WO2006022044A1 - 電動弁診断方法と診断装置 - Google Patents

電動弁診断方法と診断装置 Download PDF

Info

Publication number
WO2006022044A1
WO2006022044A1 PCT/JP2005/005038 JP2005005038W WO2006022044A1 WO 2006022044 A1 WO2006022044 A1 WO 2006022044A1 JP 2005005038 W JP2005005038 W JP 2005005038W WO 2006022044 A1 WO2006022044 A1 WO 2006022044A1
Authority
WO
WIPO (PCT)
Prior art keywords
correlation
stress
valve
torque
yoke
Prior art date
Application number
PCT/JP2005/005038
Other languages
English (en)
French (fr)
Inventor
Takeki Nogami
Shigeya Yamaguchi
Original Assignee
Shikoku Research Institute Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Incorporated filed Critical Shikoku Research Institute Incorporated
Priority to EP05780994.9A priority Critical patent/EP1916462A4/en
Priority to PCT/JP2005/015609 priority patent/WO2006022408A1/ja
Priority to JP2006532646A priority patent/JP4437140B6/ja
Priority to KR1020077006192A priority patent/KR100859742B1/ko
Priority to US11/660,899 priority patent/US7596457B2/en
Publication of WO2006022044A1 publication Critical patent/WO2006022044A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0075For recording or indicating the functioning of a valve in combination with test equipment
    • F16K37/0083For recording or indicating the functioning of a valve in combination with test equipment by measuring valve parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor

Definitions

  • the present invention relates to a diagnostic method in the case of performing a diagnosis on the driving force of a motor-operated valve and a diagnostic apparatus suitable for carrying out the diagnostic method.
  • the motor-operated valve is configured to open and close the valve body with the motor driving force, and its greatest features are that it can secure a large valve body driving force and that the opening and closing operation can be performed remotely. Because of these characteristics, for example, it is frequently used in large-scale plants equipped with large-diameter piping and power, piping in nuclear power plants where manual operation is regulated, etc. In many cases, it is used as a valve for fully opening and closing the flow path in the pipe rather than as a valve.
  • Such an electric valve includes a valve body that opens and closes a flow path in a pipe, a valve body drive unit that opens and closes the valve body in response to the rotational force of a worm that is rotationally driven by a motor, and the war
  • a spring cartridge which is incorporated in a state in which a pan panel that expands and contracts according to the generated thrust is compressed with a specified compression force (the compression force at this time is called “tension load”), and the torque is supplied to the valve body drive unit
  • the compression amount of the spring cartridge reaches a regulation amount, the motor is stopped when the valve body is opened and closed, thereby providing a highly reliable valve function with an appropriate opening / closing holding force of the valve. This ensures the prevention of damage by avoiding excessive driving force.
  • X r (where r: 1 is 2 of the worm wheel pitch circle ⁇ g. See Fig. 1 and Fig. 2) is that most of the malfunction of the motorized valve is caused by torque improperness. From the past examples, it is considered the most important. For this reason, various proposals have conventionally been made for a method for diagnosing a motorized valve related to torque.
  • a strain gauge is affixed to the spring cartridge portion, and the compression force of the spring cartridge, that is, the value of the torque corresponding to the compression force of the spring cartridge by the strain gauge in the operating state of the electric valve.
  • Patent Documents 2 and 3 listed below propose a method for diagnosing a motorized valve related to torque using a detecting means attached to the outer end of the spring cartridge for the diagnosis work. Has been.
  • Patent Document 2 What is shown in Patent Document 2 is a so-called “torque sensor external method”, and is provided with a compression force detecting means for detecting the compression force applied to the spring cartridge on the outer end side of the spring force.
  • a moving amount detecting means for detecting the compression amount of the spring cartridge, that is, a moving amount of the worm, is attached and the motor valve is operated, and the spring cartridge detected by the compressing force detecting means and the moving amount detecting means is detected.
  • the compressive force detection means because of the structure of the compressive force detection means, only one of the open side and open side of the motorized valve can be detected for the compressive force, but the motor valve operating direction is the open operating direction.
  • the spring cartridge is compressed regardless of the closing direction. Since the phenomenon is the same and there is no difference, if the amount of compression of the spring cartridge is measured both during the opening operation and during the closing operation, the compression force on the other side can be determined. In other words, if the amount of compression and the value obtained by converting this amount of compression into torque are acquired as data, the corresponding torque can be found by measuring the amount of compression both when the motorized valve is open and when it is closed. Is something you can do.
  • Patent Document 3 what is shown in Patent Document 3 is a so-called “panel compression method”, and a strain gauge and a position detection are provided on the outer end of the spring cartridge (that is, the end opposite to the worm side of the spring cartridge). Means and compression means are attached, and the disc spring of the spring cartridge is compressed from the outside by the compression means when the motorized valve is stopped.
  • the compression force on the spring cartridge is compressed by the strain gauge,
  • the compression amount of the spring cartridge is acquired by the position detection means, respectively, and the relationship between the compression amount of the spring cartridge and the corresponding compression force is acquired.
  • the amount of compression is measured under the operating state of the motorized valve, the actual compressive force is obtained from this measured value, and based on this compressive force, it is actually applied to the valve body drive by the worm. It knows the torque that acts and diagnoses the torque of the motorized valve based on this torque.
  • Patent Document 2 Japanese Patent No. 2982090 (Paragraph “0021”-[: 0031], Figure;!- Figure 4)
  • Patent Document 3 Patent Document 3
  • the strain gauge is a spring cartridge.
  • the structure itself is complicated and expensive, and when installing a spring cartridge with a strain gauge, it is necessary to open a part of the motorized valve and remodel it. It is necessary to manage the sealing of the movable packing portion of the strain gauge signal extraction portion, and also to calibrate the strain gauge, it is necessary to calibrate by taking out the strain gauge from the motor-operated valve side integrally with the spring cartridge. There were problems such as troublesome calibration work of the strain gauge.
  • the “built-in torque sensor method”, “r torque sensor external method” and “panel compression method” described above are all methods for diagnosing the torque obtained mainly from the compression force of the spring cartridge. ⁇
  • what should be diagnosed as a function of the motorized valve is the force actually acting on the valve body.
  • the force acting on the valve element can be grasped as the force acting on the valve stem connected to and supporting the valve element.
  • the appropriateness of the force acting on the valve stem is appropriate. A sufficient diagnosis cannot be made if the torque is judged only by the torque diagnosis.
  • the driving force of the driving device acts on the valve stem via the driving force transmission mechanism composed of the worm, the worm wheel, the drive sleeve, and the stem nut.
  • friction force is generated in these driving force transmission mechanisms. Since the sliding resistance such as packing acts with the operation of the valve stem, the actual force acting on the valve stem does not necessarily match the torque. For example, if the stem nut part runs out of oil, even if it is driven at the specified torque, the transmission efficiency decreases due to the frictional force of the drive force transmission mechanism, and the force that actually acts on the valve stem causes the oil to run out. It becomes smaller than the state where it is not.
  • the diagnosis of the driving force transmission mechanism cannot be performed only with the diagnosis of torque. Therefore, the matter that should be diagnosed as a function of the motorized valve is “the force acting on the valve body and the valve stem”. Considering this fact, it can be said that the diagnosis of the motor-operated valve is not sufficient only by the torque.
  • the valve body driving unit that opens and closes the valve body using the rotational driving force of the worm to which the rotational driving force is applied by the electric force, and the axial direction of the worm from the valve body driving unit.
  • the motor-operated valve diagnosis method for diagnosing the driving force of an electric valve equipped with a spring cartridge that expands and contracts in accordance with the acting reaction force, the correlation between the physical quantities of multiple types related to the driving force of the electric valve is correlated. It is stored as a database, and the diagnosis regarding the driving force of the motor-operated valve is performed with reference to the correlation database.
  • valve stem stress and torque that are directly grasped as driving force [torque obtained from the compression force of the spring cartridge, ie, the spring cartridge compression force X r (r: Worm wheel pitch diameter 1/2)), compression amount and compression force of spring cartridge, yoke stress, valve stem stress ⁇
  • the correlation between the yoke stress acting on the yoke and the valve stem stress acting on the valve stem is used as a correlation database.
  • the valve stem stress corresponding to the yoke stress obtained by measurement is read by referring to the correlation database, and diagnosis regarding the valve stem stress of the motor-operated valve is performed based on the valve stem stress.
  • the correlation between the yoke stress acting on the yoke and the valve stem stress acting on the valve stem is characterized by acquiring the correlation between valve stem stress and torque and diagnosing its suitability.
  • the first aspect is captured from the motor-operated valve diagnostic device.
  • another aspect of the first aspect is captured from the motor-operated valve diagnostic apparatus.
  • another aspect of the first aspect is captured from the motor-operated valve diagnostic device.
  • the diagnosis work is extremely simple and the work can be performed with good workability. Labor savings will help reduce diagnostic costs.
  • the second configuration if a correlation between a plurality of types of physical quantities related to the driving force of the motorized valve is obtained in advance and stored, then only one specific type of physical quantity is measured thereafter.
  • a correlation database is referred to, another type of physical quantity corresponding to the specific type of physical quantity is read, and the driving force of the motor-operated valve is diagnosed based on the other type of physical quantity.
  • the diagnosis work is much simpler than when performing diagnosis by acquiring other types of physical quantities that are relatively difficult to measure each time the diagnosis regarding the driving force of the motorized valve is performed.
  • the work can be performed with good workability, and the labor saving is promoted to reduce the diagnostic cost.
  • the correlation between multiple types of physical quantities related to the driving force of the motor-operated valve is held as a correlation database, so that even when the diagnosis regarding the driving force of the motor-operated valve covers multiple items, this can be done quickly. Therefore, the effect of reducing the diagnostic cost becomes even more prominent.
  • the correlation between the yoke stress acting on the yoke in advance and the torque obtained from the compression force of the spring cartridge is obtained and retained. After that, if only the stress is obtained by measurement, the torque obtained from the compression force of the spring cartridge is read out by referring to the correlation database, and the diagnosis of the torque of the motorized valve is performed based on this torque.
  • the diagnosis work is much easier than when diagnosis is performed by obtaining the torque obtained from the compression force of the spring cartridge each time the diagnosis is performed on the torque of the motorized valve. It is easy and the work can be performed with good workability, and the labor saving is promoted to reduce the diagnostic cost.
  • the yoke stress can be measured at a portion exposed to the outside of the motor-operated valve.
  • a strain gauge is attached here, and the corresponding stress, that is, the yoke stress is obtained from the amount of strain.
  • stress is measured by opening a part of the valve and attaching a strain gauge to the inside of the valve, the work is much easier. It is possible to further reduce the diagnostic cost by making it easier.
  • the fourth configuration in addition to the effects of the third configuration, it is possible to easily obtain the correlation between the yoke stress and the torque during both the opening operation and the closing operation of the motor-operated valve, and the correlation database This speeds up the acquisition process, further improving the diagnostic workability and further reducing the diagnostic cost through labor saving.
  • the fifth configuration in addition to the effects of the third configuration, these are obtained despite using a measuring means that is relatively simple in structure and cannot directly measure the compressive force during operation to the other side. Based on the data, it is possible to easily obtain a correlation database between the torque and the yoke stress obtained from the compression force during operation to one side or the other side. Speeding up is ensured, and further improvement of diagnostic workability using the correlation database and reduction of diagnostic cost by labor saving are further promoted.
  • the spring force is inevitable even if there is some amount in the expansion / contraction direction of one trough.
  • the obtained compression amount is an inaccurate one that includes play that is different from the actual compression amount. If a correlation database is obtained based on the inaccurate compression amount and a torque diagnosis is performed with reference to this database, a highly accurate diagnosis result cannot be obtained.
  • a highly accurate and highly reliable diagnosis result can be obtained.
  • the accuracy and reliability of the diagnosis result of the motorized valve is further improved.
  • the reliability of the yoke stress measured by the yoke stress sensor is further improved, and as a result, the effects of the seventh and eighth configurations are further ensured.
  • the configuration of the first to third 20th in addition to the effect of the configuration of the third to the first to second, the output strain characteristics of the replaced new strain gauge are removed and the existing strain gauge is removed. Traceability for the output characteristics of the sensor is ensured, and even though the strain gauge has been replaced, continuous and accurate output can be obtained before and after replacement, enabling highly reliable diagnosis over a long period of time. Is done.
  • the output characteristics of the strain gauge newly installed by replacement are the output characteristics of any other strain gauge.
  • the output characteristics of the newly installed strain gauge are traceable to the output characteristics of the original strain gauge before replacement, and the strain gauge has been replaced. Nevertheless, continuous and accurate strain gauge output can be obtained before and after replacement, and highly reliable diagnosis can be realized for a long time.
  • the correlation between the current value corresponding to the electric force and the torque obtained from the compression force of the spring cartridge is obtained in advance and retained.
  • the correlation database is referenced to read the torque and torque obtained from the compression force of the spring cartridge, and the motor valve torque is diagnosed based on this torque.
  • the diagnosis work is much simpler than the case where the diagnosis is performed by obtaining the torque obtained from the compression force of the spring cartridge at every diagnosis relating to the torque of the motorized valve. Therefore, it is possible to reduce the diagnostic cost by saving labor.
  • the current value can be measured at the part exposed to the outside of the motor-operated valve.
  • a current value measuring means such as an ammeter is attached here to measure the current value, and a torque corresponding to the measured value is obtained. This is because, for example, it is much easier to perform the torque measurement by opening a part of the motor-operated valve and installing a strain gauge inside the motor-operated valve. It is possible to further improve the operability in diagnosis related to valve torque and further reduce the diagnostic cost by saving labor.
  • the second torque measured by a pre-calibrated torque sensor temporarily installed on the outer end side of the spring cartridge and the spring cartridge portion are permanently installed.
  • the first torque will be measured and acquired from then on, referring to the correlation database, Reading the second torque corresponding to the torque value and comparing the first torque value and the second torque value to calibrate the torque sensor used for the measurement of the first torque For example, it is not necessary to calibrate by removing the torque sensor from the motorized valve, as in the case of directly calibrating the torque sensor used for measuring the first torque. And Xun It can be achieved.
  • the yoke stress acting on the yoke in advance and the valve stem acting ⁇ If a correlation with the valve stem stress is obtained and held, and thereafter only the yoke stress is obtained by measurement, the valve stem stress is read out by referring to the correlation database, and this valve stem stress is calculated.
  • the motorized valve can be diagnosed based on this.
  • the valve stem stress is usually measured by attaching a strain gauge directly to the valve stem, but this is relatively difficult, and the external dew of the valve and rod is more than the amount of movement of the valve stem. If the length of the protruding part is short, the strain gauge cannot be permanently installed.For example, when the diagnosis is performed by obtaining the valve stem stress every time the motorized valve is diagnosed, the workability is poor. However, in this configuration, the valve stem stress needs to be measured only once during the first diagnostic work. From the next time, a yoke stress sensor (strain gauge) can be installed permanently, and the valve stress can be determined based on yoke stress, which is easy to obtain. Since the bar stress is obtained, the diagnosis work is extremely simple and the work can be performed with good workability, and the labor saving is promoted to reduce the diagnosis cost.
  • strain gauge strain gauge
  • the third configuration if the first correlation database and the second correlation database are acquired in advance and stored, the yoke stress and current value that can be easily measured will be measured thereafter.
  • the torque obtained from the valve stem stress and the compression force of the spring cartridge, which are not easy to measure are read out and the correlation between the two is obtained.
  • the friction coefficient () in the valve body drive part of the motorized valve is a well-known friction coefficient calculation formula.
  • the ratio of the torque to the stem pressure is obtained by calculating It is possible to diagnose the friction coefficient of the body drive unit. By looking at the correlation between torque and valve stem stress, it is possible to easily determine whether the friction (lubrication) of the valve body drive part is normal or abnormal, and the reliability of the valve body drive part is increased accordingly. It will be further improved.
  • the diagnosis cost is reduced by making the motorized valve diagnosis work easier and faster, and saving labor.
  • the correlation database is held in advance, it is possible to diagnose the driving force of the motor-operated valve by referring to the correlation database thereafter.
  • the diagnosis work is extremely simple and the work can be performed with good workability. Therefore, the labor saving will promote the reduction of diagnostic costs.
  • the configuration of No. 58 in addition to the effect of the configuration of No.
  • the correlation between a plurality of types of physical quantities related to the driving force of the motorized valve is obtained in advance and possessed, If only one specific type of physical quantity is acquired by measurement, the other type of physical quantity corresponding to the specific one type of physical quantity is read with reference to the correlation database, and the other type of physical quantity is read. It is possible to make a diagnosis on the driving force of the motorized valve based on the physical quantity.For example, every time a diagnosis on the driving force of the motorized valve is performed, a diagnosis is made by acquiring other types of physical quantities that are relatively difficult to measure. Compared with the case where it is performed, the diagnosis work is extremely simple and the work can be performed with good workability, and the labor saving can promote the reduction of the diagnosis cost.
  • the correlation between multiple types of physical quantities related to the driving force of the motor-operated valve is held as a correlation database, so that even when diagnosis regarding the driving force of the motor-operated valve covers multiple items, this can be performed quickly.
  • the effect of reducing diagnostic costs is even more pronounced.
  • the correlation between the yoke stress acting on the yoke in advance and the torque obtained from the compression force of the spring cartridge can be obtained and retained. For example, thereafter, if only the yoke stress is obtained by the yoke stress measuring means, the torque reading means reads out the torque obtained from the compression force of the spring cartridge by referring to the correlation database, and based on this torque.
  • Diagnosis related to the torque of the motorized valve can be performed, for example, compared with the case where diagnosis is performed by obtaining the torque obtained from the compression force of the spring cartridge every time diagnosis is performed regarding the torque of the motorized valve.
  • diagnosis is performed by obtaining the torque obtained from the compression force of the spring cartridge every time diagnosis is performed regarding the torque of the motorized valve.
  • the work can be performed with good workability, and the labor saving can promote the reduction of diagnosis cost.
  • the yoke stress can be measured at a portion exposed to the outside of the motor-operated valve, and attaching a -strain gauge here to obtain the corresponding stress from the amount of strain, that is, obtaining the yoke stress is, for example, Compared with the case where the stress is measured by opening a part of the motorized valve and installing a strain gauge inside it, the work is much easier and the diagnostic workability is further improved. It is possible to further reduce the diagnostic cost by saving labor. .
  • the stress generated in the valve stem Since the stress can be measured as the reaction force of the valve stem stress, the diagnosis of the valve stem stress can be performed based on the yoke stress, and an extremely reliable diagnostic result can be obtained.
  • the 60th configuration in addition to the effects of the 59th configuration, it is possible to easily obtain the correlation between the yoke stress and the torque during both the opening and closing of the motor-operated valve. Correlation database acquisition work will be expedited, and as a result, diagnostic work will be improved and labor costs will be further reduced.
  • the structure is relatively simple, and the measurement method is not able to directly measure the compressive force during operation to the other side.
  • Database acquisition based on the acquisition data of the compression force acquisition means and the yoke stress acquisition means It is possible to easily acquire a correlation database between torque and yoke stress obtained from the compressive force during operation to one side or the other side in the stage, and as a result, reliable acquisition of the correlation database and acquisition work Speeding up is ensured, and as a result, the diagnostic cost is further reduced by improving the diagnostic workability and labor saving using the correlation database.
  • the play is unavoidably present. Therefore, when the compression amount of the spring cartridge is acquired without considering the effect of the play, the obtained compression amount is' inaccurate including play that is different from the actual compression amount. If a correlation database is obtained based on such inaccurate compression amount and a diagnosis relating to torque is made with reference to this, a highly accurate diagnosis result cannot be obtained.
  • the actual compression amount excluding the effect of the backlash amount is acquired from the measured compression amount measured in step 1, and the correlation database is acquired based on the actual compression amount, so that a highly accurate and reliable diagnosis result can be obtained. can get.
  • the yoke stress measured by the yoke stress sensor is highly reliable, and as a result, the correlation With reference to the database, the torque read in response to the yoke stress is also highly reliable, and as a result, the accuracy and reliability of the diagnosis result of the motor-operated valve are further improved.
  • the reliability of the yoke stress measured by the yoke stress sensor can be further improved.
  • the effect of the configuration is further ensured. .
  • the correlation between the current value corresponding to the electric force and the torque obtained from the compression force of the spring cartridge is obtained in advance and retained. After that, only the current value should be acquired by the current value measuring means.
  • the torque reading means can read the torque obtained from the compression force of the spring cartridge, and based on this torque, it can make a diagnosis regarding the torque of the motorized valve. Compared to obtaining the torque obtained from the compression force of the spring cartridge at each diagnosis, the diagnosis work is extremely simple and the work can be performed with good workability. Labor saving promotes reduction of diagnostic costs.
  • the current value can be measured at the portion exposed to the outside of the motor-operated valve, and the current value measuring means is attached to measure the current value, and the torque corresponding to the measured value is measured. Since, for example, it is much easier to measure torque by opening a part of a motor-operated valve and installing a strain gauge inside it, It is possible to further improve the workability in diagnosis related to the torque of the motorized valve and further reduce the diagnosis cost by saving labor.
  • the second torque measured by the pre-calibrated torque measuring means temporarily installed on the outer end side of the spring cartridge, and the spring If the correlation of the first torque measured by the 'torque measuring means permanently installed in the cartridge part is obtained and stored, the first torque is measured and acquired thereafter, and the correlation database
  • the second torque corresponding to the first torque value is read by the torque reading means, and the first torque is measured by comparing the first torque value with the second torque value.
  • the torque measuring means provided to the motor can be calibrated. For example, when the first torque measuring means is directly calibrated, it is unnecessary to remove the torque measuring means from the motor-operated valve for calibration. Yes, just that easy calibration One quick reduction can be achieved.
  • the subsequent steps are taken by means of measuring the yoke stress. If only the yoke stress is acquired, the valve stem stress can be read by the valve stem stress reading means with reference to the correlation database, and the motor-operated valve can be diagnosed based on the valve stem stress. In this case, the valve stem stress is usually measured by directly attaching a strain gauge to the valve stem, but this operation is relatively difficult and the external exposure of the valve stem is more than the amount of movement of the valve stem.
  • the strain sensor gauge cannot be installed permanently when the length of the part is short, for example, when the diagnosis is performed by acquiring the valve stem stress every time the motorized valve is diagnosed, the workability is poor. In this configuration, it is sufficient to measure the valve stem stress at the time of the first diagnosis work. From the next time, the valve stem stress is obtained based on the yoke stress easily obtained by the yoke stress measurement means.
  • the diagnosis work is extremely simple and the work can be performed with good workability, and the labor saving is promoted to reduce the diagnosis cost.
  • the diagnosis is made directly on the force acting on the valve body and the sliding resistance force of the valve stem seal based on the valve stem stress, high diagnostic accuracy is maintained, An extremely reliable diagnostic result can be obtained.
  • the yoke stress is then measured by the yoke stress measurement means, and the current value measurement means.
  • the current value is obtained by measurement with reference to the first and second correlation databases to obtain the valve stem stress by the valve stem stress reading means and the compression force of the spring cartridge by the torque reading means.
  • each torque can be read out, and the correlation between the two can be acquired by the correlation acquisition means.
  • the torque obtained from the valve stem stress and the compression force of the spring cartridge is acquired by measurement. Compared to this, it is much easier to obtain the correlation between the valve stem stress and torque.
  • the driving force of the diagnostic unit Judgment of changes over time in the transmission status is facilitated, and the motorized valve cutting operation can be made easier and faster, and the diagnostic cost can be reduced by saving labor.
  • FIGS. -Fig. 1 shows a main part of a normal motor-driven valve drive system (hereinafter referred to as "first motor-driven valve drive system") to which the diagnosis method according to the present invention is applied.
  • Fig. 2 shows the main part of a motorized valve drive system (hereinafter referred to as "second motorized valve drive system”) with a built-in torque sensor (a spring cartridge with a strain gauge attached). ing.
  • reference numeral 1 denotes a valve stem having a valve body (not shown) connected to the lower end thereof, and a stem nut 2 is screwed into a screw portion on the upper side of the valve stem. Further, the stem nut 2 is fixed to the cylindrical drive sleeve 3 and is formed into a body.
  • the drive sleep 3 can be rotated integrally with a worm wheel 4 fitted and disposed on the outer peripheral side thereof, and the rotational force of the stem nut 2 is transmitted to the valve stem 1 as its axial displacement force. Then, the valve body is driven to open and close (elevate drive) through the valve rod 1.
  • the valve rod 1 can only move in the axial direction, and its rotation is restricted. .
  • a worm 5 is combined with the worm wheel 4, and the worm 5 is rotated by a motor (not shown) via a motor shaft 6, whereby the worm wheel 4 rotates and its rotational force Is connected to the valve stem 1 via the stem nut 2. On the other hand, it is transmitted as the raising / lowering driving force.
  • the motor shaft 6 is provided with a spline 6a, and the worm 5 is spline-fitted to the spline 6a portion, so that the worm 5 receives the rotational force from the motor shaft 6.
  • the movement In the axial direction (in the direction of arrows R–L), the movement is self-explanatory. ,.
  • the worm 5 has its end side extended in the axial direction to form an extended cylindrical portion 7.
  • a circumferential groove 8 is provided on the outer periphery of the extended cylindrical portion 7, and an actuator 9 a of a torque switch 9 is engaged with the circumferential groove 8.
  • the torque switch 9 operates when the worm 5 moves in the axial direction from its neutral position and the amount of movement reaches a predetermined value, and generates a stop signal for the motor to stop it. It is intended to protect the valve stem 1 by protecting it from transmitting excessive torque.
  • a bearing 10 is fixed to the end of the extended cylindrical portion 7 of the worm 5 by a nut 11, and a movable shaft 12 described below is connected through the bearing 1 Q so as to be relatively rotatable.
  • the movable shaft 12 has a different diameter cylindrical body including a large diameter cylindrical portion 12 a connected to the inner shaft of the bearing 10 and a small diameter cylindrical portion 1 2 b continuous to the large diameter cylindrical portion 12 a.
  • the form 5 moves in the axial direction, it moves integrally with the form 5 in the axial direction.
  • the following spring cartridge 13 is attached to the small diameter cylindrical portion 12 b of the movable shaft 12.
  • the spring cartridge 13 generates a predetermined holding torque to the worm wheel 4 via the worm 5 after the valve body is fully opened or fully closed, and the movable shaft 1 2 large-diameter cylindrical portions 1 2 a and a small-diameter cylindrical portion 1 2 b between one busher 14 arranged on the step surface side and a nut screwed to the end of the small-diameter cylindrical portion 1 2 b
  • a plurality of dish panels 17 are alternately mounted between the other washer 15 disposed on the 16 side so as to face each other alternately and with a required tension load applied.
  • the axial length of the spring cartridge 13 in a single state (that is, the outer dimension between the respective washer 14 and 1.5 when a predetermined tension load is generated) is the large length of the movable shaft 12. It is fixed and held at a predetermined value by the step surface between the diameter cylindrical portion 1 2 a and the small diameter cylindrical portion 1 2 b and the seat surface of the nut 16.
  • the movable shaft 12 and the spring cartridge 13 the movable The shaft 12 is fitted into a small-diameter hole 19 provided coaxially with the worm 5, and the spring cartridge 13 is fitted into a large-diameter hole 20 continuous to the small-diameter hole 19.
  • the movable shaft 12 is movable in the axial direction within the small-diameter hole 19, and the spring cartridge 13 is extendable within the large-diameter hole 20.
  • the washer 14 disposed on one end of the spring cartridge 13 is engaged with the shoulder 21 between the small-diameter hole 19 and the large-diameter hole 20. Movement in the direction of arrow L is restricted. Further, the washer 15 disposed on the other end side of the spring cartridge 13 is in contact with the end surface 45 a of the cartridge retainer 45 attached to the outer end of the large-diameter hole 20, Further movement in the direction of arrow R is restricted.
  • the cartridge retainer 45 also has a function as a cap that covers and protects the outer end side of the spring cartridge 13 during normal operation.
  • the spring cartridge 13 is appropriately expanded and contracted according to the compressive force applied thereto, so that the valve rod 1 side (that is, the valve body side) is moved. It is possible to prevent an excessive load from being input without fail, and to ensure the safe and reliable operation of the motor-operated valve.
  • Reference numeral 18 denotes a torque limit sleeve for restricting the maximum compression displacement of the dish panel 17.
  • reference numeral 1 denotes a valve stem having a valve body (not shown) connected to the lower end thereof, and a stem nut 2 is screwed into a screw portion on the upper side of the valve stem. Furthermore, the stem nut 2 is inserted into and fixed to a cylindrical drive sleeve 3 and integrated therewith.
  • the drive sleep 3 can be rotated integrally with a worm wheel 4 fitted and arranged on the outer peripheral side thereof, and the rotational force of the stem nut 2 is transmitted to the valve rod 1 as its axial displacement force. Then, the valve body is driven to open and close (elevate drive) through the valve rod 1.
  • the valve rod 1 can only move in the axial direction, and its rotation is restricted.
  • a worm 5 is combined with the worm wheel 4, and the worm 5 is rotationally driven by a motor (not shown) via the motor shaft 6, thereby The wheel 4 rotates, and the rotational force is transmitted to the valve stem 1 through the stem nut 2 as the lift drive force.
  • the motor shaft 6 is provided with a spline 6a, and the worm 5 is spline-fitted to the spline 6a portion, so that the worm 5 receives the rotational force from the motor shaft 6.
  • the movement is self-existing.
  • the worm 5 has one end side extended in the axial direction to form an extended cylindrical portion 7.
  • a circumferential groove 8 is provided on the outer periphery of the extended cylindrical portion 7, and an actuator 9 a of a torque switch 9 is engaged with the circumferential groove 8.
  • the torque switch 9 operates when the worm 5 moves in the axial direction from its neutral position and the amount of movement reaches a predetermined value, and generates a stop signal for the motor to stop it. It is intended to protect the valve stem 1 by protecting it from transmitting excessive torque.
  • a bearing 10 is fixed to the end of the extended cylindrical portion 7 of the worm 5 by a nut 11, and a movable shaft 12 described below is connected to the end of the extended cylindrical portion 7 through the bearing 10 so as to be relatively rotatable.
  • the movable shaft 12 includes a large-diameter cylindrical portion 12 a having a large-diameter cylindrical portion 1 2 a to which the bearing 10 is internally coupled, and a small-diameter cylindrical portion 1 2 b continuous to the large-diameter cylindrical portion 12 a.
  • a spring force trig 13 described below is attached to the small diameter cylindrical portion 12 b of the movable shaft 12.
  • the spring cartridge 13 generates a predetermined holding torque to the worm wheel 4 via the worm 5 after the valve body is fully opened or fully closed.
  • One washer 14 disposed on the stepped surface side between the large diameter cylindrical portion 1 2 a and the small diameter cylindrical portion 1 2 b and screwed to the end of the small diameter cylindrical portion 1 ′ 2 b, which will be described later.
  • a plurality of dish panels 17 are alternately attached to the other busher 15 arranged on the nut 26 side so as to face each other alternately and with a required tension load applied.
  • the axial length of the spring cartridge 13 in a single state (that is, the outer dimension between the washers 14 and 15 when a predetermined tension load is generated) is the large diameter of the movable shaft 1 2.
  • the stepped surface between the cylindrical part 1 2 a and the small diameter cylindrical part 1 2 b and the seat 2 of the nut 26 Therefore, it is held fixed at a predetermined value.
  • the movable shaft 12 is fitted into a small diameter hole portion 19 provided coaxially with the worm 5, and the spring cartridge 13 is
  • the movable shaft 12 is fitted into a large-diameter hole 20 that is continuous with the small-diameter hole 19, and the movable shaft 12 can move in the axial direction within the small-diameter hole 19, and the spring cartridge ⁇ 3 can be expanded and contracted within the large-diameter hole 20.
  • the washer 14 disposed on one end of the spring cartridge 13 is engaged with the shoulder 21 between the small-diameter hole 19 and the large-diameter hole 20. Movement in the direction of arrow L is restricted. Further, the washer 15 disposed on the other end side of the spring cartridge 13 is arranged on the end surface 4 2 a of the cartridge presser 42 described below disposed near the outer end of the large-diameter hole 20. By abutting, further movement in the arrow R direction is restricted.
  • the cartridge retainer 42 is composed of a stepped cylindrical body having a large diameter portion and a small diameter portion, and is fixedly held by an adapter 3 8 fixed on the end surface of the casing, and the end surface 4 on the large diameter portion side. 2
  • the movement restriction of the washer 15 is performed by a.
  • a strain gauge 37 is pasted on the end surface of the large-diameter cylindrical portion 12 a of the movable shaft 12 in a non-contact state with the one washer 14.
  • This strain gauge 37 is a characteristic component in the second motor-operated valve drive 'system, and the movable shaft 12 as the spring cartridge 13 is compressed in the arrow L and R directions. Load (ie, compression force of the spring cartridge 13) is measured as strain displacement, and the measured data is taken out and used as diagnostic data for the motorized valve.
  • the nut 26 has a main body portion 26 a screwed into an end portion of the small-diameter cylindrical portion 12 b, and ⁇ ; a cylindrical extension extending coaxially from one end side of the body portion 26 a
  • the lead wire 41 is drawn out from the strain gauge 37 through the inner hole, and a connector 48 is attached to the tip of the lead wire 41.
  • the extension portion 26 b of the nut 26 ′ is fitted inside the small diameter portion of the cartridge retainer 42, and between the inner periphery of the cartridge retainer 42 and o Rin 2 4 are arranged.
  • o-ring 24 a shaft seal between the cartridge retainer 42 and the nut 26 which moves relative to the cartridge retainer 42 in the axial direction is performed.
  • An o-ring 25 is disposed between the outer peripheral surface of the large-diameter portion of the cartridge retainer 42 and the inner peripheral surface of the adapter 38.
  • the connector 48 faces outward from the end surface of the cartridge retainer 42. During normal operation, the cap 46 is attached to the cartridge retainer 42.
  • the motorized valve for example, the soundness of the motorized part, the worm, and the valve body drive unit that transmits the rotational force of the quorum to the valve body
  • the following sensor unit 3 instead of the cartridge presser 4 5, it can be temporarily installed.
  • the strain gauge 37 is permanently installed.
  • the cartridge presser 45 that is always mounted in the normal operation B of the motor-operated valve is removed from the casing side.
  • the sensor unit 30 described below is temporarily mounted on the outer end side of the spring cartridge 13, and the amount of compression of the spring cartridge 13 and the compression force acting on the compression amount under the operating state of the electric valve It is configured to measure and acquire the values.
  • the sensor unit 30 abuts and fixes the brazed cylindrical adapter 31 on the end surface 22 of the casing so as to cover the end portion side of the large-diameter hole portion 20 via the packing 23, and
  • the sensor holder 3 2 is attached to the outer end surface of the adapter 31.
  • a plate-like load cell 3 3 is disposed between the outer end surface of the adapter 31 and the end surface of the sensor holder 32 so as to divide the space between the two in the axial direction.
  • a strain gauge 35 is attached to this load cell 33.
  • one core of core 36 is connected. Further, the other end of the core 36 is brought into contact with the washer 15 on the side of the spring cartridge 13 so as to restrict the washer 15 from moving further in the arrow R direction. ing. Accordingly, the compressive force applied to the spring cartridge 13 is transmitted from the washer 15 to the load cell 33 through the core 36, and is detected as a distortion amount in the load cell 33. Based on the amount, the compression force applied to the spring cartridge 13 is acquired.
  • the space on the adapter 31 side is positioned inside the core 36.
  • the nut 16 is arranged to enter.
  • a laser sensor 34 is disposed in the space on the sensor holder 32 side.
  • the laser sensor 34 passes through the through-hole (not shown) provided in the load cell 33 and the core 36 and faces the nut 16 attached to the tip of the movable shaft 12, and the nut 1
  • a “measurement point” is set on the top surface of the nut 16 and the distance (interval) from the laser sensor 34 to the measurement point is measured.
  • valve box 61 in which a valve body is accommodated, the worm wheel 4, the worm 5 and the like as diagnostic data acquisition means.
  • Strain gauges 5 1 and 5 2 are installed on the pair of left and right struts 5 3 and 5 4, respectively, and the strain acting on the valve stem is measured in order to measure the stress acting on the valve stem 1, that is, the valve stem stress.
  • Gauge 5 5 is installed.
  • a current value measuring means composed of a magnetic sensor or the like is arranged for measuring the current value of the motor.
  • the sensor unit 30 has an amount of movement in both the closing operation of the worm 5 (when moving in the direction of arrow R) and the opening operation (when moving in the direction of arrow L) (that is, The amount of compression of the spring cartridge The amount of influence) can be measured by the laser sensor 34.
  • the compressive force applied to the spring cartridge 13 is determined by the function of the load cell 33, either on the closing side or on the opening side. In this embodiment, only the closed operation side) can be measured, and the other side (open operation side) cannot be measured.
  • the strain gauge 37 is pasted on the end surface of the large-diameter cylindrical portion 12 a of the movable shaft 12. Ridge 1 3 compression can be measured directly in both closed and open operation.
  • the strain gauge 37 needs to be calibrated.
  • a sensor unit 40 having a configuration substantially the same as that attached to the first motor-operated valve drive system as shown in FIG.
  • the cartridge presser 42 and the cap 46, the load cartridge 33 and the load cell 33 of the sensor unit 40 are temporarily attached to the outer end side of the spring cartridge 13.
  • the strain gauge 37 is calibrated by the laser sensor 34.
  • the sensor unit 40 abuts the flanged cylindrical adapter 39 on the casing end surface 22 through the packing 23 so as to cover the end of the large-diameter hole 20.
  • the sensor holder 3 2 is attached to the outer end of the adapter 39.
  • a plate-shaped mouth cell 33 is arranged so as to bisect the space between the two in the axial direction.
  • a strain gauge 35 is attached to the load cell 33, and one end of the core 43 is connected to the load cell 33.
  • the other end 4 3 a of the core 43 is brought into contact with the washer 15 on the spring cartridge 13 side so as to restrict the movement of the washer 15 further in the arrow R direction. It has become. Accordingly, the compressive force applied to the spring cartridge 13 is transmitted from the washer 15 to the load cell 33 via the core 43, detected as a strain amount in the load cell 3'3, and based on this strain amount. Thus, the compressive force applied to the spring cartridge 13 is acquired. -. ' Of the section on the adapter 39 side and the section on the sensor holder 32 side divided by the load cell 33, the space on the adapter 39 side is positioned inside the core 43. The nut 26 is arranged to enter. Then, in order to take out the signal line 4.4 from the connector 48 attached to the tip of the nut 26 to the outside, slits are formed in the peripheral walls of the adapter 39 and the core 43, respectively. 2 7 and 2 8 are provided. '
  • a laser sensor 34 is disposed in the space on the sensor holder 32 side. This laser sensor 34 faces the nut 26 attached to the tip of the movable shaft 12 through a through hole (not shown) provided in the load cell 33 and the core 36. By measuring the position of the top surface of the nut 26, the amount of axial movement of the worm 5, that is, the amount of compression of the spring cartridge 13 is indirectly measured.
  • the strain gauge 37 is calibrated by the load cell 33 and the laser sensor 34 of the sensor unit 40.
  • the above-described “spring compression method” is applied to compress the spring cartridge dish panel from the outside while the motor-operated valve is stopped, and the pressure against the spring cartridge in that case is compressed.
  • the strain gauge 37 can be calibrated based on the correlation between the compression force and the amount of compression. '
  • the compression gauge applied to the spring cartridge 1.3 is thereby both closed and opened.
  • a torque curve is obtained by constantly measuring the compression force and the compression amount applied to the spring cartridge 13 to obtain a torque curve, and the spring cartridge 1 3 is obtained from a change in the torque curve.
  • a sensor holder 47 having only the laser sensor 34 can be attached instead of the cap 46.
  • the sensor unit 30 and the sensor unit 40 which are temporarily attached to the first and second motor-operated valve drive systems are used as means for measuring the worm position. Since the one sensor 3 4 is used, for example, it has a more compact configuration than that using a differential displacement meter as the measuring means, and therefore it is possible to continuously acquire data continuously. It is.
  • the sensor unit 30 is mounted at the time of diagnosis, but the strain gauge 37 is permanently installed.
  • the strain gauges 51 and 52 disposed on the yoke 50 are permanently installed because there is no problem in the operation of the motor-operated valve even if they are permanently installed.
  • the magnetic sensor can be easily installed outside the motor-operated valve and does not need to be installed permanently, but can be installed permanently or only at the time of diagnosis.
  • the strain gauge 55 installed in the valve rod 1 may be caught when the valve rod 1 moves up and down in the axial direction along with the on-off valve operation when it is permanently installed. Its permanent installation is not preferred and it is installed only at the time of diagnosis.
  • the diagnosis method of the present invention although the diagnostic data is acquired using each sensor at the first time, the correlation between the respective data is obtained based on the first acquired data, and this is stored as a correlation database. From the next time onwards, only the data that can be obtained relatively easily is measured, the other data corresponding to the measurement data is read out by referring to the database, and the diagnosis for the required diagnosis item is performed based on the read data. By doing so, the efficiency of the diagnosis work is improved.
