CN102351907B - 一种合成金属氮杂环卡宾配合物的方法 - Google Patents

一种合成金属氮杂环卡宾配合物的方法 Download PDF

Info

Publication number
CN102351907B
CN102351907B CN201110241732.6A CN201110241732A CN102351907B CN 102351907 B CN102351907 B CN 102351907B CN 201110241732 A CN201110241732 A CN 201110241732A CN 102351907 B CN102351907 B CN 102351907B
Authority
CN
China
Prior art keywords
complex
carbene complex
nickel
metal
aza ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110241732.6A
Other languages
English (en)
Other versions
CN102351907A (zh
Inventor
陈万芝
刘波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201110241732.6A priority Critical patent/CN102351907B/zh
Publication of CN102351907A publication Critical patent/CN102351907A/zh
Application granted granted Critical
Publication of CN102351907B publication Critical patent/CN102351907B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种合成金属氮杂环卡宾配合物的方法,在有机溶剂,如乙腈、丙酮或硝基甲烷中加入摩尔比为1∶0.5~2的镍氮杂环卡宾配合物和金属前驱体,35~70℃反应1~24小时,反应完毕结晶纯化得到金属氮杂环卡宾配合物。本发明反应条件温和,后处理简单,产率较高,使用廉价易得的镍氮杂环卡宾配合物替代传统的银氮杂环卡宾配合物作为卡宾转移试剂,是对金属卡宾配合物合成方法的进一步发展,为过渡金属氮杂环卡宾配合物催化剂的工业化应用奠定了基础。

