WO2006021157A1 - Procede et equipement pour la transmission transparente de signaux a faible vitesse dans un reseau de transmission optique - Google Patents

Procede et equipement pour la transmission transparente de signaux a faible vitesse dans un reseau de transmission optique Download PDF

Info

Publication number
WO2006021157A1
WO2006021157A1 PCT/CN2005/001329 CN2005001329W WO2006021157A1 WO 2006021157 A1 WO2006021157 A1 WO 2006021157A1 CN 2005001329 W CN2005001329 W CN 2005001329W WO 2006021157 A1 WO2006021157 A1 WO 2006021157A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
payload
overhead
opu
indication
Prior art date
Application number
PCT/CN2005/001329
Other languages
English (en)
French (fr)
Inventor
Shimin Zou
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2006021157A1 publication Critical patent/WO2006021157A1/zh
Priority to US11/677,727 priority Critical patent/US7583697B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/07Synchronising arrangements using pulse stuffing for systems with different or fluctuating information rates or bit rates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET
    • H04J2203/0091Time slot assignment

Definitions

  • the present invention relates to signal multiplexing techniques for optical transport networks (OTN), and more particularly to methods and apparatus for enabling transparent transmission of low speed signals in OTN.
  • OTN optical transport networks
  • PDH Plesiochronous Series
  • SDH Synchronous Digital Hierarchy
  • CBR155 constant bit rate 155
  • 16 CBR155s are multiplexed into one CBR2G5 .
  • SDH's current line rate is synchronous transmission module -256 (STM-256) rate; higher rate transmission is limited by device evolution and cost factors.
  • DWDM technology can solve the problem of line transmission capacity, when signals with different modulation rates need to be transmitted, if one wavelength is allocated for each rate, it will cause waste of wavelength.
  • the usual solution is to multiplex multiple low-speed signals into a high-speed signal and then transmit it through a single wavelength to improve wavelength utilization.
  • OTN optical network
  • FEC forward error correction
  • TCM multi-level serial monitoring
  • OPUk optical channel payload unit
  • ODUk optical channel data unit
  • OFTUk optical transmission unit
  • JC is the adjustment control byte
  • PSI is the payload structure indication byte
  • RES is the reserved byte
  • D is the payload area of OPU1.
  • the 14 columns preceding OPU1 not shown in Figure 1 are ODU1 overhead areas.
  • the frequency difference of the CBR2G5 is absorbed by the positive adjustment overhead PJO and the negative adjustment overhead NJO in the OPU1 overhead; then the overhead of the optical channel data unit 1 (ODU1) is formed to form 0DU1.
  • ODU1 is multiplexed into the ODU2, and the multiplexing scheme is shown in FIG. 2.
  • ODU1 plus adjustment overhead ODTU12 JOH forms ODTU12;
  • 4 ODTU12s are multiplexed into ODTUG2 according to time division multiplexing; then ODTUG2 is mapped to OPU2; finally
  • OPU2 plus ODU2 overhead forms ODU2.
  • the above multiplexing process is a byte-by-byte asynchronous multiplexing process, which can realize complete transparent asynchronous mapping and asynchronous multiplexing of four CBR2G5 client signals onto one OPU2 signal.
  • the adjustment range of the customer signal ⁇ 45ppm can be achieved, and in general, the rate of the CBR client signal will not More than 20ppm of soil.
  • 4 channels of 2.5G CBR signals can be asynchronously mapped to their respective ODU1s, and 4 channels of ODU1 are asynchronously connected to OPU2 signals, which is similar to the asynchronous multiplexing of PDH, so the mapping method according to G.709 can guarantee The timing of signals above 2.5G is transparent.
  • the positive and negative adjustment opportunities generally refer to the positive and negative adjustment bytes (PJO and NJO) in the OPUk described above, but may also be replaced by other bytes to play the same role.
  • PJO and NJO positive and negative adjustment bytes
  • the true transparency of the existing G.709 recommendations for customer signals is mainly reflected in customer signals above 2.5G, but not for transparent reuse of customer rates below CBR2G5.
  • the scheme described in the existing G.709 proposal is applied and the low-speed signals such as CBR155 and CBR622 are directly adapted to the low-level ODU for multiplexing, 16 155M or 4 622M CBR signals are frequency-adjusted.
  • the existing multiplexing mode of G.709 cannot be directly used for multiplexing of CBR155/622M signals.
  • transparent transmission should completely preserve all the information characteristics of the client signal, especially the timing information of the signal should be transparently transmitted, so that when the client signal is transmitted from one node to another, all the characteristics of the customer signal will not change. . Due to the special nature of the low-speed signal, there is no such a good solution to fully realize the transparent transmission of low-speed signals in OTN and the end-to-end performance monitoring and management of low-speed signals.
  • the first main object of the present invention is to provide a multiplexing method for realizing transparent transmission of low-speed signals in an optical transmission network, which realizes transparent multiplexing of low-speed signals in an optical transmission network and realizes end-to-end of low-speed signals. Performance monitoring and management.
  • a multiplexing method for implementing transparent transmission of a low-speed signal in an optical transmission network includes the following steps: and obtaining an OPU payload and an OPU adjustment corresponding to each ODU format signal. Overhead and ODU overhead;
  • the ODU overhead corresponding to each OPU payload is transmitted according to the multi-frame indication, inter-frame inserted into the ODUk overhead of different frames and converted into an OTUn signal, and then transmitted through the optical transport network.
  • the speeds of the low-speed signals to be multiplexed are the same and are 1/N of the OPUk payload rate, where N is a natural number;
  • the payload area of the OPU1 is divided into N time slots, and the N OPU payloads obtained by the step a) are respectively interleaved into the OPUk payload N time slots.
  • the low-speed signal to be multiplexed is CBR155, and the value of N is 16; or the low-speed signal to be multiplexed is CBR622, and the value of N is 4.
  • the low-speed signal to be multiplexed includes the signals of at least two different rate types; the size of each time slot divided by the payload area of the OPUk in the step b) is each type of signal The greatest common divisor of the rate.
  • the step b) is to divide the payload area of the OPUk into 16 time slots, and insert the payloads of the N-channel OPU 155 and the M-path OPU 622 into the time slots of the OPUk, respectively, and use the multi-frame.
  • the payload structure corresponding to the indication indicates the type, time slot and location of each OPU payload, wherein one OPU 622 payload occupies 4 slots, and one OPU 155 payload occupies 1 slot;
  • the step d) of the method further comprises: converting the ODUk signal obtained in the step d) into an OTU1 signal.
  • the multiframe of the method is indicated as a locally generated multiframe signal and is transmitted using MFAS bytes in the OTU frame, or other reserved bytes.
  • the OPUk is OPU1
  • the ODUk is 0DU1.
  • the method is that the OTUn is OTU1, and the conversion process is to add an OTU1 overhead to the ODU1;
  • the OTUn is OTU2, and the conversion process is to multiplex 4 channels of 0DU1 to the ODU2, and add the OTU2 overhead;
  • the OTUn is OTU3, and the conversion process is to multiplex 16 channels of ODU1 to the ODU3, and add OTU3 overhead.
  • the payload structure indication corresponding to the multiframe indication in the method includes a payload type indication and a reserved byte distributed in different frames; using the original coding or reserved coding indicated by the payload type Indicating the OPU payload type, indicating the slot position and size of the OPU payload by using the reserved byte in the payload structure indication corresponding to the multiframe indication.
  • the payload type of the method is indicated by a payload structure indicating byte indicated by the multiframe indicating that the MFAS is 00000000, or any one of 1 to 255 bytes indicated by a value other than 00000000.
  • the reserved byte of the distribution in the payload structure indication in the different frames is at least one of the 1 to 255 payload structure indication bytes indicated by values other than MFAS 00000000.
  • the payload structure corresponding to the multiframe indication includes a reserved byte distributed in different frames; and the reserved byte in the payload structure indication is used to indicate the OPU payload type, payload The location and size of the time slot.
  • the ODU overhead of the method includes at least a performance monitoring overhead field.
  • the low speed signal of the method is an STM-1, or OC3 signal, or an STM-4 signal, or an OC12 signal, or any combination of the above signals.
  • a second main object of the present invention is to provide a demultiplexing method for realizing transparent transmission of low-speed signals in an optical transmission network, which realizes transparent multiplexing of low-speed signals in an optical transmission network and implements end-to-end performance management of low-speed signals.
  • the present invention provides a demultiplexing method for transparent transmission of a low-speed signal in an optical transmission network. After completing the OTU frame synchronization, the following steps are included:
  • the multiframe of the method indicates the MFAS byte in the received OTU frame, or the received signal represented by the reserved byte used to transmit the multiframe signal.
  • the payload structure indication corresponding to the multiframe indication in the method includes a payload type indication and a reserved byte distributed in different frames, and the original encoding or the reserved encoding indicated by the payload type is used to indicate the payload.
  • Type indicating a slot position and size of the OPU payload by using a reserved byte in the payload structure indication corresponding to the multiframe indication.
  • the payload structure indication corresponding to the multiframe indication includes a reserved byte distributed in different frames; and the reserved byte in the payload structure indication is used to indicate the OPU payload type, payload Slot location and size.
  • the low speed signal of the method is an STM-1, or OC3 signal, or an STM-4 signal, or an OC12 signal, or any combination of the above signals.
  • a third main object of the present invention is to provide a multiplexing device that realizes transparent transmission of low-speed signals in an optical transmission network, and realizes transparent multiplexing of low-speed signals in an optical transmission network.
  • a multiplexer for realizing transparent transmission of a low-speed signal in an optical transmission network includes:
  • More than one synchronous physical interface completing photoelectric conversion, clock and data recovery of each branch signal to be multiplexed, and conversion of serial signals to parallel signals;
  • More than one mapping module receives the parallel clock and data sent from the corresponding synchronous physical interface, and maps the received data to the OPU frame, and completes the overhead of the ODU on the OPU package, and outputs the parallel data and the clock signal of the ODU.
  • the multiplexing module receives data sent from the one or more mapping modules, interpolates the payload signals of the OPUs into corresponding time slots of the OPUk, and inserts the adjustment overhead of each OPU into different frames according to the multiframe indication according to the multiframe indication.
  • OPUk adjusts the overhead position and completes the pair according to the multiframe indication N2005/001329 Interpolation multiplexing of each ODU622 overhead, obtaining an ODUk signal;
  • the line module receives the ODUk signal and the clock sent by the multiplexing module, generates an OTU1 open and FEC code, and a frame positioning signal and a multiframe positioning signal, and then outputs the result after scrambling and electro-optical conversion;
  • the timing generator generates a local timing signal or generates a local timing signal according to the received clock signal of the multiplexing module and inputs to the mapping module, the multiplexing module, and the line module.
  • the one or more mapping modules of the multiplexing device are comprised of at least two mapping modules for signals of different rates.
  • a fourth main object of the present invention is to provide a demultiplexing apparatus for realizing transparent transmission of a low speed signal in an optical transmission network, which realizes transparent multiplexing of low speed signals in an optical transmission network.
  • a fourth aspect of the present invention provides a demultiplexing apparatus for transparent transmission of a low speed signal in an optical transmission network, including:
  • the line module receives the OTU1 signal, performs photoelectric conversion on the received signal, OTU1 clock and data recovery, OTU1 frame positioning, descrambling, FEC decoding, OTU1 overhead termination, and obtains an ODUk signal;
  • the demultiplexing module receives the ODUk signal sent by the line module, and solves the ODU overhead of each branch from the ODUk signal, and adjusts the overhead of each OPU from the OPUk adjustment overhead; and solves each time slot from the OPUk
  • the OPU payload information of each branch obtains the signal of the ODU type corresponding to each branch;
  • More than one demapping module receives the ODU type signal of each branch sent by the demultiplexing module, recovers each CBR information from the payload area of the OPU, and needs to control the read according to the adjustment control byte during the recovery process. Taking the payload information, and smoothing the clock, and obtaining the parallel CBR622 data signal and the parallel clock;
  • More than one synchronous physical interface respectively receiving the data and clock sent by each demapping module, and performing parallel string processing and electro-optical conversion to recover the final client signal CBR622;
  • the timing generator receives the signal of the demultiplexing module and generates a timing signal and inputs to the demapping module, the demultiplexing module, and the line module.
  • the one or more demapping modules of the demultiplexing device are comprised of at least two demapping modules for different rate signals.
  • a fifth main object of the present invention is to provide a multiplexing/demultiplexing apparatus for transparently transmitting low-speed signals in an optical transmission network, which realizes transparent multiplexing of low-speed signals in an optical transmission network and realizes end-to-end low-speed signals. Performance management.
  • the present invention provides a multiplexing/demultiplexing apparatus for transparently transmitting a low-speed signal in an optical transmission network, comprising: one or more synchronous physical interfaces, more than one mapping/demapping module, and multiplexing /demultiplexing module, line module and timing generator;
  • mapping/demapping module maps the received data to the OPU frame, and completes the overhead of the ODU on the OPU package, and outputs the parallel data and clock signals of the ODU to the multiplexing/demultiplexing module;
  • the demultiplexing module interpolates the OPU payload signal into the corresponding time slot of the OPUk, inserts the adjustment overhead of each OPU into the adjustment overhead position of the OPUk according to the interframe, and completes the interpolating of the overhead of each ODU622 according to the multiframe indication.
  • the ODUk signal is sent to the line module, and the line module generates an OTU1 overhead and an FEC code, and a frame positioning signal and a multiframe positioning signal, and then outputs the result after scrambling and electro-optical conversion;
  • the line module receives the OTU1 signal, performs photoelectric conversion on the received signal, OTU1 clock and data recovery, OTU1 frame positioning, descrambling, FEC decoding, OTU1 overhead termination, and obtains the ODUk signal to be transmitted to the complex
  • the demultiplexing/demultiplexing module is used to solve the ODU overhead of each branch from the ODUk signal, and the adjustment overhead of each OPU is solved from the OPUk adjustment overhead; each of the OPUk slots is solved Branch road OPU
  • the payload information is obtained by the ODU type signal corresponding to each branch, and is respectively sent to the mapping/demapping module corresponding to each branch; the mapping/demapping module recovers each CBR information from the payload area of the OPU, and recovers
  • the read control payload is controlled according to the adjustment control byte, and the clock is smoothed and filtered, and the obtained parallel CBR622 data signal and the parallel clock are respectively sent to the synchronous physical interface; the synchronous
  • the timing generator is configured to receive signals of the multiplexing module and generate local timing signals and input to the mapping module, the multiplexing module, and the line module.
  • the one or more mapping/demapping modules of the multiplexing/demultiplexing apparatus are composed of at least two mapping/demapping modules for signals of different rates.
  • the present invention provides a method and apparatus for transparent transmission of a low-speed signal in an optical transmission network.
  • the OPU payload is pressed after the asynchronous signal is asynchronously mapped to the OPU.
  • the inter-segment insertion mode, and the OPU and ODU overhead are synchronously connected to the ODU1 according to the interframe interpolation manner, thereby reducing the extra bandwidth consumption of the low-speed signal during the ODU multiplexing process, so that all the information of the low-speed signal is in the multiplexing process.
  • the whole is saved; when the signal is received, the original low-speed signal is completely restored by the inverse process of the multiplexing process.
  • TMUX transparent multiplexer
  • FIG. 1 is a schematic diagram of a frame structure of an OPU 1 in the prior art
  • FIG. 2 is a schematic diagram of a scheme for multiplexing ODU1 into ODU2 in the prior art
  • FIG. 3 is a schematic structural diagram of an ODU155/0DU622 frame according to the present invention
  • 4 is a schematic diagram of OPU1 slot division and adjustment overhead multiplexing
  • FIG. 5 is a schematic diagram of overhead multiplexing from ODU622 overhead to ODU1;
  • Figure 6 is a schematic structural diagram of an ODUk overhead
  • FIG. 7 is a schematic structural diagram of a multiplexing/demultiplexing apparatus between a CBR 622 and an ODU 1 according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a multiplexing/demultiplexing apparatus between a CBR 155 and an ODU 1 according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of slot division of CBR155 and CBR622 hybrid multiplexing
  • FIG. 10 is a schematic structural diagram of a mixed signal multiplexing/demultiplexing apparatus of M-channel CBR622 and N-channel CBR155 according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a network topology structure of a sub-rate transparent multiplexer applied to a point-to-point transmission of a DWDM/CWDM system according to the present invention
  • FIG. 12 is a schematic diagram of a network topology structure of a sub-rate transparent multiplexer applied to a metropolitan area OADM ring network according to the present invention
  • FIG. 13 is a schematic diagram of a network topology structure of a sub-rate transparent multiplexer as a subsystem for implementing point-to-point transmission according to the present invention. Mode for carrying out the invention
  • the core idea of the solution of the present invention includes: adapting each low-speed signal to be multiplexed to a signal of an ODU format of the same level as itself, and thereby obtaining a signal corresponding to each ODU format signal.
  • the OPU payload, the OPU adjustment overhead, and the ODU overhead divide the OPUk payload area into more than one time slot, and insert the obtained OPU payload into each slot of the OPUk payload area by byte, and utilize And a payload structure indication corresponding to the multiframe indication to identify the type of each OPU payload, the size and location of the occupied slot; and the OPU adjustment overhead corresponding to each OPU payload according to the multiframe indication, according to the interframe
  • the OPUk adjustment overhead of the different frames is inserted; the ODU overhead corresponding to each OPU payload is transmitted according to the multi-frame indication, inter-frame inserted into the ODUk overhead of different frames and converted into an OTUn signal, and then transmitted through the optical transport network.
  • CBR-M is used to represent low-speed signals such as CBR155 or CBR622.
  • FIG. 3 See Figure 3 for the frame structure of the ODU155/622 used to map the CBR155 or CBR622 signals.
  • Columns 1 through 14 are the overhead areas of ODU155/622, columns 15 and 16 are the overhead locations of OPU-M, columns 17 to 3824 are the OPU-M payload areas, and payload areas include 4 x 3808 bytes.
  • the PJ positive adjustment byte is located at the first position on the 4th line of the payload area; the NJ negative adjustment byte is located at the 16th column of the 4th line of Figure 3.
  • Positive and negative adjustments can tolerate a frequency difference of ⁇ 65ppm. Considering the local timing of the device is 20ppm, the frequency tolerance of the CBR155 and CBR622 customer signals is ⁇ 45ppm.
  • the first, second, and third lines of the 16th column are the adjustment control bytes; TC, whose role and definition are the same as those defined in the G.709 recommendation. It can be seen that the newly defined OPU-M
  • the structure of the ODU-M is substantially the same as the OPUk structure described in the G.709 recommendation. The difference is that the payload area rate of OPU1 is 2488320Kbits/s ⁇ 20ppm, while the rate of the payload area of OPU622 is 622.08Mbit/s ⁇ 20ppm in the present invention; the payload area rate of OPU155 is 155.52Mbit/s ⁇ 20ppm. That is, the signal format is basically the same, but the repetition period is not the same.
  • mapping of CBR155/622 to OPU 155/622 and ODU 155/622 is possible according to the OPU-M and ODU-M structures defined above.
  • the signal multiplexing process in the signal transmission direction specifically includes the following steps.
  • Step 1 The signal CBR-M of each branch is adapted to the ODU-M signal to form an OPU-M payload and an OPU-M adjustment overhead of the N path, and an ODU-M overhead of the N path.
  • the CBR 622 of each branch is asynchronously mapped to the OPU 622 of the structure shown in FIG. 3, and then the ODU 622 overhead is encapsulated to form an ODU 622 signal. This can get OPU622 payload and OPU622 adjustment overhead, as well as ODU622 overhead.
  • Step 2 divide a payload area of the OPU1 signal into a plurality of time slots, and insert the payloads of the low-speed OPU-Ms obtained in step 1 into the corresponding time slot positions by byte; and use the corresponding to the multi-frame indication
  • the payload type indication in the payload structure indication reserved bytes to identify the type of each OPU-M payload, the size and location of the occupied time slot, respectively.
  • FIG. 4 is a schematic diagram of the OPU1 slot division and adjustment overhead multiplexing by taking CBR622 mapping to OPU1 as an example.
  • the multiframe signal is generated locally, and 256 frames are a multiframe.
  • the generated multiframe signal can be transmitted using the multiframe alignment signal (MFAS) byte defined in the OTU frame or other undefined reserved bytes.
  • MFAS multiframe alignment signal
  • the payload type indication can use the PSI byte corresponding to the multiframe indication 0 in G.709, that is, the payload type (FT, Payload Type) byte, wherein the PT byte has 256 codes, some codes. It has been defined by G.709, but there are reserved codes (RES codes) that can be used to define new payload types.
  • the PSI byte is indicated by the MFAS. Since the MFAS has 8 bits, in an MFAS, a total of 256 PSI bytes can be used, including the PT bytes already defined in G.709 and distributed in other frames. Undefined PSI reserved bytes. This can be used to indicate the slot position and size of the OPU payload using the reserved bytes (RES bytes) that are not currently defined by the PSI.
  • RES bytes reserved bytes
  • a 2-bit multiframe indication bit is required, indicating that 4 OPU1 frames are needed to transmit one frame of each of the four OPUs 622, and also corresponding to PSI bytes in four different OPU1 frames. Section is fully sufficient to define the payload type indication and the slot location indication of the OPU payload
  • the 4-bit multiframe indication bit is provided, that is, the 5, 6, 7, and 8 bits of the MFAS are multi-framed, indicating that 16 OPU1 frames are required to transmit one frame of 16 OPUs 155, and corresponding to 16 different OPU1 frames. PSI bytes, these PSI bytes are fully enough to define the payload type indication and the slot location indication of the OPU payload
  • Step 3 Adjust the overhead of the OPU-M of each branch obtained in step 1, and adjust the overhead according to the multi-frame indication to interpolate to the OPU1 of different frames.
  • the adjustment overhead of the first OPU 622 is multiplexed by frame to the adjustment overhead position in the OPU1 frame with the MFAS 00, and so on, and the adjustment overhead of the fourth OPU 622 is frame-by-frame.
  • the adjustment overhead position in the OPU1 frame indicating that the MFAS is 11 is used.
  • the adjustment overhead of the first OPU 155 is multiplexed by frame to the adjustment overhead position in the frame of the OPU1 with the MFAS 0000, and so on, and the adjustment of the 16th OPU 155 is performed.
  • the overhead is multiplexed by frame to the adjusted overhead position in the OPU1 frame of MFAS 1111.
  • Step 4 The ODU-M overhead of each branch obtained in step 1 is formed into an ODU1 signal according to the ODU1 overhead of interframe insertion into different frames according to the multiframe indication, and the ODU1 signal is converted into an OTUk signal and transmitted through the optical transport network. .
  • the multiplexing process of the ODU622 overhead to the ODU1 overhead is illustrated in FIG. 5 and FIG. 6.
  • the ODU622 overhead of the first channel is multiplexed to the ODU1 overhead zone position in the ODU1 frame of the multiframe indicating MFAS 00, . ..., and so on, the 4th
  • the ODU 622 overhead is multiplexed by frame to the multiframe indicating the location of the ODU1 overhead zone in the ODU1 frame of MFAS 11.
  • the overhead of the ODU 155 of the first path is multiplexed by frame to the ODU1 overhead position in the ODU1 frame with MFAS 0000, ..., and so on, and the ODU 155 overhead of the 16th channel is framed by frame.
  • Multiplexing to multiframe indicates that MFAS is 1111 ODUl overhead area location in the ODUl frame.
  • the overhead of the ODU622 is exactly the same as the overhead byte definition of the ODU1 recommended by G.709. See Figure 6 for the frame structure of the ODUk overhead.
  • the first 14 columns of the first row are the reserved rows of the OTUk.
  • Columns 1 through 7 are frame alignment overheads, and columns 8 through 14 are OTUk overhead bytes. All the bytes from the first 14 columns of the second row to the fourth row are the overhead bytes of the ODUk, and the overhead of the ODU622/155 is mapped into the region according to the corresponding multiframe indication, where the PM is the performance monitoring overhead field. Used to achieve end-to-end performance monitoring.
  • Columns 15 and 16 of lines 1 through 4 are OPUk overhead bytes.
  • the multiplexing of the ODU1 signal when performing line transmission, it is generally necessary to convert the ODU1 signal plus the OTU1 overhead into the OTU1 signal, and perform FEC encoding that satisfies ITU-T G.709 to generate a frame positioning signal and a multiframe.
  • the positioning signal is scrambled according to G.709, and then transmitted to the OTN transmission line for transmission after electro-optical conversion.
  • the overhead of the ODU1 is composed of the overhead of the ODU622/ODU155 of each branch.
  • the overhead of the ODU1 actually delivers the overhead of each ODU622 or ODU155, that is, the overhead of the ODU1 itself has been
  • the low-speed ODU overhead is occupied. This is the essential difference from G.709. G.709 puts 4 ODU1s in the payload area of high-speed OPU2. For example: 4 ODU1 including ODU1 overhead and OPU1 payload are completely allocated in OPU2.
  • the payload area but the present invention only places the OPU 622 payload area OPU6 2 2 in the payload area of the OPU1, and the overhead area of the ODU 622 is placed in the overhead area of the ODU1, thereby saving bandwidth and enabling 4 ODU622 to ODU1 Synchronous multiplexing.
  • each low-speed branch has ODU management overhead, it can implement end-to-end performance monitoring and management support for each low-rate service.
  • end-to-end QOS management of traffic signals is implemented by the overhead of the ODU 622 or the ODU 155.
  • the rate of the ODU 622 or the ODU 155 is taken Depending on the originating timing of the network element, all the ODUk signals of the same level have the same rate, and the phases of the frame synchronization and multiframe synchronization signals are also the same. Although each ODU155 or each ODU622 has the same rate and phase, since the mapping of CBR155/622 to OPU155/622 is asynchronous mapping, the rates of the branches are independent, and the information is completely saved, and the rate of each branch can be guaranteed. The timing is transparent.
  • the ODU multiplexing scheme proposed by the present invention is essentially a scheme in which CBR is asynchronously mapped to the OPU, and then the ODU is synchronously connected to the ODU1, which is attributed to the OPU payload interleaved.
  • Multiplexing, OPU/ODU overhead is multiplexed by interframe interpolation.
  • the difference from the G.709 is that the overhead of the ODU 622 is not asynchronously multiplexed with the ODU 622 payload to the OPU payload, but is multiplexed to the overhead location of the ODU 1 in a frame multiplexing manner.
  • the multiplexed transmitted signal needs to be demultiplexed during reception to completely restore the low-speed signal before multiplexing.
  • the demultiplexing process is completely the inverse of the multiplexing process. The following is still a brief description of the demultiplexing process using CBR155 and CBR622 as examples.
  • a multiframe indication of the ODU1 signal can be obtained.
  • Step A Decompose the ODU-M overhead of each branch from the ODU1 signal according to the multiframe indication.
  • Step B According to the multi-frame indication, the adjustment overhead of each branch OPU-M is decomposed from the OPU1 adjustment overhead.
  • Step C Decompose the OPU-M payload of each branch from the time slot of the OPU1 payload area according to the multiframe indication.
  • Step D Combine the ODU-M overhead, the OPU-M adjustment overhead, and the OPU-M payload corresponding to each branch decomposed in the foregoing steps, and restore the ODU-M signal to restore the ODU-M type signal. It is the low speed signal of its original type CBR-M.
  • the present invention implements the CBR6 22 signal transmission based on the multiplexing/demultiplexing method of the low speed signal described above.
  • the structure of the multiplexing/demultiplexing device of the transmission is also referred to as a sub-rate transparent multiplexer in the present invention because it can realize transparent transmission of each sub-rate signal of the complex signal.
  • the device comprises: 4 synchronous physical interfaces (SPI), 4 mapping/demapping modules, and a multiplexing/demultiplexing module, a line module and a timing generator.
  • Each tributary signal first enters the synchronous physical interface SPI, and the four SPIs respectively perform photoelectric conversion, clock and data recovery, and serial signal to parallel signal conversion, and output to each mapping/de-mapping module.
  • the parallel signal output can be 77.76M parallel data and clock.
  • the mapping/demapping module receives the data sent from the SPI, and the parallel clock signal sent from the SPI or the timing generator, and maps the received data to the OFU622 frame.
  • the OPU6 22 frames are local timing, and the four OPU622 frames are the same.
  • the frequency is in phase; the frequency difference between the received data and the local timing is adjusted by the positive and negative adjustment opportunities of the OPU 622.
  • the module also completes the overhead of the ODU622 on the OPU622 package; finally, the parallel data and clock signals of the ODU622 are output to the multiplexing/demultiplexing module.
  • the multiplexing/demultiplexing module receives the data sent from the 4-way mapping/demapping module and the clock signal generated by the timing generator, interpolates the payload signals of the four OPUs 622 into the four time slots of the OPU1, and simultaneously The adjustment overhead of the OPU 622 is inserted into the adjustment overhead position of the OPU 1 according to the interframe.
  • the adjustment overhead of the first path OPU 622 is inserted into the adjustment overhead position of the OPU1 frame indicated by MFAS 00, and the adjustment overhead of the OPU 622 of the second path is inserted into the adjustment overhead position of the OPU1 frame indicated by MFAS 01, ..., Similarly, the OPU 622 of the 4th channel adjusts the overhead of the adjustment to the OPU1 frame of the MFAS indication 11 to the adjustment overhead position.
  • the module also performs the interleaving multiplexing of the overhead of each ODU622, and multiplexes the ODU622 overhead of the first path to the ODU1 overhead position of the ODU1 frame with the MFAS of 00, ..., and so on, and the ODU622 overhead multiplexing of the fourth channel
  • the ODU1 overhead position of the ODU1 to the MFAS is 11.
  • the clock signal generated by the ODU1 signal and the timing generator is sent to the line module, and the line module generates an OTU1 overhead conforming to the G.709 standard, converts the ODU1 signal into an OTU1 signal, and performs FEC encoding that satisfies ITU-T G.709, and generates
  • the frame positioning signal and the multiframe positioning signal are scrambled according to the G.709 specification, and then output by electro-optical conversion, thereby completing the entire multiplexing process.
  • the timing generator According to the position and function of the STMUX in the OTN, the timing generator generates a local timing signal, including clock, frame positioning, or directly according to signals of the received multiplexing/demultiplexing module clock and frame positioning. Signals such as multiframe positioning are input to the mapping/demapping module, the multiplexing/demultiplexing module, and the line module.
  • the timing generator of the STMUX directly generates a local timing signal, and the mapping/demapping module only receives the timing signal generated by the local timing generator; otherwise, the timing generator
  • the local timing signal is generated according to the clock and frame positioning solved by the demultiplexing module from the data, and the mapping/demapping module receives the timing signal generated by the local timing generator, and receives the data received from the SPI together with the data.
  • the line module receives the signal and completes the functions of photoelectric conversion, OTU1 clock and data recovery, OTU1 frame positioning, descrambling, FEC decoding, OTU1 overhead termination, etc.; the ODU1 signal, the clock signal, and the frame and multiframe positioning signals are decoded, and sent to the complex Use / demultiplex module.
  • the clock signal is sent to the timing generator. In the receiving direction, the demultiplexing process uses line timing.
  • the multiplexing/demultiplexing module completes the demultiplexing process of the ODU1 signal, and the ODU622 overhead of each branch is solved from the ODU1 signal according to the multiframe indication; the adjustment overhead of each OPU 622 is solved by adjusting the overhead from the OPU1 according to the multiframe indication; The OPU 622 payload information of each branch is solved from the time slot of the OPU1 according to the multiframe indication and the payload structure indication corresponding to the multiframe indication.
  • four complete branch ODU622 signals are solved from the ODU1 signal and sent to the mapping/demapping module.
  • the mapping/demapping module completes the termination of the ODU622 signal, and recovers the CBR622 information from the payload area of the OPU 622.
  • the recovery process needs to control the read payload information according to the adjustment control byte, and smooth the clock.
  • the recovered CBR622 data signal and parallel clock are sent to the SPI module.
  • the SPI module receives the data and clock sent by the mapping module, and performs parallel and serial processing and electro-optical conversion to recover the final client signal CBR622.
  • the timing generator generates a local timing signal according to signals of the received multiplexing/demultiplexing module clock and frame positioning, and inputs to the mapping/demapping module, the multiplexing/demultiplexing module, and the line module.
  • FIG. 8 is a multiplexing and demultiplexing embodiment of 16 CBR155 to ODU1/OTU1, which is exactly the same as the structure and working principle of FIG. 7, except that the number of branches is 16, so the corresponding SPI and The number of mapping/demapping modules is also 16 respectively.
  • multiplexing and demultiplexing of two or more different rate signals can be performed by the solution of the present invention, thereby realizing transparent transmission of low speed signals of different rates in the OTN.
  • the payload area of OPU1 is still divided into 16 time slots.
  • Each OPU622 payload accounts for 4 time slots, and each OPU 155 occupies 1 time slot.
  • N-channel CBR155 and M-channel CBR622 are asynchronously mapped to OPU155/ODU155 and OPU622/ODU622, respectively.
  • CBR622 and CBR155 signal rates that is, the rate value of CBR155 is the basic unit, dividing the OPU1 payload area into N+4 XM way slots; placing the payloads of N-channel OPU155 and M-path OPU622 respectively Among the time slots of OPU1, one OPU 622 payload occupies 4 time slots, and one OPU 155 payload occupies 1 time slot.
  • 3) Set the PSI value of the OPU1 frame corresponding to 0, that is, the payload type (PT) value, and use the reserved code of the PT to identify the payload type; and use the PSI word of the OPU1 frame with the MFAS being 1 to L.
  • the sections indicate the number of various payload types and the slot position, respectively, and L is less than 255.
  • the reserved code of the PT in the payload type indication is used here to indicate
  • the type of OPU-M payload while using the multiframe to indicate the PSI byte corresponding to other values, that is, the reserved byte of the PSI, indicates the size and location of the slot occupied by each OPU payload. Therefore, it is necessary to newly define the RES encoding content of the payload type PT.
  • the PT is an 8-bit byte.
  • the reserved indication code is from 80H to 8FH, so that some of them can be selected for the payload type indication.
  • the PT content 8CH, 8DH, 8EH when the MFAS is 00000000 is defined. They are used to indicate that the payload type is single CBR155, single CBR622, and CBR155 and CBR622.
  • the PT content is located in the 15th row and 4th row of the OTU frame structure.
  • the PSI word in the frame with MFAS is 1.
  • the first 4 bits of the section indicate the number of CBRs 155, and the last 4 bits indicate the number of CBRs.
  • a part of the PSI bytes of the OPU1 frame from 2 to 255 may be selected to indicate the location of the CBR 155 and the CBR 622 in the OPU1 payload area.
  • the first 4 bits of the PSI indication when the MFAS is 2, that is, 00000010 may be used to indicate the CBR 622.
  • the last 4 bits indicated by the PSI indicate the end position of the slot of the CBR 622 at the OPU1;
  • the PSI when the MFAS is 3 indicates the start position of the slot of the OBR1 of the CBR 155, and the last 4 bits indicate that the CBR 155 is at the OPU1 The end of the time slot.
  • the slot position of each payload in OPU1 can also be identified by the multiframe PSI byte of the MFAS.
  • the payload type can be fully identified by using the reserved coding of the PT, and the number of payloads and the slot position of each payload can be identified by using PSI bytes in other frames indicated by the MFAS.
  • the type of OPU-M payload, the size and location of the time slot occupied by each OPU payload, may be indicated by directly defining the corresponding reserved codes in different frames. The same effect as described above can be achieved.
  • the OPU 155 adjustment overhead of the loop and the adjustment overhead of the OPU 622 of the loop are multiplexed by frame to the adjustment overhead position in the OPU1 frame indicated by the multiframe indication.
  • the OTU1 signal is subjected to FEC coding conforming to ITU-T G.709, and a frame positioning signal and a multiframe positioning signal are generated, scrambled according to G.709, and then transmitted to the OTN transmission line for transmission by electro-optical conversion.
  • the demultiplexing process the same as the single rate signal described above, it is completely the inverse process of the multiplexing process.
  • the demultiplexing process of the ODU1 signal obtained by multiplexing the CBR155 and CBR622 mixed signals is briefly described below.
  • a multiframe indication of the ODU1 signal can be obtained.
  • Step A Decompose the ODU155/622 overhead of each branch from the ODU1 signal according to the multiframe indication.
  • Step B According to the multiframe indication, the adjustment overhead of each branch OPU155/622 is decomposed from the OPU1 adjustment overhead.
  • Step C Decompose the OPU155/622 payload of each branch from the time slot of the OPU1 payload area according to the multiframe indication and the payload structure indication corresponding to the multiframe indication.
  • Step D the ODU1 5 5/6 2 2 overhead corresponding to each branch decomposed in the above steps,
  • the OPU155/622 adjustment overhead is combined with the OPU155/622 payload to revert to the ODU155/622 signal, which restores the ODU155/622 type signal to its low-speed signal of the original type CBR155/622.
  • the multiplexing/demultiplexing device of the CBR155 and CBR622 mixed signals is shown in Figure 10.
  • the client signals of CBR155 and CBR622 recover the serial data and serial clock through their respective synchronous physical interfaces SPI; serial and serial clocks are serial-to-parallel conversion; output parallel data and parallel clock signals Give the respective OPU155/OPU622 multiplexing/demultiplexing modules.
  • the mapping/demapping module completes mapping the parallel signal of CBR155 to OPU155, realizes rate adjustment, and adds ODU155 overhead.
  • the mapping/demapping module completes mapping the parallel signal of CBR622 to OPU622 signal, realizes rate adjustment, and adds ODU622 overhead.
  • the transmission timing of the OPU155/ODU155 and OPU622/ODU622 adopts local timing, and the frequency offset is less than ⁇ 20ppm, which is generated by the local timing generator.
  • the multiplexing/demultiplexing module multiplexes the OPUs 155/622 to OPU1, and also distributes the payloads of the respective OPUs 155 and OPUs 622 to their respective slot positions in accordance with the methods described above.
  • the payload identifier PT is inserted to indicate the payload type and the respective number of paths N, M of the CBR 155 and the CBR 6 22 ; and the reserved bytes of the PT are used to indicate the slot positions of the various payloads.
  • Adjusting the multiplexing of the overhead because the slot number is the same as the required multiframe indication value, for example: OPU1 is divided into 16 slots, and 16 OPU1 frames are needed to transmit N OPU 155 and M OPU 622, so the time with PT can be utilized.
  • the slot position indicates the adjustment overhead position of the OPU1 frame in which the same MFAS indication is located to load the corresponding N-way OPU 155 adjustment overhead and OPU 622 adjustment overhead.
  • ODU155/622 overhead to multiplexing of ODU1 overhead.
  • the corresponding N-way ODU 155 overhead is loaded with the ODU1 position of the ODU1 frame in which the same MFAS indication as the PT's slot position indication (for example, the slot position is 5, the MFAS is 5). ODU622 overhead.
  • the clock signal generated by the ODU1 signal and the timing generator is sent to the line module, and the line module generates an OTU1 overhead conforming to the G.709 standard, converts the ODU1 signal into an OTU1 signal, and performs FEC encoding that satisfies ITU-T G.709, and generates
  • the frame positioning signal and the multiframe positioning signal are scrambled according to the G.709 specification, and then output by electro-optical conversion, thereby completing the entire multiplexing process.
  • the low-speed signal conversion of the OPU 155 and the OPU 622 in the above embodiments of the present invention may be directly converted into other OPUk signals such as OPU2 or OPI, and then converted into corresponding ODUk signals.
  • OPUk signals such as OPU2 or OPI
  • ODUk overhead it is also possible to multiplex the multiple ODUk into the higher-rate ODUn signal, and then add the OTUn overhead to form the OTUn.
  • four ODU1s can be multiplexed onto ODU2, and OTU 2 overhead is formed to form OTU2; or 16 ODU1s can be multiplexed onto ODI, and OTU3 overhead is formed to form OTU3.
  • nodes S and B are respectively provided with STMUX provided by the present invention, and the STMUX can complete transparent multiplexing of multiple CBR622 or CBR155.
  • the multipath sub-rate occupies only one wavelength and is transmitted in the same fiber together with the wavelengths of other modulation rates.
  • the applied DWDM system can contain one or more STMUX boards.
  • the STMUX provided by the present invention is respectively disposed in the nodes A and C.
  • the sub-rate services from node A to node C are multiplexed by STMUX, share one wavelength, and pass through the intermediate nodes to realize point-to-point transmission of sub-rate services.
  • the STMUX to which it is applied can be a board of an OADM device.
  • STMUX itself acts as a subsystem for point-to-point delivery:
  • STMUX can be used not only as a circuit unit of a DWDM terminal device or an OADM device, but also as a stand-alone device. It can also perform point-to-point transparent transmission of sub-rate services. This application is suitable for low cost applications.
  • the low speed signal described in the present invention may be an STM-1, an OC3 signal, an STM-4 signal, or an OC12 signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

实现低速信号在光传输网络中透明传送的方法和装置 技术领域
本发明涉及光传输网络(OTN ) 的信号复用技术, 特别是指实现低 速信号在 OTN中透明传送的方法和装置。 发明背景
近年来, 随着话音业务和数据业务的不断增长, 运营商对传送网络 的容量要求将不断增加。 为了增加传送容量最早采取的方式是准同步系 列 (PDH ) 的复接技术。 后来出现了同步数字系列 (SDH )技术, 传送 容量得到了大幅提高, 但本质上 SDH仍然是一种复用技术, 只不过是 实现方式的不同: PDH是按比特间插的复接方式, SDH是按字节间插 的复接方式。 利用 SDH实现大容量的传送, 需要把低速的 SDH信号复 用到高速的 SDH信号, 例如: 4个恒定比特率 155 ( CBR155 )信号复 用到一个 CBR622信号; 或 16个 CBR155复用到一个 CBR2G5。 SDH 目前的线路最高速率是同步传输模块 -256 ( STM-256 )速率; 更高的速 率传送受限于器件的进展和成本因素。
当密集波分复用 (DWDM )技术出现后, 线路传送容量得到了革命 性的提高, 在一条光纤上可以实现很多个波长的同时传送, 目前普遍使 用的技术已达到 1.6Tbits/S的等效线路容量, 一些前缘性研究的技术已 达到了数十 Tbits/S的线路容量。
虽然 DWDM技术能解决线路传送容量的问题, 但当有不同调制速 率的信号需要传送的时候, 若为每个速率都分配一个波长来传输, 会造 成波长的浪费。 通常的解决办法就是把多个低速信号复用到高速信号后 再通过一个波长来传送, 从而提高波长利用率。 随着国际电联( ITU-T ) G.709 G.798、 G.87X系列建议的良好进展,
OT 技术逐渐走向成熟。 OTN综合了以往的电层复用技术和光层技术, 具有非常强的前向纠错( FEC , Forward Error Correction ) 能力, 多层次 的串联监视(TCM ) 功能, 几乎所有的客户信号透明传送能力, 基于 ODU1颗粒的可扩展的交叉调度能力, 光通道层完善的性能管理和故障 管理能力等优点。
为了增加单波容量, 实现多个低速信号的复用传送,
在 OTN的建议 G.709 中描述了一种透明映射和透明复接的方法。 并定义了光信道净荷单元(OPUk )、 光信道数据单元(ODUk )、 光传输 单元(OTUk )等信号。 参见图 1所示, 这是一个 OPU1的帧结构。 从 图 1中可以看出, 从第 15列到 3824列, 共 4行, 表示了整个 OPU1的 大小。 其中, 第 15、 16列为 OPU1的开销 (OH, overhead )位置, 在 第 4行的 16列和 17列位置分別是负调整字节 NJO和正调整字节 PJO。 另外, JC为调整控制字节, PSI为净荷结构指示字节, RES为保留字节, 标示 D的位置为 OPU1的净荷区。 图 1 中未示出的在 OPU1之前的 14 列为 ODU1开销区。
客户信号 CBR2G5适配到 OPU1时,通过 OPU1开销中的正调整开 销 PJO和负调整开销 NJO来吸收 CBR2G5的频差; 之后加上光信道数 据单元 1 ( ODU1 ) 的开销形成 0DU1。
然后, 将 ODU1复接到 ODU2, 其复接方案参见图 2所示。 ODU1 加上调整开销 ODTU12 JOH形成 ODTU12; 4个 ODTU12按时分复用方 式复接到 ODTUG2;然后 ODTUG2映射到 OPU2;最后 OPU2加上 ODU2 开销形成 ODU2。 以上整个复用过程是按字节的异步复用过程, 可以实 现 4 个 CBR2G5 的客户信号完全透明的异步映射和异步复用到一个 OPU2信号上。 在 G.709帧结构中, 利用 OPUk中的正负调整机会和调整控制字节 吸收信号频差, 可以实现对客户信号 ±45ppm 的调整范围, 而在一般情 况下, CBR客户信号的速率不会超过土 20ppm。 例如: 4路 2.5G CBR信 号之间可以异步、 分别映射到各自的 ODU1 , 4路 ODU1再异步复接到 OPU2信号, 这与 PDH的异步复接相似, 所以按 G.709的映射方法能保 证 2.5G 以上信号的定时透明。 其中, 所述正负调整机会一般就是指上 面所述的 OPUk中的正负调整字节 (PJO和 NJO ), 但也可以由其它字 节代替来起到同样的作用。 但是, 现有的 G.709建议对客户信号具有的 真正意义上的透明性主要体现在 2.5G速率以上的客户信号, 而对于低 于 CBR2G5的客户速率如何透明复用的方案却没有提供。考虑到若套用 现有 G.709建议中描述的方案, 将 CBR155、 CBR622等低速信号直接适 配到低级别的 ODU来实现复用, 则 16个 155M或 4个 622M的 CBR 信号经过频率调整后 , 映射到同级别的 OPU, 加上相应的 ODU开销, 进行异步复接后, 最终的信号速率必然大于 OPU1 的速率。 因此 G.709 的现有的复接方式不能直接用于 CBR155/622M信号的复用。
总之, 透明传送应将客户信号的所有信息特征完整的保留下来, 特 别是应包括信号的定时信息透明传送, 从而使客户信号从一个节点传递 到另一个节点时, 客户信号的所有特征不会改变。 而由于低速信号的特 殊性, 现在还没有一种艮好的方案完全实现低速信号在 OTN 中的透明 传送, 以及对低速信号端到端的性能监视和管理。 而目前的 OTN网络, 特别是在城域网中, CBR155、 CBR622等低速信号仍然被普遍使用, 因 此在城域网, 特别在城域 OADM 实现中, 提供一种全新的透明复接方 案, 来实现 CBR155、 CBR622信号的透明复用, 并实现对低速信号端 到端的性能监视和管理就显得十分重要。 发明内容
有鉴于此, 本发明的第一个主要目的在于提供一种实现低速信号在 光传输网络中透明传送的复用方法, 实现低速信号在光传输网络中透明 复用并实现对低速信号端到端的性能监视和管理。
基于第一个目的本发明提供的一种实现低速信号在光传输网络中透 明传送的复用方法, 包括以下步骤: 的信号, 并由此得到每个 ODU格式信号对应的 OPU净荷、 OPU调整开 销以及 ODU开销;
b )将 OPUk的净荷区平均划分为一个以上时隙, 将步骤 a )得到的 OPU净荷按字节间插到 OPUk净荷区的各时隙中,并利用与复帧指示所 对应的净荷结构指示来标识每个 OPU净荷的类型、 所占时隙的大小和 位置;
c )将与每个 OPU净荷对应的 OPU调整开销根据复帧指示, 按帧间 插到不同帧的 OPUk调整开销;
d )将与每个 OPU净荷对应的 ODU开销根据复帧指示, 按帧间插 到不同帧的 ODUk开销并转化为 OTUn信号后通过光传送网进行传送。
该方法所述待复用的各路低速信号的速度相同且为 OPUk净荷区速 率的 1/N, 其中 N为自然数;
所述步骤 b ) 中 OPU1的净荷区划分为 N个时隙, N个由步骤 a ) 得到的 OPU净荷分别按字节间插到 OPUk净荷 N个时隙中。
该方法所述待复用的低速信号为 CBR155 , 则所示 N的值为 16; 或 者所述待复用的低速信号为 CBR622, 则所示 N的值为 4。
该方法所述待复用的低速信号包括至少两种不同速率类型的信号; 所述步骤 b ) 中 OPUk的净荷区所划分的每个时隙的大小为各类型信号 速率的最大公约数。
该方法所迷待复用的低速信号为 N路 CBR155和 M路 CBR622,其 中 N+4xM=16;
所述步骤 b ) 为将 OPUk的净荷区平均划分为 16个时隙, 将 N路 OPU155和 M路 OPU622的净荷分别按字节间插到 OPUk的各时隙中, 并利用与复帧指示所对应的净荷结构指示标识每个 OPU净荷的类型、 所占时隙和位置, 其中, 一路 OPU622净荷占 4个时隙, 一路 OPU155 净荷占 1个时隙;
c ) 为将 N路的 OPU155调整开销和 M路的 OPU622的调整开销根 据复帧指示, 按帧间插到 OPUk调整开销;
d ) 为将 N路的 ODU155开销和 M路 ODU622开销根据复帧指示, 按帧间插到 ODUk开销。
该方法所述步骤 d )后进一步包括: 将步驟 d )得到的 ODUk信号 转化为 OTU1信号。
该方法所述复帧指示为本地产生的复帧信号, 并利用 OTU 帧中的 MFAS字节, 或其它保留字节来传递。
该方法所述 OPUk为 OPU1 , 所述 ODUk为 0DU1。
该方法所述 OTUn为 OTU1 ,所述转化过程为在 ODU1上加上 OTU1 开销;
或者所述 OTUn为 OTU2, 所述转化过程为将 4路 0DU1 复用到 ODU2上, 再加上 OTU2开销;
或者所述 OTUn为 OTU3 , 所述转化过程为将 16路 ODU1复用到 ODU3上, 再加上 OTU3开销。
该方法所述与复帧指示所对应的净荷结构指示包括净荷类型指示和 分布在不同帧的保留字节; 利用净荷类型指示的原有编码或保留编码来 指示所述的 OPU净荷类型, 利用与复帧指示所对应的净荷结构指示中 的所述保留字节来指示所述 OPU净荷的时隙位置和大小。
该方法所述净荷类型指示为当复帧指示 MFAS为 00000000所指示 的净荷结构指示字节, 或是 MFAS为 00000000以外其它值所指示的 1 到 255字节中的任一字节。 ·
该方法所述净荷结构指示中的分布在不同帧中的保留字节为当 MFAS为 00000000以外其它值所指示的 1到 255净荷结构指示字节中的 至少一个字节。
' 该方法所述与复帧指示所对应的净荷结构指示包括分布在不同帧的 保留字节; 利用净荷结构指示中的所述保留字节来指示所述的 OPU净 荷类型、 净荷的时隙位置和大小。
该方法所述 ODU开销中至少包括性能监视开销字段。
该方法所述低速信号为 STM-1、 或 OC3信号、 或 STM-4信号、 或 OC12信号、 或以上信号的任意组合。
本发明的第二个主要目的在于提供一种实现低速信号在光传输网络 中透明传送的解复用方法, 实现低速信号在光传输网络中透明复用并实 现对低速信号端到端的性能管理。
基于第二个目的本发明提供的一种实现低速信号在光传输网络中透 明传送的解复用方法, 在完成 OTU帧同步后, 包括以下步骤:
a )根据复帧指示, 从 ODUk信号中分解出每个支路的 ODU开销; b )才艮据复帧指示, 从 OPUk调整开销中分解出每个支路 OPU的调 整开销;
c )根据复帧指示及与复帧指示所对应的净荷结构指示,从 OPUk净 荷区的时隙中分解出每个支路 OPU净荷;
d )将上述步驟中分解出的每个支路对应的 ODU开销、 OPU调整开 销和 OPU净荷进行组合, 恢复为 ODU类型的信号, 将 ODU类型的信 号还原为其原有类型的低速信号。
该方法所述复帧指示为接收到的 OTU帧中的 MFAS字节, 或接收 到的其它用来传递复帧信号的保留字节所代表信号。
该方法所述与复帧指示所对应的净荷结构指示包括净荷类型指示和 分布在不同帧中的保留字节, 利用净荷类型指示的原有编码或保留编码 来指示所述的净荷类型, 利用与复帧指示所对应的净荷结构指示中的保 留字节来指示所述 OPU净荷的时隙位置和大小。
该方法所述与复帧指示所对应的净荷结构指示包括分布在不同帧的 保留字节; 利用净荷结构指示中的所述保留字节来指示所述的 OPU净 荷类型、 净荷的时隙位置和大小。
该方法所述低速信号为 STM-1、 或 OC3信号、 或 STM-4信号、 或 OC12信号、 或以上信号的任意组合。
本发明的第三个主要目的在于提供一种实现低速信号在光传输网络 中透明传送的复用装置, 实现低速信号在光传输网络中透明复用。
基于第三个目的本发明提供的一种实现低速信号在光传输网络中透 明传送的复用装置, 包括:
一个以上的同步物理接口,完成待复用的每条支路信号的光电转换、 时钟和数据恢复、 以及串行信号到并行信号的转换;
一个以上的映射模块, 接收从对应的同步物理接口送来的并行时钟 和数据, 并把接收的数据映射到 OPU帧, 并完成对 OPU封装上 ODU 的开销, 将 ODU的并行数据和时钟信号输出到复用模块;
复用模块,接收从所述一个以上映射模块送来的数据,把 OPU的净 荷信号间插到 OPUk的对应时隙, 把各 OPU的调整开销根据复帧指示 按帧间插到不同帧的 OPUk的调整开销位置, 同时根据复帧指示完成对 N2005/001329 各 ODU622开销的间插复用, 得到 ODUk信号;
线路模块, 接收复用模块送来的 ODUk信号及时钟, 产生 OTU1开 销及 FEC编码, 及帧定位信号和复帧定位信号,再经过扰码和电光转换 后输出;
定时发生器, 产生本地定时信号或根据接收的复用模块的时钟信号 来产生本地定时信号并输入至所述映射模块、 复用模块和线路模块。
该复用装置所述一个以上的映射模块由至少两种用于不同速率信号 的映射模块组成。
本发明的第四个主要目的在于提供一种实现低速信号在光传输网络 中透明传送的解复用装置, 实现低速信号在光传输网络中透明复用。
基于第四个目的本发明提供的一种实现低速信号在光传输网络中透 明传送的解复用装置, 包括:
线路模块, 接收 OTU1信号, 并对所接收信号进行光电转换、 OTU1 时钟及数据恢复、 OTU1帧定位、 解扰、 FEC解码、 OTU1开销终结, 得到 ODUk信号;
解复用模块, 接收线路模块发来的 ODUk信号, 并从 ODUk信号中 解出每个支路的 ODU开销,从 OPUk调整开销解出每个 OPU的调整开 销; 从 OPUk的时隙解出每个支路的 OPU净荷信息, 得到每条支路对 应的 ODU类型的信号;
一个以上的解映射模块, 分别接收解复用模块发来的每个支路的 ODU类型信号,从 OPU的净荷区把各 CBR信息恢复出来,恢复过程中 需要根据调整控制字节来控制读取净荷信息, 并对时钟进行平滑滤波, 得到的并行 CBR622数据信号和并行时钟;
一个以上的同步物理接口, 分别接收每个解映射模块送来的数据和 时钟, 并进行并串处理和电光转换, 恢复出最终的客户信号 CBR622; 定时发生器, 接收解复用模块的信号并产生定时信号并输入至所述 解映射模块、 解复用模块和线路模块。
该解复用装置所述一个以上的解映射模块由至少两种用于不同速率 信号的解映射模块组成。
本发明的第五个主要目的在于提供一种实现低速信号在光传输网络 中透明传送的复用 /解复用装置, 实现低速信号在光传输网络中透明复 用并实现对低速信号端到端的性能管理。
基于第五个目的本发明提供的一种实现低速信号在光传输网络中透 明传送的复用 /解复用装置, 包括: 一个以上的同步物理接口、 一个以上 的映射 /解映射模块、 复用 /解复用模块、 线路模块和定时发生器;
当进行信号复用处理时, 一个以上的同步物理接口完成待复用的每 条支路信号的光电转换、 时钟和数据恢复、 以及串行信号到并行信号的 转换后, 分别发送至对应的映射 /解映射模块; 映射 /解映射模块把接收 的数据映射到 OPU帧, 并完成对 OPU封装上 ODU的开销,将 ODU的 并行数据和时钟信号输出到复用 /解复用模块; 复用 /解复用模块把 OPU 的净荷信号间插到 OPUk的对应时隙, 把各 OPU的调整开销按帧间插 到 OPUk的调整开销位置, 同时根据复帧指示完成对各 ODU622开销的 间插复用, 得到 ODUk信号发送至线路模块; 线路模块产生 OTU1开销 及 FEC编码, 及帧定位信号和复帧定位信号, 再经过扰码和电光转换后 输出;
当进行信号解复用处理时, 线路模块接收 OTU1信号, 并对所接收 信号进行光电转换、 OTU1时钟及数据恢复、 OTU1帧定位、 解扰、 FEC 解码、 OTU1开销终结, 得到 ODUk信号发送至复用 /解复用模块; 复用 /解复用模块从 ODUk信号中解出每个支路的 ODU开销, 从 OPUk调整 开销解出每个 OPU的调整开销; 从 OPUk的时隙解出每个支路的 OPU 净荷信息, 得到每条支路对应的 ODU类型的信号, 分别发送至每个支 路对应的映射 /解映射模块;映射 /解映射模块从 OPU的净荷区把各 CBR 信息恢复出来, 恢复过程中需要根据调整控制字节来控制读取净荷信 息, 并对时钟进行平滑滤波, 得到的并行 CBR622数据信号和并行时钟 后分別发送至同步物理接口; 同步物理接口进行并串处理和电光转换, 恢复出最终的客户信号 CBR622;
定时发生器用于接收复用模块的信号并产生本地定时信号并输入至 所述映射模块、 复用模块和线路模块。
该复用 /解复用装置所述一个以上的映射 /解映射模块由至少两种用 于不同速率信号的映射 /解映射模块组成。
从上面所述可以看出本发明提供的一种实现低速信号在光传输网络 中透明传送的方法和装置, ODU进行信号发送时,在将由低速信号异步 映射到 OPU后, 使 OPU净荷按字节间插方式, 而 OPU和 ODU开销按 帧间插的方式同步复接到 ODUl, 从而减小了低速信号进行 ODU复接 过程中对带宽的额外消耗, 使低速信号的全部信息在复用过程中得到完 整保存; 在信号接收时, 通过复接过程的逆过程实现原低速信号的完整 还原。 从而解决了以往的透明复用器(TMUX )技术方案中的定时不透 明的问题, 不需要干预客户信号的开销, 不需要复杂的处理过程, 保证 了客户信号的完整性; 各支路信号经过本专利所述的复接单元后, 可以 保留各自的同步状态信息,这对于利用 SDH来组同步网是艮好的支持。
解决了利用 G.709的现有复接方案不能实现 CBR155和 CBR622信 号在 OTN网络透明传送的问题, 同时又拥有对低速 CBR信号具有端到 端的性能管理能力; 对于点到点的应用, 提高了对客户接入的灵活性和 带宽的利用率, 也可以利用虚级联来实现对 GE等数据业务的传递。 通 过 GFP协议把 GE适配到 ODU155-7V, 更能节省带宽。 并且, 由于没有对支路信号的复杂的指针处理过程, 硬件实现相对 简单。 附图简要说明
图 1为现有技术中 OPU1的帧结构示意图;
图 2为现有技术中将 ODU1复接到 ODU2的方案示意图; 图 3为本发明 ODU155/0DU622帧结构示意图;
图 4为 OPU1时隙划分及调整开销复用示意图;
图 5为从 ODU622开销到 ODU1开销复用示意图;
图 6为 ODUk开销的结构示意图;
图 7为本发明实施例 CBR622和 ODU1之间复用 /解复用装置的结构 示意图;
图 8为本发明实施例 CBR155和 ODU1之间复用 /解复用装置的结构 示意图;
图 9为 CBR155和 CBR622混合复用的时隙划分示意图; 图 10为本发明实施例 M路 CBR622和 N路 CBR155混合信号复用 /解复用装置的结构示意图;
图 11为本发明子速率透明复用器应用于 DWDM/CWDM系统点到 点传送的网络拓朴结构示意图;
图 12为本发明子速率透明复用器应用于城域 OADM环网中的网络 拓朴结构示意图;
图 13 为本发明子速率透明复用器自身作为子系统实现点到点传送 的网络拓朴结构示意图。 实施本发明的方式
为了解决现有技术存在的问题, 本发明方案的核心思想包括: 将待 复用的各路低速信号分别适配为与自身同级别的 ODU格式的信号, 并 由此得到每个 ODU格式信号对应的 OPU净荷、 OPU调整开销以及 ODU 开销; 将 OPUk的净荷区平均划分为一个以上时隙, 将得到的 OPU净 荷按字节间插到 OPUk净荷区的各时隙中, 并利用与复帧指示所对应的 净荷结构指示来标识每个 OPU净荷的类型、 所占时隙的大小和位置; 将与每个 OPU净荷对应的 OPU调整开销根据复帧指示, 按帧间插到不 同帧的 OPUk调整开销; 将与每个 OPU净荷对应的 ODU开销根据复帧 指示,按帧间插到不同帧的 ODUk开销并转化为 OTUn信号后通过光传 送网进行传送。
下面以 CBR155、 CBR622信号为例, 结合附图对本发明的方案进行 详细说明。
在以下的叙述中为了描述方便,用 CBR-M代表 CBR155或 CBR622 等低速信号。
首先, 需要新定义一种 OPU-M和 ODU-M的结构, 用来映射低速 率的 CBR-M信号。
参见图 3所示的用来映射 CBR155或 CBR622信号的 ODU155/622 的帧结构。第 1至 14列为 ODU155/622的开销区,第 15、 16列为 OPU-M 的开销位置, 第 17至 3824列为 OPU-M净荷区, 净荷区包括 4 x 3808 字节。 PJ正调整字节位于净荷区第 4行的第一个位置; NJ负调整字节 位于图 3第 4行的第 16列位置。 正负调整可以容忍 ±65ppm的频差, 考 虑到设备本地定时的士 20ppm, 可以对 CBR155、 CBR622客户信号的频 率容限为 ±45ppm。 第 16列第 1、 2、 3行的字节为调整控制字节; TC, 其 作用和定义与 G.709建议中的定义相同。从中可以看出,新定义的 OPU-M 和 ODU-M的结构与 G.709建议所述的 OPUk结构基本相同。 所不同的 是, OPU1的净荷区速率是 2488320Kbits/s±20ppm, 而本发明中 OPU622 的净荷区的速率是 622.08Mbit/s±20ppm; OPU155 的净荷区速率是 155.52Mbit/s±20ppm, 也就是说, 信号格式基本相同, 但重复周期不相 同。
图 3中当客户信号为 CBR155时, 其中的 OPU-M就是 OPU155; 当 客户信号为 CBR622时, 该 OPU-M就是 OPU622。
根据以上定义的 OPU-M和 ODU-M结构,即可进行 CBR155/622到 OPU 155/622和 ODU 155/622的映射。
假设待复用的各支路信号为单一速率类型的信号, 则在信号发送方 向上的信号复用过程具体包括以下步骤。
步骤 1 ,将各支路的信号 CBR- M适配到 ODU-M信号,形成 N路的 OPU-M净荷和 OPU-M调整开销, 以及 N路的 ODU-M开销。
对于 CBR622, 具体为将各支路的 CBR622异步映射到图 3所示结 构的 OPU622中, 然后封装上 ODU622开销, 形成 ODU622信号。 这样 可以得到 OPU622净荷和 OPU622调整开销, 以及 ODU622开销。
CBR155的信号适配过程与 CBR622完全相同。
步驟 2, 对 OPU1信号的净荷区划分若干时隙, 并将步驟 1得到的 各低速 OPU-M的净荷按字节间插到相应的时隙位置; 并利用与复帧指 示所对应的净荷结构指示中的净荷类型指示、 保留字节来分别标识每个 OPU-M净荷的类型、 所占时隙的大小和位置。
参见图 4所示, 图 4为以 CBR622映射到 OPU1为例, OPU1时隙 划分及调整开销复用的示意图。
将 OPU1净荷区划分成 4个时隙区, 每个时隙为 3808/4 = 952列, 一共需要 4个 OPU1帧才能装载完 4个 OPU622的净荷。 然后, 将 4路 OPU622的净荷数据按字节间插的方式分别放入相应 的时隙位置, 例如: 第 1路 OPU622的净荷放在 OPU1净荷区的 CH1 时隙, ... ..., 依次类推, 第 4路 OPU622净荷放在 OPU1净荷区的 CH4 时隙。
并且, 还需要提供与复帧指示所对应的净荷结构指示中的净荷类型 指示和分布在不同帧中的保留字节来分别标识每个 OPU-M 净荷的类 型、 所占时隙的大小和位置。 在发送方向, 复帧信号由本地产生, 256 帧为一复帧, 可以将产生的复帧信号利用 OTU帧中定义的复帧定位信 号 (MFAS ) 字节或其它未定义的保留字节来传送, 并作为复帧指示信 号。 净荷类型指示可以使用 G.709中定义的与复帧指示为 0对应的 PSI 字节, 也就是净荷类型 (FT, Payload Type ) 字节, 其中 PT字节共有 256种编码, 有的编码已被 G.709所定义, 但还有保留编码(RES编码) 可以用来定义新的净荷类型。
PSI字节由 MFAS进行指示, 由于 MFAS有 8 比特, 所以在一个 MFAS中, 共有 256个 PSI字节可以使用, 包括已在 G.709中做了定义 的 PT字节和分布在其它帧中的未定义的 PSI保留字节。 这样可以利用 PSI目前未定义的保留字节( RES字节)来指示所述 OPU净荷的时隙位 置和大小。
当然, 也可以利用 PSI 目前未定义的保留字节 (RES ) 来实现净荷 类型的指示。
如图 4所示, 对于 CBR622信号, 需要 2位复帧指示比特, 表示需 要 4个 OPU1帧来传递 4路 OPU622各一帧,同时也对应 4个不同 OPU1 帧中的 PSI字节,这些 PSI字节完全足够定义净荷类型指示和 OPU净荷 的时隙位置指示
对于 CBR155信号, 则将 OPU1净荷区划分成 16个时隙区,每个时 隙为 3808/16 = 238列,依次将 16个 OPU155的净荷放在相应的 CH1至 CH16中。 并提供 4位复帧指示比特, 即 MFAS 的 5、 6、 7、 8比特位 进行复帧指示, 表示需要 16个 OPU1帧来传递 16路 OPU155各一帧, 同时也对应 16个不同 OPU1帧中的 PSI字节,这些 PSI字节完全足够定 义净荷类型指示和 OPU净荷的时隙位置指示
步骤 3,将步骤 1中得到的各支路的 OPU-M调整开销,根据复帧指 示按帧间插到不同帧的 OPU1调整开销。
如图 4所示, 第 1路 OPU622的调整开销按帧复用到 MFAS为 00 的 OPU1帧中的调整开销位置, ... ..., 依次类推, 第 4路 OPU622的调 整开销按帧复用到复帧指示 MFAS为 11的 OPU1帧中的调整开销位置。
如果是 CBR155信号, 则将第一路的 OPU155的调整开销按帧复用 到 MFAS为 0000的 OPU1的帧中的调整开销位置, ... ..., 依次类推, 将第 16路 OPU155的调整开销按帧复用到 MFAS为 1111.的 OPU1帧中 的调整开销位置。
步骤 4, 将步骤 1 中得到的各支路的 ODU-M开销, 根据复帧指示 按帧间插到不同帧的 ODU1开销形成 ODU1信号, 并将 ODU1信号转 化为 OTUk信号通过光传送网进行传送。
结合图 5、 图 6说明 ODU622开销到 ODU1开销的复用过程, 对于 ODU622,将第 1路的 ODU622开销按帧复用到复帧指示 MFAS 为 00的 ODU1帧中的 ODU1开销区位置, ... ..., 依次类推, 第 4路的
ODU622开销按帧复用到复帧指示 MFAS为 11的 ODU1帧中的 ODU1 开销区位置。
同样, 如果待复用的信号为 CBR155 , 则第一路的 ODU155的开销 按帧复用到 MFAS为 0000的 ODU1帧中的 ODU1开销位置, …… , 依 次类推,第 16路的 ODU155开销按帧复用到复帧指示 MFAS为 1111的 ODUl帧中的 ODUl开销区位置。
其中, ODU622的开销与 G.709建议的 ODU1的开销字节定义完全 一样, 参见图 6所示, 为 ODUk开销的帧结构示意图, 第 1行的前 14 列是 OTUk的预留行,其中的第 1至 7列为帧同步开销(Frame alignment overhead ), 第 8至 14列为 OTUk开销字节。 从第 2行到笫 4行的前 14 列的所有字节为 ODUk的开销字节, 将 ODU622/155的开销根据相应的 复帧指示映射到此区域中, 其中的 PM为性能监视开销字段, 用于实现 端对端的性能监视。 第 1至 4行的第 15和 16列为 OPUk开销字节。
完成到 ODU1信号的复用之后, 在进行线路传输时, 一般还需要将 ODU1 信号加上 OTU1 开销转化为 OTU1 信号, 并进行满足 ITU-T G.709的 FEC编码, 生成帧定位信号和复帧定位信号, 按 G.709规定进 行扰码, 再经过电光转换后输出至 OTN的传输线路进行传输。
这样复用的结果, ODU1 的开销就是由各支路的 ODU622/ODU155 的开销組成, ODU1 的开销实际上每帧传递的是各个 ODU622 或 ODU155的开销, 也就是说, ODU1本身的开销已经被各低速 ODU开 销占用,这是与 G.709的本质区别, G.709是把 4个 ODU1放在高速 OPU2 的净荷区, 例如: 包括 ODU1开销和 OPU1净荷的 4个 ODU1完全分配 在 OPU2的净荷区, 而本发明只是把 ODU622的净荷区 OPU622放在 OPU1的净荷区, 而 ODU622的开销区放在 ODU1的开销区, 因而节省 了带宽, 并能实现 4个 ODU622到 ODU1的同步复接。 同时由于各低速 支路有 ODU管理开销, 因而能对每个低速率业务实现端到端的性能监 视和管理支持。
根据本发明的复用方法,对业务信号实现端对端的 QOS管理是通过 ODU622或 ODU155的开销来实现的。
本发明在基于点对点的系统应用中, ODU622或 ODU155的速率取 决于网元的发端定时, 所有同级别的 ODUk信号的速率相同, 帧同步和 复帧同步信号的相位也是相同的。虽然各 ODU155或各 ODU622是速率 和相位相同, 但由于 CBR155/622到 OPU155/622的映射是异步映射, 因而各支路速率各自独立, 其中的信息得到了完整的保存, 可以保证各 支路速率的定时透明。
从上面所述中可以看出, 本发明提出的 ODU复用方案, 实质上是 CBR异步映射到 OPU,然后 ODU同步复接到 ODU1的方案,归结起来, 就是 OPU净荷按字节间插方式复接, OPU/ODU开销按帧间插的方式复 接。 与 G.709的不同之处在于, ODU622的开销不是与 ODU622的净荷 一起异步复接到 OPU的净荷, 而是按帧复接的方式, 复接到 ODU1的 开销位置。
复用传输的信号, 在进行接收时, 还需要对其进行解复用, 从而将 复用前的低速信号完整地还原出来。 解复用过程完全是复用过程的逆过 程, 下面仍以 CBR155和 CBR622为例, 对解复用过程进行简要说明。
在完成 OTU1帧同步后, 可得到 ODU1信号的复帧指示。
步骤 A,根据复帧指示,从 ODU1信号中分解出每条支路的 ODU-M 开销。
步驟 B ,根据复帧指示,从 OPU1调整开销中分解出每条支路 OPU-M 的调整开销。
步骤 C, 根据复帧指示, 从 OPU1净荷区的时隙中分解出每条支路 OPU-M净荷。
步驟 D, 将上述步驟中分解出的每条支路对应的 ODU-M 开销、 OPU-M调整开销和 OPU-M净荷进行组合, 恢复为 ODU-M信号, 将 ODU-M类型的信号还原为其原有类型 CBR-M的低速信号。
基于上述低速信号的复用 /解复用方法, 本发明实现 CBR622信号透 明传输的复用 /解复用装置的结构, 参见图 7所示, 由于其可以实现对复 •用信号的各子速率信号透明传输, 因此在本发明中又称为子速率透明复 用器(STMUX ) 的结构。 该装置包括: 4个同步物理接口 (SPI )、 4个 映射 /解映射模块, 以及一个复用 /解复用模块、 线路模块和定时发生器。
在信号的发送方向:
各支路信号首先进入同步物理接口 SPI, 4路 SPI分别完成光电转换、 时钟和数据恢复、以及串行信号到并行信号的转换后输出至各映射 /解映 射模块。 对于 CBR622的信号, 输出的并行信号可以为 77.76M并行数 据及时钟。
映射 /解映射模块接收从 SPI送来的数据, 以及从 SPI或定时发生器 送来的并行时钟信号, 并把接收的数据映射到 OFU622帧, OPU622帧 为本地定时, 4个 OPU622的帧同频同相; 接收数据与本地定时的频差 由 OPU622的正负调整机会来调整。 同时, 该模块还完成对 OPU622封 装上 ODU622的开销;最后将 ODU622的并行数据和时钟信号输出到复 用 /解复用模块。
复用 /解复用模块接收从 4路映射 /解映射模块送来的数据及定时发 生器产生的时钟信号, 把 4路 OPU622的净荷信号间插到 OPU1的 4个 时隙,同时把各 OPU622的调整开销按帧间插到 OPU1的调整开销位置。 例如: 第 1路 OPU622的调整开销间插到 MFAS指示为 00的 OPU1帧 的调整开销位置,第 2路的 OPU622的调整开销间插到 MFAS指示为 01 的 OPU1帧的调整开销位置, ……, 依次类推, 第 4路的 OPU622调整 开销间插到 MFAS指示为 11的 OPU1帧的调整开销位置。 该模块还同 时完成对各 ODU622开销的间插复用 ,将第 1路的 ODU622开销复用到 MFAS为 00的 ODU1帧的 ODU1开销位置, …… , 依次类推, 第 4路 的 ODU622开销复用到 MFAS为 11的 ODU1正的 ODU1开销位置。 最后, ODUl信号及定时发生器产生的时钟信号送给线路模块, 线 路模块产生符合 G.709标准 OTU1开销, 将 ODU1信号转化为 OTU1信 号, 并进行满足 ITU-T G.709的 FEC编码, 生成帧定位信号和复帧定 位信号, 按 G.709规定进行扰码, 再经过电光转换后输出, 从而完成整 个的复用过程。
在此过程中根据 STMUX在 OTN中所处位置以及作用不同,定时发 生器直接或者根据接收的复用 /解复用模块的时钟和帧定位等信号,产生 本地定时信号, 包括时钟、 帧定位、 复帧定位等信号, 并输入至所述映 射 /解映射模块、 复用 /解复用模块和线路模块。 具体的说, 如果 STMUX 处在信号产生的源位置, 则该 STMUX的定时发生器直接产生本地定时 信号, 所述映射 /解映射模块只接收本地定时发生器产生的定时信号; 否 则, 定时发生器^^据由解复用模块从数据中解下来的时钟和帧定位产生 本地定时信号,所述映射 /解映射模块除接收本地定时发生器产生的定时 信号外, 还接收从 SPI接收与数据一起发来的时钟信号。
在信号接收方向, 完成与发送方向相反的解复用过程。
线路模块接收信号并完成光电转换、 OTU1时钟及数据恢复、 OTU1 帧定位、 解扰、 FEC解码、 OTU1开销终结等功能; 解出 ODU1信号、 时钟信号以及帧和复帧定位等信号, 送给复用 /解复用模块。 并将时钟信 号送给定时发生器, 在接收方向, 解复用过程采用线路定时。
复用 /解复用模块完成对 ODU1信号的解复用过程,根据复帧指示从 ODU1信号中解出各支路的 ODU622开销; 根据复帧指示从 OPU1调整 开销解出各 OPU622的调整开销; 根据复帧指示和与复帧指示所对应的 净荷结构指示,从 OPU1的时隙解出各支路的 OPU622净荷信息。这样, 从 ODU1信号中解出了 4个完整的支路 ODU622信号, 送给映射 /解映 射模块。 映射 /解映射模块完成 ODU622信号的终结,同时从 OPU622的净荷 区把各 CBR622信息恢复出来, 恢复过程需要根据调整控制字节来控制 读取净荷信息, 并对时钟进行平滑滤波。 恢复出来的是并行的 CBR622 数据信号和并行时钟, 送给 SPI模块。
SPI模块接收映射模块送来的数据和时钟, 并进行并串处理和电光 转换, 恢复出最终的客户信号 CBR622。
定时发生器^ ^据接收的复用 /解复用模块的时钟和帧定位等信号, 产 生本地定时信号, 并输入至所述映射 /解映射模块、 复用 /解复用模块和 线路模块。
参见图 8所示,图 8为 16路 CBR155到 ODU1/OTU1的复用和解复 用实施例, 与图 7的结构和工作原理完全一样, 区别只在于支路数量为 16, 因此相应的 SPI和映射 /解映射模块的数量也分别为 16个。
此外, 通过本发明方案还可以进行两种或两种以上不同速率信号的 复用和解复用, 从而实现不同速率的低速信号在 OTN中的透明传输。
以下对 CBR155和 CBR622同时复用 /解复用的方案进行说明。
参见图 9所示, CBR155和 CBR622混合复用时, 仍然将 OPU1的 净荷区平均划分为 16 个时隙, 每个 OPU622 净荷占 4 个时隙, 每个 OPU155占 1个时隙。
CBR155和 CBR622混合复用到 ODU1/OTU1的过程为:
1 )客户信号 N路 CBR155 和 M 路 CBR622 各自异步映射到 OPU155/ODU155和 OPU622/ODU622。
2 ) CBR622和 CBR155信号速率的最大公约数, 即 CBR155的速率 值为基本单位,将 OPU1净荷区划分为 N+4 X M路时隙;将 N路 OPU155 和 M路 OPU622的净荷分别放入 OPU1的各时隙中,其中,一路 OPU622 净荷占 4个时隙, 一路 OPU155净荷占 1个时隙。 3 )设置 MFAS为 0所对应的 OPU1帧的 PSI值, 也就是净荷类型 ( PT )值, 利用 PT的保留的编码来标识净荷类型; 并利用 MFAS为 1 到 L的 OPU1帧的 PSI字节来分别指示各种净荷类型的数目和时隙位置, L小于 255。
参见图 9所示, 在这里采用净荷类型指示中 PT的保留编码来指示
OPU-M净荷的类型, 同时利用复帧指示为其它值所对应的 PSI字节, 即 PSI的保留字节来指示每个 OPU净荷所占时隙的大小和位置。 因此需要 新定义净荷类型 PT的 RES编码内容。 PT为 8比特字节, 按照 G.709的 定义, 从 80H到 8FH为保留指示编码, 这样可以选取其中的一部分进 行净荷类型指示,例如:定义 MFAS为 00000000时的 PT内容 8CH、8DH、 8EH分別用来指示净荷类型为单一 CBR155、单一 CBR622,及 CBR155 与 CBR622混合这三种情况, 该 PT内容位于 OTU帧结构的第 15列第 4行; 同时用 MFAS为 1的帧中的 PSI字节的前 4位表示 CBR155的数 目, 后 4位表示 CBR622的数目。
其中, N路 CBR155与 M路 CBR622的速率之和应为 1个 CBR2G5 的等效速率。 这里 N和 M都是正整数, 例如: N=4, M=3; 或 N=8 , M=2; N=16, M=0; N-0, M=4等。
并且, 还可以从 2到 255的 OPU1帧的 PSI字节中选取一部分指示 CBR155和 CBR622在 OPU1净荷区的位置, 例如: 可以利用 MFAS为 2, 即 00000010时的 PSI指示的前 4位表示 CBR622在 OPU1的时隙起 始位置, PSI指示的后 4位表示 CBR622在 OPU1的时隙终了位置; MFAS 为 3时的 PSI表示 CBR155的在 OPU1的时隙起始位置, 后 4位表示 CBR155在 OPU1的时隙终了位置。
以上时隙的划分和净荷标识及净荷时隙表示仅为一种举例。 每种净 荷在 OPU1中的时隙位置也可以利用 MFAS的多帧 PSI字节来标识。 总 之, 利用 PT的保留编码可以充分标识出净荷类型, 利用 MFAS所指示 的其它帧中的 PSI字节可以标识出净荷数目及各净荷的时隙位置。
另外, 也可以直接用分布在不同帧中的其它保留字节, 通过定义相 应编码来指示 OPU-M净荷的类型 ,每个 OPU净荷所占时隙的大小和位 置。 并可达到与上面所述同样的效果。
4 )将 Ν路的 OPU155调整开销和 Μ路的 OPU622的调整开销按帧 复用至由复帧指示所指示的 OPU1帧中的调整开销位置。
5 )将 Ν路的 ODU155开销和 Μ路 ODU622开销按帧复用到由复帧 指示指示的 ODU1开销位置。
完成到 ODU1信号的复用之后, 与前面所述的单一速率信号相同, 在进行线路传输时, 一般还需要将 ODU1信号加上 OTU1 开销转化为
OTU1信号, 并进行满足 ITU-T G.709的 FEC编码, 生成帧定位信号 和复帧定位信号,按 G.709规定进行扰码,再经过电光转换后输出至 OTN 的传输线路进行传输。
对于解复用过程, 与前面所述的单一速率信号相同, 完全是复用过 程的逆过程,下面对 CBR155和 CBR622混合信号复用得到的 ODU1信 号的解复用过程进行简要说明。
在完成 OTU1帧同步后, 可得到 ODU1信号的复帧指示。
步骤 A , 根据复帧指示, 从 ODU1 信号中分解出每条支路的 ODU155/622开销。
步骤 B , 根据复帧指示, 从 OPU1 调整开销中分解出每条支路 OPU155/622的调整开销。
步骤 C, 根据复帧指示和与复帧指示所对应的净荷结构指示, 从 OPU1净荷区的时隙中分解出每条支路 OPU155/622净荷。
步骤 D,将上述步骤中分解出的每条支路对应的 ODUl55/622开销、 OPU155/622 调整开销和 OPU155/622 净荷进行组合, 恢复为 ODU155/622 信号, 将 ODU155/622 类型的信号还原为其原有类型 CBR155/622的低速信号。
CBR155和 CBR622混合信号的复用 /解复用装置, 参见图 10所示。 在发送方向, CBR155和 CBR622的客户信号经过各自的同步物理 接口 SPI恢复出串行数据和串行时钟; 再将串行数据和串行时钟进行串 到并的转换; 输出并行数据和并行时钟信号给各自的 OPU155/OPU622 复用 /解复用模块。
映射 /解映射模块完成把 CBR155的并行信号映射到 OPU155 , 实现 速率调整, 并加上 ODU155开销; 映射 /解映射模块完成把 CBR622的并 行信号映射到 OPU622信号, 实现速率调整, 同时加上 ODU622开销。 其中, OPU155/ODU155和 OPU622/ODU622的发送定时采用本地定时, 频偏小于 ±20ppm, 由本地定时发生器产生。
复用 /解复用模块对于 OPU155/622到 OPU1的复接, 同样按照前面 所述的方法, 将各自的 OPU155和 OPU622的净荷分配到各自的时隙位 置。插入净荷标识符 PT,用来指示净荷类型和 CBR155及 CBR622各自 的路数 N, M; 并利用 PT的保留字节来指示各种净荷的时隙位置。 调 整开销的复用, 由于时隙号与需要的复帧指示值相同, 例如: OPU1 划 分为 16时隙,需要 16个 OPU1帧来传送 N路 OPU155和 M路 OPU622, 因此可以利用与 PT的时隙位置指示相同的 MFAS指示所在的 OPU1帧 的调整开销位置来装载对应的 N路 OPU155调整开销和 OPU622调整开 销。 ODU155/622开销到 ODU1开销的复用。 与调整开销复用的指示相 同, 利用与 PT的时隙位置指示相同的 MFAS指示 (例如: 时隙位置为 5,则 MFAS为 5 )所在 ODU1帧的 ODU1位置来装载对应的 N路 ODU155 开销和 ODU622开销。 最后, ODU1信号及定时发生器产生的时钟信号送给线路模块, 线 路模块产生符合 G.709标准 OTU1开销, 将 ODU1信号转化为 OTU1信 号, 并进行满足 ITU-T G.709的 FEC编码, 生成帧定位信号和复帧定 位信号, 按 G.709规定进行扰码, 再经过电光转换后输出, 从而完成整 个的复用过程。
本发明以上所述各实施例中所述 OPU155、 OPU622等低速信号转化 除转化为 OPU1以外, 也可以直接转化为更高速的 OPU2或 OPI 等其 它 OPUk信号, 并进而再转化相应的成 ODUk信号。 在通过光网络传送 时,除可以将 ODUk通过加 OTUk开销转化为同速率级别的 OTUk以夕卜, 也可以将多路 ODUk复用为更高速率的 ODUn信号以后, 加上 OTUn 开销形成 OTUn,比如:可将 4路 ODU1复用到 ODU2上,再加上 OTU2 开销形成 OTU2; 或将将 16路 ODU1复用到 ODI 上, 再加上 OTU3 开销形成 OTU3等。
本发明的应用举例如下:
1 ) DWDM/CWDM系统点到点的传送:
参见图 11所示,节点 A、 B中分别设置有本发明所提供的 STMUX, 该 STMUX可以完成多路 CBR622或 CBR155的透明复用。 这样, A 点和 B点之间的数据传输过程中, 多路子速率只占用一个波长, 与其他 调制速率的波长一起在同一条光纤中传输。 所应用的 DWDM系统可以 包含一个或多个 STMUX单板。
2 )城域 OADM环网中, 使用本发明的 STMUX实现点到点的业务 传送:
参见图 12所示, 在 OADM环网中, 节点 A、 C中分别设置有本发 明所提供的 STMUX。从节点 A到节点 C的子速率业务通过 STMUX复 用后, 共用一个波长, 穿过中间节点, 实现子速率业务的点到点的传送。 其所应用的 STMUX可以为 OADM设备的一个板卡。
3 ) STMUX本身作为一个子系统, 实现点到点的传送:
参见图 13所示, STMUX不但可以作为 DWDM终端设备或 OADM 设备的电路单元, 也可以作为独立的设备来使用, 同样可以完成子速率 业务的点到点的透明传输。 该应用适合于低成本应用的场合。
本发明中所述的低速信号可以为 STM-1、 OC3信号、 STM-4信号、 或 OC12信号等。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均 应包含在本发明的保护范围之内。

Claims

权利要求书
1、一种实现低速信号在光传输网络中透明传送的复用方法,其特征 在于, 包括以下步骤:
a )将待复用的各路低速信号分别适配为与自身同级别的 ODU格式 的信号, 并由此得到每个 ODU格式信号对应的 OPU净荷、 OPU调整开 销以及 ODU开销;
b )将 OPUk的净荷区平均划分为一个以上时隙, 将步骤 a )得到的 OPU净荷按字节间插到 OPUk净荷区的各时隙中,并利用与复帧指示所 对应的净荷结构指示来标识每个 OPU净荷的类型、 所占时隙的大小和 位置;
c )将与每个 OPU净荷对应的 OPU调整开销根据复帧指示,按帧间 插到不同帧的 OPUk调整开销;
d )将与每个 OPU净荷对应的 ODU开销根据复帧指示, 按帧间插 到不同帧的 ODUk开销并转化为 OTUn信号后通过光传送网进行传送。
2、根据权利要求 1所述的方法, 其特征在于, 所述待复用的各路低 速信号的速度相同且为 OPUk净荷区速率的 1/N, 其中 N为自然数; 所述步驟 b ) 中 OPU1的净荷区划分为 N个时隙, N个由步骤 a ) 得到的 OPU净荷分别按字节间插到 OPUk净荷 N个时隙中。
3、 根据权利要求 2所述的方法, 其特征在于, 所述待复用的低速信 号为 CBR155, 则所示 N 的值为 16; 或者所述待复用的低速信号为 CBR622, 则所示 N的值为 4。
4、根据权利要求 1所述的方法, 其特征在于, 所述待复用的低速信 号包括至少两种不同速率类型的信号;
所述步驟 b ) 中 OPUk的净荷区所划分的每个时隙的大小为各类型 信号速率的最大公约数。
5、根据权利要求 4所述的方法, 其特征在于, 所述待复用的低速信 号为 N路 CBR155和 M路 CBR622, 其中 N+4xM=16;
所述步驟 b )为将 OPUk的净荷区平均划分为 16个时隙, 将 N路 OPU155和 M路 OPU622的净荷分别按字节间插到 OPUk的各时隙中, 并利用与复帧指示所对应的净荷结构指示标识每个 OPU净荷的类型、 所占时隙和位置, 其中, 一路 OPU622净荷占 4个时隙, 一路 OPU155 净荷占 1个时隙;
c ) 为将 N路的 OPU155调整开销和 M路的 OPU622的调整开销根 据复帧指示, 按帧间插到 OPUk调整开销;
d ) 为将 N路的 ODU155开销和 M路 ODU622开销根据复帧指示, 按帧间插到 ODUk开销。
6、 根椐权利要求 1所述的方法, 其特征在于, 所述步驟 d )后进一 步包括: 将步骤 d )得到的 ODUk信号转化为 OTU1信号。
7、根据权利要求 6所述的方法, 其特征在于, 所述复帧指示为本地 产生的复帧信号, 并利用 OTU帧中的 MFAS字节, 或其它保留字节来 传递。
8、 根据权利要求 1到 7任一所述的方法, 其特征在于, 所述 OPUk 为 OPU1 , 所述 ODUk为 ODU1。
9、根据权利要求 8所述的方法,其特征在于,所述 OTUn为 OTU1 , 所述转化过程为在 ODU1上加上 OTU1开销;
或者所述 OTUn为 OTU2, 所述转化过程为将 4路 ODU1 复用到 ODU2上, 再加上 OTU2开销;
或者所述 OTUn为 OTU3 , 所述转化过程为将 16路 ODU1复用到 ODU3上, 再加上 OTU3开销。
10、 根据权利要求 1到 7任一所述的方法, 其特征在于, 所述与复 帧指示所对应的净荷结构指示包括净荷类型指示和分布在不同帧的保 留字节; 利用净荷类型指示的原有编码或保留编码来指示所述的 OPU 净荷类型, 利用与复帧指示所对应的净荷结构指示中的所述保留字节来 指示所述 OPU净荷的时隙位置和大小。
11、根据权利要求 10所述的方法, 其特征在于, 所述净荷类型指示 为当复帧指示 MFAS 为 00000000 所指示的净荷结构指示字节, 或是 MFAS为 00000000以外其它值所指示的 1到 255字节中的任一字节。
12、根据权利要求 10所述的方法, 其特征在于, 所述净荷结构指示 中的分布在不同帧中的保留字节为当 MFAS为 00000000以外其它值所 指示的 1到 255净荷结构指示字节中的至少一个字节。
13、 根据权利要求 1到 7任一所述的方法, 其特征在于, 所述与复 帧指示所对应的净荷结构指示包括分布在不同帧的保留字节; 利用净荷 结构指示中的所述保留字节来指示所述的 OPU净荷类型、 净荷的时隙 位置和大小。
14、 根据权利要求 1所述的方法, 其特征在于, 所述 ODU开销中 至少包括性能监视开销字段。
15、 根据权利要求 1 所述的方法, 其特征在于, 所述低速信号为 STM-K 或 OC3信号、 或 STM-4信号、 或 OC12信号、 或以上信号的 任意组合。
16、 一种实现低速信号在光传输网络中透明传送的解复用方法, 其 特征在于, 在完成 OTU帧同步后, 包括以下步骤:
a )根据复帧指示, 从 ODUk信号中分解出每个支路的 ODU开销; b )根据复帧指示, 从 OPUk调整开销中分解出每个支路 OPU的调 整开销; c )根据复帧指示及与复帧指示所对应的净荷结构指示, 从 OPUk 净荷区的时隙中分解出每个支路 OPU净荷;
d )将上述步骤中分解出的每个支路对应的 ODU开销、 OPU调整开 销和 OPU净荷进行组合, 恢复为 ODU类型的信号, 将 ODU类型的信 号还原为其原有类型的低速信号。
17、根据权利要求 16所述的方法, 其特征在于, 所述复帧指示为接 收到的 OTU帧中的 MJFAS字节, 或接收到的其它用来传递复帧信号的 保留字节所代表信号。
18、 根据权利要求 16或 17所述的方法, 其特征在于, 所述与复帧 指示所对应的净荷结构指示包括净荷类型指示和分布在不同帧中的保 留字节, 利用净荷类型指示的原有编码或保留编码来指示所述的净荷类 型, 利用与复帧指示所对应的净荷结构指示中的保留字节来指示所述 OPU净荷的时隙位置和大小。
19、 根据权利要求 16或 17所述的方法, 其特征在于, 所述与复帧 指示所对应的净荷结构指示包括分布在不同帧的保留字节; 利用净荷结 构指示中的所述保留字节来指示所述的 OPU净荷类型、 净荷的时隙位 置和大小。
20、 根据权利要求 16 所述的方法, 其特征在于, 所述低速信号为 STM-1、 或 OC3信号、 或 STM-4信号、 或 OC12信号、 或以上信号的 任意组合。
21、 一种实现低速信号在光传输网络中透明传送的复用装置, 其特 征在于, 包括:
一个以上的同步物理接口,完成待复用的每条支路信号的光电转换、 时钟和数据恢复、 以及串行信号到并行信号的转换;
一个以上的映射模块, 接收从对应的同步物理接口送来的并行时钟 和数据, 并把接收的数据映射到 OPU帧, 并完成对 OPU封装上 ODU 的开销, 将 ODU的并行数据和时钟信号输出到复用模块;
复用模块,接收从所述一个以上映射模块送来的数据,把 OPU的净 荷信号间插到 OPUk的对应时隙, 把各 OPU的调整开销根据复帧指示 按帧间插到不同帧的 OPUk的调整开销位置, 同时根据复帧指示完成对 各 ODU622开销的间插复用, 得到 ODUk信号;
线路模块, 接收复用模块送来的 ODUk信号及时钟, 产生 OTU1开 销及 FEC编码,及帧定位信号和复帧定位信号,再经过扰码和电光转换 后输出;
定时发生器, 产生本地定时信号或根据接收的复用模块的时钟信号 来产生本地定时信号并输入至所述映射模块、 复用模块和线路模块。
22、才 据权利要求 21所述的装置, 其特征在于, 所述一个以上的映 射模块由至少两种用于不同速率信号的映射模块组成。
23、 一种实现低速信号在光传输网络中透明传送的解复用装置, 其 特征在于, 包括:
线路模块,接收 OTU1信号, 并对所接收信号进行光电转换、 OTU1 时钟及数据恢复、 OTU1帧定位、 解扰、 FEC解码、 OTU1开销终结, 得到 ODUk信号;
解复用模块, 接收线路模块发来的 ODUk信号, 并从 ODUk信号中 解出每个支路的 ODU开销,从 OPUk调整开销解出每个 OPU的调整开 销; 从 OPUk的时隙解出每个支路的 OPU净荷信息, 得到每条支路对 应的 ODU类型的信号;
一个以上的解映射模块, 分别接收解复用模块发来的每个支路的 ODU类型信号,从 OPU的净荷区把各 CBR信息恢复出来,恢复过程中 需要根据调整控制字节来控制读取净荷信息, 并对时钟进行平滑滤波, 得到的并行 CBR622数据信号和并行时钟;
一个以上的同步物理接口, 分别接收每个解映射模块送来的数据和 时钟, 并进行并串处理和电光转换, 恢复出最终的客户信号 CBR622; 定时发生器, 接收解复用模块的信号并产生定时信号并输入至所述 解映射模块、 解复用模块和线路模块。
24、根据权利要求 23所述的装置, 其特征在于, 所述一个以上的解 映射模块由至少两种用于不同速率信号的解映射模块组成。
25、 一种实现低速信号在光传输网络中透明传送的复用 /解复用装 置, 其特征在于, 包括: 一个以上的同步物理接口、 一个以上的映射 / 解映射模块、 复用 /解复用模块、 线路模块和定时发生器;
当进行信号复用处理时, 一个以上的同步物理接口完成待复用的每 条支路信号的光电转换、 时钟和数据恢复、 以及串行信号到并行信号的 转换后, 分别发送至对应的映射 /解映射模块; 映射 /解映射模块把接收 的数据映射到 OPU帧, 并完成对 OPU封装上 ODU的开销,将 ODU的 并行数据和时钟信号输出到复用 /解复用模块; 复用 /解复用模块把 OPU 的净荷信号间插到 OPUk的对应时隙, 把各 OPU的调整开销按帧间插 到 OPUk的调整开销位置, 同时根据复帧指示完成对各 ODU622开销的 间插复用, 得到 ODUk信号发送至线路模块; 线路模块产生 OTU1开销 及 FEC编码, 及帧定位信号和复帧定位信号,再经过扰码和电光转换后 输出;
当进行信号解复用处理时, 线路模块接收 OTU1信号, 并对所接收 信号进行光电转换、 OTU1时钟及数据恢复、 OTU1帧定位、 解扰、 FEC 解码、 OTU1开销终结, 得到 ODUk信号发送至复用 /解复用模块; 复用 /解复用模块从 ODUk信号中解出每个支路的 ODU开销 ' 从 OPUk调整 开销解出每个 OPU的调整开销; 从 OPUk的时隙解出每个支路的 OPU 净荷信息, 得到每条支路对应的 ODU类型的信号, 分别发送至每个支 路对应的映射 /解映射模块;映射 /解映射模块从 OPU的净荷区把各 CBR 信息恢复出来, 恢复过程中需要根据调整控制字节来控制读取净荷信 息, 并对时钟进行平滑滤波, 得到的并行 CBR622数据信号和并行时钟 后分别发送至同步物理接口; 同步物理接口进行并串处理和电光转换, 恢复出最终的客户信号 CBR622;
定时发生器用于接收复用模块的信号并产生本地定时信号并输入至 所述映射模块、 复用模块和线路模块。
26、根据权利要求 25所述的装置, 其特征在于, 所述一个以上的映 射 /解映射模块由至少两种用于不同速率信号的映射 /解映射模块组成。
PCT/CN2005/001329 2004-08-26 2005-08-26 Procede et equipement pour la transmission transparente de signaux a faible vitesse dans un reseau de transmission optique WO2006021157A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/677,727 US7583697B2 (en) 2004-08-26 2007-02-22 Method and device for transmitting low speed signals in optical transport system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410057355A CN100596043C (zh) 2004-08-26 2004-08-26 实现低速信号在光传输网络中透明传送的方法和装置
CN200410057355.0 2004-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/677,727 Continuation US7583697B2 (en) 2004-08-26 2007-02-22 Method and device for transmitting low speed signals in optical transport system

Publications (1)

Publication Number Publication Date
WO2006021157A1 true WO2006021157A1 (fr) 2006-03-02

Family

ID=35967168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001329 WO2006021157A1 (fr) 2004-08-26 2005-08-26 Procede et equipement pour la transmission transparente de signaux a faible vitesse dans un reseau de transmission optique

Country Status (3)

Country Link
US (1) US7583697B2 (zh)
CN (1) CN100596043C (zh)
WO (1) WO2006021157A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063521A1 (fr) 2004-12-14 2006-06-22 Huawei Technologies Co., Ltd. Procede de transmission de signal de trafic bas debit dans un reseau de transport optique
EP1737147A1 (en) * 2004-08-11 2006-12-27 Huawei Technologies Co., Ltd. Low speed rate traffic signal transmission method in optical transmission network and device

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791057B (zh) * 2004-12-15 2011-06-15 华为技术有限公司 在光传送网中传输数据业务的方法及其装置
CN101136700B (zh) * 2006-09-01 2011-11-02 华为技术有限公司 一种进行串接连接监视分配配置的方法
CN101159495B (zh) * 2006-10-08 2012-07-04 华为技术有限公司 无源光纤网络中信号传送系统、设备及方法
WO2008074180A1 (fr) * 2006-12-07 2008-06-26 Zte Corporation Procédé de transfert d'un signal stm/sts à faible vitesse
CN101051879B (zh) * 2007-04-06 2012-04-04 华为技术有限公司 低速业务复用及解复用的方法和装置
US7602814B2 (en) * 2007-04-30 2009-10-13 Ciena Corporation Systems and methods for mapping and multiplexing wider clock tolerance signals in optical transport network transponders and multiplexers
US8457159B2 (en) * 2007-05-11 2013-06-04 Ciena Corporation Optical transport network hierarchy for full transparent transport of datacom and telecom signals
CN100589365C (zh) * 2007-09-14 2010-02-10 中兴通讯股份有限公司 一种光传输网中光净荷单元的时隙划分与开销处理的方法
US20110008050A1 (en) * 2008-01-03 2011-01-13 Riccardo Ceccatelli Demultiplexing and Multiplexing Method and Apparatus
US7948975B2 (en) * 2008-03-03 2011-05-24 IPLight Ltd. Transparent switching fabric for multi-gigabit transport
CN101577843B (zh) * 2008-05-08 2012-10-03 华为技术有限公司 复帧处理的方法、装置和系统
CN101800912B (zh) * 2009-02-10 2016-08-10 华为技术有限公司 客户信号映射和解映射的实现方法及装置
CN101489157B (zh) * 2009-02-13 2011-06-08 华为技术有限公司 将业务复用映射到光通道传送单元的方法和装置
CN101834688B (zh) * 2009-03-09 2011-08-31 华为技术有限公司 光传送网中的映射、解映射方法及装置
CN101854220A (zh) * 2009-04-01 2010-10-06 华为技术有限公司 一种业务数据发送、接收的方法和装置
CN101873186A (zh) * 2009-04-22 2010-10-27 华为技术有限公司 同步传输通道之间传输延时偏差补偿的方法、站点和系统
CN101945307B (zh) * 2009-07-03 2013-04-24 华为技术有限公司 光网络中标签的分配处理方法、光通信装置及光通信系统
EP2296300B1 (en) * 2009-09-14 2012-05-02 Alcatel Lucent Method and apparatus for automatic discovery in optical transport networks
JP5482182B2 (ja) * 2009-12-18 2014-04-23 富士通株式会社 通信装置および通信方法
CN102246434B (zh) 2009-12-24 2014-03-12 华为技术有限公司 通用映射规程gmp映射方法、解映射方法及装置
US8705402B2 (en) * 2009-12-24 2014-04-22 Infinera Corporation Clocking of client signals output from an egress node in a network
CN101814968B (zh) * 2010-03-16 2014-06-11 中兴通讯股份有限公司 实现帧头对齐和复帧归零的方法及装置
US8743915B2 (en) 2010-05-18 2014-06-03 Electronics And Telecommunications Research Institute Method and apparatus for transmitting packet in optical transport network
CN101895363B (zh) * 2010-05-21 2014-12-10 中兴通讯股份有限公司 中间帧的交织方法与装置
JP5472467B2 (ja) * 2010-07-30 2014-04-16 富士通株式会社 信号収容方法、フレーム生成装置、フレーム受信装置及び伝送システム
CN101944952B (zh) * 2010-09-26 2015-05-20 中兴通讯股份有限公司 一种实现光传送网开销处理的装置及方法
US8644340B2 (en) 2011-02-07 2014-02-04 Cisco Technology, Inc. Multiplexing in an optical transport network (OTN)
US9236969B2 (en) * 2011-10-28 2016-01-12 Infinera Corporation Super optical channel data unit signal supported by multiple wavelengths
US8817824B2 (en) 2011-12-02 2014-08-26 Ciena Corporation Optical transport network line management system and methods
JP5835059B2 (ja) * 2012-03-29 2015-12-24 富士通株式会社 データ伝送装置及びデータ伝送方法
EP2618536A4 (en) * 2012-04-25 2014-02-19 Huawei Tech Co Ltd METHOD AND DEVICE FOR UNIFIEDING IMAGE RATES
WO2012126421A2 (zh) * 2012-05-15 2012-09-27 华为技术有限公司 一种光传送网的数据处理方法、相关设备及系统
ES2642846T3 (es) 2012-06-14 2017-11-20 Huawei Technologies Co., Ltd. Método y aparato para transmitir y recibir una señal de cliente
US9300429B2 (en) * 2012-07-26 2016-03-29 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for transporting a client signal over an optical network
CN106301661B (zh) 2012-07-30 2018-10-19 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
US9647788B2 (en) 2013-02-12 2017-05-09 Applied Micro Circuits Corporation Low latency multiplexing for optical transport networks
CN103997387B (zh) 2013-02-18 2018-08-24 中兴通讯股份有限公司 数据的映射、复用、解复用和解映射方法及装置
CN105429726B (zh) * 2014-09-22 2018-01-23 华为技术有限公司 光传输网的业务映射处理方法、装置及系统
CN105577319A (zh) * 2014-10-17 2016-05-11 中兴通讯股份有限公司 通过光通道传输单元信号发送、接收信号的方法及装置
CN109818705B (zh) * 2017-11-22 2020-05-19 华为技术有限公司 传送、接收子速率信号方法及装置、设备
CN107968699A (zh) * 2017-12-11 2018-04-27 国网浙江省电力有限公司 一种OTN网络中2Mbit/s低速信号的传输方法
CN110224946B (zh) * 2018-03-01 2022-05-27 中兴通讯股份有限公司 一种业务发送方法及装置、业务接收方法及装置
CN114513710A (zh) * 2018-05-10 2022-05-17 华为技术有限公司 光传送网中低速业务数据的处理方法、装置和系统
CN114866618A (zh) * 2019-04-30 2022-08-05 华为技术有限公司 光传送网中的数据传输方法及装置
CN117411789A (zh) * 2022-07-07 2024-01-16 中兴通讯股份有限公司 固定速率信号的速率恢复方法及装置
CN117856900A (zh) * 2022-09-30 2024-04-09 中兴通讯股份有限公司 业务传输方法、设备、介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939509A2 (en) * 1998-02-27 1999-09-01 Fujitsu Limited Wavelength division multiplexing optical transmission system
CN1250989A (zh) * 1999-10-18 2000-04-19 北京市北邮高阶通信技术有限责任公司 综合异步传递模式业务和同步传递模式业务的方法和设备
CN1392684A (zh) * 2001-06-15 2003-01-22 北京邮电大学 Ip数据的波分复用光网络传输适配方法
EP1330077A1 (en) * 2002-01-17 2003-07-23 Samsung Electronics Co. Ltd. Method for implementing various functions including access control in a gigabit ethernet passive optical network system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189673A (en) * 1991-07-30 1993-02-23 Alcatel Network Systems, Inc. Method and apparatus for controlling switched video in an optical fiber telecommunications system
US5576874A (en) * 1991-07-31 1996-11-19 Alcatel Network Systems, Inc. Optical distribution shelf for a remote terminal of an optical fiber telecommunications network
US6907048B1 (en) * 1997-10-14 2005-06-14 Alvarion Israel (2003) Ltd. Method and apparatus for transporting ethernet data packets via radio frames in a wireless metropolitan area network
US6539031B1 (en) * 1997-10-14 2003-03-25 Innowave Eci Wireless Systems Ltd. Adaptive countermeasures for wireless communication of fast ethernet data packages
US6744789B1 (en) * 2000-09-26 2004-06-01 The Directv Group, Inc. System and method for translating MPEG packets which include PCR data into DIRECTV packets which include RTS data
US7058090B1 (en) * 2001-12-18 2006-06-06 Applied Micro Circuits Corporation System and method for paralleling digital wrapper data streams

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939509A2 (en) * 1998-02-27 1999-09-01 Fujitsu Limited Wavelength division multiplexing optical transmission system
CN1250989A (zh) * 1999-10-18 2000-04-19 北京市北邮高阶通信技术有限责任公司 综合异步传递模式业务和同步传递模式业务的方法和设备
CN1392684A (zh) * 2001-06-15 2003-01-22 北京邮电大学 Ip数据的波分复用光网络传输适配方法
EP1330077A1 (en) * 2002-01-17 2003-07-23 Samsung Electronics Co. Ltd. Method for implementing various functions including access control in a gigabit ethernet passive optical network system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1737147A1 (en) * 2004-08-11 2006-12-27 Huawei Technologies Co., Ltd. Low speed rate traffic signal transmission method in optical transmission network and device
EP1737147A4 (en) * 2004-08-11 2007-08-22 Huawei Tech Co Ltd METHOD FOR TRANSMITTING LOW-FLOW RATE TRAFFIC SIGNALS IN AN OPTICAL TRANSMISSION NETWORK AND CORRESPONDING DEVICE
EP2045934A1 (en) * 2004-08-11 2009-04-08 Huawei Technologies Co., Ltd. Method and apparatus for transmitting a low-rate traffic signal in an optical transport network (OTN)
US9014151B2 (en) 2004-08-11 2015-04-21 Huawei Technologies Co., Ltd. Method and apparatus for transmitting low-rate traffic signal in optical transport network
US11658759B2 (en) 2004-08-11 2023-05-23 Huawei Technologies Co., Ltd. Method and apparatus for transmitting a signal in optical transport network
WO2006063521A1 (fr) 2004-12-14 2006-06-22 Huawei Technologies Co., Ltd. Procede de transmission de signal de trafic bas debit dans un reseau de transport optique
EP1826926A1 (en) * 2004-12-14 2007-08-29 Huawei Technologies Co., Ltd. An implement method of short rate traffic signal transmitted in optical transport network
EP1826926A4 (en) * 2004-12-14 2008-07-16 Huawei Tech Co Ltd IMPLEMENTATION METHOD FOR A SHORT-RATE TRAFFIC SIGNAL SENT IN AN OPTICAL TRANSPORT NETWORK
US7848653B2 (en) 2004-12-14 2010-12-07 Huawei Technologies Co., Ltd. Method and device for transmitting low rate signals over an optical transport network

Also Published As

Publication number Publication date
US20070189336A1 (en) 2007-08-16
CN100596043C (zh) 2010-03-24
US7583697B2 (en) 2009-09-01
CN1741429A (zh) 2006-03-01

Similar Documents

Publication Publication Date Title
WO2006021157A1 (fr) Procede et equipement pour la transmission transparente de signaux a faible vitesse dans un reseau de transmission optique
CN100373847C (zh) 在光传送网中传输低速率业务信号的方法
CN100349390C (zh) 光传送网中传输低速率业务信号的方法及其装置
US9225462B2 (en) Method, apparatus and system for transmitting and receiving client signals
CN101267386B (zh) 传输多路独立以太网数据的方法、装置和系统
ES2442693T3 (es) Implementación de un método y de un equipo para transmitir señales de LAN en una OTN
CN101030827B (zh) Dtm映射到otn的方法和装置
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
US20030048813A1 (en) Method for mapping and multiplexing constant bit rate signals into an optical transport network frame
US20070264015A1 (en) Uniform Switching System and Method for Synchronous Optical Network and Optical Transport Network
WO2008122218A1 (fr) Procédé de multiplexage et de démultiplexage de service de faible débit binaire
CN101217334A (zh) 光传送网中传输低速率业务信号的方法及其装置
CN101547057A (zh) 光传送网中业务处理的方法和装置
AU2010230712A1 (en) Method and Device for Sending Data and Receiving Service Data
Gorshe A tutorial on ITU-T G. 709 optical transport networks (OTN)
Fang et al. A Novel Scheme for Realization of Flexible ODU Hitless Resizing
Gorshe A Tutorial on ITU-T G. 709 Optical Transport Networks (OTN)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11677727

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11677727

Country of ref document: US

122 Ep: pct application non-entry in european phase