WO2006018998A1 - クローン哺乳動物の作成方法 - Google Patents

クローン哺乳動物の作成方法 Download PDF

Info

Publication number
WO2006018998A1
WO2006018998A1 PCT/JP2005/014474 JP2005014474W WO2006018998A1 WO 2006018998 A1 WO2006018998 A1 WO 2006018998A1 JP 2005014474 W JP2005014474 W JP 2005014474W WO 2006018998 A1 WO2006018998 A1 WO 2006018998A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
cloned
mammal
natural killer
Prior art date
Application number
PCT/JP2005/014474
Other languages
English (en)
French (fr)
Inventor
Hiroshi Wakao
Akihiko Koseki
Masaru Taniguchi
Atsuo Ogura
Kimiko Inoue
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to EP05768801A priority Critical patent/EP1792537A4/en
Priority to US11/573,995 priority patent/US20100083393A1/en
Publication of WO2006018998A1 publication Critical patent/WO2006018998A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0273Cloned vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • C12N15/877Techniques for producing new mammalian cloned embryos
    • C12N15/8775Murine embryos
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2517/00Cells related to new breeds of animals
    • C12N2517/02Cells from transgenic animals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2517/00Cells related to new breeds of animals
    • C12N2517/04Cells produced using nuclear transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2517/00Cells related to new breeds of animals
    • C12N2517/10Conditioning of cells for in vitro fecondation or nuclear transfer