Description

一种合成金属氮杂环卡宾配合物的方法
技术领域
本发明涉及一种合成金属氮杂环卡宾配合物的方法。
背景技术
1968年和Wanzlick各自独立发表了第一例氮杂环卡宾(NHCs)配合物,两人使用碱性金属化合物脱去咪唑盐质子得到咪唑-2-碳烯配合物(K.1,3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom einneuer übergangsmetall-carben-komplex.J.Organomet.Chem.1968,12,42-43;Wanzlick,H.W.;Schonherr,H.J.Direct Synthesis of a MercurySalt-Carbene Complex.Angew.Chem.1968,80,154;Angew.Chem.Iht.Ed.Engl.1968,7,141-142)。1991年Arduengo等人结晶得到了第一例游离的氮杂环卡宾(Arduengo III,A.J.;Harlow,R.L.;Kline,M.A stable crystallinecarbene.J.Am.Chem.Soc.1991,113,361-363),这激起了人们对游离卡宾及其金属配合物化学的广泛兴趣。1995年Herrmann等人首次将氮杂环卡宾金属配合物用于催化有机反应,由于该类化合物作为催化剂有着很多优越的性质(Herrmann,W.A.;Elison,M.;Fischer,J.;Kocher,C.;Artus,G.R.J.Metal Complexes of N-Heterocyclic Carbenes-A New Structural Principlefor Catalysts in Homogeneous Catalysis.Angew.Chem.Iht.Ed.Engl.1995,34,2371-2374),十几年来氮杂环卡宾过渡金属化合物作为催化剂在有机反应中的应用得到了快速的发展。
到目前为止,氮杂环卡宾配合物在催化各种各样的有机反应中已经取得了巨大的成功(Diez-Gonzalez,S.;Marion,N.;Nolan,S.P.N-HeterocyclicCarbenes in Late Transition Metal Catalysis.Chem.Rev.2009,109,3612.)。氮杂环卡宾过渡金属催化剂在药物合成、高分子材料合成中发挥着越来越重要的作用。
催化剂是否易于制备往往很大程度上决定了其大规模应用尤其是工业应用的可能性。制备金属氮杂环卡宾配合物有多种方法,最为常用的包括:(1)利用游离卡宾和金属盐类配位反应;(2)咪唑盐和碱性金属盐脱质子原位反应;(3)金属前驱体和银氮杂环卡宾配合物金属交换反应。第一种方法需要无水无氧的苛刻条件和特殊的碱试剂,而且很多游离卡宾不稳定,容易自身聚合。第二种方法要求先制备无水金属醋酸盐、金属醇盐或金属氨基化合物,但是这些化合物本身就很难制备与储存。第三种方法较为直接简单,不足的是需要使用昂贵的氧化银试剂制备银氮杂环卡宾配合物,而银氮杂环卡宾配合物往往对光比较敏感,有时还会诱导氧化降解卡宾配体。
发明内容
本发明提供一种简单易行的制备金属氮杂环卡宾配合物的方法。
一种合成金属氮杂环卡宾配合物的方法,包括:
在有机溶剂中加入镍氮杂环卡宾配合物和金属前驱体,反应完毕结晶纯化得到金属氮杂环卡宾配合物;
所述的金属前驱体的通式表示为M(L)nClm
其中,M为钯(II)、铂(II)、钴(II)、钴(I)、铑(I)、铱(I)、铁(II)、钌(II)、金(I)或镍(II);
L为三苯基膦、1,5-环辛二烯、二甲硫醚、乙腈、苄腈、苯甲腈、二甲基亚砜、烯丙基或对伞花烃;
n=0、1、2或3;
m=1或2。
用镍氮杂环卡宾配合物替代传统的银氮杂环卡宾配合物作卡宾转移试剂,成本低廉,产率较高。该方法对氮杂环卡宾配体官能团容忍性好,对金属前驱体适用性广。
所述的镍氮杂环卡宾配合物的结构式为:
其中,R1为烷基、芳基、2-嘧啶基、2-吡啶基、2-吡啶甲基、4-连三唑甲基、1-吡唑甲基、2-邻菲罗啉基、2-喹啉基、2-喹啉甲基、二苯膦基甲基、二苯膦基乙基或其各自的衍生物;
R2为氮杂环或膦官能团,包括2-嘧啶基、2-吡啶基、2-吡啶甲基、4-连三唑甲基、1-吡唑甲基、2-邻菲罗啉基、2-喹啉基、2-喹啉甲基、二苯膦基甲基、二苯膦基乙基或其各自的衍生物;
X-为PF6 -、Cl-、Br-、I-或BF4 -
氮杂环官能团化具有性质稳定、结构多变、催化反应时稳定催化中心的特点,优选的R2为氮杂环官能团,包括2-嘧啶基、2-吡啶基、2-吡啶甲基、4-连三唑甲基、2-邻菲罗啉基或其各自的衍生物。
镍氮杂环卡宾配合物和金属前躯体在乙腈中的溶解性很好,而反应生成的NiCl2在乙腈中几乎不溶,用乙腈作溶剂有利于镍氮杂环卡宾配合物和金属前躯体反应的进行。
镍氮杂环卡宾配合物和金属前驱体的反应属于复分解反应,根据产物中氮杂环卡宾配体个数的不同,要求镍氮杂环卡宾配合物的中心离子Ni2+与金属前驱体M(L)nClm中的金属离子的摩尔比为1∶1~2,又金属前驱体中一般包含1~2个金属离子,这就要求所述的镍氮杂环卡宾配合物和金属前驱体的摩尔比为1∶0.5~2。
所述的反应温度为35~70℃,反应时间为1~24小时。根据镍氮杂环卡宾配合物和金属前驱体种类的不同,可以选择不同的反应温度或反应时间,以便反应更完全,获得更高的产物收率。
所述的金属前驱体为钯前驱体、铂前驱体、钴前驱体、铑前驱体、铱前驱体、铁前驱体、钌前驱体、金前驱体或镍前驱体。
带有有机配体的金属前驱体在有机溶剂中的溶解性往往较一般的金属前驱体要好,这有利于金属前驱体和镍氮杂环卡宾配合物反应的进行。
优选的钯前驱体为(1,5-环辛二烯)二氯化钯(II)、双(三苯基膦)二氯化钯(II)、双(乙腈)二氯化钯(II)、双(苄腈)二氯化钯(II)或氯化烯丙基钯(II)二聚物。
优选的铂前驱体为(1,5-环辛二烯)二氯化铂(II)、双(苄腈)二氯化铂(II)、双(三苯基膦)二氯化铂(II)或双(二甲基亚砜)二氯化铂(II)。
优选的钴前驱体为氯化钴(II)、双(三苯基膦)二氯化钴(II)或三(三苯基膦)氯化钴(I)。氯化钴(II)易溶于有机溶剂。
优选的铑前驱体为双(环辛烯)氯化铑(I)二聚体、三(三苯基膦)氯化铑(I)、羰基双(三苯膦基)氯化铑(I)、降冰片二烯氯化铑(I)二聚体或聚合二羰基氯化铑(I)。
优选的铱前驱体为(1,5-环辛二烯)氯化铱(I)二聚体或羰基氯双(三苯基磷基)铱(I)。
优选的铁前驱体为氯化亚铁(II)或双(三苯基膦)二氯化铁(II)。氯化亚铁(II)廉价易得,溶于有机溶剂。
优选的钌前驱体为对伞花烃二氯化钌(II)二聚体、三(三苯基膦)二氯化钌(II)、(1,5-环辛二烯)二氯化钌(II)、三(三苯基膦)羰基氢氯化钌(II)或羰基氯化钌(II)聚合物。
优选的金前驱体为(三苯基膦)氯化金(I)或二甲硫醚氯化金(I)。
优选的镍前驱体为双(三苯基膦)氯化镍(II)或乙二醇二甲醚氯化镍(II)。
镍氮杂环卡宾配合物和金属前驱体反应的代表性的化学反应方程式可以表示为:
镍氮杂环卡宾配合物与金属前驱体的反应属于复分解反应,在有机溶剂中,镍氮杂环卡宾配合物与金属前驱体相互交换金属离子,结合生成NiCl2沉淀,使镍氮杂环卡宾配合物与金属前驱体的反应方向朝着生成金属氮杂环卡宾配合物的方向进行,反应完毕结晶纯化得到金属氮杂环卡宾配合物。
本发明通过上述方法合成了一系列钯、铂、钴、铑、铱、铁、钌、金、镍氮杂环卡宾配合物,并对各金属氮杂环卡宾配合物进行了表征。镍氮杂环卡宾配合物作为卡宾转移试剂,成本低廉。本方法对卡宾配体官能团容忍性好,对金属前驱体适用性广,反应条件温和,后处理简单,产率较高,且无需使用特殊的贵重试剂,是对过渡金属氮杂环卡宾配合物合成方法的进一步发展。本发明为低成本合成过渡金属氮杂环卡宾配合物催化剂提供了简单易行的方法,为过渡金属氮杂环卡宾配合物催化剂的工业化应用奠定了基础。
具体实施方式
通过下述实施例进一步说明本发明,但不限制本发明的内容。
实施例1配合物Pd-1(C20H21F12N7P2Pd)的制备
