amount DL calculated by the dither amount calculating circuit 52 to the signal MPL, and the dither amount subtracting circuit 532 is a dither amount calculating circuit 52 for the signal MPL. Subtract the dither amount DL calculated in step.
  • the addition / subtraction selection circuit 535 determines whether the output signal of the dither amount addition circuit 531, the output signal of the dither amount subtraction circuit, or the output signal MPL of the error diffusion circuit 201 depends on the output of the horizontal force counter 533 and the vertical counter 534. One is selected and the signal MP is output to the SF encoding circuit 40.
  • FIG. 9A and FIG. 9B are diagrams for explaining the dither calculation within one field performed by the dither amount calculation circuit 52 in the dither circuit 202 shown in FIG. 3 and the motion adaptive dither circuit 205 shown in FIG. Yes, it shows the result of the dither operation.
  • FIG. 9A + DL and ⁇ DL are repeated in the horizontal direction, and + DL and ⁇ DL are also repeated in the vertical direction.
  • FIG. 9B 4 pixels of 2 ⁇ 2 are defined as one block, and + DL and ⁇ DL are switched according to a predetermined rule in which one + DL and one DL are included in one block.
  • the size of one block is not limited to 4 pixels of 2 X 2, but it is possible to add or subtract dither even if it is larger + if the sum of DL and DL becomes zero.
  • FIG. 10A to FIG. 10C are diagrams for explaining the relationship between the gradation and the dither coefficient in the driving method of the image display apparatus according to the present invention.
  • FIG. 10A shows the case where the dither coefficient DK is fixed with respect to the gradation
  • FIG. 10B shows the case where the dither coefficient DK is proportional to the gradation
  • FIG. The dither coefficient DK is logarithmic.
  • the dither coefficient DK is logarithmically related to the gradation, considering that the sense of human eye brightness is proportional to the logarithm of brightness according to the Weber-Fechner law. It is ideal for the sense of brightness of the human eye.
  • the dither coefficient orientation circuit 51 is constituted by a ROM or the like, for example.
  • the proportional relationship of the dither coefficient DK with respect to the gradation corresponds to the case between the above-described FIG. 1 OA and FIG. 10C.
  • FIG. 11 is a block diagram showing another example of the motion adaptive dither circuit 205 in the path 20 of the multi-gradation signal processing circuit 3 shown in FIG. Note that the motion adaptive dither circuit 205 shown in FIG. 11 is also a gradation adaptive dither circuit.
  • the motion adaptive dither circuit 205 includes a dither circuit 53, n dither gradation setting circuits 54— 1 to 54—n, and n dither coefficient setting circuits 55— 1 to 55. — N, n dither gradation comparison circuits 56 — 1 to 56 — n, a dither coefficient selection circuit 57, and a dither amount calculation circuit 58.
  • the configuration of the dither circuit 53 is the same as that described with reference to FIG. 8, and the description thereof is omitted.
  • Dither gradation setting circuit 54-1 sets the first gradation to which dither is applied, and dither gradation setting circuit 54-2 sets the second gradation to which dither is applied
  • the dither gradation setting circuit 54-n sets the nth gradation to which dither is to be applied.
  • the dither coefficient setting circuit 55-1 sets the dither coefficient for the first gradation
  • the dither coefficient setting circuit 55-2 sets the dither coefficient for the second gradation
  • the dither coefficient setting circuit 54-n sets the dither coefficient for the nth gradation.
  • the dither gradation setting circuit 54-1 sets the gradation 3 and the dither coefficient setting circuit 55-1 sets the dither coefficient “1”.
  • the dither gradation setting circuit 54-6 sets the gradation 43
  • the dither coefficient setting circuit 55-6 sets the dither coefficient “2”
  • the dither gradation setting circuit 54-15 sets the gradation.
  • 111 is set and the dither coefficient setting circuit 55-15 sets the dither coefficient “3”.
  • the gradation to which dither is applied is a gradation at which a false contour is easily recognized.
  • the dither coefficient indicates the ratio of the strength of applying dither to the dithered! / ⁇ gradation. This dither coefficient is limited to “1”, “2” or “3”. Is not to be done.
  • the gradation to which the dither is applied can change variously depending on the applied SF conversion data (driving sequence).
  • the dither gradation comparison circuits 56-l to 56-n are the corresponding dither gradation setting circuits 54-1 to 54-n and the output signal of the error diffusion circuit 201 (input signal of the motion adaptive dither circuit 205). Compares with MPL, outputs “1” if both match, and outputs “0” if they do not match.
  • the dither coefficient selection circuit 57 outputs a signal corresponding to the dither gradation comparison circuit 56-1 to 56-n that outputs “1” to the dither amount calculation circuit 58, and the dither amount calculation circuit 58 outputs the signal “1”.
  • the dither amount DL is calculated using the dither coefficients set in 55-l to 55-n.
  • the calculation of the dither amount DL in the dither amount calculation circuit 58 can be performed by applying one of the methods shown in FIGS. 12A to 12D, for example.
  • FIGS. 12A to 12D are diagrams showing the relationship between the motion amount MV of the input image signal and the calculated motion amount MVC in the image display apparatus according to the present invention.
  • FIG. 12A is a diagram showing a first calculation method of the calculated motion amount MVC with respect to the motion amount MV.
  • the calculated motion amount MVC is set to zero, and the motion amount When MV is equal to or greater than a predetermined threshold TD, the calculated motion amount MVC is fixed to a predetermined value DFL.
  • FIG. 12B is a diagram showing a second calculation method of the calculated motion amount MVC with respect to the motion amount MV, and the motion amount MV and the calculated motion amount MVC are in a proportional relationship.
  • FIG. 12C is a diagram showing a third calculation method of the calculated motion amount MVC with respect to the motion amount MV.
  • FIG. 12D is a diagram showing a fourth calculation method of the calculated motion amount MVC with respect to the motion amount MV.
  • the calculated motion amount MVC is set to zero and the motion amount MV is predetermined. If the threshold value TD is greater than or equal to TD, the calculated motion amount MVC is proportional to MV-TD.
  • FIG. 13 is a block diagram showing an example of the multi-gradation signal processing circuit 3 as the third embodiment of the image display apparatus according to the invention.
  • reference numeral 10 is a sub-path
  • 20 is a main path
  • 30 is a path switch circuit
  • 40 is an SF code input circuit
  • 50 is a motion amount detection circuit. That is, the third embodiment shown in FIG. 13 shows a case in which the present invention is applied to an image display device of the path switching method.
  • the multi-gradation signal processing circuit 3 of the third embodiment includes a sub node 10 and a main node 20 for each primary color.
  • the output of either 10 or 20 is selected by the path switch circuit 30 and supplied to the SF code circuit 40.
  • the sub path 10 is for displaying the input image signal at a predetermined gradation level (for example, a gradation level lower than the gradation level of the input image signal), and the main path 20 is The input image signal can be displayed at the actual display gradation level.
  • the path switch circuit 30 selects one output signal of the sub-path 10 or the main path 20 according to the motion amount MV detected by the motion amount detection circuit 50 and outputs the selected output signal to the SF encoding circuit 40.
  • FIG. 14 is a block diagram showing an example of the sub path 10 in the multi-gradation signal processing circuit shown in FIG.
  • the sub-pass circuit 10 expresses a video using a lighting pattern that does not generate a false contour.
  • the gradations 0, 1, 3, , 15, 27, 43, 63, 87, 111, and 147 are used, and between these gradations is expressed by error diffusion.
  • the subpath 10 includes a distortion correction circuit 100, a gain control circuit 101, an error diffusion circuit 102, and a data matching circuit 103.
  • the distortion correction circuit 100 is Since the number of gradations that can be represented by Nos. 10 does not increase evenly with the amount of luminance, the display characteristics after error diffusion and the inverse function are corrected, and correction is performed to obtain a linear display characteristic as a whole. It is a circuit to perform.
  • the gain control circuit 101 multiplies the input image signal by a predetermined gain coefficient so that the error diffusion circuit 102 in the subsequent stage can perform error diffusion processing over the entire area of the input image signal.
  • the gain control circuit 101 can be configured by a general multiplier, ROM, RAM, or the like.
  • the error diffusion circuit 102 performs error diffusion on the image signal obtained via the gain control circuit 101, thereby generating a pseudo halftone and increasing the number of gradations.
  • the data matching circuit 103 is provided to match the luminance level in the sub path 10 with the luminance level in the main path 20.
  • FIG. 15 is a block diagram showing an example of a nosswitch circuit 30 in the multi-gradation signal processing circuit shown in FIG.
  • the path switch circuit 30 includes a level detection circuit 300, a sub path determination circuit 301, and a sub path switch 302.
  • the level detection circuit 300 detects for each pixel the gradation at which false contours are likely to appear, and outputs the generated intensity (level amount) LV when a false contour occurs.
  • the sub-path determination circuit 301 outputs a path determination signal PSW based on the output LV of the level detection circuit 300 and the output (motion amount) MV of the motion amount detection circuit 50.
  • the subpath switch 302 selects, for example, the output SP of the subpath 10 when the subpath determination signal PSW power is “1”, and the subpath determination signal PSW When the output is “0”, the output MP of the main node 20 is selected and output to the SF encoding circuit 40.
  • the path determination signal PSW outputs “1” when the motion amount MV is equal to or greater than the predetermined value TMP and the level amount LV is equal to or greater than the predetermined value TLP, and the motion amount MV is If the value is smaller than the value TMP or the level amount LV is smaller than the value TLP, “0” is output.
  • the value TMP and value TLP differ depending on the screen size and the number of pixels of the display panel 7, and use values determined based on empirical rules. Specifically, for example, in the SF conversion data of FIG. 5 described above, the level amount LV is determined from “0” to “5” for each gradation.
  • the value of level amount LV from “0” to “5” is a numerical value indicating the strength when a false contour is recognized, and “5” is a false value that is recognized.
  • the gradation is set when the contour is strongest.
  • the false contour generation intensity will be described.
  • a person a person looking at the image display device
  • the predetermined gradation has a carry between the upper and lower gradations.
  • gradations 4 8, 16, 28, 44, 64, 88 and 112 It is.
  • These gradations are the first carry gradation and false contours are easily recognized.
  • gradations 32, 48, 68, 92, and 120 are second carry gradations, and false contours are easy to recognize, but false contours are not as strong as the first gradation.
  • the level amount LV is shown in five levels as the strength when a false contour occurs, and the level amount LV of the gradations 44, 64, 88 and 112 is “
  • the level amount LV of gradations 45, 65, 89 and 113 which is one level higher than that, is also set to “5”. This is because when there is a carry between adjacent pixels in the actual video signal, the gradation of the carry is not necessarily the above-mentioned gradation 44, 64, 88 or 112.
  • the gradation level amount LV is also set to “5”.
  • the level amount LV “1” or more is a gradation with a carry of the subfield in the lighting pattern in the upper and lower gradations, and the level amount LV “4”, “3”, “2”, “ “1” is the same level in continuous tone. Instead of detecting the level amount LV, a place where a carry occurs between adjacent pixels may be detected.
  • FIG. 16 is a flowchart showing an example of processing of the path (main path) 20 in the multi-gradation signal processing circuit as the first embodiment of the image display apparatus according to the present invention shown in FIG. This is for explaining the processing of the switching circuit 203 and the dither switching determination circuit 204.
  • step 110 when the process starts in step 110, the process proceeds to step 111 to perform initialization!
  • the dither switching determination circuit 204 outputs “0”.
  • step 112 the dither switching circuit 203 selects the output signal MPL of the error diffusion circuit 201.
  • step 113 the movement amount MV is detected, and further, at step 114, addition / subtraction of the dither amount DL is performed.
  • the dither coefficient DK any of the above-described FIG. 10A to FIG. 10C may be applied, or the dither coefficient of FIG.
  • the process proceeds to step 115, where the amount of motion MV is compared with a predetermined threshold (determination threshold) TD.
  • step 115 If it is determined in step 115 that the motion amount MV is smaller than the determination threshold value TD, the process proceeds to step 116, where the dither switching determination circuit 203 outputs “0”, and further proceeds to step 117, where dither switching is performed.
  • the circuit 203 selects the output signal MPL of the error diffusion circuit 201 and returns to step 113.
  • step 118 if it is determined in step 115 that the amount of motion MV is greater than or equal to the determination threshold TD, the process proceeds to step 118, where the dither switching determination circuit 203 outputs “1”, and further proceeds to step 119.
  • the switching circuit 203 selects the output signal MPD of the dither circuit 202 and returns to step 113.
  • the above processing is performed for each pixel, for each predetermined region, or for each primary color signal.
  • the output signal MPL of the error diffusion circuit 201 selected by the dither switching circuit 203 or the output signal MPD of the dither circuit 202 is supplied to the SF code key circuit 40 as the output signal MP of the path (main path) 20. Is done.
  • FIG. 17 is a flowchart showing an example of a path (main path) process in the multi-gradation signal processing circuit as the second embodiment of the image display apparatus according to the present invention shown in FIG. This is for explaining the processing of the adaptive dither circuit 205.
  • the relationship between the motion amount MV and the calculated motion amount MVC applies Fig. 12C.
  • the dither coefficient DK any of the above-described FIG. 10A to FIG. 10C may be applied, or the dither coefficient of FIG.
  • step 122 the motion amount MV is detected
  • step 123 the motion amount MV is compared with the determination threshold value TD.
  • m is a proportional coefficient between the motion amount MV and the calculated motion amount MVC.
  • the output signal MP of the motion adaptive dither circuit 205 is a path (main path). S) 20 output signal MP is supplied to the SF code circuit 40.
  • FIG. 18 is a flowchart showing an example of processing in the multi-gradation signal processing circuit as the third embodiment of the image display apparatus according to the present invention shown in FIG. 13, and the processing of the main path 20 will be described. Is for.
  • the dither coefficient DK any of the dither coefficients shown in FIG. 10A to FIG. 10C or FIG. 5 may be applied, and the relationship between the motion amount MV and the calculated motion amount M VC is as shown in FIG. Any of Figure 12D can be applied!
  • step 130 when the processing starts in step 130, the process proceeds to step 131 for initialization, and the dither amount calculation circuit 58 (see FIG. 11) sets the dither amount DL to 0 and the output of the subpath determination circuit 301. Signal (path judgment signal) Set PSW to “0”.
