WO2006018161A2 - Am zentralatom substituierte, immobilisierbare ruthenium(ii)-katalysatoren, verfahren zu deren herstellung und verwendung - Google Patents

Am zentralatom substituierte, immobilisierbare ruthenium(ii)-katalysatoren, verfahren zu deren herstellung und verwendung Download PDF

Info

Publication number
WO2006018161A2
WO2006018161A2 PCT/EP2005/008526 EP2005008526W WO2006018161A2 WO 2006018161 A2 WO2006018161 A2 WO 2006018161A2 EP 2005008526 W EP2005008526 W EP 2005008526W WO 2006018161 A2 WO2006018161 A2 WO 2006018161A2
Authority
WO
WIPO (PCT)
Prior art keywords
eto
chph
meo
imes
coo
Prior art date
Application number
PCT/EP2005/008526
Other languages
English (en)
French (fr)
Other versions
WO2006018161A3 (de
Inventor
Katrin Koehler
Kati Vehlow
Siegfried Blechert
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Publication of WO2006018161A2 publication Critical patent/WO2006018161A2/de
Publication of WO2006018161A3 publication Critical patent/WO2006018161A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1608Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes the ligands containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • B01J31/1633Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups covalent linkages via silicon containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/323Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/20Non-coordinating groups comprising halogens
    • B01J2540/22Non-coordinating groups comprising halogens comprising fluorine, e.g. trifluoroacetate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes

Definitions

  • the invention relates to immobilizable ruthenium (II) catalysts of the general formulas (I) and (II) which contain a group bearing SiR " ⁇ (OR") 3- n on at least one of the two anions.
  • the invention further relates to the use of the compounds in a process for the preparation of immobilized on inorganic oxide supports ruthenium (II) catalysts of the general formulas (Ia) and (IIa).
  • immobilisable compounds of the general formulas (I), (II) and the immobilized compounds of the general formulas (Ia) and (IIa) as catalysts in organic and organometallic synthesis, in particular for C-C coupling reactions such as olefin metathesis.
  • L neutral 2-electron donor (N-heterocyclic carbene or phosphine ligand)
  • the ruthenium compounds of types (A) and (B) are used as homogeneous catalysts in olefin metathesis. Since the separation of the homogeneous catalysts from the reaction products is a costly and expensive process, it is of great advantage to use homogeneous catalysts which are immobilized on a support in the catalytic processes. These immobilized catalysts can be easily separated by filtration from the reaction products. This is of particular interest when the catalyst is very expensive and thus can be recycled and reused in the next catalytic process. In addition, in many fields of application high purity requirements are placed on the products, so that the reaction products of the catalytic process must not be contaminated with the transition metals and ligands of the catalysts. This is especially true for products for pharmaceutical applications.
  • the above compounds of types (A) and (B) are colored compounds; Residual amounts of catalyst can inevitably lead to colored products. This too can be eliminated by immobilizing the catalyst on a support.
  • Immobilization of homogeneous catalysts can be based on organic
  • Polymers such as polystyrene or on inorganic oxides such as silica gel.
  • organic support materials have many disadvantages, such as mechanical instability and heavy swelling depending on the media used, which leads to diffusion problems and thus to reduced catalyst activities.
  • Silica gels have high thermal stability compared to organic supports and are commercially available in a wide range of porosity and surface specificities and can be functionalized in simple chemical reactions via the silanol groups.
  • An immobilization of catalysts of type (A) and (B) on a carrier can be carried out via various groups in (A) and (B).
  • the following work describes an immobilization of the catalysts on a support over the benzylidene ligands: WO 01/72421, WO 02/14376, US 2003/0064884;
  • inorganic oxides are used only as a base body on which various copolymers and only then on the copolymers, the catalysts are attached.
  • type (A) ruthenium catalysts on silica gel via an alkyl substituent of the nitrogen atom in the N-heterocyclic carbene ligand on silica gel.
  • this attachment position automatically entails the loss of the necessary bulky aromatic substituents on the N atoms of the NHC ligand, such as mesityl residues, resulting in reduced shielding / stabilization of the catalytically active center.
  • the disadvantage of these systems is lower stability, reduced activities and a shortened catalyst life during the catalytic process.
  • the anionic ligand consists of a halide, alcoholate, carboxylate or trifluoromethanesulfonate radical , In Tetrahedron Letters 2000, 41, 9973, Mol et al. a ruthenium complex of the type (A), which is bound via a carboxylate ligand to an organic polymer (polystyrene). Nuyken and Buchmeiser et al. describe in Angew. Chem. 2003, 115, 6147 and Chem. Eur. J.
  • the object of the present invention was therefore to provide stable, easy to prepare, immobilizable ruthenium catalysts of the type (A) and (B) which carry an alkoxysilyl group on at least one of the two anionic ligands.
  • Another object of the present invention was to provide such ruthenium (II) catalysts which do not exhibit leaching in the application.
  • Ci -C 2O -AI kylrest cycloalkyl or cycloalkyl one or two alkyl group (s) bonded with a total of 4-30 C atoms, where both alkyl and in
  • Het is a mono- or binuclear saturated or unsaturated or aromatic heterocycle having 1 to 4 N, O and / or S atoms, which is unsubstituted or mono-, di- or threefold by HaI and / or
  • Atoms, R1, R2, R3, R4 independently of the position in the molecule H, HaI, NO 2 , CN,
  • the object of the present invention is further achieved by immobilizing the compounds of the general formulas (i) and (II) on inorganic oxides to give the compounds of the general formulas (Ia) and (IIa)
  • the object of the present invention is achieved by immobilized by suitable choice of the stoichiometric ratios of the starting materials ruthenium (II) catalysts of the general formulas
  • Scheme 1 Scheme 1
  • the starting compounds Ha ⁇ [Ru] and XM are known, are commercially available or can be prepared by methods known to those skilled in the art.
  • a subgroup of the starting compounds (III) is new. These are the compounds of the general formula (IIIa) (R “O) 3- nR" nSi-R-CO 2 M.
  • the preparation of the compounds of the general formula (IIIa) can be carried out, for example, by reacting (R'O ) 3 _ R 'n Si-R-CO n H 2 with M 2 O or MO carried out in polar, aprotic solvents.
  • R ", R and n in the compounds of the general formula (IIIa) correspond to the abovementioned meanings of the compounds of the general formulas (I) and (II).
  • the compounds of the general formulas (I) and (II) can be used as catalysts in organic and organometallic synthesis. Furthermore, they serve as starting materials for the preparation of immobilized catalysts, which in turn can be used in organic and organometallic synthesis. They can be used as catalysts, in particular in CC
  • Coupling reactions, hydrogenations, isomerizations, silylations and hydroformylations are used.
  • they serve as catalysts in olefin metathesis reactions such as cross-metathesis (CM), ring-closing metathesis (RCM), ring-opening metathesis (ROM), ring-opening metathesis polymerization (ROMP), acyclic diene metathesis polymerization (ADMET) and ene-in metathesis, or in a combination of various metathesis reactions ,
  • the immobilization of the compounds of the general formulas (I) and (II) takes place by reaction of the compounds (I) and (II) with an inorganic metal oxide in organic, anhydrous, polar aprotic or protic solvents. It is additionally possible to add a silane of the general formula R-SiR " n (OR") 3-n for inerting the metal oxide surface or for saturating all Si-OH groups of the metal oxide with a non-reactive hydrophobic group. During the reaction, a by-product is an alcohol ROH.
  • the products (Ia) and (IIa) can be separated by filtration from the solvent and ROH and can optionally be purified by washing with a suitable solvent.
  • the immobilization can be carried out both in a batch process and in a continuous process.
  • the compounds of the general formulas (Ia) and (IIa) can be used as immobilized ligand or catalyst precursors and as immobilized catalysts in organic, organometallic and transition metal-catalyzed syntheses.
  • ruthenium (II) compounds of the general formulas (I) and (II) can be used as catalysts in C-C coupling reactions, hydrogenations, isomerizations, silylations and hydroformylations.
  • they serve as catalysts in olefin metathesis reactions such as cross-metathesis (CM), ring-closing metathesis (RCM),
  • ROM Ring-opening metathesis
  • ROMP ring-opening metathesis polymerization
  • ADMET acyclic diene metathesis polymerization
  • en-in metathesis or a combination of various metathesis reactions en-in metathesis or a combination of various metathesis reactions.
  • the immobilized compounds (Ia) and (IIa) have a higher activity or catalyst efficiency than their homogeneous analogs and comparable catalysts of the prior art.
  • the compounds of the general formulas (I) and (II) contain an inorganic oxide-immobilisable group [(R “O) 3-n R" n Si) precisely on one of the two possible ligand groups which do not react during the various catalytic application reactions from the catalytically active ruthenium center.
  • the immobilized ruthenium catalysts (Ia) and (IIa) can be produced, which remain bound during the catalytic application reactions on the inorganic support, whereby the catalyst Leaching is suppressed and the processing of the final products is greatly facilitated.
  • the covalent immobilization of the compounds (I) and (II) on an inorganic support can be carried out in a simple reaction by elimination of R'OH.
  • the catalysts thus immobilized can be easily separated off from the reaction solutions and reaction products by filtration in reaction reactions and can be used again as catalysts in catalytic reactions. This leads to the saving of process costs in all application reactions, in particular in the separation and purification of the end products, but also by the repeated use of high-priced catalysts in the application reactions by the recyclability (cost-effective "down streanY” process).
  • Oxides are also obtained in comparison to the homogeneous catalysts and those immobilized on organic carriers catalysts thermally and chemically stable catalysts (Ia) and (IIa).
  • the advantages of the inorganic oxides as support materials such as mechanical stability and no swelling capability, can be profited compared to the organic support materials, which leads to higher and faster substance conversions.
  • Both the compounds of the general formulas (I) and (II) and those of the general formulas (Ia) and (IIa) are very simple and accessible in high yields.
  • Compounds of the invention of the general formulas (I) and (II) represent ruthenium compounds in which the ruthenium atom is present in the oxidation state +2 and at least one of the two anionic ligands a (R “O) 3-n R" n Si group wearing.
  • the second anionic ligand can either carry a second (R “O) 3 n R" n Si group or represents a silyl-free anion Z.
  • two neutral ligands L are attached to the ruthenium center and one carbene Ligand chelated to the ruthenium center in the compounds of general formulas (II) and (IIa) by the oxygen atom present.
  • X is a monovalent anion, which is bound to charge balance as a ligand to a doubly positively charged ruthenium central atom. Depending on the electronegativity of the anion X, this bond may be a coordinative bond formed by lone pair electrons or an ionic bond.
  • X I is a singly negatively charged group bound to a charge-balancing ligand to a doubly positively charged ruthenium central atom. Depending on the electronegativity of the anionic group X ', this bond may be a coordinative bond formed by lone pair electrons or an ionic bond.
  • the anionic group X 'contained in the compounds (I) and (II) may be an RC (O) O “ , RO “ , RN (A) " or RSO 3 " , wherein R is bonded to the Si atom.
  • X ' is RC (O) O " or RO " , more preferably RC (O) O " .
  • the hydrocarbon radical R can be a radical A, Ar, A-Ar, A-Ar-A, Het, A-Het, A-Het-A, where in each case the groups A, Ar and Het can assume the meanings given below.
  • R is a radical A, Ar, A-Ar, A-Ar-A having not more than 20 C atoms.
  • R may be a radical in which A, Ar, A-Ar, A-Ar-A are each mono- or polysubstituted by a
  • R is a radical A, which may be monosubstituted or polysubstituted by F substituted.
  • A is preferably a straight-chain or branched, saturated Ci-Ci 2 alkyl group, or a cycloalkyl having 3-10 C atoms or a bonded via one or two alkyl group (s) C 4 -C 2 o-cycloalkyl.
  • Alkylene has the same meanings as given for A, with the proviso that another bond is attached from the alkyl to the next bond neighbor.
  • A is, for example, an alkylene group selected from the group
  • A can also be a cycloalkylene group having 3 to 30 carbon atoms, preferably C 3 to Cg-cycloalkylene.
  • cycloalkyl can be saturated, unsaturated, optionally be bonded via one or two alkyl groups in the molecule, and be bonded to at least one alkyl group to the SiR " n (OR") n-3 group.
  • one or more H atoms (s) may be replaced by other substituents in the cycloalkylene group.
  • Cycloalkyl is preferably cyclopropyl, cyclobutyl, cyclopentyl,
  • cycloalkyl is preferably 1, 2
  • the abovementioned groups can also be bonded to the second imidazole nitrogen as R 3 in substituted or unsubstituted form.
  • A can also be an unsaturated alkenyl or alkynyl group having 2 to 20 C atoms, which has at least one bond to the SiR " n (OR") n-3 group.
  • Alkenyl groups can be straight-chain, branched or cyclic C 2 -C 30
  • Alkenyle preferably straight-chain, branched cyclic C 2 -C 9 alkenyls, particularly preferably straight-chain or branched from the group vinyl, propenyl, butenyl, pentenyl or hexenyl.
  • Cycloalkenyl groups may be straight chain or branched C 3 -C 30 cyclo- alkenyls be, preferably Cs-Cg-cycloalkenyl, particularly preferably C 3 -C- 6 - cycloalkenyls from the group cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexyl, cyclopentadienyl and methylcyclopentadienyl ,
  • Alkynyl groups may be straight-chain or branched C 2 -C 30 -alkynyls, preferably straight-chain or branched particularly preferably straight-chain or branched C 2 -C 6 -alkyls from the group of ethynyl, propynyl, butynyl, pentynyl or hexynyl.
  • alkenyl, cycloalkenyl or alkynyl are constituents of the hydrocarbon radical R, they obviously have the same meanings as with the Provided that a further bond from the alkenyl or from the alkynyl to the next bond neighbor in the molecule is attached.
  • Ar is a mononuclear or polynuclear aromatic hydrocarbon radical having 6 to 30 carbon atoms, which may be monosubstituted or polysubstituted or unsubstituted.
  • Ar is preferably a mono- or polysubstituted phenyl or naphthyl, where substituents can assume the meanings of A and Ar has a total of not more than 20 C-atoms.
  • Aryl groups may preferably be C 6 -C 10 aryls, preferably phenyl or naphthyl.
  • Alkylaryls may be C 7 -C 8 -alkylaryls, preferably ToIyI or mesityl.
  • Ar is substituted or unsubstituted phenyl, naphthyl, anthryl,
  • Phenanthryl which is characterized by A, OA, CO-AOH, COOH, COOA, fluorine, chlorine, bromine, iodine, hydroxy, methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, nitro, cyano, formyl, acetyl, propionyl, trifluoromethyl, Amino, methylamino, ethylamino, dimethylamino, diethylamino, benzyloxy,
  • Ar is unsubstituted, mono- or polysubstituted phenyl, and in particular preferably phenyl, o-, m- or p-tolyl, o-, m- or p-
  • Arylene has the same meanings as Ar, with the proviso that one more bond is attached from the aromatic system to the next bond neighbor.
  • Het may have the following meanings:
  • H ⁇ t is unsubstituted or substituted by one or two halo and / or A-substituted chromen-2-one-yl, pyrrolyl, imidazolyl, pyridyl, pyrimidyl, piperidinyl, 1-methyl-piperidinyl, indolyl, thiophenyl, furyl, imidazolyl,
  • Benzofuryl benzothienyl, indolyl, [2,1,3] -benzothiadiazolyl, benzimidazolyl, benzopyrazolyl, benzoxazolyl, benzisoxazolyl, benzthiazolyl, benzisothiazolyl, benz-2,1,3-oxadiazolyl, quinolyl, isoquinolyl, cinnolinyl, wherein substituents A, OA, CO-AOH, COOH, COOA, fluorine, chlorine, bromine, iodine can be.
  • 6-, 7- or 8-cinnolinyl 2-, A-, 5-, 6-, 7- or 8-, quinazolinyl, A- or 5-isoindolyl, 5- or 6-quinoxalinyl, 2-, 3-, 5-, 6-, 7- or 8-2H-benzo [1,4] oxazinyl, more preferably 1,3-benzodioxol-5-yl, 1,4-benzodioxan-6-yl, 2,1,3-benzothiadiazole -4- or -5-yl, 2,1,3-benzoxadiazol-5-yl or chromenyl.
  • the heterocyclic radicals can also be partially or completely hydrogenated and have the following meanings:
  • Heterocycloalkylene or heterocycloarylene has the same meanings as given for Het, with the proviso that a further bond is linked from the heterocyclic system to the nearest bond neighbor.
  • Heterocycloalkylene preferably denotes 1, 2, 2, 3 or 1, 3-pyrrolidinyl, 1, 2, 2, 4, 4,5 or 1, 5-imidazolidinyl, 1, 2, 2, 3, or 1,3-pyrazolinyl, 2,3-, 3,4-, 4,5- or 2,5-oxazolidinyl, 1,2,3,3,4- or 1,4-isoxazolidinyl, 2 , 3-, 3,4-, 4,5- or 2,5-thiazolidinyl, 2,3-, 3,4-, 4,5- or 2,5-isothiazolidinyl, 1, 2, 2,3- , 3,4- or 1, 4-piperidinyl, 1, 4 or 1, 2-piperazinyl, furthermore preferably 1, 2,3-tetrahydro-triazole, 2- or -1, 4-yl, 1, 2,4 Tetrahydro-triazole-1, 2- or 3,5-yl, 1, 2- or 2,5-tetrahydro-tetrazolyl, 1,2,3-tetrahydro-
  • the hydrocarbon radical R is particularly preferably a group having not more than 20 carbon atoms and assumes meanings selected from compounds of the Ci-Ci2 alkylenes, C 3 -C 10 -Cycloalkylenen, or one or two Alkyl group (s) bonded C 4 -C 2 o-cycloalkylenes, C 6 -C 4 -arylenes or the C ⁇ -C 2 o-alkylarylenes and particularly preferably a C 1 -C 4 -alkylene chain from the series methylene, ethylene, Propylene and butylene or a C 6 -C 8 -arylene chain from the series -CeHU- and -CeHbMe 2 - or a Cz-Cg-alkylaryl chain from the series - CH 2 C 6 H 4 -, -CH 2 C 6 H 2 Me 2 -, -CH 2 C 6 H 4 CH 2 - and -CH 2 C 6 H 2 Me 2 CH 2 -.
  • This hydrocarbon radical R" can independently of the Position in the molecule assume different meanings and straight-chain, unbranched (linear), branched, saturated, mono- or polyunsaturated, cyclic (A), aromatic (Ar) or alkylaromatic (AAr, AArA), optionally mono- or polysubstituted.
  • R is preferably a straight-chain, unbranched (linear), branched, saturated, mono- or polyunsaturated, or cyclically saturated or mono- or polyunsaturated, alkyl radical having 1-12 C atoms.
  • R is particularly preferably a straight-chain one or branched saturated alkyl radical having 1 to 7 C atoms, ie a subgroup of the alkyl group A, which is defined in more detail below.
  • R can also be Alkenyl: vinyl, propenyl, 1,2-propadienyl, butenyl, butadienyl, pentenyl, 1, 2-, 1, 4-, 1, 3-pentadienyl, 2,3-dimethyl-2-butenyl, hexenyl, 1, 5 Hexadienyl, 2-methyl-1,3-butadienyl, 2,3-dimethyl-1,3-butadienyl, isopentenyl, cycloalkenyl, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl and methylcyclopentadienyl and
  • Alkynyl ethynyl, 1, 2-propynyl, 2-butynyl, 1, 3-butadiinyl, pentynyl or
  • SiR " n (OR") 3 -n group The greater the number of alkoxy radicals in the SiR " n (OR") 3 -n group and hence the smaller n, the greater the number of covalent bonds between the metal oxide and the compounds of the general formulas (I) and (II) after immobilization.
  • the SiR " n (OR") 3-n group is attached to the anionic bridge X '.
  • L is independently a neutral ligand (two-electron donor) coordinated to the ruthenium atom.
  • Neutral phosphine ligands PAmAr 3-m are preferably PA 3 or PAr 3 , more preferably tricyclohexylphosphine, triphenylphosphine or triadamantylphosphine, particularly preferred is tricyclohexylphosphine.
  • N-heterocyclic carbene ligands represent 1,3-disubstituted imidazolin-2-ylidene (A), 1,3-disubstituted 4,5-dihydroimidazol-2-ylidene (B), 1,3-disubstituted 4,5- Dihydrotriazol-2-ylidene (C) and 1,3-disubstituted 3,4,5,6-tetrahydropyrimidin-2-ylidene (D) derived from imidazole (to A), 4,5-dihydroimidazole (to B), Derive 1, 2,4-triazole (to C) or pyrimidine (to D) as the main body.
  • the carbon atom between the two nitrogen atoms of the heterocycle is a carbene carbon atom, which by means of the free
  • Electron pair is coordinately bonded to the ruthenium atom.
  • the neutral N-heterocyclic carbene ligands 1, 3 are preferably disubstituted imidazolin-2-ylidenes (A) or 1,3-disubstituted 4,5- Dihydroimidazol-2-ylidenes (B) in which R 'is a sterically demanding radical A or Ar.
  • the N-heterocyclic sheaf is 1, 3-dimesityl-imidazolin-2-ylidene (A) or 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (B).
  • R 'and R''' may independently be H, A or Ar, where H atoms in A or Ar may be substituted by alkenyl or alkynyl radicals having not more than 30 carbon atoms, R 'and R''may therefore be independently of one another be H, alkyl, cycloalkyl, aryl, alkenyl or alkynyl having up to 30 carbon atoms.
  • R 'and R "' are preferably H, C 1 -C 10 -alkyl, C 6 -C 10 -aryl, C 2 -C 10 -alkenyl and C 2 -C 8 -alkynyl the meanings methyl, ethyl, propyl, i-propyl, butyl, i-butyl, sec-butyl, tert-butyl, pentyl, 1-, 2- or 3-methylbutyl (-C 5 Hi 0 -), 1, 1 -, 1, 2- or 2,2-dimethylpropyl (-C 5 H 10 -), 1-ethylpropyl (-C 5 H 10 -), hexyl (-C 6 Hi 2 -), 1, 2, 3 - or 4-methylpentyl (-C 6 H 12 -), 1, 1, 1, 2, 1, 3, 2,2, 2,3 or 3,3-dimethylbutyl (-C 6 H 12 -), 1- or 2-ethylbutyl group (-C 6
  • R 1, R 2 , R 3 and R 4 may independently of the position in the molecule H, Hal, NO 2 , CN, OH, OA, OAr, NH 2 , NHA, NA 2 , C (O) OA, C (O) A, A , Ar having 1 to 12 C atoms, wherein A and Ar may assume the meanings given above with the proviso that therein the corresponding groups have not more than 12 C-atoms.
  • R2, R3 and R4 independently of the position in the molecule, H, F, CN, NO 2, OA, OAr, A and Ar may be R1, more preferably H 1 NO 2, CN, OMe, O-iPr, phenyl and naphthyl.
  • the compounds of general formulas (I) and (II) are prepared by reacting Hal 2 [Ru] (meaning of [Ru] see Scheme 1) with the compounds of general formula (III), (R “O) 3- nR "nSi-X I -M [route (a): addition of 2 or more equivalents of (III), route (b): addition of 1 Equivalent of (III)], or by reaction of Ha ⁇ Ru] with the compounds of general formula (III), (R'O) 3-n R 'n Si-X I -M, and XM [way (c)] in anhydrous, inert, aprotic organic solvents (Scheme 1)
  • the compounds of the general formula (I) and (II) prepared via route (b) can be reacted in a subsequent reaction [route (d)] by reaction with a further compound of the general formula (III) to give the same products as obtained under route (a), or there are obtained compounds of the general formulas (I) and (II) in which two different SiIyI-containing an
  • M corresponds to an on or divalent metal ion from the group Ag, Cu, Au 1 Tl, Li, Na, K, Mg, Zn, Cd, Hg, preferably M is Ag, Tl or Hg, most preferably Ag.
  • X may assume the meaning of X in the compounds of general formulas (I) and (II), preferably X is a fluorine-free, partially or completely fluorinated carboxylate or alkoxide anion.
  • Suitable solvents are organic nonpolar or polar aprotic solvents such as chlorinated or pure hydrocarbons, open or cyclic ethers, ketones or alcohols, preferably chlorinated and pure hydrocarbons and cyclic ethers, most preferably methylene chloride, tetrahydrofuran or dioxane.
  • the starting compound (R "O) 3-n R" n Si-X'-M can be isolated prior to reaction with Hal [Ru] or prepared in situ. For the reaction, all reactants can be used together in the reaction vessel. The order of addition of the components can be arbitrarily selected.
  • the starting compounds may be dissolved in a suitable solvent such.
  • As a protective gas atmosphere can serve nitrogen or argon.
  • the reaction can be carried out under light or under exclusion of light, preferably with exclusion of light.
  • the reaction can be carried out in a temperature range from -78 ° C to + 100 0 C, preferably from 0 0 C to + 60 0 C during a reaction time of 1 minute to 24 hours.
  • the products of general formulas (I) and (II) formed may optionally be isolated by extraction and crystallization in a simple manner after separation of solid by-products and removal of the volatile constituents.
  • M in the general formula (IIIa) corresponds to a monovalent or divalent metal ion such as Ag, Cu, Au, Tl, Li, Na, K, Mg 1 Zn, Cd or Hg, preferably M corresponds to Ag, Tl or Hg, most preferably Ag.
  • R ", R and n in the compounds of general formula (IIIa) correspond to the meanings of R", R and n in the compounds of general formulas (I) and (II).
  • solvents are selected from the range of organic non-polar or polar aprotic or protic solvents, such as, for example, open or cyclic ethers,
  • the starting compound (R "O) 3-n R" n Si-R-COOH can be isolated before the reaction with 1 / n M n O or prepared in situ. Preferably, this is prepared in situ.
  • the reaction can be carried out under light or with exclusion of light, preferably with exclusion of light, the reaction can be carried out in a temperature range of -78 ° C , effected C to + 100 0 C, preferably from 0 ° C to +80 0 C for a reaction time from 15 minutes to 24 hours.
  • the products of general formula (IIIa) formed may optionally after separation of solid by-products and removal of the volatiles in a simple Be isolated purely by extraction and crystallization or directly reacted to the compounds of general formulas (I) or (II).
  • the immobilization of the compounds of the general formulas (I) and (II) takes place by reaction of the compounds (I) and (II) with an inorganic metal oxide in anhydrous, inert, polar, aprotic or protic organic solvents.
  • the order of addition of the components can be arbitrarily selected.
  • the starting compounds can be pre-dissolved or suspended in a suitable solvent.
  • halogenated or pure hydrocarbons and cyclic ethers preference is given to using halogenated or pure hydrocarbons and cyclic ethers as the solvent.
  • halogenated hydrocarbons preference is given to using methylene chloride, chlorobenzene or trichlorotoluene, more preferably methylene chloride.
  • pure hydrocarbons preference is given to using pentane, hexane, heptane, octane, decane, benzene or toluene, very preferably heptane and toluene.
  • cyclic ethers tetrahydrofuran is preferably used.
  • As a protective gas atmosphere can serve nitrogen or argon.
  • the starting compounds of the general formulas (I) and (II) are added in a 0.01-100-fold excess with respect to the active OH groups on the oxide surface, preferably in a 0.05-50-fold excess, very particularly preferably in a 0.1-10 molar ratio. fold surplus.
  • the reaction may be carried out in a temperature range from -2O 0 C to + 150 0 C, preferably from 0 0 C to +120 0 C.
  • the reaction time is 30 minutes to 10 days, preferably 1 hour to 2 days, and more preferably 1 hour to 1 Day.
  • the products (Ia) and (IIa) formed can be easily separated by filtration and can optionally be purified by washing with the abovementioned solvents and then dried.
  • the immobilization according to the invention can be carried out both in the batch process and in the continuous process.
  • the solutions of compounds (I) and (II) described above are pumped through a monolithic or particulate inorganic metal oxide, the corresponding inorganic metal oxide being heated to the appropriate reaction temperature.
  • the solutions of (I) and (II) can be recycled and thus flow through the monolithic or particulate inorganic metal oxide several times.
  • the flow rates can be chosen arbitrarily.
  • the functionalized carrier is washed with the above-mentioned solvents and can be used in application reactions.
  • the oxides can also be mixed in finely divided form with solutions of the compounds of the general formulas (I) and (II) for carrying out the process according to the invention in batch operation and reacted at a suitable reaction temperature under a protective gas atmosphere.
  • the individual reactants can be added in any order.
  • the implementation of the reactions both in batch mode and in a continuous process is not critical per se.
  • the reactions can be carried out in a simple manner in plants in which all parts and devices that come into contact with the reactants, are inert to the chemicals used and no corrosion or
  • the reactions can also be carried out in a glass apparatus equipped with a stirrer, inlet and optionally outlet, with reflux condenser or condensation condenser with drain, if this apparatus also offers the possibility of being superimposed with inert gas.
  • the reactions can also be carried out in a technical plant, which is optionally made of stainless steel and other suitable inert materials and has the necessary devices for temperature control, supply and discharge of the educts and products. Usually, the reactions are carried out in batch mode, especially when the reactions are slow.
  • Compounds of the invention of the general formulas (Ia) and (IIa) represent immobilized ruthenium compounds in which the ruthenium atom in the oxidation state +2 is present, to which two monovalent anionic ligands are bonded, wherein at least one of the two anionic ligands is covalently bonded to an inorganic one Oxide is connected.
  • Compounds of general formula (Ia) also contain two neutral 2-electron donor ligands from the series of N-heterocyclic carbene ligands or from the series of phosphine ligands and a neutral carbene ligand, whereas the compounds of general formula (IIa ) contain a neutral 2-electron donor ligand from the series of N-heterocyclic carbene ligands or from the series of phosphine ligands and a neutral carbene ligand, which is chelated by the oxygen atom present to the ruthenium center. There is a coordinative bond between the oxygen and the ruthenium atom.
  • inorganic oxides containing active OH groups on the surface and thus capable of reacting with the starting compounds (I) and (II) can be used.
  • inorganic oxides it is possible to use natural or chemically produced particulate or monolithic oxides of silicon, boron, aluminum, titanium and zirconium or else oxide mixtures. Particular preference is given to using particulate or monolithic oxides of silicon or aluminum or their mixed oxides and zeolites. Particular preference is given to using particulate or monolithic oxides of silicon.
  • Materials may be a silica or naturally occurring silicate derived from chain, ribbon and layered silicas.
  • the advantages of the compounds of the general formulas (Ia) and (IIa) in comparison with the prior art are:
  • the new immobilized ruthenium catalysts show in the Application reactions higher activities / turnover than their homogeneous analogues. They are more thermally stable, longer lasting and show less catalyst leaching.
  • the compounds prepared are immobilized on inorganic oxides precisely via one of the two ligand groups which, during the catalytic application reactions, are not separated from the ruthenium
  • the immobilized catalysts of the general formulas (Ia) and (IIa) can be used several times in application reactions and can thus be recycled. This is advantageous because the carbene-containing ruthenium catalysts are very expensive.
  • the new immobilized on inorganic oxides catalysts (Ia) and (IIa) are thermally and chemically stable than the previously known homogeneous ruthenium catalysts and immobilized on organic substrates ruthenium catalysts.
  • the immobilization of the catalysts (I) and (II) on inorganic oxides leads to a higher mechanical stability compared to the immobilization on organic support materials. The support material is therefore not subject to the unwanted swelling processes, which lead to diffusion problems during use.
  • the compounds of general formulas (Ia) and (IIa) can also be immobilized ligand or catalyst precursors and immobilized
  • CM cross-metathesis
  • RCM ring-closing metathesis
  • ROM ring-opening metathesis
  • ROMP ring-opening metathesis polymerization
  • ADMET acyclic diene metathesis polymerization
  • IR, MTBE solution (CsF 2 cuvette): 3490 (w), 2935 (w), 2902 (w), 2846 (m), 1787 (W), 1685 (s), 1659 (s), 1407 (m ), 1371 (w), 1320 (s), 1273 (w), 1244 (w), 1166 (s), 1113 (m), 1069 (m), 1042 (w).
  • the violet solid is washed with 5 ml of n-heptane and dried in vacuo. The yield is 93%.
  • IR, MTBE solution (CsF 2 cuvette): 3303 (br), 3084 (w), 2957 (w), 2929 (w), 2870 (w), 1780 (w), 1722 (s), 1658 (vs ), 1541 (m), 1443 (w), 1407 (m), 1392 (m), 1371 (W), 1272 (w), 1247 (m), 1226 (w), 1169 (vs), 1224 (s ), 1108 (s), 1077 (vs), 959 (m).
  • reaction solution is filtered, the white solid discarded and the purple 5
  • the catalyst 13 is obtained as a red wine solid in 67% yield.
  • KG-60 is washed successively with methanol, dichloromethane and hexane. After being dried in vacuo at 200 ° C. for 4 h, the KG-60 (200-400 mg) is suspended in toluene (dried) and a solution of the homogeneous catalysts in toluene is added. The resulting suspension is stirred at RT for 4 h. Subsequently, dimethoxydimethylsilane is added dropwise and stirred for a further 20 h. The product is isolated by filtration, washing with CH 2 Cl 2 and n-hexane and drying in vacuo.
  • the Ru content is 47.4 ⁇ mol g "1 , which corresponds to a loading of 47.6 mg of catalyst g " 1 .
  • the TON for the catalysts is carried out in a Carousel Reaction Station of Radleys Discovery Technologies.
  • the substrate is weighed directly into the Carousel Reaction Tubes.
  • dichloromethane so that there is an approximately 0.05 M substrate solution.
  • the tubes are placed in the carousel, purged with argon with the cock open and refluxed for 30 minutes. Only then does the addition of the immobilized catalysts take place.
  • the reaction mixtures thus obtained are stirred at 45 ° C. for 14 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Die Erfindung betrifft immobilisierbare Ruthenium(II)-Katalysatoren der allgemeinen Formeln (I) und (II), die eine SiR'<sub