  • the diagnosis method and the like of the present application will be described in detail based on some embodiments.
  • the diagnosis method and apparatus according to the first embodiment does not include a strain gauge on the spring cartridge 13 side, and the spring car is not operated during normal operation.
  • a cap 38 is attached to the outer end of the trough 13 in the axial direction, while the sensor unit 30 is temporarily installed in place of the cap 38 as shown in FIG.
  • the target is a motor-operated valve to be mounted.
  • This embodiment corresponds to claim 1, claim 2, claim 57, and claim 58, and is based on the most basic idea. That is, as shown in FIG. 8, a plurality of physical quantities are acquired in advance, and a correlation database indicating the relationship between these is obtained and held. When diagnosing motor-operated valves from the next time onward, one particular type of physical quantity is obtained by measurement.
  • the motor-operated valve is diagnosed based on the read physical quantity.
  • the plurality of physical quantities are specifically specified.
  • the physical quantity is an information value used for diagnosis of the motor-operated valve.
  • the valve stem stress acting on the valve stem 1 the yoke stress acting on the yoke 50, the spring cartridge 13 Compression force and compression amount, movement amount of the worm 5, current value of the motor, etc., which are measured when the correlation database is acquired.
  • the correlation database is acquired between correlated information values. For example, as shown in FIG.
  • the yoke stress sensor output (that is, the yoke stress acting on the yoke 50) is It is grasped as a reaction force of the valve stem stress acting on the rod 1, and torque, and immediately, the torque applied to the stem nut 2 is obtained as a product of the compression force of the spring cartridge 13 and the radial dimension of the worm wheel 4. Since this is expressed as the axial force of the valve stem 1, there is a correlation between this torque and the yoke stress sensor, so the correlation is established using the torque and yoke stress sensor output as a parameter. The curve L is set. Therefore, this correlation database is held for each correlated information value.
  • the strain gauges 51 and 52 arranged in the yoke 50 correspond to physical quantity measuring means.
  • the correlation between a plurality of types of physical quantities related to the torque of the motor-operated valve is held as a correlation database, and the specific information acquired by measurement with reference to the correlation database.
  • Another type of physical quantity corresponding to one type of physical quantity Is obtained, and the diagnosis regarding the torque of the motor-operated valve is performed based on the other type of physical quantity, so that a correlation between a plurality of types of physical quantities related to the torque of the motor-operated valve is obtained in advance and held.
  • the other type of physical quantity corresponding to the specific one type of physical quantity is read with reference to the correlation database, It is possible to make a diagnosis regarding the torque of the motorized valve based on other types of physical parameters.For example, every time a diagnosis regarding the torque of the motorized valve is performed, another type of physical quantity that is relatively difficult to measure is obtained. Compared with the case of making a diagnosis, the diagnosis work is very efficient and the work can be performed with good workability, and the labor saving is promoted to reduce the diagnosis cost.
  • the correlation between multiple types of physical quantities related to the torque of the motorized valve is stored as a correlation database, so that even if the diagnosis regarding the torque of the motorized valve covers multiple items, this can be done quickly. Therefore, the effect of reducing diagnostic costs becomes even more prominent.
  • the correlation between the physical quantities acquired as described above is displayed by applying the inventions of claims 33 to 40 and claims 73 to 40.
  • claims 33 to 40 and claims 73 to 40 it is possible to easily diagnose the temporal change in the driving force transmission state based on the change in trend of the correlation.
  • a method for diagnosing a change with time in the driving force transmission state based on this correlation will be described in detail.
  • FIG. 28 is an enlarged view of the closing operation end portion in FIG. Fig. 28 shows an example of diagnosis of the torque setting value ri, that is, the motor current is turned off by the torque switch operation, and the motor stops, so the torque when the current is turned off is diagnosed as the torque setting value.
  • the correlation database can be used to make a simple diagnosis from the yoke stress. wear.
  • Such a correlation database can be arbitrarily set between each measured data element.
  • Fig. 29 Correlation diagram of "compression amount vs. torque”
  • One torque (or compression amount), current value) "and” Yoke stress (or valve stem stress) one torque (or compression amount), current integrated value "shown in Figs.
  • the correlation diagram of is illustrated.
  • the tension load decreases in the torque curve (1) acquired at the beginning of installation of the spring cartridge 13 and the torque curve (2) acquired after the lapse of a predetermined period.
  • the torque curve (2) changes to the low torque side with respect to the torque curve (1).
  • the pan panel constituting the spring cartridge 13 may be deteriorated (abrasion, etc.), and the time variation of the dish panel advances with the decrease in the tension load.
  • the change state of the tension load of the spring cartridge 13 is continuously acquired, and the change tendency is monitored to know the change with time of the pan panel of the spring cartridge 13 and replace it.
  • the method for predicting the timing has been explained, but the prediction method based on the change over time is not limited to the change over time in the pan panel, but can be widely applied to various elements related to the diagnostic items related to the driving force of the motorized valve. It is. For example, by grasping the change tendency of the torque curve, the change tendency of the motor current value, the change tendency of the yoke stress, etc. ⁇ Prediction and prediction of replacement timing due to wear and deformation of the valve body and valve stem, etc. are extremely effective in ensuring stable and reliable operation of the motorized valve over a long period of time It is.
  • valve stem stress—yoke stress it is possible to diagnose the malfunction of the drive mechanism or the presence / absence of the set value of the set torque of the spring cartridge 13.
  • the correlation curve (1) in the normal state acquired at the beginning of installation of the spring cartridge 13 and the correlation curve (2) acquired after a predetermined period from the installation were compared.
  • the curve length of the correlation curve (2) is shorter than that of the correlation curve (1) and the maximum stress of both the valve stem stress and the yoke stress is recognized to be decreasing, one of the causes
  • One possible cause is a reduction in the valve stem drive force (the drive force that is actually transmitted from the warm side to the valve stem via the stem nut).
  • This decrease in the valve stem drive force is caused by a malfunction of the drive mechanism (for example, the friction resistance increases due to oil shortage in the stem nut portion, etc., and the transmission efficiency of the drive force on the worm side to the valve element side decreases. This is caused by a deviation in the set value of the set torque of the spring cartridge 1 3 (that is, a deviation of the set value toward the low torque side). It is possible to accurately diagnose the presence or absence of a value shift. In addition, since each correlation curve is on the same straight line, it can be confirmed that the sensitivity characteristics of each sensor do not change and are normal.
  • Fig. 3 “Yoke stress (valve stem stress) One torque (TSC compression amount)” Current value envelope correlation diagram enables the following diagnosis (Note that the yoke stress is the stem pressure) It is possible to replace “yoke stress” with “valve stem stress” because of the linear correlation with the stress, and the compression of the spring cartridge (abbreviated as TSC) above the tension load. “Torque” can be read as “Compression amount of spring cartridge” because it has a linear correlation with the amount).
  • the torque curve when the motorized valve is operating normally is (a-1)
  • the current value envelope curve (the curve that envelops the peak of the current value) is (b-1)
  • the torque curve is (a-2)
  • the current value envelope curve is (b-1).
  • the current value envelope curve has changed from (b_l) to (b-2) Place Shows that the current value on the motor side has changed to an increasing side compared to the normal state, and from this change trend, for example, proper torque transmission is being performed from the worm part to the valve body side. Therefore, it can be diagnosed that the motor is operating at a high load, and that some trouble has occurred from the worm part to the motor side.
  • FIG. 3 3 shows a part of the Y-axis of the current integrated value curve (Fig. 2 8 is the end of closed operation in Fig. 27). Correspondence) is expanded.
  • the torque curve when the motorized valve is operating normally is the curve (a_l)
  • the current integrated value curve is the curve (b-1)
  • the torque curve after the lapse of the predetermined period is the curve (a-2).
  • the current integrated value curve is the curve (b _ 2).
  • the current integrated value is displayed as the time integrated current value.
  • FIG. 28 there is a method for diagnosing the torque set value based on the torque at the time of turning off the current, as shown in Fig. 28.
  • the torque switch when the torque switch is activated, the motor current is turned off and the motor stops.
  • the correlation database of “Yoke Stress vs. Torque” it is possible to easily diagnose the torque setting value based on the yoke stress, compared with the diagnosis of the torque setting value that directly measures the compression force of the spring cartridge. Make diagnosis work quick and labor-saving Will be.
  • the valve stem stress and the valve body cutoff force which are the original functions of the valve, can be directly diagnosed by the yoke stress.
  • the diagnostic method and apparatus of the second embodiment is an electric valve provided with the first electric valve drive system, that is, as shown in FIG. 1, without a strain gauge on the spring cartridge 13 side, In normal operation, the cartridge presser 4-5 is mounted on the outer end side in the axial direction of the spring cartridge 13. On the other hand, when the motorized valve is diagnosed, the sensor unit is replaced with the cartridge presser 45 as shown in FIG.
  • the target is a motor-operated valve in which 30 is temporarily installed.
  • This embodiment corresponds to claim 3 and claim 59, and the yoke stress is used as a specific one type of physical quantity in the first embodiment, and a specific other type of physical quantity is used. Each torque is specified. In other words, as shown in Fig.
  • the yoke stress and torque are measured and their correlation database (see Fig. 9) is obtained and stored.
  • the subsequent diagnosis only the yoke stress, which is easy to measure, is acquired by measurement, and the torque corresponding to the yoke stress (yoke stress “b” in FIG. 9) acquired by measurement with reference to the interphase database. (Torque “T” in FIG. 9) is read out, and diagnosis regarding the torque of the motor-operated valve is performed based on the read-out torque.
  • the correlation database is preferably displayed by display means. That is, by displaying these, it becomes easy to grasp each physical quantity at the time of diagnosis of the motorized valve and to judge each diagnosis item based on the correlation between them, and the motorized valve diagnosis work is easier and faster.
  • the yoke stress is measured by a yoke stress sensor (corresponding to “yoke stress measurement means” in the claims), but in the case of this embodiment, the strain disposed in the yoke 50 Gauges 5 1 and 5 2 correspond to the yoke stress sensor. ' this ⁇
  • the mounting position of the strain gauges 51, 52 with respect to the yoke 50, and the yoke 50, as shown in FIG. A pair of left and right struts 5 3, 5 4 arranged between the lower flange portion 5 6 to be abutted and fastened and the upper flange portion 5 7 to be abutted and fastened to the valve body drive portion 62
  • the valve stem 1 is arranged with the intermediate position between the pair of pillars 53, 54 extending vertically.
  • Strain gauges 51 and 52 are attached to the yoke 50 at positions closer to the inside center of the pair of columns 51 and 52, respectively.
  • the applicant's position is that the inner position of each of the pillars 5 3 and 5 4 to which the strain gauges 51 and 52 are attached is a portion where the amount of strain is large and stably occurs in the yoke 50. This was confirmed by the experiment. Therefore, by arranging the strain gauges 51 and 52 at such positions, the reliability of the yoke stress measured by the yoke stress sensor is high, and as a result, referring to the correlation database, the yoke The torque read in response to the stress is also highly reliable, and as a result, the accuracy and reliability of the motor valve diagnosis result are further improved.
  • the strain gauges 51 and 52 are respectively arranged at symmetrical positions across the valve stem axis portion of the yoke 50, and the average value of the output values of the yoke stress sensors is determined as the yoke. I try to get it as stress.
  • the reliability of the measured value of the yoke stress itself measured by each of the strain gauges 5 1 and 5 2 is further enhanced, and as a result, the accuracy and reliability of the diagnosis result of the motor-operated valve are further improved. A further improvement in sex can be expected.
  • the correlation database is a database (see FIG.
  • the diagnosis work is extremely simple and the work can be performed with good workability, and the labor saving is promoted to reduce the diagnosis cost.
  • the yoke stress is a stress acting on the yoke 50 exposed to the outside of the motor-operated valve and can be measured from the outside of the motor-operated valve.
  • the strain gauges 51 and 52 are attached to the yoke stress. Acquiring the stress corresponding to this from the amount of strain, that is, the yoke stress, is, for example, compared to the case of measuring the stress by opening a part of the motorized valve and attaching a strain gauge inside it. Since the work is much easier, it is possible to further improve the diagnostic workability and further reduce the diagnostic cost by saving labor. .
  • the force acting on the valve stem due to the frictional force of the driving force transmission mechanism, the sliding resistance of the packing etc. accompanying the operation of the valve stem, etc.
  • the force that actually acts on the valve stem does not cause oil shortage even if it is driven at the specified torque.
  • the torque-only diagnosis is insufficient in terms of the diagnosis of the force acting on the valve body and the valve stem, which should be diagnosed as a function of the motor-operated valve.
  • the stress corresponding to the valve stem stress can be known from the yoke stress obtained by measurement, and the torque corresponding to the yoke stress is known from the correlation database of yoke stress and torque. Therefore, the drive transmission mechanism can be diagnosed, and as a result, a combined diagnosis with torque enables a total diagnosis of the motor-operated valve.
  • the diagnosis method and apparatus of the third embodiment correspond to claims 4 and 60, and as shown in FIG. 11, as in the second embodiment, yoke stress and torque
  • the torque corresponding to the yoke stress is read from the correlation database only by measuring the yoke stress, and the motorized valve is diagnosed based on this.
  • the motorized valve provided with the second electric valve drive system that is, as shown in FIG. 2, is a strain gauge 37 (calibrated before the calibration deadline) on the spring cartridge 13 side.
  • the compression gauge of the spring cartridge 13 is measured and acquired during both the closing operation and the opening operation at the time of diagnosis (first acquisition).
  • the yoke stress is measured and acquired by the pair of strain gauges 51, 52 provided in the yoke 50 both during the closing operation and during the opening operation (second acquisition means). .
  • the strain gauges 51 and 52 constituting the second acquisition means are also used as a yoke stress measurement means for measuring the yoke stress in the subsequent diagnosis as described below.
  • the torque and yoke stress are calculated based on the measured compressive force in both the opening operation and the closing operation, and the yoke stress in both the opening operation and the closing operation.
  • a correlation is obtained and obtained as a correlation database.
  • only the yoke stress is obtained by measurement, and the torque corresponding to the obtained yoke stress is read from the correlation database. Based on the read torque, the motor-operated valve Torque diagnosis can be performed.
  • the above torque diagnosis can be performed directly by the strain gauge 37 when the strain gauge 37 is within the calibration effective period. That is, as shown in FIG. 2, it can be performed in the same manner as in normal operation, that is, with the cap 46 being attached to the outer end of the spring cartridge 13 in the axial direction. Therefore, it is possible to immediately shift to diagnosis work without requiring any incidental work from normal operation, and it is also possible to perform continuous diagnosis during normal operation if necessary.
  • the strain gauge 37 cannot be diagnosed with high accuracy after the calibration deadline. Therefore, according to the diagnosis method of this embodiment, the torque corresponding to the yoke stress obtained by measurement is read from the correlation database, and the motor-operated valve is diagnosed based on the read torque.
  • the strain gauges 51 and 52 Diagnosis can be performed with high accuracy, and the reduction of diagnostic costs through labor saving is promoted.
  • the force actually acting on the valve stem due to the frictional force of the driving force transmission mechanism, the sliding resistance of the packing etc. accompanying the actuation of the valve stem, etc. does not necessarily have a constant relationship with the torque.
  • the force that actually acts on the valve stem will be greater than when no oil shortage occurs even if it is driven at the specified torque.
  • the diagnosis of torque alone is not sufficient in terms of the diagnosis of the force acting on the valve body and the valve stem, which should be diagnosed as a function of the motorized valve.
  • the stress corresponding to the valve stem stress can be known from the yoke stress obtained by measurement, and the torque is directly applied by the strain gauge 37 (within the calibration effective period).
  • the drive transmission mechanism can be diagnosed by comparing the valve stem stress with the torque, and as a result, a total diagnosis of the motor-operated valve can be made by combining with the diagnosis related to the torque. Is.
  • the strain gauge 37 provided on the spring cartridge 13 side is calibrated by the pair of strain gauges 51 and 52 provided on the yoke 5.0 as described above.
  • the sensor cell 40 including the load cell 33 and the laser sensor 34 is attached, and the output of the load cell 33 previously calibrated is attached.
  • the strain gauge 37 can be calibrated by the load cell 33.
  • the load cell 33 is externally attached and the calibration thereof is easy, the calibration of the strain gauge 37 can be easily performed by using the calibrated load cell 33. For example, Compared to the case where the strain gauge 37 is removed from the motor-operated valve and the calibration is performed, the calibration work can be simplified and speeded up.
  • a sensor unit 47 having only the laser sensor 34 is provided temporarily on the outer end side in the axial direction of the spring cartridge 13 by the adapter 38 instead of the cap 46.
  • a torque curve can be obtained from the correlation with the strain gauge 37 by measuring the amount of compression of the spring cartridge 13 by the laser sensor 34. Therefore, for example, by permanently installing the sensor 47 and displaying a torque curve that is always acquired, it is possible to easily diagnose a change over time in the tension load of the spring cartridge 13.
  • the laser sensor 34 simply measures the compression amount of the spring cartridge 13. Therefore, if it has such a function, for example, a differential transformer may be used instead of the laser sensor 34. It is also possible to use a differential position measuring mechanism provided. Further, it is needless to say that the sensor unit 40 having a configuration provided with the load cell 33 in addition to the laser sensor 34 as shown in FIG.
  • the mounting positions of the strain gauges 51 and 52 with respect to the yoke 50 and how to use the measured values are claimed.
  • Strain gauges 5 1 and 5 2 are attached to the inner center positions of 1 and 52, respectively, thereby improving the reliability of the yoke stress measured by the yoke stress sensor. Refer to the data base to deal with the yoke stress.
  • the reliability of the torque that is read out in this way is increased, thereby further improving the accuracy and reliability of the diagnosis result of the motor-operated valve.
  • strain gauges 51 and 52 are respectively arranged at symmetrical positions across the valve stem axis portion of the yoke 50, and the average value of the output values of the yoke stress sensors is determined as the yoke. By obtaining it as a stress, the reliability of the measured value of the yoke stress measured by each of the 'strain gauges 5, 1, 5 2 is further enhanced. Further, in this embodiment, since the correlation database is displayed by the display means, it is easy to judge each diagnosis item based on the correlation at the time of diagnosis of the motor-operated valve. Diagnosis costs can be reduced by speeding up and labor saving.
  • the diagnosis method and apparatus of the fourth embodiment correspond to claim 5 and claim 61, and use the sensor unit 30 shown in FIG. 3 to make a diagnosis regarding the torque of the motor-operated valve.
  • the correlation database of “Yoke Stress vs. Torque” was acquired at the first diagnosis, and the torque that was relatively difficult to measure in the next diagnosis (a numerical conversion of the compression force of the spring cartridge 13). Acquisition of only the yoke stress, which is easy to measure, is obtained by measurement, and the h ull corresponding to the yoke stress obtained by this measurement is obtained by reading from the correlation database. Therefore, it is intended to facilitate and speed up the total diagnosis and diagnosis work of the original function of the motorized valve.
  • the torque-only diagnosis is insufficient in terms of the diagnosis of the force acting on the valve body and valve stem that should be diagnosed as a function of the motorized valve. is there.
  • the stress corresponding to the valve stem stress can be known from the yoke stress obtained by measurement. Since QQ can know the torque corresponding to the yoke stress from the correlation database of the yoke stress and torque, the drive transmission mechanism can be diagnosed. Diagnosis is possible.
  • the sensor unit 30 includes the load cell 33 and the laser sensor 34, and the arrow L of the spring cartridge 13 is provided on the structure of the load cell 33.
  • the compressive force in the direction cannot be measured.
  • the compression force at the time of the other side operation is acquired based on the compression amount and the compression force at the time of the one side operation that can be acquired by measurement, and the compression amount at the time of the other side operation.
  • the correlation data that needs to be obtained by measurement prior to the acquisition of the correlation database of “Yoke Stress vs. Torque” the correlation data of “compression force (or compression amount) and yoke stress” during one-side operation
  • the correlation data of “compression amount and compressive force” during one-side operation and the correlation data of “compression amount and yoke stress” during the other-side operation are determined by the load cell 33.
  • the compressive force during one-side operation is acquired by the strain gauges 51 and 52 disposed on the yoke 50, respectively, and the yoke stress during one-side operation and the other-side operation is acquired.
  • the correlation of each data is obtained only when the two correlated data are acquired by measurement at the same time.
  • the compression amount and the compression force and the yoke stress at the time of the side operation are simultaneously obtained, and the compression amount and the yoke stress at the time of the other side operation are obtained simultaneously. I try to get it at the same time.
  • the compression force during the other side operation is acquired based on the correlation data between the compression amount and the compression force during the one side operation and the compression amount during the other side operation.
  • the problem is the “backlash” of the spring cartridge 13.
  • the amount of compression of the spring cartridge 13 is not directly measured from both ends, but the nut of the nut 16 that moves integrally with the worm 5 by the laser sensor 34. It is configured to indirectly measure the amount of movement in the home axis direction.
  • the axial length of the single spring cartridge 13 is the outside of the pair of washers 14 and 15 located at both ends of the plate panels 7 in the row direction. Specified in dimensions.
  • the spring cartridge 13 is restricted in movement in the direction of the arrow L by having one of the washers 14 abutting against the stepped surface 21 of the large diameter hole 20 and the small diameter hole 19 of the casing.
  • the other washer 15 is brought into contact with the end surface 3 6 a of the core 3 6 disposed on the inner side of the adapter 31 fixed on the end surface 2 2 of the casing. Restrictions on moving to
  • the spring cartridge 13 or the adapter The axial length of the spring cartridge 13, the stepped surface 21, and the end surface of the core 36 due to a manufacturing error of the tape 31, etc., an assembly error thereof, or a “sag” of the packing 23 A dimensional difference, that is, “backlash” inevitably occurs between the gaps of 3 6 a. Therefore, in the presence of this “backlash”, the amount of movement of the nut does not match the actual amount of compression of the spring cartridge 13, and as a result, the amount of movement of the nut 16 is measured. When the acquired “deemed compression amount” is used as the “compression amount”, that is, the compression amount of the spring cartridge 13 is used as the compression amount of the spring cartridge 13. If it is indirectly obtained as the movement amount (movement distance) of 16, the following problems occur.
  • FIG. 18 shows the spring cartridge 13 in a state before starting the closing operation of the electric valve.
  • the spring cartridge 13 In a state before starting the closing operation of the motor-operated valve, the spring cartridge 13 is in a state of a tension load or less, and one washer 15 is in contact with the end surface 36 a of the core 36. At this time, the other washer 14 of the spring cartridge 13 is opposed to the stepped surface 21 with a backlash ⁇ L.
  • the laser sensor 34 measures the distance [L s 1] from the end surface 22 to the nut 16 using the end surface 22 of the casing as a measurement reference position.
  • FIG. 20 shows the spring cartridge 13 in a state before the opening operation of the motor-operated valve.
  • the spring cartridge 13 In the state before the opening operation of the motor-operated valve, the spring cartridge 13 is in a state of a tension load or less, and the other washer 14 is in contact with the step surface 21.
  • one of the spring cartridges 1 3 J n one of the spring cartridges 1 3 J n
  • the other washer 15 is opposed to the end surface 36 a of the core 36 with a backlash ⁇ L.
  • the laser sensor 34 measures the distance [L s 2] from the end surface 22 to the nut 16 using the end surface 22 of the casing as a measurement reference position.
  • the movable shaft 12 moves integrally with the worm 5 in the direction of arrow L as shown in FIG. Cartridge 13 is 'compressed'.
  • the laser sensor 3 4 measures the distance [L 2] from the end surface 22 to the nut 16 with the end surface 22 of the casing as the measurement reference position. Therefore, the compression amount at the time of opening operation of the spring force trough 13 is obtained as “L s 2 ⁇ L 2”.
  • the origin is set to a single position when measuring the amount of movement (ie, for example, when the spring cartridge 13 moves in the closing operation direction and the opening operation direction as in the above measurement example, the measurement in any of these operation directions is performed.
  • a single position for example, the position shown in Fig. 18 is used as the origin.
  • the measurement is performed with the position of the nut 16 shown in FIG.
  • the measured value measured here In the case of the above measurement example, the measured value obtained is “L 2 + AL”), and the compression value of the spring cartridge 13 at the opening operation is An error corresponding to ⁇ L occurs.
  • the first initial position which is the reference position of the spring cartridge 13 during the closing operation corresponds to the state shown in FIG. 18, and the end face position of the nut 16 in this state is the closed position. This is the starting point for measuring the amount of movement in the operating direction.
  • the first measured value in FIG. 22 is the amount of movement from the origin when the spring cartridge 13 is closed.
  • the second initial position which is the reference position of the spring cartridge 13 during the opening operation, corresponds to the state shown in FIG. 20, and the end face position of the nut 16 in this state is the opening operation. This is the starting point for measuring the amount of movement in the direction.
  • the second measured value in FIG. 22 is the amount of movement from the second initial position that is the origin when the spring cartridge 13 is opened.
  • the second measured value is shifted in the opening operation direction by the amount of movement corresponding to the backlash ⁇ L. For this reason, when measuring the amount of movement during the opening operation, if the origin is set to the same point as the origin during the closing operation, an error corresponding to the backlash ⁇ L will occur.
  • the amount of compression “W 1” at the time of opening operation obtained here does not take into account the play ⁇ L of the spring cartridge 13.
  • the backlash ⁇ L inevitably exists in the compression direction of the spring force cartridge 13 as described above.
  • the torque obtained from the compression force of the spring cartridge 13 at the opening operation is calculated as the compression amount at the closing operation. If the backlash ⁇ L is not taken into consideration when obtaining based on the torque and the torque, a highly accurate diagnosis result cannot be obtained in the diagnosis of the motor-operated valve.
  • the torque curve L 2 at the time of opening when there is no backlash ⁇ L is set symmetrically with respect to the origin P with respect to the torque curve L 1 at the time of closing.
  • the torque curve L 3 at the time of opening operation when the play A L exists is shifted from the torque curve L 2 to the compression amount (one) side by the play ⁇ L, and the origin is set as Q.
  • a correlation database of “yoke stress—compression force” is acquired.
  • the correlation database obtained in this way is used for diagnosis relating to the torque during the opening operation.
  • the correlation data of “Yoke stress-torque” in FIG. 13 obtained by actual measurement is used.
  • the yoke stress is measured by the yoke stress measuring means, and the torque corresponding to the yoke stress obtained by the measurement is obtained by referring to the correlation database. read out. Based on the read torque, a diagnosis regarding the torque of the motor-operated valve is performed.
  • these structures are relatively simple and the measurement means that does not directly measure the compression force during operation to the other side is used. Based on the acquired data, it is possible to easily acquire a correlation database between the torque and the yoke stress obtained from the compressive force during operation to one side or the other side. Speeding up of acquisition and acquisition work is ensured, and further improvement of diagnosis workability using the correlation database and reduction of diagnosis cost by labor saving will be further promoted.
  • the torque corresponding to the stress can be easily obtained.
  • the diagnostic workability can be improved compared to the case where the torque obtained from the compression force of the spring force 1 to 3 is measured every time the diagnosis is performed. Improvement can be achieved.
  • the mounting positions of the strain gauges 51 and 52 with respect to the yoke 50 and the use of the measured values are used.
  • a portion where the amount of distortion is large and stably generated in the yoke 50 that is, the pair of the yoke 50 Strain gauges 5 1 and 5 2 are affixed to the inner center positions of the columns 5 1 and 5 2 respectively, thereby increasing the reliability of the yoke stress measured by the yoke stress sensor, With reference to the correlation database, the reliability of the torque read in response to the yoke stress is enhanced, thereby further improving the accuracy and reliability of the diagnosis result of the motor-operated valve.
  • strain gauges 51 and 52 are respectively arranged at symmetrical positions with the valve shaft axis portion in the yoke 50 sandwiched therebetween, and the average value of the output values of the yoke stress sensors is calculated as the average value of the output values of the yoke stress sensors.
  • the correlation database is displayed by the display means, it is easy to judge each diagnosis item based on the correlation at the time of diagnosis of the motor-operated valve. Diagnosis costs can be reduced by speeding up and labor saving.
  • the correlation database is displayed by the display means, it is easy to judge each diagnosis item based on the correlation at the time of diagnosis of the motor-operated valve. Diagnosis costs can be reduced by speeding up and labor saving.
  • the driving force transmission status over time is displayed based on the trend of the correlation. Of course, change diagnosis can be easily performed.
  • the invention of claims 6 and 57 is applied to provide an actual compression amount acquisition means, and when the actual compression amount acquisition means acquires a torque curve at the time of opening operation Next, the play amount of the spring cartridge 13 is obtained, and the actual compression amount excluding the effect of the play amount ⁇ L is obtained from the movement amount of the nut 16 obtained by measurement, and this is calculated based on this actual compression amount. Corresponding torque is acquired, and a correlation database between this torque and the yoke stress is acquired. See this correlation database . _
  • the diagnosis method and apparatus corresponds to claims 29 and 69, and includes a current value supplied to the motor 6 that rotationally drives the worm 5 and a spring cartridge 1. Paying attention to the correlation with the torque obtained from the compression force of 3, obtain a correlation database between these current values and torque, and from the next diagnosis, measure only the current value without measuring the torque. By referring to the correlation database, the torque corresponding to the measured current value is read out, and the diagnosis relating to the torque of the motor-operated valve is performed based on this torque.
  • the diagnosis method of this embodiment if the correlation between the current value corresponding to the electric force and the torque obtained from the compression force of the spring cartridge is obtained in advance and held, this will be used from the next time. If only the current value is measured and acquired, the torque obtained from the compression force of the spring cartridge can be read with reference to the correlation database, and the diagnosis regarding the torque of the motor-operated valve can be performed based on this torque. Therefore, for example, the diagnosis work is much simpler than the case where the diagnosis is performed by obtaining the torque obtained from the compression force of the spring cartridge every time the diagnosis regarding the torque of the motor-operated valve is performed. It can be performed with good workability, and the labor savings will promote a reduction in diagnostic costs.
  • the current value can be measured outside the conduit for the motor valve.
  • one or more multi-element high-sensitivity magnetic sensors 60 are attached to the outer peripheral surface of the conduit 61 in which the wire 62 is wired, and the current value is measured.
  • the measurement and obtaining the torque corresponding to the measured value is, for example, compared to the case where a strain gauge is attached to the motor-operated valve and the torque corresponding to the output of the strain gauge is measured. Since the work is much easier, it is possible to further improve the workability in diagnosis related to the torque of the motorized valve and further reduce the diagnosis cost by saving labor.
  • the calibration method and apparatus according to the diagnosis of the sixth embodiment correspond to the inventions of claims 30 and 70.
  • an electric valve having a strain gauge 37 on the spring cartridge 13 side is used as an object, and the strain gauge 37 is calibrated.
  • the sensor unit 40 is temporarily attached to the outer end side in the axial direction of the spring cartridge 13 without removing the gauge 37 from the valve body drive unit side, and the sensor unit 40 This can be carried out using the port cell 33 provided on the side. That is, as shown in FIG. 24, the first torque is applied by the strain gauge 37 that is permanently installed in the spring cartridge 13 and the sensor jet 40 that is temporarily installed on the outer end side of the spring cartridge 13.
  • the second torque is measured by the strain gauge 35 of the load cell 33, which has been calibrated in advance, and the correlation between the two is stored as a correlation database.
  • the first torque It is possible to calibrate the strain gauge 37 used for measurement. _
  • the strain gauge 37 can be easily calibrated by using the calibrated load cell 3 3.
  • the calibration work can be simplified and speeded up.
  • the diagnosis method and apparatus corresponds to claims 31 and 71 and has a correlation database between the yoke stress and the valve stem stress acting on the valve stem 1.
  • the subsequent diagnosis without measuring the valve stem stress, only the yoke stress is measured, and the valve stem stress corresponding to this yoke stress is obtained by reading from the correlation database.
  • the motorized valve is cut off based on the stress.
  • valve stem stress is a stress that acts directly on the valve body and corresponds to the load actually applied to the valve body
  • the motorized valve is diagnosed based on the value of the valve stem stress.
  • a strain gauge 55 it is usual to measure the stress of the valve stem by directly attaching a strain gauge 55 to the valve stem 1.
  • this valve stem 1 moves up and down in the axial direction in accordance with the opening and closing operation of the valve body, the strain gauge 55 is permanently installed on the valve stem 1 and measurement is performed every time the diagnostic work is performed.
  • valve stem stress corresponding to the yoke stress is read out.
  • the yoke stress and the valve stem stress are measured and acquired.
  • the yoke stress and the valve stem stress are measured by the strain gauges 5 1 and 52 attached to the yoke 50 and the strain gauge 55 attached to the valve stem 1.
  • the correlation database of both is obtained and retained.
  • the valve stem stress is not measured, and only the yoke stress is measured in the strain gauges 51, 52 (the "yoke stress measuring means" in the claims).
  • Read the valve stem stress corresponding to the yoke stress acquired by the measurement (corresponding to “valve stem stress readout means” in the claims), and refer to the correlation database.
  • the motorized valve is diagnosed based on the valve stem stress.
  • the valve stem stress may be measured once at the time of the first diagnostic work, and from the next time, the stress can be easily obtained by measurement from the outside of the motorized valve. Therefore, the diagnosis work is extremely easy and the work can be performed with good workability, and the labor saving is promoted to reduce the diagnosis cost.
  • diagnosis is performed on the direct valve body driving force of the motorized valve based on the force actually acting on the valve body, that is, the valve stem stress, high diagnostic accuracy is ensured and extremely high. A highly reliable diagnosis result can be obtained.
  • the motor-operated valve is targeted, and the suitability of the valve stem stress is diagnosed based on the yoke stress.
  • the method for diagnosing the valve stem stress based on the yoke stress is a motor-operated valve. This is not limited to manual valves. That is, the manual valve and the motorized valve have only a difference between whether the drive source of the valve stem or the like is a motor or human power, and even in diagnosis targeting the manual valve, the yoke stress and the valve stem stress In the next and subsequent diagnoses, the valve stem stress is not measured, only the yoke stress is measured, and the valve stem stress corresponding to this yoke stress is measured as the correlation database. This is because the manual valve can be diagnosed based on this valve stem stress. 51
  • the diagnosis method and apparatus corresponds to claims 3 2 and 7 2, and determines the appropriateness of the correlation between torque and valve stem stress, thereby diagnosing the motor-operated valve.
  • the correlation database is used to obtain the torque and valve stem stress based on the kind of data that can be easily measured, As a result, the diagnostic cost can be reduced and the reliability of the diagnostic result can be improved.
  • all elements other than“ torque / valve stem stress ” are constants determined by the specifications on the stem side. Therefore, it is possible to diagnose the friction coefficient of the valve body drive unit by obtaining the ratio of the torque and the valve stem stress “torque ⁇ valve stem stress”. Therefore, by looking at the correlation between torque and valve stem stress, it is possible to easily determine whether the frictional state of the valve body drive part is normal or abnormal.
  • the friction status is determined by whether or not the value of “torque / valve stem stress” is within the range of values that allow the friction coefficient of the valve body drive part to fall within the allowable range.
  • the “torque / valve stem stress” value exceeds the allowable upper limit, it is determined that the lubrication state is abnormal. For example, when oil breakage occurs in the stem nut portion and the frictional resistance increases, even if the torque remains constant and does not change, the valve stem stress decreases. The value of “” tends to exceed the above upper limit value, and this makes it possible to determine an abnormality as “out of oil”.
  • the torque and the current value have a correlation, and the current value can be easily measured from the outside.
  • the yoke stress and the valve stem stress have a correlation, and the yoke stress can be easily measured from the outside. 5 1 2
  • the yoke stress and the valve stem stress are obtained, and a correlation database (first correlation database) between them is obtained and held. From the next time on, refer to this first correlation database, and correspond to the yoke stress measured by the yoke stress measurement means (the strain gauges 51 and 52 provided on the yoke 50 correspond to this).
  • the valve stem stress to be read is read (corresponds to “valve stem stress readout means” in the claims).
  • the correlation between torque and current value is obtained, and a correlation data base (second correlation database) between these two is obtained and retained, and this second correlation database will be referred to from the next time onwards.
  • the torque corresponding to the current value acquired by the current value measuring means is read (corresponding to “current value reading means” in the claims).
  • the diagnosis method of this embodiment if the first correlation database and the second correlation database are acquired and held in advance, the yoke stress and current value that are easy to measure will be used from the next time onward.
  • the valve stem stress and torque can be read out by referring to the first and second correlation databases, and the correlation between them can be obtained without directly measuring them. Therefore, for example, the correlation between the valve stem stress and the torque can be obtained much more easily than when the valve stem stress and the torque are obtained by measurement at every diagnosis.
  • Fig. 1 is a cross-sectional view showing the drive part of a motor-operated valve without a built-in torque sensor.
  • Fig. 2 is a cross-sectional view showing the drive part of a motor-operated valve with a built-in torque sensor.
  • Fig. 3 is a cross-sectional view showing a state where the sensor unit is temporarily attached to the motor-operated valve shown in Fig. 1.
  • Fig. 4 is a cross-sectional view showing a state where the sensor unit is temporarily attached to the motor-operated valve shown in Fig. 2. '
  • FIG. 5 is a cross-sectional view showing a state where only the laser sensor is attached to the motor-operated valve shown in FIG.
  • Fig. 6 Enlarged view of the yoke part of the motor-operated valve.
  • Figure 7 Cross-sectional view showing a specific method of attaching the magnetic sensor to the conduit.
  • FIG. 8 is a functional block diagram in the motor-driven valve diagnosis method according to the first embodiment of the present invention.
  • Figure 9 An explanatory diagram of the correlation database.
  • FIG. 10 is a functional block diagram in the motor-driven valve diagnosis method according to the second embodiment of the present invention.
  • FIG. 11 is a functional block diagram in the motorized valve diagnosis method according to the third embodiment of the present invention.
  • FIG. 12 is a functional block diagram in the motor-driven valve diagnosis method according to the fourth embodiment of the present invention.
  • Fig. 13 Correlation database between yoke stress and torque.
  • ' Figure 14 Correlation database of compression and torque.
  • Figure 15 Correlation database between yoke stress and compression.
  • Fig. 16 Correlation database of compression amount and torque.
  • Fig. 17 Correlation database of compression amount and torque.
  • Fig. 18 Schematic diagram showing the state of the spring cartridge before starting the closing operation.
  • Fig. 19 This is a schematic diagram showing the state during the closing operation of the spring cartridge.
  • FIG. 20 'is a schematic diagram showing a state before the opening operation of the spring cartridge is started.
  • Fig. 21 Schematic diagram showing the spring cartridge during opening operation.
  • Fig. 22 Time series graph showing the temporal change of the worm position when the motorized valve is closed and opened.
  • FIG. 23 Functional block diagram in the motorized valve diagnosis method according to the fifth embodiment of the present invention.
  • FIG. 24 Functional block diagram of the motorized valve diagnosis method according to the sixth embodiment of the present invention. '
  • FIG. 25 is a functional block diagram in the diagnostic method for an electric valve according to the seventh embodiment of the present invention.
  • FIG. 26 is a functional block diagram in the motor-driven valve diagnosis method according to the eighth embodiment of the present invention.
  • Figure 27 Illustration of acquired data.
  • Fig. 28 An enlarged view of the closing operation end portion in Fig. 27.
  • Figure 29 Correlation data between spring cartridge compression and torque among correlation data obtained by XY conversion of acquired data.
  • Figure 30 Correlation data between valve stem stress and yoke stress among correlation data obtained by XY conversion of acquired data.
  • Figure 31 Correlation data of yoke stress (valve stem stress), torque (spring cartridge compression), and current envelope among the correlation data obtained by XY conversion of acquired data.
  • Fig. 3 2 Correlation data of yoke stress (valve stem stress), torque (spring cartridge compression), and current (integrated value ') among the correlation data obtained by XY conversion of acquired data.
  • Fig. 3 3 An enlarged view of a part of the Y axis of the current integrated value curve in Fig. 3 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Details Of Valves (AREA)