  • step 132 the routine proceeds to step 132, where the dither amount DL is added or subtracted, and the subpath switch 302 selects the output signal MP of the main path 20.
  • step 133 the motion amount detection circuit 50 detects the motion amount MV, and in step 1 34, the level detection circuit 300 detects the level amount LV, and proceeds to step 135 where the level amount LV is zero. Determine whether or not.
  • step 135 it is determined that the level amount LV is zero, or in step 135, it is determined that the level amount LV is not zero, and in step 136, pMV + qLV is smaller than SP seU. If it is discriminated, the process proceeds to step 139 to compare the motion amount MV with a predetermined threshold value (determination threshold value) TD. On the other hand, if it is determined in step 135 that the level amount LV is not zero, and it is determined in step 136 that pMV + qLV is equal to or greater than SPsel, the process proceeds to step 137.
  • the calculation in step 136 may be pMV + LV.
  • the sub path determination circuit 301 determines whether or not the level amount LV in step 135 is zero. Further, p and q in step 136 are coefficients for balancing the movement amount MV and the level amount LV, and SPsel is a judgment threshold.
  • p and q in step 136 are coefficients for balancing the movement amount MV and the level amount LV, and SPsel is a judgment threshold.
  • SPsel is a judgment threshold.
  • a large pMV + qLV indicates a gradation in which the amount of movement MV is large and a false contour is likely to appear, and in this case, the subpath switch 302 outputs the output of the subpath 10 Select SP.
  • step 137 the dither amount DL is calculated, and the sub-path determination circuit 301 outputs a path determination signal PSW of "1". Further, the process proceeds to step 138 to add / subtract the dither amount DL.
  • the subpath switch 302 selects the output signal SP of subpath 10 and returns to step 133. That is, in step 138, since the subpath is selected by the subpath switch 302, eventually, the dither switching circuit 203 has no effect regardless of which one is selected. Also, the determination of whether or not the level amount LV in step 135 is zero means that even if the amount of movement is MV force S, even if it is a gradation that does not produce false contours, it does not make sense to switch to sub-pass 10! (Generally, the number of gradations is small, and switching to sub-path 10 increases the granular noise and degrades the image quality.) When the level amount LV is zero, do not select the output signal SP of sub-path 10. It is for making.
  • step 139 If it is determined in step 139 that the motion amount MV is greater than or equal to the determination threshold value TD, the process proceeds to step 13A, where the dither amount DL is calculated, and the sub-path determination circuit 301 passes the "0" path.
  • the determination signal PSW is output, and the process proceeds to step 13B where the dither amount DL is added or subtracted.
  • the subpath switch 302 selects the output signal MP of the main path 20 and returns to step 133.
  • step 139 determines whether the motion amount MV is smaller than the determination threshold value TD. If it is determined in step 139 that the motion amount MV is smaller than the determination threshold value TD, the process proceeds to step 13C where the dither amount DL is set to 0 and the subpath determination circuit 301 sets the path of “0”. The determination signal PSW is output, and the process further proceeds to step 13D to add / subtract the dither amount DL. At the same time, the subpath switch 302 selects the output signal MP of the main path 20, and the process returns to step 133.
  • the output signal SP of the subpass 10 is output in units of pixels, the output signal MPD is obtained by performing dither addition / subtraction in the main pass 20, and the output signal MPL is not subjected to dither addition / subtraction in the main pass 20.
  • the false contour is reduced by spreading and modulating the location where the false contour occurs and scattering it around It becomes possible to make it.
  • the speed of chasing the target that the person is moving that is, the speed of the moving object is large Recognize strongly It is possible to avoid overmodulation or undermodulation by increasing or decreasing the dither amount according to the speed of movement or the amount of movement.
  • FIG. 19 is a block diagram showing still another example of the path (main path) 20 in the multi-gradation signal processing circuit as the fourth embodiment of the image display apparatus according to the present invention.
  • the arrangement of the error diffusion circuit 201, the dither circuit 202, the dither switching circuit 203, and the dither switching determination circuit 204 can be interchanged. That is, in the fourth embodiment, the error diffusion circuit 201 provided immediately after the gain control circuit 200 in FIG. 3 is provided after the dither switching circuit 203.
  • FIG. 20 is a block diagram showing an example of the multi-gradation signal processing circuit 3 as the fifth embodiment of the image display apparatus according to the present invention.
  • reference numeral 10 is a sub path
  • 21 is a main path
  • 22 is a spreading path
  • 31 is a path switch circuit
  • 40 is an SF code key circuit
  • 50 is a motion amount detection circuit.
  • the multi-gradation signal processing circuit 3 of the fifth embodiment includes a sub-path 10, a main path 21 and a diffusion path 22 for each primary color.
  • the output of any one of the sub path 10, the main path 21 and the spreading path 22 is selected by the path switch circuit 31 and supplied to the SF code circuit 40.
  • the sub path 10 is for displaying the input image signal at a predetermined gradation level (for example, a gradation level lower than the gradation level of the input image signal), and the main path 21 is The input image signal can be displayed at the actual display gradation level.
  • Subpath 10 has the same configuration as that of subnode 10 shown in FIG. 13, and outputs signal SP.
  • the main path 21 receives the input image signal, outputs the signal MPG to the diffusion path 22, and outputs the signal MPL to the path switch circuit 31.
  • the motion detection circuit 50 is also configured similarly to the motion detection circuit 50 shown in FIG. 13, and outputs a motion amount MV.
  • the diffusion path 22 includes the output signal MPG of the main path 21 and the output signal of the motion detection circuit 50.
  • (Motion amount) Receives the MV and outputs a signal MPD that has been spread according to the motion amount MV.
  • the path switch circuit 31 outputs the output signal SP of the subpath 10, the output signal MPL of the main path 21, or the output of the diffusion path 22 according to the motion amount MV detected by the motion amount detection circuit 50. Select one of the signals MPD and output to the SF code circuit 40 as the signal PSO. Note that the SF code key circuit 40 has the same configuration as the SF code key circuit 40 shown in FIG.
  • FIG. 21 is a block diagram showing an example of the main path 21 in the multi-gradation signal processing circuit shown in FIG.
  • the main path 21 includes a gain control circuit 200 and an error diffusion circuit 201, and the output signal MPG of the gain control circuit 200 is supplied to the diffusion path 22. Output signal MPL is supplied to the path switch circuit 31.
  • FIG. 22 is a block diagram showing an example of a nosswitch circuit 31 in the multi-gradation signal processing circuit shown in FIG.
  • the path switch circuit 31 includes a level detection circuit 300, a path switching determination circuit 303, and a path switching circuit 304.
  • the level detection circuit 300 has the same function as the level detection circuit 300 shown in FIG. 13, and outputs the level amount LV to the path switching determination circuit 303 based on the output signal MPL of the error diffusion circuit 201.
  • the path switching determination circuit 303 outputs a control signal PSW for switching the path by the path switching circuit 304 based on the level amount LV from the level detection circuit 300 and the motion amount MV from the motion amount detection circuit 50. To do.
  • the nose switching circuit 304 according to the output signal PSW of the path switching determination circuit 303, is one of the input signal SP of the subpath 10, the output signal MPL of the main path 21, or the output signal MPD of the diffusion path 22. Is selected and output to the SF code circuit 40 as a signal PSO.
  • the value of the output signal PSW of the path switching determination circuit 303 is “0”, “1”, and “2”.
  • the path switching circuit 304 Output signal MPL is selected.
  • the value of PSW is ⁇ l ''
  • output signal MPD of diffusion path 22 is selected.
  • the value of PSW is ⁇ 2 ''
  • output signal SP of subpath 10 is selected. select.
  • FIG. 23 is a block diagram showing an example of the diffusion node 22 in the multi-gradation signal processing circuit shown in FIG.
  • the diffusion path 22 includes an error diffusion circuit 201 and a motion adaptive dither circuit 205.
  • the error diffusion circuit 201 is connected to the main path 21 described above. This has the same function as the error diffusion circuit 201.
  • the motion adaptive dither circuit 205 calculates the dither amount DL based on the motion amount MV that is the output of the motion detection circuit 50, and adds or subtracts this dither amount DL to the output of the error diffusion circuit 201 to output the signal MPD. .
  • the motion adaptive dither circuit 205 can be configured as the dither circuit 202 described above (see, for example, FIG. 3 or FIG. 19).
  • FIG. 24 is a flowchart showing an example of processing in the multi-gradation signal processing circuit as the fifth embodiment of the image display apparatus according to the present invention shown in FIG.
  • the dither coefficient DK any of the dither coefficients shown in FIG. 10A to FIG. 10C or FIG. 5 may be applied, and the relationship between the motion amount MV and the calculated motion amount MVC is shown in FIG. 12A to FIG. Any of 12D may be applied.
  • step 241 the dither amount calculation circuit (58) sets the dither amount DL to 0, and the path switching determination circuit 303 sets "0". Outputs judgment signal PSW to "0".
  • step 242 the dither circuit 53 performs addition / subtraction of the dither amount DL, and the path switching circuit 304 selects the output signal MPL of the main path 21.
  • step 243 the motion amount detection circuit 50 detects the motion amount MV, and in step 244, the level detection circuit 300 detects the level amount LV, and proceeds to step 245, where the level amount LV is zero. Determine whether or not.
  • step 245 If it is determined in step 245 that the level amount LV is zero, the process proceeds to step 24C. In step 245, it is determined that the level amount LV is not zero. In step 246, it is determined that pMV + qLV is not equal to or greater than SPsel. Further, in step 249, it is determined that pMV + qLV is not equal to or greater than SP sel2. (PMV + qLV ⁇ SPsel2 ⁇ SPsel), go to step 24C.
  • p and q in step 246 are coefficients for balancing the movement amount MV and the level amount LV, and SPsel and SPsel 2 are determination thresholds. Note that there is a relationship of SPsel> SPse 12 between the determination threshold values SPsel and SPsel2.
  • step 24C the dither amount DL is set to 0, and the path switching determination circuit 303 outputs a determination signal PSW of "0", and further proceeds to step 24D to add / subtract the dither amount DL.
  • the path switching circuit 304 selects the output signal MPL of the main path 21 and returns to step 243.
  • step 245 If it is determined in step 245 that the level amount LV is not zero! /, And in step 246 that pM V + qLV is greater than SPsel (SPsel ⁇ pMV + qLV), step 247 is executed. move on.
  • pMV + qLV is equal to or greater than SPsel (SPsel ⁇ pMV + qLV: pMV + qLV is large), which indicates a gradation in which a false contour is likely to occur due to a large amount of movement MV.
  • step 247 where the dither amount DL is calculated, and the path switching determination circuit 303 receives the determination signal P SW of “2”. Further, the process proceeds to step 248 where addition / subtraction of the dither amount DL is performed, and the path switching circuit 304 selects the output signal SP of the subpath 10 and returns to step 243. Note that when the output signal SP of the subpath 10 is selected as in step 248, the dither amount DL is not affected even after all.
  • step 245 determines whether the level amount LV is not zero! / And p MV + qLV is not equal to or greater than SPsel in step 246, the force that proceeds to step 249 is determined in step 249. If it is determined that pMV + qLV is greater than or equal to SPsel2 (SPsel2 ⁇ pMV + qLV ⁇ SPsel), go to step 24A.
  • step 24A the dither amount DL is calculated, and at the same time, the path switching determination circuit 303 outputs a determination signal PSW of “1”, and further proceeds to step 24B to add / subtract the dither amount DL.
  • the path switching circuit 304 selects the output signal MPD of the diffusion path (dither processing path) 22 and returns to step 243.
  • the determination of the level amount 0 in step 245 is meaningless even when switching to the sub-pass or dithering pass in the case of a gradation that does not produce false contours no matter how large the amount of motion is. (If there is little movement, the number of gradations is small. If the level amount is 0, the sub-pass and the dither processing pass are not selected. This is because the dither pattern becomes conspicuous or the image quality deteriorates when switching to the dither processing pass.
  • the dither amount DL is determined based on the motion amount MV
  • the main path, sub-pass or dither processing path (diffusion path) is determined based on the motion amount MV and the level amount LV.
  • the image display apparatus of the fifth embodiment performs level detection based on the output signal MPL of the error diffusion circuit! /
  • the image display apparatus of the third embodiment shown in FIGS. 13 to 18 described above performs level detection based on the output signal MP that has been subjected to error diffusion processing and further dithered.
  • the power of different level detection depending on the amount of dithering DL to be added / subtracted Both can improve the image quality of moving picture display by scattering false contours to surrounding pixels.
  • FIG. 25 is a block diagram showing a modification of the diffusion path in the multi-gradation signal processing circuit shown in FIG.
  • the diffusion path 22 of this modification includes a dither circuit 202 and an error diffusion circuit 201, and performs error diffusion after the dither processing. Yes.
  • the dither circuit 202 may be configured as, for example, the motion adaptive dither circuit 205 shown in FIG.
  • the false contour is less noticeable if the false contour is weakly generated in the vicinity of the false contour than when the false contour is concentrated in one place. By inserting it in place, the false contour is generated weakly, so it is not recognized as a false contour.
  • a false contour is recognized when about 4 dots are moved in the horizontal direction per field.
  • the false contour is strongly recognized as the moving speed increases.
  • the insertion of the sub-path in the path switching method has a small number of gradations, so the sub-path granular noise is conspicuous, and even when the dither coefficient is increased by the dither method, the hatched noise due to the dither is conspicuous. Therefore, the movie moving slowly
  • the present invention can also be realized for the three primary colors of RGB if there is a circuit for each primary color signal.
  • the application of the present invention is not limited to the plasma display device.
  • the weight of the subfield in the present invention may be a data weight or a luminance weight.
  • the present invention can be widely applied to an image display device such as a plasma display device.
  • a display device such as a personal computer or a workstation, a flat wall-mounted television, or an advertisement or information.
  • the present invention can be applied to an image display device that is used as a device for displaying the above.

Abstract

 画像表示装置は、1フィールドを重み付けされた複数のサブフィールドに分割し、該複数のサブフィールドを組み合わせて表示パネルに多階調表示を行うもので、動き量検出回路(50)、拡散量演算回路52、および、拡散回路53を有する。動き量検出回路50は、入力画像信号から現フィールドと該現フィールドより以前のフィールドとから動き量を検出する。また、拡散量演算回路52は、入力画像信号の階調と検出された動き量に基づいて、偽輪郭ノイズを周辺に拡散するための拡散量を演算する。そして、拡散回路53は、演算された拡散量により拡散処理を行う。これにより、新たなノイズの発生や回路規模の増大を伴うことなく、偽輪郭を低減して動画表示の画質を向上させることができる。

Description

明 細 書
画像表示装置およびその駆動方法
技術分野
[0001] 本発明は、画像表示装置およびその駆動方法に関し、特に、プラズマディスプレイ パネル(PDP : Plasma Display Panel)等の 1フィールドを重み付けされた複数のサブ フィールドに分割し、その複数のサブフィールドを組み合わせて表示パネルに多階 調表示を行う画像表示装置およびその駆動方法に関する。
背景技術
[0002] 近年、表示装置の大型化に伴って薄型の表示装置が要求され、各種類の薄型の 表示装置が提供されている。例えば、ディジタル信号のままで表示するマトリックスパ ネル、すなわち、 PDP等のガス放電パネルや、 DMD (Digital Micromirror Device)、 EL (Electro- Luminescence)表示素子、蛍光表示管、液晶表示素子等のマトリックス パネル等が提供されている。このような薄型の表示装置のうち、ガス放電パネルは、 簡易なプロセスのため大画面化が容易であること、自発光タイプで表示品質が良い こと、並びに、応答速度が速いこと等の理由力 大画面で直視型の HDTV (高品位 テレビ)用表示デバイスとして実用化に至っている。
[0003] 例えば、プラズマディスプレイ装置は、各フィールド(フレーム)内に複数の維持放 電パルス(サスティンノ《ルス)で構成される重み付けされた複数のサブフィールド(SF :発光ブロック)を設け、各サブフィールドを点灯または非点灯とすることにより多階調 制御して画像表示を行うようになって!、る。このような複数のサブフィールドの点灯 Z 非点灯を制御して多階調表示を行う画像表示装置においては、動画像の輪郭部に 偽輪郭 (擬似輪郭)ノイズが発生するため、簡単な構成で偽輪郭の低減を図ることの できる画像表示装置およびその駆動方法の提供が要望されている。
[0004] 従来、プラズマディスプレイ装置、液晶表示装置および EL表示装置等にお ヽて、 1 フィールドを所定の輝度比(重み)である複数のサブフィールドに分割し、所定の重 みのサブフィールド単位で画像表示セル毎に点灯状態または非点灯状態に符号ィ匕 し、多階調化制御して画像表示を行う画像表示装置 (多階調画像表示装置)が提供 されて 、る。このような 1フィールドを重み付けされた複数のサブフィールドに分割し、 該複数のサブフィールドを組み合わせて表示パネルに多階調表示を行う画像表示
Figure imgf000004_0001
、て、表示パネルの画面サイズや画素数或いは実際に表示される映像 (画 像)にも起因するが、画像表示装置を見ている者 (視聴者)は、表示パネル中を或る 速さを超えていて動いている目標物を視線で追いかけた場合、偽輪郭を認識するこ とになる。
[0005] この偽輪郭を低減する手法としては、ディザ法や重ね合わせ法或いはパス切り換え 法が提案されているが、十分満足の行くものとはいえず、逆に、ディザ法や重ね合わ せ法ではハッチ状のノイズが現れたり、また、パス切り換え法ではサブパスの誤差拡 散による粒状ノイズが現れるといった副作用が生じることにもなつていた。
[0006] 従来、 1フィールドを重み付けされた複数のサブフィールドに分割し、該複数のサブ フィールドを組み合わせて表示パネルに多階調表示を行う画像表示装置であって、 フリツ力の発生を伴うことなく偽輪郭ノイズの発生を防止するために、 1フィールド期間 内で各サブフィールド期間のサスティン期間を略同じ長さに設定し、表示パネル上で は画像データを 0〜Nまでの輝度レベルで N+ 1階調の表現を行うようにした画像表 示装置が提案されている。(例えば、特許文献 1参照)。
[0007] また、従来、 1フィールドを重み付けされた複数のサブフィールドに分割し、該複数 のサブフィールドを組み合わせて表示パネルに多階調表示を行う画像表示装置であ つて、偽輪郭ノイズの発生可能性をノイズ量として求め、そのノイズ量の値に基づい て画像において偽輪郭の発生が予測される領域に対して偽輪郭ノイズを低減する拡 散処理を行うようにした画像表示装置も提案されている。(例えば、特許文献 2参照)
[0008] さらに、従来、 1フィールドを重み付けされた複数のサブフィールドに分割し、該複 数のサブフィールドを組み合わせて表示パネルに多階調表示を行う画像表示装置 であって、偽輪郭を低減すると共にパターンノイズの発生を抑えて動画表示の画質を 高めるために、表示画像のうち、重ね合わせ法に係る輝度重みが等しい複数のサブ フレームのうち 1つのみが点灯する階調の画素で且つ隣接画素間の輝度勾配が設 定範囲内の値である領域に限定して重ね合わせ法を適用するようにした画像表示装 置も提案されている。(例えば、特許文献 3参照)。
[0009] 特許文献 1 :特開平 10— 031455号公報
特許文献 2:特開平 11― 231827号公報
特許文献 3:特開 2002— 372948号公報
発明の開示
発明が解決しょうとする課題
[0010] 上述したように、従来、 1フィールドを重み付けされた複数のサブフィールドに分割 し、該複数のサブフィールドを組み合わせて表示パネルに多階調表示を行う画像表 示装置においては、偽輪郭の問題があった。偽輪郭を低減する手法としては、ディザ 法や重ね合わせ法或いはパス切り換え法が知られている力 例えば、重ね合わせ法 では、その重ね合わせの副作用として動いている映像でハッチ状のノイズが認識され てしまうといった問題がある。このハッチ状のノイズは、映像がゆっくり動いている場合 は認識される力 比較的速く動いている場合は認識され難い特性がある。これは、映 像が速く動いている場合は、複数の画素にまたがって視線が移動するのでハッチ状 のノイズが打ち消されることになるためであると考えられている。
[0011] 前述した特許文献 1では、メインパスとサブパスを切り換えることで偽輪郭を防止す ることができるが、動画像で動画領域が大きく動きの速さに係らずサブパスの誤差拡 散によるノイズが目に付き、さらに、サブパスとメインパスの切り換えショック (メインパ スの滑らかな階調表現に対するサブパスの誤差拡散の粒状ノイズ)が大き!/、ため視 聴者に画像としての違和感を与えることにもなつていた。
[0012] また、特許文献 2は、偽輪郭ノイズ検出装置による予測結果に基づ ヽて偽輪郭ノィ ズが発生する可能性がある領域に偽輪郭ノイズを低減するものであるが、動き検出 器の出力を基にした偽輪郭の判定器により複数のサブフィールドに分割された入力 画像の各画素に対する周辺画素との間の画素値の論理演算をサブフィールド毎に 行 ゝ、空間的な偽輪郭の発生場所を検出して偽輪郭低減の変調処理を行うものであ る。しかしながら、偽輪郭は動画像で且つ所定の階調を表示駆動する場合に発生す ることが分力つているので、偽輪郭ノイズ検出装置は必要ではなぐ動き量を検出で きればよぐ構成が冗長になっている。 [0013] さらに、特許文献 3では、動画部特定階調重ね合わせ法によるノ、ツチ状のノイズは 低減することができるが、同じ速さで動く映像であっても偽輪郭の目立ちやすさは異 なるため、偽輪郭が目立ちやすい映像であって重ね合わせる判定閾値を超えない場 合には、重ね合わせが行われないで偽輪郭が認識されることになる。また、偽輪郭が 目立ちにくい映像であっても、重ね合わせる判定閾値を超えてしまった場合には、重 ね合わせが行われてハッチ状のノイズが認識されてしまうことがある。このハッチ状の ノイズの強度は制御することができず、点灯パターンに依存して決まるものである。
[0014] このように、偽輪郭を低減するための従来の手法は、いずれも偽輪郭が発生する場 所を検出し、そこに変調を加えるようにしているため、回路規模が大きくなつて費用も 嵩むことになつていた。さらに、従来の手法では、偽輪郭を低減する副作用として新 たなノイズが発生すると ヽつた問題もあった。
[0015] 本発明は、上述した偽輪郭を低減するための従来の技術が有する課題に鑑み、新 たなノイズの発生や回路規模の増大を伴うことなく、偽輪郭を低減して動画表示の画 質向上を可能とする画像表示装置およびその駆動方法の提供を目的とする。
課題を解決するための手段
[0016] 本発明の第 1の形態によれば、 1フィールドを重み付けされた複数のサブフィールド に分割し、該複数のサブフィールドを組み合わせて表示パネルに多階調表示を行う 画像表示装置であって、入力画像信号力 現フィールドと該現フィールドより以前の フィールドとから動き量を検出する動き量検出回路と、前記入力画像信号の階調と前 記検出された動き量に基づいて、偽輪郭ノイズを周辺に拡散するための拡散量を演 算する拡散量演算回路と、該拡散量演算回路により演算された拡散量で拡散処理 を行う拡散回路とを備えることを特徴とする画像表示装置が提供される。
[0017] 本発明の第 2の形態によれば、 1フィールドを重み付けされた複数のサブフィールド に分割し、該複数のサブフィールドを組み合わせて表示パネルに多階調表示を行う 画像表示装置であって、入力画像信号力も所定の階調数の信号を生成するメインパ スと、該メインノ スより少ない階調数の信号を生成するサブパスと、前記メインパスの 生成信号と前記サブパスの生成信号のいずれか一方を切り換えて出力するパススィ ツチ回路と、前記入力画像信号力 現フィールドと該現フィールドより以前のフィール ド間で動 、て 、る領域を検出し、動 、て 、る量である動き量を出力する動き量検出 回路と、前記メインパスで動画偽輪郭の発生する場合の偽輪郭の強さのレベル量を 検出するレベル検出回路と、前記検出した動き量と前記検出したレベル量に基づい て所定の設定値と比較し、動画領域で且つ偽輪郭発生強度が強!ヽ階調を判定する サブパス判定回路と、該サブパス判定回路の判定結果により前記パススィッチ回路 を前記メインパスの出力から前記サブパスの出力に切り換えるサブパススィッチと、偽 輪郭ノイズを周辺に拡散する拡散量を演算するための前記入力画像信号の階調に 依存した拡散係数を生成する拡散係数生成回路と、前記動き量と前記拡散係数に 基づいて拡散量を演算する拡散量演算回路と、該拡散量演算回路により演算された 拡散量で拡散処理を行う拡散回路とを備え、前記サブパススィッチと前記拡散量を 制御して偽輪郭を低減することを特徴とする画像表示装置が提供される。
本発明の第 3の形態によれば、 1フィールドを重み付けされた複数のサブフィールド に分割し、該複数のサブフィールドを組み合わせて表示パネルに多階調表示を行う 画像表示装置であって、入力画像信号力も所定の階調数の信号を生成するメインパ スと、該メインノ スより少ない階調数の信号を生成するサブパスと、前記入力画像信 号に対して拡散処理を施した信号を生成する拡散処理パスと、前記メインパスの生 成信号、前記サブパスの生成信号または前記拡散処理パスの生成信号の 、ずれか 1つを切り換えて出力するパススィッチ回路と、前記入力画像信号力 現フィールドと 該現フィールドより以前のフィールド間で動 、て 、る領域を検出し、動 、て 、る量で ある動き量を出力する動き検出回路と、前記メインパスで動画偽輪郭の発生する場 合の偽輪郭の強さのレベル量を検出するレベル検出回路と、前記検出した動き量と 前記検出したレベル量に基づ!/ヽて所定の設定値と比較し、動画領域で且つ偽輪郭 発生強度が強い階調を判定するパス切り換え判定回路と、該サブパス判定回路の判 定結果により前記パススィッチ回路を前記メインパスの出力、前記サブパスの出力ま たは前記拡散処理パスのいずれか 1つに切り換えるパス切り換え回路と、偽輪郭ノィ ズを周辺に拡散する拡散量を演算するための前記入力画像信号の階調に依存した 拡散係数を生成する拡散係数生成回路と、前記動き量と前記拡散係数に基づ 、て 拡散量を演算する拡散量演算回路と、該拡散量演算回路により演算された拡散量 で拡散処理を行う拡散回路とを備え、前記パス切り換え回路と前記拡散量を制御し て偽輪郭を低減することを特徴とする画像表示装置が提供される。
[0019] 本発明の第 4の形態によれば、 1フィールドを重み付けされた複数のサブフィールド に分割し、該複数のサブフィールドを組み合わせて表示パネルに多階調表示を行う 画像表示装置の駆動方法であって、入力画像信号力 現フィールドと該現フィール ドより以前のフィールドとから動き量を検出する動き量検出段階と、前記入力画像信 号の階調と前記検出された動き量に基づいて、偽輪郭ノイズを周辺に拡散するため の拡散量を演算する拡散量演算段階と、前記演算された拡散量により拡散処理を行 う拡散段階とを備えることを特徴とする画像表示装置の駆動方法が提供される。
[0020] 本発明の第 5の形態によれば、 1フィールドを重み付けされた複数のサブフィールド に分割し、該複数のサブフィールドを組み合わせて表示パネルに多階調表示を行 ヽ 、入力画像信号カゝら所定の階調数の信号を生成するメインパスと、該メインパスより少 な 、階調数の信号を生成するサブパスと、前記メインパスの生成信号と前記サブパ スの生成信号のいずれか一方を切り換えて出力するパススイッチング段階とを備える 画像表示装置の駆動方法であって、前記入力画像信号から現フィールドと該現フィ 一ルドより以前のフィールド間で動 、て 、る領域を検出し、動 、て 、る量である動き 量を出力する動き量検出段階と、前記メインパスで動画偽輪郭の発生する場合の偽 輪郭の強さのレベル量を検出するレベル検出段階と、前記検出した動き量と前記検 出したレベル量に基づ!/ヽて所定の設定値と比較し、動画領域で且つ偽輪郭発生強 度が強!ヽ階調を判定するサブパス判定段階と、該サブパス判定段階の判定結果に より前記パススイッチング段階を前記メインパスの出力から前記サブパスの出力に切 り換えるサブパススイッチング段階と、偽輪郭ノイズを周辺に拡散する拡散量を演算 するための前記入力画像信号の階調に依存した拡散係数を生成する拡散係数生成 段階と、前記動き量と前記拡散係数に基づ!、て拡散量を演算する拡散量演算段階 と、前記拡散量により拡散処理を行う拡散段階とを備え、前記サブパススィッチと前 記拡散量を制御して偽輪郭を低減することを特徴とする画像表示装置の駆動方法が 提供される。
[0021] 本発明の第 6の形態によれば、 1フィールドを重み付けされた複数のサブフィールド に分割し、該複数のサブフィールドを組み合わせて表示パネルに多階調表示を行 ヽ 、入力画像信号カゝら所定の階調数の信号を生成するメインパスと、該メインパスより少 な ヽ階調数の信号を生成するサブパスと、前記入力画像信号に対して拡散処理を 施した信号を生成する拡散処理パスと、前記メインパスの生成信号、前記サブパスの 生成信号または前記拡散処理パスの生成信号のいずれか 1つを切り換えて出力す るパススイッチング段階とを備える画像表示装置の駆動方法であって、前記入力画 像信号力 現フィールドと該現フィールドより以前のフィールド間で動 、て 、る領域を 検出し、動いている量である動き量を出力する動き検出段階と、前記メインパスで動 画偽輪郭の発生する場合の偽輪郭の強さのレベル量を検出するレベル検出段階と 、前記検出した動き量と前記検出したレベル量に基づいて所定の設定値と比較し、 動画領域で且つ偽輪郭発生強度が強い階調を判定するパス切り換え判定段階と、 該サブパス判定段階の判定結果により前記パススイッチング段階を前記メインパスの 出力、前記サブノ スの出力または前記拡散処理パスのいずれか 1つに切り換えるパ ス切り換え段階と、偽輪郭ノイズを周辺に拡散する拡散量を演算するための前記入 力画像信号の階調に依存した拡散係数を生成する拡散係数生成段階と、前記動き 量と前記拡散係数に基づ!/、て拡散量を演算する拡散量演算段階と、該拡散量演算 段階により演算された拡散量で拡散処理を行う拡散段階とを備え、前記パス切り換え 段階と前記拡散量を制御して偽輪郭を低減することを特徴とする画像表示装置の駆 動方法が提供される。
発明の効果
[0022] 本発明によれば、新たなノイズの発生や回路規模の増大を伴うことなぐ偽輪郭を 低減して動画表示の画質向上を可能とする画像表示装置およびその駆動方法を提 供することができる。
図面の簡単な説明
[0023] [図 1]本発明が適用される画像表示装置の一例を概略的に示すブロック図である。
[図 2]本発明に係る画像表示装置の第 1実施例としての多階調化信号処理回路の一 例を示すブロック図である。
[図 3]図 2に示す多階調化信号処理回路におけるパス (メインパス)の一例を示すプロ ック図である。
圆 4]図 2に示す多階調化信号処理回路における動き量検出回路の一例を示すプロ ック図である。
圆 5]図 2に示す多階調化信号処理回路における SF符号ィ匕回路に記憶されている S F変換データの一例を示す図である。
圆 6]本発明に係る画像表示装置における駆動制御回路の駆動シーケンスの一例を 示す図である。
圆 7]本発明に係る画像表示装置の第 2実施例としての多階調化信号処理回路にお けるパス(メインパス)の他の例を示すブロック図である。
圆 8]図 7に示す多階調化信号処理回路のノ スにおける動き適応ディザ回路の一例 を示すブロック図である。