Description

Am Zentralatom substituierte, immobilisierbare Ruthenium(ll)- Katalysatoren, Verfahren zu deren Herstellung und
Verwendung
Die Erfindung betrifft immobilisierbare Ruthenium(ll)-Katalysatoren der allgemeinen Formeln (I) und (II), die eine SiR"π(OR")3_n tragende Gruppe an mindestens einem der beiden Anionen enthalten.
Figure imgf000003_0001
Die Erfindung betrifft weiterhin die Verwendung der Verbindungen in einem Verfahren zur Herstellung von auf anorganischen Oxid-Trägern immobilisierten Ruthenium(ll)-Katalysatoren der allgemeinen Formeln (Ia) und (IIa).
Träger
Figure imgf000003_0002
sowie die Verwendung der immobilisierbaren Verbindungen der allgemeinen Formeln (I), (II) und der immobilisierten Verbindungen der allgemeinen Formeln (Ia) und (IIa) als Katalysatoren in der organischen und metallorganischen Synthese, insbesondere für C-C-Kupplungsreaktionen wie der Olefin- Metathese.
1. Stand der Technik und Aufgabe der Erfindung Ruthenium-Verbindungen vom Typ (A) und (B) haben sich in den letzten Jahren als effiziente Katalysatoren in der Olefin-Metathese etabliert. Beispiele von Ruthenium(II)-Katalysatoren vom Typ (A) sind beispielsweise in WO 96/04289, WO 97/06185, WO 99/51344, WO 00/15339, WO 00/71554, WO 02/079126, WO 02/79127, WO 02/083742 und z.B. in Angew. Chem. 1995, 107(18), 2179; J. Am. Chem. Soc. 1995, 117, 5503; J. Am. Chem. Soc. 1996, 118, 100; Chem. Eur. J. 2001 , 7, 3236; Organometallics 2000, 79(77J, 2055; J. Λm. C/7eA77. Soc. 1999, 727, 2674; O/ga/7/c Letters 1999, 7(6J, 953; J. Am.
Chem. Soc. 2003, 725, 10103; J. Am. Chem. Soc. 2003, 725, 2546; J. Am. Chem. Soc. 2001 , 723, 6543 beschrieben. Beispiele von Ruthenium(ll)- Katalysatoren vom Typ (B) sind beispielsweise in WO 02/14376, WO , 03/011875, WO 03/044060, WO 04/035596, US 6,620,955 und z.B. in J. Am. Chem. Soc. 1999, 727, 791 ; J. Am. Chem. Soc. 2000, 722, 8168; Tetrahedron Letters 2000, 41, 9973; Tetrahedron 2003, 59, 6545; Synlett 2001 , 3, 430; Adv. Synth. Catal. 2003, 345, 572; Syn/etf 2004, 4, 667; Ei/r. J. Org. Chem. 2003, 963; C/7β/77. Eur. J. 2004, 70, 2029 beschrieben.
L = neutraler 2-Elektronen-Donor (N-heterozyklischer Carben- oder Phosphan-Ligand)
X = anionischer Ligand
Figure imgf000004_0001
R = Alkylgruppe (A) (B)
Die Ruthenium-Verbindungen vom Typ (A) und (B) werden als homogene Katalysatoren in der Olefin-Metathese eingesetzt. Da die Abtrennung der homogenen Katalysatoren von den Reaktionsprodukten ein kostenintensiver und aufwendiger Vorgang ist, ist es von großem Vorteil, homogene Katalysatoren, die auf einem Träger immobilisiert sind, in den katalytischen Prozessen einzusetzen. Diese immobilisierten Katalysatoren lassen sich sehr einfach durch Filtration von den Reaktionsprodukten abtrennen. Dies ist insbesondere dann von großem Interesse, wenn der Katalysator sehr teuer ist und damit recycelt und im nächsten katalytischen Prozess erneut eingesetzt werden kann. Zudem werden in vielen Anwendungsfeldern hohe Reinheitsanforderungen an die Produkte gestellt, so dass die Reaktionsprodukte des katalytischen Prozesses nicht mit den Übergangsmetallen und Liganden der Katalysatoren verunreinigt sein dürfen. Dies trifft besonders bei Produkten für pharmazeutische Anwendungen zu. Die o.g. Verbindungen vom Typ (A) und (B) sind farbige Verbindungen; Restmengen an Katalysator können unweigerlich auch zu gefärbten Produkten führen. Auch dies lässt sich durch eine Immobilisierung des Katalysators auf einem Träger beseitigen.
Eine Immobilisierung von homogenen Katalysatoren kann auf organischen
Polymeren wie Polystyrol oder auf anorganischen Oxiden wie Kieselgel erfolgen. Jedoch haben organische Trägermaterialien im Vergleich zu den sehr robusten anorganischen Trägermaterialien viele Nachteile wie mechanische Instabilität und starkes Quellen in Abhängigkeit von den verwendeten Medien, was zu Diffusionsproblemen und damit zu verringerten Katalysatoraktivitäten führt. Kieselgele besitzen im Vergleich zu den organischen Trägem eine hohe thermische Stabilität und sind in einer breiten Produktpalette bezüglich Porositäten und spezifischer Oberflächen kommerziell erhältlich und können in einfachen chemischen Reaktionen über die Silanol-Gruppen funktionalisiert werden.
Eine Immobilisierung der Katalysatoren vom Typ (A) und (B) auf einem Träger kann über verschiedene Gruppen in (A) und (B) erfolgen. Folgende Arbeiten beschreiben eine Immobilisierung der Katalysatoren auf einem Träger über den Benzyliden-Liganden: WO 01/72421 , WO 02/14376, US 2003/0064884;
Tetrahedron Letters 1999, 40, 8657; Organic Letters 1999, 1(7), 1083; Angew. Chem. 2000, 112(21), 4060; Organic Letters 2000, 2(25), 4075; Synlett 2000, 7, 1007; Synlett 2001 , 10, 1547; J. Am. Chem. Soc. 2000, 122, 8168; Angew. Chem. 2001 , 113, 4381; Chem. Commun. 2001, 37; Angew. Chem. Int. Ed. 2002, 41(20), 3835; Tetrahedron Letters 2002, 43, 9055; Organometallics 2002, 21, 671; Bioorg. & Medicinal Chem. Letters 2002, 12, 1873; J. Am. Chem. Soc. 2004, 126, 74 oder über den Phosphan-Liganden: J. Organomet. Chem. 1995, 497, 195; J. Molecular Catal. A: Chemical 2001 , 169, 47. Während der katalytischen Metathesereaktion wird jedoch die Bindung sowohl zwischen dem Benzyliden-Liganden und dem Ruthenium-Zentrum als auch zwischen dem Phosphan-Liganden und dem Ru-Zentrum gelöst, wodurch der Katalysator vom Träger gelöst wird und in die Reaktionslösung übergeht. Dies führt zu einem hohen Verlust an Katalysator auf dem Träger (hohes Katalysator-Leaching), was zu unerwünschten Verunreinigungen der Reaktionsprodukte führt und eine Wiederverwendung mit ausreichenden Umsätzen unmöglich macht. - A -
Sowohl der N-heterozyklische Carben-Ligand als auch der anionische Ligand X bleiben während der Metathese am Ruthenium-Atom gebunden. Folglich sollte eine Immobilisierung der Katalysatoren vom Typ (A) und (B) auf einem Träger über diese beiden Gruppen zu immobilisierten Katalysatoren mit keinem oder nur minimalem Katalysatorleaching führen. Folgende Arbeiten beschreiben eine Immobilisierung der Katalysatoren auf einem organischen Polymer oder Copolymer über den N-heterozyklischen Carben-Liganden: Angew. Chem. 2000, 112(21), 4062; Angew. Chem. 2001 , 113(20), 3957; Designed Monomers and Polymers 2002, 5(2,3), 325; Adv. Synth. Catal. 2002, 344(6,7), 712. Anorganische Oxide werden hierbei nur bestenfalls als Grundkörper verwendet, auf dem verschiedene Copolymere und erst dann an den Copolymeren die Katalysatoren angebracht sind. Dagegen beschreibt Fürstner et al. in Organometallics 2004, 23, 280 die Immobilisierung von Ruthenium- Katalysatoren vom Typ (A) auf Kieselgel über einen Alkyl-Substituenten des Stickstoff-Atoms im N-heterozyklischen Carben-Liganden auf Kieselgel. Diese Anknüpfungsposition bringt jedoch automatisch den Verlust der notwendigen sperrigen aromatischen Substituenten an den N-Atomen des NHC-Liganden wie Mesityl-Reste mit sich, was zu einer verringerten Abschirmung/Stabilisierung des katalytisch aktiven Zentrums führt. Der Nachteil dieser Systeme ist eine geringere Stabilität, erniedrigte Aktivitäten und eine verkürzte Lebensdauer des Katalysators während des katalytischen Prozesses.
Folgende Arbeiten beschreiben eine Immobilisierung der Katalysatoren vom Typ (A) und (B) über den anionischen Liganden an ein organisches Polymer oder Copolymer: In den bislang beschriebenen Beispielen besteht der anionische Ligand aus einem Halogenid-, Alkoholat-, Carboxylat- oder Trifluormethansulfonat-Rest. In Tetrahedron Letters 2000, 41, 9973 beschreiben Mol et al. einen Ruthenium-Komplex vom Typ (A), der über einen Carboxylat-Liganden an ein organisches Polymer (Polystyrol) gebunden ist. Nuyken und Buchmeiser et al. beschreiben in Angew. Chem. 2003, 115, 6147 und Chem. Eur. J. 2004, 10, 777 Ruthenium-Komplexe vom Typ (B), die ebenfalls über einen Carboxylat-Liganden an ein organisches Polymer gebunden sind. Zudem berichten sie in Adv. Synth. Catal. 2003, 345, 996 über einen Ruthenium-Komplex vom Typ (A) gebunden über einen Carboxylat- Liganden an ein organisches Copolymer, welches wiederum an SiO2 gebunden ist. Eine Immobilisierung der Ruthenium-Verbindungen vom Typ (A) und (B) über den anionischen Liganden X auf anorganische Oxide ist bislang nicht möglich. Auch geht die Fachwelt davon aus, dass die hoch reaktiven Ruthenium(ll)-Benzyliden-Komplexe zu empfindlich für organische Oxide sind und deshalb mit diesen Materialien nicht kompatibel sind bzw. eine Verknüpfung der beiden Komponenten zu deaktivierten Komplexen führt.
Die Aufgabe der vorliegenden Erfindung war es daher, stabile, einfach herzustellende, immobilisierbare Ruthenium-Katalysatoren vom Typ (A) und (B) zur Verfügung zu stellen, die eine Alkoxysilylgruppe an mindestens einem der beiden anionischen Liganden tragen. Gleichzeitig war es Aufgabe der vorliegenden Erfindung entsprechende Verbindungen zugänglich zu machen, die in einer nachfolgenden Immobilisierung auf anorganischen Oxiden geträgert werden können, aber sowohl bereits als ungeträgerte Verbindungen als auch nach der Trägerfixierung in der Olefin-Metathese hohe Katalysatoraktivitäten zeigen. Insbesondere war es Aufgabe der vorliegenden Erfindung, entsprechende Ruthenium(ll)-Kata!ysatoren mit verbesserter thermischer Stabilität zur Verfügung zu stellen, die fest auf der Oberfläche eines anorganischen Trägers durch kovalente Bindungen in ausreichend großer Menge verankert sind und für Anwendungsreaktionen zur Verfügung stehen. Ein weiteres Ziel der vorliegenden Erfindung war es, solche Ruthenium(ll)-Katalysatoren zur Verfügung zu stellen, die in der Anwendung kein Leaching zeigen.
2. Beschreibung der Erfindung
Die Lösung der Aufgabe erfolgt durch Verbindungen der allgemeinen Formeln
(I) und (II)
Figure imgf000007_0001
worin
X Z oder X'SiR"π(OR")3* Z HaI, RC(O)O, RO, R2N, RSO3, CN, OCN, SCN, A, Ar
X' RC(O)O, RO, RC(O)NA, RNA, RSO3, wobei R an das Si-Atom gebunden ist
R A, Ar, A-Ar, A-Ar-A, Het, AHet, AHetA mit insgesamt nicht mehr als 30 C-Atomen mit
A geradkettiger, verzweigter, gesättigter Ci -C2O-AI kylrest, Cycloalkyl oder Cycloalkyl über eine oder zwei Alkylgruppe(n) gebunden mit insgesamt 4 - 30 -C-Atomen, wobei sowohl im Alkyl- als auch im
Cycloalkylrest eine CH2- oder CH-Gruppe durch NH, NA, O, C(O)O, C(O)NH, C(O)NA, C(O), C=N, 0(O)COC(O)O, OC(O)NH, OC(O)NA,
NHC(O)NA und/oder N=C=N, sowie H-Atome durch F, OA, und/oder
NA2 ersetzt sein kann,
Ar ein- oder mehrfach substituiertes oder unsubstituiertes Phenyl, Naphthyl, Anthryl, Phenanthryl mit insgesamt nicht mehr als 20
C-Atomen, wobei Substituenten A, HaI, OA, NA2, C(O)OA, C(O)A,
CN, C(O)NHA, NO2 sein können, Het ein ein- oder zweikerniger gesättigter oder ungesättigter oder aromatischer Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch HaI und/oder
A, OA, C(O)OA, C(O)A1 CN, C(O)NHA, NA2, NO2, =NH, =0 substituiert sein kann mit HaI F, Cl, Br oder I,
L unabhängig von der Stellung im Molekül ein neutraler 2-Elektronen- Donor aus der Reihe der N-heterozyklischen Carbene oder PAmAr3-m mit m = 0, 1 , 2, oder 3, R', R", R'" unabhängig von der Stellung im Molekül H, A, Ar mit 1-12 C-
Atomen, R1 , R2, R3, R4 unabhängig von der Stellung im Molekül H, HaI, NO2, CN,
OH, OA, OAr, NH2, NHA, NA2, C(O)OA, C(O)A, A, Ar mit 1 - 12 C-
Atomen, n 0, 1 , 2 bedeuten. Insbesondere erfolgt die Lösung der Aufgabe der vorliegenden Erfindung durch die Verbindungen der allgemeinen Formel (I)
[P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(CF2)32]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=CHPh
[P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(CF2)32]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(CH2)32]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CH2)3Cθ2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6F4)Cθ2]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO23CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO23CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(CF2)32](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Mθ)C(=O)(CF2)32](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CH2)32](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CH2)323(CF3COO)Ru=CHPh
[P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)Cθ2](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=CHPh [H2IMθs][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=CHPh [H2IMθs][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]2Ru=CHPh [H2IMθs][P(Cy)3][(EtO)3Si(CH2)3N(Mθ)C(=O)(CH2)3CO2]2Ru=CHPh [H2IMes][P(Cy)3][(MθO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]2Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=CHPh [H2lMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=CHPh [H2lMes][P(Cy)33[(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=CHPh [H2lMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=CHPh [H2lMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]ClRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)32]CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=CHPh [H2IMθs][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)Cθ23CIRu=CHPh
[H2IMes][P(Cy)3][(MθO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]CIRu=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]CIRu=CHPh
[H2IMes][P(Cy)33[(EtO)3Si(CH2)3N(H)C(=O)(CF2)32](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(MθO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2](CF3COO)Ru=CHPh [H2IMθs][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CH2)32](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(MθO)3Si(CH2)3N(Me)C(=O)(CH2)32](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)Cθ2](CF3COO)Ru=CHPh [H2!Mes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO23(CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2](CF3COO)Ru=CHPh
und durch die Verbindungen der allgemeinen Formel (II)
[P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)32]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)32]2Ru=C(H)(C6H4θiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CH2)32]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4O'Pr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)Cθ2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=C(H)(C6H4OiPr-2)
[P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MθO)3Si(CH2)3N(H)C(=O)(C6H4)Cθ2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MθO)3Si(CH2)3N(Mθ)C(=O)(C6H4)Cθ2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3Cθ2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MθO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)32]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)32]CIRu=C(H)(C6H4θiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)Cθ2]CIRu=C(H)(C6H4θiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)Cθ2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OlPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO23(CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MθO)3Si(CH2)3N(H)C(=O)(CH2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr- 2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MθO)3Si(CH2)3N(Me)C(=O)(C6F4)Cθ2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2](CF3COO)Ru=C(H)(C6H4OiPr-
2)