Definitions

  • the present invention relates to cloned mammalian embryos and cloned mammals, methods for producing the same, and uses thereof. Furthermore, the present invention relates to a cloned mammalian embryonic stem cell (hereinafter also referred to as ES cell), a method for producing the same, and uses thereof.
  • ES cell cloned mammalian embryonic stem cell
  • somatic cells that can be used as donor cells that surpass these technical and immunological constraints has been demanded.
  • it has been almost impossible to accurately identify the origin of donor cells by conventional somatic cell cloning techniques and it has been impossible to specify a cell group capable of regenerating all individuals.
  • the conventional cloning technique it is extremely rare that an embryo is actually delivered after embryo transfer, and there is a need for a method for producing a cloned mammal that is more likely to become a litter.
  • the present invention is a method for producing a cloned animal that is more efficient and has a high survival rate, a cloned animal obtained by the method, its offspring, an embryo, and the like, and cells, tissues, organs, products, and the like obtained therefrom.
  • Another object of the present invention is to provide a method for obtaining ES cells from a cloned animal embryo, a cloned animal ES cell obtained by the method, and a cell,,, organ, product, etc. obtained therefrom.
  • Yet another object of the present invention is to provide a somatic cell cloning technique capable of accurately identifying the origin of donor cells.
  • the present inventors have obtained a kuoon that has been obtained by using natural killer T cells (hereinafter also referred to as NKT cells) as donor cells that share nuclei. It was found that embryos develop and become pups without the need for ES cell establishment and sequential tetraploid complementation. Furthermore, it was confirmed that the obtained cloned animal had normal reproductive ability, and the present invention was completed. That is, the present invention is as follows.
  • [1] A method for producing a cloned non-human mammal, characterized by using mammalian natural killer ⁇ cells as donor cells.
  • a method for producing a cloned non-human mammal comprising introducing a mammalian natural killer T cell nucleus into a mammalian oocyte.
  • a clone comprising introducing a nucleus derived from a mammalian natural killer T cell into an enucleated oocyte of a mammal to form an orchid embryo, and transferring the embryo into a host mammal. How to make non-human mammals.
  • the method for producing a cloned non-human Hf animal according to any one of the above [1] to [4], wherein the natural killer T cell and the enucleated oocyte are derived from different mammals.
  • the natural killer T cell is selected from the group consisting of umbilical cord blood, peripheral blood, moon cake, bone marrow, spleen, and thymus, and is collected from the view, any of the above [1] to [6] 2.
  • a method for producing a clone non-human mammal according to 1.
  • [1 3] characterized in that it has an allele containing V1 4-J ⁇ 2 8 1, which is a TCR strand that has been genetically generated, and has an increased number of natural killer cells.
  • a method for producing a cloned mammalian embryo characterized by using mammalian natural killer T cells as donor cells.
  • a method for producing a cloned mammalian embryo which comprises introducing the nucleus of a mammalian natural killer T cell into an enucleated oocyte of a mammal.
  • [2 3] The method for producing a cloned mammalian embryo according to any one of [19] to [21], wherein the natural killer sputum cell and the enucleated oocyte are derived from different mammals.
  • Natural killer sputum cells are collected from a sputum selected from the group consisting of umbilical cord blood, peripheral blood, tremor, bone marrow, spleen, and thymus, [19] to [23] A method for producing a cloned mammalian embryo described in any of the above.
  • [2 8] A cloned mammalian differentiated cell,, tissue, organ, or the like, comprising culturing and inducing differentiation of the cloned mammalian embryonic stem cell according to the above [2 7] under conditions capable of inducing desired cell differentiation How to make a product.
  • FIG. 1 is a schematic diagram showing an overview of the creation of NKT cell-derived cloned mice and the establishment of ES cell lines.
  • Figure 2 is a schematic diagram showing the location of the TCRV a: chain locus as well as the primer.
  • Figure 3 is an H-form diagram showing the location of the TCRV] 3 strand locus and primers.
  • FIG. 4 shows NKT cloned mice # 1 (tail and fetus, # 2 (tail and placenta), # 3 (fetus ®,
  • Figure 5 shows the TCRVa 14-J 281 gene in a cloned mouse! 3 ⁇ 4f
  • FIG. 6 is a view showing a TC R V a chain base sequence in an NKT cell-derived cloned mouse.
  • FIG. 7 is a view showing a TCRVj 3-chain nucleotide sequence in a cloned mouse derived from NKT cells.
  • FIG. 8 is a diagram (electrophoresis photograph) showing the results of Southern blot keratin using NKT cell-derived ES cells (lanes 1 to 6) genomic DNA.
  • the probe is the same as that used for the cloned mouse keratin.
  • a 13 kb band shift was observed with the TCRVo! 14 probe (lanes 1-6), and a 2.5 kb band disappearance was observed in ES cells in lanes 3 and 4.
  • the TCRVJS probe was used, a gene-generated band was observed.
  • the white arrowhead indicates the band where the gene orchid occurred.
  • the solid arrows indicate the bands before germ formation (germline configuration).
  • FIG. 9 is a diagram (electrophoresis photograph) showing the results of Southern plot analysis at F 1 by crossing NKT clone mouse # 1 with ICR species mice. Genes that have been rearranged from a cloned mouse TCRVQ! 14 inherited 8 kb band F 1 can be seen in male 1 and female 6 (upper panel, arrows). In addition, alleles including TCRV0 derived from clone mouse # 1 are separated into about 9 kb and 8 kb, respectively (see Fig. 4, black arrowheads). Each F 1 inherits a 10.4 kb band (open arrowhead) from the parental mouse and a band of about 9 kb or 8 kb.
  • FIG. 10 shows the results of FACS analysis at F 1 by crossing NKT clone mouse # 1 with ICR species.
  • the upper row shows the proportion of TCRVjS 8 in the progeny of cloned mice as the proportion of all TCRV ⁇ positive 1 live cells.
  • the bottom row is for cloned mouse offspring The percentage of NKT cells is shown.
  • Nenore 3 shows the results of a mouse that has completed and inherited 281 gene generations: ⁇ 0; NKT cells were circled and expressed as a percentage (%) of NKT cells relative to the total number of cells.
  • Figure 11 shows the status of differentiation or survival in in vitro culture (48 and 72 hours) of embryonic embryos obtained by transplanting NKT cell nuclei or T cell nuclei. !)?
  • Figure 1 shows the results of the 48 and 72 hour results shown in Table 1 in a draft (except for the birth of mice). The vertical axis shows the survival rate of cultured embryos over time, or the incidence of individuals when reconstructed embryos are introduced into pseudopregnant mice (the birth rate of transplanted embryos).
  • FIG. 12 is a diagram showing the results (TC RV ⁇ V s TCRV) 38) of FACS angles of peripheral lymphocytes of cloned mice (# 1, # 2).
  • Figure 13 shows that serum was collected from mice after 0, 4, 12, and 24 hours after stimulation with a-GC, an artificial agonist of NKT cells, and the cytodynamic force (I FN- ⁇ IL-2, GM-CSF, IL-4, IL-10, IL-15, TNF- (3 ⁇ 4, IL-1 ⁇ ) levels were measured by EL ISA method. Measurements were performed on mice, each site force in concentration on the vertical axis, and the measurement points on the horizontal axis.
  • FIG. 1 A summary of an example of the present invention is shown in FIG. 1
  • Natural killer T (NK T) cells used in the present invention are a type of lymphocyte that plays a regulatory role in the immune system, although the proportion thereof is small. NKT cells have two receptors, the T cell receptor (TCR) and the NK receptor. Spider cells express a specific repertoire different from normal sputum cells or sputum cells. For example, for mouse chains, 90% or more of NK T cells express a limited repertoire of mainly V j88, V] 37 and V ⁇ 2, and uniform chains for the scabies. 1 4-J ⁇ 2 8 1 is expressed. This uniform TCR chain was created as a result of rain-spawning on the genome by selecting V gene 14 and J 28 1 gene from the V and J gene groups during TCR gene randomization.
  • V a 14 and ⁇ It is known that this is a combination of V j3 1 1 closely related to non-polymorphic V a 2 4 and V ⁇ 8.2. Such a property is suitable for tracing the origin of donor cells in the obtained cloned animals.
  • the origin of NKT cells is not particularly limited, and umbilical cord blood and peripheral blood of mammals such as primates including humans, urinary ⁇ , rabbits, cats, dogs, horses, bushes, hidges, sheep and pigs.
  • the term “primate” means any animal belonging to the group of mammals including, but not limited to, monkeys, apes and humans. Specifically, single-cell suspensions recovered from peripheral blood and liver homogenates are recognized by the TCR highly retained in ⁇ cells and are galactosinolamides bound to CD 1 d molecules (a It can be selected and recovered by FACS angle using 3 ⁇ 43 ⁇ 43 ⁇ 4 lipids such as —Ga 1 Cer or a—GC).
  • the NK T cells used in the present invention may or may not be activated. Preferably, cells that are not antigen-stimulated are preferred.
  • NKT progenitor cells obtained by culturing NKT progenitor cells under a factor conferring NKT cell differentiation-inducing ability may be used.
  • NKT progenitor cells can be derived from fetal moon cysts or from peripheral blood or umbilical cord blood.
  • the method for producing a cloned mammal of the present invention is characterized in that NKT cells are used as donor cells. Specifically, it is implemented by difficult transplantation of NKT cells.
  • Nuclear transfer method There is no particular limitation as long as it can be carried out using the nucleus of the NKT cell as a donor cell nucleus.
  • the cell nucleus is introduced into an oocyte derived from a mammal of the same species as the cell nucleus, and the cell nucleus is introduced into an enucleated oocyte derived from a mammal of a species different from the cell nucleus.
  • the technique of fine-planting enucleated oocytes from different species of mammals is useful for the resuscitation of extermination, the preservation and growth of extinct males. Nuclear transfer to enucleated oocytes from the same species of mammal leads to pups more efficiently.
  • the method of introducing the nucleus of NKT cells into the enucleated oocyte of a mammal is not particularly limited as long as the nucleus of the unfertilized egg is finally replaced with the nucleus of the NK T cell, which is a donor cell.
  • the method of scratching the cell membrane of the NKT cell with a pipette, etc., and introducing the damaged NKT cell directly into the enucleated oocyte using a micromanipulator, etc. Used for. Difficult transplantation may be performed by cell fusion of NKT cells and enucleated oocytes. More specifically, for example, according to the method reported by Wakayama et al.
  • Mammalian oocytes subjected to enucleation can be obtained by superovulation treatment by phonon administration. Enucleation is carried out by using a small pipette on the oocyte and sucking, sucking, and tearing the nucleus and surrounding cytoplasm of the unfertilized oocyte. Broken oocyte; ⁇ defeated. Therefore, it is preferable to apply a treatment to eliminate the cytoskeleton of unfertilized oocytes beforehand. The disappearance of the cytoskeleton can be performed by using cytochalasin. It is also preferable to treat with cytochalasin after nuclear transfer.
  • the oocyte to be planted may or may not be activated, but it is preferably in an activated state.
  • the vitalization may be performed either before or after planting.
  • Activation can be performed by stimulation with electrical or drug treatment methods, but is not particularly limited. Particularly preferably, naturally mature terminal oocytes are used. Activation can be performed, for example, by increasing the concentration of divalent cations in the oocyte and / or decreasing the degree of phosphorylation of cellular proteins in the oocyte. This is generally done by introducing divalent cations, such as magnesium, strontium, norlium, calcium, into the oocyte cytoplasm, for example in the form of an ionophore. Another way to increase the divalent cation concentration is to This includes the use of Nyok and Ethanol treatments and cage chelating agents.
  • phosphorylation may be reduced by known methods such as the addition of serine monothreonine kinase inhibitors such as kinase inhibitor U, such as 6-dimethylaminopurine, 2-aminobulin and sphingosine.
  • kinase inhibitor U such as 6-dimethylaminopurine, 2-aminobulin and sphingosine.
  • phosphorylation can be inhibited by introducing phosphatase into the oocyte.
  • NK T cell nuclei into enucleated oocytes to form reconstructed embryos, and further transplanting the embryos into the host mammal to generate the embryos into the host mammal, So you can get a clone mammal.
  • N ⁇ T cells are used as donor cells, somatic cell transplantation requires the establishment of ES cells and the need for sequential tetraploid embryo complementation. can get. That is, NKT cells are predicted to be totipotent.
  • totipotent refers to a cell that gives rise to all cells in a developing cell mass, such as embryos, fetuses, and animals.
  • totipotent means a cell that gives rise to any cell of an animal.
  • Totipotent cells when used in a procedure that creates embryos from one or more »planting stages, can give rise to any fine J3 envelope of the developing cell mass.
  • the term “having totipotency” is distinguished from the term “having pluripotency”. The latter term refers to a cell that differentiates into a male cluster of cells within a developing cell mass but cannot give rise to all cells in such a developing cell mass.
  • the term “embryo” or “embryonic” includes a developing cell mass that is not implanted in the endometrium of a host mammal. Therefore, as used herein, the terms “embryo” or “embryonic” are used to refer to fertilized oocytes, cytoplasmic hybrids, cell masses during the preembryonic stage, or to the endometrium of the host mammal.
  • a reconstructed embryo means an embryo reconstructed with a nucleus derived from a donor cell and a cytoplasmic component derived from an oocyte obtained by nuclear transfer of a donor cell nucleus into an oocyte.
  • Embryos sometimes present multiple stages of cell development. For example, a single cell embryo can be called a zygote, a zygote is a solid, spherical cell mass that arises from a split embryo and can be called a morula, and an embryo with a split space is an embryo ⁇ Can be called a package.
  • Transplantation of the reconstructed embryo into the host mammal can be performed according to a method commonly practiced in the art. Specifically, the reconstructed embryo is continuously cultured until reaching the 2-8 cell stage, and then the 2-8 cell stage embryo is transplanted into the host mammal, and the reconstructed embryo is developed in the mammal to produce the cloned mammal. Create Medium suitable for the culture and maturation of Fujiki embryo is well known in the art and is suitable for the type of mammal from which the enucleated oocyte originates! It is decided. Furthermore, the reconstructed embryo may be cultured together with feeder cells as desired, preferably on the feeder cell layer.
  • Fujiki embryos are cultured until they are needled to a size suitable for transplantation into a host mammal.
  • about 2 to 400 cells, more preferably about 4 to 1 28 cells in the case of mice, the cells are cultured until about 48 to 72 hours, iL.
  • This culture is suitable. Under the conditions, ie, about 37 ° C. to 38.5 ° C. and about 5 to 7.5% C 0 2 , the medium is changed as appropriate.
  • it is not particularly limited as long as it can develop embryos, it is preferably a mammal derived from the same species as the enucleated oocyte, more preferably a sham female mammal.
  • Fake female mice can be obtained by mating female mice with normal cycle with male mice castrated by vagina ligation, etc. S embryos (cloned embryos) produced in the uterus, especially in the fallopian tube and giving birth In order to ensure more reliable implantation of cloned embryos, pseudo-mice that become pupae are female mice that collect oocytes for enucleation. It is preferable to select from a group of female mice in the same sexual cycle.
  • the term “fetus” means a developing cell mass that is implanted in the endometrium of a host mammal.
  • the fetus may contain distinct features such as genital ridges. Reproductive ridges are features that are easily identified by those skilled in the art and are recognizable in fetuses of many animal species.
  • Fetal cells may mean any cells isolated from, and derived from, or derived from, a fetus.
  • the fetus of a cloned mammal of the present invention can be obtained by transferring the reconstructed embryo to a foster parent and then collecting it at the arbitrary stage in the above-described process of creating a cloned mammal.
  • the progeny of the cloned mammal of the present invention can be obtained by crossing a cloned mammal developed from a embryonic embryo with a second mammal.
  • the second mammal is a normal mammal (not a clone) of the same species as the cloned mammal (also called the first mammal for convenience), Alternatively, it may be a cloned mammal generated from a cloned embryo or its offspring. It may be a clone B mammal or a progeny thereof generated from a transgenic B mammal or Transeck mammal embryo described later.
  • the term “offspring” refers to the offspring generation (F 1) whose parent is the clone mammal of the present invention, the offspring generation whose parent is F 1 (F2), and the offspring generation whose parent is F 2 (F 3 Any number of generations may be used as long as they originate from the cloned mammal of the present invention.
  • cells, tissues or organs can be arbitrarily obtained using the above-described cloned mammals, fetuses of cloned mammals, and descendants of cloned mammals. Cell / tissue or organ collection / recovery need not be performed in a particularly limited manner, but is usually performed in a conventional manner.
  • Products secreted, produced and extracted from the obtained cells, tissues or organs are also within the scope of the present invention.
  • Products obtained from cloned mammals are as diverse as those obtained from rabbit mammals, but include glycoproteins, neuropeptides, immunoglobulins, enzymes, peptides and hormones. More specifically, examples include human a1 antitrypsin, human blood coagulation factor VIII, tPA (tissue specific plasrainoge n activator), antithrombin III, protein C, fipurinogen, and human blood coagulation factor IX. It is done.
  • the cloned mammal's tissues and organs obtained as described above have the same combined antigen (for example, HLA in humans) as the donor cell NKT cells, and the cloned mammalian thread obtained ! ⁇
  • an organ is transplanted into a mammal that is a donor cell, it becomes immune-tolerated without being recognized as non-self, and immune rejection does not occur.
  • the progeny of the mouth-mouthed mammal of the present invention have the following characteristics (details will be described in Examples below).
  • the TCRV] 3 chain expressed in the individual is substantially identical to the single TCRV ⁇ chain repertoire, especially the NCR cell TCRV] 3 chain repertoire used as donor cells.
  • TCR recombination activating genes
  • T cells expressing a single TC RV] 3 chain express a] 3 type TCR and suppress the expression of ⁇ type TCR.
  • Such a phenomenon is similar to the phenomenon observed in intestinal diseases such as colitis, and therefore, the offspring of the cloned mammal of the present invention is also useful as a model animal for colitis.
  • the number of NKT cells is increased in the progeny of cloned mammals having alleles containing Val 4_Jo; 281, which is the TCR chain of the present invention that has undergone gene rearrangement. Increased number of NKT cells can be observed both in the ratio of ⁇ JM cells (in the ratio of NKT cells) and in absolute numbers.
  • NKT cell force Since the cells have a function to control the S immune system, the descendants of the cloned mammal of the present invention having a larger number of NKT cells can be used to study diseases and / or pathologies involving NKT cells. In particular, it is expected to greatly contribute to the elucidation of the pathogenesis of autoimmune diseases and allergic diseases, transplanted bone marrow rejection, and tumor immunity.
  • More specific diseases and / or conditions include inflammatory conditions in humans and animals, various pains, collagen diseases, autoimmune diseases, various immune diseases, especially inflammation and pain in joints and muscles Rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, uric acid arthritis, etc.) skin inflammatory condition (eczema etc.), inflammatory condition of eyes (conjunctivitis etc.), inflammation-related lung disorders (asthma, bronchitis etc.) ), Digestive condition with inflammation (phaffic ulcer, clone disease, atrophic gastritis, wart gastritis, ulcer; ⁇ biocolitis, steatosis, localized ileitis, irritable bowel syndrome, etc.), gingiva Inflammation, post-disorder inflammation, pain, fl dynamics), inflammation-related fever, pain, other conditions, transplant rejection, systemic ⁇ liver lupus erythematosus, scleroderma, dermatomy
  • the present invention also provides a method for producing a cloned mammalian Es cell using the above-described embryonic embryo (also referred to as a cloned embryo or a cloned mammalian embryo), and a cloned mammalian ES cell obtained thereby.
  • ES cells include pluripotent cells, preferably isolated from embryonic forces maintained in in vitro cell culture.
  • ES cells can be cultured with or without feeder cells, but feeder cells are preferably used.
  • feeder cells those normally used in the art can be used.