[図 9A]図 8に示す動き適応ディザ回路におけるディザ量演算回路で行われる 1フィー ルド内でのディザ演算を説明するための図である。
[図 9B]図 8に示す動き適応ディザ回路におけるディザ量演算回路で行われる 1フィー ルド内でのディザ演算を説明するための図である。
[図 10A]本発明に係る画像表示装置の駆動方法における階調とディザ係数との関係 を説明するための図である。
圆 10B]本発明に係る画像表示装置の駆動方法における階調とディザ係数との関係 を説明するための図である。
圆 10C]本発明に係る画像表示装置の駆動方法における階調とディザ係数との関係 を説明するための図である。
圆 11]図 7に示す多階調化信号処理回路のパスにおける動き適応ディザ回路の他の 例を示すブロック図である。
[図 12A]本発明に係る画像表示装置における入力画像信号の動き量と演算動き量と の関係を示す図である。
[図 12B]本発明に係る画像表示装置における入力画像信号の動き量と演算動き量と の関係を示す図である。
[図 12C]本発明に係る画像表示装置における入力画像信号の動き量と演算動き量と の関係を示す図である。
[図 12D]本発明に係る画像表示装置における入力画像信号の動き量と演算動き量と の関係を示す図である。
圆 13]本発明に係る画像表示装置の第 3実施例としての多階調化信号処理回路の 一例を示すブロック図である。
圆 14]図 13に示す多階調化信号処理回路におけるサブパスの一例を示すブロック 図である。
圆 15]図 13に示す多階調化信号処理回路におけるパススィッチ回路の一例を示す ブロック図である。
圆 16]図 3に示す本発明に係る画像表示装置の第 1実施例としての多階調化信号処 理回路におけるパス(メインパス)の処理の一例を示すフローチャートである。
圆 17]図 7に示す本発明に係る画像表示装置の第 2実施例としての多階調化信号処 理回路におけるパス(メインパス)の処理の一例を示すフローチャートである。
圆 18]図 13に示す本発明に係る画像表示装置の第 3実施例としての多階調化信号 処理回路における処理の一例を示すフローチャートである。
[図 19]本発明に係る画像表示装置の第 4実施例としての多階調化信号処理回路に おけるパス(メインパス)のさらに他の例を示すブロック図である。
[図 20]本発明に係る画像表示装置の第 5実施例としての多階調化信号処理回路の 一例を示すブロック図である。
[図 21]図 20に示す多階調化信号処理回路におけるメインパスの一例を示すブロック 図である。
圆 22]図 20に示す多階調化信号処理回路におけるパススィッチ回路の一例を示す ブロック図である。
圆 23]図 20に示す多階調化信号処理回路における拡散パスの一例を示すブロック 図である。
圆 24]図 20に示す本発明に係る画像表示装置の第 5実施例としての多階調化信号 処理回路における処理の一例を示すフローチャートである。
圆 25]図 20に示す多階調化信号処理回路における拡散パスの変形例を示すブロッ ク図である。
符号の説明
1 映像信号入力端子
2 同期信号入力端子
3 多階調化信号処理回路
4 フィーノレドメモリ
5 駆動制御回路
6 タイミング生成回路
7 表示パネノレ
10 サブパス (メインパス)
20, 21 パス(メインパス)
22 拡散パス
30, 31 パススィッチ回路
40 SF符号化回路
50 動き量検出回路
51 ディザ係数生成回路
52, 58 ディザ量演算回路
53, 202 ディザ回路
54— 1〜54— n ディザ階調設定回路
55— 1〜55— n ディザ係数設定回路
56— 1〜56— n ディザ階調比較回路 57 ディザ係数選択回路
100 歪補正回路
101 ゲイン制御回路
102 誤差拡散回路
103 データ整合回路
200 ゲイン制御回路
201 誤差拡散回路 203 ディザ切り換え回路
204 ディザ切り換え判定回路
205 動き適応ディザ回路
300 レベル検出回路
301 サブパス判定回路
302 サブパススィッチ
500 RGBマトリクス回路
501 エッジ検出回路
502 動き領域検出回路
503 動き量判定回路
531 ディザ量加算回路
532 ディザ量減算回路
533 水平カウンタ
534 垂直カウンタ
535 加減算選択回路
発明を実施するための最良の形態
[0025] 以下、本発明に係る画像表示装置およびその駆動方法の各実施例を、添付図面 を参照して詳述する。
[0026] 図 1は本発明が適用される画像表示装置の一例を概略的に示すブロック図である 。図 1において、参照符号 1はディジタルの映像 (画像)信号入力端子、 2は水平同期 信号,垂直同期信号,表示期間を示す表示期間信号およびクロック信号等の同期信 号入力端子、 3は多階調化信号処理回路、 4はフィールドメモリ、 5は駆動制御回路、 6はタイミング生成回路、そして、 7は表示パネルを示している。
[0027] フィールドメモリ 4は、 2フィールド分の画像データを記憶することができ、 1フィール ド分のデータを記憶した後、次のフィールド期間でその記憶した 1フィールド分の同じ サブフィールド (SF)毎に順次データを読み出すようになつている。タイミング生成回 路 6は、同期信号等の各種タイミング信号を生成する回路であり、多階調化信号処理 回路 3に対して端子 6Tを介してクロック信号 CLK,水平同期信号 Hsyncおよび垂直 同期信号 Vsync等を供給するようになっている。なお、表示パネル 7は、例えば、プ ラズマディスプレイパネル (PDP)等の表示パネルであり、例えば、各種ドライバ(例え ば、三電極交流駆動型 PDPにおける Xドライノく、 Yドライバおよびアドレスドライノく)等 を含んでいる。
実施例
[0028] 図 2は本発明に係る画像表示装置の第 1実施例としての多階調化信号処理回路 3 の一例を示すブロック図である。
[0029] 多階調化信号処理回路 3は、映像信号入力端子 1から供給された 3原色の映像信 号 (赤色: Ri,緑色: Gi,青色: Bi)、並びに、タイミング生成回路 6から端子 6Tを介し て供給されるクロック信号 CLK,水平同期信号 Hsyncおよび垂直同期信号 Vsync 等を受け取り、原色毎に多階調化処理してそれぞれサブフィールドの点灯 Z非点灯 のデータに変換された信号(赤色: Ro,緑色: Go,青色: Bo)をフィールドメモリ 4へ 出力する。
[0030] すなわち、図 2に示されるように、本第 1実施例の多階調化信号処理回路 3は、原 色毎 (例えば、赤色: R)に設けられたパス (メインパス) 20および SF符号化回路 40、 並びに、動き量検出回路 50を備える。動き量検出回路 50は、 3原色の入力映像信 号 (入力画像信号) Ri, Gi, Biおよびタイミング信号(同期信号) CLK, Hsync, Vsy ncを受け取って、入力映像信号力も画素単位で現フィールドと該現フィールドより以 前のフィールドとから動き量 MVを検出する。パス 20は、対応する原色の入力映像信 号 (例えば、 Ri)、タイミング信号、および、動き量検出回路 50で検出された動き量 M Vを受け取って信号 MPを SF符号ィ匕回路 40へ出力する。 SF符号ィ匕手段 40は、パス 20からの信号 MPを受け取って、対応する原色のサブフィールド毎の点灯 Z非点灯 のデータに変換された信号 (例えば、 Ro)を出力する。このようなパス 20および SF符 号化回路 40は各原色に対してそれぞれ設けられ、各原色に対する SF符号化された 信号 Ro, Go, Boが得られる。
[0031] 図 3は図 2に示す多階調化信号処理回路におけるパス (メインパス) 20の一例を示 すブロック図である。ここで、以下の記載は、拡散回路がディザの場合を例として説明 する。なお、ノ ス 20の構成は、 3原色の各信号に関して同様の構成とされており、以 下では、主として赤色 (R)を例として説明する。
[0032] 図 3に示されるように、パス 20は、ゲイン制御回路 200、誤差拡散回路 201、ディザ 回路 202、ディザ切り換え回路 203およびディザ切り換え判定回路 204を備えて 、る 。ゲイン制御回路 200は、各原色の入力映像信号 (Ri)を受け取ってゲイン制御を行 い、そのゲイン制御された映像信号を誤差拡散回路 201へ供給する。誤差拡散回路 201は、ゲイン制御された映像信号に対して誤差拡散処理を行い、誤差拡散処理が 行われた信号 MPLをディザ回路 202およびディザ切り換え回路 203へ供給する。
[0033] ディザ回路 202は、従来から知られて!/、るディザ処理を行うもので、このディザ回路 202によりディザ量 DLのディザ処理が行われた信号 MPDもディザ切り換え回路 20 3へ供給される。ディザ切り換え判定回路 204は、動き量検出回路 50で検出された 動き量 MVに基づいて、その動き量 MVが所定の閾値 TD以上の場合は『1』を出力 し、また、動き量 MVが所定の閾値 TDよりも小さい場合には『0』を出力する。ディザ 切り換え回路 203は、ディザ切り換え判定回路 204の出力に従って、ディザ切り換え 判定回路 204の出力が『0』の時は誤差拡散回路 201の出力信号 MPLを選択し、ま た、ディザ切り換え判定回路 204の出力力『l』の時はディザ回路 202の出力 MPDを 選択して、ノ ス 20の出力信号 MPとして SF符号ィ匕回路 40へ供給する。
[0034] 図 4は図 2に示す多階調化信号処理回路における動き量検出回路 50の一例を示 すブロック図である。
[0035] 図 4に示されるように、動き量検出回路 50は、 RGBマトリクス回路 500、エッジ検出 回路 501、動き領域検出回路 502および動き量判定回路 503を備えている。 RGBマ トリタス回路 500は、映像信号入力端子 1から供給された 3原色の映像信号 Ri, Gi, B も輝度信号 Yを生成してエッジ検出回路 501および動き領域検出回路 502へ供 給する。動き量判定回路 503は、エッジ検出回路 501の出力および動き領域検出回 路 502の出力に基づ 、て動き量 MVを出力する。
[0036] ここで、図 4では、動き量 MVを輝度信号 Υから判定出力する場合を示しており、 R GBマトリクス回路 500を使用するようになっている力 各原色 R, G, Βの信号毎に動 き量を判定出力するように構成してもよい。この場合には、エッジ検出回路 501、動き 領域検出回路 502および動き量判定回路 503が原色信号毎にそれぞれ必要になる [0037] 図 5は図 2に示す多階調化信号処理回路における SF符号化回路に記憶されてい る SF変換データの一例を示す図であり、 SF符号ィ匕回路 40に記憶されている符号ィ匕 変換データテーブルの内容、並びに、レベル量および拡散係数であるディザ係数の 一例を示すものである。なお、図 5における符号〇は点灯を示す。具体的に、図 5に おいて、例えば、階調 17はサブフィールド SF1, SF3および SF5が点灯し、また、階 調 87はサブフィールド SF1〜SF8が点灯する様子が示されている。さらに、図 5にお いて、階調 17ではレベル量 (LV)が 3に設定され、また、階調 87ではディザ係数 (D K)が 2に設定される様子が示されていて、ディザ量 DLはディザ係数 DKと所定値 A との演算(DL = DKXA)でディザ処理が行われる。そして、図 5に示す符号化変換 データテーブルによって、パス 20からの信号 MPは、 147の階調に変換されることに なる。
[0038] ここで、図 5において、 SFは駆動制御回路 5で駆動される順番を示し、 SF1は最初 に駆動されるサブフィールドであり、 SF2は 2番目に駆動されるサブフィールドであり 、 SF9は 9番目に駆動されるサブフィールドであり、そして、 SF10は最後に駆動され るサブフィールドである。なお、各サブフィールド SF1〜SF10には重み付けがなされ ており、 SF1:SF2:SF3:SF4:SF5:SF6:SF7:SF8:SF9:SF10= 1:2:4:8:1 2:16:20:24:28: 32となるような重み付けがなされて!/、る。この各サブフィールド S F1〜SF10の重み付けは、サブフィールド間の発光量の比に対応し、例えば、パス 2 0のゲイン制御回路 200へ供給される入力映像信号 (Ri)の階調数が 9ビットで最大 階調 511であった場合には、ゲイン制御回路 200において、 147Z511倍にするゲ イン制御が行われる。
[0039] 図 6は本発明に係る画像表示装置における駆動制御回路 5の駆動シーケンスの一 例を示す図である。
[0040] 図 6に示されるように、駆動シーケンスは、例えば、 1フィールドを 10個のサブフィー ルド SF 1〜SF 10に分割し、表示セル毎に発光するサブフィールドを組み合わせて 表示を行うようになっている。各サブフィールド SF1〜SF10は、それぞれ全表示セ ルを初期化するリセット期間 TSと、全表示セルを表示する画像に対応した状態に設 定するアドレス期間 TAと、設定された状態に応じて各表示セルを発光させるサスティ ン期間(維持放電期間) TSとで構成される。ここで、各サブフィールド SF1〜SF10の サスティン期間(サスティンパルス数)は、サブフィールド間の発光量 (重み付け)の比 に相当するもので、前述したように、例えば、 SF1: SF2: SF3: SF4: SF5: SF6: SF 7:3 8:3 9:3 10=1:2:4:8:12:16:20:24:28:32となるょぅな重み付けの比 に応じて決められるようになつている。なお、各サブフィールド SF1〜SF10における リセット期間 TR、アドレス期間 TAおよびサスティン期間 TSは、タイミング生成回路 6 により生成される。
[0041] 図 7は本発明に係る画像表示装置の第 2実施例としての多階調化信号処理回路に おけるパス(メインパス) 20の他の例を示すブロック図である。
[0042] 図 7と図 3との比較力も明らかなように、本第 2実施例の多階調化信号処理回路 3に おけるパス 20は、図 3を参照して前述した第 1実施例におけるディザ回路 202、ディ ザ切り換え回路 203およびディザ切り換え判定回路 204の代わりに動き適応ディザ 回路 205を設けるようになつている。なお、ゲイン制御回路 200および誤差拡散回路 201は、前述したものと同様であり、その説明は省略する。
[0043] 動き適応ディザ回路 205は、動き量検出回路 50の出力である動き量 MVに応じて ディザ量を可変させて信号 MPをフィールドメモリ 40へ出力する。
[0044] 図 8は図 7に示す多階調化信号処理回路のパス 20における動き適応ディザ回路 2 05の一例を示すブロック図である。
[0045] 図 8に示されるように、動き適応ディザ回路 205は、ディザ係数生成回路 51、ディザ 量演算回路 52およびディザ回路 53を備えている。ディザ回路 53は、ディザ量加算 回路 531、ディザ量減算回路 532、水平カウンタ 533、垂直カウンタ 534および加減 算選択回路 535で構成されている。誤差拡散回路 201の出力信号 (映像信号) MP Lは、ディザ係数生成回路 51、ディザ量加算回路 531、ディザ量減算回路 532およ び加減算選択回路 535へ供給されている。
[0046] ディザ係数生成回路 51は、拡散するためのディザを適応したい強さの割合で、い わゆる変調量で或るディザ係数 DKをディザ量演算回路 52へ出力する。ここで、図 5 に示されるように、階調に対して所定の変調量が出力されるように構成してもよい。デ ィザ量演算回路 52は、動き量検出回路 50の出力である動き量 MVとディザ係数 DK に基づ!/、て拡散量であるディザ量 DLを演算し、ディザ量加算回路 531およびディザ 量減算回路 532へ出力する。なお、ディザ量演算回路 52におけるディザ量 DLの演 算は、 DL = MV X DKにより行い、その演算されたディザ量 DLをディザ回路 53へ出 力する。
[0047] ディザ量加算回路 531は、信号 MPLに対してディザ量演算回路 52で演算された ディザ量 DLを加算し、また、ディザ量減算回路 532は、信号 MPLに対してディザ量 演算回路 52で演算されたディザ量 DLを減算する。加減算選択回路 535は、水平力 ゥンタ 533および垂直カウンタ 534の出力に従って、ディザ量加算回路 531の出力 信号、ディザ量減算回路の出力信号、或いは、誤差拡散回路 201の出力信号 MPL の!ヽずれか一方を選択し、 SF符号化回路 40へ信号 MPを出力する。
[0048] 図 9Aおよび図 9Bは、図 3に示すディザ回路 202や図 8に示す動き適応ディザ回路 205におけるディザ量演算回路 52で行われる 1フィールド内でのディザ演算を説明 するための図であり、ディザ演算された結果を示すものである。ここで、図 9Aは、水 平方向に + DLと— DLを繰り返し、且つ、垂直方向でも + DLと— DLを繰り返してい る。また、図 9Bは、 2 X 2の 4画素を 1ブロックとし、 1ブロック内に + DLと一 DLが 1つ ずつ含まれる所定の規則により + DLと— DLを切り換えるようになつている。なお、 1 ブロックの大きさとしては 2 X 2の 4画素に限定されず、もっと大きくてもよぐディザを 加減算する + DLと DLの総和が零になればょ 、。
[0049] 図 10A〜図 10Cは本発明に係る画像表示装置の駆動方法における階調とディザ 係数との関係を説明するための図である。ここで、図 10Aは階調に対してディザ係数 DKが固定の場合を示し、図 10Bは階調に対してディザ係数 DKが比例関係の場合 を示し、そして、図 10Cは階調に対してディザ係数 DKが対数関係の場合を示してい る。
[0050] 図 10Aに示されるように、階調に対してディザ係数 DKを固定とした場合は、回路規 模を小さく抑えることが可能である。
[0051] ところで、人の目は輝度が大きいほど輝度差を認識し難くなるため、例えば、階調 3 と階調 4の輝度差は認識できても、階調 140と階調 141の輝度差は認識できなくなる 。図 IOCに示されるように、階調に対してディザ係数 DKを対数関係とするのは、ゥェ 一バー'フェヒナーの法則より人の目の輝度に対する感覚は輝度の対数に比例する ことを考慮したものであり、人の目の輝度に対する感覚には最適なものである。なお、 この場合、ディザ係数姿勢回路 51は、例えば、 ROM等により構成することになる。ま た、図 10Bに示されるように、階調に対してディザ係数 DKを比例関係とするのは、上 述した図 1 OAと図 10Cの中間の場合に相当する。
[0052] 図 11は図 7に示す多階調化信号処理回路 3のパス 20における動き適応ディザ回 路 205の他の例を示すブロック図である。なお、図 11に示す動き適応ディザ回路 20 5は、階調適応ディザ回路でもある。
[0053] 図 11に示されるように、動き適応ディザ回路 205は、ディザ回路 53、 n個のディザ 階調設定回路 54— 1〜54— n、 n個のディザ係数設定回路 55— 1〜55— n、 n個の ディザ階調比較回路 56— 1〜56— n、ディザ係数選択回路 57およびディザ量演算 回路 58を備えている。ここで、ディザ回路 53の構成は、図 8を参照して説明したもの と同様であり、その説明は省略する。
[0054] ディザ階調設定回路 54— 1はディザを適応したい 1番目の階調を設定するもので あり、ディザ階調設定回路 54— 2はディザを適応したい 2番目の階調を設定するもの であり、そして、ディザ階調設定回路 54— nはディザを適応したい n番目の階調を設 定するものである。また、ディザ係数設定回路 55— 1は 1番目の階調におけるディザ 係数を設定するものであり、ディザ係数設定回路 55— 2は 2番目の階調におけるディ ザ係数を設定するものであり、そして、ディザ係数設定回路 54— nは n番目の階調に おけるディザ係数を設定するものである。
[0055] 具体的に、前述した図 5に示す SF変換データの場合、ディザ階調設定回路 54— 1 は階調 3を設定すると共にディザ係数設定回路 55— 1はディザ係数『1』を設定し、デ ィザ階調設定回路 54— 6は階調 43を設定すると共にディザ係数設定回路 55— 6は ディザ係数『2』を設定し、そして、ディザ階調設定回路 54— 15は階調 111を設定す ると共にディザ係数設定回路 55— 15はディザ係数『3』を設定する。なお、図 5に示 す SF変換データの場合、ディザを適応する階調 (ディザ係数として、『1』,『2』或い は『3』が記載された階調)の数は 19個 (nが 19)なので、 19個のディザ階調設定回路 54— 1〜54— 19、ディザ係数設定回路 55— 1〜55— 19およびディザ階調比較回 路 56— 1〜56— 19力 S必要になる。
[0056] ここで、ディザを適応する階調は、偽輪郭が認識されやす 、階調である。また、ディ ザ係数は、ディザを適応した!/ヽ階調に対してディザを適応する強さの割合を表すもの であり、このディザ係数は『1』,『2』或いは『3』に限定されるものではない。さらに、デ ィザを適応する階調は、適用する SF変換データ (駆動シーケンス)により様々に変化 し得るちのである。
[0057] ディザ階調比較回路 56— l〜56—nは、対応するディザ階調設定回路 54— 1〜5 4— nと誤差拡散回路 201の出力信号 (動き適応ディザ回路 205の入力信号) MPL とを比較し、両者が一致した場合に『1』を出力し、不一致の場合には『0』を出力する 。ディザ係数選択回路 57は、『1』を出力するディザ階調比較回路 56— 1〜56— nに 対応した信号をディザ量演算回路 58へ出力し、ディザ量演算回路 58は、その『1』を 出力するディザ階調比較回路 56— l〜56—nに対応するディザ係数設定回路 55— l〜55—nに設定されたディザ係数を使用してディザ量 DLの演算を行う。ここで、デ ィザ量演算回路 58におけるディザ量 DLの演算は、例えば、図 12A〜図 12Dに示す いずれかの方法を適用して行うことができる。なお、ディザ量演算回路 58におけるデ ィザ量 DLの演算は、 DL = MVC X DKにより行い、その演算されたディザ量 DLをデ ィザ回路 53へ出力する。すなわち、ディザ量 DLを演算する場合、動き量 MVを実用 に即した演算動き量 MVCにー且変換し、この演算動き量 MVCを使用してディザ量 DLを求める。
[0058] 図 12A〜図 12Dは本発明に係る画像表示装置における入力画像信号の動き量 M Vと演算動き量 MVCとの関係を示す図である。
[0059] 図 12Aは、動き量 MVに対する演算動き量 MVCの第 1の演算方法を示す図であり 、動き量 MVが所定の閾値 TDよりも小さい場合は演算動き量 MVCを零とし、動き量 MVが所定の閾値 TD以上の場合には演算動き量 MVCを所定の値 DFLに固定す るようになっている。図 12Bは、動き量 MVに対する演算動き量 MVCの第 2の演算方 法を示す図であり、動き量 MVおよび演算動き量 MVCを比例関係とするようになつ ている。 [0060] 図 12Cは、動き量 MVに対する演算動き量 MVCの第 3の演算方法を示す図であり 、動き量 MVが所定の閾値 TDよりも小さい場合は演算動き量 MVCを零とし、動き量 MVが所定の閾値 TD以上の場合には動き量 MVおよび演算動き量 MVCを比例関 係とするようになつている。図 12Dは、動き量 MVに対する演算動き量 MVCの第 4の 演算方法を示す図であり、動き量 MVが所定の閾値 TDよりも小さい場合は演算動き 量 MVCを零とし、動き量 MVが所定の閾値 TD以上の場合には演算動き量 MVCを MV—TDと比例関係とするようになつている。
[0061] 図 13は発明に係る画像表示装置の第 3実施例としての多階調化信号処理回路 3 の一例を示すブロック図である。図 13において、参照符号 10はサブパス、 20はメイ ンパス、 30はパススィッチ回路、 40は SF符号ィ匕回路、そして、 50は動き量検出回路 を示している。すなわち、図 13に示す第 3実施例は、本発明をパス切り換え法の画像 表示装置に適用した場合を示すものである。
[0062] 図 13と前述した図 2との比較力も明らかなように、本第 3実施例の多階調化信号処 理回路 3は、原色毎にサブノ ス 10およびメインノ ス 20を備え、サブパス 10およびメイ ンノ ス 20のいずれか一方の出力をパススィッチ回路 30で選択して SF符号ィ匕回路 4 0へ供給するようになっている。ここで、サブパス 10は、入力画像信号を所定の階調 レベル (例えば、入力画像信号の階調レベルよりも少な ヽ階調レベル)で表示するた めのものであり、また、メインパス 20は、入力画像信号を実表示階調レベルで表示可 能である。そして、パススィッチ回路 30は、動き量検出回路 50で検出された動き量 M Vに従ってサブパス 10またはメインパス 20の一方の出力信号を選択し、 SF符号ィ匕 回路 40へ出力する。
[0063] 図 14は図 13に示す多階調化信号処理回路におけるサブパス 10の一例を示すブ ロック図である。ここで、サブパス回路 10は、偽輪郭が発生しない点灯パターンを使 つて映像表現をするようになっており、例えば、前述した図 5の SF変換データの場合 、階調 0、 1、 3、 Ί、 15、 27, 43, 63, 87, 111、 147の 11階調を使用し、これらの階 調の間は誤差拡散で表現する。
[0064] 図 14に示されるように、サブパス 10は、歪補正回路 100、ゲイン制御回路 101、誤 差拡散回路 102およびデータ整合回路 103を備えている。歪補正回路 100は、サブ ノ ス 10の表現可能な階調数が輝度量とは均等には増カロしないため、誤差拡散後の 表示特性と逆関数の補正を行って、全体として線形の表示特性を得るために補正を 行う回路である。ゲイン制御回路 101は、入力画像信号に対して所定のゲイン係数 を乗算して後段の誤差拡散回路 102において、入力画像信号の全域にわたって誤 差拡散処理を行うことができるようにしている。なお、ゲイン制御回路 101は、一般的 な乗算器、或いは、 ROMや RAM等で構成することができる。
[0065] 誤差拡散回路 102は、ゲイン制御回路 101を介して得られる画像信号に対して誤 差拡散を行うことにより、疑似的に中間調を生成して階調数を増加する。データ整合 回路 103は、サブパス 10における輝度レベルを、メインパス 20における輝度レベル に整合させるために設けられて 、る。
[0066] 図 15は図 13に示す多階調化信号処理回路におけるノ ススィッチ回路 30の一例を 示すブロック図である。
[0067] 図 15に示されるように、パススィッチ回路 30は、レベル検出回路 300、サブパス判 定回路 301およびサブパススィッチ 302を備えている。レベル検出回路 300は、偽輪 郭が出やすい階調を画素毎に検出し、偽輪郭が発生したときの発生強度 (レベル量 ) LVを出力する。サブパス判定回路 301は、レベル検出回路 300の出力 LVと動き 量検出回路 50の出力(動き量) MVに基づいてパス判定信号 PSWを出力する。サブ パススィッチ 302は、サブパス判定回路 301から入力されたサブパス判定信号 PSW に応じて、例えば、サブパス判定信号 PSW力『1』の場合にはサブパス 10の出力 SP を選択し、また、サブパス判定信号 PSW力『0』の場合にはメインノ ス 20の出力 MP を選択して、 SF符号化回路 40へ出力する。
[0068] ここで、パス判定信号 PSWは、動き量 MVが所定の値 TMP以上で、且つ、レベル 量 LVが所定の値 TLP以上の場合に『1』を出力し、そして、動き量 MVが値 TMPより も小さいか、或いは、レベル量 LVが値 TLPよりも小さい場合に『0』を出力する。なお 、値 TMPや値 TLPは、表示パネル 7の画面サイズや画素数等によって異なり、経験 則により決めた値を使用する。具体的に、例えば、前述した図 5の SF変換データに おいて、レベル量 LVは、階調毎に『0』〜『5』の値が決められている。レベル量 LVの 『0』〜『5』の値は、偽輪郭が認識される時の強さを示す数値で、『5』は認識される偽 輪郭が最も強い場合の階調に設定される。
[0069] 次に、偽輪郭の発生強度について説明する。動画像において、その映像信号の隣 接画素間で所定の階調をまたがった場合、人 (画像表示装置を見ている者)は偽輪 郭を認識する。ここで、所定の階調とは上下の階調間で桁上がりがあるところで、例 えば、図 5の SF変換データにでは、階調 4, 8, 16, 28, 44, 64, 88および 112であ る。これらの階調は第 1の桁上げ階調で、偽輪郭は強く認識されやすい。また、階調 32, 48, 68, 92および 120は第 2の桁上げ階調で、偽輪郭は認識されやすいが、 偽輪郭は第 1の階調ほど強くはない。
[0070] 上述したように、図 5において、レベル量 LVは、偽輪郭が発生する場合の強さとし て 5段階で示されており、階調 44, 64, 88および 112のレベル量 LVは『5』とされ、さ らに、その 1つ上の階調 45, 65, 89および 113のレベル量 LVも『5』とされている。こ れは、実際の映像信号において隣接画素間で桁上がりがある場合、桁が上がった階 調が上記の階調 44, 64、 88或いは 112であるとは限らないため、その 1つ上の階調 のレベル量 LVも『5』に設定するようになって 、る。
[0071] レベル量 LVの『1』以上は、上下の階調で点灯パターンにおいてサブフィールドの 桁上がりのある階調であり、レベル量 LVの『4』、『3』、『2』、『1』も連続階調で同じレ ベル量になっている。レベル量 LVを検出せずに、隣接画素間で桁上がりが起きてい る場所を検出してもよい。
[0072] 図 16は図 3に示す本発明に係る画像表示装置の第 1実施例としての多階調化信 号処理回路におけるパス(メインパス) 20の処理の一例を示すフローチャートであり、 ディザ切り換え回路 203およびディザ切り換え判定回路 204の処理を説明するため のものである。
[0073] まず、ステップ 110で処理がスタートとすると、ステップ 111に進んで初期化を行!、、 ディザ切り換え判定回路 204は、『0』を出力する。さらに、ステップ 112に進んで、デ ィザ切り換え回路 203は、誤差拡散回路 201の出力信号 MPLを選択する。次に、ス テツプ 113に進んで、動き量 MVを検出し、さらに、ステップ 114で、ディザ量 DLの加 減算を行う。なお、ディザ係数 DKとしては、前述した図 10A〜図 10Cの何れを適用 してもよいし、図 5のディザ係数でもよい。 [0074] さらに、ステップ 115に進んで、動き量 MVと所定の閾値 (判定閾値) TDとの比較を 行う。ステップ 115において、動き量 MVが判定閾値 TDよりも小さいと判別されると、 ステップ 116に進んで、ディザ切り換え判定回路 203は『0』を出力し、さらに、ステツ プ 117に進んで、ディザ切り換え回路 203は誤差拡散回路 201の出力信号 MPLを 選択してステップ 113に戻る。一方、ステップ 115において、動き量 MVが判定閾値 TD以上であると判別されると、ステップ 118に進んで、ディザ切り換え判定回路 203 は『1』を出力し、さらに、ステップ 119に進んで、ディザ切り換え回路 203はディザ回 路 202の出力信号 MPDを選択してステップ 113に戻る。ここで、以上の処理は、 1画 素毎または所定の領域毎に、或いは、各原色信号毎に行われる。なお、ディザ切り 換え回路 203で選択された誤差拡散回路 201の出力信号 MPLまたはディザ回路 2 02の出力信号 MPDは、パス (メインパス) 20の出力信号 MPとして SF符号ィ匕回路 4 0へ供給される。
[0075] 図 17は図 7に示す本発明に係る画像表示装置の第 2実施例としての多階調化信 号処理回路におけるパス (メインパス)の処理の一例を示すフローチャートであり、動 き適応ディザ回路 205の処理を説明するためのものである。ここで、動き量 MVと演 算動き量 MVCとの関係は図 12Cを適用する。なお、ディザ係数 DKとしては、前述し た図 10A〜図 10Cの何れを適用してもよいし、図 5のディザ係数でもよい。
[0076] まず、ステップ 120で処理がスタートとすると、ステップ 121に進んで初期化行い、 ディザ量 DL=0とし、ディザ量 0の加減算を行う。すなわち、ステップ 121では、ディ ザ量の加減算は行わないことになる。次に、ステップ 122に進んで、動き量 MVを検 出し、さらに、ステップ 123に進んで、動き量 MVと判定閾値 TDとの比較を行う。
[0077] ステップ 123において、動き量 MVが判定閾値 TDよりも小さいと判別されると、ステ ップ 124に進んで演算動き量 MVC = 0とし、ステップ 126に進む。一方、ステップ 12 3において、動き量 MVが判定閾値 TD以上であると判別されると、ステップ 125に進 んで演算動き量 MVC=m X MVを演算し、ステップ 126に進む。ここで、 mは動き量 MVと演算動き量 MVCの比例係数である。
[0078] そして、ステップ 126では、ディザ量 DL = DK X MVCを演算し、さらに、ディザ量 D Lの加減算を行う。なお、動き適応ディザ回路 205の出力信号 MPは、パス (メインパ ス) 20の出力信号 MPとして SF符号ィ匕回路 40へ供給される。
[0079] なお、図 17のフローチャートにおいて、動き量 MVと演算動き量 MVCとの関係が 図 12Dの場合、ステップ 125における演算動き量 MVCの演算は、 MVC=m X (M V-TD)により求めることになる。
[0080] 図 18は図 13に示す本発明に係る画像表示装置の第 3実施例としての多階調化信 号処理回路における処理の一例を示すフローチャートであり、メインパス 20の処理を 説明するためのものである。ここで、ディザ係数 DKとしては、前述した図 10A〜図 10 C或いは図 5のディザ係数の何れを適用してもよぐまた、動き量 MVと演算動き量 M VCとの関係は図 12A〜図 12Dの何れを適用してもよ!、。
[0081] まず、ステップ 130で処理がスタートとすると、ステップ 131に進んで初期化行い、 ディザ量演算回路 58 (図 11参照)によりディザ量 DL = 0にすると共に、サブパス判 定回路 301の出力信号 (パス判定信号) PSWを『0』にする。次に、ステップ 132に進 んで、ディザ量 DLの加減算を行い、サブパススィッチ 302は、メインパス 20の出力信 号 MPを選択する。
[0082] ステップ 133において、動き量検出回路 50が動き量 MVを検出し、また、ステップ 1 34において、レベル検出回路 300がレベル量 LVを検出し、ステップ 135に進んで、 レベル量 LVは零かどうかを判別する。
[0083] ステップ 135において、レベル量 LVが零であると判別される力 或いは、ステップ 1 35でレベル量 LVが零ではないと判別され、且つ、ステップ 136で pMV+qLVが SP seUりも小さいと判別されると、それぞれステップ 139進んで、動き量 MVと所定の閾 値 (判定閾値) TDとの比較を行う。一方、ステップ 135でレベル量 LVが零ではないと 判別され、且つ、ステップ 136で pMV+qLVが SPsel以上であると判別されると、ス テツプ 137に進む。ここで、ステップ 136の演算は、 pMV+LVでもよい。
[0084] ステップ 135におけるレベル量 LVが零かどうかの判定は、サブパス判定回路 301 において行われる。また、ステップ 136における pおよび qは、動き量 MVおよびレべ ル量 LVを演算する時のそれぞれのバランスを取るための係数であり、さらに、 SPsel は判定閾値ある。ここで、 pMV + qLVが大きいということは、動き量 MVが大きくて偽 輪郭が出やすい階調を示し、この場合、サブパススィッチ 302は、サブパス 10の出力 SPを選択する。
[0085] ステップ 137では、ディザ量 DLの演算を行うと共に、サブパス判定回路 301は『1』 のパス判定信号 PSWを出力し、さらに、ステップ 138に進んで、ディザ量 DLの加減 算を行うと共に、サブパススィッチ 302はサブパス 10の出力信号 SPを選択して、ステ ップ 133〖こ戻る。すなわち、ステップ 138では、サブパススィッチ 302でサブパスを選 択することになるため、結局のところディザ切り換え回路 203はどちらを選択しても影 響はないことになる。また、ステップ 135のレベル量 LVが零かどうかの判定は、動き 量 MV力 Sいくら大きくても偽輪郭が出ない階調の場合、サブパス 10に切り換えても意 味がな!、な 、ので (一般的に、階調数が少な 、サブパス 10に切り換えると粒状ノイズ が多くなり画質を劣化するので)、レベル量 LVが零の場合にはサブパス 10の出力信 号 SPを選択しな 、ようにするためのものである。
[0086] ステップ 139において、動き量 MVが判定閾値 TD以上であると判別されると、ステ ップ 13Aに進んで、ディザ量 DLの演算を行うと共に、サブパス判定回路 301は『0』 のパス判定信号 PSWを出力し、さらに、ステップ 13Bに進んで、ディザ量 DLの加減 算を行うと共に、サブパススィッチ 302はメインパス 20の出力信号 MPを選択して、ス テツプ 133に戻る。
[0087] 一方、ステップ 139において、動き量 MVが判定閾値 TDよりも小さいと判別されると 、ステップ 13Cに進んで、ディザ量 DL = 0にすると共に、サブパス判定回路 301は『 0』のパス判定信号 PSWを出力し、さらに、ステップ 13Dに進んで、ディザ量 DLの加 減算を行うと共に、サブパススィッチ 302はメインパス 20の出力信号 MPを選択して、 ステップ 133に戻る。
[0088] このように、画素単位でサブパス 10の出力信号 SP,メインパス 20でディザの加減 算を行った出力信号 MPDおよびメインパス 20でディザの加減算を行わない出力信 号 MPLの 3つの中の 1つを、動き量 MV,レベル量 LVおよびディザ係数 DKに基づ いて選択して切り換えることにより、偽輪郭が発生する場所に対して拡散および変調 させて周辺に散らすことで偽輪郭を低減させることが可能になる。動き量 MVに基づ いて拡散および変調させているので、人が認識する偽輪郭の発生の強さを、人が動 いている目標物を追いかける速さ、つまり動いている物の速さが大きいほど強く認識 されるように制御することができ、動 、て 、る速さ或いは動き量に応じてディザ量を強 弱することにより、過変調若しくは変調不足になることを回避することができる。
[0089] 図 19は本発明に係る画像表示装置の第 4実施例としての多階調化信号処理回路 におけるパス(メインパス) 20のさらに他の例を示すブロック図である。
[0090] 図 19と前述した図 3との比較力も明らかなように、誤差拡散回路 201とディザ回路 2 02,ディザ切り換え回路 203およびディザ切り換え判定回路 204との配置は、入れ 替えることができる。すなわち、本第 4実施例では、図 3においてゲイン制御回路 200 の直ぐ後に設けた誤差拡散回路 201を、ディザ切り換え回路 203の後に設けるように なっている。
[0091] 図 20は本発明に係る画像表示装置の第 5実施例としての多階調化信号処理回路 3の一例を示すブロック図である。図 20において、参照符号 10はサブパス、 21はメイ ンパス、 22は拡散パス、 31はパススィッチ回路、 40は SF符号ィ匕回路、そして、 50は 動き量検出回路を示している。
[0092] 図 20と前述した図 13との比較力も明らかなように、本第 5実施例の多階調化信号 処理回路 3は、原色毎にサブパス 10、メインパス 21および拡散パス 22を備え、サブ パス 10、メインパス 21または拡散パス 22のいずれか 1つの出力をパススィッチ回路 3 1で選択して SF符号ィ匕回路 40へ供給するようになっている。ここで、サブパス 10は、 入力画像信号を所定の階調レベル (例えば、入力画像信号の階調レベルよりも少な い階調レベル)で表示するためのものであり、また、メインパス 21は、入力画像信号を 実表示階調レベルで表示可能である。
[0093] サブパス 10は、図 13に示すサブノ ス 10と同様の構成とされ、信号 SPを出力する。
メインパス 21は、入力画像信号を受け取って信号 MPGを拡散パス 22へ出力すると 共に、信号 MPLをパススィッチ回路 31へ出力する。動き検出回路 50も、図 13に示 す動き検出回路 50と同様の構成とされ、動き量 MVを出力する。
[0094] 拡散パス 22は、メインパス 21の出力信号 MPGおよび動き検出回路 50の出力信号
(動き量) MVを受け取り、動き量 MVに応じた拡散処理を施した信号 MPDを出力す る。パススィッチ回路 31は、動き量検出回路 50で検出された動き量 MVに従ってサ ブパス 10の出力信号 SP、メインパス 21の出力信号 MPLまたは拡散パス 22の出力 信号 MPDいずれか 1つを選択して SF符号ィ匕回路 40へ信号 PSOとして出力する。 なお、 SF符号ィ匕回路 40も、図 13に示す SF符号ィ匕回路 40と同様の構成とされてい る。
[0095] 図 21は図 20に示す多階調化信号処理回路におけるメインパス 21の一例を示すブ ロック図である。
[0096] 図 21から明らかなように、メインパス 21は、ゲイン制御回路 200および誤差拡散回 路 201を備え、ゲイン制御回路 200の出力信号 MPGが拡散パス 22へ供給され、誤 差拡散回路 201の出力信号 MPLがパススィッチ回路 31へ供給されている。
[0097] 図 22は図 20に示す多階調化信号処理回路におけるノ ススィッチ回路 31の一例を 示すブロック図である。
[0098] 図 22に示されるように、パススィッチ回路 31は、レベル検出回路 300、パス切り換 え判定回路 303およびパス切り換え回路 304を備えている。レベル検出回路 300は 、図 13に示すレベル検出回路 300と同様の機能を有し、誤差拡散回路 201の出力 信号 MPLに基づいてレベル量 LVをパス切り換え判定回路 303へ出力する。パス切 り換え判定回路 303は、レベル検出回路 300のからのレベル量 LVおよび動き量検 出回路 50からの動き量 MVに基づいてパス切り換え回路 304でパスを切り換えるた めの制御信号 PSWを出力する。そして、ノ ス切り換え回路 304は、パス切り換え判 定回路 303の出力信号 PSWに従って、入力されたサブパス 10の出力信号 SP、メイ ンパス 21の出力信号 MPLまたは拡散パス 22の出力信号 MPDいずれか 1つを選択 して SF符号ィ匕回路 40へ信号 PSOとして出力する。
[0099] すなわち、パス切り換え判定回路 303の出力信号 PSWの値は『0』、『1』および『2』 であり、パス切り換え回路 304は、 PSWの値が『0』のときはメインパス 21の出力信号 MPLを選択し、 PSWの値力『l』のときは拡散パス 22の出力信号 MPDを選択し、そ して、 PSWの値が『2』のときはサブパス 10の出力信号 SPを選択する。
[0100] 図 23は図 20に示す多階調化信号処理回路における拡散ノ ス 22の一例を示すブ ロック図である。
[0101] 図 23に示されるように、拡散パス 22は、誤差拡散回路 201および動き適応ディザ 回路 205を備えている。ここで、誤差拡散回路 201は、上述したメインパス 21におけ る誤差拡散回路 201と同様の機能を有するものである。動き適応ディザ回路 205は、 動き検出回路 50の出力である動き量 MVに基づいてディザ量 DLを算出し、このディ ザ量 DLを誤差拡散回路 201の出力に加減算処理して信号 MPDを出力する。なお 、動き適応ディザ回路 205は、前述したディザ回路 202 (例えば、図 3または図 19参 照)として構成することちできる。
[0102] 図 24は図 20に示す本発明に係る画像表示装置の第 5実施例としての多階調化信 号処理回路における処理の一例を示すフローチャートである。ここで、ディザ係数 D Kとしては、前述した図 10 A〜図 10C或いは図 5のディザ係数の何れを適用してもよ ぐまた、動き量 MVと演算動き量 MVCとの関係は図 12A〜図 12Dの何れを適用し てもよい。
[0103] まず、ステップ 240で処理がスタートとすると、ステップ 241に進んで初期化行い、 ディザ量演算回路(58)によりディザ量 DL = 0にすると共に、パス切り換え判定回路 303は『0』の判定信号 PSWを『0』を出力する。次に、ステップ 242に進んで、ディザ 回路 53によりディザ量 DLの加減算を行い、パス切り換え回路 304は、メインパス 21 の出力信号 MPLを選択する。
[0104] ステップ 243において、動き量検出回路 50が動き量 MVを検出し、また、ステップ 2 44において、レベル検出回路 300がレベル量 LVを検出し、ステップ 245に進んで、 レベル量 LVは零かどうかを判別する。
[0105] ステップ 245において、レベル量 LVが零であると判別されると、ステップ 24Cに進 む。また、ステップ 245でレベル量 LVが零ではないと判別され、ステップ 246で pMV + qLVが SPsel以上ではないと判別され、さらに、ステップ 249で pMV+qLVが SP sel2以上ではないと判別されると(pMV+qLVく SPsel2く SPsel)、ステップ 24Cに 進む。ここで、ステップ 246における pおよび qは、動き量 MVおよびレベル量 LVを演 算する時のそれぞれのバランスを取るための係数であり、さらに、 SPselおよび SPsel 2は判定閾値である。なお、判定閾値 SPselおよび SPsel2の間には、 SPsel>SPse 12の関係がある。
[0106] 具体的に、例えば、動き量 MVが 0〜15の値であるとし、図 5に示す変換データの ようにレベル量力 S〇〜5の値であるとした場合、 p = l, q = 3にすると、 pMVと qLVの 取り得る最大値は同じになり、パス切り換え判定回路 303において、動き量とレベル 量の演算のバランスは同じになる。また、 p = l, q = 2にすると、 pMVの取り得る値は qLVの取り得る値よりも大きくなるので、パス切り換え判定回路 303は、動き量を優先 にした判定を行うことになる。
[0107] そして、ステップ 24Cでは、ディザ量 DL = 0にすると共に、パス切り換え判定回路 3 03は『0』の判定信号 PSWを出力し、さらに、ステップ 24Dに進んで、ディザ量 DLの 加減算を行うと共に、パス切り換え回路 304はメインパス 21の出力信号 MPLを選択 して、ステップ 243に戻る。
[0108] また、ステップ 245でレベル量 LVが零ではな!/、と判別され且つステップ 246で pM V + qLVが SPsel以上であると判別されると(SPsel≤pMV+qLV)、ステップ 247に 進む。ここで、 pMV+qLVが SPsel以上である(SPsel≤pMV+qLV:pMV+qLV が大きい)ということは、動き量 MVが大きくて偽輪郭が出やすい階調を示す。そして 、この動き量 MVが大きくて偽輪郭が出やすい階調の場合には、ステップ 247に進ん で、ディザ量 DLの演算を行うと共に、パス切り換え判定回路 303は『2』の判定信号 P SWを出力し、さらに、ステップ 248に進んで、ディザ量 DLの加減算を行うと共に、パ ス切り換え回路 304はサブパス 10の出力信号 SPを選択して、ステップ 243に戻る。 なお、ステップ 248のように、サブパス 10の出力信号 SPを選択する場合には、結局 のところディザ量 DLを加減算しても影響はないことになる。
[0109] さらに、ステップ 245でレベル量 LVが零ではな!/、と判別され且つステップ 246で p MV + qLVが SPsel以上ではないと判別されると、ステップ 249に進む力 このステツ プ 249で pMV+ qLVが SPsel2以上であると判別されると(SPsel2≤ pMV + qLV く SPsel)、ステップ 24Aに進む。ステップ 24Aでは、ディザ量 DLの演算を行うと共 に、パス切り換え判定回路 303は『1』の判定信号 PSWを出力し、さらに、ステップ 24 Bに進んで、ディザ量 DLの加減算を行うと共に、パス切り換え回路 304は拡散パス( ディザ処理パス) 22の出力信号 MPDを選択して、ステップ 243に戻る。
[0110] 以上において、ステップ 245におけるレベル量 0の判定は、動き量がいくら大きくて も偽輪郭が出ない階調の場合、サブパスやディザ処理パスに切り換えても意味がな Vヽな 、ので (動きが少な 、場合には、階調数が少な 、サブノ スに切り換えると粒状ノ ィズが多くなつたり、或いは、ディザ処理パスに切り換えるとディザ模様が目立ったり 画質を劣化するため)、レベル量 0の場合には、サブパスやディザ処理パスを選択し ないようにしてある。このように、本第 5実施例は、動き量 MVに基づいてディザ量 DL を決定し、また、動き量 MVとレベル量 LVに基づいてメインパス、サブパスまたはディ ザ処理パス (拡散パス)を切り換えるようになって!/、る。
[0111] 図 20〜図 24を参照して説明したように、第 5実施例の画像表示装置は、誤差拡散 回路の出力信号 MPLに基づ 、てレベル検出を行うようになって!/、るのに対して、例 えば、前述した図 13〜図 18に示す第 3実施例の画像表示装置は、誤差拡散処理し てさらにディザ処理した出力信号 MPに基づいてレベル検出を行っており、加減算す るディザ量 DLによってレベル検出が異なる力 両方とも偽輪郭を周辺の画素に散ら して動画表示の画質を向上させることができる。
[0112] 図 25は図 20に示す多階調化信号処理回路における拡散パスの変形例を示すブ ロック図である。
[0113] 図 25と図 21との比較から明らかなように、本変形例の拡散パス 22は、ディザ回路 2 02および誤差拡散回路 201を備え、ディザ処理の後に誤差拡散を行うようになって いる。ここで、ディザ回路 202は、例えば、図 23に示す動き適応ディザ回路 205とし て構成してもよいのはもちろんである。
[0114] ところで、偽輪郭は、 1個所に集中して偽輪郭を発生させるより、その周辺に弱く偽 輪郭を発生させた方が目立ち難いため、メインパス 20 (21)にサブパス 10を 1画素置 きに挿入することにより、偽輪郭は広く発生する力 弱く発生しているため、それが偽 輪郭として認識されなくなる。
[0115] 具体的に、例えば、水平画素数が 1024ドットの 42インチの画面サイズの画像表示 装置において、経験上、水平方向へ 1フィールド毎に 4ドット程度移動している場合に 偽輪郭が認識され始め、移動速度が速くなるに従って偽輪郭も強く認識される。すな わち、ゆっくり動いている映像の場合、偽輪郭が認識されることは少なぐ認識された としても弱い。この場合、パス切り換え法のサブパスの挿入は、階調数が少ないので サブパスの粒状ノイズが目立ち、また、ディザ法によるディザ係数を大きくした場合も 、ディザによるハッチ状のノイズが目立つことになる。そのため、ゆっくり動いている映 像の場合は、ディザ法によるディザ係数を小さくしてサブパスを選択しな ヽように制御 するのが好ましい。
[0116] 逆に、速く動いている映像の場合、パス切り換え法によりサブパスを選択する割合( 頻度)を多くしても粒状ノイズは目立たなくなるが、パス切り換え法による偽輪郭低減 能力以上に偽輪郭が認識される強さが強くなるため、結果として、偽輪郭低減効果 は弱くなる。同様に、ディザ法による偽輪郭低減効果に関しても、ディザ係数を大きく しても限界があるため、速く動いている映像の場合、ディザ法とパス切り換え法を複合 させると偽輪郭低減能力が向上するので好ましい。従って、動いている速さに応じて ディザ法のディザ係数やパス切り換え法のサブパスを挿入する割合を徐々に変えて ゆくのがよい。
[0117] 以上において、 RGBの三原色についても、本発明は原色信号毎に回路があれば 実現することができるのはもちろんである。また、本発明の適用は、プラズマディスプ レイ装置に限定されるものではない。さらに、本発明におけるサブフィールドの重み はデータの重みでもあってもよ 、が、輝度の重みであってもよ 、。
産業上の利用可能性
[0118] 本発明は、プラズマディスプレイ装置を初めとする画像表示装置に幅広く適用する ことができ、例えば、パーソナルコンピュータやワークステーション等のディスプレイ装 置、平面型の壁掛けテレビジョン、或いは、広告や情報等を表示するための装置とし て利用される画像表示装置に対して適用することができる。