[H2lMθs][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3Cθ2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2lMes][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO232Ru=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2lMes][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)Cθ2]2Ru=C(H)(C6H4θiPr-2) [H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2) [H2lMes][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2) [H2lMes][(MeO)3Si(CH2)3N(Mθ)C(=O)(C6F4)Cθ2]2Ru=C(H)(C6H4θiPr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=C(H)(C6H4OiPr-2) [H2lMes][(EtO)3Si(CH2)3N(M8)C(=0)(C6H4)Cθ2]2Ru=C(H)(C6H4θiPr-2) [H2IMθs][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)Cθ2]2Ru=C(H)(C6H4OiPr-2) [H2lMes][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(M8)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(CF2)32]CIRu=C(H)(C6H4θiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3Cθ2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMθs][(MeO)3Si(CH2)3N(H)C(=O)(CH2)3Cθ2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2lMes][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)Cθ2]CIRu=C(H)(C6H4θiPr-2) [H2lMes][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)Cθ2]CIRu=C(H)(C6H4θiPr-2) [H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OiPr-2) [H2lMes][(EtO)3Si(CH2)3N(Me)C(=0)(C6H4)Cθ2]CIRu=C(H)(C6H4θiPr-2) [H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OiPr-2) [H2lMes][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)Cθ2]CIRu=C(H)(C6H4OiPr-2) [H2IMθs][(EtO)3Si(CH2)3N(H)C(=O)(CF2)32](CF3COO)Ru=C(H)(C6H4OiPr-2) [H2lMes][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [H2lMes][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr-2)
[H2lMes][(MeO)3Si(CH2)3N(Me)C(=0)(CF2)3Cθ2](CF3COO)Ru=C(H)(C6H4OiPr- 2)
[H2IMes3[(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [H2lMes][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)32](CF3COO)Ru=C(H)(C6H4θiPr-2) [H2iMθs][(MeO)3Si(CH2)3N(H)C(=O)(CH2)32](CF3COO)Ru=C(H)(C6H4OiPr-2) [H2lMes][(MθO)3Si(CH2)3N(Me)C(=O)(CH2)32](CF3COO)Ru=C(H)(C6H4OiPr-
2)
[H2lMes3[(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [H2lMes][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)Cθ2](CF3COO)Ru=C(H)(C6H4OiPr-2) [H2lMes][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [H2lMes][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)Cθ2](CF3COO)Ru=C(H)(C6H4θlPr-
2)
[H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2](CF3COO)Ru=C(H)(C6H4OiPr-2) [H2lMθs][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)Cθ2](CF3COO)Ru=C(H)(C6H4θiPr-2) [H2lMes][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)Cθ2](CF3COO)Ru=C(H)(C6H4θiPr-2) [H2IMes][(MθO)3Si(CH2)3N(Me)C(=O)(C6H4)Cθ2](CF3COO)Ru=C(H)(C6H4OiPr- 2)
Weitere Beispiele sind alle hier genannten Verbindungen mit einer [IMes]- Gruppe anstelle der [H2IMes]-Gruppe, wobei [IMes] für [1 ,3-Dimesitylimidazolin- 2-yliden] und [H2IMes] für [1 ,3-Dimesityl-4,5-dihydroimidazol-2-yliden] steht.
Eine Lösung der vorliegenden Aufgabe erfolgt dadurch, dass Verbindungen der allgemeinen Formeln (I1), (II1), (I") und (II")
Figure imgf000015_0001
Figure imgf000015_0002
d") (»") worin L, HaI, X', R, R', R", R'",R1, R2, R3, R4 und n die im vorhergehenden gegebenen Bedeutungen haben, durch geeignete Wahl der stöchiometrischen Verhältnisse der Edukte im erfindungsgemäßen Verfahren gebildet werden.
Die Lösung der Aufgabe der vorliegenden Erfindung erfolgt weiterhin durch Immobilisierung der Verbindungen der allgemeinen Formeln (i) und (II) auf anorganischen Oxiden unter Bildung der Verbindungen der allgemeinen Formeln (Ia) und (IIa)
Träger
Figure imgf000015_0003
worin X, X', L, R1, R'", R1 , R2, R3 und R4 die oben gegebenen Bedeutungen annehmen können, und die dadurch erfolgte Bereitstellung neuer Träger¬ gebundener Produkte. Weiterhin erfolgt die Lösung der Aufgabe der vorliegenden Erfindung dadurch, dass durch geeignete Wahl der stöchiometrischen Verhältnisse der Edukte immobilisierte Ruthenium(ll)-Katalysatoren der allgemeinen Formeln
Figure imgf000016_0001
Träger— X' R1 Trager— X1 R1
Figure imgf000016_0002
(Ic) (iic) hergestellt werden, worin HaI, X', L, R', R'", R1 , R2, R3, R4 und n die im vorhergehenden gegebenen Bedeutungen haben.
Die Herstellung der Verbindungen der allgemeinen Formeln (I) und (II) erfolgt durch Umsetzung von HaIa[Ru] mit den Verbindungen der allgemeinen Formel (III), (R"O)3-nR"nSi-X'-M (M = ein- oder zweiwertiges Metallion wie Ag, Cu, Tl, Li, Na, K, Mg, Zn, Cd, Hg), oder durch Umsetzung von HaI2[Ru] mit den Verbindungen der allgemeinen Formel (III), (R'O)3-nR"nSi-X'-M, und X-M in wasserfreien, inerten, aprotischen organischen Lösungsmitteln (Schema 1). Nach Abtrennung des Nebenproduktes MCI lassen sich die Verbindungen der allgemeinen Formeln (I) und (II) erhalten. Schema 1
(R11O) '3-n RTnSi-X1 ;[Ru] (I5 II)
(R'O)3.nR"nSi-X
2 (R'O)3.nR"nSi-X'-M (III) - 2 MHaI (a) - MHaI (ROJ^R-pSi-X'-M (III)
(d)
HaI^ (R"O)3.nR"nSi-X'-M (III) (R"O)3.nR"nSi-X\
;[Ru] Ϊ[RU] (I, II) HaI' - MHaI (b) Har
(e)
X-M W - MHaI X-M (RO^R^Si-X'-M (III) - 2 MHaI (RIO)3.nR"nSi-X1.
=[Ru] (I5 II) X'
[Ru] bedeutet in (I) und
Figure imgf000017_0001
Figure imgf000017_0002
Die Ausgangsverbindungen Ha^[Ru] und X-M sind bekannt, kommerziell erhältlich oder lassen sich nach dem Fachmann bekannten Methoden herstellen. Eine Untergruppe der Ausgangsverbindungen (III) ist neu. Es handelt sich um die Verbindungen der allgemeinen Formel (lila) (R"O)3-nR"nSi-R-CO2M. Die Herstellung der Verbindungen der allgemeinen Formel (lila) kann zum Beispiel durch Umsetzung von (R'O)3_nR"nSi-R-CO2H mit M2O bzw. MO in polaren, aprotischen Lösungsmitteln erfolgen.
(RO)3.nR"nSi-R-COOH + 1/n MnO - (RO)3.nR"nSi-R-COOM + H2O
(lila)
Die Bedeutungen von R", R und n in den Verbindungen der allgemeinen Formel (lila) entsprechen den oben genannten Bedeutungen der Verbindungen der allgemeinen Formeln (I) und (II). Verwenden lassen sich die Verbindungen der allgemeinen Formeln (I) und (II) als Katalysatoren in der organischen und metallorganischen Synthese. Des weiteren dienen sie als Ausgangsstoffe zur Herstellung von immobilisierten Katalysatoren, die wiederum in der organischen und metallorganischen Synthese einsetzbar sind. Sie können als Katalysatoren insbesondere in C-C-
Kupplungsreaktionen, Hydrierungen, Isomerisierungen, Silylierungen und Hydroformylierungen eingesetzt werden. Insbesondere dienen sie als Katalysatoren in Olefinmetathesereaktionen wie der Kreuzmetathese (CM), Ringschlussmetathese (RCM), Ringöffnungsmetathese (ROM), Ringöffnungsmetathese-Polymerisation (ROMP), azyklische Dienmetathese- Polymerisation (ADMET) und En-In-Metathese oder in einer Kombination verschiedenartiger Metathesereaktionen.
Die Immobilisierung der Verbindungen der allgemeinen Formeln (I) und (II) erfolgt durch Reaktion der Verbindungen (I) und (II) mit einem anorganischen Metalloxid in organischen, wasserfreien, polar aprotischen oder protischen Lösungsmitteln. Es kann zusätzlich ein Silan der allgemeinen Formel R- SiR"n(OR")3-n zur Inertisierung der Metalloxid-Oberfläche bzw. zur AbSättigung aller Si-OH-Gruppen des Metalloxids mit einer nicht-reaktiven hydrophoben Gruppe zugegeben werden. Während der Reaktion entsteht als Nebenprodukt ein Alkohol ROH. Die Produkte (Ia) und (IIa) lassen sich durch Filtration vom Lösungsmittel und ROH abtrennen und können gegebenenfalls durch Waschen mit einem geeigneten Lösungsmittel aufgereinigt werden. Die Immobilisierung kann sowohl im Batch-Verfahren als auch im kontinuierlichen Verfahren durchgeführt werden.
Verwenden lassen sich die Verbindungen der allgemeinen Formeln (Ia) und (IIa) als immobilisierte Ligand- bzw. Katalysator-Vorstufen und als immobilisierte Katalysatoren in organischen, metallorganischen und Übergangsmetall-katalysierten Synthesen. Sie können wie die nicht immobilisierten Ruthenium(ll)-Verbindungen der allgemeinen Formeln (I) und (II) als Katalysatoren in C-C-Kupplungsreaktionen, Hydrierungen, Isomerisierungen, Silylierungen und Hydroformylierungen verwendet werden. Insbesondere dienen sie als Katalysatoren in Olefinmetathesereaktionen wie der Kreuzmetathese (CM), Ringschlussmetathese (RCM),
Ringöffnungsmetathese (ROM), Ringöffnungsmetathese-Polymerisation (ROMP), azyklische Dienmetathese-Polymerisation (ADMET) und En-In- Metathese oder in einer Kombination verschiedenartiger Metathesereaktionen.
Die Vorteile der Verbindungen der allgemeinen Formeln (I) und (II) sowie (Ia) und (IIa) im Vergleich zum Stand der Technik sind:
Überraschenderweise wurde gefunden, dass die immobilisierten Verbindungen (Ia) und (IIa) eine höhere Aktivität bzw. Katalysatoreffizienz besitzen als ihre homogenen Analoga und vergleichbare Katalysatoren des Stands der Technik. Die Verbindungen der allgemeinen Formeln (I) und (II) enthalten eine auf anorganischen Oxiden immobilisierbare Gruppe [(R"O)3-nR"nSi] genau an einem der beiden möglichen Liganden-Gruppen, die sich während der verschiedenen katalytischen Anwendungsreaktionen nicht vom katalytisch aktiven Ruthenium-Zentrum lösen. Damit können die immobilisierten Ruthenium-Katalysatoren (Ia) und (IIa) hergestellt werden, die während der katalytischen Anwendungsreaktionen am anorganischen Träger gebunden bleiben, wodurch das Katalysator-Leaching unterdrückt wird und die Aufarbeitung der Endprodukte enorm erleichtert ist.
Die kovalente Immobilisierung der Verbindungen (I) und (II) auf einem anorganischen Träger kann in einer einfachen Reaktion durch Abspaltung von R'OH erfolgen. Die so immobilisierten Katalysatoren sind in Anwendungsreaktionen von den Reaktionslösungen und Reaktionsprodukten sehr einfach durch Filtration abtrennbar und können erneut in katalytischen Reaktionen als Katalysatoren eingesetzt werden. Dies führt zur Einsparung von Prozesskosten in allen Anwendungsreaktionen insbesondere bei der Abtrennung und Aufreinigung der Endprodukte, aber auch durch die mehrmalige Einsetzbarkeit der hochpreisigen Katalysatoren in den Anwendungsreaktionen durch die Recyclingfähigkeit (kostengünstigerer „down streanY'-Prozess). Durch eine Immobilisierung der Verbindungen (I) und (II) auf anorganischen
Oxiden werden außerdem im Vergleich zu den homogenen Katalysatoren und denen auf organischen Trägern immobilisierten Katalysatoren thermisch und chemisch stabilere Katalysatoren (Ia) und (IIa) erhalten. Zudem kann von den Vorteilen der anorganischen Oxide als Trägermaterialien wie mechanische Stabilität und keine Quellfähigkeit im Vergleich zu den organischen Trägermaterialien profitiert werden, was zu höheren und schnelleren Stoffumsätzen führt. Sowohl die Verbindungen der allgemeinen Formeln (I) und (II) als auch die der allgemeinen Formeln (Ia) und (IIa) sind sehr einfach und in hohen Ausbeuten zugänglich.
3. Ausführliche Beschreibung der Erfindung
Erfindungsgemäße Verbindungen der allgemeinen Formeln (I) und (II) stellen Ruthenium-Verbindungen dar, in denen das Rutheniumatom in der Oxidationsstufe +2 vorliegt und mindestens einer der beiden anionischen Liganden eine (R"O)3-nR"nSi-Gruppe trägt. Der zweite anionische Ligand kann entweder eine zweite (R"O)3_nR"nSi-Gruppe tragen oder stellt ein Silyl-freies Anion Z dar. Des weiteren sind noch 2 neutrale Liganden L an das Ruthenium- Zentrum gebunden und ein Carben-Ligand, der in den Verbindungen der allgemeinen Formeln (II) und (IIa) durch das vorhandene Sauerstoffatom chelatartig an das Ruthenium-Zentrum gebunden ist.
X ist ein einwertiges Anion, das zum Ladungsausgleich als Ligand an ein zweifach positiv geladenes Ruthenium-Zentralatom gebunden ist. Je nach Elektronegativität des Anions X kann diese Bindung eine koordinative Bindung, die durch freie Elektronenpaare des Anions ausgebildet wird, oder eine ionische Bindung sein. Das in den Verbindungen (I) und (II) sowie (Ia) und (IIa) enthaltene Anion X kann (R"O)3-nR"nSiX' oder Z sein, wobei Z ein Halogenid (HaI) aus der Gruppe Br', Cl", I" und F", Pseudohalogenid wie Cyanid (CN"), Cyanat (OCN') und Thiocyanat (SCN"), Carboxylat, Sulfonat, Alkoxid, Aryloxid, Alkyl, Aryl oder eine andere gleichwirkende Gruppe sein kann. Bevorzugt ist X (R"O)3-nR"nSiX', Halogenid, Carboxylat, Sulfonat, Alkoxid oder Aryloxid, ganz bevorzugt (R"O)3-nR"nSiX', Cl", CF3SO3 " oder CF3COO".
XI ist eine einfach negativ geladene Gruppe, die zum Ladungsausgleich als Ligand an ein zweifach positiv geladenes Ruthenium-Zentralatom gebunden ist. Je nach Elektronegativität der anionischen Gruppe X' kann diese Bindung eine koordinative Bindung, die durch freie Elektronenpaare des Anions ausgebildet wird, oder eine ionische Bindung sein. Die in den Verbindungen (I) und (II) enthaltene anionische Gruppe X' kann eine RC(O)O", RO", RN(A)" oder RSO3 " sein, wobei R an das Si-Atom gebunden ist. Bevorzugt ist X' RC(O)O" oder RO", ganz bevorzugt RC(O)O". Der Kohlenwasserstoffrest R kann ein Rest A, Ar, A-Ar, A-Ar-A, Het, A-Het, A-Het-A sein, wobei jeweils die Gruppen A, Ar und Het die im folgenden gegebenen Bedeutungen annehmen können. Bevorzugt ist R ein Rest A, Ar, A- Ar, A-Ar-A mit nicht mehr als 20 C-Atomen. Insbesondere kann R ein Rest sein, worin A, Ar, A-Ar, A-Ar-A jeweils ein- oder mehrfach substituiert durch eine
Gruppe A, OA, CO-AOH, COOH, COOA, COA, OH, CN, CONHA, NO2, =NH, =0 und/oder durch HaI substituiert ist, mit HaI F1 Cl, Br oder I. Insbesondere bevorzugt kann R ein Rest A sein, der ein- oder mehrfach substituiert durch F substituiert sein kann.
A geradkettiger, unverzweigter (linearer), verzweigter, gesättigter, ein- oder mehrfach ungesättigter oder zyklischer Alkylrest A mit 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, oder 30 C-Atomen, vorzugsweise mit 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 oder 12 C-Atomen.
A ist bevorzugt ein geradkettiger oder verzweigter, gesättigter Ci-Ci2-Alkylrest, oder ein Cycloalkyl mit 3 - 10 C-Atomen oder eine über eine oder zwei Alkylgruppe(n) gebundenes C4-C2o-Cycloalkyl.
Alkylen hat die gleichen Bedeutungen wie für A angegeben, mit der Maßgabe, daß eine weitere Bindung vom Alkyl zum nächsten Bindungsnachbarn geknüpft ist.
A ist beispielsweise eine Alkylengruppe ausgewählt aus der Gruppe
Methylen (-CH2-), Ethyl (-C2H4-), Propyl (-C3H6-), lsopropyl (-C3H6-), Butyl (-C4H8-), lsobutyl (-C4H8-), sek.-Butyl (-C4H8-) oder tert.-Butyl (-C4H8-), ferner auch Pentyl (-C5Hi0-), 1-, 2- oder 3-Methylbutyl (-C5H10-), 1 ,1- , 1 ,2- oder 2,2-Dimethylpropyl (-C5Hi0-), 1-Ethylpropyl (-C5H10-), Hexyl (-C6Hi2-), 1- , 2- , 3- oder 4-Methylpentyl (-C6Hi2-), 1,1- ,
1 ,2- , 1 ,3- , 2,2- , 2,3- oder 3,3-Dimethylbutyl (-C6Hi2-), 1- oder 2- Ethylbutyl (-C6H12-), 1-Ethyl-1-methylpropyl (-C6Hi2-), 1 -Ethyl-2- methylpropyl (-C6Hi2-), 1 ,1 ,2- oder 1 ,2,2-Trimethylpropyl (-C6Hi2-), Heptyl, Octyl, Nonyl, Decyl, Undecyl oder Dodecyl sein.
A kann auch eine Cycloalkylengruppe mit 3 - 30 C-Atomen sein, vorzugs¬ weise C3-Cg-Cycloalkylen. Hierin kann Cykloalkyl gesättigt, ungesättigt, gegebenenfalls über eine oder zwei Alkylgruppen im Molekül gebunden sein, und mit mindestens einer Alkylgruppe an die SiR"n(OR")n-3-Gruppe gebunden sein. Auch kann bzw. können ein oder mehrere H-Atome(e) durch andere Substituenten in der Cycloalkylengruppe ersetzt sein. Cycloalkyl bedeutet vorzugsweise Cyclopropyl, Cyclobutyl, Cylopentyl,
Cyclohexyl, Methylcyclopentyl, Cycloheptyl, Methylcyclohexyl, Cyclooktyl, 3- Menthyl.oder Campher-10-yl (bicyclisches Terpen), Dekalin, Bicyclo-heptan, wobei diese Gruppen über ein oder zwei Alkylgruppen im Molekül gebunden sein können, aber mit mindestens einer Alkylgruppe an die SiR"n(OR")n-3- Gruppe gebunden sind. In diesem Fall bedeutet Cycloalkyl bevorzugt 1 ,2-
Cyciopropyl, 1 ,2- oder 1 ,3-Cyclobutyl, 1 ,2- oder 1 ,3-Cyclopentyl, 1 ,2- , 1 ,3- oder 1 ,4-Cyclohexyl, femer 1 ,2- , 1 ,3- oder 1 ,4-Cycloheptyl. Die genannten Gruppen können aber auch als R3 in substituierter oder unsubstituierter Form an den zweiten I midazolstickstoff gebunden sein.
A kann auch eine ungesättigte Alkenyl- oder Alkinyl-Gruppe mit 2 - 20 C- Atomen sein, die mindestens eine Bindung an die SiR"n(OR")n-3-Gruppe aufweist.
Alkenyl-Gruppen können geradkettig, verzweigte oder zyklische C-2-C30-
Alkenyle sein, vorzugsweise geradkettige, verzweigte zyklische C2-C9-Alkenyle, besonders bevorzugt geradkettige oder verzweigte
Figure imgf000022_0001
aus der Gruppe Vinyl, Propenyl, Butenyl, Pentenyl oder Hexenyl.
Cycloalkenyl-Gruppen können geradkettig oder verzweigte C-3-C30-Cyclo- alkenyle sein, vorzugsweise Cs-Cg-Cycloalkenyle, besonders bevorzugt C3-C-6- Cycloalkenyle aus der Gruppe Cyclopropenyl, Cyclobutenyl, Cyclopentenyl, Cyclohexyl, Cyclopentadienyl und Methylcyclopentadienyl.