  • mouse embryonic fibroblasts can be used in the case of mouse ES cells.
  • Cloned mammalian ES cells can be established from embryonic cells isolated from embryos at any stage of development, including embryonic and pre-embryonic embryos. More specifically, the nucleus of an NKT cell, which is a donor cell, is introduced into an enucleated oocyte, and the obtained mammalian mammalian embryo is cultured until the blastocyst stage and the Z or pre-embryo frame stage. It is created by isolating tr from the obtained inner cell mass.
  • the term “inner cell mass” means a cell that gives rise to an embryo body. The cells that line up outside the embryo transfer are called embryo trophoblasts. Methods for making an internal cell mass from an embryo are known to those skilled in the art.
  • the cloned mammalian ES cells can be cultured and induced under conditions capable of inducing desired cell differentiation, and desired differentiated cells, organs and organs can be prepared.
  • the conditions under which the desired cell differentiation can be induced should be set according to the type of differentiation, and can be easily set by those skilled in the art.
  • embryonic stem cells are induced to differentiate into hematopoietic stem cells, and further differentiated to finally produce blood cells such as red blood cells and white blood cells.
  • NKT cells which are donor cells
  • NKT cells have the TCR gene generated.
  • Val 4 ⁇ ] a 2 8 1 is expressed characteristically in the chain as described above.
  • it has a V / 3 chain that has undergone genetic analgesia.
  • the cloned mammal's fetus and offspring are derived from NKT cells, which are donor somatic cells, by examining the ability to show the same TCR reconstruction pattern as the NKT cells used as Can be determined.
  • the ability to inherit the reconstituted TCR gene can also be confirmed by PCR.
  • the specific 3 ⁇ 4! Shinobu procedure will be described later in the embodiment.
  • the above-described method for producing a cloned mammal of the present invention can also be used for cloning a genetically engineered mammal or a transgenic mammal.
  • mammalian NKT cells that have been genetically manipulated to express a desired trait as donor cells are used, and more specifically, genetic manipulation is performed to express a desired trait. It is carried out by introducing the nucleus of a mammalian NKT cell into an enucleated oocyte to form a reconstructed embryo (transgenic embryo), and transferring the orchid embryo into a host mammal.
  • Transgenic embryo means an embryo containing heterologous nucleic acid into which one or more cells have been introduced by human intervention.
  • a transgene can be introduced directly or indirectly into a cell by introducing it into a cell precursor, by deliberate genetic manipulation, or by infection with a thread and virus.
  • the transgene expresses a gene that can exhibit a desired form of cell force s by the transgene.
  • it also includes transgenic embryos in which the ⁇ gene is silent.
  • the transgenic embryo is the same as that obtained in the process of creating a cloned mammal described above, except that the nucleus of the donor cell is the nucleus of a cell that has been genetically manipulated to express the desired trait. It is created in the same way.
  • the transgenic mammal of the present invention is a germline transgenic animal that is given the ability to transmit genetic information to offspring by introducing genetic changes or genetic information into the germline. are also included.
  • gene refers to a D ⁇ sequence containing regulatory and code sequences necessary for the production of a polypeptide or precursor.
  • the polypeptide may be encoded in the full-length code sequence, or in any part of the coding sequence as long as the desired activity is retained.
  • conducting Ait gene broadly refers to any nucleic acid that is introduced into the genome of an animal, and is usually unique on the genome, a gene or DNA that has a sequence, the ability to It includes, but is not limited to, genes that are not normally transcribed and translated (expressed) in the genome, or any other gene or DNA that is desired to be introduced into the genome.
  • Transgenes include There are genes that are normally present on non-transgenic genomes but whose gene expression is desired to be changed, or gene power S that is desired to be introduced as a modified or variant.
  • a transgene may be specifically directed to a limited locus, may be randomly integrated into the chromosome, or may be DNA that is organized outside the chromosome.
  • a transgene may contain one or more transcriptional regulatory sequences and any other nucleic acid, such as an intron, that may be necessary for the proper expression of the selected nucleic acid.
  • the derivative ⁇ 3 ⁇ 4 gene has a coding sequence or a non-coding sequence, or a combination thereof.
  • the ⁇ 3 ⁇ 4 gene includes regulatory elements that have the ability to sleep the expression of one or more transgenes under appropriate conditions.
  • a construct that can exhibit a desired trait ⁇ !: gene means, for example, that a protein that expresses a desired trait (eg, exhibits biological activity) or an antisense RNA is expressed. Means a child. 5 It gene includes plant, fungus, animal, bacterial genome or episome, 3 ⁇ 4 ⁇ biological nuclear DNA or plasmid DNA, cDNA DNA, viral DNA, or chemically synthesized DNA, May be derived in whole or in part from any source known in the art.
  • the i ⁇ t gene sequence can be, for example, a receptor, an enzyme, a cytokine, a hormone, a growth factor, an immunoglobulin, a cell cycle protein, an intracellular signaling protein, a membrane protein, a cytoskeletal protein, or a reporter protein (eg, green fluorescence)
  • ⁇ encoding polypeptides such as protein (GFP), 0-galactosidase, and noluciferase.
  • the gene is related to a specific disease or disorder such as cardiovascular disease, neurological disease, reproductive disorder, cancer, eye disease, endocrine disorder, lung disease, metabolic disorder, autoimmune disorder, aging, etc. May be.
  • a syngeneic gene may contain one or more alterations in the coding or untranslated region that may affect the biological activity or production of the expressed product, the rate of expression, or the mode of expression control. . Such modifications include, but are not limited to, one or more nucleotide mutations, insertions, deletions, and substitutions.
  • a 3 it gene can comprise a contiguous coding sequence, or it can contain one or more introns linked to an appropriate splice junction.
  • the structural gene also encodes a fusion protein: ⁇ .
  • Transgenic mammalian ES cells can also be prepared using the transgenic cells using a method similar to the method for producing cloned mammalian ES cells of the present invention described above.
  • the obtained transgenic mammal ES cells can be induced to differentiate by culturing under the conditions capable of inducing desired cell differentiation, similar to the above-described cloned mammalian ES cells. Cysts, »as well as organs can be created.
  • the obtained divergence cells, gourds and organs have a structure that can exhibit the desired trait, and by expressing the gene, differentiated cells,, and organs having the desired trait, or from them The product produced can be obtained.
  • the cells,, and organs, or the products recovered from them can be recovered using a method commonly practiced in the art, and is appropriately set according to the desired character. Furthermore, using the method described in the present invention, transgenic primate ES cells capable of expressing a gene associated with a specific disease can also be produced. Therefore, many human diseases can be treated by the method described in the present invention and the resulting ES cells and the like. As described above, the present invention provides not only a method for producing a cloned mammal, but also the possibility of producing a transgenic cloned mammal. Such transgenic mammals can also be used as a model for assessing the efficacy of research models for serious human diseases, as well as for the treatment strategy of genes and stagnation. Furthermore, the stem cells obtained by the present invention are extremely important for the study of many diseases and functions (eg aging, AIDS, cancer, Alzheimer's disease, autoimmune disorders, metabolic disorders, obesity, organogenesis, mental illness, and reproduction). I can say that.
  • diseases and functions e
  • TC R V] 3 chain of the cloned mammal and the transgenic animal of the present invention is single and the number of NK T cells is relatively and absolutely increased.
  • cloned animals and transgenic animals it is possible to discover the onset mechanism of diseases, and to create molecular medicine treatment methods and ⁇ .
  • a mammal created by gene knockout for a specific gene can be used to treat cancer, heart disease and stroke, arteriosclerosis, inborn errors of metabolism, and other fetal and neoplastic diseases. Discovery can be promoted.
  • Such animals also have diabetes, liver damage, kidney damage, human development, wound healing, heart attack damage, stroke damage, spinal damage, memory loss, Alzheimer's disease, and other dementia, muscle Suitable for fffi- cation and improvement of cell therapies for diseases, including injuries.
  • NKT cells Is defined as one GC 1 oaded CDl dt etr amer + / TCR] 3+.
  • NKT cells have a combination of TCRVo; chain only Va 14- J ⁇ 28 1. If the cloned mouse created is derived from sputum cells, then the genomic DNA of this mouse and the placenta will have the genomic DNA of Vo; 14- J ⁇ 281 It should be. Similarly, the V] 3 strand should have genomic DNA that has been gene-generated.
  • the probe for Southern plot was prepared as follows.
  • PCR was performed on genomic DNA extracted from the tail of C57BL / 6 mice.
  • Each primer was prepared by using a custom primer synthesis of InVitrogen.
  • Primer sequence 1 5 CGCTTGTGCACATTTGTTCT— 3, (SEQ ID NO: 1)
  • Primer sequence 2 5'-TAAGTTTCTGGGGAGCATGG-3 '(SEQ ID NO: 2)
  • Primer sequence 3 5'-GGGGCTGTGAACCAAGACAC-3 '(SEQ ID NO: 3)
  • Fig. 2 shows the position of the TCRVal 4 Southern probe on the genome
  • Fig. 3 shows the position of the TCRV] 3 Southern probe on the genome.
  • Fig. 2 schematically shows various V ⁇ fragments near the Va14 gene. The exon part is drawn with a square.
  • Figure 3 schematically shows the V ⁇ , D, J, and C segments.
  • Genomic DNA that has undergone gene generation and has a germline configuration does not have a reconstructed product called V-Ja, so when Southern blotting was performed using the Va 14 probe, it was derived from 1 29 / SV-ter mice. Produces a 5 kb band with the allele ( Figure 4, lane 2), and an allele from the C57BL / 6 mouse produces an approximately 13 kb band ( Figure 4, lane 1). This is because the fragments produced when digested with EcoR I differ between 3 ⁇ 4 ⁇ from 129_S v_ter and 3 ⁇ 4 ⁇ from C57BLZ6.
  • mice # 1, # 3, and # 4 8 kb bands were detected by recombination in the genomic DNA with the V 14 locus after gene generation, but about 13 kb and 2 The 5 kb band remained intact ( Figure 4, Lane 4, Lane 5, Lane 8, Lane 9).
  • this 8 kb band is derived from the C 57B LZ 6-derived allele in cloned mice. It should be noted that the approximately 13 kb band remains after gene rearrangement, because there are two V ⁇ 14 genes among the C57BL / 6 alleles, one of which is a pseudogene. It is done.
  • Genomic DNA was extracted from the tail of cloned mice (clone mice # 1, # 2, and # 4) or its placenta, and the sequence of Val 4—J a 281 was amplified by PCR. If both of these genomic DNA alleles are in a pre-rain-growth configuration (germline configuration), no PCR product will be produced. This is because the Va 14 and J a 281 gene fragments are separated by several megabases and cannot be amplified by PCR. However, if it is gene-generated, it should produce a PCR product of about 330 bp (see Figure 5).
  • the DNA sequence of the product obtained can be distinguished from whether it is derived from 1 29 / S V-ter or C 57 BL / 6 ( Do ⁇ "One NKT cell is F1 of C 57BL / 6 and 129 / S v-ter) (see Figure 6).
  • PCR primers for detection of Va 14—J 281 are as follows.
  • Fig. 5 schematically shows the position of each primer on the genome.
  • Primer sequence 5 5'-CCCAAGTGGAGCAGAGTCCT-3 '(SEQ ID NO: 5)
  • Primer sequence 6 5 '— AGGTATGACAATCAGCTGAGTCC— 3' (SEQ ID NO: 6)
  • PCR was performed using the above-mentioned primers (primers 5 and 6) in combination with the genomic DNA from the tail ⁇ 3 ⁇ 4 (50 ng of DNA, each primer concentration 0.2 ⁇ )
  • primers 5 and 6 primers 5 and 6
  • AB I Amp 1 i Ta q Go 1 d Treatment was performed at 4 ° C for 10 minutes, and a cycle of 94 ° C for 1 minute, 60 ° C for 1 minute, and 72 ° C for 1 minute was performed 36 times).
  • a PCR product of about 330 bp was obtained ( Figure 5, PCR Figure, Lane 2 and Lane 9), respectively.
  • the product could not be obtained as expected with the genomic DNA of the control C57BL / 6, 129 / S vj ⁇ or blood stem cell-derived cloned mice (Fig. 5).
  • the DNA base sequence of this PCR product was determined, it was found that it had a gene-generated in-frame TCRVa 14-J 281 as shown in FIG. Clone mice # 1 and # 4 were C57BLZ6 type, and clone mouse # 2 was 129 / S v-ter type.
  • T CR V; 3 chain is not uniquely determined unlike T CR V ⁇ chain. Therefore, in order to investigate which V] 3 strand is used, PCR is performed by awakening the clone mouse # 1 tail and placental genome D ⁇ ⁇ ⁇ using a primer that can detect various V] 3 strands. ⁇ DNA sequence was determined (see Figure 3 for the position of each primer on the genome).
  • the combination of PCR primers used is any one of the following group A of primers and any one of group B of primers shown below.
  • alleles with the TCRV] 3 locus that have undergone gene rearrangement yield PCR product power S, whereas normal alleles with gelline configuration produce products. I can't get it.
  • Primer group A (TCRV side):
  • Primer sequence 7 (for ⁇ 2): 5, -CACGGGTCACTGATACGGAGC-3 '(SEQ ID NO: 7)
  • Primer row 8 (for Vj33): 5, 1 TGAGTGTCCTTCAAACTCACC— 3 '(SEQ ID NO: 8)
  • Primer arrangement IJ1 3 (for V
  • Primer sequence 14 (for V
  • Primer sequence 15 (for V / 312): 5'-CATCCTTCTCCACTCTGAAG A-3 5 (SEQ ID NO: 1 5)
  • Primer sequence 16 5 '—GAAGGGACGACTC Dc GTCTTACCTT— 3' (SEQ ID NO: 16)
  • Primer sequence 1 7 5'-TGAGAGCTGTCTCCTACTATCGATT-3 '(SEQ ID NO: 1 7)
  • FIG. Clone mouse # 1 has the V 38 S 2—D1—J 2 S 5 framework of the gene rearranged clone, and clone mouse # 2 is VjS 8 S 3-D 1-J ⁇ 1 S 4 there were.
  • the peripheral blood of cloned mice # 1 and # 2 was horned with F A C S for the V / 3 phenotype?
  • almost all of the donor cells were TC RV / 38Hf live, unlike those of the donor cells (Fig. 12). This indicates that allele elimination occurs in both cloned mice.
  • These cloned mice have no apparent abnormality and are still normal except for a small obesity trend even after 12 months since birth (as of June 2005).
  • the cloned mouse obtained in the present invention was derived from the NK T cells at the end of the gene.
  • Example 2 Establishment of ES cell line from NK T cells
  • ES cells were injured with pipettes and transplanted into female eggs as described above. 60 hours after transplantation (Day 2.5, 8-cell state, emb ryo) ES media (01 ⁇ ⁇ ] ⁇ containing FCS, L-glu, NEAA, P / S, LIF and 21 ⁇ £) The cells were washed using, and re-seeded on pre-exposed fetal '13 ⁇ 4 fibroblasts (1 embry. Z culture dish). Subsequently, the cells were cultured until the inner cell mass (ICM) grew sufficiently at 37 ° C and 7% CO 2 (7-10 days a3 ⁇ 4).
  • ICM inner cell mass
  • cloned mouse # 1 was mated with female mice of ICR, C 57 B LZ6 strain. As a result, 47 children were born in three months. From this fact, it is determined that the clone mouse has normal ability. Southern plots were performed to see how the genomic DNA looks in these offspring (offspring F 1). An allele TCRV that inherited the 8 kb band derived from cloned mouse-derived TCRVa 14 derived from TCRVa 14 and was found in male 1 and female 6 It was confirmed that 14 chains were inherited by germ cells (Fig. 9, top, arrow).
  • Alleles containing TCRV from the parent clone mouse # 1 are separated into about 9 kb and 8 kb, respectively (see Fig. 4).
  • Force Each F1 is a 10.4 kb band derived from the mother mouse (Fig. (9, bottom, white arrowhead) and the band of about 9 kb or 8 kb
  • NKT clone mouse F1 was sprained with spleen and liver. The spleen was crushed on two glass slides to form single cells, and red blood cells were removed and used for staining. In addition, the monthly collection is crushed with a metallic mesh with a mesh diameter of 75 ⁇ m, prepared to work cells by the density gradient of Perco 11 and then removed from the erythrocytes for use as a single cell for staining. It was.
  • T CRV ⁇ anti-T CR V ⁇ antibody (same as used in Example 1)
  • TCRV 8 antibodies that recognize only TCRV 8 (Phar Mingen, product number 553861)
  • the ratio of TCRV / 38 in clone mouse progeny was examined by staining with FACS. The results are shown in the upper part of FIG.
  • CD I d tetramer (same as used in Example 1)
  • O3 ⁇ 4tTCRV antibody standard for NK T cells
  • NK T cells in the offspring of cloned mice was examined by FACS analysis after staining with. The results are shown in the lower part of Fig.10.
  • F 1 was created by crossing clone mouse # 1 with female C 57BL / 6. Subsequently, F 1 males containing V ⁇ 14-J ⁇ 281 that had been genetically reconstituted were converted to SPF by I VF (in vitro fertilization) and again crossed with female C57BLZ6 to obtain offspring (Va 14 -J ⁇ 281 mice). Experiments were performed using three month old Va 14 -J ⁇ 281 mice and age-matched litters (control mice).
  • ⁇ -GC was administered to the mice intravaginally at a dose of 2 ⁇ gZ mice and stimulated in vivo.
  • Blood and serum from in vitro-stimulated mice were collected at a specified time, and various cytokine concentrations in the serum were measured using Bio—P1 e Suspension Ar ray System (BioRad, Hercu 1 es, CA). Measured with
  • Dendritic cells were obtained from the spleens of mice (Val 4—Jo; 281 mice, or littermate control mice) using CD 11 c microbeads (Mi 1teny i). Dendritic cells derived from each mouse were stimulated with a-GC (20 Ong / mL) for 6 hours and mixed with spleen cells (SPC) derived from each mouse. These cells were co-cultured for 72 hours, and the production of IFN- ⁇ and IL-4 was measured using an ELISA kit (Genzyme TECHNE, Mena ⁇ o1is, MN).
  • SEQ ID NO: 2 TCRV 14 Southern probe preparation PCR ply (Bray sequence. 2)
  • SEQ ID NO: 3 PCR ply for TCRV Southern probe preparation (Ply sequence 3)
  • SEQ ID NO: 4 1 ⁇ 1 ⁇ / 3 Southern probe preparation? 1 primer (primer sequence 4)
  • SEQ ID NO: 5 PCR ply for detection of TCRVa 14—J ⁇ 281 (ply sequence 5)
  • SEQ ID NO: 6 TCRVo; 14—PCR ply for detection of J ⁇ 281 (ply sequence 6)
  • Number 7 PCR ply for detection of TCRV ⁇ 2 (ply sequence 7)
  • SEQ ID NO: 8 PCR ply for detection of TCRV / 33 (ply sequence 8)
  • SEQ ID NO: 9 PCR ply for detection of TCRVJ34 (ply sequence 9)
  • SEQ ID NO: 10 PCR ply for detection of TCRV / 35 (ply sequence 10)
  • SEQ ID NO: 1 1 PCR ply for detecting TCRVj36 (ply sequence 1 1)
  • SEQ ID NO: 12 PCR ply for detection of TCRVj37 (ply sequence 12)
  • SEQ ID NO: 13 PCR primer for detection of TCRV ⁇ S 8 (primer sequence 13)
  • SEQ ID NO: 14 PCR primer for detecting TCRVj311 (primer sequence 14)
  • SEQ ID NO: 15 PCR primer for detecting TCRVJ312 (primer sequence 15)
  • SEQ ID NO: 16 PCR primer for detecting TCRV3 (primer sequence 16)
  • SEQ ID NO: 17 PCR primer for detecting TCRVi3 (primer sequence 17)
  • the cloned mammals, cloned mammal embryos obtained from the present invention, and the cells, silkworms, organs and products obtained from them have exactly the same compatibility (for example, HLA) as the donors, and are also aesthetic. They are equivalent and do not cause immune rejection at the time of transplantation and administration.
  • HLA compatibility
  • NKT cells it is not necessary to establish ES cells and te r a p l o i d c o m 1 er t e n t i o n for cloning. This saves a lot of time and effort.
  • ES cells were established using NKT cell nuclei; ⁇ the efficiency is about 6%, which is much higher than conventional peripheral mouse T cells and B cells used as donors: ⁇ .
  • efficiency of establishing human ES cells by autologous transplantation Hwang, W. S. et al., “Evidence of a pluripotent human embryonic stem ce stem line derived from a cloned blastocyst. J, Science,
  • the rate of transplanted nuclei to individuals is approximately 1.5%, and the cloning rate / rate of ES cells that have been considered to be obtained relatively easily so far (Wakayatna, T., ⁇ Mice cloned "From embryonic stem cells.”, Proceedings of the National Academy of Sciences of the United States of America, (USA), 1999, 96, p. 14984-14989).
  • cloned mammals can be produced at a higher rate, so that useful animals (for example, transgenic sheep and cows that produce biopharmaceuticals in milk) can be easily cloned. This will enable mass production and cost reduction of these drugs, contributing to a reduction in total medical costs.
  • the progeny of the cloned mammal of the present invention is characterized in that the TCRViS chain expressed on the T cell is substantially composed of a single TCRV / 3-chain repertoire, and more specifically, a donor cell.
  • the number of NKT cells is relatively and absolutely increased compared to the wild type in the progeny having an allele containing 1-] a 281 which is the TCR ⁇ chain that has been generated in the gene f. Yes.
  • the progeny of the cloned mammal of the present invention can be used as a model animal for pathophysiology such as autoimmune diseases, and the significance of the role of NK T cells in immune control and the diversity of TCRV / 3 chain repertoire. It gives a tricking technique.
  • This application is based on Japanese Patent Application Nos. 2004-238836 and 2005-1779 98 filed in Japan, the contents of which are incorporated in full herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Environmental Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Husbandry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

ドナー細胞として哺乳動物のナチュラルキラーT細胞を用いることを特徴とするクローン哺乳動物の作成方法、該方法によって得られるクローン哺乳動物、該クローン動物の胚からES細胞を得る方法並びに該方法によって得られるES細胞の提供。

Description

明細書
クローン nilし動物の作成方法
技術分野
本発明はクローン哺乳動物胚及びクローン哺乳動物、 それを製造する為の方法、 及ぴそ れらの用途等に関する。 さらに本発明はクローン哺乳動物胚性幹細胞 (以下 E S細胞とも いう) 、 それを製造する為の方法及びそれらの用途等に関する。
背景技術
英国でのクローン羊ドリーの誕生以来 (Wilmut, I. ら, 「Viable offspring derived from fetal and adult mammalian cells. J, Nature, (英国), 1997年, 385, p. 810 - 813)、 動物の クローン力 S様々な手法で樹立されたが体細胞由来の核を直接、核除去された卵子に移植し てクローンを得る手法は非常に効率が悪く、 また移植に使用したドナー細胞の由来を特定 することは非常に困難であるため再現性に問題があった。 後者を克服するため細胞特異的 表面マーカーを発現しているリンパ球がドナーとして使用された;^効率力 S悪く、 余計なプ 口セスが必要になってしまった。 例えば T細胞、 B細胞等の末梢リンパ球を使用した場合 は 1 Z 5 0 0 ( 0. 2 %) 禾 の確率でしか E S細胞が樹立されてレ、なレヽ (Hochedlinger, K. , and R. Jaenisch., Monoclonal mice generated by nuclear transfer from mature B a nd T donor cells. J, Nature, (英国), 2002年, 415, p. 1035 - 1038)。 また神経嗅覚細胞を ドナーとした は多少 E S細胞樹立の確率が上昇するがこれらのいずれの場合でも E S 細胞の樹立と te raploid complementationという二つステップがクローン個体産生に必要 ヽ可欠となっている (Eggan, K. ら, IMice cloned from olfactory sensory neurons.」, Nat ure, (英国), 2004年, 428, p. 44 - 49)。 このように末梢の終分化した細胞を使用してクロ ーンを作成するのは非常に時間と労力を要するものであった。 一方、 ヒトへの応用を考え た場合いつたん E S細胞を経るということはクローンの H L Aがドナーのそれと一致しな くなるため (自己移植の^を除いて) 必然的に免疫拒絶反応を起こしてしまい使用不可 能である。 そこでこれらの技術的、免疫学的制約を凌駕するドナー細胞として使用可能な 体細胞の同定が求められていた。 また従来の体細胞クローン技術ではドナー細胞の由来を 正確に同定することはほぼ不可能であり、 全個体再生能力のある細胞群を特定することは 不可能であった。 また、 従来行われてきたクローン技術では、 胚移植後、 実際に産仔に至るのは極めて僅 かであり、 より産仔に至る確立の高いクローン哺乳動物の作成方法が求められている。
発明の開示
本発明はより効率よく、 且つ生存率の高いクローン動物の作成方法の «、 該方法によ つて得られるクローン動物、 その子孫、 胚等、 ならびにそれらから得られる細胞、 組織、 器官、 生産物等の驗を目的とする。 本発明の別の目的は、 クローン動物胚から E S細胞 を得る方法、 該方法によって得られるクローン動物 E S細胞、 及びそれらから得られる細 胞、 ,«、器官、 生産物等を «することである。 本発明のさらなる別の目的は、 ドナー 細胞の由来を正確に同定し得る体細胞クローン技術を ¾^することである。
本発明者らは、 上記課題に鑑み、 鋭意検討を行った結果、 核を樹共するドナー細胞とし てナチュラルキラー T細胞 (以下 NKT細胞ともいう) を用いることによって、 得られた ク口ーン胚が、 E S細胞の樹立ならびに逐次的な tetraploid complementationを必要とす ることなく発生、 産仔に至ることを見出した。 さらに得られたクローン動物が正常な生殖 能力を有することを確認して本発明を完成するに至った。 すなわち本発明は以下の通りで ある。
〔 1〕 ドナー細胞として哺乳動物のナチュラルキラー τ細胞を用いることを特徴とする、 クローン非ヒト哺乳動物の作成方法。
〔 2〕 哺乳動物のナチュラルキラー T細胞の核を哺乳動物の赚卵母細胞に導入すること を含む、 クローン非ヒト哺乳動物の作成方法。
〔3〕 哺乳動物のナチュラルキラー T細胞に由来する核を哺乳動物の除核卵母細胞に導入 して蘭築胚を形成し、 該赚築胚を宿主哺乳動物に移入することを含む、 クローン非ヒ ト哺乳動物の作成方法。
〔4〕 ナチュラルキラー T細胞が、 所望の形質を発現させるよう遺伝子操作が行われたも のである、 上記 〔1〕 〜 〔3〕 のいずれかに記載のクローン非ヒト哺乳動物の作成方法。 〔5〕 ナチュラルキラー T細胞と除核卵母細胞が同種の哺乳動物由来である、 上記 〔1〕 〜 〔 4〕 のレ、ずれかに記載のクローン非ヒト t fし動物の作成方法。
〔6〕 ナチュラルキラー T細胞と除核卵母細胞が異種の哺乳動物由来である、 上記 〔1〕 〜 〔4〕 のいずれかに記載のクローン非ヒト Hf?し動物の作成方法。 〔7〕 ナチュラルキラー T細胞が、 臍帯血、 末梢血、 月懂、 骨髄、 脾臓、 胸腺からなる群 より選ばれる,観より採取されるものである、 上記 〔1〕 〜 〔6〕 のいずれかに記載のク ローン非ヒト哺乳動物の作成方法。
〔8〕 上記 〔1〕 〜 〔7〕 のいずれかに記載の方法によって作成されたクローン非ヒト哺 乳動物。
〔9〕 上記 〔1〕 〜 〔7〕 のいずれかに記載の方法によって得られるクローン非ヒト哺乳 動物の胎仔。
〔1 0〕 上記 〔8〕 記載のクローン非ヒト哺乳動物の子孫。
〔1 1〕 Τ細胞上で発現する T C R V 鎖が実質的に単一の T C R V /3鎖レパートリ一で 構成されていることを特徴とする、 上記 〔1 0〕 記載のクローン非ヒト哺乳動物の子孫。
〔1 2〕 単一の T C R V iS鎖レパートリーが、 ドナー細胞として用いたナチュラルキラー T細胞の T C RV ]3鎖レパートリーと同一である、 上記 〔1 1〕 記載のクローン非ヒト哺 乳動物の子孫。
〔1 3〕 遺伝子爾冓成済みの T C Rひ鎖である V 1 4 - J α 2 8 1を含む対立遺伝子を 有しナチュラルキラー Τ細胞の数が増カ卩していることを特徴とする、 上記 〔1 0〕 記載の クローン非ヒト哺孚 L動物の子孫。
〔1 4〕 上記 〔8〕 記載のクローン非ヒト哺乳動物から得られる細胞、 ,観、 器官又は生 産物。
〔1 5〕 上記 〔9〕 記載のクローン非ヒト i ?し動物の胎仔から得られる細胞、 繊、 器官 又は生産物。
〔1 6〕 上記 〔1 0〕 記載のクローン非ヒト哺乳動物の子孫から得られる細胞、 糸赚、 器 官又は生産物。
〔1 7〕 ドナー細胞と免疫学的に同一であることを特徴とする、 上記 〔1 4〕 又は 〔1 5〕 記載の細胞、繊、 器官又は生産物。
〔1 8〕 治療用、 移植用及び Ζ又は細胞移植用である、 上記 〔1 4] 〜 〔1 7〕 のい ずれかに記載の細胞、 繊、 器官又は生産物。
〔1 9〕 ドナー細胞として哺乳動物のナチュラルキラー T細胞を用いることを特徴とする、 クローン哺乳動物胚の作成方法。 〔2 0〕 哺乳動物のナチュラルキラー T細胞の核を哺乳動物の除核卵母細胞に導入するこ とを含む、 クローン哺乳動物胚の作成方法。
〔2 1〕 ナチュラルキラー Τ細胞が、 所望の形質を発現させるよう遺伝子操作が行われた ものである、 上記 〔1 9〕 又は 〔2 0〕 記載のクローン哺乳動物胚の作成方法。
〔2 2〕 ナチュラルキラー Τ細胞と,卵母細胞が同種の哺乳動物由来である、 上記 〔1 9〕 〜〔2 1〕 のいずれかに記載のクローン哺乳動物胚の作成方法。
〔2 3〕 ナチュラルキラー Τ細胞と除核卵母細胞が異種の哺乳動物由来である、 上記 〔1 9〕 〜〔2 1〕 のいずれかに記載のクローン哺乳動物胚の作成方法。
〔2 4〕 ナチュラルキラー Τ細胞が、臍帯血、 末梢血、 删蔵、 骨髄、 脾臓、 胸腺からなる 群より選ばれる糸纖より採取されるものである、 上記 〔1 9〕 〜〔2 3〕 のいずれかに記 載のクローン哺乳動物胚の作成方法。
〔2 5〕 上記 〔1 9〕 〜〔2 4〕 のいずれかに記載の方法によって作成されたクローン哺 乳動物月
〔2 6〕 上記 〔2 5〕 記載のクローン哺乳動物胚を胚纏包期又は前胚麵包期まで培養し、 得られる胚翻包期又は前 包期の内部細胞塊から胚性幹細胞を分離することを含む、 ク 口一ン哺乳動物胚性幹細胞の作成方法。
〔2 7〕 上記 〔2 6〕 記載の方法によって得られるクローン哺乳動物胚性幹細胞。
〔2 8〕 上記 〔2 7〕 記載のクローン哺乳動物胚性幹細胞を所望の細胞分化を誘導し得る 条件下で培養し分化誘導することを含む、 クローン哺乳動物の分化細胞、 ,織、 器官又は 生産物の作成方法。
〔2 9〕 上記 〔2 8〕 記載の方法によって得られるクローン哺乳動物の分化細胞、 糸職、 器官又は生産物。
〔3 0〕 ドナー細胞と免疫学的に同一であることを特徴とする、 上記 〔2 9〕 記載の分化 細胞、 繊、 器官又は 物。
〔3 1〕 治療用、 Ι1 移植用及び/又は細胞移植用である、 上記 〔2 9〕 又は 〔3 0〕 記 載の分化細胞、 繊、 器官又は生産物。
図面の簡単な説明
図 1は、 N KT細胞由来のクローンマウス作成並びに E S細胞株の樹立の概要を示す模 式図である。 図 2は、 T C R V a:鎖遺伝子座ならびにプラィマーの位置を示 i 莫式図である。
図 3は、 TCRV]3鎖遺伝子座ならびにプライマーの位置を示 H 式図である。
図 4は、 NKTクローンマウス #1 (尾と胎 、 #2 (尾と胎盤) 、 #3 (胎 ® 、
#4 (死産、 胎^) のゲノム DN Aを使用したサザンプロット角 ¾)?の結果を示す図 (電気 泳動写真) である。 白抜き矢頭は遺伝子蒲成の起こったバンドを、 黒塗り矢印は遺伝子 帮冓成の起こる以前のバンドを示している(germline configuration)。
図 5は、 クローンマウスにおいて TCRVa 14— Jひ 281遺伝子! ¾f成が行われて いることを PCR法を利用して証明した図 (電気泳動写真) である。
図 6は、 N KT細胞由来クローンマウスにおける T C R V a鎖塩基配列を示した図であ る。
図 7は、 NKT細胞由来のクローンマウスにおける T CRVj3鎖塩基配列を示した図で ある。
図 8は、 NKT細胞由来の ES細胞 (レーン 1~6) ゲノム DNAを使用したサザンブ ロット角晰の結果を示した図 (電気泳動写真) である。 プローブはクローンマウス角晰に 使用したものと同じである。 TCRVo! 14プローブによって 13 k bのバンドのシフト が見られる (レーン 1〜6) とともにレーン 3及び 4の ES細胞では 2. 5kbのバンド の消失力 s観察された。 また、 TCRVJSプローブを用いた場合にも遺伝子 冓成の済んだ バンドが観察された。 白抜き矢頭は遺伝子蘭成の起こったバンドを示している。 黒塗り 矢印は遺伝子 冓成の起こる以前のバンドを示している(germline configuration)。
図 9は、 NKTクローンマウス # 1と I CR種マウスとの掛け合わせによる F 1でのサ ザンプロット解析の結果を示した図 (電気泳動写真) である。 クローンマウス由来の遺伝 子再構成済みの TCRVQ! 14由来 8 k bのバンドを受け継いだ F 1が雄 1番、 雌 6番に 見られる (上部パネル、 矢印) 。 又、 クローンマウス # 1由来の TCRV0を含む対立遺 伝子はそれぞれ約 9 k bと 8 k bに分離している (図 4参照、 黒塗り矢頭) 。 各 F 1は母 親マウス由来の 10. 4 kbのバンド (白抜き矢頭) と約 9 k b若しくは 8 k bのバンド を受け継いでいる。
図 10は、 NKTクローンマウス # 1と I CR種との掛け合わせによる F 1での FAC S解折の結果を示した図である。 上段はクローンマウス子孫における TCRVjS 8の割合 を全 TCRV β陽 1·生細胞中に占める割合として示した。 下段はクローンマウス子孫におけ る NKT細胞の割合を示す。 パネル 1は、 コントロールの I CR種マウス (野生型) の、 ノ ネノレ 2は、 遺伝子再構成の終了した T C R V ]38をインフレームで遺伝的に継承するマ ウスの、 ノ、。ネノレ 3は、 ¥0; 14—】 281の遺伝子謹成が終了しこれを継承するマウ スの結果をそれぞれ示している。 NKT細胞群を円で囲み、 全細胞数に対する NKT細胞 の数としてパーセント (%) で示した。
図 1 1は、 NKT細胞核あるいは T細胞核を移植して得られる 冓築胚のインビトロ培 養 (48ならびに 72時間) における分化あるいは生存の状況を角?!)?した結果を示す図で あり、 表 1の 48ならびに 72時間での結果をダラフ化したものである (マウスの誕生は 除く) 。 縦軸は培養胚の経時的な生存率を示したもの、 あるいは偽妊娠マウスに再構築胚 を導入した場合の個体の発生率 (移植胚の誕生率) を示したものである。 *pく 0. 00 01 ; **p< 1 X 10— 25
図 12は、 クローンマウス (# 1、 # 2) の末梢リンパ球の F ACS角 ¾)?の結果 (TC RV β V s TCRV)38) を示す図である。
図 13は、 NKT細胞の人工ァゴニストである a— GCで刺激後、 0、 4、 12、 24 時間経過後のマウスから血清を採取し、 得られた血清中のサイト力イン (I FN— γ、 I L— 2、 GM— CSF、 I L一 4、 I L一 10、 I L一 5、 TNF— (¾、 I L-1 β) レ ベルを EL I SA法により測定した。 各測定時で 4匹のマウスについて測定した。 縦軸に 各サイト力イン濃度を示し、 横軸に測定ポイントを示す。 データは平均土標準偏差で表し た。
図 14は、 あらかじめ a— GC処理を施した樹状細胞 (DC) (5 X I 04細胞) と応 答細胞となる脾臓細胞 (SPC) (1 X 106細胞) との混合培養物の培養上清中の I L 一 4及び I FN— γの量を測定した。 縦軸に各サイトカインの濃度を示し、 横軸に脾臓細 胞の由来を示す。 データは 3回測定してその平均土標準偏差で表した。
発明の詳細な説明
文中で特に断らない限り、 本明細書で用いるすべての技術用語及び科学用語は、 本発明 力 S属する技術分野の当業者に一般に糊军されるのと同じ意味をもつ。 本明細書に記載され たものと同様又は同等の任意の方法及び材料は、 本発明の実施又は試験にぉレヽて使用する ことができる力 好ましい方法及び材料を以下に記 る。 本明細書で言及したすべての 刊行物及び特許は、 例えば、 記載された発明に関連して^ ffiされうる刊行物に記載されて いる、 構築物及び方法論を記載及び開示する目的で、 参照として本明細書に組み入れられ る。
以下、 本発明を詳細に説明する。 本発明の一例の要約を図 1に示す。
本発明において用いるナチュラルキラー T (NK T) 細胞は、 その 割合は少ないが 免疫系で制御的な役割を担っているリンパ球の一種である。 NKT細胞は T細胞レセプタ 一 (T C R) と NKレセプターの 2つの レセプターを有する。 ΝΚΤ細胞は通常の Τ 細胞や ΝΚ細胞とは異なる特異的なレパートリーを発現している。 例えばマウスの 鎖に ついては NK T細胞の 9 0 %以上は主に V j8 8、 他に V ]3 7や V β 2という限られたレパ 一トリーを発現し、 ひ鎖については均一な V 1 4 - J α 2 8 1を発現している。 この均 一な T C R 鎖は、 T C R遺伝子の蘭成の際に、 V及び J遺伝子群から Vひ 1 4遺伝子 と J 2 8 1遺伝子とが選ばれゲノム上で雨冓成された結果として作成される (Taniguchi et al. , (2003) Annu Rev Immunol 21, 83-513 The regulatory role of Valphal4 NKT cell s in innate and aquired immune response) 0 ヒトではマウスの V a 1 4と†目同个生の r¾い非 多型性の V a 2 4 , 及び V β 8 . 2に近縁の V j3 1 1の組み合わせであることが知られて いる。 このような性質は、 得られたクローン動物におけるドナー細胞の起源を追跡するの に適している。 NKT細胞の由来は特に限定されず、 ヒトを含む霊長類、 げっ β、 ゥサ ギ、 ネコ、 ィヌ、 ゥマ、 ゥシ、 ヒッジ、 ャギ及びブタ等の哺乳動物の臍帯血、 末梢血、 肝 臓、 骨髄、 脾臓、 リンパ節、 胸腺等から回収することができる。 本明細書で用いる 「霊長 類」 という用語は、 サル、 類人猿、 及びヒトが含まれるがこれらに限定されない、 哺乳類 の群に属する、 任意の動物を意味する。 具体的には末梢血や肝臓のホモジネートから回収 される単細胞の懸濁液を、 ΝΚ Τ細胞に高度に保持された T C Rに認識さ 辱る、 C D 1 d分子と結合したひ一ガラクトシノ ラミド (a— G a 1 C e r若しくは a— G C) のよ うな ¾¾¾脂質を用いて F A C S角? Wすることによって選別、 回収することができる。 本 発明で用いられる NK T細胞は活性化されていてもされていなくても構わない。 好ましく は抗原刺激されてレ、ない状態の細胞が好まし 、。 また、 N K T前駆細胞を N K T細胞分ィ匕 誘導能を付与する因子の 下で培養することによって得られる N κ τ細包であつてもか まわなレ、。 N K T前駆細胞は胎児月 田胞あるいは末梢血や臍帯血由来であり得る。
本発明のクローン哺乳動物の作成方法においては、 NKT細胞をドナー細胞として用い ることを特徴とする。 具体的には NKT細胞の難植によって実施される。 核移植の方法 は、 NKT細胞の核をドナー細胞核として実施され得るものであれば特に限定されない。 細胞核を当該細胞核と同じ種の哺乳動物由来の I»卵母細胞に導入する ¾ ^と細胞核を当 該細胞核と異なる種の哺乳動物由来の除核卵母細胞に導入する がある。 異なる種の哺 乳動物由来の除核卵母細胞への ί繊植の技術は、 絶藤の復活、 絶滅危†雄の保存、 増殖 に有用である。 同じ種の哺乳動物由来の除核卵母細胞への核移植はより効率よく産仔に至 る。
NKT細胞の核を哺乳動物の除核卵母細胞に導入する方法としては、 未受精卵子の核が 最終的にドナー細胞である NK T細胞の核と置き換わればその方法は特に限定されなレヽが、 NKT細胞の大きさを考慮すると、 NKT細胞の細胞膜にピペット等で傷をつけ、 傷をつ けた NKT細胞をマイクロマニュピレーター等を用いて直接除核卵母細胞に導入する方法 力 S好適に用いられる。 NKT細胞と除核卵母細胞との細胞融合によって難植カ S行なわれ ても良い。 より具体的には例えば、 Wakayamaら(Nature 394, 369-374(1998))、 Inoueら(Bio 1. Reprod 69, 1394-1400(2003))によって報告されている方法に準じて、 また適宜改変し て実施することができる。 NKTiB月包と除核 母糸田 J3包を融合させることで I»植を実施す る場合、 市販の装置を用いた電気融合法により融合させることができる。
除核を施す哺乳動物の卵母細胞は、 ホノ^ ン投与による過排卵処理によって得ることが できる。 除核は卵母細胞に微小なピぺットを用 、未受精卵母細胞の核と周りの細胞質を吸 V、込み、 ちぎり取るような操作によつて実施するが、 そのままでは細胞骨格が壊れ卵母細 胞; ^破壌される。 従ってあらかじめ未受精卵母細胞の細胞骨格を消失させる処理を施すこ とが好ましレ、。 細胞骨格の消失はサイトカラシンを用いることで実施できる。 また、核移 植後にもサイトカラシン等で処理することが好ましレヽ。 植が施される卵母細胞は活性 化されていなくてもされていても構わないが、 活性化されている状態が好ましい。 当該活 †生化は»植の前後、 どちらで施されても構わない。 活性化は電気的方法や薬剤処理法に よつて刺激することによつて実施し得るが特に限定されるものではなレ、。 特に好ましくは 自然に成熟した終期の卵母細胞を用いる。 活性化は、 例えば卵母細胞中の 2価のカチオン 濃度を上げること、 及び/又は卵母細胞中の細胞性タンパク質のリン酸化の程度を低下さ せることによって行うことができる。 これは一般に 2価のカチオン、 例えばマグネシウム、 ストロンチウム、 ノ リウム、 カルシウムを、 例えばィオノフォアの形で卵母細胞の細胞質 に導入することによって行われる。 2価のカチオン濃度を増加させる他の方法は、 電気シ ョック、 ェタノール処 s¾びケージキレート剤の処理の利用が含まれる。 リン酸化の程度 知の方法、 例えばキナーゼ阻豁 U、 例えば 6—ジメチルァミノプリン、 2—アミノブ リン及ぴスフィンゴシンのようなセリン一スレオニンキナーゼ阻害剤の添加によって低減 されることがある。 あるいは卵母細胞中へのホスファターゼの導入によってリン酸化を阻 害することもできる。
NK T細胞の核を除核卵母細胞に導入して、 再冓築胚を形成し、 さらに 冓築胚を宿主 哺乳動物に移植することによって該 冓築胚を宿主哺乳動物に発生させ、 それによつてク ローン哺乳動物を得ることができる。
上述したように、 ドナー細胞として N Κ T細胞を用レ、た場合、 体細胞 »植により、 E S細胞の樹立ならぴに逐次的な tetraploid embryo complementationを必要とすること力 S なくクローン哺乳動物が得られる。 すなわち、 NKT細胞は全能性を有しているものと予 測される。
本明細書で用いる 「全能性を有する」 という用語は、 胚、 胎児、 及び動物等の発生中の 細胞塊中のすべての細胞を生じる細胞を意味する。 好ましい態様では、 「全能性を有す る」 という用語は、 動物のあらゆる細胞を生じる細胞を意味する。 全能性を有する細胞は、 1個又は複数の »植段階から胚を作成する手順で使用されると、発生中の細胞塊のあら ゆる細 J3包を生じることができる。
本明細書で用いる 「全能性を有する」 という用語は、 「多能性を有する」 という用語と 区別される。 後者の用語は、発生中の細胞塊内における細胞の雄団に分化するが、 その ような発生中の細胞塊におけるすべての細胞を生じることはできない細胞を意味する。 本明細書で用いる 「胚」 又は 「胚性」 という用語は、 宿主哺乳動物の子宮膜に着床して いない、発生中の細胞塊を含む。 したがって本明細書で用いる 「胚」 又は 「胚性」 という 用語は、 受精した卵母細胞、 細胞質雑種、 前胚麵包期の発生中の細胞塊、 及ひ 又は、 宿 主哺乳動物の子宮膜への着床前の発生期にある、 他の任意の発生中の細胞塊を意味する場 合がある。 再構築胚とは、 ドナー細胞核を赚卵母細胞に核移植することによって得られ る、 ドナー細胞由来の核と卵母細胞由来の細胞質成分とで再構成された胚を意味する。 胚は細胞発生の複数の段階を提示する¾ がある。 例えば 1個の細胞胚は接合体と呼ぶ ことができ、 接合体は分割胚から生じる中実で球状の細胞塊であり桑実胚と呼ぶことがで き、 さらに割腔を有する胚は胚^!包と呼ぶことができる。 再構築胚の宿主哺乳動物への移植は、 当分野で通常実施される方法に従って行うことが できる。 具体的には再構築胚を 2〜 8細胞期になるまで培養しつづけて 2〜 8細胞期の胚 を宿主哺乳動物に移植し、 さらにその再構築胚を哺乳動物に発生させてクローン哺乳動物 を作成する。 藤築胚の培養と成熟に適した培地は技術的に良く知られており、 除核卵母 細胞の起源となる哺乳動物の種類に応じて適!^定される。 さらに再構築胚の培養は所望 によりフィーダー細胞と共に、 好ましくはフィーダー細胞層上で行ってもよい。 藤築胚 は宿主哺乳動物に移植するのに適したサイズに針る迄培養される。 好ましくは約 2 ~4 0 0細胞、 より好ましくは約 4 ~ 1 2 8細胞 (マウスであれば時間にして約 4 8時間〜 7 · 2時間 となるまで培養さ iL る。 この培養は適当な条件下、 即ち約 3 7 °C〜3 8. 5 °C、 約 5〜7. 5 % C 02存在下で行われ、 適宜培地を交換する。 宿主哺乳動物は、 そ の中で雨冓築胚を発生させることができるものであれば特に限定されないが、 好ましくは 除核卵母細胞と同じ種由来の哺乳動物であり、 より好ましくは偽 した雌の哺乳動物で ある。 例えばマウスの:^、 偽婦雌マウスは、 正常性周期の雌マウスを、 精管結紮等に より去勢した雄マウスと交配することにより得ることができる。 作出した偽妊娠マウスに 対して、 上述の方法により得られた S冓築胚 (クローン胚) を子宮内移植、 特に卵管内に 移植し、 出産させることによりクローン哺乳動物を作成することができる。 クロー ン胚の着床 · 通がより確実に起こるようにするために、 籠になる偽簾マウスは、 除 核を施す卵母細胞を採取する雌マウスと同一の性周期にある雌マウス群から選択すること が好ましい。
本明細書で用いる 「胎仔」 という用語は、 宿主哺乳動物の子宮膜に着床した発生中の細 胞塊を意味する。 胎仔は例えば生殖隆起のような明確な特徴を含む場合がある。 生殖隆起 は当業者により容易に同定される特徴であり、 多くの動物種の胎仔で認識可能な特徴であ る。 胎仔の細胞とは、 胎仔から単離された、 及び Z又は胎仔から生じた任意の細胞、 又は 胎仔に由来する細胞を意味する がある。 本発明のクローン哺乳動物の胎仔は、 上記し たクローン哺乱動物の作成過程において、 再構築胚を仮親へ移植した後、 ィ壬意の段階で採 取することによって得ることができる。
本発明のクローン哺乳動物の子孫は、 蒲築胚から発生したクローン哺乳動物を第 2の 哺乳動物と交配させることによって得ることができる。 第 2の哺乳動物は、 クローン哺乳 動物 (便宜上第 1の哺乳動物ともいう) と同じ種の正常な哺乳動物 (クローンではない) 、 あるいはクローン胚から発生したクローン哺乳動物又はその子孫等であり得る。 後述する トランスジェニック B甫乳動物あるいはトランスジェエック哺乳動物胚から発生したクロー ン哺乳動物又はその子孫であってもよい。 本発明において 「子孫」 とは、 本発明のクロー ン哺乳動物を親とする仔世代 (F l) 、 F 1を親とする仔世代 (F2)、 F 2を親とする 仔世代 (F 3 ) 等の本発明のクローン哺乳動物を発生の起源とするものであれば何世代の ものであっても構わない。 本発明において、 上記したクローン哺乳動物、 クローン哺乳動 物の胎仔、 クローン哺乳動物の子孫を用いて任意に細胞、 組織又は器官を得ることができ る。 細胞、組織又は器官の採取 ·回収は特に限定された方法で行う必要はなく、 通常当分 野で実施される方法で行われる。 さらに、 得られた細胞、 組織又は器官から分泌、 産生、 抽出される生産物も本発明の範囲内である。 クローン哺乳動物から得られる生産物として は、 纖哺乳動物から得られるものと同様多種多様であるが、 糖タンパク質、 神経べプチ ド、 ィムノグロブリン、 酵素、 ペプチド及びホルモンが挙げられる。 より具体的にはヒト a 1アンチトリプシン、 ヒ ト血液凝固因子 V I I I、 t PA (tissue specific plasrainoge n activator)、 アンチスロンビン I I I、 プロテイン C、 フィプリノーゲン、 ヒ ト血液凝 固因子 I Xなどが挙げられる。
上記のようにして得られたクローン哺乳動物の組織、 器官はドナー細胞である N K T細 胞と同一の組謹合性抗原 (例えばヒ トでは HLA) を有し、 得られたクローン哺乳動物 の糸!^ 器官をドナー細胞の «者である哺乳動物に移植した場合、 非自己と認識される ことなく免疫寛容状態となり、 免疫拒絶^が起こらない。
さらに、 本発明のク口一ン哺乳動物の子孫は以下の特徴を有する (後述の実施例に詳細 ベる) 。
(1) 個体内で発現する TCRV]3鎖が実質的に単一の TCRV^鎖レパートリー、 特に ドナー細胞として用いた NKT細胞の TCRV]3鎖レパートリーと同一である。
(2) NKT細胞の数力 S増加している。
TCR遺伝子群の再構成は、 その T細胞の分化及び選択に関与する膨大な数のリンパ球 のレパートリー形成において重要な役割を果たす。 例えば組み換え活性化遺伝子 (RA G) の発現は、 これらの遺伝子稱冓成に必須であり、 RAGの異常や欠損により難複合 疫不^やォーメン症候群力 S発症することが明らかにされている。 上記 ( 1 ) のような、 個体内の T C Rがある特定の一種類に限定されるという現象は T C Rトランスジエニック動物以外に報告例がなく、 このような特徴を有するクローン哺乳 動物の子孫を用いることによって、 本来 1 0万個や 1 0 0万個に 1つといったただ一種類 の T細胞クローンの分化と選択を個体レベルで観察することができる。 例えば単一の T C RV ]3鎖を発現する T細胞では a ]3型の T C Rを発現し γ δ型の T C Rの発現が抑制され ている。 カゝかる現象は大腸炎等の腸疾患で観察される現象と類似しており、 従って本発明 のクローン哺乳動物の子孫は、 大腸炎等のモデル動物としても有用である。 さらに本発明 の遺伝子再構成済みの T C R 鎖である V a l 4 _ J o; 2 8 1を含む対立遺伝子を有する クローン哺乳動物の子孫では、 NKT細胞の数が増加している。 NKT細胞の数の増カロは、 ^JM蔵細胞に対する割合 (NKT細胞の割合) においても、 また絶対数においても認めら れる。 NKT細胞力 S免疫系を制御する機能を有する細胞であることから、 より NKT細胞 の数の多い本発明のクローン哺乳動物の子孫は、 NKT細胞が関与している疾患及び/又 は病態の研究、 特に自己免疫疾患やアレルギー疾患の発症機構、 移植骨髄拒絶、 膾瘍免疫 の解明に大きく貢 ることが期待される。 より具体的な疾患及び/又は病態としては、 ヒトおよひ ¾]物における炎症状態、 種々の疼痛、 膠原病、 自己免疫疾患、 種々の免疫疾患、 特に関節および筋肉における炎症および疼痛 (慢†生関節リウマチ、 リウマチ様脊椎炎、 骨 関節症、 尿酸性関節炎等) 、 皮膚の炎症性状態 (湿疹等) 、 眼の炎症性状 (結膜炎等) 、 炎症を伴う肺の障害 (喘息、 気管支炎等) 、 炎症を伴う消化器の状態 (ァフタ性潰瘍、 ク ローン病、 萎縮性胃炎、 いぼ状胃炎、 潰; †生大腸炎、 脂肪便症、 限局性回腸炎、 過敏性腸 症候群等) 、 歯肉炎、 または障害後の炎症、 疼痛、 fl動長) 、 炎症に関連した発熱、 疼痛、 その他の状態、 移植による拒絶、 全身†生エリテマトーデス、 強皮症、 性筋炎、 麵生軟骨炎、 結節性動脈周囲炎、 強直性脊椎炎、 炎症隨性腎状態 (糸球体腎炎、 ルー ブス腎炎、 fl†生腎炎等) 、 リウマチ熱、 シエーダレン症候群、 ベーチェット病、 甲状腺炎、 I型糖尿病、 皮膚筋炎、 慢性活動性肝炎、 憩筋無力症、 グレーヴス病、 性硬化症、 原発性胆汁性肝硬変、 自己免疫性血液疾患 (溶血性貧血、 真性赤血球性貧血、 頻生血小 板減少症、 再生不良性貧血等) 、 ぶとう膜炎、 接触皮膚炎、 乾癬、川崎病、 I型アレルギ 一反応が関与する疾患 (アレルギー性喘息、 アトピー性皮膚炎、 奪麻疹、 アレルギー性結 膜炎、 花粉症等) 、 ショック (敗血'性ショック、 アナフィラキシー '性ショック、 成人型呼 吸窮迫症候群等) 、 サルコィドーシス、 ゥェゲナー肉芽腫症、 ホジキン病、 癌 (肺癌、 胃 癌、 結腸癌、 胃癌、 肝癌等) 、 ウィルス疾患 (肝炎) 等が例示される。
本発明はまた、 上記した 冓築胚 (クローン胚、 あるいはクローン哺乳動物胚ともい う) を用いるクローン哺乳動物 E s細胞の作成方法及びそれによつて得られるクローン哺 乳動物 E S細胞を^する。 E S細胞は、 好ましくはインビトロ細胞培養で維持された胚 力^単離された、 多能性を有する細胞を含む。 E S細胞は、 支持細胞の有無にかかわらず 培養することができるが好ましくは支持細胞を用いる。 支持細胞としては、 当分野で通常 用いられるものカ利用できるが、 例えばマウス E S細胞の場合であればマウス胎仔由来の 線锥芽細胞を用いることができる。 クローン哺乳動物 E S細胞は、 胚«包期の胚及ぴ前胚 ®包期の胚を含む、任意の発生時期に胚から単離された胚性細胞から樹立することができ る。 より詳細にはドナー細胞である NKT細胞の核を除核卵母細胞に導入し、 得られたク 口一ン哺乳動物胚を胚盤包期及び Z又は前胚額包期迄培養し、 得られた内部細胞塊から単 离 trることによって作成される。 本明細書で用いる 「内部細胞塊」 という用語は、 胚本体 を生じる細胞を意味する。 胚翻包の外側に並ぶ細胞は、 胚の栄養芽層と呼ばれる。 胚から 内部細胞塊を単難 H "る方法は当業者に公知である。
当該クローン哺乳動物 E S細胞は所望の細胞分化を誘導し得る条件下で培養し分化誘導 することができ、 所望の分化細胞、 «ならびに器官を作成することができる。 所望の細 胞分化を誘導し得る条件は、 その分化の種類ゃ により設定されるべきであり、 当業者 には容易に設定することが可能である。 例えば胚性幹細胞を造血幹細胞へと分化誘導し、 さらに分化を進めて最終的に赤血球や白血球等の血液細胞を生じさせる。 もしくは神経幹 細胞に分化させ、 個々の神経細胞に分化誘導させてやることが可能である。
本発明において得られた胎仔、 産仔がドナー細胞である NKT細胞由来であることの確 認は、 得られた胎仔、 産仔の遺伝子、 具体的には T C R遺伝子を調べることによって行わ れる。 NKT細胞は T C R遺伝子が爾冓成され、 その結果、 例えばマウスでは、 上述した ようにひ鎖については特徴的に V a l 4 ~ ] a 2 8 1を発現している。 さらに遺伝子痛 成の済んだ V /3鎖を有する。 NKT細胞の遺伝情報を弓 |き継いだクロ ン哺乳動物の胎仔、 産仔のゲノム D NAについて、 T C RV a 1 4プローブ及び/又は T C R V j3プローブを 用いて、 好ましくは T C RVひ 1 4プローブ及び T C RV J3プロープの両方を用いてサザ ンプロット角 ¾ί?を行い、 その T C R遺伝子が雨冓成されたものであるカゝ、 特にドナー細胞 として用いた NKT細胞と同じ T C R再構成パターンを示す力 かを廳 ¾することによつ て得られたクローン哺乳動物の胎仔、 産仔がドナー体細胞である NKT細胞由来であるか 否かを判定することができる。 また、 再構成された T C R遺伝子を継承している力 かは P C R法によっても確認することができる。 具体的な ¾!忍の手順は実施例にて後述する。 本発明の上記したクローン哺乳動物を作成する方法は、 遺伝子操作された哺乳動物又は トランスジエニックな哺乳動物をクローニングするためにも利用できる。 具体的には、 ド ナー細胞として所望の形質を発現させるよう遺伝子操作が行われた哺乳動物の NKT細胞 を用いることを特徴とし、 より詳細には、 所望の形質を発現させるよう遺伝子操作が行わ れた哺乳動物の NKT細胞の核を除核卵母細胞に導入して再構築胚 (トランスジエニック 胚) を形成し、 該蘭築胚を宿主哺乳動物に移入することによって実施される。 「トラン スジエニック胚」 とは、 1個又は複数の細胞が人の介入により導入された異種核酸を含む 胚を意味する。 導入遺伝子は、 細胞の前駆体へ導入することにより、 意図的な遺伝子操作 により、 又は糸且換えゥィルスの感染により、 細胞に直接又は間接的に導入することができ る。 本明細書に記載されるトランスジエニック胚では、 導入遺伝子により細胞力 s所望の形 質を示しうる構; if¾伝子を発現する。 しかしながら、 導 Λ¾伝子がサイレントな状態にあ るトランスジエニック胚も含まれる。 該トランスジェニック胚は、 ドナー細胞の核が所望 の形質を発現するよう遺伝子操作が行われた細胞の核である以外は、 上記したクローン哺 乳動物の作成の過程で得られるものと同様のものであり同様にして作成される。
本発明のトランスジエニック哺乳動物には、 遺伝的変化又は遺伝情報が生殖細胞系に導 入されることによって、 遺伝情報を子孫に伝 ίϋ"る能力が付与される生殖細胞系のトラン スジエニック動物をも包含される。
「遺伝子」 という用語は、 ポリペプチド又は前駆体の産生に必要な、 調節配列及ぴコー ド配列を含む D Ν Α配列を意味する。 ポリぺプチドは完全長のコ -ド酉己列にコードされ得 る力、、 又は所望の活性力保持されているかぎりはコード配列の任意の部分にコードされ得 る場合がある。
「導 Ait伝子」 という用語は、 動物のゲノムへ導入される任意の核酸を広く意味し、 お そらく通常はゲノム上に しなレ、配列を有する遺伝子もしくは D N A、 する力 S所与 のゲノムでは通常は転写及 Ό¾!訳 (発現) されない遺伝子、 又はゲノムへの導入が望まれ る、 他の任意の遺伝子もしくは DNAを含むが、 これらに限定されない。 導入遺伝子には、 非トランスジエニックゲノム上に通常存在するが、 発現の変更が望まれる遺伝子、 又は変 更型又は異型としての導入が望まれる遺伝子力 S含まれる がある。 導入遺伝子は、 特異 的に、 限定された遺伝子座に向けられる があり、 染色体内に無作為に組み込まれる場 合があり、 又は染色体外で纏する D N Aとなる場合がある。 導入遺伝子は、 1つ又は複 数の転写調節配列、 及び選択された核酸が適切に発現するために必要であり得る、 イント ロン等他の任意の核酸を含む場合がある。 導 Λ¾伝子は、 コード配列又は非コード配列、 又はそれらの組み合わせの がある。 導 Λ¾伝子は、 適切な条件下で 1つ又は複数の導 入遺伝子の発現を睡する能力をもつ、 調節エレメントを含む がある。
「所望の形質を示しうる構^!:伝子」 という用語は、 例え « l望する形質 (例えば生物 学的な活性を示す) を示すタンパク質又はアンチセンス RN Aを発現する、 構 ii t伝子を 意味する。 構 5 it伝子は、植物、真菌、 動物、 細菌のゲノムもしくはェピソーム、 ¾ ^生 物の核 D NAもしくはプラスミド D NA、 c D NA、 ウィルス D NA、 又は化学合成され た D NAを含む、 当技術分野で公知の任意の供給源に、 全体として又は部分的に由来する がある。 構 i^t伝子配列は例えば、 受容体、 酵素、 サイトカイン、 ホルモン、 増殖因 子、 免疫グロブリン、 細胞周期タンパク質、 細胞内情報伝達タンパク質、 膜タンパク質、 細胞骨格タンパク質、 又はレポータータンパク質 (例えば緑色蛍光タンパク質 (G F P ) 、 0—ガラクトシダーゼ、 ノレシフェラーゼ) 等のポリペプチドをコードする^がある。 さ らに構鐘伝子は心血管疾患、 神経疾患、 生殖障害、 癌、 眼疾患、 内分泌障害、 肺疾患、 代謝障害、 自己免疫異常、 老化等の特定の疾患又は障害に関連する遺伝子であつてもよい。 構纖伝子は、 発現生産物の生物学的活性もしくは化 冓造、 発現速度、 又は発現制御 様式に影響を及ぼしうる 1個又は複数の改変をコード領域又は非翻訳領域に含む場合があ る。 このような改変には、 1個又は複数のヌクレオチドの変異、 挿入、 欠失、 及び置換が 含まれるがこれらに限定されない。 構 3 it伝子は連続したコード配列を構成しうるカゝ、 又 は適切なスプライス接合に結合した、 1個もしくは複数のイントロンを含みうる。 構造遺 伝子は融合タンパク質をコードする:^もある。
上記した本発明のクローン哺乳動物 E S細胞の作成方法に準じた方法で、 トランスジェ エックの 田胞を用いてトランスジエニック哺乳動物の E S細胞を作成することもできる。 得られたトランスジエニック哺季し動物 E S細胞は、 上述のクローン哺乳動物 E S細胞と同 様、 所望の細胞分化を誘導し得る条件下で培養し分化誘導することができ、 所望の分化細 胞、 »ならびに器官を作成することができる。 得られた分ィヒ細胞、 糸纖ならびに器官は 所望の形質を示しうる構 itit伝子を有し、 該遺伝子を発現することによって所望の形質を 有する分化細胞、 ,«ならびに器官、 あるいはそれらから産生される生産物を得ることが できる。 細胞、 , ならびに器官、 あるいはそれらから回収される生産物の回収は当分野 で通常実施されている方法を用いて行うことができ、 所望の形質に応じて適宜設定される。 さらに本発明で説明された方法を用 ヽて、 特定の疾患に関連した遺伝子を発現しうる、 ト ランスジェニック霊長類の E S細胞を作成することもできる。 したがって本発明で説明さ れた方法ならびに得られる E S細胞等により、 ヒトの多くの疾患を治療することができる。 本発明は、 上記したように、 クローン哺乳動物を作成する方法だけでなく、 トランスジ ェニックなクローン哺乳動物を作成する可能性も^する。 このようなトランスジェ-ッ ク哺乳動物は、 重篤なヒト疾患の研究モデル、 ならびに 伝子及ひ田胞の治療方針の効力 を評価するためのモデノレとしても用いることが可能である。 さらに本発明によって得られ る幹細胞は、 多くの疾患や機能 (例えば老化、 エイズ、 癌、 アルツハイマー病、 自己免疫 異常、 代謝障害、 肥満、 器官形成、 精神疾患、 及び生殖) の研究に極めて重要であると言 える。
本発明のクローン哺乳動物及びトランスジエニック動物の T C R V ]3鎖は単一で NK T 細胞数が相対的、 絶対的に増加していると考えられる。
クローン動物及びトランスジェニック動物を利用して、 疾患の発症機構を発見し、 かつ 分子医学的な治療法の作成ならびに ィ匕を行うことができる。 例えば、 特定遺伝子に関 して遺伝子ノックアウトにより作成した哺乳動物により、 癌、 心臓病及び脳卒中を引き起 こす動脈硬化、 先天性代謝異常、 ならびに他の胎児性疾患及び新^性疾患の治療法の発 見が促進されうる。 このような動物はまた、 糖尿病、 肝障害、 腎障害、 人: の発達、 創傷治癒、 心臓発作による損傷、 脳卒中による脳損傷、脊椎損傷、 記憶喪失、 ァルツハイ マー病、 及び他の痴呆症、 筋肉及 申経の損傷を含む、 疾患の細胞療法の fffi及び改善に 適している。
実施例
以下、 実施例にそって本発明をさらに詳細に説明するが、 これら実施例は本発明の範囲 を何ら限; るものではない。 本出願全体を通して引用されたすベての刊行物は参照とし て本明細書に組み入れられる。 また、 本発明において使用する!^や装置、 材料は特に言 及されない限り、 商業的に入手可能である。
実施例 1 : NKT細胞由来のクローンマウスの作成
8週齢〜 23週齢 (C57BL/6 x 129/S v- t e r) Fl雌性マウスの肝臓よ り報細胞を P e r c o 1 1 (商品名、 Ame r s h a m社) 比重遠心法により取得した。 これらの細胞を自家で調製した Ph y c o e r y t h r i n (PE) 一ひ一 g a l a c t o s y l c e r ami d e (ひ一 GC) カ結合した CD 1 dテトラマー (ひ一 GC 1 o a d e d CDl d— t e t r ame r ; Matsuda, J. L., 0. V. NaidenKo, L. Gapin, T. N akayama, M. Taniguchi, C. R. Wang, Y. Koezuka, and Kronenberg. 2000. Tracking the response of natural killer T cells to a glycol ipid antigen using CDld tetramers. J E xp Med 192:741-754. ) ならびに f l uo r o s c e i n i s o th i o c y a n a t e (F I TC) —抗 TCRVjS抗体 (H57) (P h a r M i n g e n社) で染色し、 両 者によって染められる細胞を NKT細胞とした (即ち、 NKT細胞は、 一 GC 1 o a d e d CDl d-t e t r ame r +/TCR ]3+で定義される) 。
これらの細胞をフローサイトメーター Mo F 1 o (Cy t oma t i on 社) により P E+/F I TC+の細胞集団として純化し縣植のドナーとして使用した。 ソーティングを 2回繰り返し、 純度 99 %以上で N KT細 J3包を得た。
レシピエントの卵子を排卵誘発剤処理された B 6D2F 1の雌マウスより卵巣 f 1 u s h i ngによって取り出し、 ヒアルロニダーゼ処理により卵丘細胞を除いた後に、 倒立顕 謹下でピエゾマイクロマニピュレーターを用いて除核し核移植に用いた。 NKT細胞を ピぺット内に吸引しながらピエゾマイクロマユピュレーターの物理的刺激によりその細胞 膜に傷をつけた。 続いてピエゾマイクロマニピュレーターにより除核卵子の透明帯と細胞 膜に窄孔し NKT細胞核を細胞質内に注入することによって 植を行った。 同様にして τ細胞を用いて、 τ細胞核を細胞質内に ¾Λして得られる 冓築卵子を得、 対照として用 いた。
核移植 1時間後に再構築卵子をサイトカラシン及びストロンチウム入り KSOM培地中 で 1時間活性化した後に、 サイトカラシンのみを含む K S OM培地で 5時間培養、 さらに K S OM培地中で培養し、 経時的に観察した。 培養 24時間後には NKT細胞由来及ぴ T 細胞由来の ヽずれの稱冓築胚でも、 そのほとんどが G 0期と思われる 2細胞期の状態であ つた。 さらに 24時間培養 (合計 48時間) すると、 T細胞由来の核を移植して得られた 築胚では 2細胞期のまま停止していたが、 NKT細胞由来の核を移植して得られた再 構築胚では 4細胞期に していた。 さらに培養を続けると (合計 72時間) 、 NKT細 胞由来の核を移植した再構築胚では 7 1 %がモルーラ ·ブラストシストとなったのに対し、 T細胞由来の核を移植した再構築胚ではその割合は 12 %に過ぎなかった。
48時間から 72時間 (それぞれ 4細胞ステージ、 モルーラ■ブラストシストに対応) 培養し、 偽妊娠一日目の I CRマウスの卵管に戻した。 19日後に帝王切開によって産仔 を取りだした (図 1) 。
272個の胚を偽妊娠マゥスに移植したところ 4匹のマウスが生まれた (約 1. 5 %の 確率) 。 また胎盤のみの受胎産物が 13個あった (約 4. 8%の確率) 。 これらの結果は、 ドナーとして E S細胞を用レ、た結果に酷似しており、 分化した体細胞である N K T細胞は マウスの再生産の為のゲノムの再プロダラミングに E S細胞と同様効果的であることがわ かった。 クローニングされた胎盤は全て、 マウス体細胞クローユングに認められる胎盤過 形成を中 に、 あるいは高程度に示した。 上記の結果を表 1及び図 1 1にまとめる。
表 1
Figure imgf000020_0001
M & B:モルーラ"ブラストシス卜 得られたクローンマウスが NKT細胞由来であることを証明するためこの細胞特有の T CRのサブュニットである VCK 1 4を検出するサザンプロットを行った。
NKT細胞は TCRVo;鎖が Va 14- J α 28 1のみの組み合わせを有する。 もし作 成されたクローンマウスが ΝΚΤ細胞由来であるならば、 このマウス、 ならびに胎盤のゲ ノム DNAは Vo; 14- J α 281という遺伝子 SI冓成済みのゲノム DNAを持っている はずである。 また同様にして V ]3鎖も遺伝子 冓成済みのゲノム DNAを持っているはず である。 サザンプロット用プローブは以下のようにして調製した。
サザンブロット用プローブの調製
以下のプライマーセットを用いて C 57BL/6マウスの尾から抽出したゲノム DNA を に PCR反応を行った。 各プライマーは I n V i t r o g e n社のカスタムプラ ィマー合成を利用して作成した。
尚、 P CR産物の塩基配列は DNA s e qu e n c i n gによって廳忍されている。 <TCRVa 14サザンプローブ調製用 PCRプライマー >
プライマー配列 1 : 5, 一 CGCTTGTGCACATTTGTTCT— 3, (配列番号 1)
プライマー配列 2 : 5' -TAAGTTTCTGGGGAGCATGG-3' (配列番号 2)
<TCRVi3サザンプローブ調製用 PCRプライマー >
プライマー配列 3 : 5' -GGGGCTGTGAACCAAGACAC-3' (配列番号 3)
3' (配列番号 4)
図 2に TCRVa l 4サザンプローブの、 図 3に T C RV ]3サザンプローブのゲノム上 での位置を示した。 図 2は V a 14遺伝子近傍の様々な V αフラグメントを模式的に表し ている。 ェクソン部は四角で描力、れている。 図 3は、 各 V β、 D、 J、 Cセグメントを模 式的に表している。
E c oR I (TCRVa l 4の^) もしくは B amHI (TCRV0の場合) でゲノ ム DNA 5— 30 μ gを消化後電気泳動によって DNA断片を分離し、 ナイ口ン膜 Hy b o n d N+ (商品名、 Ame r s h am社) 上に移した。 UVクロスリンク後、 P e r f e c. tHy b (登 «i、 TOYOBO社) 液でプレハイプリダイゼーシヨンを行い (6 8°C, 60分) 、 R e d i p r i me I I (Am e r s h a m社) によって R Iラベノレ された TCRVCK 14サザンプローブ、 あるいは TCRV 3サザンプローブを加え、 6 8 °C、 16時間ハイブリダイゼーションを行つた。 その後、 2 xSSC, 0. 1%SDS (68°C) 溶液で 5分二回、 さらに 0. l x SSC, 0. 1%SDS (68°C) 窗夜で 1 5分二回洗浄した。 洗浄後のナイロン膜は I m a g e p l a t e (Fu j i F i l m 社) にて露光させ、 同社の Ima g e l a t e Re a d e r BAS 2500に て角 斤を行った。
生まれてきた全てのマウスで V a 14鎖の遺伝子稱冓成 (rearrangement)が見られた。 結果を図 4に示す。
遺伝子帮冓成の起きてレヽな ヽ germline configurationを有するゲノム D N Aでは V - J aという再構成された産物が しないため Va 14プローブを用いてサザンブロット を行うと、 1 29/S V— t e rマウス由来の対立遺伝子を持つ 5 k bのバンド を生じ (図 4、 レーン 2) 、 C 57BL/ 6マウス由来の対立遺伝子を持つ場合約 13 k bのバンドを生じる (図 4、 レーン 1) 。 これは E c oR Iで消化したときに生ずる断片 が 1 29_ S v_ t e r由来の ¾ ^と C57BLZ6由来の ¾ ^とで異なる為である。 ド ナー細胞が由来する C 57BL/6 X 129/S v- t e rマウスでは両方の対立遺伝 子を有し、 約 2. 5 k bのバンドと約 13 k bのバンドの両方を生じる (図 4、 レーン 3) 。 クローンマウス # 1、 # 3及び #4では、 遺伝子爾冓成を終了した Vひ 14遺伝子 座を持つゲノム DNAでは組換えにより 8 k bのバンドが検出されるようになるが約 1 3 k bと 2. 5 k bのバンドはそのままであった (図 4、 レーン 4及ぴレーン 5、 レーン 8、 レーン 9) 。 後述する TCRVひ鎖の塩基配列決定の結果ともあわせて考えると、 この 8 k bのバンドはクローンマウスにおいて C 57B LZ 6由来の対立遺伝子に由来するもの であることがわかる。 尚、 遺伝子再構成後も約 13 k bのバンドが残るのは C 57BL/ 6種の対立遺伝子中にぉ 、て V α 14の遺伝子が二つ しており、 一方が偽遺伝子のた めと考えられる。
また、 クローンマウス # 2では、 遺伝子蘭成を終了した V « 14遺伝子座を持つゲノ ム DNAでは組換えにより 8 k bのバンドが検出されるようになり、 約 13 k bのバンド はそのままであつたが 2. 5 k bのバンドが消失していた。 このことから 129ZS V— t e r由来の対立遺伝子にも遺伝子精冓成が起こったことが予想される (図 4、 レーン 6 及びレーン 7) 。 DNA塩基配列の結果 (図 6) からクローンマウス # 2においては 1 2 9/Sv— t e r由来の Vo! 14— J α 281力 S使用されていることが明らかになった。 同様に T C R V 3のサザンプロットを行つたところ片側もしくは両方の対立遺伝子が r earrangementしていた。 遺伝子! 成の起きていない germline configurationのグノム D N Aでは 10. 4 k bのバンドしか生じなレ、のに対して遺伝子再構成を終了した遺伝子座 を持つものは組換えによりさまざまな大きさのバンドを生じる。 結果を図 4に示す。
また、 クローンマウスの作成過程で、 産仔に至らず空の胎盤のみを得る がある。 得 られた空の胎盤のゲノム DNAを抽出し同様に TCRVひ 14と TCRVjSのサザンブロ ット解析を行った。 その結果、 空の胎盤由来のゲノム DNAのサザンプロットパターンは、 クローンマウスの尾由来のゲノム DNAのサザンブロットパターンと V 14鎖、 Vj3鎖 とも一致していた。 (但し、 胎盤由来のゲノム DNAには仮舰由来のバンド力 S観察され る場合もある。 TCRV0の場合は 10. 4k b) 。
さらにこれらのゲノム DNAを^ Mにして PCRを行い 鎖と J a鎖の DNA配列を 検討した。 クローンマウス (クローンマウス # 1、 # 2及び #4) の尾あるいはその胎盤 よりゲノム DN Aを抽出し、 Va l 4— J a 281の配列を P CRによって増幅させた。 もし、 これらのゲノム D N Aの対立遺伝子が両方とも遺伝子雨冓成以前の configuration (germline configuration)ならば P CR産物は生じなレ、。 なぜなら Va 14と J a 281 の遺伝子断片は数メガベース以上離れて存在する為、 P C Rで増幅することができな 、か らである。 しかし遺伝子稱苒成された場合には 330 b p程度の PC R産物を生じるはず である (図 5参照) 。 さらに Vひ 14遺伝子中に配列ポリモルフィズムが するので得 られた産物の DN A配列を決定すればその Vひが 1 29/S V- t e r由来なのか C 57 B L/6由来なのか区別が付く (ド^ "一 NKT細胞は C 57BL/6と 129/S v— t e rとの F 1である) (図 6参照) 。
Va 14— Jひ 281検出用 PCRプライマーは以下の通りである。 図 5に各プライマ 一のゲノム上での位置を模式的に示した。
<Va 14- J α 28 1検出用 P CRプライマー >
プライマー配列 5 : 5' -CCCAAGTGGAGCAGAGTCCT-3' (配列番号 5)
プライマー配列 6 : 5' — AGGTATGACAATCAGCTGAGTCC— 3' (配 列番号 6)
クローンマウスの胎盤ならぴに尾よりのゲノム DN Aを^ ¾にして上記プライマー (プ ライマー 5ならびに 6) の糸且み合わせにより PCRを行った (麵 DNA50 n gについ て、 各プライマー濃度 0. 2μΜで AB I社の Amp 1 i Ta q Go 1 dを使用し、 9 4°Cで 10分処理し、 94°C1分、 60°C1分、 72 °C 1分のサイクルを 36回行った) ところ約 330 b p程度の PC R産物が得られた (図 5、 PCR図、 それぞれレーン 2及 びレーン 9) 。 一方、 コントロールである C 57BL/6、 129/S v jヽ もしくは血 液幹細胞由来クローンマウスのゲノム DNAでは予想どおり産物が得られなかった (図 5) 。 この PC R産物の DNA塩基配列を決定したところ図 6に示すように遺伝子 冓成 済みインフレームの TCRVa 14— Jひ 281を有していることがわかった。 クローン マウス # 1及び #4は C57BLZ6型であり、 クローンマウス #2は 129/S v- t e r型であった。
NKT細胞において T CR V ;3鎖は T CR V α鎖と異なり一義的に決定されていない。 そこでどの V ]3鎖が使用されているのかを調べるためさまざまな V ]3鎖を検出しうるプラ イマ一を使用してクローンマウス # 1の尾と胎盤ゲノム D Ν Αを醒にして P C Rを行 ヽ DNA塩基配列を決定した (各プライマーのゲノム上の位置は図 3参照) 。 使用した PC Rプライマーの組み合わせは下記に示すプライマーの群 Aから任意の一本とプライマーの 群 Bの任意の一本である。 この も TCRVa鎖と同様、 遺伝子再構成の終了している TCRV ]3遺伝子座を有する対立遺伝子からは PCRの産物力 S得られるのに対し ge lin e configurationをもつ通常の対立遺伝子からは産物が得られない。
<丁〇1 ¥]3検出用?〇1プラィマー>
プライマー群 A (TCRV 側) :
プライマー配列 7 (ν 2用) : 5, -CACGGGTCACTGATACGGAGC- 3' (配列番号 7)
プライマー酉己列 8 (Vj33用) : 5, 一 TGAGTGTCCTTCAAACTCACC— 3' (配列番号 8)
プライマー配列 9 (V]34用) : 5, -AAACCATTTAGACCTTCAGAT- 3' (配列番号 9)
プライマー酉己列 10 5用) : 5, -AGTTTGATGACTATCACTCTG
-3' (配列番号 10)
プライマー配歹 IJl l (V]36用) : 5, 一 GGGCAAAAACTGACCTTGAA— 3' (配列番号 1 1) プライマー配列 1 2 (Vj37用) : 5, -TCTCACGGAAGAAGCGGGAGC —3, (配列番号 12)
プライマー配歹 IJ1 3 (V|38用) : 5' —GATACAAGGCCTCCAGACCA— 3, (配列番号 13)
プライマー配列 14 (V|31 1用) : 5' -GCCCAATCAGTCGCACTCAA C-35 (配列番号 14)
プライマー配列 15 (V/312用) : 5' -CATCCTTCTCCACTCTGAAG A-35 (配列番号 1 5)
プライマー群 B;
プライマー配列 16 : 5' —GAAGGGACGACTC丁 GTCTTACCTT— 3' (配列番号 16)
プライマー配列 1 7: 5' -TGAGAGCTGTCTCCTACTATCGATT- 3' (配列番号 1 7)
塩基配列決定した結果を図 7に示す。 クローンマウス # 1は遺伝子再構成済みィンフレ ームの V 38 S 2—D1— J 2 S 5の枠組みを有し、 クローンマウス #2は、 VjS 8 S 3-D 1- J β 1 S 4であった。 さらに V/3表現型についてクローンマウス # 1及び # 2 の末梢血を F A C Sで角? |lしたところ、 ドナー細胞のそれとは異なりその殆ど全てが T C RV/38Hf生であった (図 12) 。 このことは、 両クローンマウスにおいて対立遺伝子排 除が起こっていることを示している。 これらのクローンマウスは外見上何の異常も認めら れず誕生より 12ヶ月以上経た現在でも少々の肥満傾向以外は全く正常である (2005 年 6月現在) 。
以上の結果より、 本発明で得られたクローンマウスの由来は、 遺伝子帮誠の済んだ末 梢の N K T細胞であることが蘭された。
実施例 2 : N K T細胞からの E S細胞株の樹立
N K T細胞由来の核を用!/、て実施例 1で記載した直接跡植方法により E S細胞樹立を 試みた。 97ケの NK T細胞をピぺットで傷をつけ前述の方法で雌した卵子に移植した。 移植後 60時間 (Da y 2. 5、 8細胞状態、 emb r y o) で ES用培地 (FCS、 L 一 g l u、 NEAA、 P/S, L I F及ぴ 21^£を含有する01\^]^) を用いて細胞を洗 浄し、 予め «された胎児 '1¾線維芽細胞上に播き直した (1 emb r y。Z培養皿) 。 その後 37 °C、 7 % C O 2条件下で内部細胞塊 (Inner Cell Mass; ICM)が十分に成長するま で培養を行つたところ (7〜10日 a¾) 16ケの I CMをもつ細胞力 S得られた。 さらに I CMをシリンジ、針を用いて小片に分断し E Sコロニーが廳忍されるまで培養を し た。 これら一連の工程により 1 1ケの ES細胞株が得られた。 これらのうち 5ケは分化し てしまったが 6ケの ES細胞株を樹立できた。 さらにこれら 6ケの ES細胞株のキメラマ ウス形成能を検討したところ 4ケの ES細胞にっレ、てキメラマウスを作成させる能力が確 認でさた。 一連の経過をまとめたものを表 2に示す。 表 2
ES細胞
_核移植に使用した NKT細胞数: 97
I CMを生成したブラストシストの数: 16
_ICMから確立できた ES細胞株数(分化したものも含む): 11
未分化のまま確立できた ES細胞数: 6
キメラマウスの形成能を確認した ES細胞株数: 4
ES細胞樹立率
(6/97). 6% さらに得られた E S細胞にっ ヽて、 実施例 1と同様にして T C R V α遺伝子座を P C R により角晰した (図 5、 レーン 3〜8) 。 結果、 いずれも 330 b ρの PC R産物が得ら れ、 遺伝子菌成が行われていることが証明された。 さらに実施例 1と同様にしてサザン プロット角晰を行った。 結果、 ドナー細胞である NKT細胞と同じ遺伝子雨冓成された T CRVcx 14鎖を有し、 又 TCRV )3鎖についても遺伝子再構成されていることを鶴忍し た (図 8、 レーン 1〜6) 。
実施例 3 :クローンマウスの子孫 (クローンマウスの生殖能力)
NKT細胞由来のクローンマウスの生殖能力を調べるため、 クローンマウス # 1を I C R、 C 57 B LZ6株の雌マウスと交配させた。 その結果三ヶ月で 47匹の子供が生まれ た。 この事実よりこのクローンマウスの «能力は正常であると判断される。 これらの子 供 (子孫 F 1) においてゲノム DNAがどのようになるのかサザンプロット を行った。 クローンマウス由来の遺伝子再構成済みの TCRVa 14由来の 8 k bのバンドを受け継 いだ F 1が雄 1番、 雌 6番に見られ、 クローンマウスの遺伝子爾冓成の終了した対立遺伝 子 T C R Vひ 14鎖が生殖細胞に受け継がれていることが確認された (図 9、 上段、 矢 印) 。 また親であるクローンマウス # 1由来の T C R V を含む対立遺伝子はそれぞれ約 9 k bと 8 k bに分離している (図 4参照) 力 各 F 1は母親マウス由来の 10. 4 k b のバンド (図 9、 下段、 白矢頭) と約 9 k bもしくは 8 k bのバンドを受け継いでいる
(図 9、 下段、 黒矢頭) 。 例えば雄の 1番、 ならびに雌の 3、 6及び 7番は約 9 k bのバ ンドを、雄 2〜 6、 雌 1、 2、 4、 5及び 8番は約 8 k bのバンドを受け継いでいること がわかる。 すなわち、 TCRV )3鎖については父親のクローンマウスのもつ遺伝子稱冓成 済みのゲノムを含む対立遺伝子がそれぞれ一本ずつ引き継がれて 、くこと力判明した (図 9) 。 これらの事実よりこれらの遺伝子辩冓成済みゲノム DNAは子孫に伝播されていく ことが証明された。
遺伝子蘭成された対立遺伝子を持つ NKTクローンマウスの子孫の T細胞、 NKT細 胞の細胞表面 ίίΐ を F A C Sによつて角晰した。 NKTクローンマウス F 1の脾臓並びに 肝臓で晰した。 脾臓は 2枚のスライドガラス上で押しつぶして単細胞にして赤血球を除 去し染色に用いた。 また月刊蔵は 75 μ mの網目の直径をもつ金属性のメッシュですりつぶ し、 P e r c o 1 1の密度勾配によって職細胞まで調製し、 その後赤血球を除去し単細 胞として染色に用レ、た。 これらの細胞は全 T CRV^を認識する抗体である抗 T C.R V β 抗体 (実施例 1で用いたものと同じ) 並びに TCRV 8のみを認識する抗体 (Ph a r Mi n g e n社、 商品番号 553861) で染色して FAC S角浙することによりクロー ンマウス子孫における TCRV/38の割合を調べた。 結果を図 10の上段に示す。 又、 同 様に應厳び月舊を単一細胞まで^^した後、 CD I dテトラマー (実施例 1で用いたも のと同じ) 及 O¾tTCRV 抗体 (実施例 1で用いたものと同じ) で染色して FACS解 析することによりクローンマウス子孫における NK T細胞の割合を調べた。 結果を図 10 の下段に示す。 TCRV/38を発現する割合は脾臓にお!/、ては野生型が T細胞の 20 %強 であるのに対して T C R V 8をインフレームで受け,継 、だマウス (図 10、 2のパネ ル) ではほぼ 100%であった。 肝臓においても同様の傾向が見られた。 野生型の脾臓細 胞においては a— GC l o a d e d CD 1 d— t e t r ame r +/TCR ]3+で定 義される NKT細胞の割合は全脾臓細胞のおよそ 0. 5%であったが、 遺伝子爾冓成済み Va 14- J α 281を受け継いだもの (図 10、 3のパネノレ) では約 13 %まで上昇し このマウスにお 、て全脾臓細胞数は野生型の半分程になっていたが Ν Κ Τ細胞の 絶対数では 1 3倍程度になっていた (図 10)。
以上の結果より、 遺伝子 冓成済みのィンフレームの TCRV]3鎖を遺伝的に受け継 ヽ だクローンマウスの子孫は、 その T細胞上に発現する TCRV ]3鎖はほぼ全てインフレ一 ムで規定された一義的な V ;3鎖レバートリーで構成されている。 すなわちトランスジェニ ックマウスで観察されるようないわゆる対立遺伝子排除が観察される。 さらに TCRVa 14- J a 281を受け継いだ子孫は NKT細胞の絶対数、 割合とも野生型に比較して 1 0〜 20倍に上昇している。 尚、 これらの結果は I CRとの F 1の結果であるが C 57 B L/6と交酉己した F 1でも同様の ί頃向が観察された。
実施例 4:クローンマウスの子孫 (ΝΚΤ細胞の働き)
本実施例では、 クローンマウスの子孫の ΝΚΤ細胞の働きについて確認した。 ΝΚΤ細 胞の人工ァゴニストであるひ一ガラクトシルセラミド (α— GC) で刺激した:!^のサイ トカイン産生をィンビト口及びィンビボで調べた。
クローンマウス # 1とメス C 57BL/6とを掛け合わせて F 1を作成した。 その後こ の F 1の雄のうち遺伝子再構成済みである V α 14- J α 281を含むものを I VF (in vitro fertilization)によって S P F化し再びメス C57BLZ6と掛け合わせて子孫を 得た (Va 14- J α 281マウス)。 三ヶ月齢の Va 14 - J α 281マウスと、 齢を 適合させた同腹仔 (対照マウス) を用いて実験を行った。
ィンビボ朿 IJ激によるサイトカイン産生
(方法)
2μ gZマウスの用量で α—GCをマウスに鹏空内投与してインビポ刺激を行った。 ィ ンビポ刺激したマウスの血、清を所定の時間で採取し、 血清中の各種サイトカイン濃度を B i o— P 1 e Su s p e n s i o n Ar r a y Sy s t em (B i oRa d, H e r c u 1 e s, CA) で測定した。
(結果)
結果を図 1 3に示す。 Vo! 14- J α 281マウス (遺伝子精冓成済み Vo; 14~ J a 281を g e rml i n eでへテロに受け継ぐマウス) についてサイト力イン (I L (ィ ンターロイキン) —2, 4, 10、 GM-CSF (顆粒球 'マクロファージコロニー刺激 因子) 、 I L—1 ]3、 TNFa (膾瘍壌死因子 a) 、 I FN (インターフェロン) 一 γ) 産生能力の増強力 ¾Sf忍された。 実施例 3で鶴忍された NKT細胞の絶対数及ぴその割合の 上昇に加え、 その機能も維持されていること力 ¾||忍された。
インビトロ刺激による I ー4及ぴ1 FN— V産生
(方法)
CD 1 1 cマイクロビーズ (Mi 1 t e ny i社) を用いてマウス (Va l 4— J o; 2 81マウス、 あるいは同腹仔の対照マウス) の脾臓から樹状細胞 (DC) を得た。 各マウ ス由来の樹状細胞を a— GC (20 On g/mL) で 6時間刺激し、 それぞれのマウス由 来の脾臓細胞 (SPC) と混合した。 これらの細胞を 72時間共培養し I FN— γ及ぴ I L— 4の産生を EL I SAキット (Ge n z yme TECHNE, Me n e a ρ o 1 i s, MN) を用いて測定した。
(結果)
結果を図 14に示す。 対照マウスに比べて V 14— J 281マウス由来の脾臓細胞 において I L— 4及び I F N— γ産生能が増大されていること力 ¾|!忍された。
配列表フリーテキスト
配列番号 1 : TCRV 14サザンプローブ調製用 PC Rプライ (プライ 配列 1)
配列番号 2: T C R V 14サザンプローブ調製用 P C Rプライ (ブラィ 配列 . 2)
配列番号 3 : T C R V サザンプローブ調製用 P C Rプライ (プライ 配列 3 ) 配列番号 4: 1^1 ¥/3サザンプローブ調製用?じ1プラィマー (プライマー酉己列 4) 配列番号 5 : TCRVa 14— J α 281検出用 PCRプライ (プライ 配列 5) 配列番号 6: TCRVo; 14— J α 281検出用 PCRプライ (プライ 配列 6) 配列番号 7: TCRV^ 2検出用 PCRプライ (プライ 配列 7)
配列番号 8 : TCRV/33検出用 PCRプライ (プライ 配列 8)
配列番号 9: TCRVJ34検出用 PCRプライ (プライ 配列 9)
配列番号 10 : TCRV/35検出用 PCRプライ (プライ 配列 10)
配列番号 1 1 : TCRVj36検出用 PCRプライ (プライ 配列 1 1)
配列番号 12 : TCRVj37検出用 PCRプライ (プライ 配列 12) 配列番号 13 : TCRV^S 8検出用 PCRプライマー (プライマー配列 13)
配列番号 14 : TCRVj311検出用 PCRプライマー (プライマー配列 14) 配列番号 15 : TCRVJ312検出用 PCRプライマー (プライマー配列 15) 配列番号 16 : TCRV3検出用 PCRプライマー (プライマー配列 16)
配列番号 17 : TCRVi3検出用 PCRプライマー (プライマー配列 17)
産業上の利用可能性
本発明によって得られるクローン哺乳動物、 クローン哺乳動物胚ならびにそれらから得 られる細胞、 糸纖、 器官及び生産物は、 ドナーと全く同じ組謹合性 (例えば HL A) を有し、 又観性も同等であり、 移植時、 投与時の免疫拒 応が起こらない。 また、 NKT細胞を用いた場合にはクローン作成に ES細胞の樹立と t e t r a p l o i d c om 1 erne n t a t i o nを必要としない。 この為大幅な時間と労力の節約ができる。 さらに NKT細胞の核を使用して E S細胞を樹立した; ^その効率は約 6 %であり、 従来 の末梢マウス T細胞、 B細胞をドナーとして用いた:^に比較して非常に高い。 又、 自家 移植によりヒト ES細胞を樹立できる効率 (Hwang, W. S. ら, 「Evidence of a pluripotent human embryonic stem ce丄丄 line derived from a cloned blastocyst. J, Science,
2004年, 303, p.1669-1674)と比較しても非常に高い。 さらに移植した核から個体になる 率はおよそ 1.5 %であり、 これまで個体が比較的容易に得られるとされた E S細胞から のクローン作成の成 ¾ /率 (Wakayatna, T. り, 「Mice cloned from embryonic stem cells.」, P roceedings of the National Academy of Sciences of the United States of America, (米 国), 1999年, 96, p.14984- 14989)に匹敵する。
本発明の方法を用レヽれば、 クローン哺乳動物がより高率でできることから有用動物 (例 えば生物医薬品等をミルク中に産生するトランスジェユック羊、 牛等) を容易にクローン 化することが可能となり、 これらの医薬品の大量生産、 コストダウンが可能となり、 総医 療費の肖減に貢献できる。
さらに、 本発明のクローン哺乳動物の子孫は、 T細胞上で発現する TCRViS鎖が実質 的に単一の T C R V /3鎖レパートリ一で構成されていることを特徴とし、 より詳細にはド ナー細胞として用いた NKT細胞の TCRV ]3鎖レノヽ。一トリーと同一である。 さらに、 遺 伝子 f冓成済みの TCR α鎖である 1 -] a 281を含む対立遺伝子を有する子孫 では NKT細胞の数が相対的且つ絶対的に野生型と比較して增カ卩している。 これらの事実 力ら、 本発明のクローン哺乳動物の子孫は、 自己免疫疾患等の病態モデル動物として、 又、 免疫制御における NK T細胞の役割や T C R V /3鎖のレパートリ一の多様性がもたらす意 義を角晰する手法を与えるものである。 本出願は、 日本で出願された特願 2004-238836及び特願 2005— 1779 98を基礎としておりそれらの内容は本明細書に全て包含されるものである。