Claims

請求の範囲
[1] 1フィールドを重み付けされた複数のサブフィールドに分割し、該複数のサブフィー ルドを組み合わせて表示パネルに多階調表示を行う画像表示装置であって、 入力画像信号力 現フィールドと該現フィールドより以前のフィールドとから動き量 を検出する動き量検出回路と、
前記入力画像信号の階調と前記検出された動き量に基づ!/ヽて、偽輪郭ノイズを周 辺に拡散するための拡散量を演算する拡散量演算回路と、
該拡散量演算回路により演算された拡散量で拡散処理を行う拡散回路とを備える ことを特徴とする画像表示装置。
[2] 請求項 1に記載の画像表示装置において、さらに、前記検出された動き量が所定 の閾値以上の場合、該動き量を所定の値に固定する動き量固定回路を備え、前記 拡散量演算回路は、前記固定された動き量と前記入力画像信号の階調に基づいて 前記拡散量を演算することを特徴とする画像表示装置。
[3] 請求項 2に記載の画像表示装置において、前記動き量を固定する所定の値は、前 記所定の閾値よりも大きいことを特徴とする画像表示装置。
[4] 請求項 1に記載の画像表示装置において、前記拡散量演算回路は、前記動き量 の所定の比例係数と前記入力画像信号の階調に基づいた拡散係数から前記拡散 量を演算することを特徴とする画像表示装置。
[5] 請求項 1に記載の画像表示装置において、前記拡散量演算回路は、前記動き量 が所定の閾値以上の場合、前記動き量の所定の比例係数と前記入力画像信号の階 調に基づいた拡散係数から前記拡散量を演算し、且つ、前記動き量が前記所定の 閾値よりも小さい場合、前記拡散量を零にすることを特徴とする画像表示装置。
[6] 請求項 1に記載の画像表示装置において、前記拡散量演算回路は、前記動き量 が所定の閾値以上の場合、
動き量を MVとし、所定の閾値を TDとし、動き量の所定の比例係数を mとして、 {M V-TD} X m、並びに、前記入力画像信号の階調を基にした拡散係数力 前記拡 散量を演算することを特徴とする画像表示装置。
[7] 請求項 4に記載の画像表示装置にお ヽて、前記拡散係数は全ての階調で一定で あることを特徴とする画像表示装置。
[8] 請求項 4に記載の画像表示装置にお 、て、前記拡散係数は前記入力画像信号の 階調に対して比例関係であることを特徴とする画像表示装置。
[9] 請求項 4に記載の画像表示装置にお 、て、前記拡散係数は前記入力画像信号の 階調に対して対数関係であることを特徴とする画像表示装置。
[10] 請求項 4に記載の画像表示装置において、前記拡散係数は桁上げ前であることを 特徴とする画像表示装置。
[11] 請求項 1に記載の画像表示装置において、前記拡散回路は、前記入力画像信号 の特定の階調のみに対して拡散処理を行うことを特徴とする画像表示装置。
[12] 請求項 1に記載の画像表示装置において、前記拡散回路は、ディザ拡散を行う回 路であることを特徴とする画像表示装置。
[13] 1フィールドを重み付けされた複数のサブフィールドに分割し、該複数のサブフィー ルドを組み合わせて表示パネルに多階調表示を行う画像表示装置であって、 入力画像信号力も所定の階調数の信号を生成するメインパスと、
該メインパスより少ない階調数の信号を生成するサブパスと、
前記メインパスの生成信号と前記サブパスの生成信号のいずれか一方を切り換え て出力するパススィッチ回路と、
前記入力画像信号力 現フィールドと該現フィールドより以前のフィールド間で動い て 、る領域を検出し、動 、て 、る量である動き量を出力する動き量検出回路と、 前記メインパスで動画偽輪郭の発生する場合の偽輪郭の強さのレベル量を検出す るレベル検出回路と、
前記検出した動き量と前記検出したレベル量に基づいて所定の設定値と比較し、 動画領域で且つ偽輪郭発生強度が強い階調を判定するサブパス判定回路と、 該サブパス判定回路の判定結果により前記パススィッチ回路を前記メインパスの出 力力も前記サブパスの出力に切り換えるサブパススィッチと、
偽輪郭ノイズを周辺に拡散する拡散量を演算するための前記入力画像信号の階 調に依存した拡散係数を生成する拡散係数生成回路と、
前記動き量と前記拡散係数に基づいて拡散量を演算する拡散量演算回路と、 該拡散量演算回路により演算された拡散量で拡散処理を行う拡散回路とを備え、 前記サブパススィッチと前記拡散量を制御して偽輪郭を低減することを特徴とする画 像表示装置。
[14] 請求項 13に記載の画像表示装置において、さらに、前記検出された動き量が所定 の閾値以上の場合、該動き量を所定の値に固定する動き量固定回路を備え、前記 拡散量演算回路は、前記固定された動き量と前記階調に依存した拡散係数に基づ
Vヽて前記拡散量を演算することを特徴とする画像表示装置。
[15] 請求項 14に記載の画像表示装置において、前記動き量を固定する所定の値は、 前記所定の閾値よりも大きいことを特徴とする画像表示装置。
[16] 請求項 13に記載の画像表示装置において、前記拡散量演算回路は、前記動き量 の所定の比例係数と前記入力画像信号の階調に依存した拡散係数に基づいて前 記拡散量を演算することを特徴とする画像表示装置。
[17] 請求項 13に記載の画像表示装置において、前記拡散量演算回路は、前記動き量 が所定の閾値以上の場合、前記動き量の所定の比例係数と前記入力画像信号の階 調に基づいた拡散係数から前記拡散量を演算し、且つ、前記動き量が前記所定の 閾値よりも小さい場合、前記拡散量を零にすることを特徴とする画像表示装置。
[18] 請求項 13に記載の画像表示装置において、前記拡散量演算回路は、前記動き量 が所定の閾値以上の場合、
動き量を MVとし、所定の閾値を TDとし、動き量の所定の比例係数を mとして、 {M
V-TD} X m、並びに、前記入力画像信号の階調を基にした拡散係数カゝら前記拡 散量を演算することを特徴とする画像表示装置。
[19] 請求項 13に記載の画像表示装置において、前記拡散係数は全ての階調で一定 であることを特徴とする画像表示装置。
[20] 請求項 13に記載の画像表示装置において、前記拡散係数は前記入力画像信号 の階調に対して比例関係であることを特徴とする画像表示装置。
[21] 請求項 13に記載の画像表示装置において、前記拡散係数は前記入力画像信号 の階調に対して対数関係であることを特徴とする画像表示装置。
[22] 請求項 13に記載の画像表示装置において、前記拡散係数は桁上げ前であること を特徴とする画像表示装置。
[23] 請求項 13に記載の画像表示装置において、前記拡散回路は、前記入力画像信号 の特定の階調のみに対して拡散処理を行うことを特徴とする画像表示装置。
[24] 請求項 13に記載の画像表示装置において、前記拡散回路は、ディザ拡散を行う 回路であることを特徴とする画像表示装置。
[25] 請求項 13に記載の画像表示装置において、前記レベル量の設定は桁上げ後であ ることを特徴とする画像表示装置。
[26] 請求項 13に記載の画像表示装置において、前記サブパス判定回路は、前記動き 量および第 1の値の積と前記レベル量および第 2の値の積との和が第 3の値以上の 場合、前記メインパスカゝら前記サブパスに切り換えることを特徴とする画像表示装置。
[27] 請求項 13に記載の画像表示装置において、前記サブパス判定回路は、前記動き 量および第 1の値の積と前記レベル量および第 2の値の積との和が第 3の値以上で、 且つ、該レベル量が零以外の場合、前記メインパス力 前記サブノ スに切り換えるこ とを特徴とする画像表示装置。
[28] 1フィールドを重み付けされた複数のサブフィールドに分割し、該複数のサブフィー ルドを組み合わせて表示パネルに多階調表示を行う画像表示装置であって、 入力画像信号力も所定の階調数の信号を生成するメインパスと、
該メインパスより少ない階調数の信号を生成するサブパスと、
前記入力画像信号に対して拡散処理を施した信号を生成する拡散処理パスと、 前記メインパスの生成信号、前記サブパスの生成信号または前記拡散処理パスの 生成信号のいずれか 1つを切り換えて出力するパススィッチ回路と、
前記入力画像信号力 現フィールドと該現フィールドより以前のフィールド間で動い て 、る領域を検出し、動 、て 、る量である動き量を出力する動き検出回路と、 前記メインパスで動画偽輪郭の発生する場合の偽輪郭の強さのレベル量を検出す るレベル検出回路と、
前記検出した動き量と前記検出したレベル量に基づいて所定の設定値と比較し、 動画領域で且つ偽輪郭発生強度が強い階調を判定するパス切り換え判定回路と、 該サブパス判定回路の判定結果により前記パススィッチ回路を前記メインパスの出 力、前記サブノ スの出力または前記拡散処理パスのいずれか 1つに切り換えるパス 切り換え回路と、
偽輪郭ノイズを周辺に拡散する拡散量を演算するための前記入力画像信号の階 調に依存した拡散係数を生成する拡散係数生成回路と、
前記動き量と前記拡散係数に基づいて拡散量を演算する拡散量演算回路と、 該拡散量演算回路により演算された拡散量で拡散処理を行う拡散回路とを備え、 前記パス切り換え回路と前記拡散量を制御して偽輪郭を低減することを特徴とする 画像表示装置。
[29] 請求項 28に記載の画像表示装置において、前記パス切り換え判定回路は、第 1の 設定値および該第 1の設定値よりも小さい第 2の設定値を備え、前記拡散量演算回 路により演算された拡散量が、前記第 1の設定値以上の場合には前記サブパスを選 択し、該第 1の設定値よりも小さく且つ前記第 2の設定値以上の場合には前記拡散 処理パスを選択し、そして、該第 2の設定値よりも小さい場合には前記メインパスを選 択することを特徴とする画像表示装置。
[30] 請求項 28に記載の画像表示装置において、前記拡散回路はディザであることを特 徴とする画像表示装置。
[31] 1フィールドを重み付けされた複数のサブフィールドに分割し、該複数のサブフィー ルドを組み合わせて表示パネルに多階調表示を行う画像表示装置の駆動方法であ つて、
入力画像信号力 現フィールドと該現フィールドより以前のフィールドとから動き量 を検出する動き量検出段階と、
前記入力画像信号の階調と前記検出された動き量に基づ!ヽて、偽輪郭ノイズを周 辺に拡散するための拡散量を演算する拡散量演算段階と、
前記演算された拡散量により拡散処理を行う拡散段階とを備えることを特徴とする 画像表示装置の駆動方法。
[32] 請求項 31に記載の画像表示装置の駆動方法において、さらに、前記検出された 動き量が所定の閾値以上の場合、該動き量を所定の値に固定する動き量固定段階 を備え、前記拡散量演算段階は、前記固定された動き量と前記入力画像信号の階 調に基づいて前記拡散量を演算することを特徴とする画像表示装置の駆動方法。
[33] 請求項 32に記載の画像表示装置の駆動方法において、さらに、前記動き量を固 定する所定の値は、前記所定の閾値よりも大きいことを特徴とする画像表示装置の 駆動方法。
[34] 請求項 31に記載の画像表示装置の駆動方法において、前記拡散量演算段階は、 前記動き量の所定の比例係数と前記入力画像信号の階調に基づいた拡散係数から 前記拡散量を演算することを特徴とする画像表示装置の駆動方法。
[35] 請求項 31に記載の画像表示装置の駆動方法において、前記拡散量演算段階は、 前記動き量が所定の閾値以上の場合、前記動き量の所定の比例係数と前記入力画 像信号の階調に基づいた拡散係数から前記拡散量を演算し、且つ、前記動き量が 前記所定の閾値よりも小さい場合、前記拡散量を零にすることを特徴とする画像表示 装置の駆動方法。
[36] 請求項 31に記載の画像表示装置の駆動方法において、前記拡散量演算段階は、 前記動き量が所定の閾値以上の場合、
動き量を MVとし、所定の閾値を TDとし、動き量の所定の比例係数を mとして、 {M
V-TD} X m、並びに、前記入力画像信号の階調を基にした拡散係数カゝら前記拡 散量を演算することを特徴とする画像表示装置の駆動方法。
[37] 請求項 34に記載の画像表示装置の駆動方法において、前記拡散係数は全ての 階調で一定であることを特徴とする画像表示装置の駆動方法。
[38] 請求項 34に記載の画像表示装置の駆動方法にお 、て、前記拡散係数は前記入 力画像信号の階調に対して比例関係であることを特徴とする画像表示装置の駆動方 法。
[39] 請求項 34に記載の画像表示装置の駆動方法にお 、て、前記拡散係数は前記入 力画像信号の階調に対して対数関係であることを特徴とする画像表示装置の駆動方 法。
[40] 請求項 34に記載の画像表示装置の駆動方法にお 、て、前記拡散係数は桁上げ 前であることを特徴とする画像表示装置の駆動方法。
[41] 請求項 31に記載の画像表示装置の駆動方法において、前記拡散段階は、前記入 力画像信号の特定の階調のみに対して拡散処理を行うことを特徴とする画像表示装 置の駆動方法。
[42] 請求項 31に記載の画像表示装置の駆動方法にお 、て、前記拡散段階は、ディザ 拡散を行うことを特徴とする画像表示装置の駆動方法。
[43] 1フィールドを重み付けされた複数のサブフィールドに分割し、該複数のサブフィー ルドを組み合わせて表示パネルに多階調表示を行 ヽ、入力画像信号から所定の階 調数の信号を生成するメインパスと、該メインパスより少な!ヽ階調数の信号を生成す るサブパスと、前記メインパスの生成信号と前記サブパスの生成信号の 、ずれか一 方を切り換えて出力するパススイッチング段階とを備える画像表示装置の駆動方法 であって、
前記入力画像信号力 現フィールドと該現フィールドより以前のフィールド間で動い て 、る領域を検出し、動 、て 、る量である動き量を出力する動き量検出段階と、 前記メインパスで動画偽輪郭の発生する場合の偽輪郭の強さのレベル量を検出す るレベル検出段階と、
前記検出した動き量と前記検出したレベル量に基づいて所定の設定値と比較し、 動画領域で且つ偽輪郭発生強度が強い階調を判定するサブパス判定段階と、 該サブパス判定段階の判定結果により前記パススイッチング段階を前記メインパス の出力から前記サブパスの出力に切り換えるサブノ ススイッチング段階と、
偽輪郭ノイズを周辺に拡散する拡散量を演算するための前記入力画像信号の階 調に依存した拡散係数を生成する拡散係数生成段階と、
前記動き量と前記拡散係数に基づいて拡散量を演算する拡散量演算段階と、 前記拡散量により拡散処理を行う拡散段階とを備え、前記サブパススィッチと前記 拡散量を制御して偽輪郭を低減することを特徴とする画像表示装置の駆動方法。
[44] 請求項 43に記載の画像表示装置の駆動方法において、さらに、前記検出された 動き量が所定の閾値以上の場合、該動き量を所定の値に固定する動き量固定段階 を備え、前記拡散量演算段階は、前記固定された動き量と前記階調に依存した拡散 係数に基づいて前記拡散量を演算することを特徴とする画像表示装置の駆動方法。
[45] 請求項 44に記載の画像表示装置の駆動方法において、前記動き量を固定する所 定の値は、前記所定の閾値よりも大きいことを特徴とする画像表示装置の駆動方法。
[46] 請求項 43に記載の画像表示装置の駆動方法において、前記拡散量演算段階は、 前記動き量の所定の比例係数と前記入力画像信号の階調に依存した拡散係数に基 づいて前記拡散量を演算することを特徴とする画像表示装置の駆動方法。
[47] 請求項 43に記載の画像表示装置の駆動方法において、前記拡散量演算段階は、 前記動き量が所定の閾値以上の場合、前記動き量の所定の比例係数と前記入力画 像信号の階調に基づいた拡散係数から前記拡散量を演算し、且つ、前記動き量が 前記所定の閾値よりも小さい場合、前記拡散量を零にすることを特徴とする画像表示 装置の駆動方法。
[48] 請求項 43に記載の画像表示装置の駆動方法において、前記拡散量演算段階は、 前記動き量が所定の閾値以上の場合、
動き量を MVとし、所定の閾値を TDとし、動き量の所定の比例係数を mとして、 {M
V-TD} X m、並びに、前記入力画像信号の階調を基にした拡散係数カゝら前記拡 散量を演算することを特徴とする画像表示装置の駆動方法。
[49] 請求項 43に記載の画像表示装置の駆動方法において、前記拡散係数は全ての 階調で一定であることを特徴とする画像表示装置の駆動方法。
[50] 請求項 43に記載の画像表示装置の駆動方法において、前記拡散係数は前記入 力画像信号の階調に対して比例関係であることを特徴とする画像表示装置の駆動方 法。
[51] 請求項 43に記載の画像表示装置の駆動方法において、前記拡散係数は前記入 力画像信号の階調に対して対数関係であることを特徴とする画像表示装置の駆動方 法。
[52] 請求項 43に記載の画像表示装置の駆動方法において、前記拡散係数は桁上げ 前であることを特徴とする画像表示装置の駆動方法。
[53] 請求項 43に記載の画像表示装置の駆動方法において、前記拡散段階は、前記入 力画像信号の特定の階調のみに対して拡散処理を行うことを特徴とする画像表示装 置の駆動方法。
[54] 請求項 43に記載の画像表示装置の駆動方法にお 、て、前記拡散段階は、ディザ 拡散を行うことを特徴とする画像表示装置の駆動方法。
[55] 請求項 43に記載の画像表示装置の駆動方法において、前記レベル量の設定は桁 上げ後であることを特徴とする画像表示装置の駆動方法。
[56] 請求項 43に記載の画像表示装置の駆動方法において、前記サブパス判定段階は
、前記動き量および第 1の値の積と前記レベル量および第 2の値の積との和が第 3の 値以上の場合、前記メインパスカゝら前記サブパスに切り換えることを特徴とする画像 表示装置の駆動方法。
[57] 請求項 43に記載の画像表示装置の駆動方法において、前記サブパス判定段階は 、前記動き量および第 1の値の積と前記レベル量および第 2の値の積との和が第 3の 値以上で、且つ、該レベル量が零以外の場合、前記メインパスカゝら前記サブパス〖こ 切り換えることを特徴とする画像表示装置の駆動方法。
[58] 1フィールドを重み付けされた複数のサブフィールドに分割し、該複数のサブフィー ルドを組み合わせて表示パネルに多階調表示を行 ヽ、入力画像信号から所定の階 調数の信号を生成するメインパスと、該メインパスより少な!ヽ階調数の信号を生成す るサブパスと、前記入力画像信号に対して拡散処理を施した信号を生成する拡散処 理パスと、前記メインパスの生成信号、前記サブパスの生成信号または前記拡散処 理パスの生成信号のいずれか 1つを切り換えて出力するパススイッチング段階とを備 える画像表示装置の駆動方法であって、
前記入力画像信号力 現フィールドと該現フィールドより以前のフィールド間で動い て 、る領域を検出し、動 、て 、る量である動き量を出力する動き検出段階と、 前記メインパスで動画偽輪郭の発生する場合の偽輪郭の強さのレベル量を検出す るレベル検出段階と、
前記検出した動き量と前記検出したレベル量に基づいて所定の設定値と比較し、 動画領域で且つ偽輪郭発生強度が強い階調を判定するパス切り換え判定段階と、 該サブパス判定段階の判定結果により前記パススイッチング段階を前記メインパス の出力、前記サブパスの出力または前記拡散処理パスの 、ずれか 1つに切り換える ノ ス切り換え段階と、
偽輪郭ノイズを周辺に拡散する拡散量を演算するための前記入力画像信号の階 調に依存した拡散係数を生成する拡散係数生成段階と、
前記動き量と前記拡散係数に基づいて拡散量を演算する拡散量演算段階と、 該拡散量演算段階により演算された拡散量で拡散処理を行う拡散段階とを備え、 前記パス切り換え段階と前記拡散量を制御して偽輪郭を低減することを特徴とする 画像表示装置の駆動方法。
[59] 請求項 58に記載の画像表示装置の駆動方法において、前記パス切り換え判定段 階は、第 1の設定値および該第 1の設定値よりも小さい第 2の設定値を備え、前記拡 散量演算段階により演算された拡散量が、前記第 1の設定値以上の場合には前記 サブパスを選択し、該第 1の設定値よりも小さく且つ前記第 2の設定値以上の場合に は前記拡散処理パスを選択し、そして、該第 2の設定値よりも小さい場合には前記メ インパスを選択することを特徴とする画像表示装置の駆動方法。
[60] 請求項 58に記載の画像表示装置の駆動方法において、前記拡散段階はディザで あることを特徴とする画像表示装置の駆動方法。
PCT/JP2005/015282 2004-08-24 2005-08-23 画像表示装置およびその駆動方法 WO2006022264A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/628,059 US20070222712A1 (en) 2005-08-23 2005-08-23 Image Display Apparatus and Method of Driving the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004243694A JP4069103B2 (ja) 2004-08-24 2004-08-24 画像表示装置およびその駆動方法
JP2004-243694 2004-08-24

Publications (1)

Publication Number Publication Date
WO2006022264A1 true WO2006022264A1 (ja) 2006-03-02

Family

ID=35967475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015282 WO2006022264A1 (ja) 2004-08-24 2005-08-23 画像表示装置およびその駆動方法

Country Status (4)

Country Link
JP (1) JP4069103B2 (ja)
KR (1) KR100825355B1 (ja)
CN (1) CN1950868A (ja)
WO (1) WO2006022264A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292934A (ja) * 2007-05-28 2008-12-04 Funai Electric Co Ltd 映像処理装置およびプラズマテレビジョン
KR20090010398A (ko) * 2007-07-23 2009-01-30 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 이의 구동 방법
CN101441849B (zh) 2007-11-23 2012-02-29 四川虹欧显示器件有限公司 降低ac-pdp的图像动态伪轮廓的方法及系统
CN103871366B (zh) * 2014-04-02 2016-09-14 杭州士兰控股有限公司 用于led显示器的灰度显示驱动方法及装置
CN109567848B (zh) * 2018-12-05 2022-08-30 上海联影智慧医疗投资管理有限公司 机架半径修正机构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231824A (ja) * 1997-12-10 1999-08-27 Matsushita Electric Ind Co Ltd 表示装置
JP2000020023A (ja) * 1998-07-03 2000-01-21 Samusun Yokohama Kenkyusho:Kk プラズマディスプレイ装置の階調表示方式
JP2000148068A (ja) * 1998-11-06 2000-05-26 Victor Co Of Japan Ltd マトリクス型表示装置の映像信号処理回路及び映像信号処理方法
JP2000155561A (ja) * 1998-11-19 2000-06-06 Nec Corp 階調変換回路および画像表示装置
JP2000276100A (ja) * 1999-01-22 2000-10-06 Matsushita Electric Ind Co Ltd 表示装置及び方法
JP2004126457A (ja) * 2002-10-07 2004-04-22 Matsushita Electric Ind Co Ltd 画像表示装置
JP2004126591A (ja) * 2002-10-02 2004-04-22 Lg Electron Inc プラズマディスプレイパネルの駆動方法および駆動装置
JP2004138783A (ja) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd 画像表示装置
JP2004233980A (ja) * 2003-01-06 2004-08-19 Matsushita Electric Ind Co Ltd 表示装置および表示方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994633B2 (ja) * 1997-12-10 1999-12-27 松下電器産業株式会社 疑似輪郭ノイズ検出装置およびそれを用いた表示装置
KR100509762B1 (ko) * 2003-03-04 2005-08-25 엘지전자 주식회사 선택적 디더링을 이용한 플라즈마 디스플레이 패널의 의사윤곽 제거방법 및 장치
KR100487807B1 (ko) * 2002-10-02 2005-05-06 엘지전자 주식회사 플라즈마 디스플레이 패널의 의사윤곽 감소장치 및 방법
KR100503601B1 (ko) * 2003-03-04 2005-07-26 엘지전자 주식회사 플라즈마 디스플레이 패널의 윤곽 제거방법 및 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231824A (ja) * 1997-12-10 1999-08-27 Matsushita Electric Ind Co Ltd 表示装置
JP2000020023A (ja) * 1998-07-03 2000-01-21 Samusun Yokohama Kenkyusho:Kk プラズマディスプレイ装置の階調表示方式
JP2000148068A (ja) * 1998-11-06 2000-05-26 Victor Co Of Japan Ltd マトリクス型表示装置の映像信号処理回路及び映像信号処理方法
JP2000155561A (ja) * 1998-11-19 2000-06-06 Nec Corp 階調変換回路および画像表示装置
JP2000276100A (ja) * 1999-01-22 2000-10-06 Matsushita Electric Ind Co Ltd 表示装置及び方法
JP2004126591A (ja) * 2002-10-02 2004-04-22 Lg Electron Inc プラズマディスプレイパネルの駆動方法および駆動装置
JP2004126457A (ja) * 2002-10-07 2004-04-22 Matsushita Electric Ind Co Ltd 画像表示装置
JP2004138783A (ja) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd 画像表示装置
JP2004233980A (ja) * 2003-01-06 2004-08-19 Matsushita Electric Ind Co Ltd 表示装置および表示方法

Also Published As

Publication number Publication date
JP4069103B2 (ja) 2008-04-02
KR100825355B1 (ko) 2008-04-29
KR20070053162A (ko) 2007-05-23
CN1950868A (zh) 2007-04-18
JP2006064743A (ja) 2006-03-09

Similar Documents

Publication Publication Date Title
JP3365630B2 (ja) ディスプレイ駆動方法及び装置
JP2005024690A (ja) ディスプレイ装置およびディスプレイの駆動方法
JPH1039828A (ja) 中間調表示方法および表示装置
AU738827B2 (en) Dynamic image correction method and dynamic image correction circuit for display Device
JPH0934399A (ja) 中間調表示方法
US7256755B2 (en) Display apparatus and display driving method for effectively eliminating the occurrence of a moving image false contour
JP2005321775A (ja) ディスプレー装置
US20070222712A1 (en) Image Display Apparatus and Method of Driving the Same
JPH1185101A (ja) ディスプレイ駆動装置の画像処理回路
JP2008051833A (ja) 多階調表示装置
US20060267871A1 (en) Moving picture processing method and apparatus thereof
JP2005346068A (ja) ディスプレイ装置及びその制御方法
KR100825355B1 (ko) 화상 표시 장치 및 그 구동 방법
JP2004126591A (ja) プラズマディスプレイパネルの駆動方法および駆動装置
JP2005024708A (ja) 多階調化信号処理装置
JP4165108B2 (ja) プラズマディスプレイ装置
JP2005165312A (ja) プラズマディスプレイパネルの駆動装置,プラズマディスプレイパネルの画像処理方法,及びプラズマディスプレイパネル
KR100825352B1 (ko) 화상 표시 장치 및 화상 표시 장치의 구동 방법
US20060214887A1 (en) Image display method and image display apparatus
JP4759209B2 (ja) 画像表示装置
JP3521591B2 (ja) ディスプレイ装置の誤差拡散処理装置
JP2003177696A (ja) 表示装置および表示方法
KR100578917B1 (ko) 플라즈마 디스플레이 패널의 구동 장치, 플라즈마디스플레이 패널의 화상 처리 방법 및 플라즈마디스플레이 패널
KR100397437B1 (ko) 플라즈마 디스플레이 패널의 의사윤곽 감소방법 및 그의감소장치
JP2001042819A (ja) 階調表示方法、及び階調表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067023508

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580014928.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11628059

Country of ref document: US

Ref document number: 2007222712

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11628059

Country of ref document: US

122 Ep: pct application non-entry in european phase