Alkinyl-Gruppen können geradkettige oder verzweigte C2-C30-Alkinyle sein, vorzugsweise geradkettige oder verzweigte
Figure imgf000022_0002
besonders bevorzugt geradkettige oder verzweigte C2-C6-Al kinyle aus der Gruppe Ethinyl, Propinyl, Butinyl, Pentinyl oder Hexinyl.
sind Alkenyl, Cycloalkenyl oder Alkinyl Bestandteil des Kohlenwasser-stoffrests R, weisen sie selbstverständlich die gleichen Bedeutungen auf mit der Maßgabe, daß eine weitere Bindung vom Alkenyl oder vom Alkinyl zum nächsten Bindungsnachbarn im Molekül geknüpft ist.
Ar ist ein ein- oder mehrkerniger aromatischer Kohlenwasserstoffrest mit 6 - 30 C-Atomen, der ein- oder mehrfach substituiert oder unsubstituiert sein kann.
Ar ist bevorzugt ein ein- oder mehrfach substituiertes Phenyl oder Naphthyl, wobei Substituenten die Bedeutungen von A annehmen können und Ar insgesamt nicht mehr als 20 C-Atome besitzt.
Arylgruppen können bevorzugt C6-Cio-Aryle sein, vorzugsweise Phenyl oder Naphthyl. Alkylaryle können C7-Ci8-Alkylaryle sein, vorzugsweise ToIyI oder Mesityl.
Bevorzugt bedeutet
Ar substituiertes oder unsubstituiertes Phenyl, Naphthyl, Anthryl,
Phenanthryl, welches durch A, OA, CO-AOH, COOH, COOA, Fluor, Chlor, Brom, lod, Hydroxy, Methoxy, Ethoxy, Propoxy, Butoxy, Pentyloxy, Hexyloxy, Nitro, Cyan, Formyl, Acetyl, Propionyl, Trifluormethyl, Amino, Methylamino, Ethylamino, Dimethylamino, Diethylamino, Benzyloxy,
Sulfonamido, Methylthio, Methylsulfinyl, Methylsulfonyl, Methylsulfonamido, Ethylsulfonamido, Propylsulfonamido, Butylsulfonamido, Dimethylsulfonamido, Phenylsulfonamido, Carboxy, Methoxycarbonyl, Ethoxycarbonyl, Aminocarbonyl mono-, di- oder trisubstituiert sein kann, wobei Ar nicht mehr als 20 C-Atome aufweist, wenn es durch A substituiert ist und/oder an A gebunden ist.
Vorzugsweise bedeutet
Ar unsubstituiertes, ein- oder mehrfach substituiertes Phenyl, und im einzelnen bevorzugt Phenyl, o-, m- oder p-Tolyl, o-, m- oder p-
Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-lsopropylphenyl, o-, m- oder p-tert.-Butylphenyl o-, m- oder p-Cyanphenyl, o-, m- oder p-Methoxyphenyl, o-, m- oder p-
Ethoxyphenyl, o-, m- oder p-Fluorphenyl, o-, m- oder p-Bromphenyl, o-, m- oder p- Chlorphenyl, o-, m- oder p-Methylthiophenyl, o-, m- oder p- Methylsulfinylphenyl, o-, m- oder p-Methylsulfonylphenyl, o-, m- oder p- Aminophenyl, o-, m- oder p-Methylaminophenyl, o-, m- oder p- Dimethylaminophenyl, o-, m- oder p-Nitrophenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Difluorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dichlorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dibromphenyl, 2-Chlor-3-methyl-, 2-Chlor-4-methyl-, 2-Chlor-5-methyl-, 2-Chlor-6-methyl- , 2-Methyl-3-chlor-, 2-Methyl-4-chlor-, 2-Methyl-5-chlor-, 2-Methyl-6-chlor-, 3-Chlor-4-methyl-, 3-Chlor-5-methyl- oder 3-Methyl-4-chlorphenyl, 2-Brom- 3-methyl-, 2-Brom-4-methyl-, 2-Brom-5-methyl-, 2-Brom-6-methyl-,
2-Methyl-3-brom-, 2-Methyl-4-brom-, 2-Methyl-5-brom-, 2-Methyl-6-brom-, 3-Brom-4-methyl-, 3-Brom-5-methyl- oder
3-Methyl-4-bromphenyl, 2,4- oder 2,5-Dinitrophenyl, 2,5- oder 3,4- Dimethoxyphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6- oder 3,4,5-Trichlorphenyl, 2,4,6-Tri-tert-Butylphenyl, 2,5-Dimethylphenyl, 4-lodphenyl, 4-Fluor-3- chlorphenyl, 4-Fluor-3,5-dimethylphenyl, 2-Fluor-4-bromphenyl, 2,5- Difluor-4-bromphenyl, 2,4-Dichlor-5-methylphenyl, 3-Brom-6- methoxyphenyl, 3-Chlor-6-methoxyphenyl, 2-Methoxy-5-methylphenyl, 2,4,6-Triisopropylphenyl, 1 ,3-Benzodioxol-5-yl, 1,4-Benzodioxan-6-yl, Benzothiadiazol-5-yl oder
Benzoxadiazol-5-yl, Naphthyl.
Arylen hat die gleichen Bedeutungen wie für Ar angegeben, mit der Maßgabe, dass eine weitere Bindung vom aromatischen System zum nächsten Bindungsnachbarn geknüpft ist.
Im einzelnen kann die mit Het bezeichnete Gruppe folgende Bedeutungen annehmen:
Het ein ein- oder zweikemiger gesättigter, ungesättigter oder aromatischer Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch HaI und/oder A, OA, CO-AOH, COOH, COOA, COA, OH, CN, CONHA, NO2, =NH, =0 substituiert sein kann, mit HaI F, Cl, Br oder I.
Bevorzugt bedeutet Hθt unsubstituiertθs oder ein- oder zweifach durch HaI und/oder A substituiertes Chromen-2-on-yl, Pyrrolyl, Imidazolyl, Pyridyl, Pyrimidyl, Piperidinyl, 1-Methyl-piperidinyl, Indolyl, Thiopenyl, Furyl, Imidazolyl,
Pyrazolyl Oxazolyl, Isoxazolyl Thiazolyl, Isothiazolyl, Triazolyl, Thienyl,
Tetrazolyl, Oxadiazolyl, Thiadiazolyl, Thiopyranyl, Pyridazinyl, Pyrazyl,
Benzofuryl, Benzothienyl, Indolyl, [2,1 ,3]-Benzothiadiazolyl, Benzimidazolyl, Benzopyrazolyl, Benzoxazolyl, Benzisoxazolyl, Benzthiazolyl, Benzisothiazolyl, Benz-2,1 ,3-oxadiazolyl, Chinolyl, Isochinolyl, Cinnolinyl, wobei Substituenten A, OA, CO-AOH, COOH, COOA, Fluor, Chlor, Brom, lod sein können.
Het besonders bevorzugt 2- oder 3-Furyl, 2- oder 3-Thienyl, 1 -, 2- oder 3- Pyrrolyl, 1-, 2-, A- oder 5-lmidazolyl, 1-, 3-, A- oder 5-Pyrazolyl, 2-, A- oder 5-Oxazolyl, 3-, 4- oder 5-lsoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, A- oder 5-lsothiazolyl, 2-, 3- oder 4-Pyridyl, 1-Methyl-piperidin-4-yl oder Piperidin-4-yl-, 2-, 4-, 5- oder 6-Pyrimidinyl, weiterhin bevorzugt 1 ,2,3- Triazol-1-, -4- oder -5-yl, 1 ,2,4-TriazoM-, -3- oder 5-yl, 1- oder 5-
Tetrazolyl, 1 ,2,3-Oxadiazol-4- oder -5-yl, 1 ,2,4-Oxadiazol-3- oder -5-yl, 1 ,3,4-Thiadiazol-2- oder -5-yl, 1 ,2,4-Thiadiazol-3- oder -5-yl, 1 ,2,3- Thiadiazol-4- oder -5-yl, 2-, 3-, A-, 5- oder 6-2H-Thiopyranyl, 2-, 3- oder 4-4H-ThiopyranyI, 3- oder 4-Pyridazinyl, Pyrazinyl, 2-, 3-, A-, 5- 6- oder 7-Benzofuryl, 2-, 3-, A-, 5-, 6- oder 7-Benzothienyl, 1-, 2-, 3-, A-, 5-, 6- oder 7-lndolyl, 1-, 2-, A- oder 5-Benzimidazolyl, 1-, 3-, A-, 5-, 6- oder 7- Benzopyrazolyl, 2-, A-, 5-, 6- oder 7-Benzoxazolyl, 3-, A-, 5-, 6- oder 7- Benzisoxazolyl, 2-, 4-, 5-, 6- oder 7-Benzthiazolyl, 2-, 4-, 5-, 6- oder 7- Benzisothiazolyl, 4-, 5-, 6- oder 7-Benz-2,1 ,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Chinolyl, 1-, 3-, A-, 5-, 6-, 7- oder 8-lsochinolyl, 3-, 4-, 5-,
6-, 7- oder 8-Cinnolinyl, 2-, A-, 5-, 6-, 7- oder 8-, Chinazolinyl, A- oder 5- Isoindolyl, 5- oder 6-Chinoxalinyl, 2-, 3-, 5-, 6-, 7- oder 8-2H- Benzo[1,4]oxazinyl, weiter bevorzugt 1 ,3-Benzodioxol-5-yl, 1 ,4- Benzodioxan-6-yl, 2,1 ,3-Benzothiadiazol-4- oder -5-yl, 2,1 ,3- Benzoxadiazol-5-yl oder Chromenyl. Die heterocyclischen Reste können auch teilweise oder vollständig hydriert sein und die folgenden Bedeutungen annehmen:
Het 2,3-Dihydro-2-, -3-, -4- oder -5-furyl, 2,5-Dihydro-2-, -3-, -4- oder 5-furyl, Tetrahydro-2- oder -3-furyl, 1 ,3-Dioxolan-4-yl, Tetrahydro-2- oder -3- thienyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrrolyl, 2,5-Dihydro-i-, -2-, -3-, -4- oder -5-pyrroIyl, 1-, 2- oder 3-Pyrrolidinyl, Tetrahydro-1-, -2- oder -4- imidazolyl, 2,3-Dihydro-1-, -2-, -3-, -A- oder -5-pyrazolyl, Tetrahydro-1-, -3- oder -4-pyrazolyl, 1 ,4-Dihydro-1-, -2-, -3- oder -4-pyridyl, 1 ,2,3,4- Tetrahydro-1 -, -2-, -3-, -4-, -5- oder -6-pyridyl, 1 -, 2-, 3- oder 4-Piperidinyl,
2-, 3- oder 4-Morpholinyl, Tetrahydro-2-, -3- oder -4-pyranyl, 1 ,4-Dioxanyl, 1 ,3-Dioxan-2-, -4- oder -5-yl, Hexahydro-1-, -3- oder -4-pyridazinyl, Hexahydro-1-, -2-, -4- oder -5-pyrimidinyl, 1-, 2- oder 3-Piperazinyl, 1 ,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-chinolyl, 1 ,2,3,4- Tetrahydro-1-,-2-,-3-, -4-, -5-, -6-, -7- oder -8-isochinolyl, 2-, 3-, 5-, 6-, 7- oder 8- 3,4-Dihydro-2H-benzo[1 ,4]oxazinyl, weiter bevorzugt 2,3- Methylendioxyphenyl, 3,4-Methylendioxyphenyl, 2,3-Ethylendioxyphenyl, 3,4-Ethylendioxyphenyl, 3,4-(Difluormethylendioxy)-phenyl, 2,3-Dihydro- benzofuran-5- oder 6-yl, 2,3-(2-Oxo-methylendioxy)-phenyl oder auch 3,4- Dihydro-2H-1 ,5-benzodioxepin-6- oder -7-yl, ferner bevorzugt 2,3-
Dihydrobenzofuranyl oder 2,3-Dihydro-2-oxo-furanyl.
Heterocycloalkylen bzw. Heterocycloarylen hat die gleichen Bedeutungen wie für Het angegeben, mit der Maßgabe, daß eine weitere Bindung vom heterozyklischen System zum nächsten Bindungsnachbarn geknüpft ist.
Heterocycloalkylen bedeutet vorzugsweise 1 ,2-, 2,3- oder 1 ,3-PyrroIidinyl, 1 ,2-, 2,4-, 4,5- oder 1 ,5-lmidazolidinyl, 1 ,2-, 2,3-, oder 1 ,3-Pyrazoiidinyl, 2,3-, 3,4-, 4,5- oder 2,5-Oxazolidinyl, 1 ,2-, 2,3-, 3,4- oder 1 ,4- Isoxazolidinyl, 2,3-, 3,4-, 4,5- oder 2,5-Thiazolidinyl, 2,3-, 3,4-, 4,5- oder 2,5-lsothiazolidinyl, 1 ,2-, 2,3-, 3,4- oder 1 ,4-Piperidinyl, 1 ,4- oder 1 ,2-Piperazinyl, weiterhin bevorzugt 1 ,2,3-Tetrahydro-triazoM ,2- oder -1 ,4-yl, 1 ,2,4-Tetrahydro-triazol-1 ,2- oder 3,5- yl, 1 ,2- oder 2,5-Tetrahydro-tetrazolyl, 1 ,2,3-Tetrahydro-oxadiazol-2,3-, -3,4-, - 4,5- oder -1 ,5-yl, 1 ,2,4-Tetrahydro-oxadiazol-2,3-, -3,4- oder -4,5-yl, 1 ,3,4- Tetrahydro-thiadiazol-2,3-, -3,4-, -4,5- oder -1 ,5-yl, 1 ,2,4-Tetrahydro-thiadiazol- 2,3-, -3,4-, -4,5- oder -1 ,5-yl, 1 ,2,3-Thiadiazol-2,3-, -3,4-, -4,5- oder -1 ,5-yl, 2,3- oder 3,4-Morpholinyl, 2,3-, 3,4- oder 2,4-Thiomorpholinyl. Der Kohlenwasserstoffrest R ist ganz besonders bevorzugt eine Gruppe mit nicht mehr als 20 C-Atomen und nimmt Bedeutungen an, ausgewählt aus Verbindungen, welche zu den Ci-Ci2-Alkylenen,C3-C10-Cycloalkylenen, bzw. über eine oder zwei Alkylgruppe(n) gebundenen C4-C2o-Cycloalkylenen, C6-Ci4-Arylenen oder den Cτ-C2o-Alkylarylenen zählen und davon insbesondere bevorzugt eine C-i-C-4-Alkylen-Kette aus der Reihe Methylen, Ethylen, Propylen und Butylen bzw. eine C6-C8-Arylen-Kette aus der Reihe -CeHU- und -CeHbMe2- bzw. eine Cz-Cg-Alkylaryl-Kette aus der Reihe - CH2C6H4-, -CH2C6H2Me2-, -CH2C6H4CH2- und -CH2C6H2Me2CH2-.
R" in der SiR"n(OR")3-n-Einheit ist ein Kohlenwasserstoff-Rest, wobei n = 0, 1 oder 2 sein kann, bevorzugt 0 und 1 und ganz bevorzugt 0. Dieser Kohlenwasserstoffrest R" kann unabhängig von der Stellung im Molekül unterschiedliche Bedeutungen annehmen und geradkettig, unverzweigt (linear), verzweigt, gesättigt, ein- oder mehrfach ungesättigt, zyklisch (A), aromatisch (Ar) oder alkylaromatisch (AAr, AArA), gegebenenfalls ein- oder mehrfach substituiert sein.
A und Ar können dabei alle oben und im folgenden gegebenen Bedeutungen annehmen. Bevorzugt ist R" ein geradkettiger, unverzweigter (linearer), verzweigter, gesättigter, ein- oder mehrfach ungesättigter, oder zyklischer gesättigter oder ein- oder mehrfach ungesättigter, Alkyl-Rest mit 1 - 12 C-Atomen. Besonders bevorzugt ist R" ein geradkettiger oder verzweigter gesättigter Alkylrest mit 1 - 7 C-Atomen, also eine Untergruppe aus der Alkylgruppe A, die im folgenden noch näher definiert wird.
R" kann also bevorzugt die Bedeutungen Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, sec-Butyl, tert.-Butyl, Pentyl, 1-, 2- oder 3-Methylbutyl (-C5Hi0-), 1 ,1- , 1 ,2- oder 2,2-Dimethylpropyl (-C5Hi0-), 1-Ethylpropyl (-C5Hi0-), Hexyl (-C6Hi2-), 1- , 2- , 3- oder 4-Methylpentyl (-C6Hi2-), 1 ,1- , 1 ,2- , 1 ,3- , 2,2- , 2,3- oder 3,3-Dimethylbutyl (- C6H12-), 1- oder 2-Ethylbutyl (-C6Hi2-), 1-Ethyl-1-methylpropyl (-C6Hi2-), 1-Ethyl- 2-methylpropyl (-C6H12-), 1 ,1 ,2- oder 1 ,2,2-Trimethylpropyl (-C6H12-), Heptyl, Octyl, Nonyl, Decyl, Undecyl oder Dodecyl annehmen. Ganz besonders bevorzugt ist R" ein Ci -C4-Al kylrest aus der Gruppe Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, sec-Butyl und tert.-Butyl. In SiR"n(OR")n-3 kann R" aber auch Alkenyl: Vinyl, Propenyl, 1 ,2-Propadienyl, Butenyl, Butadienyl, Pentenyl, 1 ,2-, 1 ,4-,1 ,3-Pentadienyl, 2,3-Dimethyl-2-butenyl, Hexenyl, 1 ,5-Hexadienyl, 2- Mθthyl-1 ,3- butdienyl, 2,3-Dimethyl-1 ,3-butadienyl, lsopentenyl,Cycloalkenyl Cyclopropenyl, Cyclobutenyl, Cyclopentenyl, Cyclopentadienyl und Methylcyclopentadienyl und
Alkinyl: Ethinyl, 1 ,2-Propinyl, 2-Butinyl, 1 ,3-Butadiinyl Pentinyl oder
Hexinyl bedeuten.
Je größer die Zahl der Alkoxy-Reste in der SiR"n(OR")3-n-Gruppe ist und damit je kleiner n ist, desto größer kann die Anzahl der kovalenten Bindungen zwischen dem Metalloxid und den Verbindungen der allgemeinen Formeln (I) und (II) nach der Immobilisierung sein. Die SiR"n(OR")3-n Gruppe ist an die anionische Brücke X' gebunden.
L ist unabhängig voneinander ein neutraler Ligand (Zwei-Elektronen-Donor), der an das Ruthenium-Atom koordinativ gebunden ist. Die in den Verbindungen (I) und (II) sowie in (Ia) und (IIa) enthaltenen Liganden L können unabhängig voneinander ein neutraler N-Heterozyklischer-Carben-Ligand oder ein neutraler Phosphan-Ligand PAmAr3-m mit m = 0, 1 , 2, 3 sein. Neutrale Phosphan- Liganden PAmAr3-m sind bevorzugt PA3 oder PAr3, ganz bevorzugt Tricyclohexylphosphin, Triphenylphosphin oder Triadamantylphosphin, besonders bevorzugt ist Tricyclohexylphosphin. N-Heterozyklische-Carben- Liganden stehen für 1 ,3-disubstituierte Imidazolin-2-yliden (A), 1 ,3- disubstituierte 4,5-Dihydroimidazol-2-yliden (B), 1 ,3-disubstituierte 4,5- Dihydrotriazol-2-yliden (C) und 1 ,3-disubstituierte 3,4,5, 6-tetrahydropyrimidin-2- yliden (D), die sich vom Imidazol (zu A), 4,5-Dihydroimidazol (zu B), 1 ,2,4- Triazol (zu C) bzw. Pyrimidin (zu D) als Grundkörper ableiten. In allen Ligandentypen ist das Kohlenstoffatom zwischen den beiden Stickstoffatomen des Heterozyklus ein Carben-Kohlenstoffatom, welches mittels des freien
Elektronenpaars koordinativ an das Rutheniumatom gebunden ist.
Figure imgf000028_0001
(A) (B) (C) (D)
Bevorzugt sind die neutralen N-heterozyklischen Carben-Liganden 1 ,3- disubstituierte lmidazolin-2-ylidene (A) oder 1 ,3-disubstituierte 4,5- Dihydroimidazol-2-ylidene (B), in denen R' ein sterisch anspruchsvoller Rest A oder Ar ist. Ganz bevorzugt ist das N-heterozyklische Garben 1 ,3-Dimesityl- lmidazolin-2-yliden (A) oder 1 ,3-Dimesityl-4,5-dihydroimidazol-2-yliden (B).
R' und R'" können unabhängig voneinander H, A oder Ar sein, wobei H-Atome in A oder Ar durch Alkenyl- oder Alkinylreste substituiert sein können, mit nicht mehr als 30 C-Atomen. R' und R'" können daher unabhängig voneinander H, Alkyl-, Cycloalkyl, Aryl, Alkenyl oder Alkinyl mit bis zu 30 C-Atomen sein. Bevorzugt sind R' und R"' H, Ci-Cio-Alkyl, C6-C10-Aryl, C2-C10-Alkenyl und C2- C-8-Alkinyl. Bevorzugt können R' und R'" also die Bedeutungen Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, sec-Butyl, tert.-Butyl, Pentyl, 1-, 2- oder 3- Methylbutyl (-C5Hi0-), 1 ,1- , 1 ,2- oder 2,2-DimethyIpropyl (-C5H10-), 1- Ethylpropyl (-C5H10-), Hexyl (-C6Hi2-), 1- , 2- , 3- oder 4-Methylpentyl (-C6H12-), 1 ,1- , 1 ,2- , 1 ,3- , 2,2- , 2,3- oder 3,3-Dimethylbutyl (-C6H12-), 1- oder 2- Ethylbutyl (-C6H12-), 1-Ethyl-1-methylpropyl (-C6H12-), 1-Ethyl-2-methylpropyl (- C6Hi2-), 1 ,1 ,2- oder 1 ,2,2-Trimethylpropyl (-C6H12-), Heptyl, Octyl, Nonyl, Decyl, Cyclopropenyl, Cyclobutenyl, Cyclopentenyl, Cyclohexyl, Cyclopentadienyl und Methylcyclopentadienyl, Phenyl, o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-lsopropylphenyl, o-, m- oder p-tert.- Butylphenyl, Naphthyl, Vinyl, Propenyl, Butenyl, Pentenyl oder Hexenyl, Ethinyl, Propinyl, Butinyl, Pentinyl oder Hexinyl annehmen. Ganz bevorzugt bedeuten R' und R'" H, Methyl, Phenyl, Naphthyl und C2-C8-Al kenyle wie z.B. Vinyl,— C=CMe2 oder -C=CPh2 und R'" Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl und Phenyl.
R1 , R2, R3 und R4 können unabhängig von der Stellung im Molekül H, HaI, NO2, CN, OH, OA, OAr, NH2, NHA, NA2, C(O)OA, C(O)A, A, Ar mit 1 - 12 C- Atomen sein, wobei A und Ar die oben gegebenen Bedeutungen annehmen können mit der Maßgabe, dass darin die entsprechenden Gruppen nicht mehr als 12 C-Atome aufweisen. Bevorzugt können R1 , R2, R3 und R4 unabhängig von der Stellung im Molekül H, F, CN, NO2, OA, OAr, A und Ar sein, ganz bevorzugt H1 NO2, CN, OMe, OiPr, Phenyl und Naphthyl.