Claims

請求の範囲
1 . ドナー細胞として哺乳動物のナチュラルキラー τ細胞を用いることを特徴とする、 ク 口一ン非ヒト哺乳動物の作成方法。
2. 哺 動物のナチュラルキラー Τ細胞の核を哺乳動物の除核卵母細胞に導入することを 含む、 クローン非ヒト哺乳動物の作成方法。
3. 哺乳動物のナチュラルキラー Τ細胞に由来する核を哺乳動物の除核卵母細胞に導入し て再構築胚を形成し、 該蒲築胚を宿主哺乳動物に移入することを含む、 クローン非ヒト 哺乳動物の作成方法。
4. ナチュラルキラー Τ細胞力 S、所望の形質を発現させるよう遺伝子操作が行われたもの である、 請求項 1〜 3の ヽずれか 1項に記載のクローン非ヒト哺乳動物の作成方法。
5 . ナチュラルキラー T細胞と除核卵母細胞が同種の晡?し動物由来である、 請求項 1〜4 のいずれか 1項に記載のクローン非ヒト哺乳動物の作成方法。
6 . ナチュラルキラー T細胞と除核卵母細胞力 S異種の哺乳動物由来である、 請求項 1〜4 の 、ずれか 1項に記載のクローン非ヒト哺乳動物の作成方法。
7. ナチュラルキラー T細胞が、臍帯血、 末梢血、 肝臓、 骨髄、 脾臓、 胸腺からなる群よ り選ばれる糸纖ょり採取されるものである、 請求項 1〜 6のいずれか 1項に記載のク口一 ン非ヒト哺乳動物の作成方法。
8. 請求項 1〜 7のいずれか 1項に記載の方法によって作成されたクローン非ヒト哺乳動 物。
9. 請求項 1〜 7の 、ずれか 1項に記載の方法によって得られるクローン非ヒト哺乳動物 の胎仔。
1 0 . 請求項 8記載のクローン非ヒト哺乳動物の子孫。
1 1 . T細胞上で発現する T C R V ]3鎖が実質的に単一の T C RV ^鎖レパートリ一で構 成されていることを特徴とする、 請求項 1 0記載のクローン非ヒト哺乳動物の子孫。
1 2 . 単一の T C RV 3鎖レパートリーが、 ドナー細胞として用いたナチュラルキラー T 細胞の T C R V i3鎖レパートリーと同一である、 請求項 1 1記載のクローン非ヒト哺乳動 物の子孫。
13. 遺伝子爾冓成済みの T C R α鎖である V « 14-J a 281を含む対立遺伝子を有 しナチュラルキラー T細胞の数力 S増カ卩していることを特徴とする、 請求項 10記載のク口 一ン非ヒ ト哺乳動物の子孫。
14. 請求項 8記載のクローン非ヒト哺乳動物から得られる細胞、 糸纖、 器官又は生産物。
15. 請求項 9記載のクローン非ヒト哺乳動物の胎仔から得られる細胞、 糸纖、 器官又は 生産物。
16. 請求項 10記載のクローン非ヒト哺乳動物の子孫から得られる細胞、 糸纖、 器官又 は生産物。
17. ドナー細胞と免疫学的に同一であることを特徴とする、 請求項 14又は 15記載の 細 3包、 m器官又は生産物。
18. 治療用、 植用及び/又は細胞移植用である、 請求項 14〜17のいずれか 1 項に記載の細胞、 «、 器官又は生産物。
19. ドナー細胞として哺乳動物のナチュラルキラー Τ細胞を用いることを特徴とする、 クローン哺乳動物胚の作成方法。
20. 哺乳動物のナチュラルキラー Τ細胞の核を哺乳動物の除核卵母細胞に導入すること を含む、 クローン哺乳動物胚の作成方法。
21. ナチュラルキラー Τ細胞が、 所望の形質を発現させるよう遺伝子操作が行われたも のである、 請求項 19又は 20記載のクローン哺乳動物胚の作成方法。
22. ナチュラルキラー Τ細胞と除核卵母細胞が同種の哺乳動物由来である、 請求項 19 〜 21のレヽずれか 1項に記載のクローン哺乳動物胚の作成方法。
23. ナチュラルキラー Τ細胞と除核卵母細胞が異種の哺乳動物由来である、 請求項 19 〜 21のレ、ずれか 1項に記載のクローン哺乳動物胚の作成方法。
24. ナチュラルキラー Τ細胞が、 臍帯血、 末梢血、 月谦、 骨髄、 脾臓、 胸腺からなる群 より選ばれる糸職より採取されるものである、 請求項 19〜 23のレ、ずれか 1項に記載の クローン哺乳動物胚の作成方法。
25. 請求項 19〜 24の Vヽずれか 1項に記載の方法によつて作成されたクローン哺乳動 物 Εο
2 6 . 請求項 2 5記載のクローン哺乳動物胚を胚翻包期又は前胚盤包期まで培養し、 得ら れる胚翻包期又は前胚翻包期の内部細胞塊から胚性幹細胞を分 ることを含む、 クロー ン喃乱動物胚性幹細胞の作成方法。
2 7. 請求項 2 6記載の方法によつて得られるク口ーン哺乳動物胚性幹細胞。
2 8 . 請求項 2 7記載のクローン哺乳動物胚 I·生幹細胞を所望の細胞分ィ匕を誘導し得る条件 下で培養し分化誘導することを含む、 クローン哺乳動物の分化細胞、 紙織、 器官又は生産 物の作成方法。
2 9 . 請求項 2 8記載の方法によって得られるクローン哺乳動物の分化細胞、 器官 又は生産物。
3 0. ドナー細胞と免疫学的に同一であることを特徴とする、 請求項 2 9記載の分化細胞、 繊、 器官又は生産物。
3 1 . 治療用、 移植用及び Z又は細胞移植用である、 請求項 2 9又は 3 0記載の分化 細胞、 繊、 器官又は生産物。
PCT/JP2005/014474 2004-08-18 2005-08-01 クローン哺乳動物の作成方法 WO2006018998A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05768801A EP1792537A4 (en) 2004-08-18 2005-08-01 METHOD FOR CONSTRUCTING CLONE MAMMAL
US11/573,995 US20100083393A1 (en) 2004-08-18 2005-08-01 Method of constructing clone mammal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-238836 2004-08-18
JP2004238836 2004-08-18
JP2005-177998 2005-06-17
JP2005177998A JP2006081542A (ja) 2004-08-18 2005-06-17 クローン哺乳動物の作成方法

Publications (1)

Publication Number Publication Date
WO2006018998A1 true WO2006018998A1 (ja) 2006-02-23

Family

ID=35907388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014474 WO2006018998A1 (ja) 2004-08-18 2005-08-01 クローン哺乳動物の作成方法

Country Status (4)

Country Link
US (1) US20100083393A1 (ja)
EP (1) EP1792537A4 (ja)
JP (1) JP2006081542A (ja)
WO (1) WO2006018998A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038579A1 (fr) 2006-09-25 2008-04-03 Riken diffÉrentiation/induction in vitro de lymphocytes À partir de cellules souches dont le gÉnotype rÉsulte d'une reconstitution gÉnÉtique
WO2010027094A1 (ja) 2008-09-08 2010-03-11 独立行政法人理化学研究所 NKT細胞由来iPS細胞およびそれ由来のNKT細胞
WO2012074116A1 (ja) 2010-12-02 2012-06-07 独立行政法人理化学研究所 アロNKT細胞を用いた免疫療法およびそのためのT細胞抗原受容体(TCR)遺伝子のα鎖領域が均一なVα-Jαに再構成されている細胞および該細胞由来NKT細胞のバンキング

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509778A (ja) * 1995-11-08 2001-07-24 エモリー ユニバーシティ 移植片不全または対宿主性移植片病を伴わない同種異系造血幹細胞移植法
JP2003518936A (ja) * 2000-01-04 2003-06-17 ユニバーシティ オブ コネチカット 長期間培養された雄または雌の体細胞核の、人為的に誘導される遺伝子改変を含む、除核レシピエント細胞への移植による、標的遺伝子改変を有する動物をクローニングする方法。

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9517780D0 (en) * 1995-08-31 1995-11-01 Roslin Inst Edinburgh Biological manipulation
US6213127B1 (en) * 1996-07-29 2001-04-10 Emory University Methods for treating cancer using allogeneic lymphocytes without graft vs host disease activity
US20010012513A1 (en) * 1996-08-19 2001-08-09 University Of Massachusetts Embryonic or stem-like cell lines produced by cross species nuclear transplantation
US5945577A (en) * 1997-01-10 1999-08-31 University Of Massachusetts As Represented By Its Amherst Campus Cloning using donor nuclei from proliferating somatic cells
US6011197A (en) * 1997-03-06 2000-01-04 Infigen, Inc. Method of cloning bovines using reprogrammed non-embryonic bovine cells
EP0973871A1 (en) * 1997-03-06 2000-01-26 Infigen, Inc. Method of cloning animals
US20010014320A1 (en) * 1998-09-03 2001-08-16 Emory University Methods for treating cancer using allogeneic lymphocytes without graft vs host disease activity
US6258998B1 (en) * 1998-11-24 2001-07-10 Infigen, Inc. Method of cloning porcine animals
US6700037B2 (en) * 1998-11-24 2004-03-02 Infigen, Inc. Method of cloning porcine animals
NZ337792A (en) * 1999-09-14 2002-03-28 Pastoral Agric Res Inst Nz Ltd Nuclear transfer and use in cloning
JP2002176973A (ja) * 2000-12-14 2002-06-25 Shigeo Saito 哺乳動物胚性幹細胞とその樹立方法並びにその継代培養方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509778A (ja) * 1995-11-08 2001-07-24 エモリー ユニバーシティ 移植片不全または対宿主性移植片病を伴わない同種異系造血幹細胞移植法
JP2003518936A (ja) * 2000-01-04 2003-06-17 ユニバーシティ オブ コネチカット 長期間培養された雄または雌の体細胞核の、人為的に誘導される遺伝子改変を含む、除核レシピエント細胞への移植による、標的遺伝子改変を有する動物をクローニングする方法。

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INOUE K ET AL: "Generation of cloned mice by direct nuclear transfer from natural killer T cells.", CURR BIOL., vol. 15, no. 12, 21 June 2005 (2005-06-21), pages 1114 - 1118, XP005016806 *
See also references of EP1792537A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038579A1 (fr) 2006-09-25 2008-04-03 Riken diffÉrentiation/induction in vitro de lymphocytes À partir de cellules souches dont le gÉnotype rÉsulte d'une reconstitution gÉnÉtique
JP5288183B2 (ja) * 2006-09-25 2013-09-11 独立行政法人理化学研究所 遺伝子再構成後の遺伝子型を有する幹細胞からのリンパ球のインビトロ分化誘導
WO2010027094A1 (ja) 2008-09-08 2010-03-11 独立行政法人理化学研究所 NKT細胞由来iPS細胞およびそれ由来のNKT細胞
JPWO2010027094A1 (ja) * 2008-09-08 2012-02-02 独立行政法人理化学研究所 NKT細胞由来iPS細胞およびそれ由来のNKT細胞
JP5652783B2 (ja) * 2008-09-08 2015-01-14 独立行政法人理化学研究所 NKT細胞由来iPS細胞およびそれ由来のNKT細胞
US8945922B2 (en) 2008-09-08 2015-02-03 Riken Generating a mature NKT cell from a reprogrammed somatic cell with a T-cell antigen receptor α-chain region rearranged to uniform Va-Ja in a NKT-cell specific way
WO2012074116A1 (ja) 2010-12-02 2012-06-07 独立行政法人理化学研究所 アロNKT細胞を用いた免疫療法およびそのためのT細胞抗原受容体(TCR)遺伝子のα鎖領域が均一なVα-Jαに再構成されている細胞および該細胞由来NKT細胞のバンキング

Also Published As

Publication number Publication date
US20100083393A1 (en) 2010-04-01
EP1792537A4 (en) 2009-07-15
EP1792537A1 (en) 2007-06-06
JP2006081542A (ja) 2006-03-30

Similar Documents

Publication Publication Date Title
CN108660161B (zh) 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
JP2022031487A (ja) 疾患を処置するための遺伝子改変された細胞、組織、および臓器
Denning et al. New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells
Park et al. Generation of genetically engineered non‐human primate models of brain function and neurological disorders
sang Lee et al. Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein
KR20180091821A (ko) 유전적 상보성에 의한 인간화 car t-세포 및 혈소판의 조작방법
JP2019502400A (ja) キメラ胚補助臓器作製用の組成物及び方法
JP2020043864A (ja) 幹細胞を用いた異種間胚胞キメラ動物の作製法
Samiec et al. The possibilities of practical application of transgenic mammalian species generated by somatic cell cloning in pharmacology, veterinary medicine and xenotransplantology
US6281408B1 (en) Efficient method for production of compound transgenic animals
Di Berardino Animal cloning–the route to new genomics in agriculture and medicine
JP4095898B2 (ja) 人工染色体を含むトランスジェニック動物のクローニング
AU2008318583A1 (en) Method of genetically altering and producing allergy free cats
KR20180128386A (ko) 유전적 상보성에 의한 인간화 신장의 조작
US20080263692A1 (en) Methods for correcting mitotic spindle defects associated with somatic cell nuclear transfer in animals
JP5366074B2 (ja) 共通サイトカイン受容体γ鎖遺伝子ノックアウトブタ
WO2006018998A1 (ja) クローン哺乳動物の作成方法
WO2017175745A1 (ja) 生殖細胞欠損動物を用いる遺伝子改変動物の作製方法
JPWO2006009297A1 (ja) Es細胞を用いたキメラ作製
WO1994009621A1 (en) Mouse deficient in endothelin 1 gene function
Galli Animal engineering for xenotransplantation
US20240041010A1 (en) Generation of surrogate sires and dams by ablation of endogenous germline
Sasaki Creating genetically modified marmosets
KR20070101266A (ko) 동물 체세포 핵 이식과 연관된 유사분열 방추 결함의 교정및 착상 전 배아 발달율의 최적화 방법
EP1322151A2 (en) Method of producing non-human mammals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005768801

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005768801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11573995

Country of ref document: US