在50mL烧瓶中加入826mg(1mmol)镍氮杂环卡宾配合物Ni-1,10mL乙腈溶剂,286mg(1mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在60~70℃油浴中,搅拌反应8小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到的白色粉末即为钯氮杂环卡宾配合物Pd-1,重结晶提纯得到无色晶体480mg,产率63%。1H NMR(400MHz,DMSO-d6):δ8.97(d,J=4.8Hz,1H,PyH),8.58(br,1H,PyH),8.56(s,1H,imidazolylidene H),8.42(t,J=7.6Hz,1H,PyH),8.40(s,1H,imidazolylidene H),8.19(d,J=8.0Hz,1H,PyH),8.18(s,1H,imidazolylidene H),8.07(t,J=7.8Hz,1H,PyH),7.88(s,1H,PyH),7.73(t,J=6.0Hz,1H,PyH),7.57(s,1H,imidazolylidene H),7.52(t,J=6.0Hz,1H,PyH),4.06(s,3H,CH3),2.98(s,3H,CH3),2.07(s,3H,CH3CN).13C NMR(100MHz,DMSO-d6):160.29(Pd-C),156.92(Pd-C),151.43,150.39,149.53,148.18,143.99,140.03,125.88,125.83,124.71,124.11,122.78,118.43,117.92,117.56,112.73,39.00,36.51,1.51。用元素分析表征了配合物Pd-1的结构,其分子式为C24H27F12N9P2Pd(Pd-1·2CH3CN),其中C,34.57;H,3.32;N,14.87。理论值为C,34.40;H,3.25;N,15.05。
实施例2配合物Pd-2(C19H18ClF6N4PPd)的制备
在50mL烧瓶中加入953mg(1mmol)镍氮杂环卡宾配合物Ni-2,10mL乙腈,571mg(2mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在50~60℃油浴中,搅拌反应12小时,以300目硅胶层过滤得到黄色溶液,浓缩至3mL,加入15mL乙醚结晶得到黄色粉末即为钯氮杂环卡宾配合物Pd-2,重结晶提纯得到黄色晶体1080mg,产率92%。1H NMR(400MHz,DMSO-d6):δ9.05(d,J=8.8Hz,1H),8.83(d,J=8.4Hz,1H),8.54(s,2H,NCHCHN+phenanthroline H),8.39(d,J=8.8Hz,1H),8.14(s,2H),8.06(dd,J=8.0,J=5.2Hz,1H),7.82(d,J=2Hz,1H,NCHCHN),4.36(t,J=6.8Hz,2H,NCH2CH2CH2CH3),1.78(m,2H,NCH2CH2CH2CH3),1.33(m,2H,NCH2CH2CH2CH3),0.92(t,J=6.8Hz,3H,NCH2CH2CH2CH3)。用元素分析表征了配合物Pd-2的结构,其分子式为C19H18ClF6N4PPd,其中C,39.04;H,3.10;N,9.25。理论值为C,38.73;H,3.08;N,9.51。
实施例3配合物Pd-3(C20H22F12N6P2Pd)的制备
在50mL烧瓶中加入695mg(1mmol)镍氮杂环卡宾配合物Ni-3,10mL乙腈,286mg(1mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在60~70℃油浴中,搅拌反应16小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到白色粉末即为钯氮杂环卡宾配合物Pd-3,重结晶提纯得到无色晶体640mg,产率86%。1H NMR(400MHz,DMSO-d6):δ8.29(d,J=5.2Hz,2H,6-PyH),8.24(t,J=7.6Hz,2H,4-PyH),7.96(d,J=7.6Hz,2H,3-PyH),7.76(d,J=1.6Hz,2H,NCHCHN),7.62(t,J=6.4Hz,2H,5-PyH),7.49(d,J=1.6Hz,2H,NCHCHN),6.17(d,J=14.8Hz,2H,NCH2),5.80(d,J=15.6Hz,2H,NCH2),3.31(s,6H,NCH3).13CNMR(100MHz,DMSO-d6):156.05(Pd-C),154.28,152.88,142.00,126.28,125.91,124.35,123.64,54.76,37.04。用元素分析表征了配合物Pd-3的结构,其分子式为C20H22F12N6P2Pd,其中C,32.29;H,3.10;N,11.66。理论值为C,32.34;H,2.99;N,11.31。
实施例4配合物Pd-4(C26H22F12N10P2Pd)的制备
在50mL烧瓶中加入823mg(1mmol)镍氮杂环卡宾配合物Ni-4,10mL乙腈,286mg(1mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在50~60℃油浴中,搅拌反应20小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到白色粉末即为钯氮杂环卡宾配合物Pd-4,重结晶提纯得到无色晶体760mg,产率87%。1H NMR(400MHz,DMSO-d6):δ8.86(d,J=4.8Hz,4H,4,6-pyrimidinyl H),8.53(d,J=5.6Hz,2H,6-pyridyl H),8.30(t,J=7.6Hz,2H,4-pyridyl H),8.08(d,J=7.6Hz,2H,3-pyridyl H),7.72-7.56(m,8H,NCHCHN+5-pyridyl H+5-pyrimidinyl H),6.23(d,J=14.4Hz,2H,NCH2),6.00(d,J=14.8Hz,2H,NCH2)。用元素分析表征了配合物Pd-4的结构,其分子式为C26H22F12N10P2Pd,其中C,35.79;H,2.59;N,15.77。理论值为C,35.86;H,2.55;N,16.08。
实施例5配合物Pd-5(C15H14ClF6N4PPd)的制备
在50mL烧瓶中加入849mg(1mmol)镍氮杂环卡宾配合物Ni-5,10mL乙腈,571mg(2mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在40~50℃油浴中,搅拌反应12小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到白色粉末即为钯氮杂环卡宾配合物Pd-5,重结晶提纯得到无色晶体980mg,产率91%。1H NMR(400MHz,DMSO-d6):δ9.43(d,J=5.6Hz,2H,6-PyH),8.24(t,J=7.6Hz,2H,4-PyH),7.89(d,J=7.6Hz,2H,3-PyH),7.70(t,J=7.2Hz,2H,5-PyH),7.64(s,2H,NCHCHN),5.72(s,4H,NCH2).13C NMR(100MHz,DMSO-d6):156.18(Pd-C),153.03,149.19,141.70,127.01,125.71,122.13,53.95。用元素分析表征了配合物Pd-5的结构,其分子式为C15H14ClF6N4PPd,其中C,33.67;H,2.65;N,10.25。理论值为C,33.54;H,2.63;N,10.43。
实施例6配合物Pd-6(C27H24ClF6N8PPd)的制备
在50mL烧瓶中加入1270mg(1mmol)镍氮杂环卡宾配合物Ni-6,10mL乙腈,571mg(2mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在55~65℃油浴中,搅拌反应13小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到白色粉末即为钯氮杂环卡宾配合物Pd-6,重结晶提纯得到无色晶体1420mg,产率95%。1H NMR(400MHz,DMSO-d6):δ8.63(s,2H,5-triazole H),7.93(q,J=2.8Hz,2H,4,7-benzimidazole H),7.55(q,J=2.8Hz,2H,5,6-benzimidazole H),7.40(br,10H,PhH),5.89(s,4H,NCH2),5.82(s,4H,NCH2).13C NMR(100MHz,DMSO-d6):157.85(Pd-C),139.94,134.67,132.50,129.30,129.13,128.75,125.74,125.22,112.21,55.28,40.96。用元素分析表征了配合物Pd-6的结构,其分子式为C28H255ClF6N85PPd(Pd-6·0.5CH3CN),其中C,43.81;H,3.46;N,15.33。理论值为C,43.79;H,3.35;N,15.50。
实施例7配合物Pd-7(C19H18F12N6P2Pd)的制备
在50mL烧瓶中加入679mg(1mmol)镍氮杂环卡宾配合物Ni-7,10mL乙腈,286mg(1mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在50~60℃油浴中,搅拌反应16小时,以300目硅胶层过滤得到浅黄色溶液,浓缩至3mL,加入15mL乙醚结晶得到浅黄色粉末即为钯氮杂环卡宾配合物Pd-7,重结晶提纯得到浅黄色晶体600mg,产率82%。1H NMR(400MHz,DMSO-d6):δ8.94(d,J=5.2Hz,2H,6-PyH),8.32(t,J=7.6Hz,2H,4-PyH),7.97(d,J=7.6Hz,2H,3-PyH),7.85-7.80(m,6H,NCHCHN+5-PyH),6.50(s,2H,NCH2N),5.74(s,4H,CCH2N)。用元素分析表征了配合物Pd-7的结构,其分子式为C19H18F12N6P2Pd,其中C,31.64;H,2.50;N,11.34。理论值为C,31.40;H,2.50;N,11.56。
实施例8配合物Pd-8(C17H16F12N8P2Pd)的制备
在50mL烧瓶中加入681mg(1mmol)镍氮杂环卡宾配合物Ni-8,10mL乙腈,286mg(1mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在60~65℃油浴中,搅拌反应13小时,以300目硅胶层过滤得到浅黄色溶液,浓缩至3mL,加入15mL乙醚结晶得到浅黄色粉末即为钯氮杂环卡宾配合物Pd-8,重结晶提纯得到浅黄色晶体650mg,产率89%。用元素分析表征了配合物Pd-8的结构,其分子式为C17H16F12N8P2Pd,其中C,28.17;H,2.30;N,15.40。理论值为C,28.02;H,2.21;N,15.38。
实施例9配合物Pd-9(C27H22F12N6P2Pd)的制备
在50mL烧瓶中加入780mg(1mmol)镍氮杂环卡宾配合物Ni-9,10mL乙腈,286mg(1mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在55~65℃油浴中,搅拌反应19小时,以300目硅胶层过滤得到浅黄色溶液,浓缩至3mL,加入15mL乙醚结晶得到浅黄色粉末即为钯氮杂环卡宾配合物Pd-9,重结晶提纯得到浅黄色晶体660mg,产率80%。用元素分析表征了配合物Pd-9的结构,其分子式为C27H22F12N6P2Pd,其中C,39.47;H,2.70;N,10.30。理论值为C,39.22;H,2.68;N,10.16。
实施例10配合物Pd-9(C27H22F12N6P2Pd)的制备
在50mL烧瓶中加入780mg(1mmol)镍氮杂环卡宾配合物Ni-9,10mL丙酮,286mg(1mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在55~65℃油浴中,搅拌反应19小时,以300目硅胶层过滤得到浅黄色溶液,浓缩至约3mL,加入15mL乙醚得到浅黄色粉末即为钯氮杂环卡宾配合物Pd-9,重结晶提纯得到浅黄色晶体600mg,产率73%。用元素分析表征了配合物Pd-9的结构,其分子式为C27H22F12N6P2Pd,其中C,39.22;H,2.68;N,10.16。理论值为C,39.36;H,2.69;N,10.34。
实施例11配合物Pd-10(C19H18N6PdBr2)的制备
在50mL烧瓶中加入549mg(1mmol)镍氮杂环卡宾Ni-10,15mL乙腈与甲醇的混合溶剂(体积比为2∶1),286mg(1mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在55~65℃油浴中,搅拌反应24小时,以300目硅胶层过滤得到棕黄色溶液,浓缩至3mL,加入15mL乙醚结晶得到棕色粉末即为钯氮杂环卡宾配合物Pd-10,重结晶提纯得到暗黄色晶体239mg,产率41%。1H NMR(400MHz,DMSO-d6):δ9.00(d,J=4.8Hz,2H,PyH),8.00(t,J=8.0Hz,2H,PyH),7.60-7.74(m,6H,PyH+NCHCHN),7.53(t,J=6.5Hz,2H,PyH),6.43(s,2H,NCH2N),5.79(s,4H,NCH2C).用元素分析表征了配合物Pd-10的结构,其分子式为C19H18N6PdBr2,其中C,38.31;H,3.04;N,14.27。理论值为C,38.25;H,3.04;N,14.09。
实施例12配合物Pd-11(C19H18B2F8N6Pd)的制备
在50mL烧瓶中加入562mg(1mmol)镍氮杂环卡宾配合物Ni-11,10mL乙腈,286mg(1mmol)(1,5-环辛二烯)二氯化钯(Pd(COD)Cl2),在45~50℃油浴中,搅拌反应15小时,以300目硅胶层过滤得到浅黄色溶液,浓缩至3mL,加入15mL乙醚结晶得到浅黄色粉末即为钯氮杂环卡宾配合物Pd-11,重结晶提纯得到浅黄色晶体458mg,产率75%。1H NMR(400MHz,DMSO-d6):δ8.72(d,J=5.4Hz,2H,PyH),8.12(t,J=7.6Hz,2H,PyH),7.75(d,J=7.8Hz,2H,PyH),7.63-7.58(m,6H,NCHCHN+PyH),6.46(s,2H,NCH2N),5.70(s,4H,CCH2N)。用元素分析表征了配合物Pd-11的结构,其分子式为C19H18B2F8N6Pd,其中C,37.54;H,2.98;N,13.89。理论值为C,37.38;H,2.97;N,13.77。
实施例13配合物Pd-6(C27H24ClF6N8PPd)的制备
在50mL烧瓶中加入1270mg(1mmol)镍氮杂环卡宾配合物Ni-6,10mL乙腈,366mg(1mmol)氯化烯丙基钯二聚物([Pd(C3H5)Cl]2),在50~60℃油浴中,搅拌反应14小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到白色粉末即为钯氮杂环卡宾配合物Pd-6,重结晶提纯得到无色晶体720mg,产率50%。用元素分析表征了配合物Pd-6的结构,其分子式为C28H255ClF6N85PPd(Pd-6·0.5CH3CN),其中C,43.86;H,3.34;N,15.42。理论值为C,43.79;H,3.35;N,15.50。
实施例14配合物Pd-6(C27H24ClF6N8PPd)的制备
50mL烧瓶中加入1270mg(1mmol)镍氮杂环卡宾配合物Ni-6,10mL硝基甲烷,366mg(1mmol)氯化烯丙基钯(II)二聚物([Pd(C3H5)Cl]2),在50~60℃油浴中,搅拌反应14小时,以300目硅胶层过滤得到无色溶液,浓缩至约3mL,加入15mL乙醚得到白色粉末即为钯氮杂环卡宾配合物Pd-6,重结晶提纯得到无色晶体810mg,产率56%。用元素分析表征了配合物Pd-6的结构,其分子式为C28H255ClF6N85PPd(Pd-6·0.5CH3CN),其中C,43.79;H,3.35;N,15.50。实测值:C,43.66;H,3.35;N,15.59。
实施例15配合物Pt-1(C19H18ClF6N4PPt)的制备
在50mL烧瓶中加入953mg(1mmol)镍氮杂环卡宾配合物Ni-2,10mL乙腈,748mg(2mmol)(1,5-环辛二烯)二氯化铂(Pt(COD)Cl2),在60~70℃油浴中,搅拌反应11小时,以300目硅胶层过滤得到黄色溶液,浓缩至3mL,加入15mL乙醚结晶得到黄色粉末即为铂氮杂环卡宾配合物Pt-1,重结晶提纯得到黄色晶体1220mg,产率90%。1H NMR(400MHz,DMSO-d6):δ8.98(d,J=8.8Hz,1H),8.88(d,J=7.6Hz,1H),8.58(d,J=4.8Hz,1H),8.47(s,1H,NCHCHN),8.31(d,J=8.4Hz,1H),8.10(br,3H),7.85(s,1H,NCHCHM),4.25(br,2H,NCH2CH2CH2CH3),1.75(m,2H,NCH2CH2CH2CH3),1.30(m,2H,NCH2CH2CH2CH3),0.90(t,J=7.2Hz,3H,NCH2CH2CH2CH3)。用元素分析表征了配合物Pt-1的结构,其分子式为C19H18ClF6N4PPt,其中C,33.87;H,2.69;N,8.30。理论值为C,33.66;H,2.68;N,8.27。
实施例16配合物Pt-2(C20H22F12N6P2Pt)的制备
在50mL烧瓶中加入695mg(1mmol)镍氮杂环卡宾配合物Ni-3,10mL乙腈,374mg(1mmol)(1,5-环辛二烯)二氯化铂(Pt(COD)Cl2),在60~70℃油浴中,搅拌反应24小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到白色粉末即为铂氮杂环卡宾配合物Pt-2,重结晶提纯得到无色晶体720mg,产率87%(cis:trans=0.8∶1)。1H NMR(400MHz,DMSO-d6):δ8.78(d,J=5.6Hz,2H,6-PyHtrans),8.39(d,J=5.6Hz,1.6H,6-PyHcis),8.28(t,J=7.6Hz,3.6H,4-PyHtrans+4-PyHcis),8.02(d,J=8.4Hz,1.6H,3-PyHcis),7.99(d,J=8.0Hz,2H,3-PyHtrans),7.74(s,1.6H,NCHCHNcis),7.71(s,2H,NCHCHNtrans),7.64(t,J=6.4Hz,1.6H,5-PyHcis),7.55(t,J=6.4Hz,2H,5-PyHtrans),7.50(s,1.6H,NCHCHNcis),7.45(s,2H,NCHCHNtrans),5.93(d,J=11.2Hz,1.6H,CH2cis),5.90(d,J=11.2Hz,2H,CH2trans),5.75(d,J=16.4Hz,2H,CH2trans),5.71(d,J=15.6Hz,1.6H,CH2cis),3.31(s,4.8H,CH3cis),3.17(s,6H,CH3trans)。13C NMR(100MHz,DMSO-d6):164.62(Pt-C),156.95(Pt-C),155.41,154.18,153.17,143.31,142.27,127.35,127.28,127.17,126.92,126.41,124.10,123.91,123.02,122.23,54.63,54.54,36.67,36.10。用元素分析表征了配合物Pt-2的结构,其分子式为C21H235F12N65P2Pt(Pt-2·0.5CH3CN),其中C,29.56;H,2.84;N,10.36。理论值为C,29.60;H,2.78;N,10.69。
实施例17配合物Pt-3(C15H14ClF6N4PPt)的制备
在50mL烧瓶中加入849mg(1mmol)镍氮杂环卡宾配合物Ni-5,10mL乙腈,748mg(2mmol)(1,5-环辛二烯)二氯化铂(Pt(COD)Cl2),在50~60℃油浴中,搅拌反应17小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到白色粉末即为铂氮杂环卡宾配合物Pt-3,重结晶提纯得到无色晶体1160mg,产率92%。1H NMR(400MHz,DMSO-d6):δ9.56(d,J=5.6Hz,2H,6-PyH),8.28(t,J=7.2Hz,2H,4-PyH),7.90(d,J=7.2Hz,2H,3-PyH),7.70(t,J=6.4Hz,2H,5-PyH),7.63(s,2H,NCHCHN),5.58(s,4H,NCH2)。13C NMR(100MHz,DMSO-d6):155.97(Pt-C),153.09,141.71,139.21,127.49,126.38,121.26,53.68。用元素分析表征了配合物Pt-3的结构,其分子式为C15H14ClF6N4PPt,其中C,28.96;H,2.21;N,8.79。理论值为C,28.79;H,2.25;N,8.95。
实施例18配合物Pt-4(C14H13ClF6N5PPt)的制备
在50mL烧瓶中加入851mg(1mmol)镍氮杂环卡宾配合物Ni-12,10mL乙腈,748mg(2mmol)(1,5-环辛二烯)二氯化铂(Pt(COD)Cl2),在40~50℃油浴中,搅拌反应24小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到白色粉末即为铂氮杂环卡宾配合物Pt-4,重结晶提纯得到无色晶体1200mg,产率96%。用元素分析表征了配合物Pt-4的结构,其分子式为C14H13ClF6N5PPt,其中C,26.96;H,2.11;N,11.26。理论值为C,26.83;H,2.09;N,11.17。
实施例19配合物Pt-5(C27H24ClF6N8PPt)的制备
在50mL烧瓶中加入1270mg(1mmol)镍氮杂环卡宾配合物Ni-6,10mL乙腈,748mg(2mmol)(1,5-环辛二烯)二氯化铂(Pt(COD)Cl2),在55~65℃油浴中,搅拌反应19小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到白色粉末即为铂氮杂环卡宾配合物Pt-5,重结晶提纯得到无色晶体1560mg,产率93%。1H NMR(400MHz,DMSO-d6):δ8.64(s,2H,5-triazole H),7.88(q,J=3.2Hz,2H,4,7-benzimidazole H),7.52(q,J=3.2Hz,2H,5,6-benzimidazole H),7.35-7.43(m,10H,PhH),5.83(s,4H,CH2),5.79(s,4H,CH2)。13C-NMR(100MHz,DMSO-d6):147.06(Pt-C),139.50,134.54,132.46,129.32,129.17,128.76,126.08,124.96,112.04,55.43,40.88。用元素分析表征了配合物Pt-5的结构,其分子式为C27H24ClF6N8PPt,其中C,38.89;H,2.95;N,13.28。理论值为C,38.79;H,2.89;N,13.40。
实施例20配合物Fe-1(C38H36F12N8NiP2)的制备
在50mL烧瓶中加入953mg(1mmol)镍氮杂环卡宾配合物Ni-2,10mL乙腈,127mg(1mmol)氯化亚铁(FeCl2),在50~65℃油浴中,搅拌反应12小时,以300目硅胶层过滤得到深红色溶液,浓缩至3mL,加入15mL乙醚结晶得到深红色粉末即为铁氮杂环卡宾配合物Fe-1,重结晶提纯得到暗红色晶体1240mg,产率94%。用元素分析表征了配合物Fe-1的结构,其分子式为C38H36F12N8NiP2,其中C,47.89;H,3.95;N,17.58。理论值为C,47.87;H,3.81;N,11.75。
实施例21配合物Co-1(C27H27CoF18N9P3)的制备
在50mL烧瓶中加入826mg(1mmol)镍氮杂环卡宾配合物Ni-1,10mL乙腈,130mg(1mmol)二氯化钴(CoCl2),在50~60℃油浴中,搅拌反应24小时,以300目硅胶层过滤得到黄色溶液,浓缩至3mL,加入15mL乙醚结晶得到黄色粉末即为钴氮杂环卡宾配合物Co-1,重结晶提纯得到黄色晶体360mg,产率37%。1H NMR(400MHz,DMSO-d6):δ9.44(d,J=5.6Hz,3H,6-PyH),8.64(d,J=1.2Hz,3H,NCHCHN),8.43(t,J=8.0Hz,3H,4-PyH),8.28(d,J=8.4Hz,3H,3-PyH),7.69(t,J=6.6Hz,3H,5-PyH),7.66(d,J=1.6Hz,3H,NCHCHN),2.80(s,9H,CH3)。13C NMR(100MHz,DMSO-d6):153.09,143.30,129.37,123.73,118.60,113.36,35.02,用元素分析表征了配合物Co-1的结构,其分子式为C27H27CoF18N9P3,其中C,33.47;H,2.82;N,13.10。理论值为C,33.38;H,2.80;N,12.98。
实施例22配合物Co-2(C54H48CoF18N16P3)的制备
在50mL烧瓶中加入1270mg(1mmol)镍氮杂环卡宾配合物Ni-6,10mL乙腈,二氯化钴(CoCl2)130mg(1mmol),在60~70℃油浴中,搅拌反应18小时,以300目硅胶层过滤得到黄色溶液,浓缩至3mL,加入15mL乙醚结晶得到黄色粉末即为钴氮杂环卡宾配合物Co-2,重结晶提纯得到黄色晶体780mg,产率56%。1H NMR(400MHz,DMSO-d6):δ8.53(s,4H,5-triazole H),8.17(q,J=3.2Hz,4H,4,7-benzimidazole H),7.84(q,J=2.8Hz,4H,5,6-benzimidazole H),7.32(t,J=7.2Hz,4H,4-PhH),7.21(t,J=7.2Hz,8H,3-PhH),6.82(d,J=7.6Hz,8H,2-PhH),5.39(s,8H,CH2),5.31(s,8H,CH2)。13C NMR(100MHz,DMSO-d6):182.17(Co-C),142.37,134.23,134.18,129.14,129.04,128.22,127.24,125.60,112.40,55.18,40.17。用元素分析表征了配合物Co-2的结构,其分子式为C54H48CoF18N16P3,其中C,45.83;H,3.40;N,15.74。理论值为C,45.84;H,3.42;N,15.84。
实施例23配合物Ru-1(C23H24ClF6N6PRu)的制备
在50mL烧瓶中加入953mg(1mmol)镍氮杂环卡宾配合物Ni-2,10mL乙腈,612mg(1mmol)对伞花烃二氯化钌二聚体([Ru(p-cymene)Cl2]2),在55~65℃油浴中,搅拌反应22小时,以300目硅胶层过滤得到红棕色溶液,浓缩至3mL,加入15mL乙醚结晶得到深红色粉末即为钌氮杂环卡宾配合物Ru-1,重结晶提纯得到深红色晶体1240mg,产率94%。1HNMR(400MHz,DMSO-d6):δ9.48(d,J=4.8Hz,1H),8.76(d,J=8.8Hz,1H),8.63(d,J=8.8Hz,1H),8.62(d,J=1.2Hz,1H,NCHCHN),8.43(d,J=8.8Hz,1H),8.20(q,J=8.8Hz,2H),8.11(dd,J=4.8,J=4.8Hz,1H),7.74(d,J=2.0Hz,1H,NCHCHN),4.46(t,J=7.2Hz,2H,NCH2CH2CH2CH3),2.85(s,3H,CH3CN),2.03(s,3H,CH3CN),1.96(m,2H,NCH2CH2CH2CH3),1.43(m,2H,NCH2CH2CH2CH3),0.98(t,J=7.2Hz,3H,NCH2CH2CH2CH3)。13C NMR(100MHz,DMSO-d6):185.34(Ru-C),154.85,153.26,147.26,146.96,138.29,138.02,130.80,127.72,127.16,127.05,126.98,126.26,124.48,124.08,119.31,111.55,49.78,32,48,19.10,13.68,3.75,3.07。用元素分析表征了配合物Ru-1的结构,其分子式为C23H24ClF6N6PRu,其中C,41.52;H,3.63;N,12.74。理论值为C,41.48;H,3.63;N,12.62。
实施例24配合物Ru-2(C19H20F12N8P2Ru)的制备
在50mL烧瓶中加入823mg(1mmol)镍氮杂环卡宾配合物Ni-4,10mL乙腈,306mg(0.5mmol)对伞花烃二氯化钌(II)二聚体([Ru(p-cymene)Cl2]2),在50~60℃油浴中,搅拌反应17小时,以300目硅胶层过滤得到嫩黄色溶液,浓缩至约3mL,加入15mL乙醚结晶得到嫩黄色粉末即为钌氮杂环卡宾配合物Ru-2,重结晶提纯得到嫩黄色晶体680mg,产率71%。1H NMR(400MHz,DMSO-d6):δ9.17(d,J=8.0Hz,1H),9.07(d,J=5.2Hz,1H),9.00(d,J=4.4Hz,1H),8.36(s,1H,NCHCHN),8.06(t,J=8.0Hz,1H),7.91(s,1H,NCHCHN),7.76(d,J=8.4Hz,1H),7.66(t,J=5.2Hz,1H),7.59(t,J=5.6Hz,1H),6.02(s,2H,NCH2),2.20(s,6H,CH3CN),2.07(s,3H,CH3CN)。13C NMR(100MHz,DMSO-d6):198.81(Ru-C),162.51,159.38,158.94,156.77,153.64,138.13,126.62,124.22,124.11,119.03,118.08,53.19,3.75,3.40。用元素分析表征了配合物Ru-2的结构,其分子式为C19H20F12N8P2Ru,其中C,30.66;H,2.69;N,14.95。理论值为C,30.37;H,2.68;N,14.91。
实施例25配合物Au-1(C30H28AuF6N8P)的制备
在50mL烧瓶中加入849mg(1mmol)镍氮杂环卡宾配合物Ni-5,10mL乙腈,二甲硫醚氯化金(Au(Me2S)Cl)590mg(2mmol),在65~70℃油浴中,搅拌反应2小时,以300目硅胶层过滤得到无色溶液,浓缩至3mL,加入15mL乙醚结晶得到白色粉末即为金氮杂环卡宾配合物Au-1,重结晶提纯得到无色晶体590mg,产率70%。1H NMR(400MHz,CD3CN):δ8.44(m,4H),7.66(m,4H),7.30(s,4H),7.23(m,4H),7.16(m,4H),5.41(s,8H)。13C NMR(100MHz,CD3CN):186.3,156.7,150.8,138.4,124.4,123.9,123.0,56.9。用元素分析表征了配合物Au-1的结构,其分子式为C30H28AuF6N8P,其中C,42.80;H,3.36;N,13.42。理论值为C,42.77;H,3.35;N,13.30。
实施例26配合物Ni-13(C19H18ClF6N4NiP)的制备
在50mL烧瓶中加入939mg(1mmol)镍氮杂环卡宾配合物Ni-2,10mL乙腈,1308mg(2mmol)双(三苯基膦)氯化镍(Ni(PPh3)2Cl2),在50~60℃油浴中,搅拌反应10小时,以300目硅胶层过滤得到桔红色溶液,浓缩至3mL,加入15mL乙醚结晶得到桔红色粉末即为镍氮杂环卡宾配合物Ni-13,重结晶提纯得到桔红色晶体560mg,产率52%。1H NMR(400MHz,Acetone-d6):δ9.04(d,J=8.4Hz,1H),8.86(d,J=8.4Hz,1H),8.74(d,J=4.8Hz,1H),8.37(d,J=2.0Hz,1H,NCHCHN),8.33(d,J=8.8Hz,1H),8.20(q,J=8.8Hz,2H),8.12(dd,J=4.8Hz,J=7.6Hz,1H),7.72(d,J=2.0Hz,1H,NCHCHN),4.50(t,J=7.2Hz,2H,NCH2CH2CH2CH3),1.89(m,2H,NCH2CH2CH2CH3),1.43(m,2H,NCH2CH2CH2CH3),0.96(t,J=7.6Hz,NCH2CH2CH2CH3)。用元素分析表征了配合物Ni-13的结构,其分子式为C19H18ClF6N4NiP,其中C,42.18;H,3.37;N,10.40。理论值为C,42.14;H,3.35;N,10.35。
实施例27配合物Ni-14(C15H14ClF6N4NiP)的制备
在50mL烧瓶中加入849mg(1mmol)镍氮杂环卡宾配合物Ni-5,10mL乙腈,1308mg(2mmol)双(三苯基膦)氯化镍(Ni(PPh3)2Cl2),在55~65℃油浴中,搅拌反应9小时,以300目硅胶层过滤得到金黄色溶液,浓缩至3mL,加入15mL乙醚结晶得到金黄色粉末即为镍氮杂环卡宾配合物Ni-14,重结晶提纯得到金黄色晶体200mg,产率20%。1H NMR(400MHz,Acetone-d6):δ8.13(t,J=7.6Hz,2H,4-PyH),8.11(s,1H,NCHCHN),8.02(m,2H,PyH),7.84-7.73(m,5H,PyH+NCHCHN),5.79(s,4H,CH2)。用元素分析表征了配合物Ni-14的结构,其分子式为C15H14ClF6N4NiP,其中C,36.94;H,2.82;N,11.23。理论值为C,36.81;H,2.88;N,11.45。应用例1钯氮杂环卡宾配合物Pd-2用于催化Sonogashira偶联反应
在50mL Schlenk瓶中依次加入60mg(0.10mmol)钯卡宾配合物Pd-2,30mg(0.10mmol)三苯基膦PPh3,1990mg(10mmol)对溴苯乙酮,体系抽充N2三次,在N2下用依次加入1392mg(12mmol)对甲苯乙炔,1700mg(20mmol)哌啶,20mL水,在80℃油浴中,搅拌反应24小时。反应完毕,水溶液用乙酸乙酯萃取(3×20mL),合并有机相,无水硫酸镁干燥后浓缩,以柱色谱法分离得到偶联产物2106mg,产率90%。应用例2钯氮杂环卡宾配合物Pd-4用于催化Heck偶联反应
在50mL Schlenk瓶中依次加入88mg(0.10mmol)钯卡宾配合物Pd-4,1640mg(20mmol)醋酸钠,1990mg(10mmol)对溴苯乙酮,20mL N,N-二甲基甲酰胺,体系抽充N2三次,在N2下用加入1534mg(13mmol)对甲苯乙烯,在90℃油浴中,搅拌反应13小时。反应完毕,加入30mL水,混合液用乙酸乙酯萃取(3×40mL),合并有机相,水洗(6×40mL),无水硫酸镁干燥后浓缩,以柱色谱分离得到偶联产物2171mg,产率92%。
应用例3铂氮杂环卡宾配合物Pt-1用于催化硅氢化反应
在50mL Schlenk瓶中加入136mg(0.10mmol)铂卡宾配合物Pt-1,20mL甲苯,体系抽充N2三次,在N2下用加入1160mg(10mmol)间甲苯乙炔和2376mg(12mmol)二苯基甲基硅烷,在100℃油浴中,搅拌反应1小时。反应完毕,减压浓缩反应液,以柱色谱分离得到产物2669mg,产率85%(A∶B=4∶1)。
应用例4镍氮杂环卡宾配合物Ni-13用于催化Kumada偶联反应
在50mL Schlenk瓶中加入108mg(0.10mmol)镍卡宾配合物Ni-13,1370mg(10mmol)对氯苯甲腈,体系抽充N2三次,在N2下用加入12mL格式试剂的四氢呋喃溶液(12mmol,1M),室温反应24小时。反应完毕,加入20mL水,混合液用乙酸乙酯萃取(3×20mL),合并有机相,无水硫酸镁干燥浓缩后,以柱色谱分离得到产物2269mg,产率89%。

Claims (3)

1.一种合成金属氮杂环卡宾配合物的方法,包括:
在有机溶剂中加入镍氮杂环卡宾配合物和金属前驱体,反应完毕结晶纯化得到金属氮杂环卡宾配合物;
所述的金属前驱体的通式表示为M(L)nClm
其中,M为钯(Ⅱ)、铂(Ⅱ)、钴(Ⅱ)、铁(Ⅱ)、金(Ⅰ)或镍(Ⅱ);
L为三苯基膦、1,5-环辛二烯、二甲硫醚、乙腈、苄腈、苯甲腈、二甲基亚砜、烯丙基或对伞花烃;
n=0、1、2或3;
m=1或2;
所述的镍氮杂环卡宾配合物的结构式为:
其中,R1为甲基、正丁基、嘧啶基、吡啶基;
R2为嘧啶基、吡啶基、邻菲罗啉基、连三唑甲基;
X-为PF6 -、Cl-、Br-、I-或BF4 -
所述的有机溶剂为乙腈;反应温度为35~70℃,反应时间为1~24小时。
2.根据权利要求1所述的合成金属氮杂环卡宾配合物的方法,其特征在于:所述的金属前驱体为(1,5-环辛二烯)二氯化钯(II)、氯化烯丙基钯(II)二聚物、(1,5-环辛二烯)二氯化铂(II)、氯化钴(II)、氯化亚铁(II)、二甲硫醚氯化金(I)或双(三苯基膦)氯化镍(II)。
3.根据权利要求1所述的合成金属氮杂环卡宾配合物的方法,其特征在于:所述的镍氮杂环卡宾配合物和金属前驱体的摩尔比为1:0.5~2。
CN201110241732.6A 2011-08-22 2011-08-22 一种合成金属氮杂环卡宾配合物的方法 Expired - Fee Related CN102351907B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110241732.6A CN102351907B (zh) 2011-08-22 2011-08-22 一种合成金属氮杂环卡宾配合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110241732.6A CN102351907B (zh) 2011-08-22 2011-08-22 一种合成金属氮杂环卡宾配合物的方法

Publications (2)

Publication Number Publication Date
CN102351907A CN102351907A (zh) 2012-02-15
CN102351907B true CN102351907B (zh) 2014-07-09

Family

ID=45575573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110241732.6A Expired - Fee Related CN102351907B (zh) 2011-08-22 2011-08-22 一种合成金属氮杂环卡宾配合物的方法

Country Status (1)

Country Link
CN (1) CN102351907B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627672B (zh) * 2012-03-22 2015-04-22 南开大学 含吡啶-2-甲酸根或吡啶-2,6-双甲酸根配体的氮杂环卡宾钯复合物和制备及应用
CN103406148B (zh) * 2013-06-27 2016-12-28 复旦大学 新型苊并咪唑氮杂环卡宾烯丙基氯化钯化合物及其制备方法和其应用
CN104761587B (zh) * 2014-01-06 2018-05-01 上海和辉光电有限公司 过渡金属卡宾配合物及其制备方法和应用
CN103755554B (zh) * 2014-01-17 2015-02-18 中国农业大学 不对称催化合成(s)-非诺洛芬的方法
CN103755553B (zh) * 2014-01-17 2015-02-18 中国农业大学 不对称催化合成(s)-萘普生的方法
CN103787855B (zh) * 2014-01-17 2015-08-19 中国农业大学 不对称催化合成(s)-芳姜黄酮的新方法
CN104230998B (zh) * 2014-07-18 2016-08-24 中山大学 一种线粒体靶向的铱-n-杂环卡宾配合物及其制备方法和应用
CN106660031A (zh) 2014-08-12 2017-05-10 国立大学法人九州大学 氢化硅烷化反应催化剂
JP6761997B2 (ja) 2014-08-19 2020-09-30 国立大学法人九州大学 ヒドロシリル化鉄触媒
CN104307571A (zh) * 2014-09-14 2015-01-28 中国科学院福建物质结构研究所 贵金属卡宾聚合物催化剂及其制备与应用
CN104341457B (zh) * 2014-10-22 2017-03-15 武汉纺织大学 一种1,2,3‑三唑功能化氮杂环卡宾双核镍化合物及其制备方法
CN104923299A (zh) * 2015-05-07 2015-09-23 沈阳化工大学 催化苯乙酮生成α-苯乙醇的钌催化剂及其制备方法
CN105884745B (zh) * 2016-04-14 2018-06-19 中国科学院理化技术研究所 镍-卡宾双核配合物及其制备方法和应用
CN111100147B (zh) * 2018-10-25 2022-11-04 中国石油化工股份有限公司 铜氮杂环卡宾络合催化剂的合成方法
CN109939737B (zh) * 2019-03-07 2021-02-23 清华大学 卡宾钴催化剂、其制备方法及其在催化氢化醛和酮化合物中的应用
CN111841641B (zh) * 2020-07-20 2021-11-26 浙江大学 氮杂环卡宾修饰镍铱双原子碳基催化剂的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022282A2 (de) * 1999-01-22 2000-07-26 Aventis Research & Technologies GmbH & Co. KG Homo- und heterobimetallische Alkylidenkomplexe des Rutheniums mit N-heterocyclischen Carbenliganden und deren Anwendung als hochaktive, selektive Katalysatoren für die Olefin-Metathese
WO2006018161A2 (de) * 2004-08-13 2006-02-23 Merck Patent Gmbh Am zentralatom substituierte, immobilisierbare ruthenium(ii)-katalysatoren, verfahren zu deren herstellung und verwendung
CN101402644A (zh) * 2008-10-31 2009-04-08 浙江大学 金属氮杂环卡宾配合物的制备方法
CN101787542A (zh) * 2010-03-16 2010-07-28 浙江大学 金属氮杂环卡宾配合物的电化学合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022282A2 (de) * 1999-01-22 2000-07-26 Aventis Research & Technologies GmbH & Co. KG Homo- und heterobimetallische Alkylidenkomplexe des Rutheniums mit N-heterocyclischen Carbenliganden und deren Anwendung als hochaktive, selektive Katalysatoren für die Olefin-Metathese
WO2006018161A2 (de) * 2004-08-13 2006-02-23 Merck Patent Gmbh Am zentralatom substituierte, immobilisierbare ruthenium(ii)-katalysatoren, verfahren zu deren herstellung und verwendung
CN101402644A (zh) * 2008-10-31 2009-04-08 浙江大学 金属氮杂环卡宾配合物的制备方法
CN101787542A (zh) * 2010-03-16 2010-07-28 浙江大学 金属氮杂环卡宾配合物的电化学合成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Synthesis and Structural Characterization of Nickel(II) Complexes Supported by Pyridine-Functionalized N-Heterocyclic Carbene Ligands and Their Catalytic Acitivities for Suzuki Coupling;Zhenxing Xi等,;《Organometallics》;20071120;第26卷(第26期);第6636-66642页 *
Transmetalation of a Primary Amino-Functionalized N-Heterocyclic Carbene Ligand from an Axially Chiral Square-Planar Nickel(II) Complex to a Ruthenium(II) Precatalyst for the Transfer Hydrogenation of Ketones;Wylie W. N. O等,;《Organometallics》;20091118;第28卷(第23期);参见第6758页左栏方案2、第6761页右栏第1-2行、第6761页右栏第4-5行 *
Wylie W. N. O等,.Transmetalation of a Primary Amino-Functionalized N-Heterocyclic Carbene Ligand from an Axially Chiral Square-Planar Nickel(II) Complex to a Ruthenium(II) Precatalyst for the Transfer Hydrogenation of Ketones.《Organometallics》.2009,第28卷(第23期),第6758页左栏方案2、第6761页右栏第1-2行、第6761页右栏第4-5行.
Zhenxing Xi等,.Synthesis and Structural Characterization of Nickel(II) Complexes Supported by Pyridine-Functionalized N-Heterocyclic Carbene Ligands and Their Catalytic Acitivities for Suzuki Coupling.《Organometallics》.2007,第26卷(第26期),第6636-66642页.

Also Published As

Publication number Publication date
CN102351907A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
CN102351907B (zh) 一种合成金属氮杂环卡宾配合物的方法
González-Sebastián et al. Cross-coupling reactions catalysed by palladium pincer complexes. A review of recent advances
Raba et al. Synthesis and characterization of novel iron (II) complexes with tetradentate bis (N-heterocyclic carbene)–bis (pyridine)(NCCN) ligands
Przyojski et al. Complexes of iron (ii) and iron (iii) containing aryl-substituted N-heterocyclic carbene ligands
Chiu et al. Chemistry of the PCNHCP ligand: silver and ruthenium complexes, facial/meridional coordination, and catalytic transfer hydrogenation
Orbisaglia et al. Synthesis, characterization, and catalytic activity of cationic NHC gold (III) pyridine complexes
Yao et al. Transition metal complexes based on carboranyl ligands containing N, P, and S donors: Synthesis, reactivity and applications
Tarrieu et al. Readily accessible unsymmetrical unsaturated 2, 6-diisopropylphenyl N-heterocyclic carbene ligands. Applications in enantioselective catalysis
Grohmann et al. An iron (II) complex of a diamine-bridged bis-N-heterocyclic carbene
Fan et al. AN-Phosphinoamidinato NHC-Diborene Catalyst for Hydroboration
Rong et al. 1, 3-P, N hybrid ligands in mononuclear coordination chemistry and homogeneous catalysis
Abubakar et al. Transfer hydrogenation of ketones catalyzed by a trinuclear Ni (II) complex of a Schiff base functionalized N-heterocyclic carbene ligand
Spasyuk et al. Monomeric and dimeric nickel complexes derived from a pincer ligand featuring a secondary amine donor moiety
Cheng et al. Syntheses, structures, and catalytic properties of ruthenium (II) nitrosyl complexes with pyridine-functionalized N-heterocyclic carbenes
Jia et al. NHC-Palladium (II) mononuclear and binuclear complexes containing phenylene-bridged Bis (thione) ligands: synthesis, characterization, and catalytic activities
Chen et al. Well-defined dinuclear silver phosphine complexes based on nitrogen donor ligand and their high efficient catalysis for A3-coupling reaction
Dasgupta et al. N-heterocyclic germylenes and stannylenes: Synthesis, reactivity and catalytic application in a nutshell
Krahfuss et al. N-Heterocyclic Silylenes as Metal–Metal Bridges and Metal–Halide Activators in Transition Metal Complexes
Bhat et al. Coordination of bis (azol-1-yl) methane-based bisphosphines towards Ru II, Rh I, Pd II and Pt II: synthesis, structural and catalytic studies
Chen et al. Synthesis, structure, and catalytic activity of a new chiral NHC–iridium (III) complex
Shepelenko et al. Ruthenium complexes with chelating carboxylate-NHC ligands as efficient catalysts for CH arylation in water
Li et al. Synthesis of N-heterocyclic carbene silver and palladium complexes bearing bis (pyrazol-1-yl) methyl moieties
Yang et al. Catalytic activity of chelating N-heterocyclic carbene palladium complexes towards selective phosphorylation of coumarins
CN114478362A (zh) 一种手性吡啶醇衍生物的制备方法
Adhikary et al. Binuclear luminescent silver (I)–N-heterocyclic carbene complex derived from 1-picolyl-3-pyrimidylbenzimidazoliumhexaflurophosphate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140709

Termination date: 20210822