Die Herstellung der Verbindungen der allgemeinen Formeln (I) und (II) erfolgt durch Umsetzung von HaI2[Ru] (Bedeutung von [Ru] siehe Schema 1) mit den Verbindungen der allgemeinen Formel (III), (R"O)3-nR"nSi-XI-M [Weg (a): Zugabe von 2 oder mehr Äquivalenten an (III), Weg (b): Zugabe von 1 Äquivalent an (III)], oder durch Umsetzung von Ha^Ru] mit den Verbindungen der allgemeinen Formel (III), (R'O)3-nR"nSi-XI-M, und X-M [Weg (c)] in wasserfreien, inerten, aprotischen organischen Lösungsmitteln (Schema 1). Die über Weg (b) hergestellten Verbindungen der allgemeinen Formel (I) und (II) können in einer nachfolgenden Reaktion [Weg (d)] durch Umsetzung mit einer weiteren Verbindung der allgemeinen Formel (III) zu den gleichen Produkten, wie unter Weg (a) erhalten, umgesetzt werden, oder es werden Verbindungen der allgemeinen Formeln (I) und (II) erhalten, in denen zwei verschiedene SiIyI- haltige Anionen am Ruthenium-Zentrum gebunden sind (Schema 1 ). Zudem können die über Weg (b) hergestellten Verbindungen der allgemeinen Formel (I) und (II) in einer nachfolgenden Reaktion [Weg (e)] durch Umsetzung mit einer Verbindung der allgemeinen Formel X-M zu Verbindungen der allgemeinen Formeln (I) und (II) umgesetzt werden, in denen das zweite Hai- Atom durch ein Silyl-freies Anion ausgetauscht wurde (Schema 1 ).
Schema 1
(R"O)3.nR"nSi- -X1 ;[Ru] (I5 H)
(R"O) 3-n R"nSi-X'
2 (RO)3.nR"nSi-X'-M (III) - 2 MHaI (a) - MHaI (R-O^R-'-.Si-X'-M (III)
(d)
HaN (R"0)3.nR"nSI-X'-M (III) (R-O^R^Sh-X1.
=[Ru] HaI' - MHaI (b) ;[Ru] (I, II) Hai-"
(e)
X-M <c> - MHaI X-M
(R"O)3.nR"nSi-X1-M (III) - 2 MHaI (R-O^R^Si-X1.
;[Ru] (I, II)
[Ru] bedeutet in (I) und
Figure imgf000031_0001
Figure imgf000031_0002
Bevorzugt erfolgen die Wege (a), (b) und (e). In den zur Herstellung der Verbindungen der allgemeinen Formeln (I) und (II) benötigten Ausgangsverbindungen der allgemeinen Formel (III), (R"O)3-nR"nSi-X'-M, und M-X entspricht M einem ein- oder zweiwertigen Metallion aus der Gruppe Ag, Cu, Au1 Tl, Li, Na, K, Mg, Zn, Cd, Hg, bevorzugt ist M Ag, Tl oder Hg, ganz bevorzugt Ag. In den Verbindungen M-X kann X die Bedeutung von X in den Verbindungen der allgemeinen Formeln (I) und (II) annehmen, bevorzugt ist X ein Fluor-freies, teilweise oder vollständig fluoriertes Carboxylat- oder Alkoholat-Anion.
Als Lösungsmittel dienen organische unpolare oder polar aprotische Lösungsmittel wie z.B. chlorierte oder reine Kohlenwasserstoffe, offene oder zyklische Ether, Ketone oder Alkohole, bevorzugt chlorierte und reine Kohlenwasserstoffe und zyklische Ether, ganz bevorzugt Methylenchlorid, Tetrahydrofuran oder Dioxan. Die Ausgangsverbindung (R"O)3-nR"nSi-X'-M kann vor der Umsetzung mit HaI[Ru] isoliert werden oder in-situ hergestellt werden. Zur Reaktion können alle Reaktionspartner gemeinsam im Reaktionsgefäß eingesetzt werden. Die Reihenfolge der Zugabe der Komponenten kann beliebig gewählt werden. Die Ausgangsverbindungen können in einem geeigneten Lösungsmittel, wie z. B. einem Ether vorgelöst bzw. suspendiert sein. Als Schutzgasatmosphäre können Stickstoff oder Argon dienen. Die Reaktion kann unter Lichteintritt oder unter Lichtausschluss erfolgen, bevorzugt unter Lichtausschluss. Die Reaktion kann in einem Temperaturbereich von -78°C bis + 100 0C, vorzugsweise von O0C bis +60 0C während einer Reaktionszeit von 1 Minute bis 24 Stunden erfolgen. Die gebildeten Produkte der allgemeinen Formeln (I) und (II) können gegebenenfalls nach Abtrennung fester Nebenprodukte und Entfernung der flüchtigen Bestandteile in einfacher Weise durch Extraktion und Kristallisation rein isoliert werden.
Die Herstellung der Untergruppe (lila) der Verbindungen der allgemeinen Formel (III), in denen X' die Bedeutung R-COO' hat, ist neu und bislang nicht beschrieben. Sie kann zum Beispiel durch Umsetzung von (R"O)3-nR"nSi-R- CO2H mit 1/n MnO erfolgen. Die Ausgangsverbindungen (R1O)3-0R^Si-R-CO2H lassen sich nach dem Fachmann bekannten Methoden herstellen und sind z.B. in Tetrahedron: Asymmetry 1995, 6(1), 39 beschrieben.
(R"O)3.nR"nSi-R-COOH + 1/n MnO - (R"O)3.nR"nSi-R-COOM + H2O
(lila)
Die Bedeutung von M in der allgemeinen Formel (lila) entspricht einem ein- oder zweiwertigen Metallion wie zum Beispiel Ag, Cu, Au, Tl, Li, Na, K, Mg1 Zn, Cd oder Hg, bevorzugt entspricht M Ag, Tl oder Hg, ganz bevorzugt Ag. Die Bedeutungen von R", R und n in den Verbindungen der allgemeinen Formel (lila) entsprechen den Bedeutungen von R", R und n in den Verbindungen der allgemeinen Formeln (I) und (II).
Zur Herstellung der Verbindungen der allgemeine Formel (lila) werden Lösungsmittel aus der Reihe der organischen unpolaren oder polar aprotischen oder protischen Lösungsmittel wie zum Beispiel offene oder zyklische Ether,
Ketone, Alkohole, Nitrile, Carbonsäureester, bevorzugt Ether und Ketone, ganz bevorzugt Diethylether, t-Butyl-Methylether, Tetrahydrofuran oder Dioxan verwendet. Die Ausgangsverbindung (R"O)3-nR"nSi-R-COOH kann vor der Umsetzung mit 1/n MnO isoliert werden oder in-situ hergestellt werden. Bevorzugt wird diese in-situ hergestellt.
Zur Reaktion können alle Reaktionspartner gemeinsam im Reaktionsgefäß eingesetzt werden. Die Reihenfolge der Zugabe der Komponenten kann beliebig gewählt werden. Das stöchiometrische Verhältnis der Ausgangsstoffe (R'O)3-nR"nSi-R-COOH und 1/n MnO kann zwischen 1 : (10-0.05), vorzugsweise zwischen 1 : (5-0.1 ). Die Ausgangsverbindungen können in einem geeigneten Lösungsmittel, wie z. B. einem Ether vorgelöst bzw. suspendiert sein. Als Schutzgasatmosphäre können Stickstoff oder Argon dienen. Die Reaktion kann unter Lichteintritt oder unter Lichtausschluss erfolgen, bevorzugt unter Lichtausschluss. Die Reaktion kann in einem Temperaturbereich von -78°C bis + 100 0C, vorzugsweise von O0C bis +80 0C während einer Reaktionszeit von 15 Minuten bis 24 Stunden erfolgen. Die gebildeten Produkte der allgemeinen Formel (lila) können gegebenenfalls nach Abtrennung fester Nebenprodukte und Entfernung der flüchtigen Bestandteile in einfacher Weise durch Extraktion und Kristallisation rein isoliert werden oder direkt zu den Verbindungen der allgemeinen Formeln (I) oder (II) umgesetzt werden.
Die Immobilisierung der Verbindungen der allgemeinen Formeln (I) und (II) erfolgt durch Reaktion der Verbindungen (I) und (II) mit einem anorganischen Metalloxid in wasserfreien, inerten, polaren, aprotischen oder protischen organischen Lösungsmitteln. Die Reihenfolge der Zugabe der Komponenten kann beliebig gewählt werden. Die Ausgangsverbindungen können in einem geeigneten Lösungsmittel vorgelöst bzw. suspendiert werden.
Zur Durchführung der Reaktion werden bevorzugt als Lösungsmittel halogenierte oder reine Kohlenwasserstoffe und zyklische Ether verwendet. Von den halogenierten Kohlenwasserstoffen werden bevorzugt Methylenchlorid, Chlorbenzol oder Trichlortoluol verwendet, ganz bevorzugt Methylenchlorid. Von den reinen Kohlenwasserstoffen werden bevorzugt Pentan, Hexan, Heptan, Oktan, Dekan, Benzol oder Toluol verwendet, ganz bevorzugt Heptan und Toluol. Von den zyklischen Ethern wird bevorzugt Tetrahydrofuran eingesetzt. Während der Umsetzung der Verbindungen der allgemeinen Formel (I) und (II) mit einem anorganischen Metalloxid kann zusätzlich ein Silan der allgemeinen Formel R-SiR"n(OR")3-n zur Inertisierung der Metalloxid-Oberfläche zugegeben werden. Dabei werden die zugänglichen Si-OH-Gruppen auf der Metalloxid- Oberfläche mit einer nicht-reaktiven hydrophoben Gruppe abgesättigt, was eine erhöhte chemische Stabilität der immobilisierten Verbindungen (Ia) und (IIa) zur Folge hat. Durch diese zusätzliche Inertisierung der Metalloxidoberfläche erreichen die immobilisierten Katalysatoren (Ia) und (IIa) in den Anwendungsreaktionen höhere Aktivitäten bzw. Umsätze. Zudem erhöht sich die Lebensdauer der immobilisierten Katalysatoren deutlich.
Als Schutzgasatmosphäre können Stickstoff oder Argon dienen.
Die Ausgangsverbindungen der allgemeinen Formeln (I) und (II) werden in einem 0.01 - 100-fachen Überschuss bezüglich der aktiven OH-Gruppen auf der Oxidoberfläche zugegeben, vorzugsweise in einem 0.05 - 50-fachen Überschuss ganz besonders bevorzugt in einem 0.1 - 10-fachen Überschuss.
Die Reaktion kann in einem Temperaturbereich von -2O0C bis + 150 0C, vorzugsweise von 00C bis +120 0C. Die Reaktionszeit beträgt 30 Minuten bis 10 Tage, vorzugsweise 1 Stunde bis 2 Tage und ganz bevorzugt 1 Stunde bis 1 Tag.
Die gebildeten Produkte (Ia) und (IIa) lassen sich in einfacher Weise durch Filtration abtrennen und können gegebenenfalls durch Waschen mit den oben genannten Lösungsmitteln aufgereinigt und anschließend getrocknet werden.
Die erfindungsgemäße Immobilisierung kann sowohl im Batch-Verfahren als auch im kontinuierlichen Verfahren durchgeführt werden. Im kontinuierlichen Verfahren werden die oben beschriebenen Lösungen der Verbindungen (I) und (II) durch ein monolithisches oder partikuläres, anorganishces Metalloxid gepumpt, wobei das entsprechende anorganische Metalloxid auf die entsprechende Reaktionstemperatur erwärmt wird. Die Lösungen von (I) und (II) können hierbei gegebenenfalls im Kreislauf gefahren werden und somit das monolithische bzw. partikuläre anorganische Metalloxid mehrmals durchströmen. Die Flussraten können beliebig gewählt werden. Anschließend wird der funktionalisierte Träger mit den oben genannten Lösungsmitteln gewaschen und kann in Anwendungsreaktionen eingesetzt werden.
Die Oxide können zur Durchführung des erfindungsgemäßen Verfahrens im Batch-Betrieb auch in feinteiliger Form mit Lösungen der Verbindungen der allgemeinen Formeln (I) und (II) vermischt und bei geeigneter Reaktionstemperatur unter Schutzgasatmosphäre umgesetzt werden. Zu diesem Zweck können die einzelnen Reaktionspartner in beliebiger Reihenfolge zugesetzt werden.
Die Durchführung der Umsetzungen sowohl im Batch-Betrieb als auch in einem kontinuierlichen Verfahren ist an sich unkritisch. Die Reaktionen können in einfacher Weise in Anlagen durchgeführt werden, in denen alle Teile und Vorrichtungen, die mit den Reaktionspartnern in Kontakt kommen, gegen die eingesetzten Chemikalien inert sind und keine Korrosions- oder
Auslaugungserscheinungen zeigen. Entscheidend ist, dass die verwendete Anlage temperierbar ist, eine sichere Zu- und Abführung der Reaktionspartner und Reaktionsprodukte bietet und falls erforderlich Möglichkeiten zur intensiven Durchmischung des Reaktionsgemischs aufweist. Weiterhin sollte die Anlage es ermöglichen, unter Inertgasatmosphäre zu arbeiten bzw. flüchtige
Substanzen sicher abzuleiten. Dementsprechend können die Reaktionen auch in einer Glasapparatur, ausgestattet mit Rührer, Zu- und gegebenenfalls Ablauf, mit Rückflusskühler oder Kondensationskühler mit Ablauf, durchgeführt werden, wenn diese Apparatur auch die Möglichkeit zur Überlagerung mit Inertgas bietet. Die Reaktionen können aber auch in einer technischen Anlage durchgeführt werden, die gegebenenfalls aus rostfreiem Stahl und anderen geeigneten inerten Materialien gefertigt ist und die erforderlichen Vorrichtungen zur Temperierung, Zu- und Abführung der Edukte und Produkte aufweist. Üblicherweise werden die Reaktionen im Batch-Betrieb durchgeführt, insbesondere wenn die Reaktionen langsam erfolgen. Wenn größere Mengen der gewünschten Produkte der allgemeinen Formeln (Ia) und (IIa) hergestellt werden sollen und wenn es sich bei den umzusetzenden Edukten um reaktive Verbindungen handelt, kann es sinnvoll sein, die Reaktionen in einer entsprechenden Anlage durchzuführen, die für den kontinuierlichen Betrieb ausgelegt ist. Erfindungsgemäße Verbindungen der allgemeinen Formeln (Ia) und (IIa) stellen immobilisierte Ruthenium-Verbindungen dar, in denen das Rutheniumatom in der Oxidationsstufe +2 vorliegt, an das zwei einwertige anionische Liganden gebunden sind, wobei mindestens einer der beiden anionischen Liganden kovalent mit einem anorganischen Oxid verbunden ist. Erfindungsgemäße
Verbindungen der allgemeinen Formel (Ia) enthalten zudem zwei neutrale 2- Elektronen-Donor-Liganden aus der Reihe der N-heterozyklischen Carbenliganden oder aus der Reihe der Phosphan-Liganden und einen neutralen Carben-Liganden, wogegen die erfindungsgemäßen Verbindungen der allgemeinen Formel (IIa) einen neutralen 2-Elektronen-Donor-Liganden aus der Reihe der N-heterozyklischen Carbenliganden oder aus der Reihe der Phosphan-Liganden und einen neutralen Carben-Liganden enthalten, der durch das vorhandene Sauerstoffatom chelatartig an das Ruthenium-Zentrum gebunden ist. Dabei liegt eine koordinative Bindung zwischen dem Sauerstoff- und dem Ruthenium-Atom vor.
Die Anbindung der Ruthenium(ll)-Komplexe an die Trägeroberfläche in den Verbindungen (Ia) und (IIa) an die Trägeroberfläche erfolgt über einen Spacer X', über welchen die SiR"n(OR")3-n Gruppe der Verbindungen der allgemeinen Formeln (I) und (II) mit dem Ruthenium-Atom verbunden ist.
Als Träger können anorganische Oxide, die aktive OH-Gruppen auf der Oberfläche enthalten und damit zur Reaktion mit den Ausgangsverbindungen (I) und (II) befähigt sind, verwendet werden. Als anorganische Oxide können natürliche oder chemisch hergestellte partikuläre oder monolithische Oxide des Siliziums, Bors, Aluminium, Titan und des Zirkoniums oder auch Oxidmischungen verwendet werden. Bevorzugt werden partikuläre oder monolithische Oxide des Siliziums oder Aluminiums oder deren Mischoxide und Zeolithe verwendet. Besonders bevorzugt werden partikuläre oder monolithische Oxide des Siliziums verwendet. Bei den siliziumhaltigen
Materialien kann es sich um ein Kieselgel oder natürlich vorkommendes Silikat handeln, welche sich von ketten-, band- und schichtförmigen Kieselsäuren ableiten.
Die Vorteile der Verbindungen der allgemeinen Formeln (Ia) und (IIa) im Vergleich zum Stand der Technik sind: Die neuen immobilisierten Ruthenium-Katalysatoren zeigen in den Anwendungsreaktionen höhere Aktiviäten / Umsätze als ihre homogenen Analoga. Sie sind thermisch stabiler, langlebiger und zeigen geringeres Katalysator-Leaching. Die hergestellten Verbindungen sind auf anorganischen Oxiden genau über eine der beiden Liganden-Gruppen immobilisiert, die sich während der katalytischen Anwendungsreaktionen nicht vom Ruthenium-
Zentrum lösen. Damit können in den Anwendungsreaktionen Produkte mit höherer Reinheit erhalten werden.
Untersuchungen haben gezeigt, dass sich sowohl die beiden anionischen Liganden als auch der N-heterozyklische Carben-Ligand während der katalytischen Anwendungsreaktionen nicht vom Ruthenium-Atom lösen. Damit sind auf anorganischen Oxiden immobilisierte Ruthenium-Katalysatoren zugänglich, die während der gesamten Anwendungsreaktion am Träger gebunden bleiben. Hierdurch wird das unerwünschte Katalysator-Leaching unterdrückt. Damit sind die immobilisierten Ruthenium-Verbindungen (Ia) und (Ha) in Anwendungsreaktionen im Vergleich zu den nicht-immobilisierten homogenen Ruthenium-Verbindungen von den Reaktionslösungen und Reaktionsprodukten sehr einfach durch Filtration abtrennbar und können erneut in katalytischen Reaktionen als Katalysatoren eingesetzt werden. Dies führt zur Einsparung von Prozesskosten in allen Anwendungsreaktionen, insbesondere im „Down Stream Prozess" und bei der Abtrennung und Aufreinigung der
Endprodukte. Zudem können die immobilisierten Katalysatoren der allgemeinen Formeln (Ia) und (IIa) mehrmals in Anwendungsreaktionen eingesetzt werden und lassen sich somit recyceln. Dies ist von Vorteil, da die Carben-haltigen Ruthenium-Katalysatoren sehr teuer sind. Die neuen, auf anorganischen Oxiden immobilisierten Katalysatoren (Ia) und (IIa) sind thermisch und chemisch stabiler als die bisher bekannten homogenen Ruthenium- Katalysatoren und als die auf organischen Trägermaterialien immobilisierten Ruthenium-Katalystoren. Außerdem führt die Immobilisierung der Katalysatoren (I) und (II) auf anorganischen Oxiden im Vergleich zu der Immobilisierung auf organischen Trägermaterialien zu einer höheren mechanischen Stabilität. Das Trägermaterial unterliegt dadurch nicht den unerwünschten Quellprozessen, die zu Diffusionsproblemen während der Anwendung führen. Zudem gibt es anorganische Träger, die entweder aus Partikeln oder aus einem Monolithen bestehen. Folglich lassen sich alle Anwendungsreaktionen in batch-Verfahren als auch in kontinuierlichen Verfahren durchführen. Die Verbindungen der allgemeinen Formeln (Ia) und (IIa) sind sehr einfach und in quantitativen Ausbeuten zugänglich.