Abstract

電動弁の診断を高精度に行う電動弁の診断方法及び診断装置を提供する。その手段は、ウォームと弁体駆動部と、弁体駆動部からウォームの軸方向に作用する反力に応じて伸縮するスプリングカートリッジとを備えた電動弁のトルクに関する診断手段において、電動弁のトルクに関与する複数種類の物理量間の相関関係を相関データベースとして保有し、相関データベースを参照して、計測にて取得した特定の一の種類の物理量に対応する他の種類の物理量を読み出し、他の種類の物理量に基づいて電動弁のトルクに関する診断を行う。

Description

明細書 電動弁診断方法と診断装置
技術分野
本願発明は、 電動弁の駆動力に関する診断を行う場合における診断方法及び該 診断方法を実施するに好適な診断装置に関するものである。 背景技術
電動弁は、 弁体の開閉をモータ駆動力で行うように構成したものであって、 そ の最大の特徴は、 大きな弁体駆動力を確保できることと、 開閉操作を遠隔操作に よって行える点等であり、 このような特質から、 例えば大口径配管が設備されて いる大型プラントと力、 人手による操作が規制される原子力発電所の配管等にお いて多用され、 且つその用途は、 流量調整用の弁として使用されるよりも、 配管 内流路の全開 ·全閉用の弁として使用されることが多い。
そして、 このような電動弁は、 配管内流路を開閉する弁体と、 モータにより回 転駆動されるウォームの回転力を受けて前記弁体を開閉作動させる弁体駆動部と、 前記ウォー に発生する推力に応じて伸縮する皿パネを規定の圧縮力で圧縮した 状態 (このときの圧縮力を 「張込荷重」 という) で組み込んだスプリングカート リッジを備え、 前記トルクを前記弁体駆動部に付与して弁体を開閉作動させる一 方、 前記スプリングカートリッジの圧縮量が規制量に達した時点で前記モータを 停止させることで、 弁の適正な開閉保持力による信頼性の高い弁機能の確保と、 過大な駆動力の回避による損傷の防止を実現している。
—方、 電動弁においては、 その機能を長期に亘つて維持するためには、 該電動 弁そのものの機能の健全性の確認は勿論のこと、 その他に、 電動部分とかウォー ムの回転力を弁体側に伝達する弁体駆動部等の健全性の確認が必要となる。 この ための診断の着目点としては、 例えば、 適正なトルクで弁体を駆動させているか どう力 弁体の全開 ·全閉状態において適正な保持トルクが確保されているかど う力、 所要のトルクが付与された時点でモータを自動停止させるトルクスィッチ の設定が適正であるか、弁体駆動部等の磨耗の進行具合はどの程度か、等である。 これらの診断項目のうちでも、電動弁のトルク [スプリングカートリッジの圧縮 力との間に一定の関係を有する物理量、 即ち、 スプリングカートリッジの圧縮力 から求まるトルクであって、 トルク =スプリングカートリッジ圧縮力, X r ( r : ウォームホイールのピッチ円^ gの 1ノ 2。 図 1、 図 2参照) として取得さ れる]に関する診断は、電動弁の不具合の大部分がトルクの不適正が原因であると いう過去の例からして、 最も重要と考えられる。 このため、 トルクに関する電動 弁の診断方法については、 従来から各種の提案がなされている。
例えば、 以下の特許文献 1に示されるように、 スプリングカートリッジの部分 に歪ゲージを貼設し電動弁の作動状態において前記歪ゲージによってスプリング カートリッジの圧縮力、 即ち、 これに対応するトルクの値を取得し、 この取得さ れたトルクに基づいてトルクに関する診断を行うようにした、 所謂 「内蔵型トル クセンサ法 j がある。 '
また、 以下の特許文献 2および同 3には、 診断作業に際し、 スプリングカート リッジの外端側にトルクに関する検出手段を取り付け、 この検出手段を用いてト ルクに関する電動弁の診断を行う手法が提案されている。
特許文献 2に示されるものは、所謂「トルクセンサ外付法」と称されるもので、 スプリング力'一トリッジの外端側に、 該スプリングカートリッジに掛かる圧縮力 を検出する圧縮力検出手段と該スプリングカートリッジの圧縮量、 即ち、 ウォー ムの移動量を検出する移動量検出手段を取り付け、 電動弁を作動させた状態で、 これら圧縮力検出手段と移動量検出手段で検出されたスプリングカートリッジの 圧縮量とこれに対応する圧縮力との関係を知得した後、 圧縮量を測定し、 この測 定値から実際に作用している圧縮力を取得し、 さらに、 この圧縮力に基づいて実 際にウォームによって弁体駆動部に作用しているトルクを知り、 このトルクに基 づいて電動弁のトルクに関する診断を行なうものである。
この方法によれば、 圧縮力検出手段の構造上、 圧縮力については電動弁の開動 作時と閉動作時の何れか一方側のみしか検出できないが、 電動弁の動作方向が開 動作方向であっても閉動作方向であっても、 スプリングカートリッジが圧縮され ^ るという現象は同じであって異なるところがないことから、 スプリングカートリ ッジの圧縮量さえ開動作時と閉動作時の双方で測定しておけば、 他方側における 圧縮力も知ることができる。 即ち、 圧縮量と、 この圧縮量をトルクに換算した値 をデータとして取得しておけば、 電動弁の開動作時と閉動作時のどちらにおいて も圧縮量を測定すれば対応するトルクを知ることができるものである、。
一方、 特許文献 3に示されるもの'は、 所謂 「パネ圧縮法」 と称されるもので、 スプリングカートリッジの外端 (即ち、 スプリングカートリッジの反ウォーム側 の端部) 側に歪ゲージと位置検出手段及び圧縮手段を取り付け、 電動弁の作動停 止状態下で、 前記圧縮手段によって前記スプリングカートリッジの皿バネを外部 から圧縮し、 その場合における前記スプリングカートリッジに対する圧縮力を前 記歪ゲージで、また前記スプリングカートリッジの圧縮量を前記位置検出手段で、 それぞれ取得し、 前記スプリングカートリッジの圧縮量とこれに対応する圧縮力 との関係を取得する。 次に電動弁の作動状態下で圧縮量を測定し、 この測定値か ら実際に作用している圧縮力を取得し、 さらに、 この圧縮力に基づいて実際にゥ オームによって弁体駆動部に作用するトルクを知り、 このトルクに基づいて電動 弁のトルクに関する診断を行なうものである。
(特許文献 1)
特国開 W095/14186号公報 (第 3頁右下欄第 19行〜第 4頁右上欄第 29行、 F I G2、 F I G 3)
(特許文献 2) ' 特許第 2982090号公報 (段落 「0021」 〜 [: 0031], 図;!〜 図 4)
(特許文献 3)
特開平 7— 310845号公報(段落「0028」〜「0036」、 図 2)。 発明の開示
発明が解決しょうとする課題
ところが、 「内蔵型トルクセンサ法」 では、歪ゲージがスプリングカートリッジ 側に一体化されているので、その構造そのものが複雑で、コストが高くつくこと、 歪ゲージ付スプリングカートリッジの組み付けに際しては電動弁の一部を開放し て改造する必要があり専門技術を要すること、 歪ゲージ信号取出部の可動パツキ ン部の密封管理を要すること、 前記歪ゲージの校正に際しても、 前記スプリング カートリッジと一体的に前記歪ゲージを電動弁側から取り出して校正、を行う必要 があり、 該歪ゲージの校正作業が面倒であること、 等の問題があった。
一方、 「トルクセンサ外付法」 では、 電動弁に付設される装置が大掛かりなもの となることから作業性が悪く、 しかも電動弁の一部を開放する必要があることか ら、 診断作業時期の制約を受けるとともに、 このような取り付け作業をトルク診 断の度に行っていたのでは、 作業量が多くなり診断コストが高くつくという問題 があった。 - また、 「パネ圧縮法」 では、 電動弁に対して、加重計と位置検出手段及び圧縮手 段等を仮設的に設置するが、 その場合、 個々の電動弁について前記加重計等の設 置を可能とすべく所要の改造を施す必要があること、 加重計等はこれを常設でき ず診断時毎に設置しなければならないことから設置に手間がかかること、 さらに 前記加重計等を各電動弁間で共用することが難しく各電動弁個々に製作すること が必要であること、 等のことから、 診断作業に伴うコストが高くつくという問題 があった。
以上に述べ'た 「内蔵型トルクセンサ法」、 rトルクセンサ外付法」 及び 「パネ圧 縮法」 は、 何れも主としてスプリングカートリッジの圧縮力から求まるトルクを 診断する手法である。 · ところで、 本来電動弁の機能として診断すべき事項は、 実際に弁体に作用して いる力である。 そして、 この弁体に作用している力は、 弁体に連結されてこれを 支持する弁棒に作用している力として把握できるものであるが、 この弁棒に作用 している力の適否をトルクの診断のみのよつて判断したのでは、 十分な診断はで きない。
即ち、 電動弁の実際の作動においては、 駆動装置の駆動力は、 ウォーム、 ゥォ ームホイ一,ル、 ドライブスリーブ、 ステムナットで構成される駆動力伝達機構を 経由して弁棒に作用するた.め、これら駆動力伝達機構に摩擦力が発生し、さらに、 弁棒の作動に伴ってパッキン等の摺動抵抗が作用するので、 実際に弁棒に作用す る力は必ずしもトルクと一致しない。 例えば、 ステムナット部分に油切れが発生 すると、 規定のトルクで駆動していても、 駆動力伝達機構の摩擦力で伝達効率が 低下し、 実際に弁棒に作用する力は、 油切れが発生していない状態よりも小さく なる。 このように、 トルクのみの診断では駆動力伝達機構の診断は行、えず、 従つ て、 本来電動弁の機能として診断すべき事項が 「弁体や弁棒に作用する力」 であ ることを勘案すれば、 電動弁の診断はトルクのみによる診断では不十分であると レヽえる。
このため、 電動弁の診断を簡易な手法で作業性良く、 低コストで、 高精度に行- うことができる技術の開発が望まれていた。
課題を解決するための手段
本願発明.ではかかる課題を解決するための具体的手段として、 電動弁のトノレク に関する診断や電動弁の弁棒に作用する力の診断を行うことによって、 電動弁の 駆動部側から弁本体側までの駆動力伝達機構の診断を可能とし、 電動弁の運転中 での診断を可能とし、 駆動力の伝達状況の経時変化の診断をも可能としたもので ある。 以下、 本願発明の各態様を説明する。 第 1の態^では、 電動力によって回転駆動力が付与されたウォームの回転駆動 力を利用して弁体を開閉駆動する弁体駆動部と、 該弁体駆動部から前記ウォーム の軸方向に作用する反力に応じて伸縮するスプリングカートリッジとを備えた電 動弁の駆動力に関する診断を行う電動弁診断方法において、 電動弁の駆動力に関 与する複数種類の物理量間の相関関係を相関データベースとして保有し、 前記相 関データベースを参照して電動弁の駆動力に関する診断を行うことを特徴として いる。
ここで、 「駆動力に関する診断」 とは、直接に駆動力として把握される要素であ る弁棒応力、 トルク [スプリングカートリッジの圧縮力から求まるトルク、 即ち、 スプリングカートリッジ圧縮力 X r ( r : ウォームホイールのピッチ円径の 1 / 2 ) ]、 スプリングカートリッジの圧縮量及び圧縮力、 ヨーク応力、 弁棒応力 Λ
6
等に限らず、 間接的に駆動力として把握される要素、 例えば、 ウォームを駆動す るモータの電流値等も含む概念である。
別の態様では、 先の態様と同じ電動弁の弁棒応力に関する診断を行う方法にお いて、 ヨークに作用するヨーク応力と、 弁棒に作用する弁棒応力との、相関関係を 相関データベースとして保有し、 前記相関データベースを参照して、 計測により 取得したヨーク応力に対応する弁棒応力を読み出し、 該弁棒応力に基づいて電動 弁の弁棒応力に関する診断を行うことを特徴としている。
また別の態様では、 先の態様と同じ電動弁の弁棒応力とトルクとの相関関係の 診断を行う方法において、 ヨークに作用するヨーク応力と弁棒に作用する弁棒応 力との相関関係を示す第 1の相関データベースと、 電動力に対応する電流値とス プリングカートリッジの圧縮力から求まるトル との相関関係を示す第 2の相関 データベースを保有し、 前記第 1の相関データベースを参照して計測により取得 されるヨーク応力に対応して読み出される弁棒応力と、 前記第 2の相関データべ ースを参照して計測にて取得される電流値に対応して読み出されるトルクに基づ いて、 弁棒応力とトルクとの相関関係を取得してその適否を診断することを特徴 としている。
さらに別の態様では、 第 1の態様を、 電動弁診断装置から捉えている。
さらにまた別の態様では、 第 1の態様の別の態様を電動弁診断装置から捉えて いる。
さらにまた別の態様では、 第 1の態様のまた別の態様を電動弁診断装置から捉 えている。
産業上の利甩可能性
本願発明によれば、 各構成 (請求項の発明) に応じて、 以下の特有の効杲が得 られるため、 大きな産業上の利用可能性がある。
第 1の構成によれば、 予め相関データベースを保有しておけば、 以後は相関デ ータベースを参照することで、 電動弁の駆動力に関する診断を行うことができ、 例えば、 電動弁の駆動力に関する診断の度に、 測定が比較的困難な種、類の物理量 を取得して診断を行う場合に比して、 診断作業が極めて簡易であり、 且つ該作業 を作業性良く行うことができ、 それだけ省力化により診断コス トの低減化が促進 される。 第 2の構成によれば、 予め電動弁の駆動力に関与する複数種類の物理量間の相 関関係を求めてこれを保有しておけば、 以後は特定の一の種類の物理量のみを計 測により取得すれば、 相関データベースを参照して、 該特定の一の種類の物理量 に対応する他の種類の物理量を読み出し、 この他の種類の物理量に基づいて電動 弁の駆動力に関する診断を行うことができ、 例えば、 電動弁の駆動力に関する診 断の度に、 測定が比較的困難な他の種類の物理量を取得して診断を行う場合に比 して、 診断作業が極めて簡易であり、 且つ該作業を作業性良く行うことができ、 それだけ省力化により診断コス トの低減化が促進される。
さらに、 この場合、 電動弁の駆動力に関与する複数種類の物理量間の相関関係 を相関データベースとして保有することで、 電動弁の駆動力に関する診断が多項 目に亘る場合でもこれを迅速に行うことができ、 診断コス トの低減化という効果 がより一層顕著となるものである。 · 第 3の構成によれば、 第 2の構成の効果に加えて、 予めヨークに作用するョー ク応力と、 スプリングカートリッジの圧縮力から求まるトルクとの相関関係を求 めてこれを保有しておけば、 以後はョ一ク応力のみを計測により取得すれば、 相 関データベースを参照して、 スプリングカート.リッジの圧縮力から求まるトルク を読み出し、 このトルクに基づいて電動弁のトルクに関する診断を行うことがで き、 例えば、 電動弁のトルクに関する診断の度に、 スプリングカートリッジの圧 縮力から求まるトルクを取得して診断を行う場合に比して、 診断作業が極めて簡 易であり、 且つ該作業を作業性良く行うことができ、 それだけ省力化により診断 コス トの低減化が促進される。
さらに、 ヨーク応力は、 電動弁の外部に露出した部分で計測可能であり、 ここ に歪ゲージを取り付けてその歪量からこれに対応する応力、 即ち、 ヨーク応力を 取得することは、 例えば、 電動弁の一部を開放してその内部に歪ゲージを取り付 けて応力の計測を行う場合に比して、 その作業が格段に容易であることから、 診 断作業性の更なる向上、 省力化による診断コストのより一層の低減が可能となる ものである。
また、 電動弁のトルクに関する診断は、 診断精度の確保という観点からして、 実際に弁体に作用している力、 即ち、 弁棒の発生応力を計測することが重要であ り、 前記ヨーク応力は弁棒応力の反力として計測できるので、 ヨーク応力に基づ いて弁棒応力の診断を行うことで、 極めて信頼性の高い診断結果を得ることがで きる。 第 4の構成によれば、 第 3の構成の効果に加えて、 電動弁の開作動時と閉作動 時の双方におけるヨーク応力とトルクの相関関係を容易に取得することができ、 前記相関データベースの取得作業の迅速化が図られ、 延いては診断作業性の向上 及ぴ省力化による診断コス トの低減がさらに促進される。 : 第 5の構成によれば、 第 3の構成の効果に加えて、 構造が比較的簡単で、 他方 側への作動時の圧縮力を直接計測できない計測手段を用いるにも拘らず、 これら 取得データに基づいて、 一方側又は他方側への作動時の圧縮力から求まるトルク とヨーク応力の間の相関データベースを容易に取得することができ、 その結果、 相関データベースの確実な取得と取得作業の迅速化が担保され、 延いては該相関 データベースを使用した診断作業性の向上及び省力化による診断コス トの低減が さらに促進される。 - 第 6の構成によれば、 第 3、 第 4、 第 5の構成の効果に加えて、 スプリング力 一トリッジの伸縮方向には量の多少はあるとしても、 ガタは不可避的に存在する ものであることから、 該ガタの影響を考慮せずにスプリングカートリッジの圧縮 量を取得した場合には、 取得される圧縮量は、 実際の圧縮量とは異なるガタを含 んだ不正確なものであり、 係る不正確な圧縮量に基づいて相関データベースを求 め、 これを参照してトルクに関する診断を行った場合には、 精度の高い診断結果 は得られないところ、 計測手段によって計測される計測圧縮量からガタ量の影響 を除いた実圧縮量を求め、 該実圧縮量に基づいて相関データベースを取得するこ とで、 精度が高く信頼性に優れた診断結果を得られる。 第 7と第 8の構成によれば、 第 3から第 6の構成に加えて、 ヨーク応力センサ で計測されるヨーク応力の信頼性が高く、延いては相関データベースを参照して、 ヨーク応力に対応して読み出されるトルクも信頼性が高いものとなり、その結果、 電動弁の診断結果の精度及び信頼性がより一層向上する。 第 9から第 1 2の構成によれば、 ヨーク応力センサで計測されるヨーク応力の 信頼性がさらに高められ、 そ P結果、 第 7と第 8の構成の効果がより一層確実と なる。 第 1 3から第 2 0の構成によれば、 第 3から第 1 2の構成の効果に加えて、 取 り換えられた'新たな歪ゲージの出力特性の、 取り外された前記既設の歪ゲージの 出力特性に対するトレーサビリティが確保され、 歪ゲージの取換えがあったにも 拘らず、 取換え前後に亘つて連続した精度の高い出力が得られ、 長期に亘つて信 頼性の高い診断が実現される。 第 2 1から第 2 8の構成によれば、 第 3から第 1 2の構成に加えて、 取換えに より新たに取り付けられた歪ゲージの出力特性が他の何れかの歪ゲージの出力特 性を基準として校正されることで、 新たに取り付けられた歪ゲージの出力特性は 取換え前の元の歪ゲージの出力特性に対してトレーサビリティが確保され、 歪ゲ ージの取換えがあったにも拘らず、 取換え前後に苴つて連続した精度の高い歪ゲ ージ出力が得られ、 長期に苴つて信頼性の高い診断が実現される。 ' 第 2 9の構成によれば、 第 2の構成の効果に加えて、 予め電動力に対応する電 流値と、 スプリングカートリッジの圧縮力から求まるトルクとの相関関係を求め てこれを保有しておけば、 以後は電流値のみを計測により取得すれば、 相関デー タベースを参照して、 スプリングカートリッジの圧縮力かち求まるト、ルクを読み 出し、 このトルクに基づいて電動弁のトルクに関する診断を行うことができ、 例 えば、 電動弁のトルクに関する診断の度に、 前記スプリングカートリッジの圧縮 力から求まるトルクを取得して診断を行う場合に比して、 診断作業が極めて簡易 であり、 且つ該作業を作業性良く行うことができ、 それだけ省力化により診断コ ストの低減化が促進される。
さらに、 電流値は、 電動弁の外部に露出した部分で計測可能であり、 ここに電 流計等の電流値計測手段を取り付けて電流値を計測し、 該計測値に対応するトル クを取得することは、 例えば、 電動弁の一部を開放じてその内部に歪ゲージを取 り付けてトルクの計測を行うような場合に比して、 その作業が格段に容易である ことから、 電動弁のトルクに関する診断における作業性の更なる向上、 省力化に よる診断コストのより一層の低減が可能となる。 第 3 0の構成によれば、 第 2の構成の効果に加えて、 スプリングカートリッジ の外端側に仮設された予め校正済のトルクセンサで計測される第 2のトルクとス プリングカートリッジ部分に常設されたトルクセンサで計測される第 1のトルク の相関関係を求めてこれを保有しておけば、 以後は第 1のトルクを計測して '取得 し、 相関データベースを参照して、 第 1のトルク値に対応する第 2のトルクを読 み出し、 この第 1のトルクの値と第 2のトルク値を対比することで、 前記第 1の トルクの計測に供せられるトルクセンサを校正することができ、 例えば、 この第 1のトルクの計測に供せられるトルクセンサを直接校正する場合のように、 該ト ルクセンサを電動弁から取り外して校正することが不要であり、 それだけ校正作 業の簡易且つ迅速化が図れる。 第 3 1の構成によれば、.予めヨークに作用するヨーク応力と、 弁棒に作用する ^ 弁棒応力との相関関係を求めてこれを保有しておけば、 以後はヨーク応力のみを 計測により取得すれば、 相関データベースを参照して、 弁棒応力を読み出し、 こ の弁棒応力に基づいて電動弁の診断を行うことができる。
この場合、 弁棒応力の計測は弁棒に歪ゲージを直接取り付けて行うのが通例で あるが、 その作業が比較的困難であり、 また、 弁棒の移動量よりも弁、棒の外部露 出部の長さが短い場合には、 歪ゲ ジの常設もできないため、'例えば、 電動弁の 診断の度に、弁棒応力を取得して診断を行う場合にはその作業性が低劣となるが、 この構成では弁棒応力の計測は最初の診断作業時に一度行えば良く、次回からは、 ヨーク応力センサ (歪ゲージ) の常設も可能で、 取得の容易なヨーク応力に基づ いて弁棒応力を求めるものであることから、 診断作業が極めて簡易であり、 且つ 該作業を作業性良ぐ行うことができ、 それだけ省力化により診断コストの低減化 が促進される。
ざらに、 弁棒応力に基づいて、 実際に弁体に作用している力や弁棒シール部の 摺動抵抗力について直接的に診断を行うものであることから、 高い診断精度が担 保され、 極めて信頼性の高い診断結果を得られる。 第 3 2の構成によれば、 予め第 1の相関データベースと第 2の相関データべ一 スを取得しこれを保有しておけば、 以後は計測の容易なヨーク応力と電流値を計 測にて取得ザることで、 第 1及び第 2の相関データベースを参照して、 計測が容 易でない弁棒応力とスプリングカートリッジの圧縮力から求まるトルクをそれぞ れ読み出し、これら両者の相関関係を取得することができ、例えば、診断の度 、 弁棒応力とスプリングカートリッジの圧縮力から求まるトルクを計測により取得 する場合に比して、 弁棒応力とトルクの相関関係の取得が極めて容易となる。 また、 電動弁の弁体駆動部における摩擦係数 ( ) は、 周知の摩擦係数算出式
「= 〔A X (トルク/弁棒応力) 一 B X d〕 / [ d + C X (トルク 弁棒応力)〕。 dはステム有効径、 A, B, Cは定数」 で求められるが、 この算出式においては
「トルク/弁棒応力」 以外の要素は全てステム側の仕様で決定される定数的な値 であることから、 前記トルクと前記弁棒応力の比 「トルクノ弁棒応力」 を求める ことで、 弁体駆動部の摩擦係数を診断することが可能であり、 この結果、 れら トルクと弁棒応力の相関関係をみることで、 弁体駆動部の摩擦 (潤滑) 状況が正 常であるのか、 それとも異常であるのかが容易に判断でき、 それだけ弁体駆動部 の信頼性がさらに向上することになる。 第 3 3から第 5 6の構成によれば、 第 2から第 1 4の構成に加え 、 表示され る前記各相関関係を参照することで、 駆動力の伝達状況の経時変化の判断が容易 となり、 それだけ電動弁診断作業の容易且つ迅速化、 さらには省力化による診断 コストが低減される。 第 5 7の構成によれば、 予め前記相関データベースを保有しておけば、 以後は 前記相関データベースを参照することで、 電動弁の駆動力に関する診断を行うこ とができ、 例えば、 電動弁の駆動力に関する診断の度に、 測定が比較的困難な種 類の物理量を取得して診断を行う場合に比して、 診断作業が極めて簡易であり、 且つ該作業を作業性良く行うことができ、' それだけ省力化により診断コストの低 減化が促進される。 第 5 8の構成によれば、 第 5 7の構成の効果に加えて、 予め電動弁の駆動力に 関与する複数種類の物理量間の相関関係を求めてこれを保有しておけば、 以後は 特定の一の種類の物理量のみを計測により取得すれば、 前記相関データベースを 参照して、 該特定の一の種類の物理量に対応する前記他の種類の物理量を読み出 し、 この他の種類の物理量に基づいて電動弁の駆動力に関する診断を行うこ ·とが でき、 例えば、 電動弁の駆動力に関する診断の度に、 測定が比較的困難な他の種 類の物理量を取得して診断を行う場合に比して、 診断作業が極めて簡易であり、 且つ該作業を作業性良く行うことができ、 それだけ省力化により診断コストの低 減化が促進される。
この場合、 電動弁の駆動力に関与する複数種類の物理量間の相関関係を相関デ ータベースとして保有することで、 電動弁の駆動力に関する診断が多項目に亘る 場合でもこれを迅速に行うことができ、 診断コストの低減化という効果がより一 層顕著となるものである。. 第 5 9の構成によれば、 第 5 8の構成の効果に加えて、 予めヨークに作用する ヨーク応力と、 スプリングカートリッジの圧縮力から求まるトルクとの相関関係 を求めてこれを保有しておけば、 以後はヨーク応力計測手段によりヨーク応力の みを取得すれば、 相関データベースを参照して、 トルク読出手段によ、り前記スプ リングカートリッジの圧縮力から求まるトルクを読み出し、 このトルクに基づい て電動弁のトルクに関する診断を行うことができ、 例えば、 電動弁のトルクに関 する診断の度に、 前記スプリングカートリッジの圧縮力から求まるトルクを取得 して診断を行う場合に比して、 診断作業が極めて簡易であり、 且つ該作業を作業 性良く行うことができ、それだけ省力化により診断コストの低減化が促進される。
さらに、 ヨーク応力は、 電動弁の外部に露出した部分で計測可能であり、 ここ に-歪ゲージを取り付けてその歪量からこれに対応する応力、 即ち、 ヨーク応力を 取得することは、 例えば、 電動弁の一部を開放してその内部に歪ゲージを取り付 けて応力の計測を行う場合に比して、 その作業が格段に容易であることかち、 診 断作業性の更なる向上、 省力化による診断コストのより一層の低減が可能となる ものである。 .
また、 電動弁のトルクに関する診断は、 診断精度の確保という観点からして、 実際に弁体に作用している力、 即ち、 弁棒の発生応力を計測することが重要であ り、 前記ヨーク応力は弁棒応力の反力として計測できるので、 ヨーク応力に基づ いて弁棒応力の診断を行うことで、 極めて信頼性の高い診断結果が得られる。 第 6 0の構成によれば、 第 5 9の構成の効果に加えて、 電動弁の開作動時と閉 作動時の双方におけるヨーク応力とトルクの相関関係を容易に取得することがで き、 相関データベースの取得作業の迅速化が図られ、 延いては診断作業性の向上 及び省力化による診断コストの低減がさらに促進される。 第 6 1の構成によれば、 第 6 9の構成の効果に加えて、 構造が比較的簡単で、 他方側への作動時の圧縮力を直接計測できない計測手段を用いるにも拘らず、 圧 縮力取得手段及びヨーク応力取得手段の取得データに基づきデータベース取得手 段において一方側又は他方側への作動時の圧縮力から求まるトルクとヨーク応力 の間の相関データベースを容易に取得することができ、 その結果、 相関データべ ースの確実な取得と取得作業の迅速化が担保され、 延いては該相関データベース を使用した診断作業性の向上及び省力化により診断コストがさらに低減される。 第 6 2の構成によれば、 第 6 0又は第 6 1の構成の効果に加えて、 スプリング カートリッジの伸縮方向には量の多少はあるとしても、 ガタは不可避的に存在す るものであることから、 該ガタの影響を考慮せずにスプリングカートリッジの圧 縮量を取得した場合には、 取得される圧縮量は、'実際の圧縮量とは異なるガタを 含んだ不正確なものであり、 係る不正確な圧縮量に基づいて相関データベースを 求め、 これを参照してトルクに関する診断を行った場合には、 精度の高い診断結 果は得られないところ、 実圧縮量取得手段において計測手段で計測される計測圧 縮量からガタ量の影響を除いた実圧縮量が取得され、 該実圧縮量に基づいて相関 データベースが取得されることで、 精度が高く信頼性に優れた診断結果を得られ る。 第 6 3と第 6 4の構成によれば、 第 6 0から第 6 2の構成の効果に加えて、 ョ ーク応力センサで計測されるヨーク応力の信頼性が高く、 延いては前記相関デー タベースを 照して、 前記ヨーク応力に対応して読み出される前記トルクも信頼 性が高いものとなり、 その結果、 電動弁の診断結果の精度及び信頼性がより一層 向上することになる。 ·
第 6 5から第 6 8の構成によれば、 第 6 0から第 6 2の構成の効果に加えて、 ヨーク応力センサで計測されるヨーク応力の信頼性がさらに高められるので、 第 2 2の構成の効果が一層確実となる。 .
第 6 9の構成によれば、 第 5 8の構成の効果に加えて、 予め電動力に対応する 電流値と、,スプリングカートリッジの圧縮力から求まるトルクとの相関関係を求 めてこれを保有しておけば、 以後は電流値計測手段により電流値のみを取得すれ ば、 相関データベースを参照して、 トルク読出手段によりスプリングカートリツ ジの圧縮力から求まるトルクを読み出し、 このトルクに基づいて電動弁のトルク に関する診断を行うことができ、 例えば、 電動弁のトルクに関する診断の度に、 スプリングカートリッジの圧縮力から.求まるトルクを取得して診断を行う場合に 比して、診断作業が極めて簡易であり、且つ該作業を作業性良く行うこ、とができ、 それだけ省力化により診断コストの低減化が促進される。
. ざらに、この場合、電流値は、電動弁の外部に露出した部分で計測可能であり、 ここに前記電流値計測手段を取り付けて電流値を計測し、 ·該計測値に対応するト ルクを取得することは、 例えば、 電動弁の一部を開放してその内部に歪ゲージを 取り付けてトルクの計測を行うような場合に比して、 その作業が格段に容易であ ることから、 電動弁のトルクに関する診断における作業性の更なる向上、 省力化 による診断コストのより一層の低減が可能となる。 第 7 0の構成によれば、 第 5 8の構成の効果に加えて、 スプリングカートリツ ジの外端側に仮設された予め校正済のトルク計測手段で計測される第 2のトルク と、 スプリングカートリツジ部分に常設された'トルク計測手段で計測される第 1 のトルクの相関関係を求めてこれを保有しておけば、 以後は、 第 1のトルクを計 測して取得し、 相関データベースを参照して、 トルク読出手段により第 1のトル ク値に対応 る第 2のトルクを読み出し、 この第 1のトルクの値と第 2のトルク 値を対比することで、 第 1のトルクの計測に供せられるトルク計測手段を校正す ることができ、例えば、この第 1のトルク計測手段を直接校正する場合のよう-に、 該トルク計測手段を電動弁から取り外して校正することが不要であり、 それだけ 校正作業の簡易且つ迅速化が図れる。 第 7 1の構成によれば、 予めヨークに作用するヨーク応力と、 弁棒に作用する 弁棒応力との相関関係を求めてこれを保有しておけば、 以後はヨーク応力訐測手 段によりヨーク応力のみを取得すれば、 相関データベースを参照して、 弁棒応力 読出手段により弁棒応力を読み出し、 この弁棒応力に基づいて電動弁の診断を行 うことができる。 この場合、 弁棒応力の計測は弁棒に歪ゲージを直接取り付けて行うのが通例で あるが、 その作業が比較的困難であり、 また、 弁棒の移動量よりも弁棒の外部露 出部の長さが短い場合には歪センサゲージの常設もできないため、 例えば、 電動 弁の診断の度に、 弁棒応力を取得して診断を行う場合にはその作業性が低劣とな るが、 この構成では弁棒応力の計測は最初の診断作業時に一度行えば、良く、 次回 からは、 ヨーク応力計測手段で容易に取得されるヨーク応力に基づいて弁棒応力 を求めるものであることから、 診断作業が極めて簡易であり、 且つ該作業を作業 性良く行うことができ、それだけ省力化により診断コストの低減化が促進される。
さらに、 弁棒応力に基づいて、 実際に弁体に作用している力や弁棒シール部の 摺動抵抗力について直接的に診断を行うものであることから、 高い診断精度が担 保され、 極めて信頼-性の高い診断結果を得ることができる。 第 7 2の構成によれば、 予め第 1の相関データベースと第 2の相関データべ一 スを取得しこれを保有しておけば、 以後はヨーク応力計測手段でヨーク応力を、 電流値計測手段で電流値を、 それぞれ計測にて取得することで、 第 1及び第 2の 相関データベースを参照して、 弁棒応力読出手段で弁棒応力を、 トルク読出手段 で前記スプリングカートリッジの圧縮力から求まるトルクを、それぞれ読み出し、 これら両者の相関関係を相関関係取得手段により取得することができ、 例えば、 診断の度に、 '弁棒応力と、 前記スプリングカートリッジの圧縮力から求まるトル クを計測により取得する場合に比して、 弁棒応力とトルクの相関関係の取得が極 めて容易となる。 - また、 電動弁の弁体駆動部における摩擦係数 ( Z ) は、 周知の摩擦係数算出式 「摩擦係数 ( μ ) = 〔Α Χ (トルク Ζ弁棒応力) 一 B X d〕 / C d + C X (トル ク /弁棒応力)〕。 dはステム有効径、 Α, ' Β , Cは定数」 で求められるが、 この 算出式においては 「トルク/弁棒応力」.以外の要素は全てステム側の仕様で決定 される定数的な値であることから、 トルクと弁棒応力の比 「トルク 弁棒応力」 を求めることで、弁体駆動部の摩擦係数を診断することが可能であり、この結果、 これらトルクと弁棒応力の相関関係をみることで、 弁体駆動部の摩擦 (潤滑) 状 況が正常であるのか、 それとも異常であるのかが容易に判断でき、 それだけ弁体 駆動部の信頼性がさらに向上する。 第 7 3から第 8 0の構成によれば、 第 5 7から第 7 2の構成の効果に加えて、 表示手段により表示される前記各相関関係を参照することで、 診断手段における 駆動力の伝達状況の経時変化の判断が容易となり、 それだけ電動弁赘断作業の容 易且つ迅速化、 さらには省力化による診断コス トの低減が可能となる。 発明を実施するための最良の形態
以下、 本願発明に係る電動弁の診断方法及び診断装置を好適な実施の形態に基 づいて具体的に説明する。
先ず、 本願発明に係る診断方法の説明に先立って、 図 1から図 6を参照して、 電動弁の駆動系の構造等を説明する。 - 図 1には、本願発明に係る診断方法が適用される通常の電動弁の駆動系(以下、 「第 1の電動弁駆動系」 という) の要部を示している。 また、 図 2には、 内蔵型 トルクセンサ (スプリングカートリッジに歪ゲージを貼設したもの) を設置した 電動弁の駆動系 (以下、 「第 2の電動弁駆動系」 という) の要部を示している。
A:第 1の電動弁駆動系
図 1にお て、 符号 1は、 その下端に弁体 (図示省略) が連結された弁棒であ つて、 該弁棒の上部側のネジ部にはステムナット 2が螺合されている。 さらに、 このステムナツト 2は、 筒状のドライブスリーブ 3に内揷固定されこれと」体化 されている。 また、 前記ドライブスリープ 3は、 その外周側に嵌装配置されたゥ オームホイール 4と一体的に回転可能とされ、 前記ステムナツト 2の回転力を前 記弁棒 1にその軸方向変位力として伝達し、 該弁棒 1を介して前記弁体を開閉駆 動 (昇降駆動) させるようになつている。 尚、 前記弁棒 1は、 その軸方向移動の みが可能とされ、 その回転は規制されている。 .
前記ウォームホイール 4にはウォーム 5が嚙合されており、 該ウォーム 5がモ ータ軸 6を介してモータ (図示省略) によって回転駆動されることで、 該ウォー ムホイール 4が回転し、 その回転力が前記ステムナツト 2を介して前記弁棒 1に 対してその昇降駆動力として伝達される。
前記モータ軸 6にはスプライン 6 aが設けられており、 このスプライン 6 a部 分に前記ウォーム 5がスプライン嵌合されることで、 前記ウォーム 5は前記モー タ軸 6からの回転力は受けるものの、 その軸方向 (矢印 R— L方向) には移動自 在とされる。 、 .
また、 前記ウォーム 5は、 その」端側を軸方向に延長させてこれを延設筒部 7 としている。 この延設筒部 7の外周には周溝 8が設けられ、 且つ該周溝 8にはト ルクスイッチ 9の作動子 9 aが係入されている。 このトルクスィッチ 9は、 前記 ウォーム 5がその中立位置から軸方向に移動してその移動量が所定値に達した時 点で作動し, 前記モータの停止信号を発してこれを停止させることで、 前記弁棒 1側に過度のトルクが伝達されるのを規制してその保護を図るものである。
前記ウォーム 5の延設筒部 7の端部には、 軸受 1 0がナツト 1 1により固着さ れると共に、 該軸受 1 Qを介して次述の可動軸 1 2が相対回転自在に連結されて いる。 この可動軸 1 2は、 前記軸受 1 0が内揷連結され 大径筒部 1 2 aと該大 径筒部 1 2 aに連続.する小径筒部 1 2 bとを備えた異径筒体であって、 前記ゥォ ーム 5の軸方向への移動に伴ってこれと一体的に軸方向へ移動するようになつて いる。 また、 前記可動軸 1 2の小径筒部 1 2 bには、 次述のスプリングカートリ ッジ 1 3が取り付けられている。
前記スプリ'ングカートリッジ 1 3は、 前記弁体が全開又は全閉となった後に、 前記ウォーム 5を介して前記ウォームホイール 4に所定の保持トルクを発生させ るものであって、 前記可動軸 1 2の大径筒部 1 2 aと小径筒部 1 2 bとの間の段 差面側に配置された一方のヮッシャ 1 4と前記小径筒部 1 2 bの端部に螺着され たナツト 1 6側に配置された他方のヮッシャ 1 5との間に、 複数の皿パネ 1 7を 交互に表裏対向させ且つ所要の張込荷重を付与した状態で取り付けて構成される。 前記スプリングカートリッジ 1 3の単体状態での軸長 (即ち、 所定の張込荷重 を発生させた状態での前記各ヮッシャ 1 4、 1 .5間の外寸) は、 前記可動軸 1 2 の大径筒部 1 2 aと小径筒部 1 2 bとの間の段差面と前記ナツト 1 6の座面とに よって所定値に固定保持される。
さらに、 前記可動軸 1 2と前記スプリングカートリッジ 1 3のうち、 前記可動 軸 1 2は前記ウォーム 5と同軸上に設けられた小径穴部 1 9内に嵌揷され、 また 前記スプリングカートリッジ 1 3は前記小径穴部 1 9に連続する大径穴部 2 0内 に嵌揷されており、 該可動軸 1 2は前記小径穴部 1 9内で軸方向に移動可能に、 また前記スプリングカートリッジ 1 3は前記大径穴部 2 0内で伸縮可能となって いる。 、
前記スプリングカートリッジ 1 3の一端側に配置された前記ヮッシャ 1 4は、 これが小径穴部 1 9と大径穴部 2 0との間の肩部 2 1に係合することで、 それ以 上に矢印 L方向へ移動するのが規制される。 また、 前記スプリングカートリッジ 1 3の他端側に配置された前記ヮッシャ 1 5は、 前記大径穴部 2 0の外端に取り 付けられるカートリッジ押え 4 5の端面 4 5 aに当接することで、 それ以上に矢 印 R方向へ移動するのが規制される。 尚、 このカートリッジ押え 4 5は、 通常運 転時において前記スプリングカートリッジ 1 3の外端側を覆ってこれを保護する キャップとしての機能も持つものである。
そして、 この第 1の電¾弁駆動系においては、 前記スプリングカートリッジ 1 3がこれに負荷される圧縮力に応じて適宜伸縮作動することで、前記弁棒 1側(即 ち、 弁体側) に過大な荷重が入力されるのを未然に且つ確実に防止され、 電動弁 の安全で信頼性の高い作動が担保されるものである。 尚、 符号 1 8は、 前記皿パ ネ 1 7の最大圧縮変位量を規制するトルクリミツトスリーブである。
B :第 2の€動弁駆動系
図 2において、 符号 1は、 その下端に弁体 (図示省略) が連結された弁棒であ つて、 該弁棒の上部側のネジ部にはステムナット 2が螺合されている。 さら'に、 このステムナツト 2は、 筒状のドライブスリーブ 3に内挿固定されこれと一体化 されている。 また、 前記ドライブスリープ 3は、 その外周側に嵌装配置ざれたゥ オームホイール 4と一体的に回転可能とされ、 前記ステムナツト 2の回転力を前 記弁棒 1にその軸方向変位力として伝達し、 該弁棒 1を介して前記弁体を開閉駆 動 (昇降駆動) させるようになつている。 尚、 前記弁棒 1は、 その軸方向移動の みが可能とされ、 その回転は規制されている。
前記ウォームホイール 4にはウォーム 5が嚙合されており、 該ウォーム 5がモ ータ軸 6を介してモータ (図示省略) によって回転駆動されることで、 該ウォー ムホイール 4が回転し、 その回転力が前記ステムナツト 2を介して前記弁棒 1に 対してその昇降駆動力として伝達される。
前記モータ軸 6にはスプライン 6 aが設けられており、 このスプライン 6 a部 分に前記ウォーム 5がスプライン嵌合されることで、 前記ウォーム 5は前記モー タ軸 6からの回転力は受けるものの、 その軸方向 (矢印 R— L方向) 、には移動自 在とされる。 '
また、 前記ウォーム 5は、 その一端側を軸方向に延長させてこれを延設筒部 7 としている。 この延設筒部 7の外周には周溝 8が設けられ、 且つ該周溝 8にはト ルクスイッチ 9の作動子 9 aが係入されている。 このトルクスィッチ 9は、 前記 ウォーム 5がその中立位置から軸方向に移動してその移動量が所定値に達した時 点で作動し, 前記モータの停止信号を発してこれを停止させることで、 前記弁棒 1側に過度のトルクが伝達されるのを規制してその保護を図るものである。
前記ウォーム 5の延設筒部 7の端部には、 軸受 1 0がナツト 1 1により固着さ れると共に、 該軸受 1 0を介して次述の可動軸 1 2が相対回転自在に連結されて いる。 この可動軸 1 2は、 前記軸受 1 0が内揷連結される大径筒部 1 2 aと該大 径筒部 1 2 aに連続する小径筒部 1 2 bとを備えた異径筒体であって、 前記ゥォ ーム 5の軸方向への移動に伴ってこれと一体的に軸方向へ移動するようになって いる。 また、 前記可動軸 1 2の小径筒部 1 2 bには、 次述のスプリング力一トリ ッジ 1 3が取り付けられている。
前記スプリングカートリッジ 1 3は、 前記弁体が全開又は全閉となった後に、 前記ウォーム 5を介して前記ウォームホイール 4に所定の保持トルクを発生させ るものであって、 前記可動軸 1 2の大径筒部 1 2 aと小径筒部 1 2 bとの間の段 差面側に配置された一方のヮッシャ 1 4と前記小径筒部 1' 2 bの端部に螺着され た後述のナツト 2 6側に配置された他方のヮッシャ 1 5との間に、 複数の皿パネ 1 7を交互に表裏対向させ且つ所要の張込荷重を付与した状態で取り付けて構成 される。
前記スプリングカートリッジ 1 3の単体状態での軸長 (即ち、 所定の張込荷重 を発生させた状態での前記各ヮッシャ 1 4、 1 5間の外寸) は、 前記可動軸 1 2 の大径筒部 1 2 aと小径筒部 1 2 bとの間の段差面と前記ナット 2 6の座 ®とに よって所定値に固定保持される。
さらに、 前記可動軸 1 2と前記スプリングカートリッジ 1 3のうち、 前記可動 軸 1 2は前記ウォーム 5と同軸上に設けられた小径穴部 1 9内に嵌挿され、 また 前記スプリングカートリッジ 1 3は前記小径穴部 1 9に連続する大径穴部 2 0内 に嵌揷されており、 該可動軸 1 2は前記小径穴部 1 9内で軸方向に移動.可能に、 また前記スプリングカートリッジ Γ 3は前記大径穴部 2 0内で伸縮可能となって いる。
前記スプリングカートリッジ 1 3の一端側に配置された前記ヮッシャ 1 4は、 これが小径穴部 1 9と大径穴部 2 0との間の肩部 2 1に係合することで、 それ以 上に矢印 L方向へ移動するのが規制される。 また、 前記スプリングカートリッジ 1 3の他端側に配置.された前記ヮッシャ 1 5は、 前記大径穴部 2 0の外端寄りに 配置された次述のカートリッジ押え 4 2の端面 4 2 aに当接することで、 それ以 上に矢印 R方向へ移動するのが規制される。
前記カートリッジ押え 4 2は、大径部と小径部からなる段付円筒体で構成され、 ケーシングの端面上にポルト固定されたアダプタ 3 8によって 1 定保持され、 そ の大径部側の端面 4 2 aによって前記ヮッシャ 1 5の移動規制を行う。
一方、 前記可動軸 1 2の大径筒部 1 2 aの端面上には、 歪ゲージ 3 7が、 前記 一方のヮッシャ 1 4と非接触状態で貼設されている。 この歪ゲージ 3 7は、 第 2 の電動弁駆動'系における特徴的な構成要素であって、 前記スプリングカートリツ ジ 1 3の矢印 L方向及び R方向への圧縮に伴って前記可動軸 1 2に掛かる荷重 (即ち、 スプリングカートリッジ 1 3の圧縮力) を歪変位として計測するもので あり、 その計測データは、 外部へ取り出され、 電動弁の診断データとして用いら れる。
前記ナツト 2 6は、 前記小径筒部 1 2 bの端部に螺合される本体部 2 6 aと該 ; φ:体部 2 6 aの一端側から同軸状に延出する筒状の延出部 2 6 bからなる異形ナ ットで構成され、 その内孔を通してリード線 4 1が前記歪ゲージ 3 7側から引き 出されるとともに、 その先端にはコネクタ 4 8が取り付けられている。
さらに、,前記ナツト 2 6 'の延出部 2 6 bは、 前記カートリッジ押え 4 2の小径 部の内側に嵌揷されており.、 該カートリッジ押え 4 2の内周面との間には oリン グ 2 4が配置されている。 この oリング 2 4によって、 前記カートリッジ押え 4 2とこれに対してその軸方向へ相対移動する前記ナツト 2 6の間の軸封が行われ る。 また、 前記カートリッジ押え 4 2の大径部の外周面と前記アダプタ 3 8の内 周面の間には、 oリング 2 5が配置されている。 なお、 前記コネクタ 4 8は、 前 記カートリッジ押え 4 2の端面から外方へ臨むが、 通常運転時には、、前記カート リッジ押え 4 2にキャップ 4 6が装着される。
ところで、 電動弁においては、 それ本来の機能を長期に苴つて維持するために は、 例えば、 電動部分とかウォームとか、 該クオームの回転力を弁体側に伝達す る弁体駆動部等の健全性の確認とともに、 適正なトルクで弁体を駆動させている かどう力、 弁体の全開 ·全閉状態において適正な保持トルクが確保されているか どうカヽ 等のトルクに関する診断を適宜実行することが必要であることは既述の 通りである。 .
このような各種の診断項目のうち、 特にトルクに関する診断における診断デー タを取得するために、 電動弁の診断時には、 前記第 1の電動弁駆動系では、 次述 のセンサユニット 3ひが、 前記カートリッジ押え 4 5に代えて、 仮設的に取り付 けられる。 また、 前記第 2の電動弁駆動系では、 前記歪ゲージ 3 7が常設されて いる。
先ず、 前記第 1の電動弁駆動系 (図 1参照) では、 図 3に示すように、 電動弁 の通常運転 B には常時装着されている前記カートリッジ押え 4 5をケーシング側 から取り外し、 これに代えて、 前記スプリングカートリッジ 1 3の外端側に次述 のセンサュニット 3 0を仮設的に装着し、 電動弁の作動状態下で前記スプリ—ング カートリッジ 1 3の圧縮量とこれに作用する圧縮力を計測して取得する構成とさ れている。
前記センサュニット 3 0は、 前記大径穴部 2 0の端部側を覆うようにケーシン グの端面 2 2上にパッキン 2 3を介して鰐付筒状のアダプタ 3 1を衝合固定する とともに、 該アダプタ 3 1の外端面にセンサホルダ 3 2を取り付けて構成されて いる。 そして、 前記アダプタ 3 1の外端面と前記センサホルダ 3 2の端面との間 には、 これら両者間に跨る空間を軸方向に二分するように板状のロードセル 3 3 が配置されている。 このロードセル 3 3には、 歪ゲージ 3 5が貼設されるととも に、 コア 3 6の一 ¾が連結されている。 また、 このコア 3 6の他端は、 前記スプ リングカートリッジ 1 3側の前記ヮッシャ 1 5に当接され、 該ヮッシャ 1 5がそ れ以上に矢印 R方向へ移動するのを規制するようになっている。 従って、 前記ス プリングカートリッジ 1 3に掛かる圧縮力は、 前記ヮッシャ 1 5から前記コア 3 6を介して前記ロードセル 3 3に伝達され、 該ロードセル 3 3 おい、て歪量とし て検出され、 この歪量に基づいて前記スプリングカートリッジ 1 3に掛かる圧縮 力が取得される。
前記ロードセル 3 3で区画された前記アダプタ 3 1側の区間と前記センサホル ダ 3 2側の区間のうち、 前記アダプタ 3 1側の空間内には、 前記コア 3 6の内側 に位置するようにして、 前記ナット 1 6が進入配置されている。 また、 前記セン サホルダ 3 2側の空間内には、 レーザセンサ 3 4が配置されている。 このレーザ センサ 3 4は、 前記ロードセル 3 3及び前記コア 3 6に設けられた透孔 (図示省 略) を通して、 前記可動軸 1 2の先端に取り付けられた前記ナット 1 6に臨み、 該ナット 1 6の頂面の位置を計測することで、 前記ウォーム 5の軸方向移動量、 即ち、 前記スプリングカートリッジ 1 3の圧縮量を間接的に計測する。 具体的に は、 前記ナット 1 6の頂面に 「計測点」 を設定し、 前記レーザセンサ 3 4から前 記計測点までの距離 (間隔) を計測するように構成されている。
また、 これらロードセル 3 3及びレーザセンサ 3 4の他に、 診断データ取得手 段として、 0 6に示すように、 弁体が収容された弁箱 6 1と前記ウォームホイ一 ル 4、 ウォーム 5等が収容された弁体駆動部 6 2との間に、 前記弁棒 1を覆うよ うに介在配置されたヨーク 5 0に作用する応力、 即ち、 ヨーク応力を計測するた めに、 該ヨーク 5 0の左右一対の支柱 5 3、 5 4にそれぞれ歪ゲージ 5 1、 5 2 を設置するとともに、 前記弁棒 1に作用する応力、 即ち、 弁棒応力を計測するた —めに、 該弁棒に歪ゲージ 5 5を設置している。 さらに、 図示しないが、 前記モー タの電流値を計測するために磁気センサ等で構成される電流値計測手段が配置さ れる。
ところで、 前記センサユニット 3 0は、 前記ウォーム 5の閉作動 (矢印 R方向 への移動時) と開作動 (矢印 L方向への移動時) の双方における移動量 (即ち、 スプリングカートリッジ 1 3の実圧縮量に前記スプリングカートリッジのガタの 影響を加えた量) は前記レーザセンサ 3 4によって計測できるが、 前記スプリン グカートリッジ 1 3に対する圧縮力については、 前記ロードセル 3 3の機能上、 閉作動時と開作動時の何れか一方側 (この実施形態では閉作動側) のみ計測可能 で、 他方側 (開作動側) については計測できない。 従って、 開作動側の圧縮力の 取得に際しては、 後述するように、 実測に依らずに、 閉作動側の圧縮、量と圧縮力. の対応関係、 及び開作動時の圧縮量に基づいて求める手法がとられる。
一方、 前記第 2の電動弁駆動系 (図 2参照) では、 前記可動軸 1 2の大径筒部 1 2 aの端面上に前記歪ゲージ 3 7を貼設しているので、 前記スプリングカート リッジ 1 3の圧縮カを閉作動と開作動の双方において直接的に計測することがで きる。
しかし、 前記歪ゲージ 3 7は校正しておく必要があり、 この校正のため、 図 4 に示すように前記第 1の電動弁駆動系に取り付けたものと略同様の構成のセンサ ユニット 4 0を、 前記アダプタ 3 8と前記カートリッジ押え 4 2及ぴ前記キヤッ プ 4 6に代えて、前記スプリングカートリ'ッジ 1 3の外端側に仮設的に取り付け、 前記センサュニット 4 0の前記ロードセル 3 3及び前記レーザセンサ 3 4によつ て前記歪ゲージ 3 7の校正を行うようにしている。
即ち、 前記 ンサユニット 4 0は、 前記大径穴部 2 0の端部側を覆うようにケ —シングの端面 2 2上にパッキン 2 3を介して鍔付筒状のアダプタ 3 9を衝合固 定するととも'に、 該アダプタ 3 9の外端にセンサホルダ 3 2を取り付けて構成さ れている。 そして、 前記アダプタ 3 9の外端と前記センサホルダ 3 2の端面との 間には、 これら両者間に跨る空間を軸方向に二分するように板状の口一ドセル 3 3が配置されている。 このロードセル 3 3には、 歪ゲージ 3 5が貼設されるとと もに、 コア 4 3の一端が連結されている。 また、 このコア 4 3の他端 4 3 aは、 前記スプリングカートリッジ 1 3側の前記ヮッシャ 1 5に当接され、 該ヮッシャ 1 5がそれ以上に矢印 R方向へ移動するの'を規制するようになっている。従って、 前記スプリングカートリッジ 1 3に掛かる圧縮力は、 前記ヮッシャ 1 5から前記 コア 4 3を介して前記ロードセル 3 3に伝達され、 該ロードセル 3 '3において歪 量として検出され、 この歪量に基づいて前記スプリングカートリッジ 1 3に掛か る圧縮力が取得される。 -. ' 前記ロードセル 3 3で区画された前記アダプタ 3 9側の区間と前記センサホル ダ 3 2側の区間のうち、 前記アダプタ 3 9側の空間内には、 前記コア 4 3の内側 に位置するようにして、 前記ナット 2 6が進入配置されている。 そして、 このナ ット 2 6の先端に取り付けた前記コネクタ 4 8から信号線 4 .4を外部側へ取り出 すために、 前記アダプタ 3 9及ぴ前記コア 4 3の周壁には、 それぞれスリット 2 7、 2 8が設けられている。 '
また、 前記センサホルダ 3 2側の空間内には、 レーザセンサ 3 4が配置されて いる。 このレーザセンサ 3 4は、 前記ロードセル 3 3及ぴ前記コア 3 6に設けら れた透孔 (図示省略) を通して、 前記可動軸 1 2の先端に取り付けられた前記ナ ット 2 6に臨み、 該ナット 2 6の頂面の位置を計測することで、 前記ウォーム 5 の軸方向移動量、 即ち、 前記スプリングカートリッジ 1 3の圧縮量を間接的に計 測する。
尚、 この実施の形態では、 上述のように、 前記歪ゲージ 3 7の校正を前記セン サュニット 4 0の前記ロードセル 3 3及び前記レーザセンサ 3 4によって行うよ うにしているが、 係る構^に限定されるものではなく、 例えば、 前述の 「バネ圧 縮法」 を適用し、 電動弁の作動停止状態下で前記スプリングカートリッジの皿パ ネを外部から圧縮し、 その場合における前記スプリングカートリッジに対する圧 縮力とその圧縮量の相関関係に基づいて前記歪ゲージ 3 7を校正することもでき る。 '
また、 前記第 2の電動弁駆動系 (図 2参照) において前記歪ゲージ 3 7が校正 済みの場合、 これによつて前記スプリングカートリッジ 1.3にかかる圧縮ガを閉 作動時と開作動時の双方において取得できる、 という利点を生かす (例えば、 後 述のように、 前記スプリングカートリッジ 1 3にかかる圧縮力と圧縮量を常時計 測してトルク曲線を取得し、 トルク曲線の変化から前記スプリングカートリッジ 1 3の劣化を診断) 等の観点から、 図.5に示すように、 前記キャップ 4 6に代え て、 前記レーザセンサ 3 4のみを備えたセンサホルダ 4 7を取り付けることもで きる。
尚、 前記第 1及ぴ第 2の各電動弁駆動系に仮設的に取り付けられる前記センサ ユニット 3 0及ぴセンサュエツト 4 0は、 ウォーム位置の計測手段として俞記レ 一ザセンサ 3 4を用いていることから、 例えば、 該計測手段として差動変位計を 用いるものに比して、 コンパクトな構成であり、 従って、 常時連続的にデータ取 得を行わせることも可能である。
続いて、 本願発明を適用して、 前記センサユニット 3 0とカヽ その他の歪グー ジ等の診断データ取得手段を用いて前記電動弁の診断、 主としてトルクに関する 診断を行う場合の診断方法及び装置について説明する。'
先ず、 本願発明に係る診断方法の基本思想を説明する。 上述のように、 前記セ ンサユニット 3 0は診断時に装着されるが、 前記歪ゲージ 3 7は常設される。 ま た、 ヨーク 5 0に配置される歪ゲージ 5 1、 5 2は、 これが常設されても電動弁 の作動上何ら問題はないので、 常設される。 さらに、 磁気センサは、 電動弁の外 部において容易に設置できるものであり、常設の必要は無いが、常設することも、 あるいは診断時においてのみ設置することも可能である。 これに対して、 前記弁 棒 1に設置される歪ゲージ 5 5は、 これが常設されると開閉弁作動に伴って前記 弁棒 1が軸方向に昇降移動する際に巻き込まれる虞があるため、 その常設は好ま しくなく、 診断時においてのみ設置される。
ところで、 電動弁の各診断項目についての診断時毎に、 直接、 前記各センサを 用いて診断データを取得することは煩に耐えず、 診断作業の効率化等の観点から して好ましいものとは言えない。 そこで、 本願発明の診断方法では、 初回には各 センサ等を使用して診断データを取得するものの、 この初回の取得データに基づ いて各データ間の相関関係を求め、 これを相関データベースとして保有し、 次回 以降は、 比較的簡単に取得できるデータのみ計測し、 前記データベースを参照し て、 前記計測データに対応する他のデータを読み出し、 この読み出しデータに基 づいて所要の診断項目について診断を行うことで、 診断作業の効率化を図るもの である。 以下、 本願 明の診断方法等を幾つかの実施の形態に基づいて具体的に 説明する。
(第 1の実施の形態)
第 1の実施の形態の診断方法及び装置は、 図 1に示すように、 前記スプリング カートリッジ 1 3側に歪ゲ一を備えず、 且つ通常運転時には前記スプリング'カー „
27
トリッジ 1 3の軸方向外端側にキャップ 3 8が装着される一方、 電動弁の診断時 には、 図 3に示すように前記キャップ 3 8に代えて、 前記センサユニット 3 0が 仮設的に装着される構成の電動弁をその対象としている。 そして、 この実施形態 は、 請求項 1、 請求項 2及び請求項 5 7、 請求項 5 8に対応するもので、 最も基 本的な思想に基づくものである。 即ち、 図 8に示すように、 予め複数の物理量を 取得し、 これら相互間の関係を示す相関データベースを求めてこれを保有する。 次回以降の電動弁の診断に際しては、 これら複数の物理量のうち、 特定の一の 種類の物理量を計測により取得する。 そして、 前記相関データベースを参照し、 前記特定の一の種類の物理量に対 する特定の他の種類の物理量を読み出し、 こ の読み出された物理量に基づいて電動弁の診断を行うものである。 尚、 第 2の実 施形態以降の実施形態は、 これら複数の物理量を具体的に特定したものである。
ここで、 物理量とは、 電動弁の診断に用いられる情報値であって、 例えば、 前 記弁棒 1に作用する弁棒応力、 前記ヨーク 5 0に作用するヨーク応力、 前記スプ リングカートリッジ 1 3の圧縮力及び圧縮量、 前記ウォーム 5の移動量、 モータ の電流値等であり、 これらは相関データベースの取得に際してそれぞれ計測され る。 尚、 相関データベースは、 相関関係をもつ情報値間で取得されるもので、 例 えば、 図 9に示すように、 ヨーク応力センサ出力 (即ち、 前記ヨーク 5 0に作用 するヨーク応力) は前記弁棒 1に作用する弁棒応力の反力として把握され、 また トルク、 即も、 前記ステムナット 2に掛かるトルクは前記スプリングカートリツ ジ 1 3の圧縮力とウォームホイール 4の半径寸法の積として求められるもので前 記弁棒 1の軸力として表れるものであることから、 このトルクとヨーク応力セン サには相関関係が成立することから、 該トルクとヨーク応力センサ出力をパラメ ータとして、 相関曲線 Lを設定するものである。 従って、 この相関データベース は、 相関関係をもつ情報値間毎にそれぞれ保有される。
また、 例えば、 前記特定の一の種類の物理量がヨーク応力である場合には、 前 記ヨーク 5 0に配置された前記歪ゲージ 5 1、 5 2が物理量計測手段に該当する。 この実施の形態の診断方法によれば、 電動弁のトルクに関与する複数種類の物 理量間の相関関係を相関データベースとして保有し、 前記相関データベースを参 照して、 計測にて取得した特定の一の種類の物理量に対応する他の種類の物理量 を読み出し、 該他の種類の物理量に基づいて電動弁のトルクに関する診断を行う ようにすることで、 予め電動弁のトルクに関与する複数種類の物理量間の相関関 係を求めてこれを保有しておけば、 以後は特定の一の種類の物理量のみを計測に より取得すれば、 前記相関データベースを参照して、 該特定の一の種類の物理量 に対応する前記他の種類の物理量を読み出し、 この他の種類の物理最に基づいて 電動弁のトルクに関する診断を行う'ことができ、 例えば、 電動弁のトルクに関す る診断の度に、 測定が比較的困難な他の種類の物理量を取得して診断を行う場合 に比して、 診断作業が極めて ffi易であり、 且つ該作業を作業性良く行うことがで き、 それだけ省力化により診断コストの低減化が促進される。
さらに、 この場合、 電動弁のトルクに関与する複数種類の物理量間の相関関係 を相関データベースとして保有す.ることで、 電動弁のトルクに関する診断が多項 目に亘る場合でもこれを迅速に行うことができ、 診断コストの低減化という効果 がより一層顕著となるものである。
一方、 この実施の形態においては、 請求項 3 3から 4 0、 請求項 7 3から 4 0 の発明を適用して、 上述のようにして取得される各物理量相互間の相関関係を表 示することで、 該相関関係の傾向変化に基づいて駆動力伝達状況の経時変化の診 断を容易に行い得るようにしている。 以下、 この相関関係に基づく駆動力伝達状 況の経時変化の診断手法について具体的に説明する。
図 2 7に '、 実際に時間的変化として取得されるデータ例として、 電動弁の開 状態からの閉作動時と、 閉状態からの開作動時の双方における 「電流値」、 「弁棒 応力」、 「ナット位置 (即ち、 ウォーム位置)」、 「トルク (スプリングカートリ-ッジ 圧縮力 X r )」 及び 「ヨーク応力」 の実測データを示している。 これら何れか二つ の実測データを X— Y変換する (一方を X, 他方を Yどして、 Xと Yの関係を求 める) ことで各種の相関データベースが取得される。
. 尚、 図 2 8は、 図 2 7における閉作動終期部分を拡大して示したものである。 図 2 8は、 トルク設定値の診断例を示している ri 即ち、 トルクスィッチ作動によ りモータ電流がオフとなり、 モータが停止するので、 電流オフ時のトルクをトル ク設定値として診断する場合、 スプリングカートリッジの圧縮力を測定するトル ク設定値診断に比べ、 相関データベースを使えば、 ヨーク応力から簡易に診断で きる。 しかも、 ヨーク応力により、 弁本来の機能である弁棒応力や弁体締切力を 直接的に診断することもできる。 なお、 トルク設定値(許容値 =基準値 ± 1 0 %) における基準値は、 基準値 =定数 X弁棒応力 =定数 X (弁体締切力 +パッキン力
+流体による抵抗力) である。
このような相関データベースは、 実測される各データ要素間において任意的に 設定できるものであり、 ここでは電動弁の駆動力伝達状況等の経時変化の-診断要 素となり得るデータ間の相関関係として、 図 2 9に示す 「圧縮量一トルク」 の相 関図と、 図 3 0に示す 「弁棒応力一ヨーク応力」 の相関図と、 図 3 1に示す 「ョ ーク応力 (又は弁棒応力) 一トルク (又は压縮量)、 電流値)」 の相関図と、 図 3 2及び図 3 3に示す 「ヨーク応力 (又は弁棒応力)一トルク (又は圧縮量)、 電流 積算値」 の相関図を例示する。
図 2 9に示す 「圧縮量一トルク」 の相関図 (即ち、 トルク曲線) によれば、 ス プリングカートリッジ 1 3の張込荷重の経時変化を的確に診断できる。 例えば、 図 2 9に示すように、 スプリングカートリッジ 1 3の設置当初に取得したトルク 曲線 (1 ) と所定期間の経過後に取得したトルク曲線 (2 ) において、 張込荷重 が減少変化し、 それに伴ってトルク曲線 (1 ) に対してトルク曲線 (2 ) が低ト ルク側に変化していることが一目にて把握できる。 この張込荷重の減少変化の原 因としては、 例えば、 スプリングカートリッジ 1 3を構成する皿パネの劣化 (磨 耗等) が考えられ、 この張込荷重の減少度合いによって皿パネの経時変化が進ん でいること、 皿パネの取替え時期が近づいていること、 等の診断が行えるととも に、 所定期間毎に取得した張込荷重の減少度合いを傾向管理することにより—、 皿 パネの交換時期を予測することもできる。
尚、 この実施の形態では、 スプリングカートリッジ 1 3の張込荷重の変化状態 を継続的に取得し、 その変化傾向を監視することで該スプリングカートリッジ 1 3の皿パネの経時変化を知り、 その交換時期を予測する手法を説明したが、 係る 経時変化に基づく予測手法は皿パネの経時変化に限定されるものではなく、 電動 弁の駆動力に関する診断項目に係わる各種の要素について広く適用され得るもの である。 例えば、 トルク曲線の変化傾向、 モータの電流値の変化傾向、 ヨーク応 力の変化傾向等を把握することで、 駆動系の経時変化に伴うメンテナンス時期の ^ 予測とか、 弁体とか弁棒の磨耗、 変形等による交換時期の予測等を行うことがで き、 電動弁の安定した信頼性の高い作動を長期に亘つて確保するという点におい て極めて有効である。
図 3 0に示す 「弁棒応力一ヨーク応力」 の相関図からは、 例えば、 駆動機構の 作動不良とかスプリングカートリッジ 1 3の設定トルクの設定値の レの有無等 を診断することができる。 例えば、 '図 3 0に示すように、 スプリングカートリツ ジ 1 3の設置当初に取得した正常状態での相関曲線 (1 ) と、 設置から所定期間 経過後に取得した相関曲線 (2 ) を対比した結果、 相関曲線 (2 ) の曲線長さが 相関曲線 (1 ) のそれよりも短く、 弁棒応力とヨーク応力の双方の最大応力が減 少変化していると認められる場合、 その原因の一つとして、 弁棒駆動力 (ウォー ム側からステムナツ.トを経て実際に弁棒に伝達される駆動力) の減少が考えられ る。 そして、 この弁棒駆動力の減少は、 駆動機構の作動不良 (例えば、 ステムナ ット部分における油切れ等によってその摩擦抵抗が大きくなつて、 ウォーム側の 駆動力の弁体側への伝達効率が低下している状態) とかスプリングカートリッジ 1 3の設定トルクの設定値のズレ (即ち、 設定値の低トルク側へのズレ) に起因 するものであることから、 駆動機構の作動不良とか設定トルクの設定値のズレの 有無を的確に診断することができる。 また、 各相関曲線が同一直線上にあること から、 各センサの感度特性に変化がなく正常であることが確認できる。
図 3 1に^す 「ヨーク応力 (弁棒応力) 一トルク (T S C圧縮量) '電流値ェン ベロープの相関図では、 以下の診断が可能となる (尚、 ここで、 ヨーク応力は弁 棒応力と直線的な相関関係にあるため、 「ヨーク応力」 を 「弁棒応力」 と読み替え ることも可能である。 また、 トルクは張込荷重以上においてスプリングカートリ ッジ (T S Cと略記) の圧縮量と直線的な相関関係にあるため、 「トルク」 を 「ス プリングカートリッジの圧縮量」 と読み替えることも可能である)。
即ち、電動弁の作動が正常な場合のトルク曲線が (a— 1 )、電流値ェンベロ一 プ曲線 (電流値のピークを包絡した曲線) が (b— 1 ) であり、 所定期間経過後 のトルク曲線が(a— 2 )、電流値エンベロープ曲線が(b— 1 )であったとする。 ここで、 例えば、 トルク曲線が (a— 1 ) のまま維持されているのに対して、 電 流値エンベロープ曲線の方は (b _ l ) から (b— 2 ) のように変化していた場 合は、正常時よりもモータ側の電流値が増大側に変化していることを示しており、 この変化傾向から、 例えば、 ウォーム部分から弁体側へは適正なトルク伝達が行 われているが、 モータは高負荷運転を行っているという状況であり、 従って、 ゥ オーム部分からモータ側にかけて何らかの不具合が生じている、 と診断できるも のである。 、
これに対して、 例えば、 トルク曲線が (a— 1 ) から (a— 2 ) に変化した場 合には、 正常状態に比べて、 同じヨーク応力に対して大きなトルクが必要となつ ていることを示している。 従って、 この場合には、 ウォーム側の駆動力の弁体側 への伝達効率が低下していること、 例えば、 ステムナット部分における油切れ等 によつてその摩擦抵抗が大きくなり、 駆動力伝達効率が低下していることが想定 される。 - 図 3 2は、 図 3 1の 「ヨーク応力 (弁棒応力) 一トルク (T S C圧縮量) ·電流 値エンベロープ」の相関図を「ヨーク応力(弁棒応力)一トルク (T S C圧縮量) · 電流積算値(電流値を時間積算した値)」 に変換した相関図であり、 さらに図 3 3 は電流積算値曲線の Y軸の一部分(図 2 7における閉作動終期部分である図 2 8 に対応) を拡大したものである。 ここで、 電動弁の作動が正常な場合のトルク曲 線が曲線 (a _ l )、 電流積算値曲線が曲線 (b— 1 ) であり、 所定期間経過後の トルク曲線が曲線 (a— 2 )、 電流積算値曲線が曲線 (b _ 2 ) である。 そして、 この 「ヨーク応力 (弁棒応力)一トルク (T S C圧縮量) ·電流積算値」 相関図に よれば、 電流積算値を電流値の時間積算として表示するので、 時間変化する電流 値のサンプリングに伴う測定データ間のバラツキを均一化でき、 その結; ¾、 ΐ一 タ側の異常をより精度よく判断することができる。
ところで、 電動弁の診断手法のひとつに、 図 2 8に示すように、 電流オフ時点 のトルクでトルク設定値を診断する手法がある。 即ち、 トルクスィッチが作動す るとモータ電流がオフとなり、 モータが停止するので、 同図に示すように、 電流 オフ時点のトルクをトルク設定値として診断する場合には、 図 3 1に示す 「ョー ク応力一トルク」 の相関データベースを用いれば、 ヨーク応力に基づいてトルク 設定値をよ'り簡易に診断することができ、 スプリングカートリッジの圧縮力を直 接測定するトルク設定値の診断に比べて、 診断作業の簡易迅速化、 省力化^図れ ることになる。 しかも、 この場合、 ヨーク応力により、 弁本来の機能である弁棒 応力や弁体締切力を直接的に診断することもできる。
尚、 上記トルク設定値 (許容値 =基準値 ± 1 0 %) における基準値は、 各種の 抵抗力から算出され、 基準値 =定数 X弁棒応力 =定数 X (弁体締切力 +パッキン 力 +流体による抵抗力) である。 、
(第 2の実施の形態)
第 2の実施の形態の診断方法及び装置は、 前記第 1の電動弁駆動系を備えた電 動弁、 即ち、 図 1に示すように、 前記スプリングカートリッジ 1 3側に歪ゲーを 備えず、 且つ通常運転時には前記スプリングカートリッジ 1 3の軸方向外端側に カートリッジ押え 4- 5が装着される一方、 電動弁の診断時には、 図 3に示すよう に前記カートリッジ押え 4 5に代えて、 前記センサュニット 3 0が仮設的に装着 される構成の電動弁をその対象としている。 そして、 この実施の形態は、 請求項 3及び請求項 5 9に対応するもので、 前記第 1の実施の形態における特定の一の 種類の物理量としてヨーク応力を、 特定の他の種類の物理量としてトルクを、 そ れぞれ特定したものである。 即ち、 図 1 0に示すように、 ヨーク応力とトルクを それぞれ計測してこれらの相関データベース (図 9参照) を求めてこれを保有す る。 次回以降の診断に際しては、 計測の容易なヨーク応力のみを計測により取得 し、前記相間データベースを参照して、計測により取得された前記ヨーク応力(図 9のヨーク応力 「び」) に対応するトルク (図 9のトルク 「T」) を読み出し、 こ の読み出されたトルクに基づいて電動弁のトルクに関する診断を行うものである, 尚、 前記相関データベースは、 表示手段によって表示することが望ましい。 即 ち、 これらが表示されることで、 電動弁の診断時における前記各物理量の把握及 びこれらの相関関係に基づく各診断項目の判断が容易となり、 それだけ電動弁診 断作業の容易且つ迅速化、 さらには省力化による診断コストの低減が可能となる からである。 , また、 ヨーク応力は、 ヨーク応力センサ (請求の範囲中の 「ヨーク応力計測手 段」 に該当する) により計測されるが、 この実施の形態の場合、 前記ヨーク 5 0 に配置された前記歪ゲージ 5 1、 5 2が前記ヨーク応力センサに該当する。' この όό
実施の形態では、 前記歪ゲージ 5 1、 5 2の前記ヨーク 5 0に対する取付位置、 及びその図 6に示すように、 前記ヨーク 5 0は、 前述のように、.前記弁箱 6 1側 に衝合締着される下側フランジジ部 5 6と前記弁体駆動部 6 2側に衝合締着され る上側フランジジ部 5 7の間に跨って配置された左右一対の支柱 5 3、 5 4を備 えた二股状形態をもち、 該一対の支柱 5 3、 5 4間の中間位置を上下方向に貫設 状態で前記弁棒 1が配置されている。
そして、 このヨーク 5 0の前記一対の支柱 5 1、 5 2の内側中央寄り位置にそ れぞれ歪ゲージ 5 1、 5 2を貼設している。 この歪ゲージ 5 1、 5 2が貼設され た前記各支柱 5 3、 5 4の内側位置は、 前記ヨーク 5 0において歪量が大きく且 つ安定的に生じる部位であることが本件出願人等の実験によつて確認された部位 である。 従って、 このような位置に前記歪ゲージ 5 1、 5 2を配置することで、 ヨーク応力センサで計測されるヨーク応力の信頼性が高く、 延いては前記相関デ ータベースを参照して、 前記ヨーク応力に対応して読み出される前記トルクも信 頼性が高いものとなり、 その結果、 電動弁の診断結果の精度及び信頼性がより一 層向上することになる。
また、 前記各歪ゲージ 5 1、 5 2を、 前記ヨーク 5 0における前記弁棒軸心部 を挟んだ対称位置にそれぞれ配置し、 該各ヨーク応力センサのそれぞれの出力値 の平均値を前記ヨーク応力として取得するようにしている。 このように構成する ことで、 前曾己各歪ゲージ 5 1、 5 2で計測されるヨーク応力の計測値そのものの 信頼性がさらに高められ、 延いては、 電動弁の診断結果の精度及び信頼性の更な る向上が期待できる。 ' - この実施の形態の診断方法によれば、 前記相関データベースを、 ヨークに作用 するヨーク応力と、 前記スプリングカートリッジ 1 3の圧縮力から求まるトルク との相関関係を示すデータベース (図 9参照) とし、 該相関データベースを参照 して、 計測にて取得されるヨーク応力 (図 9のヨーク応力 「び」) に対応する前記 トルク (図 9のトルク 「Τ」) を読み出すことで、 予めヨークに作用するヨーク応 力と、 前記スプリングカートリッジの圧縮力から求まるトルクとの相関関係を求 めてこれを保有しておけば、 以後はヨーク応力のみを計測により取得すれば、 前 記相関データベースを参照して、 前記スプリングカートリッジの圧縮力か 求ま n Λ
34
るトルクを読み出し、 このトルクに基づいて電動弁のトルクに関する診断を行う ことができ、 例えば、 電動弁のトルクに関する診断の度に、 前記スプリングカー トリッジの圧縮力から求まるトルクを取得して診断を行う場合に比して、 診断作 業が極めて簡易であり、 且つ該作業を作業性良く行うことができ、 それだけ省力 化により診断コストの低減化が促進される。 、
さらに、 この場合、 ヨーク応力は、 電動弁の外部に露出したヨーク 5 0に作用 する応力であって電動弁の外部から計測可能であり、 ここに前記歪ゲージ 5 1, 5 2を取り付けてその歪量からこれに対応する応力、 即ち、 ヨーク応力を取得す ることは、 例えば、 電動弁の一部を開放してその内部に歪ゲージを取り付けて応 力の計測を行う場合に比して、 その作業が格段に容易であることから、 診断作業 性の更なる向上、 省力化による診断コストのより一層の低減が可能となるもので ある。 .
また、 電動弁の実際の作動においては、 例えば、 駆動力伝達機構の摩擦力の発 生、 弁棒の作動に伴うパッキン等の摺動抵抗の作用等によって、 実際に弁棒に作 用する力は必ずしもトルクと一定関係にはなく、 例えば、 ステムナット部分に油 切れが発生すると、規定のトルクで駆動していても、実際に弁棒に作用する力は、 油切れが発生していない状態よりも小さくなることから、トルクのみの診断では、 本来電動弁の機能として診断すべき弁体や弁棒に作用する力の診断という点で不 十分であることは既述の通りである。 しかし、 この実施形態の場合には、 計測に より取得されるヨーク応力から弁棒応力に対応する応力を知ることができ、 さら にヨーク応力と トルクの相関データベースからヨーク応力に対応するトルグを知 ることができるので、 駆動伝達機構の診断を行うこともでき、 その結果、 トルク に関する診断との組み合わせによって、 電動弁のトータル的な診断が可能となる ものである。
, .また、 電動弁に関する診断は、 弁機能の確保という観点からして、 実際に弁体 に作用している力、 即ち、 弁棒の発生応力を計測することが重要であり、 前記ョ 一ク応は弁棒応力の反力として計測できるので、 ヨーク応力に基づいて弁棒応力 の診断を行うことで、 極めて信頼性の高い診断結果を得ることができる。 r
35
(第 3の実施の形態)
第 3の実施の形態の診断方法及び装置は、 請求項 4及び請求項 6 0に対応する もので、 図 1 1に示すように、 前記第 2の実施の形態と同様に、 ヨーク応力とト ルクとの相関データベースを用い、 ヨーク応力の計測のみによって、 該ヨーク応 力に対応するトルクを前記相関データベースから読み出し、 これに基づいて電動 弁の診断を行うものであるが、 その'場合、 特にこの実施形態では、 前記第 2の電 動弁駆動系を備えた電動弁、 即ち、 図 2に示すように、 前記スプリングカートリ ッジ 1 3側に校正済 (校正期限前) の歪ゲージ 3 7を配置した構成の電動弁を対 象とし、 診断時には、 前記歪ゲージ 3 7によって前記スプリングカートリッジ 1 3の圧縮カを閉作動時と開作動時の双方において計測して取得する (第 1の取得 手段) と同時に、 前記ヨーク 5 0に設けられた前記一対の歪ゲージ 5 1、 5 2に よってヨーク応力を閉作動時と開作動時の双方において計測して取得する (第 2 の取得手段)ようにしている。尚、前記第 2の取得手段を構成する歪ゲージ 5 1、 5 2は 次述のように、 次回以降の診断に際して、 ヨーク応力の計測を行うョー ク応力計測手段としても用いられる。
そして、 この実施の形態の診断方法では、 実測される開作動時と閉作動時の双 方における圧縮力と、開作動時と閉作動時の双方におけるヨーク応力に基づいて、 トルクとヨーク応力の相関関係を求めてこれを相関データベースとして取得する。 次回以降の診断に際しては、 ヨーク応力のみを計測にて取得することで、 この取 得されたヨーク応力に対応するトルクを前記相関データベースから読み出し、 こ の読み出されたトルクに基づいて電動弁のトルクに関する診断を行うことが き るものである。
以上のトルクに関する診断は、 歪ゲージ 3 7が校正有効期間内の場合は該歪ゲ —ジ 3 7により直接行うことができる。 即ち、 図 2に示すように、 通常運転時と 同様の形態、 即ち、 前記スプリングカートリッジ 1 3の軸方向外端側に前記キヤ ップ 4 6を装着した状態で行える。 従って、 通常運転から何らの付帯作業を要す ることなく、 直ちに診断作業に移行でき、 必要ならば通常運転時に継続的に診断 を行うこと'も可能である。 し力 し、 前記歪ゲージ 3 7が校正期限後は、 精度良く 診断を行うことができない.。 従って、 この実施の形態の診断方法によれば、 計測にて取得されるヨーク応力 に対応するトルクを前記相関データベースから読み出し、 この読み出されたトル クに基づいて電動弁の診断を行うものであることから、 例えば、 診断の度に前記 スプリングカートリッジ 1 3の圧縮力から求まるトルクを直接計測する前記歪ゲ ージ 3 7が校正期限後となっても、 前記歪ゲージ 5 1、 5 2によって精度良く診 断を行うことができ、 省力化による診断コストの低減が促進される。
ところで、 電動弁の実際の作動においては、 例えば、 駆動力伝達機構の摩擦力 の ¾生、 弁棒の作動に伴うパッキン等の摺動抵抗の作用等によって、 実際に弁棒 に作用する力は必ずしもトルクと一定関係にはなく、 例えば、 ステムナット部分 に油切れが発生すると、 規定のトルクで駆動していても、 実際に弁棒に作用する 力は、 油切れが発生していない状態よりも小さくなることから、 トルクのみの診 断では、 本来電動弁の機能として診断すべき弁体や弁棒に作用する力の診断とい う点で不十分であることは既述の通りである。しかし、この実施形態の場合には、 計測により取得されるヨーク応力から弁棒応力に対応する応力を知ることができ、 きらに前記歪ゲージ 3 7 (校正有効期間内) により直接的にトルクを知ることが できるので、 この弁棒応力と トルクの対比によって駆動伝達機構の診断を行うこ ともでき、 その結果、 トルクに関する診断との組み合わせによって、 電動弁のト 一タル的な診断が可能となるものである。
また、 請 項 1 3から 2 0の発明のように、 前記ヨーク 5 0に設けられた前記 一対の歪ゲージ 5 1、 5 2の取換時期 (即ち、 校正期限) の到来に先立って、 該 歪ゲージ 5 1、 5 2の取付位置の近傍に取換用の歪ゲージを取り付け、 前記'既設 の歪ゲージ 5 1、 5 2の出力特性と前記取換用の歪ゲージの出力特性の相関関係 を把握して前記既設の歪ゲージ 5 1、 5 2から前記取換用の歪ゲージへの取換え 後は前記取換用の歪ゲージの出力特性に前記相関関係を反映させて順次校正する ようにしておけば、 前記ヨーク 5 0に設けられた前記歪ゲージ 5 1、 5 2によつ て、 前記相関データベースに基づき前記スプリングカートリッジ 1 3側に設けた 歪ゲージ 3 7の校正を行うことができる。
また、前記スプリングカートリッジ 1 3側に設けた前記歪ゲージ 3 7の校正は、 上述のように前記ヨーク 5. 0に設けた前記一対の歪ゲージ 5 1、 5 2によって行 う他に、 図 4に示すように、 前記キャップ 4 6に代えて、 ロードセル 3 3とレー ザセンサ 3 4を備えた前記センサュ-ット 4 0を取り付け、 予め校正された前記 ロードセル 3 3の出力値と前記歪ゲージ 3 7の出力値とを対比することで、 該歪 ゲージ 3 7を前記ロードセル 3 3によって校正することができる。 この場合、 前 記ロードセル 3 3は外付けされその校正が容易であることから、 こ 校正された ロードセル 3 3を用いることで、 前記歪ゲージ 3 7の校正を容易に行うことがで き、 例えば、 前記歪ゲージ 3 7を電動弁から取り外してその校正を行うような場 合に比して、 校正作業の簡易迅速化を図ることができる。
さらに、図 5に示ように、前記スプリングカートリッジ 1 3の軸方向外端側に、 前記キャップ 4 6に代えて、 前記レーザセンサ 3 4のみを備えたセンサュニット 4 7を前記アダプタ 3 8によって仮設的に取り付け、 該レーザセンサ 3 4により 前記スプリングカートリッジ 1 3の圧縮量を計測することで、 前記歪ゲージ 3 7 との相関関係からトルク曲線を取得することができる。 従って、 例えば、 前記セ ンサュエツト 4 7を常設し、 且つ常時取得されるトルク曲線を表示することで、 スプリングカートリッジ 1 3の張込荷重の経時変化を容易に診断することができ る。
また、 前記レーザセンサ 3 4は単に前記スプリングカートリッジ 1 3の圧縮量 を計測するものであり、 従って、 係る機能をもつものであれば、 前記レーザセン サ 3 4に代えて、 例えば、 差動トランスを備えた差動式位置計測機構を用いるこ とも可能である。 さらに、 前記センサユニット 4 7として、 図 4に示すように前 記レーザセンサ 3 4の他にロードセル 3 3を備えた構成の前記センサュニヅ 'ト 4 0を採用することも可能なことは言うまでもない。
ここで、 この実施の形態においては、 前記第 2の実施の形態の場合と同様に、 前記歪ゲージ 5 1、 5 2の前記ヨーク 5 0に対する取付位置、 及びその計測値の 用い方について、請求項 7から 1 2及び請求項 5 7、 5 8に係る発明を適用して、 前記ヨーク 5 0において歪量が大きく且つ安定的に生じる部位、 即ち、 前記ョー ク 5 0の前記一対の支柱 5 1、 5 2の内側中央寄り位置にそれぞれ歪ゲージ 5 1、 5 2を貼設し、 これによつて、 ヨーク応力センサで計測されるヨーク応力の信頼 性を高め、 延いては前記相関デ一タベースを参照して、 前記ヨーク応力に対応し て読み出される前記トルクの信頼性を高め、 もって電動弁の診断結果の精度及び 信頼性のより一層の向上を図っている。
また、 前記各歪ゲージ 5 1、 5 2を、 前記ヨーク 5 0における前記弁棒軸心部 を挟んだ対称位置にそれぞれ配置し、 該各ヨーク応力センサのそれぞれの出力値 の平均値を前記ヨーク応力として取得することで、 前記各'歪ゲージ 5、1、 5 2で 計測されるヨーク応力の計測値そめものの信頼性をさらに高めるようにしている。 さらに、 この実施の形態では、 前記相関データベースを表示手段によって表示 するようにしているので、 電動弁の診断時における相関関係に基づく各診断項目 の判断が容易となり、 それだけ電動弁診断作業の容易且つ迅速化、 さらには省力 化による診断コストの低減が可能となる。
(第 4の実施の形態)
第 4の実施の形態の診断方法及び装置は、 請求項 5及び請求項 6 1に対応する もので、 図 3に示した前記センサュニット 3 0を用いて電動弁のトルクに関する 診断を行うようにしたものである。 具体的には、 初回の診断時に 「ヨーク応力一 トルク」 の相関データベースを取得し、 次回からの診断に際しては、 計測が比較 的困難なトルク (スプリングカートリッジ 1 3の圧縮力を数値変換したもの) の 計測による取得は行わず、 計測の容易なヨーク応力のみを計測により取得し、 こ の計測により取得されたヨーク応力に対応する hルクを前記相関データベースか ら読み出すことで取得し、 これによつて電動弁本来の機能のトータル的な診断及 び診断作業の容易且つ迅速化を図るものである。 ' また、 電動'弁の実際の作動においては、 例えば、 駆動力伝達機構の摩擦力の発 生、 弁棒の作動に伴うパッキン等の摺動抵抗の作用等によって、 実際に弁棒に作 用する力は必ずしもトルクと一定関係にはなく、 例えば、 ステムナット部分に油 切れが発生すると、規定のドルクで駆動していても、実際に弁棒に作用する力は、 油切れが発生していない状態よりも小さくなることから、トルクのみの診断では、 本来電動弁の機能として診断すべき弁体や弁棒に作用する力の診断という点で不 十分である'ことは既述の通りである。 し力 し、 この実施形態の場合には、 計測に より取得されるヨーク応力から弁棒応力に対応する応力を知ることができ、 さら QQ にヨーク応力とトルクの相関データベースからヨーク応力に対応するトルクを知 ることができるので、 駆動伝達機構の診断を行うこともでき、 その結果、 トルク に関する診断との組み合わせによって、 電動弁のトータル的な診断が可能となる ものである。
ところで、 上述のように、 前記センサユニット 3 0は前記ロードセ、ル 3 3と前 記レーザセンサ 3 4を備えた構成 あって、 該ロードセル 3 3の構造上、 前記ス プリングカートリッジ 1 3の矢印 L方向 (図 1参照) の圧縮力は計測できないも のである。 しかし、 「ヨーク応力一トルク」 の相関データベースからヨーク応力に 対応するトルクを読み出すには、 他方側作動時の圧縮力を取得することが必要不 可欠である。 そこで、 この実施形態では、 他方側作動時の圧縮力を、 計測により 取得可能な一方側作動時の圧縮量と圧縮力、 及び他方側作動時の圧縮量に基づい て取得するようにしている。
この場合、 「ヨーク応力一トルク」の相関データベースの取得に先立って計測に よりその取得が必要な相関データとしてほ、 一方側作動時の 「圧縮力 (又は圧縮 量) とヨーク応力」 の相関データと、 一方側作動時の 「圧縮量と圧縮力」 の相関 データと、 他方側作動時の 「圧縮量とヨーク応力」 の相関データの三つである。 従って、 図 1 2に示すように、 診断に際しては、 先ず、 前記センサユニット 3 0の前記レーザセンサ 3 4によつて一方側作動時と他方側作動時の圧縮量を、 前 記ロードセル 3 3によって一方側作動時の圧縮力を、 前記ヨーク 5 0に配置され た前記歪ゲージ 5 1、 5 2によつて一方側作動時と他方側作動時のヨーク応力を それぞれ取得するが、 その場合、 これら各データの取得に際しては、 各デ 'タの 相関関係は、 相関する二つのデータが同時期に計測により取得されることで初め て正確な相関関係が得られるものである。
なお、図 1 2の右上の点線で囲んだ部分は、データの取得に関する説明であり、 . 「最低限取得が必要な相関データ」 とじて、
( a ) 一方側作動時の圧縮力 (又は圧縮量) とヨーク応力
. ( b ) —方側作動時の圧縮量と圧縮力 '
( c ) 他方側作動時の圧縮量とヨーク応力
があり、 「具体的な取得形態」 としては、
( 1 ) 一方側作動時の圧縮量と圧縮カ及ぴヨーク応力
( 2 ) 他方側作動時の圧縮量とヨーク応力
上記 (1 )、 ( 2 ) の各物理量をそれぞれ同時に取得する
ものである。 、
そこで、 この実施の形態においては、 実際の具体的なデータ取得形態として、 —方側作動時の圧縮量と圧縮力及びヨーク応力を同時に取得するとともに、 他方 側作動時の圧縮量とヨーク応力を同時に取得するようにしている。
次に、 一方側作動時の圧縮量と圧縮力の相関データと、 他方側作動時の圧縮量 に基づいて、 他方側作動時の圧縮力を取得する。 ここで、 問題となるのが前記ス プリングカートリッジ 1 3の 「ガタ」 である。
即ち、 上述のように前記スプリングカートリッジ 1 3の圧縮量は、 これを両端 から直接計測するのではなく、 前記レーザセンサ 3 4によつて前記ウォーム 5と 一体的に移動する前記ナツト 1 6のゥォ ム軸方向への移動量として間接的に計 測する構成を採っている。 一方、 図 1にも示したように、 前記スプリングカート リッジ 1 3の単体での軸長は前記各皿パネ 7の列設方向の両端に位置する前記一 対のヮッシャ 1 4、 1 5の外寸で規定される。 また、 前記スプリングカートリツ ジ 1 3は、 その一方のヮッシャ 1 4が前記ケーシングの大径穴部 2 0と小径穴部 1 9の段差面 2 1に当接することで矢印 L方向への移動規制がなされ、 他方のヮ ッシャ 1 5が前記ケーシングの端面 2 2上に衝合固定された前記アダプタ 3 1の 内側に配置された前記コア 3 6の端面 3 6 aに当接することで矢印 R方向への移 動規制がなされる。
この場合、 前記スプリングカートリッジ 13 の軸長と、 前記段差面 2 1と前記 コア 3 6の端面 3 6 aの間隔寸法が合致していれば、 前記ナツト 1 6の移動量を 計測して前記スプリングカートリッジ 1 3の圧縮量として取得しても、 常に 「ナ ット移動量 =スプリングカートリッジ圧縮量」 となり、 このナット移動量で間接 的に取得された 「スプリングカートリッジ圧縮量」 を前記 「圧縮量」 として採用 しても何ら問題は生じない。 - ところが、 現実問題として、 前記スプリングカートリッジ 1 3とか前記ァダプ タ 3 1等の製作誤差、 これらの組付誤差、 あるいは前記パッキン 2 3の 「へタリ」 等の原因で、 前記スプリングカートリッジ 13 の軸長と前記段差面 2 1と前記コ ァ 3 6の端面 3 6 aの間隔寸法との間には寸法差、即ち、 「ガタ」 が不可避的に生 じる。 従って、 この 「ガタ」 の存在する状態では、 前記ナットの移動量と前記ス プリングカートリッジ 1 3の実際の圧縮量とは合致せず、 その結果、、前記ナツト 1 6の移動量を計測して前記スプリングカートリッジ 1 3の圧縮量とみなして取 得し、 且つこの取得された 「みなし圧縮量」 を前記 「圧縮量」 として採用した場 合、 即ち、 前記スプリングカートリッジ 1 3の圧縮量を前記ナツト 1 6の移動量 (移動距離) として間接的に取得した場合、 後述の如き問題が生じる。
先ず、 ここで、 電動弁が閉作動し、 さらに開作動する場合において、 前記スプ リングカートリッジ 1 3の圧縮量を前記ナツト 1 6の移動量 (移動距離) として 間接的に取得する場合の一般的な手法について説明する。
図 1 8は、 電動弁の閉作動開始前の状態における前記スプリングカートリッジ 1 3を示している。 この電動弁の閉作動開始前の状態では、 前記スプリングカー トリッジ 1 3が張込荷重以下の状態とされ、 且つ一方のヮッシャ 1 5が前記コア 3 6の端面 3 6 aに当接している。 このとき、 前記スプリングカートリッジ 1 3 の他方のヮッシャ 1 4は前記段差面 2 1にガタ Δ Lを.もって離間対向している。 そして、 前記レーザセンサ 3 4は、 前記ケーシングの端面 2 2を計測基準位置と して、 該端面 2 2から前記ナツト 1 6までの距離 [ L s 1 ] を計測する。
図 1 8に示す状態から、 前記ウォーム 5が閉作動方向へ移動すると、 図 1 9に 示すように、 前記ウォーム 5と一体的に前記可動軸 1 2が矢印 R方向へ移動し、 前記スプリングカートリッジ 1 3が圧縮される。 この際、 前記レーザセンサ 3 4 は、 前記ケーシングの端面 2 2を計測基準位置として、 該端面 2 2から前記ナツ ト 1 6までの距離 [ L 1 ] を計測する。 従って、 前記スプリングカートリッジ 1 3の閉作動時における圧縮量は、 「L s' l—L l」 として求められる。
一方、 図 2 0は、 電動弁の開作動開始前の状態における前記スプリングカート リッジ 1 3を示している。 この電動弁の開作動開始前の状態では、 前記スプリン グカートリッジ 1 3が張込荷重以下の状態とされ、 且つ他方のヮッシャ 1 4が前 記段差面 2 1に当接している。 このとき、 前記スプリングカートリッジ 1 3の一 J n
42
方のヮッシャ 1 5は、 前記コア 3 6の端面 3 6 aにガタ Δ Lをもって離間対向し ている。 そして、 前記レーザセンサ 3 4は、 前記ケーシングの端面 2 2を計測基 準位置として、該端面 2 2から前記ナツト 1 6までの距離 [ L s 2 ]を計測する。 図 2 0に示す状態から、 前記ウォーム 5が開作動方向へ移動すると、 図 2 1に 示すように、 前記ウォーム 5と一体的に前記可動軸 1 2が矢印 L方向、へ移動し、 前記スプリングカートリッジ 1 3が'圧縮される。 この際、 前記レーザセンサ 3 4 は、 前記ケーシングの端面 2 2を計測基準位置として、 該端面 2 2から前記ナツ ト 1 6までの距離 [ L 2 ] を計測する。 '従って、 前記スプリング力一トリッジ 1 3の開作動時における圧縮量は、 「L s 2— L 2」 として求められる。
このように、 前記スプリングカートリッジ 1 3の圧縮量を前記ナツト 1 6の移 動量 (移動距離) と ·して間接的に取得する場合においては、 閉作動時には図 1 8 に示された前記ナツト 1 6の位置を原点として行い、 また、 開作動時には図 2 0 に示された前記ナツト 1 6の位置を原点として行うことが必要である。
しかるに、 一般には、 同一の計測対象物が軸方向の両側に移動する場合におい てその移動量を計測するときには原点を単一位置に設定すれば計測が容易である、 との認識があり (即ち、 「ガタ」が存在しないことが前提となっている)、例えば、 前記計測例のようにスプリングカートリッジ 1 3が閉作動方向と開作動方向に移 動する場合、 これら何れの作動方向での計測においても単一位置 (例えば、 図 1 8に示す位置) を原点として計測することが往々にして行われる。
ここで、 もし、 スプリングカートリッジ 1 3が閉作動方向と開作動方向に移動 する場合において、 これら何れの方向の計測においても図 1 8に示す前記ナツト 1 6の位置を原点として計測が行われると、 閉作動方向においては当該方向にガ タが存在しないため問題は生じないが、 作動方向が閉作動方向から開作動方向へ 転じ、 開作動が行われる場合には、 ここで計測される計測値は前記ガタ を含 んだものとなり (前記計測例の場合には、 取得される計測値が 「L 2 + A L」 と なる)、スプリングカートリッジ 1 3の圧縮量について開作動時の計測値はガタ Δ Lに相当する誤差が生じることになる。
ここで、 '図 1 8から図 2 1に示したスプリングカートリッジ 1 3の作動時の状 態を、 図 2 2に時系列グラフとして示した。 _
43
この図 2 2において、 閉作動時におけるスプリングカートリッジ 1 3の基準位 置となる第 1初期位置は、 図 1 8に示した状態に対応し、 この状態におけるナツ ト 1 6の端面位置が、 閉作動方向への移動量計測の原点となる。 そして、 図 2 2 の第 1計測値が、 スプリングカートリッジ 1 3の閉作動時における前記原点から の移動量である。 、
また、 図 2 2において、 開作動時におけるスプリングカートリッジ 1 3の基準 位置となる第 2初期位置は図 2 0に示した状態に対応し、 この状態におけるナツ ト 1 6の端面位置が、 開作動方向への移動量計測の原点となる。 そして、 図 2 2 の第 2計測値が、 スプリングカートリッジ 1 3の開作動時における前記原点であ る第 2初期位置からの移動量である。
従って、 閉作動側の第 1初期位置を基準として、 開作動時の移動量をみると、 第 2計測値をガタ Δ Lに相当する移動量だけ開作動方向へシフトしたグラフとな る。 このため、 開作動時の移動量の計測に際して、 その原点を閉作動時の原点と 同一点に設定すると、 前記ガタ Δ Lに相当する誤差が生じることになるものであ る。
これらのことからして、 前記センサュニット 3 0を用いて前記スプリングカー トリッジ 1 3の圧縮量を前記ナツト 1 6の移動量として間接的に取得しこれを電 動弁のトルクに関する診断に用いる場合において、 信頼性の高い診断結果を得る ためには、 前記 「ガタ A L」 の影響を排した実圧縮量が得られるように計測手法 を考慮することが必要である。
ここで、 上掲の図 1 8から図 2 1に示したスプリングカートリッジ 1 3の作動 状態を踏まえた上で、 これらと対応させながら、 図 1 3から図 1 7を参照して閉 作動時の圧縮量と圧縮力の相関データと、 開作動時の圧縮量に基づいて、 開作動 時の圧縮力を取得する場合の具体的手法及び留意点について、 説明する。
. 先ず、 図 1 3に示すような、 閉作動時の 「ヨーク応力一トルク (スプリング力 ートリッジの圧縮力を数値変換したもの)」 の相関データを求める。 さらに、 図 1 4に示すような閉作動時の 「圧縮量一トルク」 の相関データとしてトルク曲線 L 1を求める b そして、 この閉作動時のトルク曲線 L 1を、 原点 Pから点対称に移 動させて、 開作動時のトルク曲線 L 2を求める。 ' 次に、 図 1 5に示すような開作動時の 「ヨーク応力と圧縮量」 の相関データを 取得する。 そして、 この図 1 5の開作動時の 「ヨーク応力一圧縮量」 の相関デー タに基づき、 実測にて取得される開作動時のヨーク応力 「び 1」 に対応するスプ リングカートリッジ 1 3の圧縮量 「W 1」 を求める。 しかる後、 図 1 6 (図 1 4 と同一であるが、 説明の便宜上、 別図とレて挙げたもの) に基づいて、 開作動時 の圧縮量 「W 1」 に対応する開作動時のトルク 「T 1」 を求める。
ところで、 ここで求められた開作動時の圧縮量 「W 1」 には、 スプリングカー トリッジ 1 3のガタ Δ Lは考慮されていない。 しかし、 実際上は、 スプリング力 ートリッジ 1 3の圧縮方向において前記ガタ Δ Lが不可避的に存在することは既 述の通りである。
従って、 閉作動時におけるスプリングカートリッジの基準位置を開作動時にお けるスプリングカートリッジの基準位置とみなした場合、 開作動時におけるスプ リングカートリッジ 1 3の圧縮力から求まるトルクを、 閉作動時の圧縮量及びト ルクに基づいて求める際に前記ガタ Δ Lを考慮しないと、 電動弁の診断において 高精度の診断結果を得られないことになる。
即ち、 図 2 2及び図 1 8から図 2 1にも示したように、 スプリングカートリツ ジ 1 3の圧縮方向にガタ A Lが存在する場合、 開作動時のトルク曲線は、 ガタ厶 Lが無い場合に比して、 開作動方向に該ガタ A Lに相当する圧縮量だけシフトし たものになることは既述の通りである。 従って、 図 1 6に示す開作動時のトルク 曲線 L 2 (即ち、 ガタ Δ Lが無い場合のトルク曲線) に前記ガタ の存在を考 慮して、ガタ Δ Lが存在する場合における開作動時のトルク曲線 L 3を求めると、 図 1 7に示すようになる。
即ち、 ガタ Δ Lが無い場合の開作動時のトルク曲線 L 2は、 閉作動時のトルク 曲線 L 1に対して原点 Pに点対称に設定される。 しかし、 ガタ A Lが存在する場 合における開作動時のトルク曲線 L 3は、 前記トルク曲線 L 2からガタ Δ Lだけ 圧縮量 (一) 側へシフトして、 原点を Qとして設定される。
このため、 例えば開作動時における圧縮量 「W 1'」 (原点 Pを基準とした値) に 対応するトルクを図 1 7のトルク曲線 L 3に基づいて求める場合、 原点 Qを基準 として、 ここから圧縮量 卩 W 1— A L」 をとり、 これに対応するトルクを汆める と 「トルク- T a」 となる。 このトルク 「T」 は、 ガタ Δ Lが存在するときの開 作動時における実際のトルクである。
これに対して、 例えば、 開作動時におけるスプリングカートリッジの圧縮量の 基準位置を、 原点 Qではなく、 原点 Ρ (閉作動時におけるスプリング力 tトリ: ジの圧縮量の基準位置に設定した場合は、 前記圧縮量 「W 1」 に対応す.るトルク として 「トルク == T b」 が求められ'、 原点 Pを基準とした場合と原点 Qを基準と した場合の間において、 読み出されるトルクに 「T b— T a」 の誤差を生じるこ とになる。
以上のように、 開作動時のトルクの取得に際して、 スプリングカートリッジ 1 3のガタ Δ Lが考慮されることで、 実際に作用しているトルクを高精度で取得す ることができ、 且つ-これを用いて電動弁のトルクに関する診断を行うことで、 極 めて高精度の診断が可能となる。
このようにして取得した 「圧縮量一トルク」 の相関データに基づいて、 「ヨーク 応力一圧縮力」 の相関データベースを取得する。 そして、 このようにして取得さ れた前記相関データベースは開作動時のトルクに関する診断に用いられる。また、 閉作動時のトルクに関する診断においては、実測にて取得された前記図 1 3の「ョ ーク応力一トルク」 の相関データが用いられる。
' 前記相関データベースを保有した後の次回からの診断に際しては、 ヨーク応力 計測手段によりヨーク応力を計測にて求め、 前記相関データベースを参照して、 計測により取得された前記ヨーク応力に対応するトルクを読み出す。 そして、 こ の読み出されたトルクに基づいて電動弁のトルクに関する診断を行う。 ' このように、この実施の形態の電動弁診断方法によれば、構造が比較的簡単で、 他方側への作動時の圧縮力を直接計測で ない前記計測手段を用いるにも拘らず、 これら取得データに基づいて、 一方側又は他方側への作動時の圧縮力から求まる 前記トルクと前記ヨーク応力の間の相関データベースを容易に取得することがで き、 その結果、 前記相関データベースの確実な取得と取得作業の迅速化が担保さ れ、 延いては該相関データベースを使用した診断作業性の向上及び省力化による 診断コスト'の低減がさらに促進されることになる。
さらに、 この相関データベースを参照することで、 比較的計測が容易なヨーク Λ η
46
応力に対応するトルクを簡単に取得することができ、 例えば、 診断の度に前記ス プリング力一トリッジ 1 3の圧縮力から求まるトルクの計測を行うような場合に 比して、 診断作業性の向上が図れる。
ここで、 前記ヨーク応力の計測に関しては、 前記第 2の実施の形態の場合と同 様に、 前記歪ゲージ 5 1、 5 2の前記ヨーク 5 0に対する取付位置、、及びその計 測値の用い方について、 請求項 7から 1 2及ぴ請求項 5 7、 5 8の発明を適用し て、 前記ヨーク 5 0において歪量が大きく且つ安定的に生じる部位、 即ち、 前記 ヨーク 5 0の前記一対の支柱 5 1、 5 2の内側中央寄り位置にそれぞれ歪ゲージ 5 1、 5 2を貼設し、 これに.よって、 ヨーク応力センサで計測されるヨーク応力 の信頼性を高め、 延いては前記相関データベースを参照して、 前記ヨーク応力に 対応して読み出される前記.トルクの信頼性を高め、 もって電動弁の診断結果の精 度及び信頼性のより一層の向上を図っている。 , また、 前記各歪ゲージ 5 1、 5 2を、 前記ヨーク 5 0における前記弁棒軸心部 を挟んだ対称位置にそれぞれ配置し、 該各ヨーク応力センサのそれぞれの出力値 の平均値を前記ヨーク応力として取得することで、 前記各歪ゲージ 5 1, 5 2で 計測されるヨーク応力の計測値そのものの信頼性をさらに高めるようにしている。
さらに、 この実施の形態では、 前記相関データベースを表示手段によって表示 するようにしているので、 電動弁の診断時における相関関係に基づく各診断項目 の判断が容易となり、 それだけ電動弁診断作業の容易且つ迅速化、 さらには省力 化による診断コストの低減が可能となる。 また、 この場合、 第 1の実施形態のよ うに、上述のようにして取得される各データ相互間の相関関係を表示することで、 該相関関係の傾向変化に基づいて駆動力伝達状況の経時変化の診断を容易に行い 得ることは勿論である。
従って、 この実施の形態のように、 請求項 6及び 5 7の発明を適用して、 実圧 縮量取得手段を備え、 該実圧縮量取得手段により、 開作動時のトルク曲線を取得 する際に、 前記スプリングカートリッジ 1 3のガタ量 を求め、 計測にて取得 されるナツト 1 6の移動量からガタ量 Δ Lの影響を除いた実圧縮量を求め、 この 実圧縮量に基づいてこれに対応するトルクを取得し、 このトルクと前記ヨーク応 力との相関データベースを取得するようにしている。 この相関データベースを参 . _
47
照して、 実測されるヨーク応力に対応するトルクを読み出し、 これに基づいて電 動弁の診断を行うことで、 精度が高く信頼性に優れた診断結果を得ることができ る。
(第 5の実施の形態) 、
第 5の実施の形態の診断方法及び装置は、 請求項 2 9及び請求項 6 9に対応す るもので、 前記ウォーム 5を回転駆動する前記モータ 6に供給される電流値とス プリングカートリッジ 1 3の圧縮力から求まるトルクとの相関性に着目し、 これ ら電流値とトルクの相関データベースを取得し、 次回の診断からは、 トルクを計 測することなく、 電流値のみを計測し、 前記相関データベースを参照して、 計測 された電流値に対応するトルクを読み出し、 このトルクに基づいて電動弁のトル クに関する診断を行うものである。
即ち、 図 2 3に示すように、 診断に際して、 予め電流値と トルクを計測し、 こ れら両者の相関関係を相関データベースとして取得し、 且つこれを保有する。 そ して、 次回からの電動弁の診断に際しては、 電流値計測手段によってモータに供 給される電流値を計測し、 前記相関データベースを参照して、 計測により取得さ れた電流値に対応するトルクを読み出し (請求の範囲の 「トルク読出手段」 に該 当する.)、この読み出されたトルクに基づいて電動弁のトルクに関する診断を行う ものである。
従って、この実施の形態の診断方法によれば、予め電動力に対応する電流値と、 前記スプリングカートリッジの圧縮力から求まるトルクとの相関関係を求めてこ れを保有しておけば、 次回からは、 電流値のみを計測して取得すれば、 前記相関 データベースを参照して、 前記スプリングカートリッジの圧縮力から求まるトル クを読み出し、 このトルクに基づいて電動弁のトルクに関する診断を行うことが できる。 従って、 例えば、 電動弁 'のトルクに関する診断の度に、 前記スプリング カートリッジの圧縮力から求まるトルクを取得して診断を行う場合に比して、 診 断作業が極めて簡易であり、 且つ該作業を作業性良く行うことができ、 それだけ 省力化により診断コス トの低減化が促進される。
さらに、 この場合、 電流値は、 電動弁用電線管の外部で計測可能であり、 例え l n
48
ば、 図 7に示すように、 電線 6 2が内部に配線された電線管 6 1の外周面に単数 又は複数の多素子高感度磁気センサ 6 0 (電流値計測手段) を取り付けて電流値 を計測し、 該計測値に対応するトルクを取得することは、 例えば、 電動弁に歪ゲ ージを取り付けて該歪ゲージの出力に対応するトルクの計測を行うような場合に 比して、 その作業が格段に容易であることから、 電動弁のトルクに関する診断に おける作業性の更なる向上、 省力化による診断コストのより一層の低減が可能と なるものである。
(第 6の実施の形態)
第 6の実施の形態の診断に係る校正方法及び装置は、 請求項 3 0及び請求項 7 0の発明に対応するものである。
例えば、 図 2に示すように、 前記スプリングカートリッジ 1 3側にトルクセン サとしての歪ゲージ 3 7を配置したものにおいては、 該歪ゲージ 3 7の校正を行 う際、 該スプリングカートリッジ 1 3を電動弁から取り外して作業を行うことが 必要であり、 作業性が低劣で、 コストが高くつくことになる。
この第 6の実施の形態においては、 図 2に示すように、 前記スプリングカート リッジ 1 3側に歪ゲージ 3 7を備えた電動弁をその対象とし、 この歪ゲージ 3 7 の校正を、 該歪ゲージ 3 7を弁体駆動部側から取り出したりすることなく、 図 4 に示すように、 前記スプリングカートリッジ 1 3の軸方向外端側に前記センサュ ニット 4 0を仮設的に取り付け、 前記センサュニット 4 0側に設けられた前記口 ードセル 3 3を用いて行うことができるようにしたものである。 ' 即ち、 図 2 4に示すように、 前記スプリングカートリッジ 1 3部分に常設され た歪ゲージ 3 7によって第 1のトルクを、 また前記スプリングカートリッジ 1 3 の外端側に仮設された前記センサュエツト 4 0側の予め校正済みの前記ロードセ ル 3 3の歪ゲージ 3 5によって第 2のトルクをそれぞれ計測し、—これら両者の相 関関係を相関データベースとして保有する。
そして、 計測により取得される第 1のトルクと、 前記相関データベースを参照 して読み出'される前記第 1のトルクに対応する前記第 2のトルクを対比すること で、 前記第 1のトルクの計測に供せられる前記歪ゲージ 3 7を校正することがで _
49
きる。 この場合、 前記ロードセル 3 3は外付けされてその校正が容易であること から、 この校正されたロードセル 3 3を用いることで、 前記歪ゲージ 3 7の校正 を容易に行うことができ、 従って、 例えば、 前記歪ゲージ 3 7を電動弁から取り 外して校正する場合に比して、 校正作業の簡易且つ迅速化が図れることになる。
(第 7の実施の形態)
第 7の実施の形態の診断方法及び装置は、 請求項 3 1及び請求項 7 1に対応す るもので、 ヨーク応力と弁棒 1に作用する弁棒応力との相関データベースを保有 しておき、 次回以降の診断に際しては、 弁棒応力を計測することなく、 ヨーク応 力のみを計測し、 このヨーク応力に対応する弁棒応力を前記相関データベースか らの読み出すことによって取得し、 この弁棒応力に基づいて電動弁の 断を行う ものである。
このように、 ヨーク応力と弁棒応力の相関を求めるのは、 以下のような理由に よる。 '
第 1に、 弁棒応力は弁体に直接作用する応力であって、 実際に弁体に掛つてい る荷重に相当することから、 この弁棒応力の値に基づいて電動弁の診断を行うこ とで、極めて信頼性の高い診断結果が得られること、第 2に、図 6に示すように、 弁棒応力は弁棒 1に直接歪ゲージ 5 5を貼設して計測するのが通例であるが、 こ の弁棒 1は弁体の開閉動作に伴って軸方向に昇降移動するものであるため、 該弁 棒 1に前記歪ゲージ 5 5を常設して診断作業の度に計測を行うようにした場合に は、 前記弁棒の露出部が弁棒の昇降移動距離と比較して短い場合に前記歪ゲージ 5 5が弁体側パッキン部に嚙み込んで該弁棒 1の作動上の障害となるおそれがあ り、弁棒応力の直接的な計測頻度を可及的に少なくしたいという要請があること、 第 3に、 ヨーク応力は、 理論上、 弁棒応力の反力として把握されるものであり、 弁棒応力との相関性が極めて良く、 しかも、 ヨーク応力は、 図 6に示すように電 動弁の外部に露出した部分であり、 ここに歪ゲージ 5 1、 5 2を貼設して計測す ることが容易であるとともに、 これを常設しても電動弁の作動上の障害となるこ とはないこと、 等である。
このような理由から、 ヨーク応力と弁棒応力の相関を求め、 相関データベース n
50
から、 ヨーク応力に対応する弁棒応力を読み出すようにしたものである。
具体的には、 図 2 5に示すように、 先ず、 ヨーク応力と弁棒応力をそれぞれ計 測して取得する。 尚、 このヨーク応力と弁棒応力の計測は、 ヨーク 5 0に貼設し た歪ゲージ 5 1、 5 2と、 弁棒 1に貼設した歪ゲージ 5 5によって行われる。 計測により取得されたヨーク応力と弁棒応力に基づいて、 これら両者の相関デ ータベースを取得し、 且つこれを保有する。 そして、 次回以降の電動弁の診断に 際しては、弁棒応力の計測は行わず、ヨーク応力の計測のみを前記歪ゲージ 5 1、 5 2 (請求の範囲の 「ヨーク応力計測手段」 に該当する) によって行い、 前記相 関データベースを参照して、 前記計測により取得されたヨーク応力に対応する弁 棒応力を読み出し (請求の範囲の 「弁棒応力読出手段」 に該当する)、 この読み出 された弁棒応力に基づいて電動弁の診断を行うものである。
従って、 この実施の形態の診断方法によれば、 弁棒応力の計測は最初の診断作 業時に一度行えば良く、 次回からは、 電動弁の外部からの計測で取得の容易なョ ーク応力に基づいて弁棒応力を求めるもめであることから、 診断作業が極めて簡 易であり、 且つ該作業を作業性良く行うことができ、 それだけ省力化により診断 コストの低減化が促進される。
さらに、 実際に弁体に作用している力、 即ち、 弁棒応力に基づいて電動弁の直 接的な弁体駆動力に関する診断を行うものであることから、 高い診断精度が担保 され、 極めて信頼性の高い診断結果を得ることができる。
尚、 この実施の形態では、 電動弁を対象とし、 ヨーク応力に基づいて弁棒応力 の適否を診断するようにしているが、 このようなヨーク応力に基づく弁棒応力の 診断手法は、 電動弁に限らず、 手動弁においても適用できるものである。 即ち、 手動弁と電動弁はその弁棒等の駆動源がモータであるか、 人力であるか、 の差を 有するに過ぎず、 手動弁を対象とした診断においても、 ヨーク応力と弁棒応力と .の相関データベースを保有しておき、 次回以降の診断に際しては、 弁棒応力を計 測することはなく、 ヨーク応力のみを計測し、 このヨーク応力に対応する弁棒応 力を前記相関データベースから読み出すことによって取得し、 この弁棒応力に基 づいて手動弁の診断を行うことができるからである。 51
(第 8の実施の形態)
第 8の実施の形態の診断方法及び装置は、 請求項 3 2及び請求項 7 2に対応す るものであって、 トルクと弁棒応力の相関関係の適否を判断することで電動弁の 診断、 特に弁体駆動部の潤滑性に関する信頼性の高い診断を可能とするものであ る。 しかも、 その場合、 直接、 前記トルク及び弁棒応力を計測して求めるのでは なく、 相関データベースを用いることで、 簡易に計測可能な種類のデータに基づ いてトルク及び弁棒応力を取得し、 これによつて、 診断コストの低減化、 診断結 果の信頼性の向上、 等を実現するものである。
即ち、 電動弁の弁体駆動部における摩擦係数 (; u ) は、 周知の摩擦係数算出式 「= 〔A X (トルク Z弁棒応力) 一 B X d〕 / C d + C X (トルク/弁棒応力)〕。 dはステム有効径、 · Α, Β , Cは定数」 で求められるが、 この算出式においては 「トルク/弁棒応力」 以外の要素は全てステム側の仕様で決定される定数的な値 であることから、 前記トルクと前記弁棒応力の比 「トルク Ζ弁棒応力」 を求める ことで、 弁体駆動部の摩擦係数を診断することが可能である。 従って、 トルクと 弁棒応力の相関関係をみることで、 弁体駆動部の摩擦状況が正常であるのか、 そ れとも異常であるのかが容易に判断できる。
具体的には、 「トルク/弁棒応力」 の値が、弁体駆動部の摩擦係数をその許容範 囲内に収め得る値の範囲内であるか否かが、 摩擦状況 (潤滑状況) を判定する際 の基準となり、該 「トルク/弁棒応力」 の値が許容上限値を上回ったときに、 「潤 滑状態の異常」 と判断するようにしている。 例えば、 前記ステムナット部に油切 れが発生し、摩擦抵抗が大きくなつた場合には、トルクが一定で変化しなくて'も、 弁棒応力は小さくなるため、 前記 「トルク Ζ弁棒応力」 の値が前記上限値を越え る傾向となるので、 これをもって 「油切れ」 という異常判断が可能となるもので ある。
一方、 前記 「異常判断」 の判断要素として位置づけられる前記トルクと弁棒応 力は、 比較的その計測が難しい場合が多い。 これに対して、 前記第 6の実施の形 態で説明したように、 トルクと電流値は相関関係をもち、 且つ電流値は外部から 容易に計測可能である。 また、 第 7の実施形態で説明したように、 ヨーク応力と 弁棒応力は相関関係をもち、 且つヨーク応力は外部から容易に計測可能で る。 5一2
そこで、 この実施の形態では、 図 2 6に示すように、 一方では、 ヨーク応力と 弁棒応力を求めてこれら両者間の相関データベース (第 1の相関データベース) を取得し且つこれを保有することで、 次回以降はこの第 1の相関データベースを 参照して、 ヨーク応力計測手段 (前記ヨーク 5 0に設けた前記歪ゲージ 5 1、 5 2がこれに該当する) により計測されるヨーク応力に対応する弁棒応力を読み出 す (請求の範囲の 「弁棒応力読出手段」 に該当する)。
他方では、 トルクと電流値の相関関係を求めてこれら両者間の相関データべ一 ス (第 2の相関データベース) を取得し且つこれを保有することで、 次回以降は この第 2相関データベースを参照して、 電流値計測手段により取得される電流値 に対応するトルクを読み出す (特許請求の範囲の「電流値読出手段」に該当する)。 そして、 これらそれぞれ読み出された弁棒応力とトルクに基づいてこれら両者 間の相関関係、 即ち、 前記 「トルク z弁棒応力」 の値が前記許容範囲内であるの かどうかを判断し、これによつて、.電動弁の潤滑状態を診断するようにしている。 従って、 この実施の形態の診断方法によれば、 予め第 1の相関データベースと 第 2の相関データベースを取得しこれを保有しておけば、 次回以降は、 計測の容 易なヨーク応力と電流値をそれぞれ計測にて取得することで、 弁棒応力とトルク はこれらを直接計測することなく、 前記第 1及び第 2の相関データベースを参照 して、 それぞれ読み出し、 これら両者の相関関係を取得することができるので、 例えば、 診断の度に、 弁棒応力とトルクを計測により取得する場合に比して、 弁 棒応力とトルクの相関関係の取得が極めて容易となる。
また、 ここで取得された弁棒応力とトルクは、 上述のように、 弁体駆動部—の摩 擦 (潤滑) 状況の診断において、 「トルク Z弁棒応力」 として用いられるが、 この 弁棒応力とトルクは共にその取得が容易であることから、 摩擦状況の診断作業そ のものを容易且つ迅速に行うことができるとともに、 これらの相関関係 (図 3 1 等参照) をみることで、 弁体駆動部の摩擦 (潤滑) 状況が正常であるのか、 それ とも異常であるのかが容易に判断でき、 それだけ弁体駆動部の信頼性がさらに向 上することになる。 図面の簡単な説明 図 1: トルクセンサを内蔵しない形式の電動弁の駆動部を示す断面図である。 図 2 : トルクセンサを内蔵した形式の電動弁の駆動部を示す断面図である。 図 3 : 図 1に示した電動弁にセンサユニットを仮設的に取り付けた状態を示 す断面図である。
図 4 : 図 2に示した電動弁にセンサュニットを仮設的に取り付け、た状態を示 す断面図である。 '
図 5 : 図 2に示した電動弁にレーザセンサのみを取り付けた状態を示す断面 図である。
図 6 : 電動弁のヨーク部分の拡大図である。
図 7 : 電線管に対する磁気センサの具体的な取り付け方法を示す断面図であ る。
図 8 : 本願発明の第 1の実施の形態に係る電動弁の診断方法における機能プ ロック図である。
図 9 : 相関データベースの説明図である。
図 1 0 :本願発明の第 2の実施の形態に係る電動弁の診断方法における機能プ 口ック図である。
図 1 1 :本願発明の第 3の実施の形態に係る.電動弁の診断方法における機能ブ 口ック図である。
図 1 2 :本願発明の第 4の実施の形態に係る電動弁の診断方法における機能プ ロック図である。
図 1 3 : ヨーク応力とトルクの相関データベースである。 ' 図 1 4 :圧縮量とトルクの相関データベースである。
図 1 5 : ヨーク応力と圧縮量の相関データベースである。
図 1 6 :圧縮量と トルクの相関データベースである。
. 図 1 7 :圧縮量と トルクの相関データベースである。
図 1 8 : スプリングカートリッジの閉作動開始前の状態を示す模式図である。 図 1 9 : スプリングカートリッジの閉作動中の状態を示す模式図である。
図 2 0 : 'スプリングカートリッジの開作動開始前の状態を示す模式図である。 図 2 1 : スプリングカートリッジの開作動中の状態を示す模式図である。' 図 2 2 :電動弁の閉作動時及び開作動時におけるウォーム位置の時間的変化を 示す時系列グラフである。
図 2 3 :本願発明の第 5の実施の形態に係る電動弁の診断方法における機能プ ロック図である。
図 2 4 :本願発明の第 6の実施の形態に係る電動弁の診断方法における機能ブ ロック図である。 '
図 2 5 :本願発明の第 7の実施の形態に係る電動弁の診断方法における機能ブ 口ック図である。
図 2 6 :本願発明の第 8の実施の形態に係る電動弁の診断方法における機能プ 口ック図である。
図 2 7 :取得データの説明図である。
図 2 8 :図 2 7における閉作動終期部分の拡大図である。
図 2 9 :取得データを X— Y変換して得られる相関データのうち、 スプリング カートリッジ圧縮量とトルクの相関データである。
図 3 0 :取得データを X— Y変換して得られる相関関係データのうち、 弁棒応 力とヨーク応力の相関データである。
図 3 1 :取得データを X—Y変換して得られる相関関係データのうち、 ヨーク 応力 (弁棒応力) とトルク (スプリングカートリッジ圧縮量)、 電流値ェンベロー プの相関データである。
図 3 2 :取得データを X—Y変換して得られる相関関係データのうち、 ヨーク 応力 (弁棒応力) とトルク (スプリングカートリッジ圧縮量)、 電流 (積算値') の 相関データである。
図 3 3 :図 3 2の電流積算値曲線の Y軸の一部分の拡大図である。 符号の説明
1 · .弁棒
2 · ·ステムナツト
3 ' · · ドライブスリーブ
4 ウォームホイ一ノレ . · ウォーム
. ·モータ軸
• ·延設筒部
• .周溝
• · トゾレクスィツチ
. ·軸受
…ナット
• ·可動軸
• · トルクスプリング力 -トリッジ
• · ヮッシャ
• · ヮッ、ンャ
• ,ナット
• ·皿パネ
• · トルクリミットスリ^" -ブ ,
• ·小径穴部
• ·大径穴部
• ·大径穴部の肩部
• ·ケーシングの端面
• ·パッキン
• · oリング
• · oリング
…ナッ ト
• 'スリット
• 'スリット
• ·センサュニット
• ·アダプタ
• ·センサホ ダ
• · ロードセル
. · レーザセンサ 歪ゲージ コア
歪ゲージ アダプタ アダプタ センサュ二ット リード線 カートリッジ押え コア
信号線
カートリッジ押え キャップ センサホノレダ コネクタ ヨーク
歪ゲージ 歪ゲージ 歪ゲージ '

Claims

請求の範囲
1 . 電動力によって回転駆動力が付与されたウォームの回転駆動力を利用 して弁体を開閉駆動する弁体駆動部と、 該弁体駆動部から前記ウォームの軸方向 に作用する反力に応じて伸縮するスプリングカートリッジとを備えた、電動弁の駆 動力に関する診断を行う電動弁診断方法であって、
電動弁の駆動力に関与する複数種類の物理量間の相関関係を相関データベース として保有し、 前記相関データベースを参照して電動弁の駆動力に関する診断を 行うことを特徴とする電動弁診断方法。
2 . 請求項 1·において、
前記相関データベースを参照して、 計測にて取得した特定の一の種類の物理量 に対応する他の種類の物理量を読み出し、 該他の種類の物理量に基づいて電動弁 の駆動力に関する診断を行うことを特徴とする電動弁診断方法。
3 . 請求項 2において、
前記相関データベースが、 ヨークに作用するヨーク応力と、 前記スプリング力 一トリッジの圧縮力から求まるトルクとの相関関係を示すデータベースであり、 計測にて取得されるヨーク応力を前記特定の一の種類の物理量とし、 前記相関 データベースを参照して、 前記他の種類の物理量としての前記トルクを読み出す ことを特徴とする電動弁診断方法。
4 . 請求項 3において、
電動弁の開作動時と閉作動時の双方における前記スプリングカートリッジの圧 .縮力と、 開作動時と閉作動時の双方における前記ヨーク応力を取得し、
これら開作動時と閉作動時の双方における前記圧縮力とヨーク応力に基づいて 前記圧縮力から求まるトルクとヨーク応力の相関関係を求めてこれを前記相関デ ータベースとして取得し、
前記相関データベースを参照して、 計測にて取得されるヨーク応力に対応する 前記トルクを読み出すことを特徴とする電動弁診断方法。
5 . 請求項 3において、
電動弁の開作動時と閉作動時のスプリングカートリッジの圧縮状態のうち、 何 れか一方側における前記スプリングカートリッジの圧縮量と圧縮力及び前記ョー ク応力を取得し、 何れか他方側における前記スプリングカートリッジの圧縮量と 前記ヨーク応力を取得し、
前記一方側への作動時の前記スプリングカートリッジの圧縮力と圧縮量と、 前 記他方側への作動時の前記圧縮量に基づいて、 前記他方側への作動時における圧 縮力を求めることで、 前記一方側又は他方側への作動時の圧縮力から求まる前記 トルクと前記ョーグ応力の間の相関データベースを取得し、
前記相関データベースを参照して、 計測にて取得されるヨーク応力に対応する トルクを読み出すことを特徴とする電動弁診断方法。
6 . 請求項 3から請求項 5のいずれかにおいて、
前記スプリングカートリッジの圧縮量を取得する際に、 該スプリングカートリ ッジの伸縮方向のガタ量を求め、 計測にて取得される圧縮量から前記ガタ量の影 響を除いた実圧縮量を求め、 該実圧縮量に基づいて前記相関データベースを取得 することを特徴とする電動弁診断方法。
7 . 請求項 3から請求項 5のいずれかにおいて、 ' 歪ゲージで構成され前記ヨーク応力を計測するョ一ク応力センサを、 前記ョー クにおける歪量が大きく且つ安定的に生じる部位に配置することを特徴とする電 動弁診断方法。
8 . 請求項 6において、
歪ゲージで構成され前記ヨーク応力を計測するヨーク応力センサを、 前記ョー クにおける'歪量が大きく且つ安定的に生じる部位に配置することを特徴とする電 動弁診断方法。
9 . 請求項 3から請求項 5のいずれかにおいて、
歪ゲージで構成され前記ヨーク応力を計測するヨーク応力センサを、 前記ョー クにおける弁棒軸心部を挟んだ対称位置にそれぞれ配置し、 該各ヨーク応力セン サのそれぞれの出力値の平均値を前記ヨーク応力として取得すること、を特徴とす る電動弁診断方法。 '
1 0 . -請求項 6において、
歪グージで構成され前記ョ一ク応力を計測するヨーク応力センサを、 前記ョー クにおける弁棒軸心部を挟んだ対称位置にそれぞれ配置し、 該各ヨーク応力セン サのそれぞれの出力値の平均値を前記ヨーク応力として取得することを特徴とす る電動弁診断方法。
1 1 . 請求項 7において、 '
歪ゲージで構成され前記ヨーク応力を計測するヨーク応力センサを、 前記ョー クにおける弁棒軸心部を挟んだ対称位置にそれぞれ配置し、 該各ヨーク応力セン サのそれぞれの出力値の平均値を前記ヨーク応力として取得することを特徴とす る電動弁診断方法。
1 2 . 請求項 8において、
歪ゲージで構成され前記ヨーク応力を計測するヨーク応力センサを、 前記'ョー クにおける弁棒軸心部を挟んだ対称位置にそれぞれ配置し、 該各ヨーク応力セン サのそれぞれの出力値の平均値を前記ヨーク応力として取得することを特徴とす る電動弁診断方法。
1 3 . 請求項 3から請求項 5のいずれかにおいて、
既設の歪ゲージの取換時期の到来に先立って、 前記既設の歪ゲージの取付位置 の近傍に取換用の歪ゲージを取り付け、 前記既設の歪ゲージの出力特性と前記取 換用の歪ゲージの出力特性との相関関係を把握し、 前記既設の歪ゲージから前記 取換用の歪ゲージへの取換え後は前記取換用の歪ゲージの出力特性に前記相関関 係を反映させることを特徴とする電動弁診断方法。
1 4 . 請求項 6において、
既設の歪ゲージの取換時期の到来に先立って、 前記既設の歪ゲージ、の取付位置 の近傍に取換用の歪ゲージを取り付け、 前記既設の歪ゲージの出力特性と前記取 換用の歪ゲージの出力特性との相関関係を把握し、 前記既設の歪ゲージから前記 取換用の歪ゲージへの取換え後は前記取換用の歪ゲージの出力特性 fc前記相関関 係を反映させることを特徴とする電動弁診断方法。
1 5 . 請求項 7·において、
既設の歪ゲージの取換時期の到来に先立って、 前記既設の歪ゲージの取付位置 の近傍に取換用の歪ゲージを取り付け、 前記既設の歪ゲージの出力特性と前記取 換用の歪ゲージの出力特性との相関関係を把握し、 前記既設の歪ゲージから前記 取換用の歪ゲージへの取換え後は前記取換用の歪ゲージの出力特性に前記相関関 係を反映させることを特徴とする電動弁診断方法。
1 6 . 請求項 8において、
既設の歪ゲージの取換時期の到来に先立って、 前記既設の歪ゲージの取付位置 の近傍に取換用の歪ゲージを取り付け、 前記既設の歪ゲージの出力特性と前記取 換用の歪ゲージの出力特性との相関関係を把握し、 前記既設の歪ゲージから前記 取換用の歪ゲージへの取換え後は前記取換用の歪ゲージの出力特性に前記相関関 係を反映させることを特徴とする電動弁診断方法。
.
1 7 . 請求項 9において、
既設の歪ゲージの取換時期の到来に先立って、 前記既設の歪ゲージの取付位置 の近傍に取換用の歪ゲージを取り付け、 前記既設の歪ゲージの出力特性と前記取 換用の歪ゲージの出力特性との相関関係を把握し、 前記既設の歪ゲージから前記 取換用の歪ゲージへの取換え後は前記取換用の歪ゲージの出力特性に前記相関関 係を反映させることを特徴とする電動弁診断方法,
1 8 . 請求項 1 0において、
既設の歪ゲージの取換時期の到来に先立って、 前記既設の歪ゲージの取付位置 の近傍に取換用の歪ゲージを取り付け、 前記既設の歪ゲージの出力特性と前記取 換用の歪ゲージの出力特性との相関関係を把握し、 前記既設の歪ゲージから前記 取換用の歪ゲージへの取換え後は前記取換用の歪ゲージの出力特性に前記相関関 係を反映させることを特徴とする電動弁診断方法。
1 9 . 請求項 1 1において、
既設の歪ゲージの取換時期の到来に先立って、 前記既設の歪ゲージの取付位置 の近傍に取換用の歪ゲージを取り付け、 前記既設の歪ゲージの出力特性と前記取 換用の歪ゲージの出力特性との相関関係を把握し、 前記既設の歪ゲージから前記 取換用の歪ゲージへの取換え後は前記取換用の歪ゲージの出力特性に前記相関関 係を反映させることを特徴とする電動弁診断方法。
2 0 . 請求項 1 2において、
既設の歪ゲージの取換時期の到来に先立って、 前記既設の歪ゲージの取付位置 の近傍に取換用の歪ゲージを取り付け、 前記既設の歪ゲージの出力特性と前記取 換用の歪ゲージの出力特性との相関関係を把握し、 前記既設の歪ゲージから前記 取換用の歪ゲージへの取換え後は前記取換用の歪ゲージの出力特性に前記相'関関 係を反映させることを特徴とする電動弁診断方法。
2 1 . 請求項 3から請求項 5のいずれかにおいて、 、
. 前記スプリングカートリシジの複数回の圧縮作動時のパネ特性と、前記ヨーク、 弁棒、 スプリングカートリッジキャップ又はスプリングカートリッジに取り付け た歪ゲージの出力特性との相関関係を把握し、 前記各歪ゲージのうちの何れか一 の歪ゲージの取換時には、 取換用の歪ゲージの出力特性を他の何れかの歪ゲージ の出力特性を基準として校正することを特徴とする電動弁診断方法。 '
2 2 . 請求項 6において、
前記スプリングカートリッジの複数回の圧縮作動時のパネ特性と、前記ヨーク、 弁棒、 スプリングカートリッジキヤップ又はスプリングカートリッジに取り付け た歪ゲージの出力特性との相関関係を把握し、 前記各歪ゲージのうちの何れか一 の歪ゲージの取換時には、 取換用の'歪ゲージの出力特性を他の何れかの歪ゲージ の出力特性を基準として校正することを特徴とする電動弁診断方法。
2 3 . 請求項 7において、
前記スプリングカートリッジの複数回の圧縮作動時のパネ特性と、前記ヨーク、 弁棒、 スプリングカートリッジキヤップ又はスプリングカートリッジに取り付け た歪ゲージの出力特性との相関関係を把握し、 前記各歪ゲージのうちの何れか一 の歪ゲージの取換時には、 取換用の歪ゲージの出力特性を他の何れかの歪ゲージ の出力特性を基準として校正することを特徴とする電動弁診断方法。
2 4 . 請求項 8において、
前記スプリングカートリツジの複数回の圧縮作動時のパネ特性と、前記ヨーク、 弁棒、 スプリングカートリッジキヤップ又はスプリングカートリッジに取り付け た歪ゲージの出力特性との相関関係を把握し、 前記各歪ゲージのうちの何れか一 の歪ゲージの取換時には、 取換用の歪ゲージの出力特性を他の何れかの歪ゲージ の出力特性を基準として校正することを特徴とする電動弁診断方法。 ―
2 5 . 請求項 9において、
前記スプリングカートリッジの複数回の圧縮作動時のパネ特性と、前記ヨーク、 弁棒、 スプリングカートリッジキヤップ又はスプリングカートリッジに取り付け た歪ゲージの出力特性との相関関係を把握し、 前記各歪ゲージのうちの何れか一 の歪ゲージの取換時には、 取換用の歪ゲージの出力特性を他の何れかの歪ゲージ の出力特性を基準として校正することを特徴とする電動弁診断方法。 bd
2 6 . 請求項 1 0において、
前記スプリングカートリッジの複数回の圧縮作動時のパネ特性と、前記ヨーク、 弁棒、 スプリングカートリッジキャップ又はスプリングカートリッジに取り付け た歪ゲージの出力特性との相関関係を把握し、 前記各歪ゲージのうちの何れか一 の歪ゲージの取換時には、 '取換用の歪ゲージの出力特性を他の何れかの歪ゲージ の出力特性を基準として校正する とを特徴とする電動弁診断方法。
2 7 . 請求項 1 1において、
前記スプリングカートリッジの複数回の圧縮作動時のパネ特性と、前記ヨーク、 弁棒、 スプリングカートリッジキヤップ又はスプリングカートリッジに取り付け た歪ゲージの出力特性との相関関係を把握し、 前記各歪ゲージのうちの何れか一 の歪ゲージの取換時には、 取換用の歪ゲージの出力特性を他の何れかの歪ゲージ の出力特性を基準として校正することを特徴とする電動弁診断方法。
2 8 . 請求項 1 2において、
前記スプリングカートリッジの複数回の圧縮作動時のパネ特性と、前記ヨーク、 弁棒、 スプリングカードリッジキャップ又はスプリングカートリッジに取り付け た歪ゲージの出力特性との相関関係を把握し、 前記各歪ゲージのうちの何れか一 の歪ゲージの取換時には、 取換用の歪ゲージの出力特性を他の何れかの歪ゲージ の出力特性を基準として校正することを特徴とする電動弁診断方法。
2 9 . 請求項 2において、
前記相関データベースが、 前記電動力に対応する電流値と、'前記スプリング力 —トリッジの圧縮力から求まるトルクとの相関関係を示すデータベースであり、 計測にて取得される電流値を前記特定の一の種類の物理量とし、 前記相関デー タベースを参照して、 前記他の種類の物理量としての前記トルクを読み出すこと を特徴とする電動弁診断方法。
3 0 . 請求項 2において 前記相関データベースが、 前記スプリングカートリッジ部分における該スプリ ングカートリッジの圧縮力から求まる第 1のトルクと、 前記スプリングカートリ ッジの外端側における該スプリングカートリッジの圧縮力から求まる第 2のトル クとの相関関係を示すデータベースであり、
計測にて取得される前記第 1のトルクを前記特定の一の種類の物理量とし、 前 記相関データベースを参照して、 前記他の種類の物理量としての前記第 2のトル クを読み出すことを特徴とする電動弁診断方法。
3 1 . 電動力によって回転駆動力が付与されたウォームの回転駆動力を利用 して弁体を開閉駆動する弁体駆動部と、 該弁体駆動部から前記ウォームの軸方向 に作用する反力に応じて伸縮するスプリングカートリッジとを備えた電動弁の弁 棒応力に関する診断を行う電動弁診断方法であって、
ヨークに作用するヨーク応力と、 弁棒に作用する弁棒応力との相関関係を相関 データベースとして保有し、 ' 前記相関データベースを参照して、 計測により取得したヨーク応力に対応する 弁棒応力を読み出し、 該弁棒応力に基づいて電動弁の弁棒応力に関する診断を行 うことを特徴とする電動弁診断方法。
3 2 . 電動力によって回転駆動力が付与されたウォームの回転駆動力を利用 して弁体を開閉駆動する弁体駆動部と、 該弁体駆動部から前記ウォームの軸方向 に作用する反力に応じて伸縮するスプリングカートリッジとを備えた電動弁の弁 棒応力とトルクとの相関関係の診断を行う電動弁診断方法であって、
ヨークに作用するヨーク応力と弁棒に作用する弁棒応力との相関関係を示す第 1の相関データベースと、 電動力に対応する電流値とスプリングカートリッジの 圧縮力から求まるトルクとの相関関係を示す第 2の相関データベースを保有し、 前記第 1の相関データベースを参照して計測により取得されるヨーク応力に対 応して読み出される弁棒応力と、 前記第 2の相関データベースを参照して計測に て取得される電流値に対応して読み出されるトルクに基づいて、 弁棒応力とトル クとの相関関係を取得してその適否を診断することを特徴とする電動弁診断方法。
3 3 . 請求項 1から請求項 5、 請求項 2 9から請求項 3 2のいずれかにおい て、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
3 4 . 請求項 6において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力め伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
3 5 . 請求項 7において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断するこ'とを 特徴とする電動弁診断方法。
3 6 . 請求項 8において、 ·
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。 '
3 7 . 請求項 9において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示する、とともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
3 8 . 請求項 1 0において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。 '
3 9 . 請求項 1 1において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトノレク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。 '
4 0 . 請求項 1 2において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする'電動弁診断方法。
4 1 . 請求項 1 3において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。 '
4 2 . 請求項 1 4において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
4 3 . 請求項 1 5において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
4 4 . 請求項 1 6において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 .応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
4 5 . 請求項 1 7において、 電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、. スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。 、
4 6 . 請求項 1 8において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
4.7 . 請求項 1 9において、 '
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
4 8 . 請求項 2 0において、 ' 電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
4 9 . 請求項 2 1において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング 力一トリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
5 0 . 請求項 2 2において、 '
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
5 1 · 請求項 2 3において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
5 2 . 請求項 2 4において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリ—ング カートリッジの圧縮力から求まるトノレク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
5 3 . 請求項 2 5において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。 .
5 4 . 請求項 2 6において、 、
' 電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。 5 5 . 請求項 2 7において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
5 6 . 請求項 2 8において、
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、 弁棒応力、 ヨーク応力の何れかの相関関係を表示するとともに、 該相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断することを 特徴とする電動弁診断方法。
5 7 . 電動力によって回転駆動力が付与されたウォームの回転駆動力を利用 して弁体を開閉駆動する弁体駆動部と、 該弁体駆動部から前記ウォームの軸方向 に作用する反力に応じて伸縮するスプリングカートリッジとを備えた電動弁の駆 動力に関する診断を行う電動弁診断装置であって、 ' 電動弁の駆動力に関与する複数種類の物理量間の相関関係を示す相関データべ ースと、
前記相関データベースを参照して電動弁の駆動力に関する診断を行う診断手段 を備えたことを特徴とする電動弁診断装置。
5 8 . 請求項 5 7において、 '
特定の一の種類の物理量の計測を行う物理量計測手段と、
前記相関データベースを参照して、 前記物理量計測手段で取得された特定の一 の種類の物理量に対応する他の種類の物理量を読み出す物理量読出手段を備え、 前記診断手段は、 前記他の種類の物理量に基づいて電動弁の駆動力に関する診 断を行う構成であることを特徴とする電動弁診断装置。
5 9 . 請求項 5 8において、
前記相関データベースが、 ヨークに作用するヨーク応力と、 前記スプリング力 一トリッジの圧縮力から求まるトルクとの相関関係を示すデータベースであり、 前記物理量計測手段が前記ヨーク応力を計測するヨーク応力計測手段であり、 前記物理量読出手段が前記トルクを読み出すトルク読出手段であることを特徴 とする電動弁診断装置。
6 0 . 請求項 5 9において、
電動弁の開作動時と閉作動時の双方における前記スプリングカートリッジ—の圧 縮力を取得する第 1の取得手段と、
開作動時と閉作動時の双方における前記ヨーク応力を取得する第 2の取得手段 と、
. これら開作動時と閉作動時の双方における前記圧縮力とヨーク応力に基づいて 前記圧縮力から求まるトルクとヨーク応力の相関関係を求めてこれを前記相関デ ータベースとして取得する相関データベース取得手段と、
前記相関データベースを参照して、 計測にて取得されるヨーク応力に対応する 前記トルクを読み出すトルク読出手段を備えたことを特徴とする電動弁診断装置。
6 1 . 請求項 5 9において、
電動弁の開作動時と閉作動時のスプリングカートリッジの圧縮状態のうち、 何 れか一方側における前記スプリングカートリッジの圧縮量と圧縮カ及ぴ前記ョー ク応力を計測し、 何れか他方側における前記スプリングカートリッジ、の圧縮量と 前記ヨーク応力を計測する計測手段と、
前記一方側への作動時における前記スプリングカートリッジの圧縮力と圧縮量 と、 前記他方側への作動時における前記スプリングカートリッジの圧縮量に基づ いて、 前記他方側への作動時における圧縮力を求める圧縮力取得手段と、 前記一方側又は他方側への作動時の圧縮力から求まるトルクと前記ョ一ク応力 の間の相関データベースを取得する相関データベース取得手段と、
前記ネ目関データベースを参照して、 計測にて取得されるヨーク応力に対応する トルクを読み出すトルク読出手段を備えたことを特徴とする電動弁診断装置。
6 2 . 請求項 6 0又は請求項 6 1において、
前記スプリングカートリッジの圧縮量を取得する際に、 該スプリングカートリ ッジの伸縮方向のガタ量を求め、 計測にて取得される圧縮量から前記ガタ量の影 響を除いた実圧縮量を求める実圧縮量取得手段を備えたことを特徴とする電動弁 診断装置。 ,
6 3 . 請求項 6 0または請求項 6 1において、 · 前記ヨーク応力センサが、 前記ヨークにおける歪量が大きく且つ安定的に生じ る部位に配置されていることを特徴とする電動弁診断装置。
. 6 4 . 請求項 6 2において、
前記ヨーク応力センサが、 前記ヨークにおける歪量が大きく且つ安定的に生じ る部位に配置されていることを特徴とする電動弁診断装置。
6 5 . 請求項 6 0または請求項 6 1において、 前記ヨーク応力センサが、 前記ヨークにおける弁棒軸心部を挟んだ対称位置に それぞれ配置され、 且つ該各ヨーク応力センサのそれぞれの出力値の平均値を前 記ヨーク応力として出力する構成であることを特徴とする電動弁診断装置。
6 6 . 請求項 6 2において、 、 前記ヨーク応力センサが、 前記ョ'一クにおける弁棒軸心部を挟んだ対称位置に それぞれ配置され、 且つ該各ヨーク応力センサのそれぞれの出力値の平均値を前 記ヨーク応力として出力する構成であることを特徴とする電動弁診断装置。
6 7 . 請求項 6 3において、
前記ヨーク応力センサが、 前記ヨークにおける弁棒軸心部を挟んだ対称位置に それぞれ配置され、 且つ該各ヨーク応力センサのそれぞれの出力値の平均値を前 記ヨーク応力として出力する構成であることを特徴とする電動弁診断装置。
6 8 . 請求項 6 4において、
前記ヨーク応力センサが、 前記ヨークにおける弁棒軸心部を挟んだ対称位置に それぞれ配置され、 且つ該各ヨーク応力センサのそれぞれの出力値の平均値を前 記ヨーク応力として出力する構成であることを特徴とする電動弁診断装置。
6 9 . 請求項 5 8において、
前記相関データべ一スが、 前記電動力に対応する電流値と、 前記スプリング力 一トリッジの圧縮力から求まるトルクとの相関関係を示すデータベースであり、 前記物理量計測手段が前記電流値を計測する電流値計測手段であり、 前記物理量読出手段が前記トルクを読み出すトルク読出手段であることを特徴 とする電動弁診断装置。
7 0 . 請求項 5 8において、
前記相関データベースが、 前記スプリングカートリッジ部分における該スプリ ングカートリッジの圧縮力から求まる第 1のトルクと、 前記スプリングカートリ ッジの外端側における該スプリングカートリッジの圧縮力から求まる第 2のトル クとの相関関係を示すデータベースであり、
前記物理量計測手段が前記スプリングカートリッジ部分に取り付けられて前記 第 1のトルクを計測するトルク計測手段であり、
前記物理量読出手段が前記第 2のトルクを読み出すトルク読出手段であること を特徴とする電動弁診断装置。 '
7 1 . 電動力によって回転駆動力が付与されたウォームの回転駆動力を利用 して弁体を開閉駆動する弁体駆動部と、 該弁体駆動部から前記ウォームの軸方向 に作用する反力に応じて伸縮するスプリングカートリッジとを備えた電動弁の弁 棒応力に関する診断を行う電動弁診断装置であって、
ヨークに作用するヨーク応力と、 弁棒に作用する弁棒応力との相関関係を示す 相関データベースと、
前記ヨーク応力を計測するヨーク応力計測手段と、 '
前記相関データベースを参照して、 前記ヨーク応力計測手段により取得された ヨーク応力に対応する弁棒応力を読み出す弁棒応力読出手段と、
読み出された弁棒応力に基づいて電動弁の弁棒応力に関する診断を行う診断手 段を備えたことを特徴とする電動弁診断装置。
7 2 . 電動力によって回転駆動力が付与されたウォームの回転駆動力を利用 して弁体を開閉駆動する弁体駆動部と、 該弁体駆動部から前記ウォームの軸方向 に作用する反力に応じて伸縮するスプリングカートリッジとを備えた電動弁の弁 棒応力とトルクとの相関関係の診断を行う電動弁診断装置であって、
ョークに作用するヨーク応力と弁棒に作用する弁棒応力との相関関係を示す第 1の相関データベースと、
電動力に対応する電流値とスプリングカードリッジの圧縮力から求まるトルク との相関関係を示す第 2の相関データベースと、
前記ョ ク応力を計測するヨーク応力計測手段と、
前記電流値を計測する電流値計測手段と、 ' 前記第 1の相関データベースを参照して前記ヨーク応力計測手段により取得さ れたヨーク応力に対応する前記弁棒応力を読み出す弁棒応力読出手段と、 前記第 2の相関データベースを参照して前記電流値計測手段により取得された 電流値に対応する前記トルクを読み出すトルク読出手段と、
前記弁棒応力読出手段で読み出された前記弁棒応力と前記トルク読出手段で読 み出されたトルクの相関関係を取得する相関関係取得手段と、
前記相関関係取得手段で取得された弁棒応力と トルクとの相関関係の適否を診 断する診断手段を備えたことを特徴とする電動弁診断装置。
7 3 . 請求項 5 7から請求項 6 1、 請求項 6 9から請求項 7 2のいずれかに おいて - 電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、弁棒応力、ヨーク応力の何れかの相関関係を表示する表示手段と、 前記相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断する診断 手段を備えたことを特徴とする電動弁診断装置。
7 4 . 請求項 6 2において .
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、弁棒応力、ヨーク応力の何れかの相関関係を表示する表示手段と、 前記相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断する診断 手段を備えたことを特徴とする電動弁診断装置。
. 7 5 . 請求項 6 3において
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリング力一トリッジの圧縮量に対 応するトルク、弁棒応力、ヨーク応力の何れかの相関関係を表示する表示手段と、 前記相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断する診断 手段を備えたことを特徴とする電動弁診断装置。 7 6 . 請求項 6 4において
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの、圧縮量に対 応するトルク、弁棒応力、ヨーク応力の何れかの相関関係を表示する表示手段と、 前記相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断する診断 手段を備えたことを特徴とする電動弁診断装置。 7 7 . 請求項 6 5において
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、弁棒応力、ヨーク応力の何れかの相関関係を表示する表示手段と、 前記相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断する診断 手段を備えたことを特徴とする電動弁診断装置。 7 8 . 請求項 6 6において
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、弁棒応力、ヨーク応力の何れかの相関関係を表示する表示手段と、 前記相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断する'診断 手段を備えたことを特徴とする電動弁診断装置。
7 9 · 請求項 6 7において
. 電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、弁棒応力、ヨーク応力の何れかの相関関係を表示する表示手段と、 前記相関関係の傾向変化に基づいて駆動力の伝達状況の経時変化を診断する診断 手段を備えたことを特徴とする電動弁診断装置。
8 0 . 請求項 6 8において
電動弁の開作動時又は閉作動時における電動力に対応する電流値、 スプリング カートリッジの圧縮力から求まるトルク、 スプリングカートリッジの圧縮量に対 応するトルク、弁棒応力、ヨーク応力の何れかの相関関係を表示する表、示手段と、 前記相関関係の傾向変化に基づい T駆動力の伝達状況の経時変化を診断する診断 手段を備えたことを特徴とする電動弁診断装置。
PCT/JP2005/005038 2004-08-24 2005-03-14 電動弁診断方法と診断装置 WO2006022044A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05780994.9A EP1916462A4 (en) 2004-08-24 2005-08-23 VALVE DIAGNOSTIC METHOD WITH ELECTRICAL CONTROL AND DEVICE THEREOF
PCT/JP2005/015609 WO2006022408A1 (ja) 2004-08-24 2005-08-23 電動弁診断方法と診断装置
JP2006532646A JP4437140B6 (ja) 2004-08-24 2005-08-23 電動弁診断方法と診断装置
KR1020077006192A KR100859742B1 (ko) 2004-08-24 2005-08-23 전동밸브 진단방법과 진단장치
US11/660,899 US7596457B2 (en) 2004-08-24 2005-08-23 Electrically operated valve diagnosing method and diagnosing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-243150 2004-08-24
JP2004243150 2004-08-24

Publications (1)

Publication Number Publication Date
WO2006022044A1 true WO2006022044A1 (ja) 2006-03-02

Family

ID=35967266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005038 WO2006022044A1 (ja) 2004-08-24 2005-03-14 電動弁診断方法と診断装置

Country Status (2)

Country Link
KR (1) KR100859742B1 (ja)
WO (1) WO2006022044A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589813B1 (ko) * 2014-04-30 2016-01-28 한전케이피에스 주식회사 조우코메틱 구동기의 스프링팩 작동 측정 장치

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570903A (en) * 1982-04-19 1986-02-18 Crass Otto G Method and apparatus for measurement of valve stem thrust
JPH0518477A (ja) * 1991-07-12 1993-01-26 Toshiba Corp 電動弁の弁棒荷重評価装置
JPH0512591B2 (ja) * 1987-06-30 1993-02-18 Nippon Gia Kogyo Kk
JPH0545251A (ja) * 1991-08-09 1993-02-23 Toshiba Corp 電動弁の健全性評価装置
JPH07310845A (ja) * 1994-05-13 1995-11-28 Nippon Gear Co Ltd 電動弁駆動機のトルク較正装置
JPH08261355A (ja) * 1995-03-24 1996-10-11 Nippon Gear Co Ltd 弁装置の負荷検出装置
JP2602799B2 (ja) * 1989-05-22 1997-04-23 東亜バルブ株式会社 電動弁の異常診断装置
JP2942562B2 (ja) * 1987-08-20 1999-08-30 リバティー・テクノロジーズ・インコーポレイテッド 弁及び弁作動子の組合せ体の状態及び性能を評価するためのシステム並びに弁棒にかかる力を測定するためのセンサ
JP2982090B2 (ja) * 1991-12-20 1999-11-22 日本ギア工業株式会社 バルブアクチュエータにおけるトルク測定方法とその装置
JP2000065246A (ja) * 1998-08-24 2000-03-03 Toa Valve Co Ltd 電動弁の異常診断装置
JP2002130531A (ja) * 2000-10-25 2002-05-09 Japan Atom Power Co Ltd:The 弁装置における異常診断及び劣化予測方法並びに装置
JP3486595B2 (ja) * 2000-02-14 2004-01-13 岡野バルブ製造株式会社 弁異常検出装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570903A (en) * 1982-04-19 1986-02-18 Crass Otto G Method and apparatus for measurement of valve stem thrust
JPH0512591B2 (ja) * 1987-06-30 1993-02-18 Nippon Gia Kogyo Kk
JP2942562B2 (ja) * 1987-08-20 1999-08-30 リバティー・テクノロジーズ・インコーポレイテッド 弁及び弁作動子の組合せ体の状態及び性能を評価するためのシステム並びに弁棒にかかる力を測定するためのセンサ
JP2602799B2 (ja) * 1989-05-22 1997-04-23 東亜バルブ株式会社 電動弁の異常診断装置
JPH0518477A (ja) * 1991-07-12 1993-01-26 Toshiba Corp 電動弁の弁棒荷重評価装置
JPH0545251A (ja) * 1991-08-09 1993-02-23 Toshiba Corp 電動弁の健全性評価装置
JP2982090B2 (ja) * 1991-12-20 1999-11-22 日本ギア工業株式会社 バルブアクチュエータにおけるトルク測定方法とその装置
JPH07310845A (ja) * 1994-05-13 1995-11-28 Nippon Gear Co Ltd 電動弁駆動機のトルク較正装置
JPH08261355A (ja) * 1995-03-24 1996-10-11 Nippon Gear Co Ltd 弁装置の負荷検出装置
JP2000065246A (ja) * 1998-08-24 2000-03-03 Toa Valve Co Ltd 電動弁の異常診断装置
JP3486595B2 (ja) * 2000-02-14 2004-01-13 岡野バルブ製造株式会社 弁異常検出装置
JP2002130531A (ja) * 2000-10-25 2002-05-09 Japan Atom Power Co Ltd:The 弁装置における異常診断及び劣化予測方法並びに装置

Also Published As

Publication number Publication date
KR20070068347A (ko) 2007-06-29
KR100859742B1 (ko) 2008-09-23
JP4437140B2 (ja) 2010-03-24
JPWO2006022408A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006022408A1 (ja) 電動弁診断方法と診断装置
US6240789B1 (en) Permanently instrumented actuated valve assembly, with internally-gauged, permanently instrumented shaft
CA2644580C (en) Load measurement method and device
CN108350913B (zh) 具有旋转位置输出的线性致动器
US9933088B2 (en) Rotary actuated valve with position indicator
US8464842B2 (en) Brake wear measurement system and method
CN111396621B (zh) 用于阀系统的传感器、包括传感器的阀系统及相关方法
JP4395185B2 (ja) 電動弁診断装置
CN112728195B (zh) 一种电动阀及其执行器的扭矩和行程测量系统及方法
US7516656B2 (en) Method and apparatus for diagnosing motor-operated valve
WO2006022044A1 (ja) 電動弁診断方法と診断装置
JP7015258B2 (ja) 電動弁駆動部の状態監視装置および状態監視方法
US7739923B2 (en) Torque measuring method and apparatus for motor-operated valve
KR101181008B1 (ko) 모터구동밸브의 실시간 성능 진단방법과 이를 이용한 진단시스템
CN112771458A (zh) 用于机电接合系统的状态分析的方法和执行该方法的机电接合系统
JP5579682B2 (ja) 電動弁管理装置
JP4437140B6 (ja) 電動弁診断方法と診断装置
JP4540978B2 (ja) 電動弁の診断方法及びその装置
JP2004257419A (ja) 自己診断機能を持つバルブアクチュエータ
US20150027251A1 (en) Electro-mechanical actuators with integrated high resolution wide operating load range
JP4705395B2 (ja) 電動弁用アダプタ
US20240230140A1 (en) An hvac system and related methods
WO2024044627A1 (en) Torque-sensing system for valve actuators
NO873282L (no) Motordrevet ventilanalyse- og testesystem.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP