WO2006019060A1 - 金属回収装置 - Google Patents

金属回収装置 Download PDF

Info

Publication number
WO2006019060A1
WO2006019060A1 PCT/JP2005/014849 JP2005014849W WO2006019060A1 WO 2006019060 A1 WO2006019060 A1 WO 2006019060A1 JP 2005014849 W JP2005014849 W JP 2005014849W WO 2006019060 A1 WO2006019060 A1 WO 2006019060A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal recovery
copper
board
conductive plate
Prior art date
Application number
PCT/JP2005/014849
Other languages
English (en)
French (fr)
Inventor
Hisashi Iwama
Hiroaki Tanaka
Harunobu Kimura
Hitoshi Tanaka
Yutaka Hirota
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to US11/573,746 priority Critical patent/US20080142374A1/en
Priority to EP05780242A priority patent/EP1798312A4/en
Publication of WO2006019060A1 publication Critical patent/WO2006019060A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/007Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells comprising at least a movable electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • C25C7/08Separating of deposited metals from the cathode

Definitions

  • the present invention relates to a metal recovery device, and more particularly to a metal recovery device that recovers a metal contained in an acidic liquid or the like.
  • Methods for recovering copper from an aqueous sulfuric acid solution include crystallization methods, copper plate electrodeposition methods, and barrel electrodeposition methods.
  • the crystallization method is a method in which an aqueous sulfuric acid solution containing copper ions is cooled to precipitate copper sulfate.
  • a large amount of electric power is required for solution cooling, which increases the cost.
  • the copper plate electrodeposition method is a method in which a copper plate serving as a seed plate is immersed in a sulfuric acid aqueous solution containing copper ions, and copper is deposited on the surface of the copper plate.
  • the production of the seed plate is costly, and the seed plate to which copper adheres due to copper deposition becomes heavy and it is not easy to take out the solution.
  • the barrel electrodeposition method is a method in which a copper chip is placed as an electrode in a basket immersed in an aqueous sulfuric acid solution, and copper is deposited on the surface of the copper chip.
  • a mechanism for removing the copper chip from the cage is necessary, which increases the cost of the apparatus.
  • a rotating titanium metal recovery board is poured into a copper-containing acidic waste liquid as a force sword, and a copper powder is deposited on the force sword by electrolysis by flowing a predetermined force sword current. It is described that scraping and collecting continuously.
  • Document 3 describes that an electrode covered with a plastic film containing carbonaceous fine particles is placed in a metal ion-containing solution, and fine particles of deposited metal are formed on the surface of the film for recovery.
  • Patent Document 1 JP-A-53-86627
  • Patent Document 2 JP-A-53-55410
  • Patent Document 3 Japanese Patent Application Laid-Open No. 62-297485
  • Patent Document 4 Japanese Patent Laid-Open No. 63-259094
  • the ability to easily remove the precipitate is less than 1 kg, for example, 210 g in 24 hours, and the recovery capability is poor.
  • the yield is low due to the powder, and it is difficult to reuse.
  • An object of the present invention is to provide a metal recovery apparatus that can efficiently recover a metal in a solution in a state where it can be easily reused.
  • the present invention relates to an electrodeposited surface or a conductive plate to which a metal component deposited from a solution adheres, It is a metal recovery apparatus comprising a metal recovery board having an insulator formed around a recording electrode surface or part of the surface of the conductive plate.
  • the metal recovery apparatus of the present invention is a metal circuit in which an insulator is formed around a pattern of an electrodeposition surface or a part of a conductive plate, and a metal component is deposited in a region not covered with the insulator. Since it has a collecting plate, it is possible to deposit the metal component in the solution on the metal collecting plate as a lump having a size that can be easily recovered and easily reused.
  • FIG. 1 is a configuration diagram showing a metal recovery apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a first example of the structure of a metal recovery board used in the metal recovery apparatus according to the embodiment of the present invention.
  • FIGS. 3 (a) and 3 (b) are cross-sectional views showing a modified example of the first example of the structure of the metal recovery disc used in the metal recovery apparatus according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a second example of the structure of the metal recovery board used in the metal recovery apparatus according to the embodiment of the present invention.
  • FIGS. 5 (a) and 5 (b) are cross-sectional views showing a modified example of the second example of the structure of the metal collector used in the metal recovery apparatus according to the embodiment of the present invention.
  • FIG. 6 is a plan view showing a first example of the slit shape of the metal recovery board used in the metal recovery apparatus according to the embodiment of the present invention.
  • FIG. 7 is a plan view showing a second example of the slit shape of the metal recovery board used in the metal recovery apparatus according to the embodiment of the present invention.
  • FIG. 8 is a plan view showing a third example of the slit shape of the metal recovery board used in the metal recovery apparatus according to the embodiment of the present invention.
  • FIG. 9 is a plan view showing a fourth example of the slit shape of the metal recovery board used in the metal recovery apparatus according to the embodiment of the present invention.
  • FIG. 10 is a configuration diagram showing a first modified example of the scraping blade used in the metal recovery device according to the embodiment of the present invention.
  • FIG. 11 shows a scraping breaker used in the metal recovery apparatus according to the embodiment of the present invention.
  • FIG. 6 is a configuration diagram showing a second modification of the battery and a modification of the electrolytic treatment tank.
  • FIG. 12 is a configuration diagram showing a third modified example of the scraping blade used in the metal recovery device according to the embodiment of the present invention.
  • FIG. 13 is a configuration diagram showing a fourth modification of the scraping blade used in the metal recovery device according to the embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing a metal recovery apparatus according to an embodiment of the present invention.
  • a circular metal recovery board 2 in which at least a part is immersed in the pickling waste liquid R is disposed in the electrolytic treatment tank 1 in which the pickling waste liquid R is placed.
  • the rotating device 3 is rotatably supported.
  • the metal recovery board 2 is used as a force sword (cathode) in the pickling waste liquid R and has a structure as shown in the cross section of FIG. 2 or FIG. / Speak.
  • the metal recovery board 2 shown in FIG. 2 includes a circular conductive plate 2a having a corrosion-resistant metal force and an insulating film 2b having a thickness of 0.1 mm to 10 mm formed on the surface of the conductive plate 2a. Have. Further, a part of the insulating film 2b on at least one side of the metal recovery board 2 is removed. Thus, for example, a slit 2s having a narrow width of 10 mm or less is formed. The slit 2s is a recess with respect to the surface of the conductive plate 2a.
  • the slit 2s may be narrower on the conductive plate 2a side than on the opposite side as shown in FIG. 3 (a), or wider as shown in FIG. 3 (b). As shown in FIG. 3 (a), it is preferable to narrow the conductive plate 2a side because the metal electrodeposited on the metal recovery board 2 can be easily detached.
  • the metal recovery board 2 shown in Fig. 4 is, for example, a conductive plate made of a corrosion-resistant metal having a narrow convex part 2t formed at a height of 0.1 mm to 10 mm and a width of 10 mm or less on at least one surface. 2a and an insulating film 2b embedded around the convex portion 2t on the conductive plate 2a. Further, the portion of the insulating film 2b that exposes the convex portion 2t of the conductive plate 2a is a slit 2s.
  • the convex portion 2t of the conductive plate 2a is formed by, for example, polishing and etching the conductive plate 2a.
  • the upper surfaces of the insulating film 2b and the protrusion 2t are substantially flat.
  • the convex portion 2t may be thinner on the conductive plate 2a side than the opposite side as shown in FIG. 5 (a), or thicker as shown in FIG. 5 (b). . As shown in FIG. 5 (a), it is preferable to make it narrow, because the metal electrodeposited on the metal recovery board 2 is easily detached.
  • stainless steel is used as the corrosion-resistant metal constituting the conductive plate 2a, and the material constituting the insulating film 2b restricts the adhesion of the metal on the conductive plate 2a.
  • a resin such as fluorine resin or polypropylene is used.
  • a method of forming the insulating film 2b on the conductive plate 2a for example, a method of applying heat to the conductive plate 2a and the insulating film 2b in a combined state, or the conductive plate 2a and the insulating film 2b There is a method of adhering via an adhesive.
  • the heating temperature in the case of applying heat is appropriately selected in consideration of the softening temperature of the insulating film 2b.
  • the adhesive is selected in consideration of the adhesive strength with the conductive plate 2a and the insulating film 2b after solidification.
  • the slits 2s formed in the circular metal recovery board 2 have an annular planar shape formed in a plurality of concentric shapes with a predetermined pitch.
  • the slit 2s is formed by fixing and bonding the insulating film 2b on the conductive plate 2a and then grinding a part of the insulating film 2b into a desired shape by machining.
  • the width of the slit 2s is large enough to facilitate the separation and removal of the metal mass growing on the conductive plate 2a. Is set to If the pitch between adjacent slits 2s is too narrow, the insulating film 2b is easily peeled off when the scraping blade 6 described later slides on the surface of the metal recovery board 2. Prefer U ,.
  • the total area of the slits 2s is preferably large.
  • a corrosion-resistant material for example, an anode 4 made of stainless steel of SUS304 is arranged at a position where it is immersed in the pickling waste liquid R.
  • the anode 4 has a surface force on the side where the slit 2s is present in the metal recovery board 2 and is arranged at a predetermined interval.
  • a DC power source 5 is provided between the anode 4 and the conductive plate 2b of the metal recovery board 2. It is connected.
  • an angle-type scraping blade 6 for scraping a metal lump that grows the internal force of the slit 2s in the metal recovery panel 2 can contact and separate from the metal recovery panel 2 Is located.
  • the scraping blade 6 is disposed so that the region force near the center of the metal recovery board 2 is inclined so that the position gradually decreases toward the region near the outer periphery.
  • a metal having a strength capable of scraping off a metal lump growing on the metal recovery board 2 for example, iron may be used, but a material having corrosion resistance. It is preferable to use a material such as stainless steel. Below the lower part of the scraper blade 6, a metal collection box 10 is attached.
  • a first pipe 8 connected to the suction port 7 a of the circulation tank 7 is connected to the discharge port la at the bottom of the electrolytic treatment tank 1.
  • a second pipe 9 connected to the suction port lb at the top of the electrolytic treatment tank 1 is connected to the discharge port 7b at the top of the circulation tank 7.
  • a circulation pump 11 is attached in the middle of the first pipe 8, and the pickling waste liquid R in the electrolytic treatment tank 3 is circulated through the first pipe 8, the circulation tank 7 and the second pipe 9. It is configured as follows.
  • the metal recovery board 2 a circular stainless steel plate is used as the conductive plate 2a shown in FIGS. 2 to 5, a fluorine resin film is used as the insulating film 2b, and a pitch as illustrated in FIG.
  • a insulating film 2b in which a plurality of annular slits 2s having a diameter of 5 mm and a slit width of 1 mm and different diameters are formed.
  • the pickling waste liquid R in this case is, for example, a sulfuric acid aqueous solution used for removing acid on the surface of the copper body or copper alloy body, and contains copper.
  • the conductive plate 2 a and the anode 4 of the metal recovery board 2 are energized through the pickling waste liquid R by the DC power source 5.
  • electrolysis occurs, and copper in the pickling waste liquid R is deposited on the surface of the conductive plate 2a exposed from the slit 2s on the surface of the metal recovery board 2.
  • the conditions for energization in this embodiment are, for example, a current of 5 to 70 dAZmm 2 and a voltage of 1 to 20V.
  • a copper lump B is formed on the surface of the metal recovery board 2 along the slit 2s as shown in FIGS.
  • the copper mass B protrudes from the surface of the insulating film 2b by continuous deposition.
  • the metal recovery board 2 is rotated at a predetermined speed by the rotating device 3.
  • the width of the slit 2s formed in the insulating film 2b of the metal recovery board 2 is as narrow as 10 mm or less, the base of the copper block B is thin and easily peeled or broken. It is. Therefore, it is easy to remove the copper block B from the metal recovery board 2 by the scraping blade 6, and the recovered copper block B can be reused efficiently.
  • the slit 2s of the insulating film 2b covering the conductive plate 2a may be provided only on one side of the conductive plate 2a, or may be provided on both sides. It is preferable to provide slits 2 on both sides because the amount of recovery increases. Further, one metal recovery board 2 may be provided, but two or more metal recovery boards may be provided. Two or more sheets are preferable because the collection amount increases. In the case of two or more sheets, they may be arranged in parallel or on the same axis. In addition, the present invention may have a structure other than a plate shape as long as it has an electrodeposition surface that is not limited to the conductive plate 2a as the metal recovery portion.
  • an apparatus for providing a slit 2a on the curved surface side of the drum and collecting the metal by electrodeposition is also included in the present invention.
  • the metal recovery apparatus of the present invention is not limited to the drawings used in the above description. That is, it is only necessary that the metal recovery plate 2 and the scraping blade 6 are in contact with each other and their positional relationship is relatively moved so that the electrodeposited metal can be detached.
  • the metal recovery board 2 is not limited to a disk but can be a square type. Furthermore, even if the metal collector 2 does not rotate, it can be fixed even if it is fixed!
  • the metal recovery apparatus of the present invention has a configuration for recovering metal, and among metals, gold or gold alloy, silver or silver alloy, nickel or nickel alloy, zinc or zinc alloy, tin or Tin alloys, copper or copper alloys can be recovered. Most suitable for recovery are copper or copper alloys.
  • Example 1 a first metal recovery board 2 having an annular slit 2s shown in FIG. 6 and a structure shown in FIG. 2 was produced.
  • Example 2 a second metal recovery board 2 having an annular slit 2s shown in FIG. 6 and a structure shown in FIG. 4 was produced.
  • Example A metal recovery board 2 according to Example 2 is composed of a conductive plate 2a made of a circular stainless steel plate having a diameter of 800 mm and a thickness of 10 mm, and a lmm-thick fluorine resin (fixed or bonded to the surface). And an insulating film 2b which also has a (trafluoroethylene) force.
  • the annular slits 2s formed in the insulating films 2b are concentric circles having a pitch of 5 mm and a width of 1 mm.
  • Example 3 As shown in FIG. A third metal recovery board 2 having a plurality of slits 2s and having the cross-sectional structure shown in FIG. 2 was produced.
  • the metal recovery board 2 according to Example 3 is composed of a conductive plate 2a formed of a circular stainless steel plate having a diameter of 800 mm and a thickness of 10 mm, and a polyamide substrate having a thickness of 1 mm fixed or bonded to the surface thereof.
  • the width of the slit 2s formed in the insulating film 2b is 1 mm, and the pitch is about 5 mm.
  • Comparative Example 1 of the conventional structure a stainless steel disc not covered with an insulator was manufactured. Further, as Comparative Example 2, a stainless steel disk having a surface coated with Zr was produced, and as Comparative Example 3, a titanium disk was produced. Further, as Comparative Example 4, a stainless disc coated with a plastic containing carbon fine particles was produced. The diameter of the disks according to Comparative Examples 1 to 4 is 800 mm.
  • each of the metal recovery boards 2 according to Examples 1 to 3 is sequentially attached to the rotation device 3 of the metal recovery apparatus shown in Fig. 1, and the disks of Comparative Examples 1 to 4 having a conventional structure are attached. Instead of the metal recovery board 2 shown in FIG. For each, the copper recovery state of the pickling waste liquid R force was examined, and the results shown in Table 1 were obtained.
  • the anode 4 also constituted a stainless steel of SUS304.
  • the distance between the anode 4 and the metal recovery board 20 of the example and the distance between the anode 4 and the disk of the comparative example were both set to 20 mm.
  • the scraper blade 6 is made of a rectangular parallelepiped stainless steel having a width of 50 mm, a thickness of 20 mm, and a length of 600 mm.
  • Comparative Example 1 the copper lump was in close contact with the disk that was a force sword and could not be scraped off.
  • Comparative Example 2 and Comparative Example 3 it was possible to peel off the precipitate on the disc, but it was impossible to remove it.
  • Comparative Example 4 an optimal current could not be applied, and the deposit on the disk surface was easily scraped off, but the amount recovered was small.
  • the force recovery target described for the experimental results of copper recovery is not limited to copper, and other metals can be recovered.
  • fluorine resin is preferably used as a constituent material of the insulating film 2b.
  • the slits of the metal recovery board 2 are not limited to the shapes of the circular ring and the radial straight line as shown in FIGS. 6 and 7, but concentric and radial slits are combined as shown in FIG.
  • the shape may be a rectangular shape or a dot-shaped island shape as shown in FIG. 7, or it may be a spiral shape not shown.
  • the interval between the concentric slits and the radial slits is adjusted so that the plurality of island-shaped insulating films 2b separated by the slits 2s are substantially constant.
  • the slit 2s has a size of about lmm ⁇ 1mm in the case of a plurality of rectangular shapes, and a circle having a diameter of lmm in the case of a plurality of dot shapes.
  • the slit 2s shown in FIGS. 6 to 9 may have a structure in which the conductive plate 2a is present under the concave portion of the insulating film 2b as shown in FIGS. As shown in FIG. 5, the insulating film 2b may be present around the protrusion 2t of the conductive plate 2a.
  • the convex portion 2t is formed on the conductive plate 2a and then the periphery thereof is filled with an insulating material.
  • a method of grinding the plate 2a may be employed, or a method of etching the conductive plate 2a may be employed.
  • the ground part is coated with an insulating material. Is adopted.
  • the metal recovery plate 2 having the radial slits 2s was easier to peel off the copper mass than the metal recovery plate 2 having the concentric slits 2s shown in FIG. .
  • the metal recovery plate 2 having slits 2s that are concentric and radial in shape can have a larger electrodeposition area than the metal recovery plate 2 shown in FIGS.
  • the copper lump was also easier to scrape than the metal recovery board 2 shown in Fig. 6.
  • the scraping blade 6 applied to the metal recovery apparatus described above is not limited to the angle type, and for example, a scraping blade having a structure shown in FIGS. 10 to 12 may be used.
  • the scraping blade 60 shown in FIG. 10 is attached to the blade body 61 and the rectangular blade body 61 inclined so that the central force of the circular metal recovery board 2 is lowered toward the outer periphery. It has a vibrating device 62 and a sawtooth-shaped jagged projection 63 attached to the upper surface of the blade body 61 and obliquely hitting the slit 2s extending method.
  • the upper surface of the blade body 61 has an area for sliding the metal block scraped from the metal recovery board 2 by the protrusion 63.
  • the protrusion 63 of the scraping blade 60 has a sawtooth shape
  • the protrusion 63 can scrape the metal mass at a desired angle depending on the angle of the sawtooth.
  • the metal lump can be peeled off easily. The angle is oblique to the tangential direction when the slot 2s is annular.
  • the scraping blade 60 may have a structure in which comb-like protrusions 63a are arranged at positions that move on the annular slit 2s of the metal recovery board 2. .
  • the protrusion 63a moves on the slit 2s by the rotation of the metal recovery board 2 and scrapes off the metal lump.
  • the scraping blade 64 shown in FIG. 12 is a blade that reciprocates in the direction perpendicular to the longitudinal direction of the slit 2 s of the metal recovery board 2. Further, the bottom of the electrolytic treatment tank 1 below the scraping blade 64 has an inclined surface Id for sliding the metal lump C that has been scraped and dropped to move to the circulation tank 7, and the bottom of the inclined surface Id The lower part Is has an outlet le. A pipe 13 for guiding the metal block C to the filter 12 of the circulation tank 7 is attached to the discharge port le, and the metal block C that has passed through the discharge port le is recovered by the filter 12 of the circulation tank 7 and pickled. The waste liquid R is configured to enter the circulation phase 7 through the filter 12.
  • the electrolytic treatment is performed.
  • a structure may be adopted in which a stopper is provided in front of the lower part Is of the tank 1 so that the metal block C does not fall into the circulation tank 7.
  • the scraping blade 65 shown in FIG. 13 is rotatably mounted with the end portion of the horizontally long rectangular blade body away from the metal recovery board 2 central force as a fulcrum.
  • a rotating device 66 that flips the blade body upward is attached to the fulcrum.
  • the collection box 10 is disposed outside the fulcrum of the scraping blade 65.
  • the scraping blade 65 scoops up the metal lump C on the metal recovery board 2 as the horizontal state force is also lifted upward by the rotating device 66, and the scraped metal lump C Bounce it up and put it in the collection box 10.
  • the scraping blade 65 is rotated in the same direction as the jumping direction to scrape the metal lump on the metal recovery board 2 and then perform the jumping operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

明 細 書
金属回収装置
技術分野
[0001] 本発明は、金属回収装置に関し、より詳しくは、酸性液等に含有される金属を回収 する金属回収装置に関する。
背景技術
[0002] 一般に、銅体又は銅合金体を加工するに際し、その工程中に酸化物が銅体又は 銅合金体の表面に生成される。この酸化物は硫酸酸性水溶液を用 Vヽた処理によつ て除去され、この処理後の硫酸酸性水溶液中には銅イオンが含有することになる。
[0003] 硫酸酸性水溶液は、処理回数が増えるにつれて銅イオン濃度が上昇して酸ィ匕物の 除去能力が低下してしまうため、定期的な交換が必要になるが、交換によりコストが 多大なものとなる。
[0004] このため、硫酸酸性水溶液を再利用するための方法及び装置について開発がなさ れてきた。硫酸酸性水溶液から銅分を回収する方法には、晶析法、銅板電着法、バ レル電着法等がある。
[0005] 晶析法は、銅イオンを含む硫酸酸性水溶液を冷却して硫酸銅を析出させる方法で ある。しかし、溶液冷却のために大きな電力が必要であり、コストが高くなる。
[0006] 銅板電着法は、銅イオンを含む硫酸酸性水溶液中に種板となる銅板を浸漬し、そ の銅板表面に銅を析出させる方法である。しかし、種板作製にコストがかかり、しかも 銅析出により銅が付着した種板は重くなつて溶液力もの取り出しが容易ではない。
[0007] バレル電着法は、硫酸酸性水溶液に浸漬されるかごの中に電極として銅チップを 入れ、銅チップ表面に銅を析出させる方法である。しかし、かごからの銅チップの取り 出し機構が必要となり、装置のコストが高くなる。
[0008] その他に、銅分を回収する方法が下記の文献 1〜4に記載されている。 文献 1に は、表面が Zr (ジルコニウム)又は Zr合金カゝらなる回転金属回収盤を陰電極としてそ の一部を処理液中に浸漬し、その回転金属回収盤に陰電流を流してその表面に処 理液中の銅分を粉状に電析させ、さらに銅粉を板により搔き取ることが記載されてい る。
[0009] 文献 2には、回転するチタン金属回収盤を力ソードとして銅含有酸性廃液中に注入 し、所定力ソード電流を流して電解により銅粉を力ソード上に析出させた後に銅粉を 連続的に搔き取り回収することが記載されて 、る。
[0010] 文献 3には、炭素質微粒子を含有するプラスチックフィルムで被覆された電極を金 属イオン含有溶液に入れ、そのフィルムの表面に微粒子状の析出金属を形成させて 回収することが記載されて 、る。
[0011] 文献 4には、銅メツキが施された銅板の表面に炭素質微粒子を含有するプラスチッ クフィルムを被覆し加熱処理したものを陰極として使用し、金属イオンを含有する溶 液力 金属を電解により微粒子状にして回収することが記載されている。
特許文献 1:特開昭 53— 86627号公報
特許文献 2:特開昭 53 - 55410号公報
特許文献 3:特開昭 62— 297485号公報
特許文献 4:特開昭 63 - 259094号公報
発明の開示
発明が解決しょうとする課題
[0012] 表面が Zr又は Zr合金力 なる回転金属回収盤、又は、チタン金属回収盤を用いて その表面に銅を電解により析出させると、それらの金属回収盤に銅が強固に付着し てしまい、搔き取りが困難になる。
[0013] また、電着板表面に炭素質微粒子を含有するプラスチックフィルムを被覆した場合
、そのフィルム表面には銅が粉末状に析出するため、析出物を容易に除去できる力 その回収量が lkg未満、例えば 24時間に 210gであり、回収能力が劣っていた。しか も、回収した粉末状の銅を溶解して铸造する場合に、粉末のために歩留まりが低ぐ 再利用が困難であった。
[0014] 本発明の課題は、溶液中の金属を再利用が容易な状態で効率的に回収できる金 属回収装置を提供することにある。
課題を解決するための手段
[0015] 本発明は、溶液から析出された金属成分が付着する電着面或いは導電性板と、前 記電着面の周囲又は前記導電性板の表面の一部に形成された絶縁物とを有する金 属回収盤を備えることを特徴とする金属回収装置である。
発明の効果
[0016] 本発明の金属回収装置は、電着面のパターンの周囲、あるいは、導電性板の一部 に絶縁物を形成し、その絶縁物に覆われない領域に金属成分を析出させる金属回 収盤を有しているので、溶液中の金属成分を回収が容易な大きさで且つ再利用が容 易な大きさの塊にして金属回収盤上に析出させることができる。
図面の簡単な説明
[0017] [図 1]図 1は、本発明の実施形態に係る金属回収装置を示す構成図である。
[図 2]図 2は、本発明の実施形態に係る金属回収装置に使用される金属回収盤の構 造の第 1例を示す断面図である。
[図 3]図 3 (a)、(b)は、本発明の実施形態に係る金属回収装置に使用される金属回 収盤の構造の第 1例の変形例を示す断面図である。
[図 4]図 4は、本発明の実施形態に係る金属回収装置に使用される金属回収盤の構 造の第 2例を示す断面図である。
[図 5]図 5 (a)、(b)は、本発明の実施形態に係る金属回収装置に使用される金属回 収盤の構造の第 2例の変形例を示す断面図である。
[図 6]図 6は、本発明の実施形態に係る金属回収装置に使用される金属回収盤のス リット形状の第 1例を示す平面図である。
[図 7]図 7は、本発明の実施形態に係る金属回収装置に使用される金属回収盤のス リット形状の第 2例を示す平面図である。
[図 8]図 8は、本発明の実施形態に係る金属回収装置に使用される金属回収盤のス リット形状の第 3例を示す平面図である。
[図 9]図 9は、本発明の実施形態に係る金属回収装置に使用される金属回収盤のス リット形状の第 4例を示す平面図である。
[図 10]図 10は、本発明の実施形態に係る金属回収装置に使用される搔き取りブレー ドの第 1の変形例を示す構成図である。
[図 11]図 11は、本発明の実施形態に係る金属回収装置に使用される搔き取りブレー ドの第 2の変形例と電解処理槽の変形例を示す構成図である。
[図 12]図 12は、本発明の実施形態に係る金属回収装置に使用される搔き取りブレー ドの第 3の変形例を示す構成図である。
[図 13]図 13は、本発明の実施形態に係る金属回収装置に使用される搔き取りブレー ドの第 4の変形例を示す構成図である。
符号の説明
[0018] 1 :電解処理槽
2 :金属回収盤
2a :導電性板
2b :絶縁膜
2s :スジッ卜
2t :凸部
3 ;回転装置
4 :アノード
5:直流電源
6, 60, 64, 65 :搔き取りブレード
R:酸洗廃液
発明を実施するための最良の形態
[0019] 以下に、本発明の実施形態を、図面を参照しながら詳細に説明する。
[0020] 図 1は、本発明の実施形態に係る金属回収装置を示す構成図である。
[0021] 図 1において、酸洗廃液 Rが入れられる電解処理槽 1内には、少なくとも一部が酸 洗廃液 Rに浸漬される円形の金属回収盤 2が配置され、その金属回収盤 2は回転装 置 3により回転可能に支持されている。
[0022] 金属回収盤 2は、酸洗廃液 R中で力ソード(陰極)として使用され、図 2又は図 3の断 面に示すような構造を有して!/ヽる。
[0023] 図 2に示す金属回収盤 2は、耐食性金属力もなる円形の導電性板 2aと、その導電 性板 2aの表面に形成された例えば厚さ 0. lmm〜 10mmの絶縁膜 2bとを有してい る。また、金属回収盤 2のうち少なくとも一面側の絶縁膜 2bには、その一部を除去す ることによって例えば 10mm以下の狭い幅を有するスリット 2sが形成されている。この スリット 2sは導電性板 2aの表面に対して凹部となっている。
[0024] なお、スリット 2sは、導電性板 2a側がその反対側よりも図 3 (a)に示すように狭くなつ てもよいし、図 3 (b)に示すように広くなつてもよい。図 3 (a)に示すように導電性板 2a 側を狭くすると、金属回収盤 2に電着した金属を離脱させやすくなり好ましい。
[0025] 図 4に示す金属回収盤 2は、例えば高さ 0. 1 mm- 10mm,幅 10mm以下に形成 された幅の狭い凸部 2tが少なくとも一面に形成された耐食性金属製の導電性板 2aと 、その導電性板 2a上で凸部 2tの周囲に埋め込まれた絶縁膜 2bとを有している。また 、絶縁膜 2bのうち導電性板 2aの凸部 2tを露出する部分はスリット 2sとなっている。導 電性板 2aの凸部 2tは、例えば導電性板 2aを研肖 lj、エッチングする方法等によって 形成される。なお、図 4に示す金属回収盤 2において、絶縁膜 2bと凸部 2tの上面は ほぼ平坦となっている。
[0026] なお、凸部 2tは、導電性板 2a側がその反対側よりも図 5 (a)に示すように細くなつて もよいし、図 5 (b)に示すように太くなつてもよい。図 5 (a)に示すように狭くすると金属 回収盤 2に電着した金属を離脱させやすくなり好ましい。
[0027] 図 2〜図 5において、導電性板 2aを構成する耐食性金属として例えばステンレスが 用いられ、また、絶縁膜 2bを構成する材料は、導電性板 2a上での金属の付着を制 約するものであり、例えば、フッ素榭脂、ポリプロピレン等の樹脂が用いられる。
[0028] 導電性板 2a上に絶縁膜 2bを形成する方法として、例えば、導電性板 2aと絶縁膜 2 bを合わせた状態でそれらに熱を加える方法、或いは導電性板 2aと絶縁膜 2bを接着 剤を介して接着する方法がある。熱を加える場合の加熱温度は絶縁膜 2bの軟化温 度等を考慮して適宜選択される。また、接着剤は、固化後の導電性板 2a、絶縁膜 2b との接着強度などを考慮して選択される。
[0029] 円形の金属回収盤 2に形成されるスリット 2sは、例えば図 6に示すように、所定のピ ツチで同心円状に複数形成された環状の平面形状を有している。スリット 2sは、導電 性板 2a上に絶縁膜 2bを固定、接着した後に、絶縁膜 2bの一部を所望の形状に機 械加工で研削することにより形成される。
[0030] スリット 2sの幅は、導電性板 2a上に成長する金属塊の剥離、除去を容易にする大 きさに設定される。また、隣り合うスリット 2s間のピッチは、狭すぎると後述する搔き取り ブレード 6が金属回収盤 2表面を摺動する際に絶縁膜 2bが剥離され易くなるので、 1 mm以上にすることが好ま U、。
[0031] また、導電性板 2a上での金属の析出量を多くするためにはスリット 2sの総面積は大 きい方が好ましい。
[0032] 金属回収盤 2が配置される電解処理槽 1内には、耐食性材料、例えば SUS304の ステンレス力 なるアノード 4が酸洗廃液 Rに浸漬される位置に配置されて 、る。ァノ ード 4は、金属回収盤 2のうちスリット 2sが存在する側の面力 所定の間隔をおいて配 置され、アノード 4と金属回収盤 2の導電性板 2bには直流電源 5が接続されている。
[0033] また、電解処理槽 1の上方には、金属回収盤 2のうちスリット 2s内力 成長する金属 塊を搔き取るためのアングル型の搔き取りブレード 6が金属回収盤 2に接離可能に配 置されている。この搔き取りブレード 6は、金属回収盤 2の中央寄りの領域力も外周寄 りの領域にかけてその位置が徐々に低くなるように傾けられて配置されて 、る。
[0034] また、搔き取りブレード 6を構成する材料として、金属回収盤 2上に成長する金属塊 を搔き取ることができる強度の金属、例えば鉄を用いてもよいが、耐食性を有する材 料、例えばステンレスを用いることが好ましい。搔き取りブレード 6の低い部分の下方 には金属用の回収箱 10が取り付けられて 、る。
[0035] 電解処理槽 1の底の排出口 laには、循環槽 7の吸入口 7aに繋がる第 1の管 8が接 続されている。また、循環槽 7上部の排出口 7bには、電解処理槽 1上部の吸入口 lb に繋がる第 2の管 9が接続されて 、る。
[0036] 第 1の管 8の途中には循環ポンプ 11が取り付けられていて、電解処理槽 3内の酸洗 廃液 Rを第 1の管 8、循環槽 7及び第 2の管 9を通して循環させように構成されている。
[0037] 次に、上記した金属回収装置を使用して酸洗溶液 R中の金属を回収することにつ いて説明する。この場合、金属回収盤 2として、図 2〜図 5に示した導電性板 2aとして 円形のステンレス板を使用し、絶縁膜 2bとしてフッ素榭脂膜を用いるとともに、図 6に 例示したようなピッチ 5mm、スリット幅 lmmで異なる径の環状のスリット 2sを絶縁膜 2 bに複数形成したものを使用する。
[0038] まず、金属回収盤 2の一部を浸漬させる量の酸洗廃液 Rを電解処理槽 1内に入れ る。この場合の酸洗廃液 Rは、例えば銅体又は銅合金体の表面の酸ィ匕物を除去する ために用いられた硫酸酸性水溶液であって銅を含んで 、る。
[0039] 続いて、直流電源 5により金属回収盤 2の導電性板 2aとアノード 4を酸洗廃液 Rを介 して通電させる。これにより電解が生じて、酸洗廃液 R中の銅は金属回収盤 2表面の スリット 2sから露出した導電性板 2a表面に析出する。
[0040] 導電性円板 2aとアノード 4の間に流れる電流密度が少ないと回収能力が低下する 一方、その電流密度が大きいと回収量が早く飽和してしまい、無用な通電時間が発 生してコストが嵩むので、最適な値となる電流密度を予め調査しておく必要がある。こ の実施形態での通電の条件は例えば電流 5〜70dAZmm2、電圧 1〜20Vとする。
[0041] 銅の析出が進行することにより、金属回収盤 2の表面には図 2〜図 5に示すように銅 塊 Bがスリット 2s上に沿って形成される。その銅塊 Bは、連続した析出により絶縁膜 2b 表面から突出する。
[0042] なお、電解により銅を析出させている時には、回転装置 3により金属回収盤 2を所定 の速度で回転させる。
[0043] その析出が飽和した後に、金属回収盤 2のうちスリット 2sが形成されている側の面に 搔き取りブレード 6を押し付け、さらに金属回収盤 2を回転装置 3により回転させると、 スリット 2sから突出した銅塊 Bは搔き取りブレード 6により搔き取られ、金属回収盤 2か ら剥離される。なお、搔き取りブレード 6の上部で搔き取られた銅塊 Bは、例えばブレ ード 6の下方に置かれた回収箱 10内に落下する。
[0044] ここで、金属回収盤 2の絶縁膜 2bに形成されたスリット 2sの幅が 10mm以下と細く なっているので、銅塊 Bの根元は細くなつて剥がれやすい状態、或いは折れ易い状 態となつている。従って、搔き取りブレード 6による金属回収盤 2からの銅塊 Bの除去 が容易であるし、回収した銅塊 Bは効率的な再利用が可能である。
[0045] なお、導電性板 2aを覆う絶縁膜 2bのスリット 2sは、導電性板 2aの片面のみ設けら れてもよいし、両面に設けられても力まわない。スリット 2を両面に設けたほうが回収量 が増えて好ましい。また、金属回収盤 2は 1枚でも構わないが、 2枚以上設けてもかま わない。 2枚以上の方が回収量が増えて好ましい。 2枚以上の場合は、並列にしても 、同軸上に設けても構わない。 [0046] また、本発明は、金属回収部として導電性板 2aに限定されるものではなぐ電着面 を有するものであれば、板状以外の構造であってもよい。例えば、ドラムの曲面側に スリット 2aを設け、金属を電着させて回収する装置も本発明に含まれる。また、榭脂か らなる絶縁板に金属の網状のものを貼り付けて、金属を電着させて回収する装置も 本発明に含まれ、この場合には網状の金属パターンが電着面となりその周囲に絶縁 物で囲まれることになる。すなわち、溶液から析出された金属成分が付着する電着面 と、前記電着面の表面の一部に形成された絶縁膜とを有する金属回収盤を備えるこ とを特徴とする金属回収装置であればよい。
[0047] さらに、本発明の金属回収装置は、上記説明で用いた図に限定されるものではな い。すなわち、金属回収盤 2と搔き取りブレード 6が接触し、かつ、相対的にそれらの 位置関係が移動することで、電着した金属を離脱させることができればよい。また、金 属回収盤 2は円盤に限定されるものではなぐ角型でも力まわない。さらに、金属回 収盤 2は回転しなくとも、固定されて ヽても力まわな!/、。
[0048] 本発明の金属回収装置は、金属を回収する構成を有し、金属の中でも金又は金の 合金、銀又は銀の合金、ニッケル又はニッケルの合金、亜鉛又は亜鉛の合金、錫又 は錫の合金、銅又は銅の合金を回収できる。最も回収に適しているのは、銅又は銅 の合金である。
[0049] 次に、金属回収盤 2として 3種類の構造のものを使用し、さらに、金属回収盤 2の代 わりに従来構造の 4種類の円板を使用し、それらの構造の違いによる銅回収能力を 実験結果に基づ!、て説明する。
[0050] まず、実施例 1として、図 6に示した円環状のスリット 2sと図 2に示した構造とを有す る第 1の金属回収盤 2を作製した。また、実施例 2として、図 6に示した円環状のスリツ ト 2sと図 4に示した構造とを有する第 2の金属回収盤 2を作製した。実施例 実施例 2に係る金属回収盤 2は、それぞれ直径 800mm、厚さ 10mmの円形のステンレス板 からなる導電性板 2aと、その表面に固定又は接着された厚さ lmmのフッ素榭脂 (テ トラフロロエチレン)力もなる絶縁膜 2bとを有している。また、それらの絶縁膜 2bに形 成される円環状のスリット 2sは、 5mmピッチで幅 lmmの同心円とした。
[0051] また、実施例 3として、図 7に示すように中心力も放射状に伸びる細長い直線状の 複数のスリット 2sを有するとともに図 2に示した断面構造を有する第 3の金属回収盤 2 を作製した。実施例 3に係る金属回収盤 2は、直径 800mm、厚さ 10mmの円形のス テンレス板カゝらなる導電性板 2aと、その表面に固定又は接着された厚さ lmmのポリ アミドカゝらなる絶縁膜 2bとを有し、絶縁膜 2bに形成されたスリット 2sの幅は lmmで、 ピッチを約 5mmとして!/、る。
[0052] 従来の構造の比較例 1として、絶縁物によって被覆されないステンレス円板を作製 した。また、比較例 2として、表面に Zrが塗布されたステンレス円板を作製し、比較例 3として、チタン円板を作製した。さらに、比較例 4として炭素微粒子を含有するプラス ティックがコーティングされたステンレス円板を作製した。なお、比較例 1〜4に係る円 板の直径は 800mmである。
[0053] そして、実施例 1〜 3に係る金属回収盤 2をそれぞれ図 1に示す金属回収装置の回 転装置 3に順次取り付け、さらに、従来の構造を有する比較例 1〜4の円板をそれぞ れ図 1に示す金属回収盤 2の代わりに回転装置 3に順次取り付けた。そして、各々に ついて、酸洗廃液 R力 の銅回収状態を調べたところ、表 1に示す結果が得られた。
[0054] 実験に使用した金属回収装置において、アノード 4は SUS304のステンレス力も構 成した。アノード 4と実施例の金属回収盤 20との距離と、アノード 4と比較例の円板と の距離は、いずれも 20mmに設定された。また、搔き取りブレード 6は幅 50mm、厚さ 20mm,長さ 600mmの直方体のステンレスから構成した。
[0055] 実験前の銅回収前の酸洗廃液の成分を調べたところ、銅が 71gZL (グラム Zリット ル)、硫酸が 16. 5g/ 過酸化水素が 2. 7gZLであった。また、電解処理槽 1に入 れる酸洗廃液の量は 200Lとした。さらに、直流電源 5による通電条件を平均電圧 3. 2V、電流 542Aに設定して 32時間通電した。
[0056] [表 1] 円板の 絶縁物と コ一 搔き取り 回 収 し 回収量
材質 ティング形状 状態 (註) た銅 の Kg
形状
実施例 ステンレス フッ素系榭脂 〇 銅塊 10. 3
1 同心円ス リ ッ
実施例 ステンレス フッ素系榭脂 〇 銅塊 11. 9
2 (同心円状 (凹部のみ)
凸部設置)
実施例 ステンレス ポリアミ ド 〇 銅塊 9. 7 3 放射状ス リ ッ
比較例 ステンレス 银ノ、" X 銅塊 11. 6 1
比較例 ステンレス ハ" Δ 銅塊 10. 8 2 Zr塗布
比較例 チタン Δ 銅塊 11. 1 3
比較例 ステンレス 炭素微粒子を 〇 粉末 0. 3 4 含むプラ スチ
ック
(註) 接き取り状態 : 〇…良好、 △…不良、 X…搔き取り不能
[0057] 表 1から明らかなように、実施例 1〜3に係る金属回収盤 2を力ソードとして使用した 場合には、いずれも搔き取りブレード 6による搔き取り状態は良好であり、銅の回収量 も多かった。
[0058] これに対して、比較例 1では、銅塊が力ソードである円板に密着して搔き取り不能で あった。比較例 2と比較例 3では、円板上の析出物をめくることによって剥がすことは 可能であつたが、搔き取ることはできな力つた。さらに、比較例 4では、最適な電流を 流すことはできず、円板表面の析出物の搔き取りは容易であったものの、その回収量 は少なかった。
[0059] 上述した実施形態では銅の回収についての実験結果について説明した力 回収 対象は銅に限るものではなぐ他の金属の回収も可能であり、その場合には金属回 収盤 2の絶縁膜 2bとして適切な材料を選択する。例えば、銀を含むシアン系アルカリ 溶液から銀を回収する場合には、絶縁膜 2bの構成材料としてフッ素榭脂ゃポリプロ ピレンが望ましい。
[0060] ところで、金属回収盤 2のスリットとして、図 6、図 7に示したような円環、放射状直線 の形状に限られるものではなぐ図 6に示すように同心円状スリットと放射状スリットを 組み合わせた形状や、図 7に示すように矩形型又は点型の島状であってもよいし、図 示しな 、渦巻き状であってもよ 、。
[0061] 図 8に示す金属回収盤 2において、スリット 2sによって分離されている複数の島状の 絶縁膜 2bがほぼ定間隔となるように同心円状スリットと放射状スリットの間隔を調整す る。また、図 7に示す金属回収盤 2において、スリット 2sは、複数の矩形状の場合には 約 lmm X lmmの大きさとし、複数の点状の場合には直径 lmmの円形とする。
[0062] 図 6〜図 9に示したスリット 2sは、図 2、図 3に示すように絶縁膜 2bの凹部の下に導 電性板 2aが存在する構造であってもよいし、図 4、図 5に示すように導電性板 2aの凸 部 2tの周囲に絶縁膜 2bが存在する構造であってもよい。
[0063] 図 4、図 5に示す金属回収盤 2では、導電性板 2aに凸部 2tを形成した後にその周り を絶縁材で埋める方法を採用するが、凸部 2tの形成は例えば導電性板 2aを研削す る方法を採用してもよいし、導電性板 2aをエッチングする方法を採用してもよい。例 えば、図 9に示した金属回収盤 2では、矩形状の凸部 2tを形成するために導電性板 2aを交差する 2つの方向に研削した後に、研削部分に絶縁材をコーティングする方 法を採用する。
[0064] 図 6〜図 9に示した 4種類の金属回収盤 2のスリット 2sで成長した銅塊を剥離した。
この結果、図 7に示すように、放射状のスリット 2sを有する金属回収盤 2は、図 6に示 す同心円状のスリット 2sを有する金属回収盤 2に比べて銅塊の剥離は容易であった 。また、図 8に示すように、同心円と放射状を合わせたスリット 2sを有する金属回収盤 2では、図 6、図 7に示す金属回収盤 2よりも電着面積を広くすることができ、し力も、 銅塊の搔き落としも図 6に示す金属回収盤 2に比べて容易であった。さらに、図 9に 示すようにな矩形型又は点型のスリット 2sを有する金属回収盤 2は、図 6に示すような 金属回収盤 2に比べて電着面積を増やすことは難しいが銅塊の剥離は比較的容易 であった。
[0065] 上述した金属回収装置に適用される搔き取りブレード 6は、アングル型に限られるも のではなぐ例えば図 10〜図 12に示す構造の搔き取りブレードを使用してもよい。
[0066] 図 10に示す搔き取りブレード 60は、円形の金属回収盤 2の中央力も外周にかけて 位置が低くなるように傾斜させた矩形状のブレード本体 61と、ブレード本体 61に取り 付けられた振動装置 62と、ブレード本体 61の上面に取り付けられてスリット 2sの延在 方法に対して斜めに当たるノコギリ歯状のギザギザの突起 63とを有している。ブレー ド本体 61の上面は、突起 63により金属回収盤 2から搔き取られた金属塊を滑らせる 領域を有している。
[0067] 突起 63により搔き取られた金属回収盤 2上の金属塊は、振動装置 62による振動と 金属塊の自重によってブレード本体 61上を滑り、搔き取りブレード 60の後方の回収 箱 10に落ちる。
[0068] また、搔き取りブレード 60の突起 63がノコギリ歯状である場合には、その突起 63は 、ノコギリ歯の角度によって金属塊を所望の角度で搔き取ることができるので、図 1に 示した真っ直ぐなブレード 6に比べて金属塊の剥離が容易になる。その角度は、スロ ット 2sが円環状である場合には、その接線方向に対して斜めである。
[0069] 搔き取りブレード 60は、図 11に示すように、金属回収盤 2の円環状のスリット 2s上を 移動する位置に櫛歯状の突起 63aが配置された構造を有してもよい。この場合、突 起 63aは金属回収盤 2の回転によりスリット 2s上を移動して金属塊を搔き取ることにな る。
[0070] 図 12に示す搔き取りブレード 64は、金属回収盤 2のスリット 2sの長手方向に対して 直角方向に往復動するブレードである。また、搔き取りブレード 64の下方の電解処理 槽 1の底は、搔き取られて落下した金属塊 Cを滑らせて循環槽 7へ移動させる傾斜面 Idを有し、その傾斜面 Idの低位部 Isには排出口 leが設けられている。そして、排出 口 leには、金属塊 Cを循環槽 7のフィルタ 12に導く管 13が取り付けられていて、排出 口 leを通過した金属塊 Cが循環槽 7のフィルタ 12により回収され、酸洗廃液 Rはフィ ルタ 12を通して循環相 7に入れられるように構成されている。
[0071] なお、フィルタ 12によって金属塊 Cを回収しない構造を採用する場合には、電解処 理槽 1の低位部 Isの手前にストッパーを設けて金属塊 Cが循環槽 7に落ちない構造 を採用してもよい。
[0072] 図 13に示す搔き取りブレード 65は、横長の矩形状のブレード本体のうち金属回収 盤 2中心力も離れた方の端部を支点として回転可能に取り付けられている。また、そ の支点には、ブレード本体を上方に跳ね上げる回転装置 66が取り付けられている。 さらに、搔き取りブレード 65の支点よりも外側には回収箱 10が配置されている。
[0073] その搔き取りブレード 65は、回転装置 66によって水平状態力も上方に跳ね上げら れることにより金属回収盤 2上の金属塊 Cを搔き取るとともに、搔き取られた金属塊 C を跳ね上げて回収箱 10に投入する。
[0074] ついで、搔き取りブレード 65は、跳ね上げ方向と同じ向きに回転されて金属回収盤 2上の金属塊を搔き取り、続 、て跳ね上げると 、つた動作を行う。

Claims

請求の範囲
[I] 溶液から析出された金属成分が付着する電着面と、前記電着面の周囲に形成され た絶縁物とを有する金属回収盤を備えることを特徴とする金属回収装置。
[2] 前記電着面は導電性板の表面であり、前記絶縁物は前記導電性板の前記表面の一 部に形成されて 、ることを特徴とする請求項 1に記載の金属回収装置。
[3] 前記電着面は、前記溶液中において前記金属成分を電解により析出させるための力 ソードであることを特徴とする請求項 1又は請求項 2に記載の金属回収装置。
[4] 前記電着面は回転可能に取り付けられていることを特徴とする請求項 1乃至請求項 3 の!、ずれかに記載の金属回収装置。
[5] 前記絶縁物には、前記電着面を露出するスリットが形成されていることを特徴とする 請求項 1乃至請求項 4のいずれかに記載の金属回収装置。
[6] 前記電着面は円形であって、前記スリットは複数の同心円環形状を有していることを 特徴とする請求項 5に記載の金属回収装置。
[7] 前記スリットは、前記電着面上で放射状に伸びた長方形状を有していることを特徴と する請求項 5に記載の金属回収装置。
[8] 前記電着面の少なくとも一面には凸部が形成されていて、前記絶縁物は前記凸部の 周囲に形成されていることを特徴とする請求項 1乃至請求項 7のいずれかに記載の 金属回収装置。
[9] 前記絶縁物は榭脂から構成されていることを特徴とする請求項 1乃至請求項 8のい ずれかに記載の金属回収装置。
[10] 前記電着面上に析出した前記金属成分の塊を搔き取るための搔き取りブレードを有 することを特徴とする請求項 1乃至請求項 9のいずれかに記載の金属回収装置。
[II] 前記金属成分は銅又は銅合金であり、前記溶液は酸洗処理液であることを特徴とす
«nf 求
項 1乃至請求項 10のいずれかに記載の金属回収装置。
PCT/JP2005/014849 2004-08-17 2005-08-12 金属回収装置 WO2006019060A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/573,746 US20080142374A1 (en) 2004-08-17 2005-08-12 Apparatus For Recovery Metal
EP05780242A EP1798312A4 (en) 2004-08-17 2005-08-12 APPARATUS FOR RECOVERING METAL

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-237509 2004-08-17
JP2004237509 2004-08-17
JP2005-230772 2005-08-09
JP2005230772A JP2006083466A (ja) 2004-08-17 2005-08-09 金属回収装置

Publications (1)

Publication Number Publication Date
WO2006019060A1 true WO2006019060A1 (ja) 2006-02-23

Family

ID=35907448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014849 WO2006019060A1 (ja) 2004-08-17 2005-08-12 金属回収装置

Country Status (4)

Country Link
US (1) US20080142374A1 (ja)
EP (1) EP1798312A4 (ja)
JP (1) JP2006083466A (ja)
WO (1) WO2006019060A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771482B2 (en) 2010-12-23 2014-07-08 Ge-Hitachi Nuclear Energy Americas Llc Anode shroud for off-gas capture and removal from electrolytic oxide reduction system
US8956524B2 (en) 2010-12-23 2015-02-17 Ge-Hitachi Nuclear Energy Americas Llc Modular anode assemblies and methods of using the same for electrochemical reduction
US8900439B2 (en) 2010-12-23 2014-12-02 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction
US9017527B2 (en) 2010-12-23 2015-04-28 Ge-Hitachi Nuclear Energy Americas Llc Electrolytic oxide reduction system
US8746440B2 (en) 2011-12-22 2014-06-10 Ge-Hitachi Nuclear Energy Americas Llc Continuous recovery system for electrorefiner system
US8882973B2 (en) 2011-12-22 2014-11-11 Ge-Hitachi Nuclear Energy Americas Llc Cathode power distribution system and method of using the same for power distribution
US8945354B2 (en) * 2011-12-22 2015-02-03 Ge-Hitachi Nuclear Energy Americas Llc Cathode scraper system and method of using the same for removing uranium
US9150975B2 (en) 2011-12-22 2015-10-06 Ge-Hitachi Nuclear Energy Americas Llc Electrorefiner system for recovering purified metal from impure nuclear feed material
US8968547B2 (en) 2012-04-23 2015-03-03 Ge-Hitachi Nuclear Energy Americas Llc Method for corium and used nuclear fuel stabilization processing
CN103436916B (zh) * 2013-08-05 2015-12-09 湖南凯天重金属污染治理工程有限公司 一种从低含铜废水中回收精铜的工艺及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169992A (ja) * 1998-12-03 2000-06-20 Mitsubishi Materials Corp 電解用陰極板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860509A (en) * 1973-02-20 1975-01-14 Envirotech Corp Continuous electrowinning cell
AU581964B2 (en) * 1985-06-27 1989-03-09 Cheminor A/S A method for the production of metals by electrolysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169992A (ja) * 1998-12-03 2000-06-20 Mitsubishi Materials Corp 電解用陰極板

Also Published As

Publication number Publication date
EP1798312A1 (en) 2007-06-20
JP2006083466A (ja) 2006-03-30
EP1798312A4 (en) 2009-07-29
US20080142374A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
WO2006019060A1 (ja) 金属回収装置
JP4794008B2 (ja) 電解採取により金属粉末を生成するための装置
TWI300317B (en) Plating apparatus, plating method, and method for manufacturing semiconductor device
US20040140222A1 (en) Method for operating a metal particle electrolyzer
EP1680530A1 (en) An electrolytic cell for removal of material from a solution
TWI537423B (zh) Indium hydroxide or a compound containing indium hydroxide
JP5632340B2 (ja) 水酸化インジウム及び水酸化インジウムを含む化合物の電解製造装置及び製造方法
JPS624892A (ja) 電解による金属の製造法
US7470351B2 (en) Discrete particle electrolyzer cathode and method of making same
JPH09316643A (ja) 物理蒸着装置の防着部品
JP5837681B2 (ja) 物品からの金属の再生
EP0058537B1 (en) Electrodeposition cell
JP4800626B2 (ja) Si系及びSn系活物質用リチウム二次電池負極用集電体及びその製造方法並びにその集電体を使用したリチウム二次電池。
JP2006241591A (ja) 金属回収装置
JP2004059948A (ja) 金属溶解液からの金属回収方法およびその装置
CN101006203A (zh) 金属回收装置
EP0915190A2 (en) Process and apparatus for supplying metal ions to alloy electroplating bath
JP7166215B2 (ja) コバルト用電極板の表面加工方法、コバルトの電解精製方法および、電気コバルトの製造方法
JP2003171788A (ja) 被メッキ物から金属母材を分別回収する装置および前記分別回収方法
JP3884150B2 (ja) 高速メッキ装置及び高速メッキ方法
WO2007013433A1 (ja) 鉛フリーはんだ中の銅析出方法、(CuX)6Sn5系化合物の造粒方法および分離方法ならびに錫回収方法
JPS585996B2 (ja) 金属電解回収装置
JP2007270282A (ja) バレルめっき方法
JP2002173792A (ja) 金属製品の製造方法
KR101328303B1 (ko) 전기주조용 모판, 그 제조방법 및 이를 이용한 금속지지체 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580028214.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005780242

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005780242

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11573746

Country of ref document: US