Die Verbindungen der allgemeinen Formeln (Ia) und (IIa) lassen sich ebenfalls als immobilisierte Ligand- bzw. Katalysator-Vorstufen und als immobilisierte
Katalysatoren in organischen, metallorganischen und Übergangsmetall- katalysierten Synthesen verwenden. Sie können als Katalysatoren in C-C- Kupplungsreaktionen, Hydrierungen, Isomerisierungen, Silylierungen und Hydroformylierungen verwendet werden. Besonders geeignet sind die neuen Verbindungen als immobilisierte Katalysatoren für C,C-Kupplungsreaktionen wie der Olefinmetathese und für Hydrierungen. Besonders vorteilhaft sind die neuen Verbindungen in Olefinmetathesereaktionen wie der Kreuzmetathese (CM), Ringschlussmetathese (RCM), Ringöffnungsmetathese (ROM), Ringöffnungsmetathese-Polymerisation (ROMP), azyklische Dienmetathese- Polymerisation (ADMET) und En-In-Metathese oder in einer Kombination verschiedenartiger Metathesereaktionen.
4. Beispiele
Zum besseren Verständnis und zur Verdeutlichung der Erfindung werden im folgenden Beispiele gegeben, die im Rahmen des Schutzbereichs der vorliegenden Erfindung liegen. Diese sind jedoch aufgrund der allgemeinen Gültigkeit des beschriebenen Erfindungsprinzips nicht geeignet, den Schutzbereich der vorliegenden Anmeldung nur auf diese Beispiele zu reduzieren.
(A) Herstellung der Katalysatoren
(MeOhSi-CiHe-N(Me)-CO-CF9-CF2-CF7-COOH (I)
Figure imgf000039_0001
In der Glovebox werden 192 μl (1.40 mmol) Hexafluoroglutarsäureanhydrid in
7.5 ml THF (getrocknet) gelöst und tropfenweise unter Rühren zu 7,5 ml einer THF- Lösung von 277 μl (1.40 mmol) N-Methylaminopropyl-trimethoxysilan gegeben. Es wird noch 30 min gerührt und anschließend das Lösungsmittel im Vakuum abgezogen. In quantitativer Ausbeute wird 1 als farbloses Öl erhalten.
1H-NMR (250MHz,THF-d8): δ 13.74 (s, 1 H, COOH), 3.53 (s, 9H, E-OCH3), 3.52 (s, 9H, Z-OCH3), 3.43 (t, 3J = 7.7Hz, 2 H, E-CH2N), 3.37 (t, 3J = 7.6Hz1 2H, Z- CH2N), 3.14 (t, 5J(H1F) = 2.4Hz, 3H, Z-NCH3), 2.95 (s, 3H, E-NCH3), 1.80 (pseudo-quint, 3J = 8.0Hz, 2H, Z-SiCH2CH2), 1.66 (pseudo-quint, 3J = 8.0Hz, 2H, ESiCH2CH2), 0.56 (t, 3J = 8.4Hz, 2H, E-SiCH2), 0.55 (t, 3J = 8.3Hz, 2H, Z- SiCH2) ppm.
13C{19F}-NMR (75MHz,THF-d8): δ 160.9 (COOH), 158.7 (CON), 112.2 (CF2), 112.0 (CF2CON), 109.7 (CF2COOH), 52.9 (Z-CH2N), 52.4 (E-CH2N), 50.5
(OCH3), 35.0 (Z-NCH3), 34.8 (E-NCH3), 22.7 (Z-SiCH2CH2), 20.6 (E-SiCH2CH2), 6.9 (Z-SiCH2), 6.7 (E-SiCH2) ppm.
19F-NMR (235MHz,THF-d8): δ -109.9 (t, 4J(F1F) = 10.0Hz, 2F1 E-CF2COOH), -110.5 (t, 4J(F1F) = 10.0Hz1 2F1 Z-CF2COOH)1 -116.2 (t, 4J(F1F) = 10.1 Hz1 2F1 E- CF2CON)1 -116.4 (t, 4J(F1F) = 10.0Hz1 2F1 Z-CF2CON)1 -122.3 (s, 2F, Z-CF2), -122.5 (s, 2F1 E-CF2) ppm. (MeOhSi-CaHa-N(Me)-CO-CFrCFr-CFrCOOAa (2)
Figure imgf000040_0001
In der Glovebox werden 192 μi (1.40 mmol) Hexafluoroglutarsäureanhydrid in ^ Q 7.5 ml MTBE (getrocknet) gelöst und tropfenweise unter Rühren zu 7,5 ml einer MTBE- Lösung von 277 μl (1.40 mmol) N-Methylaminopropyl-trimethoxysilan gegeben. Die Reaktionslösung wird zu einer Suspension aus 324 mg (1 :40 mmol) Silberoxid in 15 ml MTBE gegeben und das Reaktionsgemisch 16 h bei RT, im Dunklen gerührt. Anschließend wird das überschüssige Ag2O abfiltriert -j 5 und das Filtrat im Vakuum bis zur Trockene eingeengt. Es wird 2 in 93% Ausbeute als farbloses Öl erhalten.
1H-NMR (250MHz,THF-d8): δ 3.52 (s, 9H, Z-OCH3), 3.51 (s, 9H, E-OCH3), 3.40 (t, J = 7.5Hz, 2H, E-CH2N), 3.38 (t, J = 7.6Hz, 2H, Z-CH2N), 3.12 (t, 5J(H1F) = 0 2.1 Hz1 3H, Z-NCH3), 2.96 (s, 3H, E-NCH3), 1.65 (dm, 2H, Si-CH2-CH2), 0.56 (dt, 3J = 8Hz, 2H, SiCH2) ppm.
13C-NMR (75MHz,THF-d8): δ 163.7 (t, 2J(C1F) = 26Hz, COOAg), 158.5 (m, 5 CONH), 112.0 (CF2COOAg und CF2CON(Me)), 111.8 (CF2), 52.9 (Z-CH2N(Me), 52.3 (E-CH2N(Me), 50.3 (Si-OCH3), 35.0 (Z-N-CH3), 34.9 (E-N-CH3), 22.6 (Z- Si-CH2-CH2), 20.3 (E-Si-CH2-CH2), 6.6 (Z-Si-CH2), 6.4 (E-Si-CH2) ppm.
19F-NMR (235MHz,THF-d8): δ -109.5 (t, 4J(F1F) = -10.4Hz, E-CF2COOAg)1 0
-109.9 (dt, 4J(F1F) = -10.2Hz1 -2.3Hz)1 Z-CF2COOAg)1 -112.8 (t, 4J(F1F) =
-10.7Hz1 E-CF2CON(Me)), -112.9 (t, 4J(F1F) = -10.3Hz, Z-CF2CON(Me)), -120.88 (S1 Z-CF2), -121.1 (s, E-CF2) ppm.
5 |R(KBr-Platten): 3416(br),3160(w),2948(m),2892(w),2845(m), 1783(s), 1651 (vs), 1559(w), 1490(w), 1401 (m), 1271 (m), 1242 (m), 1160 (vs), 1091 (s), 1044 (s), 950 (m), 809(m), 755(m), 704 (w), 657(w), 585(w), 567(w),463 (m).
IR, MTBE-Lösung(CsF2-Küvette):3490(w), 2935(w), 2902 (w), 2846 (m), 1787(W), 1685(s), 1659(s), 1407(m), 1371 (w), 1320(s), 1273 (w), 1244(w), 1166 (s), 1113 (m), 1069 (m), 1042 (w).
EA (521.987g/mol) (gef. (ber.)): C 27.3 (27.44); H 3.5 (3.45); N 2.6 (2.67).
Figure imgf000041_0001
(4)
Figure imgf000041_0002
Figure imgf000041_0003
abs
Figure imgf000041_0004
Figure imgf000041_0005
In der Glovebox werden zu einer Lösung von 100.2 mg (159.9 μmol) 3 in 35 ml CH2CI2(getrocknet) 15.0 ml einer 0.0224 M THF/CH2CI2-Lösung (ca. 1/1 ) von (MeO)3Si-C3H6-N(Me)-CO-CF2-CF2-CF2-COOAg (335.8 μmol) (2) gegeben. Die Reaktionslösung wird 60 min bei RT, im Dunklen gerührt. Eine Farbänderung von grün zu violett und die Bildung eines weißen Niederschlags ist zu beobachten. Die Reaktionslösung wird filtriert, der weiße Feststoff wird verworfen und das violette Filtrat an der Vakuumlinie bis zur Trockene eingeengt. Ab hier wird an der Luft gearbeitet.
Der violette Feststoff wird mit 5 ml n-Heptan gewaschen und im Vakuum 5 getrocknet. Die Ausbeute beträgt 93%.
1H-NMR (25OMHz1CD2CI2): δ 17.51 (s, 1 H1 CH=Ar), 7.38 (dt, J = 7.8Hz, 1.6Hz, 1 H, aromat. CH), 7.17 (s, 4H, aromat. Mesityl-CH), 7.08 (dd, J = 7.5Hz, 1.5Hz,
10 1 H1 aromat. CH), 6.96 (t, 3J = 7.4Hz1 1 H1 aromat. CH)1 6.66 (d, 3J = 8.3Hz1 1 H1 aromat. CH)1 4.55 (septett, 3J = 6.0Hz1 1 H1 Isopropyl-CH), 4.12 (s, 4H1 Imidazol-CH2), 3.54 (18H, Si-OCH2), 3.28 (m, 4H1 CH2N(CH3)), 2.91 (s, 6H1 N(CH3)), 2.45 (s, 6H1 Mesityl-p-CH3), 2.27 (s, 12H1 Mesityl-o-CH3), 1.63 (m, 4H1
15 Si-CH2-CH2), 0.97 (d, 3J = 6.1 Hz1 6H1 Isopropyl-CH3), 0.55 (t, 3J = 8.4Hz1 4H, SiCH2) ppm.
13C-NMR (75.5 MHz,CD2CI2): δ 316.0 (CH=Ar)1 210.3 (Imidazol-CN), 161.1 (COORu)1 158.5 (CON(Me)), 154.0 (aromat. C(6)), 143.9 (aromat. C(5)), 139.9 (Mesityl C)1 139.5 (Mesityl C-N)1 130.3 (aromat. C(2)), 130.0 (Mesityl CH)1 123.9 (aromat. C(4)), 122.7 (aromat. C(3)), 111.7 (aromat. C{1)), 111.7 (CF2CON(Me)), 111.7 (CF2COORu), 108.4 (CF2), 75.3 (Isopropyl-CH), 53.1 (CH2N(Me)) 52.4 (Imidazol-CH2), 50.8 (OCH3), 35.5 (NCH3), 22.3 (Si-CH2-CH2), 21.3 (Mesityl p- 25 CH3), 20.5 (Isopropyl-CH3), 18.2 (Mesityl 0-CH3), 6.6 (Si-CH2) ppm.
19F-NMR (235MHz1CD2CI2): δ -111.9 und -111.7 (2t, 4J = -11.2Hz und -10.7Hz1 4F1 CF2CON(Me)), -115.2 und -114.9 (2t, 4J = -11.1Hz und -11.6Hz1 4F1 30 CF2COORu)1 -122.0, -121.9 (2s, 4F, CF2) ppm.
IR (KBr): 3429 (br), 3075 (w), 2945 (m), 2922 (m), 2845 (w), 1705 (m), 1678 (m), 1610 (W)1 1595 (w), 1580 (w), 1548 (m), 1485 (m), 1455 (m), 1378 (m),
1352 (w), 1266 (s), 1162 (s), 1073 (vs), 942 (m), 879 (w), 842 (w), 823 (m), ob
796 (m), 748 (m), 648 (w), 578 (m), 469 (m). EA für C55H74F12N4O13RuSi2 (1384.364) (gef. (ber.)): 46.8 (47.7), 5.5 (5.39), 3.8 (4.04).
(EtOhSi-CiHe-NH-CO-CF1-CF1-CFr-COOAQ (5)
Figure imgf000043_0001
In der Glovebox werden 192 μl (1.40 mmol) Hexafluoroglutarsäureanhydrid in 7.5 ml MTBE (getrocknet) unter Rühren zu 331 μl (1.40 mmol) 3- (Triethoxysilyl)propylamin in 7.5 ml MTBE (getrocknet) getropft. Die Reaktionslösung wird zu einer Suspension aus 324 mg (1.40 mmol) Silberoxid in 15 ml MTBE (getrocknet) gegeben und das Reaktionsgemisch 16 h bei RT, im Dunklen gerührt. Anschließend wird das überschüssige Ag2O abfiltriert und das Filtrat an der Vakuumlinie bis zur Trockene eingeengt. Es wird 5 in 88% Ausbeute als weißer, kristalliner Feststoff erhalten.
1H-NMR (250MHz,THF-d8): δ 8.18 (t,1 H, 3J = 5.5Hz, NH), 3.77 (q, 3J = 7.0Hz,
6H, OCH2), 3.24 (q, 2H1 3J = 6.7Hz, CH2NH), 1.62 (quintett, 2H, 3J = 7.7Hz, CH2), 1.16 (t, 3J = 7.0Hz, 9H1 CH3), 0.57 (t, 3J = 8.3Hz1 2H, SiCH2) ppm.
13C-NMR (75MHz1 THF-d8): δ 163.8 (t, 2J(C1F) = 25.5Hz, COOAg), 158.9 (t, 2J(C1F) = 25.8Hz1 CONH), 112.1 (t, 1J(C1F) = 264Hz, 2J(C1F) = 32Hz, CF2COOAg), 111.7 (quintett, 1J(C1F) = 265Hz, 2J(C1F) = 32Hz, CF2), 110.5 (t, 1J(C1F) = 265Hz1 2J(C1F) = 32Hz1 CF2CONH)1 58.8 (Si-OCH2), 42.9 (CH2NH), 23.3 (Si-CH2-CH2), 18.5 (Si-OCH2-CH3), 8.2 (Si-CH2) ppm.
19F-NMR (235MHz,THF-d8): δ -115.3 (t, 4J(F1F) = -9.9Hz, CF2COOAg), -120.3 (t, 4J(F1F) = 9.9Hz, CF2CONH), -124.6 (s, CF2) ppm. IR (KBr): 3445 (br), 3083 (w), 2977 (m), 2930 (m), 2895 (m), 1706 (vs), 1687 (vs), 1549 (m), 1445 (w), 1393 (m), 1271 (m), 1249 (m), 1163 (vs), 1104 (s), 1079 (s), 958 (m), 944 (m), 811 (m), 790 (m), 761 (m), 488 (br).
IR, MTBE-Lösung (CsF2-Küvette): 3303 (br), 3084 (w), 2957 (w), 2929 (w), 2870 (w), 1780 (w), 1722 (s), 1658 (vs), 1541 (m), 1443 (w), 1407 (m), 1392 (m), 1371 (W), 1272 (w), 1247 (m), 1226 (w), 1169 (vs), 1224 (s), 1108 (s), 1077 (vs), 959 (m).
EA (550.018g/mol) (gef. (ber.)): C 30.5 (30.39); H 4.2 (4.01 ); N 2.7 (2.53).
{Rur(EtOhSi-CMrNH-CO-CFrCFrCFprCOOM=CH-o-iPiO-CeH4)(IMesHz)) (6)
Figure imgf000044_0001
In der Glovebox werden 100 mg (159.6 μmol) 3 in 10 ml CH2Cl2(getrocknet) zu der gerührten Lösung von 210.8 mg (335.2 μmol) (EtO)3Si-CH2-CH2-CH2-NH- CO-CF2-CF2-CF2-COOAg (5) in 40 ml CH2CI2 (getrocknet) gegeben. Die Reaktionslösung wird 60 min bei RT, im Dunklen gerührt. Es ist eine Farbänderung von grün zu violett und die Bildung eines weißen Niederschlags zu beobachten.
Die Reaktionslösung wird filtriert, der weiße Feststoff verworfen und das violette 5
Filtrat an der Vakuumlinie bis zur Trockne eingeengt. Es wird 6 in 60 %
Ausbeute als violetter Feststoff erhalten.
1H-NMR (25OMHz1CD2CI2): δ 17.56 (s, 1H, CH=Ar), 7.40 (dt, 1H, aromat. C(2)H), 10 7.17 (s, 4H1 aromat. Mesityl-CH), 7.09 (dd, 1 H, aromat. C(4)H), 6.98 (t, 1 H, aromat. C(3)H), 6.75 (t, 1 H, NH), 6.69 (d, 1 H, aromat. CWH), 4.56 (septet, 1 H, Isopropyl-CH), 4.12 (s, 4H, Imidazol-CH2), 3.80 (q, 12H, Si-OCH2), 3.22 (q, 4H, CH2NH), 2.46 (s, 6H, Mesityl-p-CH3), 2.26 (s, 12H, Mesityl-o-CH3), 1.58 (m, 4H, 15 Si-CH2-CH2), 1.21 (t, 18H, Si-OCH2-CH3), 0.96 (d, 6H, Isopropyl-CH3), 0.57 (t, 4H, SiCH2) ppm.
13C-NMR (75.5 MHz,THF-d6): δ 316.7 (CH=Ar), 209.8 (Imidazol-CN), 161.2 20 (COORu), 158.6 (CONH), 154.0 (aromat. C(6)), 143.8 (aromat. C(5)), 139.9
(mesityl C), 130.4 (aromat. C(2)), 130.0 (mesityl CH), 123.8 (aromat. C(4)), 122.7 (arorhat. C(3)), 111.7 (aromat. Cm), 111.1 (CF2CONH), 109.7 (CF2COORu), 108.1 (CF2), 75.3 (Isopropyl-CH), 58.8 (Si-OCH2), 51.9 (Imidazol-CH2), 42.5 (CH2NH), 22.6 (Si-CH2- CH2), 21.3 (Mesityl p-CH3), 20.4 (Isopropyl-CH3), 18.5
OK
(Si-OCH2-CH3), 18.1 (Mesityl o-CH3), 7.9 (Si-CH2) ppm.
19F-NMR(235MHz1CD2CI2):δ-116.7,-116.7 (2t,4F1 CF2COORu),-121.5, -121.4(2t,4F, CF2CONH),-126.0(d,4F, CF2)ppm. 30
IR(KBr):3314(br), 3083(w),2977(m),2927(m),2896(w), 1705(vs), 1595 (w), 1580(w), 1545(m), 1485(m), 1456(m), 1390(m), 1378 (m), 1355(w), 1269(s), 1163(vs), 1114(w), 1100 (w), 1077(s), 941 (m),915(w),842(w), 35 797 (m),750(m),649(m),578(m),491 (br). EA für C59H82F12N4O13RuSi2 (1440,523) (gef. (ber.)): 49.2 (49.19), 5.5 (5.74), 3.9 (3.89)
{RuCIΪ(MeO)ßi-CiHβ-N(Me)-CO-CFrCFrCF?-COOl(=CH-o-iPrO- CβHMMesHz)! (7)
Figure imgf000046_0001
Ih, RT, im Dunklen CH2CI2at,s
Figure imgf000046_0002
In der Glovebox werden zu einer Lösung von 101.7mg (162.3 μmol) 3 in 43 ml CH2CI2(getrocknet) 7,25 ml einer 0.0224 M THF-Lösung von (MeO)3Si-C3H6- N(Me)-CO-CF2-CF2-CF2-COOAg (2) (162.3 μmol) gegeben. Die Reaktionslösung wird 60 min bei RT, im Dunklen gerührt. Es ist eine Farbänderung von grün zu olivegrün und die Bildung eines weißen Niederschlags zu beobachten.
Die Reaktionslösung wird filtriert, der weiße Feststoff verworfen und das olivegrüne Filtrat an der Vakuumlinie bis zur Trockne eingeengt. Es wird 7 in 83% Ausbeute erhalten 1H-NMR (250 MHz1CD2Cl2): δ 17.11 , 17.09 (2s, 1 H, CH=Ar), 7.46 (dt, 1 H, aromat. CH), 7.16, 7.07 (2s, 4H, aromat. Mesityl-CH), 7.02 (dd, 1 H, aromat. CH), 6.93 (t, 1 H, aromat. CH), 6.75 (d, 1 H, aromat. CH), 4.68 (septett, 1 H, Isopropyl-CH), 4.14 (s, 4H, lmidazol-CH2), 3.54, 3.42 (2s, 9H, Si-OCH3), 3.28 (m, 2H, CH2N(CH3)), 2.90 (d, 3H, N(CH3)), 2.43 (s, 6H, Mesityl-p-CH3), 2.45, 2.27 (2s, 12H, Mesityl-o-CH3), 1.63 (m, 2H, Si-CH2-CH2), 1.02 (d, 6H, Isopropyl- CH3), 0.55 (t, 2H, SiCH2) ppm.
13C-NMR (75.5 MHz1CD2Ci2): δ 306.9 (CH=Ar), 210.9 (Imidazol-CN), 161.1
(COORu), 158.5 (CON(Me)), 153.4 (aromat. C(6)), 144.6 (aromat. C{5)), 139.6 (Mesityl C), 135.9 (Mesityl C-N), 130.2 (aromat. C{2)), 129.9 (d, Mesityi CH), 123.9 (aromat. C(4)), 122.7 (aromat. C(3)), 112.6 (aromat. C(1)), 111.6 (CF2CON(Me)), 111.6 (CF2COORu), 108.3 (CF2), 75.6 (Isopropyl-CH), 53.1 (CH2N(Me)) 51.9 (Imidazol-CH2), 50.8 (OCH3), 35.5 (NCH3), 22.3 (Si-CH2-CH2), 21.7 (Mesityl p-CH3), 20.6 (Isopropyl-CH3), 18.7 (Mesityl 0-CH3), 6.6 (Si-CH2) ppm.
19F-NMR (235 MHz1CD2CI2): δ -111.3, -111.4, -111.7, -112.0 (4t, 2F,
CF2COORu), -114.6, -114.9, -115.0, -115.3 (4t, 2F, CF2CONH), -121.9, -122.0, -122.0 -122.1 (4s, 2F, CF2), ppm.
Figure imgf000047_0001
{RuClf(EtO)äSi-C^Hβ-NH-CO-CF2-CFrCFrCOOK=CH-o-iPrO-CβH)(IMesH9n (23)
Figure imgf000048_0001
1h, RT, im Dunklen CIiCI23
Figure imgf000048_0002
In der Glovebox werden 100 mg (159.6 μmol) 3 in 10 ml CH2CI2 (getrocknet) gelöst und zu 100.4 mg (159.6 μmol) (EtO)3Si-C3H6-NH-CO-CF2-CF2-CF2- COOAg (5) in 40 ml CH2CI2 (getrocknet) gegeben. Die Reaktionslösung wird 60 min bei RT, im Dunklen gerührt. Es ist eine Farbänderung von grün zu olivegrün und die Bildung eines weißen Niederschlags zu beobachten. Die Reaktionslösung wird filtriert, der weiße Feststoff verworfen und das olivegrüne Filtrat an der Vakuumlinie bis zur Trockne eingeengt. Es wird 23 als olivegrüner Feststoff in 82% Ausbeute erhalten.
1H-NMR (250 MHz1CD2CI2): δ 17.14 (s, 1H, CH=Ar), 7.48 (dt, 1 H, aromat. C(2)H), 7.17, 7.07 (s, 4H1 aromat. Mesityl-CH), 7.02 (dd, 1 H, aromat. C(4)H), 6.94 (t, 1 H, aromat. C(3)H), 6.77 (t, 1 H1 NH), 6.76 (d, 1 H1 aromat. C(1)H), 4.69 (septett, 1 H, Isopropyl-CH), 4.14 (s, 4H, Imidazol-CH2), 3.80 (q, 6H, Si-OCH2), 3.20 (q, 2H, CH2NH), 2.46 (s, 6H, Mesityl-o-CH3), 2.43 (s, 6H, Mesityl-p-CH3), 2.25 (s, 6H, Mesityl-o-CHs), 1.57 (m, 2H, Si-CH2-CH2), 1.21 (t, 9H, Si-OCH2- CH3), 1.02 (d, 6H, Isopropyl-CH3), 0.57 (t, 4H, SiCH2)ppm.
13C-NMR (75.5 MHz1CD2CI2): δ 307.4 (CH=Ar), 210.7 (Imidazol-CN), 161.3
(COO), 158.7 (CONH), 153.4 (aromat. C16)), 144.6 (aromat. C(5)), 139.6 (mesityl C), 135.7 (Mesityl C-N), 130.3 (aromat. C(2)), 129.9 (mesityl CH), 123.0 (aromat. C(4)), 122.7 (aromat. C(3)), 112.7 (aromat. Cm), 111.3 (CF2CONH), 109.7 (CF2COORu)1 108.1 (CF2), 75.6 (Isopropyl-CH), 58.9 (SiOCH2), 51.9 (Imidazol-CH2), 42.5 (CH2NH), 22.7 (Si-CH2-CH2), 21.3 (Mesityl 0-CH3), 20.6 (Isopropyl-CH3), 19.2 (Mesityl p-CH3), 18.7 (Mesityl 0-CH3), 18.5 (Si-OCH2- CH3), 8.0 (Si-CH2) ppm.
19F-NMR(235MHz1CD2CI2):δ-114.8,-115.1 (dt,t,2F, CF2COORu),-119.4, -119.7(2t,2F, CF2CONH),-124.3,-124.5(2s,2F, CF2)ppm.
IR(KBr):3416(br),3072(w),2976(m),2925(m),2895(w), 1772(w), 1700 (vs), 1592(w), 1577 (w), 1540(m), 1482(m), 1455(m), 1399 (w), 1387(m),
1377(w), 1355(w), 1297(w), 1266(s), 1215(w), 1157(vs), 1113(w), 1100(w), 1078(s), 1038(w),940(m),851 (w),841 (m), 798 (m),749(m),648 (m), 579 (m),495(br).
EA für C45H60CIF6N3O7RuSi2 (1033.573) (gel (ber.)): C 51.6 (52.29), H 5.9
(5.85), N 4.0 (4.07).
{Ru[(EtO)rCäHβ-NH-CO-CF2rCFz-CFz-COO)(CFßCOOK=CH-o-iPrO- CaHn)(IMeSH2)] (8)
Figure imgf000050_0001
RT, 30min CF3COOAg, CH2O2
Figure imgf000050_0002
In der Glovebox werden 50 mg (79.8 μmol) 3 in 5 ml CH2Cb (getrocknet) gelöst und zu 50.2 mg (79.8 μmol) (EtO)3Si-C3H6-NH-CO-CF2-CF2-CF2-COOAg (5) in 20 ml CH2CI2 (getrocknet) gegeben. Die Reaktionslösung wird 30 min bei RT, im Dunklen gerührt. Es ist eine Farbänderung von grün zu olivegrün und die Bildung eines weißen Niederschlags zu beobachten. Anschließend werden 18.0 mg (79.8 μmol) CF3COOAg hinzugegeben und weitere 30min bei RT gerührt.
Die Reaktionslösung wird filtriert, der weiße Feststoff verworfen und das nun violette Filtrat an der Vakuumlinie bis zur Trockne eingeengt. Nach Abziehen des LM wird 8 in 81 % Ausbeute als violetter Feststoff erhalten. 1H-NMR (250 MHz, CD2CI2): δ 17.53 (s, 1 H, CH=Ar), 7.42 (tt, 1 H, aromat. CH), 7.18 (s, 4H, aromat. Mesityl-CH), 7.10 (dd, J = 7.5Hz, 1.6Hz1 1 H, aromat. CH), 6.99 (t, 1 H, aromat. CH), 6.69 (dd, 3J = 8.3Hz, 1 H, aromat. CH), 7.48 (t, 1 H, NH), 4.64 (septett, 3J = 6.1 Hz, 1 H, Isopropyl-CH), 4.13 (s, 4H, Imidazol-CH2), 3.82 (q, 3J = 7.0Hz, 6H, Si-OCH2), 3.21 (m, 2H, CH2NH), 2.47 (s, 6H, Mesityl-p- CH3), 2.27 (s, 12H, Mesityl-o-CH3), 1.57 (m, 2H, Si-CH2-CH2), 1.22 (t, 3J = 7.0Hz, 9H, Si-OCH2-CH3), 0.95 (d, 3J = 6.1 Hz, 6H, Isopropyl-CH3), 0.58 (t, 3J = 8.1 Hz, 2H1 SiCH2) ppm.
19 F-NMR (235 MHz, CD2CI2): -72.5 (s, 3F, CF3COO), -112.9 und -113.0 (2t, J = -8.9Hz und -8.4Hz, 2F, CF2CONH), -117.7 und -118.0 (2t, J = -8.6Hz und -8.4Hz, 2F, CF2COOAg), -122.7und -122.8 (2s, 2F, CF2).
muCir(EtOhSi-C^Hβ-NH-CO-CFp-CFrCFrCOOl(=CH-o-iPrO-CβH4)(PCv^} (10)
Figure imgf000051_0001
RT, 60min CH2CI2
Figure imgf000051_0002
10 In der Glovebox wird eine Lösung von 100.0 mg (166.5 μmol) 9 in 10 ml CH2Cl2(getrocknet) zu der gerührten Lösung von 104.7 mg (166.5 μmol) (EtO)3Si-C3H6-CH2-NH-CO-CF2-CF2-CF2-COOAg (5) in 40 ml
CH2Ö2(getrocknet) gegeben. Die Reaktionslösung verfärbt sich sofort von braun nach violett. Es wird bei RT im Dunklen gerührt. Nach 1 h ist die Lösung orange und ein weißer, feiner Niederschlag hat sich gebildet. Der Niederschlag wird abgetrennt und das Filtrat an der Vakuumlinie bis zur Trockne eingeengt. Es wird 10 in 86 % Ausbeute als orangebrauner Feststoff erhalten.
1H-NMR (250 MHz1CD2CI2): δ 18.08 (d, J(P1H) = 5.2Hz, 1 H, CH=Ar), 7.78 (dd, J = 7.6Hz, 1.5 Hz, 1 H, aromat. C(4)H), 7.67 (t, 3J = 7.8Hz, 1 H, aromat. Cj2)H), 7.15 (t, 3J = 7.5Hz, 1 H, aromat. C(3)H), 7.08 (t, 3J = 8.4Hz, 1 H, aromat. C(i)H), 6.80 (t, J(F1H) = 5.3Hz, 1 H, NH), 5.13 (dseptett, J = 6.2Hz, 1.4Hz1 1H, Isopropyl-CH), 3.80 (q, 3J = 7.0Hz, 6H, Si-OCH2), 3.25 (m, 4H, CH2NH), 2.40-1.27 (32H, PCy3), 1.63 (m, 2H, SiCH2-CH2), 1.67 (d, 3J = 6.2Hz, 3H, Isopropyl-CH3), 1.62 (d, 3J = 6.2Hz, 3H, Isopropyl-CH3), 1.20 (t, 3J = 7.0Hz, 9H, Si-OCH2-CH3), 0.59 (t, 3J = 8.2Hz, 2H, SiCH2) ppm.
31P-NMR (250 MHz1CD2CI2): δ 58.09 ppm.
19F-NMR (235MHz1CD2CI2): δ -115.4, -115.5 (2t, 2F, CF2COORu), -120.0 (m, F, CF2CONH), -123.8, -124.2 (2s, 2F, CF2) ppm.
{Ruf(EtOhSi-C2Hβ-NH-CO-CFz-CFz-CF2-COOb(=CH-o-iPrO-CβH4)(PCvφ (11)
Figure imgf000053_0001
RT, 60min CH2CI2
Figure imgf000053_0002
In der Glovebox wird eine Lösung von 100 mg (166.5 μmol) 9 in 10 ml CH2CI2 (getrocknet) zu der gerührten Lösung von 214.7 mg (341.3 μmol) (EtO)3Si- C3H6-NH-CO-CF2-CF2-CF2-COOAg (5) in 40 ml CH2CI2 (getrocknet) gegeben. Die Reaktionslösung verfärbt sich sofort von braun nach violett. Es wird 1 h bei RT im Dunklen gerührt. Nach 1 h ist die Lösung rot und ein weißer, feiner Niederschlag hat sich gebildet. Der Niederschlag wird abgetrennt und das Filtrat an der Vakuumlinie bis zur Trockne eingeengt. Es wird 11 in 66 % Ausbeute als weinroter Feststoff erhalten.
1H-NMR (250 MHz1CD2Cl2): δ 18.55 (d, J(P,H) = 5.9Hz, 1H, CH=Ar), 7.85 (dd, J = 7.5Hz, 1.5Hz, 1 H, aromat. C(4)H), 7.68 (dt, J = 7.2Hz, 1.3Hz, 1 H, aromat. C(2)H), 7.25 (t, 3J = 7.4Hz, 1 H, aromat. C(3)H), 7.06 (d, 3J = 8.4Hz1 1 H, aromat. C(1)H), 6.81 (t, J(F1H) = 4.9Hz1 2H, NH), 4.96 (septett, 3J = 6.2Hz, 1 H, Isopropyl- CH), 3.80 (q, 3J = 7.0Hz, 12H, Si-OCH2), 3.26 (q, 3J = 6.6Hz, 4H, CH2NH), 2.10- 1.26 (32H, PCy3), 1.63 (m, 4H, SiCH2-CH2), 1.46 (d, 3J = 6.2Hz, 6H, Isopropyl- CH3), 1.20 (t, 3J = 7.0Hz, 18H, Si-OCH2-CH3), 0.59 (t, 3J = 8.2Hz, 4H, SiCH2) ppm.
31P-NMR (250 MHz1CD2CI2): δ 57.59 ppm.
13C-NMR (75.5 MHz1CD2CI2): δ 308.4 (CH=Ar), 163.9 (t, 2J(C1F) = 26.6Hz, COO), 158.6 (t, 2J(C1F) = 25.7Hz, CONH), 155.2 (aromat. C(6)), 144.6 (aromat. Q5)), 131.5 (aromat. C(2)), 124.3 (aromat. Q4)), 123.5 (aromat. Q3)), 113.5 (aromat. C0)), 111.3 (CF2CONH), 109.8 (CF2COORu), 108.0 (CF2), 77.0
(Isopropyl-CH), 58.9 (Si-OCH2), 42.5 (CH2NH), 34.7 (d, PCy3 C(1)H), 29.6 (PCy3 CJ2)H2), 28.0 (d, PCy3 Cf3)H2), 26.7 (PCy3 Cj4)H2), 22.7 (Si-CH2-CH2), 21.3 (Isopropyl-CH3), 18.5 (SiOCH2-CH3), 8.0 (Si-CH2) ppm.
IR (KBr): 3344 (br), 3077 (w), 2976 (m), 2934 (m), 2856 (w), 1777 (w), 1707 (VS), 1634 (m), 1592 (w), 1579 (s), 1546 (m), 1478 (m), 1454 (m), 1392 (m), 1378 (m), 1302 (m), 1270 (s), 1249 (m), 1163 (vs), 1115 (w), 1100 (w), 1079 (s), 942 (m), 929 (w), 890 (w), 844 (w), 801 (m), 748 (m), 730 (w), 653 (m), 573 (m), 518 (m), 479 (m).
EA für C56H89F12N2O13PRuSi2 (1414,449) (gef. (ber.)): 46.7 (47.55), 5.9 (6.34), 2.1 (1.98).
{RuCirfMeO).ßi-C^Hβ-N(Me)-CO-CFz-CF2-CF?-COOK=CH-o-iPrO-CβH4)(PCv^} (12)
Figure imgf000055_0001
12
In der Glovebox werden zu einer Lösung von 11.0 mg (18.3 μmol) 9 in 2 ml CH2CI2 (getrocknet) 817 μl einer 0.0224 M THF/CH2CI2-Lösung (ca. 1/1) von (MeO)3Si-C3H6-N(Me)-CO-CF2-CF2-CF2-COOAg (2) (18.3 μmol) gegeben. Die Reaktionslösung verfärbt sich sofort von braun nach violett. Es wird 1 h bei Raumtemperatur im Dunklen gerührt. Nach 1 h war die Lösung orange und ein gelbbrauner, feiner Niederschlag hat sich gebildet. Der Niederschlag wird abgetrennt und das Filtrat an der Vakuumlinie bis zur Trockne eingeengt. Es wird 12 in 51 % Ausbeute als oranger Feststoff erhalten.
1H-NMR (250 MHz1CD2CI2): δ 18.06 (d, 1 H, CH=Ar), 7.77 (dd, 1 H, aromat. C(4)H), 7.67 (t, 1 H, aromat. C{2)H), 7.18 (t, 1 H, aromat. C(3)H), 7.10 (d, 1 H, aromat. C(1)H), 5.14 (septett, 1 H, Isopropyl-CH), 3.53 (q, 9H, Si-OCH3), 3.34 (t, 2H, CH2N(Me)), 3.02 (t, 3H, E-NCH3), 2.93 (s, 3H, Z-NCH3), 2.25-1.27 (32H, PCy3), 1.67, 1.62 (2d, 6H, Isopropyl-CH3), 1.63 (m, 2H, SiCH2-CH2), 0.56 (t, 2H, SiCH2) ppm.
31 P-NMR (250 MHz, CD2CI2): δ 57.9 ppm.
19F-NMR (235 MHz5CD2CI2): δ -111.2 (t, 2F, Z -CF2COORu), -111.6 (t, 2F, E- CF2COORu), -115.1 (q, 2F, Z-CF2CON(Me)), -115.3, (t, 2F, E-CF2CON(Me)), 121.6 (ds, 2F, E-CF2), -121.7 (s, Z-2F,CF2) ppm.
{Rur(MeO)iSi-CiHβ-N(Me)-CO-CFrCF2-CF?-COOh(=CH-o-iPrO-CβH4)(PCv3n (13)
Figure imgf000056_0001
RT, 60min CH2CI2
Figure imgf000056_0002
13
In der Glovebox werden zu einer Lösung von 100.8 mg (167.8 μmol) 9 in 35 ml CH2CI2 (getrocknet) 15.7 ml einer 0.0224 M THF-Lösung von (MeO)3Si-C3H6-. N(Me)-CO-CF2-CF2-CF2-COOAg (2) (352.4 μmol) gegeben. Die Reaktionslösung verfärbt sich sofort von braun nach violett. Es wird 1 h bei RT, im Dunklen gerührt. Nach 1 h ist die Lösung rot und ein gelber feiner Niederschlag hat sich gebildet. Der Niederschlag wird abgetrennt und das
Filtrat an der Vakuumlinie bis zur Trockne eingeengt. Der Katalysator 13 wird 5 als weinroter Feststoff in 67 % Ausbeute erhalten.
1H-NMR (250 MHz1CD2CI2): δ 18.52 (d, J(P1H) = 5.9Hz1 1 H, CH=Ar), 7.84 (dd, J = 7.5Hz, 1.5Hz, 1 H, aromat. C(4)H), 7.67 (dt, J = 7.9Hz, 1.4Hz, 1 H, aromat.
1 ° C(2)H), 7.24 (t, 3J = 7.4Hz, 1 H, aromat. C(3)H), 7.07 (d, 3J = 8.5Hz, 1 H, aromat. Cd)H), 4.96 (septett, 3J = 6.1 Hz, 1 H, Isopropyl-CH), 3.53 (s, 18H, Si-OCH3), 3.34 (t, 3J = 7.6Hz, 4H, CH2N(Me)), 3.03 (t, 6H, E-NCH3), 2.93 (s, 6H, Z-NCH3) 2.11-1.28 (32H, PCy3), 1.65 (m, 4H, SiCH2-CH2), 1.46 (d, 3J = 6.2Hz, 6H,
15 Isopropyl-CH3), 0.56 (t, 3J = 8.4Hz, 4H, SiCH2) ppm.
31P-NMR (25OMHz1CD2CI2): δ 56.9 ppm.
20 13C-NMR (75.5 MHz1CD2CI2): δ 307.9 (CH=Ar), 164.1 (COORu), 158.4
(CON(Me)), 155.2 (aromat. C(6)), 144.6 (aromat. C(5)), 131.4 (aromat. C(2)), 124.3 (aromat. C(4)), 123.5 (aromat. C(3)), 113.6 (aromat. C^), 111.6 (CF2CON(Me)), 111.6 (CF2COORu), 108.3 (CF2), 77.2 (Isopropyl-CH), 53.1 (CH2N(Me)), 50.7 (Si-OCH3), 35.5 (NCH3), 34.7 (d, PCy3 C(1)H), 29.6 (PCy3
OK
C(2)H2), 28.0 (d, PCy3 C(3)H2), 26.7 (PCy3 C(4)H2), 22.3 (Si-CH2-CH2), 21.3 (Isopropyl-CH3), 6.5 (Si-CH2) ppm.
19F-NMR(235MHz1CD2CI2):δ-111.2(t,4F,Z-CF2COORu),-111.7(t,4F, E- 30 CF2COORu),-114.9(t,4F,Z-CF2CON(Me)),:115.1 (t,4F, E-CF2CON(Me)), -121.4(s,4F, E-CF2),-121.5(s,4F,Z-CF2)ppm.
IR(KBr):3435(br),3074(w),2928(s),2854(m), 1786(w), 1681 (vs), 1632 35 (m), 1591 (m), 1579(w), 1479 (m), 1454(m), 1414 (m), 1393 (w), 1380(w),
1354(m), 1316(w), 1296(w), 1262(s), 1164(s), 1093(vs), 1042(s), 929(m), 889 (w), 819 (m), 803 (m), 749 (m), 700 (w), 644 (m), 573 (m), 517 (m), 479 (m), 467 (m).
EA für C52H8IF12N2Oi3PRuSi2 (1358.39) (gef. (ber.)): 46.2 (45.98), 6.2 (6.01 ), 1.9 (2.06).
(B) Testung der Katalysatoren in der Olefin-Metathese
10
Allgemeines Verfahren zur Durchführung von RCM
In einem Reaktionskarussel werden die Katalysatoren unter Schutzgas zu den Substratlösungen gegeben. Die Reaktionsgemische werden unter den ^ jeweiligen Bedingungen (8O0C, Toluol; 45°C, Dichlormethan, 2-14 h) gerührt. Die Aufarbeitung der Olefinmetatheseprodukte erfolgt in Abhängigkeit der angewendeten Analysenmethode (NMR, HPLC, GC). a) Analyse über NMR: Das Lösungsmittel wird im Vakuum vollständig 0 abdestilliert, der Rückstand in CDCI3 aufgenommen und die Probe sofort vermessen.
b) Analyse über HPLC: Von dem Reaktionsgemisch wird eine Probe entnommen, mit Methanol verdünnt und sofort vermessen. Bedingungen: 5 Vorsäule: Chromolith Guard Cartridge (Merck), RP18e, 5-4,6 mm; Säule:
Chromolith Performance (Merck), RP18e, 100-4,6 mm; MeOH / H2O, 60 / 40; Flussrate 1 ml min"1; λ = 238 nm. Retentionszeiten: N,N-Dia!lyl-4- toluensulfonamid = 6.11 min; 1-(Toluol-4-sulfonyl)-2,5-dihydro-1 H-pyrrol = 2.71 min. 0
5 Beispiel 1) Riπgschlussmetathese von N,N-Diallyl-4-toluensulfonamid
Figure imgf000059_0001
Figure imgf000059_0002
a) Bestimmung über HPLC
b) Bestimmung der TurnOverNumber
Katalysator Kat [mol-%1 Umsatza) TON
10 0.01 50 5020
10 0.02 82 4105
11 0.02 41 2052
11 0.05 85 1700
23 0.01 50 5045
23 0.02 66 3292
6 0.01 25 2480
6 0.02 51 2540
12 0.01 53 5343
12 0.02 81 4048
13 0.01 50 5010
13 0.02 88 4399
7 0.01 50 5012
7 0.05 68 1368
4 0.02 88 4437
4 0.05 89 1795 a) Bestimmung über HPLC
Beispiel 2) Ringschlussmetathese von Diethyldiallylmalonat
E
Figure imgf000061_0001
Figure imgf000061_0002
a) Bestimmung über NMR
Beispiel 3) Metathesereaktionen mitfRuCIKEtOtoSi-CaHg-NH-CO-CaFfi- COO)(=CH-o-/Pr-CRH4)(lMesH?)U23)
Entry Substrate Conversion Time Loading
>99% 2 hours 0.5m o l%
35% 6 hours 1 m ol%
Figure imgf000062_0001
s
Figure imgf000062_0002
3 hours 0.5m ol%
2 hours 0.5m ol%
Figure imgf000062_0003
E = CO2Et, Reactions perfromed in refluxing DCM. Reaction yields determined by NMR (A) Immobilisierung der Ruthenium-Katalysatoren
Generelle Methode zur Immobilisierung auf Kieselgel-60: Das Kieselgel
(KG-60) wird nacheinander mit Methanol, Dichlormethan und Hexan gewaschen. Nachdem es 4 h bei 200 0C im Vakuum getrocknet worden ist, wird das KG-60 (200-400 mg) in Toluol (getrocknet) suspendiert und eine Lösung der homogenen Katalysatoren in Toluol zugegeben. Die resultierende Suspension wird 4 h bei RT gerührt. Anschließend wird tropfenweise Dimethoxydimethylsilan zugegeben und weitere 20 h gerührt. Das Produkt wird durch Filtration, waschen mit CH2CI2 und n-Hexan und trocknen im Vakuum isoliert.
[RuCI([KG]-C3H6-NH-CO-C3F6-COO)(=CH-o-/Pr-C6H4)(PCy3)] (14):
Ausgehend von 10 (39.9 mg, 39.6 μmol) in 6 ml Toluol, KG-60 (396.4 mg) in 6 ml Toluol und Dimethoxydimethylsilan (127.0 μl, 910.5 μmol) wird 14 als hellbrauner Feststoff erhalten. Der Ru-Gehalt beträgt 37.3 μmol g'1, was einer Beladung von 37.6 mg Katalysator g"1 entspricht.
[Ru([KG]-C3H6-NH-CO-C3F6-COO)2(=CH-o-/Pr-C6H4)(PCy3)I (15): Ausgehend von 11 (25.0 mg, 17.7 μmol) in 3 ml Toluol, KG-60 (176.9 mg) in 3 ml Toluol und Dimethoxydimethylsilan (56.8 μl, 407.0 μmol), wird 15 als hellbrauner Feststoff erhalten. Der Ru-Gehalt betrug 32.8 μmol g"\ was einer Beladung von 46.4 mg Katalysator g"1 entspricht.
[RuCI([KGI-C3H6-NH-CO-C3F6-COO)(=CH-o-/Pr-C6H4)(IMesH2)] (16): Ausgehend von 23 (44.8 mg, 30.9 μmol) in 6 ml Toluol, KG-60 (433.5 mg) in 6 ml Toluol und Dimethoxydimethylsilan (139.0 μl, 996.9 μmol), wird 16 als olivegrüner Feststoff erhalten. Der Ru-Gehalt beträgt 31.5 μmol g"1, was einer
Beladung von 32.6 mg Katalysator g"1 entspricht. [Ru([KG]-C3H6-NH-CO-C3F6-COO)2(=CH-o-/Pr-C6H4)(IMesH2)] (17):
Ausgehend von 6 (44.5 mg, 39.6 μmol) in 6 ml Toluol, KG-60 (308.9 mg) in 6 ml Toluol und Dimethoxydimethylsilan (99.0 μl, 710.5 μmol), wird 17 als
_. hellbrauner Feststoff erhalten. Der Ru-Gehalt beträgt 65.4 μmol g"1, was einer b
Beladung von 94.3 Katalysator g'1 entspricht. [RuCI([KG]-C3H6-N(Me)-CO-C3F6-COO)(=CH-o-/Pr-C6H4)(PCy3)] (18):
Ausgehend von 12 (38.8 mg, 39.6 μmol) in 6 ml Toluol, KG-60 (397.0 mg) in 6 ml Toluol und Dimethoxydimethylsilan (127.5 μl, 914.6 μmol), wird 18 als 10 , hellbrauner Feststoff erhalten. Der Ru-Gehalt beträgt 24.2 μmol g , was einer
Beladung von 23.7 mg Katalysator g"1 entspricht.
[Ru([KG]-C3H6-N(Me)-CO-C3F6-COO)2(=CH-o-ιPr-C6H4)(PCy3)] (19):
15 Ausgehend von 13 (67.6 mg, 49.8 μmol) in 9 ml Toluol, KG-60 (478.1 mg) in 9 ml Toluol und Dimethoxydimethylsilan (153.3 μl, 1.1 mmol), wird 19 als hellbrauner Feststoff erhalten. Der Ru-Gehalt beträgt 38.8 μmol g'1, was einer Beladung von 52.6 mg Katalysator g'1 entspricht.
20
[RuCI([KG]-C3H6-N(Me)-CO-C3F6-COO)(=CH-o-/Pr-C6H4)(IMesH2)] (20): Ausgehend von 7 (43.6 mg, 43.4 μmol) in 6 ml Toluol, KG-60 (433.8 mg) in 6 ml Toluol und Dimethoxydimethylsilane (139.1 μl, 998.0 μmol), wird 20 als
25 olivegrüner Feststoff erhalten. Der Ru-Gehalt beträgt 47.4 μmol g"1, was einer Beladung von 47.6 mg Katalysator g"1 entspricht.
[Ru([KG]-C3H6-N(Me)-CO-C3F6-COO)2(=CH-o-/Pr-C6H4)(IMesH2)] (21):
Ausgehend von 4 (52.9 mg, 38.2 μmol) in 6 ml Toluol, KG-60 (382.6 mg) in 6
OL) ml Toluol und Dimethoxydimethylsilan (124.7 μl, 894.5 μmol), wird 21 als hellbrauner Feststoff erhalten. Der Ru-Gehalt beträgt 58.9 μmol g"1, was einer Beladung von 81.6 mg Katalysator g"1 entspricht.
35 rRu(^KG^-C3Hg-NH-CO-CF2-CF2-CF2-COO)(CFaCOO)f=CH-o-iPrO-
CeH4J(IMeSH2)I (22): Ausgehend von 3 (4.66 mg, 4.2 μmol) in 1 ml CH2CI2 und KG-60 (58.3 mg) in 1 ml CH2CI2, wird 22 als violettbrauner Feststoff erhalten. Die Beladung entspricht 0.072 mmol (8) / g (KG).
Ru-Bestimmunp: Eine Lösung von Tetraethylammoniumchlorid in CHaCI2
(1 ml, 0.2 M) wird zu einer Suspension der heterogenen Katalysatoren (ca. 20 mg) in 1 ml CH2CI2 gegeben. Die Mischungen werden 6 h gerührt. Der so gebildete homogene Katalysator wird abfiltriert und aus dem Filtrat die Ru- Konzentration mit GF-AAS (SpectrAA 880Z - Zeeman, Varian) bestimmt.
(B) Testung der Ruthenium-Katalysatoren in der Olefin-Metathese
Allgemeines Verfahren zur Durchführung von RCM mit immobilisiertem Katalysator
Die Bestimmungen der TON für die Katalysatoren erfolgt in einer Carousel Reaction Station der Firma Radleys Discovery Technologies. Dafür wird das Substrat direkt in die Carousel Reaction Tubes eingewogen. Dazu erfolgt die Zugabe von Dichlormethan, so dass eine ca. 0.05 M Substratlösung vorliegt. Die Röhrchen werden in das Carousel gestellt, bei geöffnetem Hahn mit Argon gespült und 30 min am Rückfluß gekocht. Erst dann erfolgt die Zugabe der immobilisierten Katalysatoren. Die so erhaltenen Reaktionsgemische werden 14 h bei 45 0C gerührt.
Die Analyse der Umsetzungen erfolgte über HPLC: Bedingungen: Vorsäule: Chromolith Guard Cartridge (Merck), RP18e, 5-4.6mm , Säule: Chromolith Performance (Merck), RP18e, 100-4.6 mm, Laufmittel: Methanol / H2O, 60 / 40, isokratisch, Injektionsvolumen: 10ml, Flussrate: 1 ml min"1, λ = 238nm, Retentionszeiten: N,N-Diallyl-4- toluensulfonsäureamid = 5.78 min; 1-(Toluol-4-sulfonyl)-2,5-dihydro-1 H-pyrrol = 2.63 min. Rinqschlussmetathesβ von N,N-Diallyl-4-toluensulfonamid
a)
Figure imgf000066_0001
Figure imgf000066_0002
Bestimmung der TumOverNumber
Katalysator Kat [mol-%] UMSATZ [%] TON
20 0,005 35,5 7104 0,1 100 1000
21 0,005 46,7 9338 0,1 93,6 936
18 0,005 94,2 18848 0,1 98,0 980
19 0,005 14,1 2821 0,1 80,0 800
16 0,005 52,4 10477
0,1 99,2 992
17 0,005 33,4 6687 0,1 91 ,8 918
14 0,005 41 ,1 8220 0,1 97,6 976

Claims

P A T E N T A N S P R Ü C H E
1. Verfahren zur Herstellung von Ruthenium(ll)-Katalysatoren der allgemeinen Formeln (I) und (II), die eine SiR'n(OR')3-n tragende Gruppe an mindestens einem der beiden Anionen X' und X enthalten,
Figure imgf000068_0001
worin
X Z oder X'SiR"n(OR")3-n 15 Z HaI1 RC(O)O1 RO1 R2N1 RSO31 CN1 OCN1 SCN1 A1 Ar
X' RC(O)O", RO", RC(O)NA", RNA", RSO3 ", wobei R an das Si-Atom gebunden ist R A, Ar, A-Ar, A-Ar-A, Het, AHet, AHetA mit insgesamt nicht mehr als 30 C-Atomen mit
20
A geradkettiger, verzweigter, gesättigter Ci-C2o-Alkylrest, Cycloalkyl oder Cycloalkyl über eine oder zwei Alkylgruppe(n) gebunden mit insgesamt 4 - 30 -C-Atomen, wobei sowohl im Alkyl- als auch im Cycloalkylrest eine CH2- oder CH-Gruppe durch NH, NA, O, C(O)O, C(O)NH, C(O)NA, C(O), C=N, 0(O)COC(O)O, OC(O)NH,
25 OC(O)NA, NHC(O)NA und/oder N=C=N, sowie H-Atome durch
F, OA, und/oder NA2 ersetzt sein kann,
Ar ein oder mehrfach substituiertes oder unsubstituiertes Phenyl, Naphthyl, Anthryl, Phenanthryl mit insgesamt nicht mehr als 20 C-Atomen, wobei Substituenten A, HaI, OA, NA2, C(O)OA, C(O)A,
CN, C(O)NHA, NO2 sein können,
Het ein ein- oder zweikerniger gesättigter oder ungesättigter oder aromatischer Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch HaI und/oder
35 A, OA, C(O)OA, C(O)A, CN, C(O)NHA, NA2, NO2, =NH, =0 substituiert sein kann mit HaI F, Cl, Br oder I,
L unabhängig von der Stellung im Molekül ein neutraler 2-Elektronen- Donor aus der Reihe der N-heterozyklischen Carbene oder PAmAr3-m mit m 0, 1 , 2, oder 3, R', R", R'" unabhängig von der Stellung im Molekül H, A, Ar mit
1-12 C-Atomen,
R1 , R2, R3, R4 unabhängig von der Stellung im Molekül H, HaI, NO2, CN, OH, OA, OAr, NH2, NHA, NA2, C(O)OA, C(O)A, A, Ar mit 1 - 12 C-Atomen, und n 0, 1, 2 bedeuten, dadurch gekennzeichnet , dass Verbindungen der allgemeinen Formel
HaI2[Ru],
worin
Figure imgf000069_0001
bedeutet, mit Verbindungen der allgemeinen Formel (III),
(R'O)3.nR"nSi-X'-M (III)
worin
M ein- oder zweiwertiges Metallion, insbesondere ein ein- oder zweiwertiges Metallion aus der Gruppe Ag, Cu, Tl, Li, Na, K, Mg,
Zn, Cd und Hg und R"undX'dieobengegebenenBedeutungenhaben, und gegebenenfalls Verbindungen der allgemeinen Formel
X-M, worin X und M die oben gegebenen Bedeutungen haben, in einem wasserfreien, inerten, aprotischen organischen Lösungsmittel oder Lösungsmittelgemisch umgesetzt werden und die Verbindungen der allgemeinen Formeln (I) oder (II) abgetrennt werden.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass die hergestellten Verbindungen der allgemeinen Formel (I) oder (II) in einem organischen, wasserfreien, polaren, aprotischen oder protischen
Lösungsmittel oder Lösungsmittelgemisch mit einem als Träger dienenden anorganischen Metalloxid unter Abspaltung eines Alkohols ROH, gegebenenfalls in Gegenwart eines zusätzlichen Silans der allgemeinen Formel R-SiR"n(OR")3-n, umgesetzt wird unter Bildung der immobilisierten Ru(ll)-Katalysatoren der allgemeinen Formeln (Ia) und (IIa)
Träger
Figure imgf000070_0001
wobei X, X', L, R', R"\ R1 , R2, R3, R4 und n die in Anspruch 1 gegebenen Bedeutungen haben. 3. Verbindungen der allgemeinen Formeln (I) und (II),
Figure imgf000071_0001
n die eine SiR"n(OR")3.n tragende Gruppe an mindestens einem der beiden
Anionen aufweisen und worin X Z oder X'SiR"n(OR")3-n,
Z ' HaI, RC(O)O, RO, R2N, RSO3, CN, OCN, SCN, A, Ar, X' RC(O)O", RO-, RC(O)NA-, RNA", RSO3 ", wobei R an das Si-Atom 5 gebunden ist
R A, Ar, A-Ar, A-Ar-A, Het, AHet, AHetA mit insgesamt nicht mehr als 30 C-Atomen mit
A geradkettiger, verzweigter, gesättigter Ci-C2o-Alkylrest, Cycloalkyl oder Cycioalkyl über eine oder zwei Alkylgruppe(n) gebunden mit Q insgesamt 4 - 30 -C-Atomen, wobei sowohl im Alkyl- als auch im
Cycloalkylrest eine CH2- oder CH-Gruppe durch NH, NA, O, C(O)O, C(O)NH, C(O)NA, C(O), C=N, 0(O)COC(O)O, OC(O)NH, OC(O)NA, NHC(O)NA und/oder N=C=N, sowie H-Atome durch F, OA, und/oder NA2 c ersetzt sein kann,
Ar ein oder mehrfach substituiertes oder unsubstituiertes Phenyl, Naphthyl, Anthryl, Phenanthryl mit insgesamt nicht mehr als 20 C-Atomen, wobei Substituenten A, HaI, OA, NA2, C(O)OA, C(O)A, CN, C(O)NHA, NO2 sein können, Q Het ein ein- oder zweikerniger gesättigter oder ungesättigter oder aromatischer Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch HaI und/oder A, OA, C(O)OA, C(O)A, CN, C(O)NHA, NA2, NO2, =NH, =0 substituiert sein kann mit 5 HaI F, Cl, Br oder I1
L unabhängig von der Stellung im Molekül ein neutraler 2-Elektronen- Donor aus der Reihe der N-heterozyklischen Carbene oder PAmAr3-m mit m 0, 1 , 2, oder 3, R\ R", R'" unabhängig von der Stellung im Molekül H, A, Ar mit
1-12 C~Atomen, R1 , R2, R3, R4 unabhängig von der Stellung im Molekül H, HaI, NO2,
CN, OH, OA1 OAr, NH2, NHA, NA2, C(O)OA, C(O)A, A, Ar mit 1 - 12 C-Atomen, und n 0, 1 , 2 bedeuten, erhältlich nach einem Verfahren gemäß Anspruch 1.
4. Verbindungen gemäß Anspruch 3, der allgemeinen Formel (I) [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=CHPh
[P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=θχCH2)3CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=θχCH2)3CO2]2Ru=CHPh
[P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=CHPh
[P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO232Ru=CHPh
[P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CIRu=CHPh
[P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=CHPh P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]CIRu=CHPh
P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Mθ)C(=O)(C6H4)CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]CIRu=CHPh
[P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(MθO)3Si(CH2)3N(H)C(=O)(CF2)32](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=0)(CH2)3C02](CF3COO)Ru=CHPh
[P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(MθO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh
[P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(CeF4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2](CF3COO)Ru=CHPh [P(Cy)3]2[(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO23(CF3COO)Ru=CHPh
[P(Cy)3]2[(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Mθ)C(=O)(CF2)32]2Ru=CHPh [H2IMes][P(Cy)3][(MθO)3Si(CH2)3N(H)C(=O)(CF2)32]2Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=CHPh
[H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]2Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]2Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=CHPh
[H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)Cθ2]2Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=CHPh [H2IMes][P(Cy)3][(MθO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)Cθ2]2Ru=CHPh [H2lMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=CHPh
[H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=CHPh [H2lMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)32]CIRu=CHPh [H2IM6s][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=CHPh
[H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]CIRu=CHPh
[H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Mθ)C(=O)(C6F4)CO2]CIRu=CHPh [H2lMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]CIRu=CHPh [H2iMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Mθ)C(=O)(C6H4)CO2]CIRu=CHPh
[H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=CHPh [H2IMθs][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)Cθ23CIRu=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Mθ)C(=O)(CF2)32](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=CHPh
[H2IMθs][P(Cy)3][(MθO)3Si(CH2)3N(Mθ)C(=O)(CF2)3CO2](CF3COO)Ru=CHP h
[H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2](CF3COO)Ru=CHP h
[H2IMes][P(Cy)3][(M6θ)3Si(CH2)3N(H)C(=O)(CH2)32](CF3COO)Ru=CHPh [H2[Mes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2](CF3COO)Ru=CHP h [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [H2lMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh
[H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(MθO)3Si(CH2)3N(Me)C(=O)(C6F4)Cθ2](CF3COO)Ru=CHP h
[H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)Cθ2](CF3COO)Ru=CHPh [H2IMes][P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2](CF3COO)Ru=CHP h
[H2IMes][P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2](CF3COO)Ru=CHPh [H2lMes][P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)Cθ2](CF3COO)Ru=CHP h
Verbindungen gemäß Anspruch 3, der allgemeinen Formel (II)
[P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)32]2Ru=C(H)(C6H4θiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2)
[P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)32]2Ru=C(H)(C6H4θiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CH2)32]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2)
[P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=C(H)(C6H4OiPr-2)
[P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)Cθ2]2Ru=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3Cθ2]CIRu=C(H)(C6H4θiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2)
[P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CiRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2)
[P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=0)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=0)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)Cθ2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(Mθ)C(=O)(C6H4)Cθ2]CIRu=C(H)(C6H4OiPr-2)
[P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OiPr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr-
2) [P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4OiP r-2)
[P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr
-2)
[P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4Oi pr-2)
[P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(CH2)32](CF3COO)Ru=C(H)(C6H4OiPr-
2)
[P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2](CF3COO)Ru=C(H)(C6H4OlP r-2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr
-2)
[P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2](CF3COO)Ru=C(H)(C6H4Oi
Pr-2)
[P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=C(H)(C6H4OiPr- 2)
[P(Cy)3][(EtO)3Si(CH2)3N(Mθ)C(=O)(C6F4)Cθ2](CF3COO)Ru=C(H)(C6H4OiP r-2)
[P(Cy)3][(MeO)3Si(CH2)3N(H)C(=0)(C6F4)CO2](CF3COO)Ru=C(H)(C6H4OiPr
-2) [P(Cy)3][(M6O)3Si(CH2)3N(Me)C(=O)(C6F4)CO2](CF3COO)Ru=C(H)(C6H4Oi
Pr-2) [P(Cy)3][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)Cθ2](CF3COO)Ru=C(H)(C6H4OiPr-
2)
[P(Cy)3][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2](CF3COO)Ru=C(H)(C6H4OiP r_2) [P(Cy)3][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)Cθ2](CF3COO)Ru=C(H)(C6H4OiPr -2)
[P(Cy)3][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)Cθ2](CF3COO)Ru=C(H)(C6H4θi Pr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2)
[H2IMes][(EtO)3Si(CH2)3N(Mθ)C(=O)(CF2)3Cθ2]2Ru=C(H)(C6H4OiPr-2) [H2lMes][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2!Mes][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2)
[H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2) [H2lMes3[(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]2Ru=C(H)(C6H4OiPr-2)
[H2!Mes][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)Cθ2]2Ru=C(H)(C6H4θiPr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)Cθ2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]2Ru=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]2Ru=C(H)(C6H4OiPr-2)
[H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2)
[H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(CH2)3CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)Cθ2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2)
[H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OiPr-2) [H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(C6H4)Cθ23CIRu=C(H)(C6H4OiPr-2) [H2IMes][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OiPr-2)
[H2lMes][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2]CIRu=C(H)(C6H4OiPr-2) [H2lMes][(EtO)3Si(CH2)3N(H)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4O'Pr
-2)
[H2lMes][(EtO)3Si(CH2)3N(Me)C(=O)(CF2)3CO2](CF3COO)Ru=C(H)(C6H4Oi
Pr-2) [H2lMes][(MθO)3Si(CH2)3N(H)C(=O)(CF2)32](CF3COO)Ru=C(H)(C6H4OiP r-2)
[H2lMes][(MeO)3Si(CH2)3N(Mθ)C(=O)(CF2)32](CF3COO)Ru=C(H)(C6H4Oi
Pr-2)
[H2lMes][(EtO)3Si(CH2)3N(H)C(=O)(CH2)3CO2](CF3COO)Ru=C(H)(C6H4OiPr J2)
[H2IMes][(EtO)3Si(CH2)3N(Mθ)C(=O)(CH2)32](CF3COO)Ru=C(H)(C6H4Oi Pr-2)
[H2lMes3[(MeO)3Si(CH2)3N(H)C(=O)(CH2)3CO2](CF3COO)Ru=C(H)(C6H4OiP r-2) [H2lMes][(MeO)3Si(CH2)3N(Mθ)C(=O)(CH2)32](CF3COO)Ru=C(H)(C6H4Oi
Pr-2) [H2lMes][(EtO)3Si(CH2)3N(H)C(=O)(C6F4)Cθ2](CF3COO)Ru=C(H)(C6H4θiPr
-2)
[H2IMes][(EtO)3Si(CH2)3N(Me)C(=O)(C6F4)CO2](CF3COO)Ru=C(H)(C6H4Oi pr_2)
[H2lMes][(MeO)3Si(CH2)3N(H)C(=O)(C6F4)CO2](CF3COO)Ru=C(H)(C6H4OiP r-2)
[H2lMθs][(MeO)3Si(CH2)3N(Me)C(=O)(C6F4)Cθ2](CF3COO)Ru=C(H)(C6H4θi Pr-2) [H2IMes][(EtO)3Si(CH2)3N(H)C(=O)(C6H4)Cθ2](CF3COO)Ru=C(H)(C6H4OiPr
-2)
[H2IMes][(EtO)3Si(CH2)3N(M6)C(=O)(C6H4)CO2](CF3COO)Ru=C(H)(C6H4Oi Pr-2)
[H2lMes][(MeO)3Si(CH2)3N(H)C(=O)(C6H4)CO2](CF3COO)Ru=C(H)(C6H4OiP r_2)
[H2lMes][(MeO)3Si(CH2)3N(Me)C(=O)(C6H4)CO2](CF3COO)Ru=C(H)(C6H4Oi
Pr-2) herstellbar nach einem Verfahren gemäß der Ansprüche 1 - 2 6. Verfahren gemäß Anspruch 1 dadurch gekennzeichnet, dass in einem ersten Schritt Verbindungen der allgemeinen Formel
(R'O)3-nR!'nSi-R-COOH
mit einem Metalloxid der allgemeinen Formel
MnO
unter Wasserabspaltung zu einer Verbindung der allgemeinen Formel (lila)
(R"O)3-nR"nSi-R-COOM, (lila)
wobei
R, R", M, und n die in den vorhergehenden Ansprüchen gegebenen Bedeutungen haben, umgesetzt wird.
7. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass Verbindungen der allgemeinen Formeln (l!), (H'), (I") und (H")
Figure imgf000080_0001
Figure imgf000080_0002
0") (H") , worin
L, HaI, X', R", R", R'", R1 , R2, R3, R4 und n die in den vorhergehenden Ansprüchen gegebenen Bedeutungen haben, durch geeignete Wahl der stöchiometrischen Verhältnisse der Edukte gebildet werden.
8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass durch geeignete Wahl der stöchiometrischen Verhältnisse der Edukte immobilisierte Ruthenium(ll)-Katalysatoren der allgemeinen Formeln
Figure imgf000081_0001
Träger-X' I _ / R' Träger— X1 R1
Figure imgf000081_0002
(Ic) (iic)
worin HaI, X', L, R', R'", R1 , R2, R3, R4 und n die in Anspruch 1 gegebenen Bedeutungen haben, hergestellt werden.
9. Verbindungen der allgemeinen Formeln (l!), (II1), (I") und (H")
Figure imgf000082_0001
Figure imgf000082_0002
(I") (H") worin L, HaI, X1, R1, R", R'",R1 , R2, R3, R4 und n die in den vorhergehenden Ansprüchen gegebenen Bedeutungen haben.
10. Immobilisierte Ruthenium(ll)-Katalysatoren der allgemeinen Formeln
Figure imgf000083_0001
Figure imgf000083_0002
(Ic) (iic) worin HaI, X\ L, R', R'", R1 , R2, R3, R4 und n die in Anspruch 1 gegebenen Bedeutungen haben.
11. Verwendung der Ruthenium(ll)-Verbindungen der allgemeinen Formeln (I), (II), (I1), (I"), (IT) und (H") als Katalysatoren in der organischen und metallorganischen Synthese.
12. Verwendung der Ruthenium(ll)-Verbindungen der allgemeinen Formeln (I), (II), (I1), (I"), (II1) und (II") als Ausgangsstoffe zur Herstellung der immobilisierten Ruthenium(ll)-Katalysatoren der allgemeinen Formeln (Ia), (Ib), (Ic), (IIa), (IIb), und (Hc) für die organische und metallorganische Synthesen.
13. Verwendung der Verbindungen der allgemeinen Formeln (I) und (II), sowie der immobilisierten Ruthenium(ll)-Katalysatoren der allgemeinen Formeln (Ia) und (IIa), als Katalysatoren in C-C-Kupplungsreaktionen, Hydrierungen, Isomerisierungen, Silylierungen und Hydroformylierungen. 14. Verwendung der Verbindungen der allgemeinen Formeln (I) und (II), sowie der immobilisierten Ruthenium(ll)-Katalysatoren der allgemeinen Formeln (Ia) und (IIa), als Katalysatoren in Olefinmetathesereaktionen wie der Kreuzmetathese (CM), Ringschlussmetathese (RCM), Ringöffnungsmetathese-Polymerisation (ROMP), azyklische Dienmetathese-Polymerisation (ADMET) und En-In-Metathese.
PCT/EP2005/008526 2004-08-13 2005-08-05 Am zentralatom substituierte, immobilisierbare ruthenium(ii)-katalysatoren, verfahren zu deren herstellung und verwendung WO2006018161A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004039277A DE102004039277A1 (de) 2004-08-13 2004-08-13 Am Zentralatom substituierte, immoblisierbare Ruthenium(II)-Katalysatoren, Verfahren zu deren Herstellung und Verwendung
DE102004039277.3 2004-08-13

Publications (2)

Publication Number Publication Date
WO2006018161A2 true WO2006018161A2 (de) 2006-02-23
WO2006018161A3 WO2006018161A3 (de) 2006-07-13

Family

ID=35721351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/008526 WO2006018161A2 (de) 2004-08-13 2005-08-05 Am zentralatom substituierte, immobilisierbare ruthenium(ii)-katalysatoren, verfahren zu deren herstellung und verwendung

Country Status (2)

Country Link
DE (1) DE102004039277A1 (de)
WO (1) WO2006018161A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351907A (zh) * 2011-08-22 2012-02-15 浙江大学 一种合成金属氮杂环卡宾配合物的方法
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904243B1 (fr) 2006-07-31 2008-10-31 Inst Francais Du Petrole Catalyseur a base d'un support hybride organique - inorganique et son utilisation en hydroraffinage et hydroconversion
WO2008031889A2 (de) * 2006-09-15 2008-03-20 Basf Se Pnicogenhaltige pseudochelatliganden
EP2082804B1 (de) 2008-01-25 2012-10-03 Universite Claude Bernard Lyon 1 Organisch-anorganische Hybridmaterialien mit stabilisiertem Carben
US20120289617A1 (en) * 2011-05-10 2012-11-15 Saudi Arabian Oil Company Hybrid Catalyst for Olefin Metathesis
US9828347B2 (en) 2014-10-09 2017-11-28 The United States Of America As Represented By The Secretary Of The Air Force Backfunctionalized imidazolinium salts and NHC carbene-metal complexes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062253A1 (en) * 2002-01-22 2003-07-31 Universiteit Gent Metal complexes for use in metathesis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062253A1 (en) * 2002-01-22 2003-07-31 Universiteit Gent Metal complexes for use in metathesis

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ASTRUC D: "The metathesis reactions: from a historical perspective to recent developments" NEW JOURNAL OF CHEMISTRY, Bd. 29, Nr. 1, 21. Dezember 2004 (2004-12-21), XP002372866 *
BUCHMEISER M R ET AL: "Ring-opening metathesis polymerization for the preparation of surface-grafted polymer supports" MACROMOLECULES, ACS, WASHINGTON, DC, US, Bd. 33, 2000, Seiten 32-39, XP002324916 ISSN: 0024-9297 *
BUCHMEISER M R: "Recent advances in the synthesis of supported metathesis catalysts" NEW JOURNAL OF CHEMISTRY, Bd. 28, Nr. 5, 8. April 2004 (2004-04-08), Seiten 549-557, XP002372864 *
CLERCQ B D ET AL: "Immobilization of multifunctional Schiff base containing ruthenium complexes on MCM-41" APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, Bd. 247, Nr. 2, 25. Juli 2003 (2003-07-25), Seiten 345-364, XP004440496 ISSN: 0926-860X *
DROZDZAK ET AL: "Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses" COORDINATION CHEMISTRY REVIEWS, ELSEVIER SCIENCE, AMSTERDAM, NL, Bd. 249, Nr. 24, 6. Juni 2005 (2005-06-06), Seiten 3055-3074, XP005174429 ISSN: 0010-8545 *
FUERSTNER A: "OLEFIN METATHESIS AND BEYOND" ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, WILEY VCH VERLAG, WEINHEIM, DE, Bd. 39, 2000, Seiten 3012-3043, XP002957487 ISSN: 1433-7851 *
GESSLER S ET AL: "Synthesis and metathesis reactions of a phosphine-free dihydroimidazole carbene ruthenium complex" TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, Bd. 41, Nr. 51, 16. Dezember 2000 (2000-12-16), Seiten 9973-9976, XP004225200 ISSN: 0040-4039 in der Anmeldung erw{hnt *
HARRITY ET AL: "Chromenes through Metal-Catalyzed Reactions of Styrenyl Ethers. Mechanism and Utility in Synthesis" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, Bd. 120, 18. M{rz 1998 (1998-03-18), Seiten 2343-2351, XP002083201 ISSN: 0002-7863 *
KINGSBURY J S ET AL: "A RECYCLABLE RU-BASED METATHESIS CATALYST" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, Bd. 121, Nr. 4, 3. Februar 1999 (1999-02-03), Seiten 791-799, XP002906691 ISSN: 0002-7863 *
KRAUSE J O ET AL: "Monolith- and Silica-Supported Carboxylate-Based Grubbs-Herrmann-Type Metathesis Catalysts" ADVANCED SYNTHESIS & CATALYSIS, Bd. 345, Nr. 8, 7. August 2003 (2003-08-07), Seiten 996-1004, XP002372865 in der Anmeldung erw{hnt *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351907A (zh) * 2011-08-22 2012-02-15 浙江大学 一种合成金属氮杂环卡宾配合物的方法
CN102351907B (zh) * 2011-08-22 2014-07-09 浙江大学 一种合成金属氮杂环卡宾配合物的方法
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
DE102004039277A1 (de) 2006-02-23
WO2006018161A3 (de) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4264418B2 (ja) メタセシス反応用(予備)触媒としてのルテニウム錯体
WO2006018161A2 (de) Am zentralatom substituierte, immobilisierbare ruthenium(ii)-katalysatoren, verfahren zu deren herstellung und verwendung
AU2004231197A1 (en) Synthesis of ruthenium or osmium metathesis catalysts
WO2009085160A1 (en) Fluorophosphite containing catalysts for hydroformylation processes
WO2005016522A1 (de) Immobilisierbare ruthenium-katalysatoren mit n-heterozyklischen carben-liganden
KR20140117450A (ko) 바나듐 착체를 사용한 파르네살의 제조 방법
EP2363402A1 (de) Polyhedrale Oligomere Silsesquioxan (POSS)-verbundene Liganden und deren Verwendung
EP1754708B1 (de) Herstellung von 1-(Alkoxysilyl)ethyl-1,1,3,3-tetramethyldisiloxan
EP1414833B1 (de) Neue übergangsmetall-komplexe und deren einsatz in übergangsmetall-katalysierten reaktionen
WO2005016524A2 (de) Immobilisierte immidazole und ruthenium-katalysatoren
DE2834691C2 (de) Monomere, polymere und traegerfixierte rhodiumkomplexverbindungen, verfahren zu ihrer herstellung und verwendung als katalysatoren
CN110691786A (zh) 异氰酸基硅烷的制备
EP0946487B1 (de) An feste trägermaterialien fixierte umesterungskatalysatoren
EP2963046B1 (de) Mononuklearer rutheniumkomplex und organische synthesereaktionen unter dessen verwendung
US9192927B2 (en) Method for the preparation of palladium(I) tri-tert-butylphosphine bromide dimer and process for its use in isomerization reactions
CN111032639A (zh) 制备环状碳酸酯的方法
WO2007017041A1 (de) Immobilisierbare imidazoliumsalze mit alkoxysilylgruppen in 4-position
EP1371657A1 (de) Übergangsmetall-Komplexe und deren Einsatz in Übergangsmetallkatalysierten Reaktionen
US7312349B2 (en) Diene-bis-aquo-rhodium(I) complexes, process for preparing them and their use
US6878660B2 (en) Catalyst fixed on a carrier and used for the metathesis of olefins
CN1735590A (zh) 水溶性β-羟基腈的生产方法
US10399072B2 (en) Imines with tunable nucleophilicity and steric properties through metal coordination: applications as ligands and metalloorganocatalysts
EP1080096A1 (de) Neue furylphosphane und sie enthaltende organometall-komplexe
CN104437642B (zh) 一种用于烯烃复分解反应的催化剂及其制备方法
CN112940032B (zh) 一种苄基硫代膦酸酯的制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase