WO2006016616A1 - 産業ロボットの関節部に取り付けられる減速機 - Google Patents

産業ロボットの関節部に取り付けられる減速機 Download PDF

Info

Publication number
WO2006016616A1
WO2006016616A1 PCT/JP2005/014681 JP2005014681W WO2006016616A1 WO 2006016616 A1 WO2006016616 A1 WO 2006016616A1 JP 2005014681 W JP2005014681 W JP 2005014681W WO 2006016616 A1 WO2006016616 A1 WO 2006016616A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
reduction mechanism
stage
rpm
reduction
Prior art date
Application number
PCT/JP2005/014681
Other languages
English (en)
French (fr)
Inventor
Masakazu Kurita
Toshiharu Hibino
Jun Hirose
Original Assignee
Nabtesco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corporation filed Critical Nabtesco Corporation
Priority to EP05770527A priority Critical patent/EP1798444A4/en
Priority to US11/571,749 priority patent/US20080295623A1/en
Priority to JP2006531694A priority patent/JPWO2006016616A1/ja
Publication of WO2006016616A1 publication Critical patent/WO2006016616A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/323Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising eccentric crankshafts driving or driven by a gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18056Rotary to or from reciprocating or oscillating

Definitions

  • the present invention relates to a speed reducer attached to a joint portion of an industrial robot with reduced heat generation.
  • a two-stage type speed reducer in which a spur gear is provided at the front stage of an eccentric swing type speed reducer is known.
  • This reducer avoids the resonance phenomenon of the robot in precision work areas such as welding work by appropriately selecting the reduction ratio of the front stage part in relation to the natural frequency of the mouth bot joint drive system and the motor speed. It has the effect that it can be done. Therefore, the reduction ratio of the front stage of the reduction gear is selected as the relational power with the natural frequency, the motor rotation speed, and the necessary total reduction ratio (see, for example, Patent Document 1).
  • the output speed of the speed reducer in the past has been used at about 0 to 15 RPM! At that time, since the motor rotational speed was about ⁇ 1500 RPM, high heat that would cause a problem in practical use was not generated in the reducer. Therefore, the reduction ratio of the front spur gear should not be selected for the viewpoint power considering heat generation. I helped.
  • Patent Document 1 JP-A 62-4586
  • the main cause of heat generation in the speed reducer is, as a matter of common sense, the part that causes the sliding contact of the eccentric oscillating type speed reducer, that is, the external teeth that mesh with the internal teeth of the internal gear body.
  • the toothed gear is thought to be due to the tangled contact with the external teeth of the body. It was thought that this was due to the rotation conditions of the crankshaft engaged with the external gear body via a normal rolling bearing.
  • the inventor found out that the main cause of the heat generation was caused by the rotation condition of the crankshaft. For example, if you want to use the motor speed (input speed to the two-stage reducer) as 400 ORPM and the final output speed of the two-stage reducer as 35 RPM, the total reduction ratio is about 1Z114. If the reduction ratio of the mechanism is 1Z2.5, the reduction ratio of the rear reduction mechanism is 1Z46, and the crank rotation speed is 1600 RPM ( 4000Z2.5), resulting in high heat.
  • the present invention has been made on the basis of powerful knowledge, and limits the number of rotations of the crankshaft so as to minimize the splashing of grease from the above-mentioned engaging portion and rolling bearing portion. It solves the problem.
  • the speed reducer attached to the joint portion of the industrial robot according to the first aspect of the present invention is a speed reducer including a first speed reduction mechanism and a second speed reduction mechanism, and the first speed reduction mechanism is a motor.
  • the second speed reduction mechanism is an internal gear body, an external gear body that meshes with the internal gear body, and the external gear
  • a crankshaft that engages with the gear body and causes the external gear body to swing eccentrically with respect to the internal gear body, and a support body that supports the crankshaft, and the internal gear body or the support body.
  • Output from the eccentric oscillating speed reducer for the speed reducer attached to the joint of the robot The crankshaft 1000R when they are rotated as above 20RPM
  • the reduction ratio of the first stage reduction mechanism is selected so that it will rotate at a speed not exceeding PM!
  • the speed reducer attached to the joint portion of the industrial robot according to the second aspect of the present invention is a speed reducer including a first stage reduction mechanism and a second stage reduction mechanism, and the first stage reduction
  • the mechanism is a speed reducer that decelerates the rotation of the motor force and transmits it to the second stage reduction mechanism
  • the second stage reduction mechanism is an internal gear body, an external gear body that meshes with the internal gear body, A crankshaft that engages with the external gear body and causes the external gear body to swing eccentrically with respect to the internal gear body; and a support body that supports the crankshaft, and the internal gear body or the An eccentric oscillating speed reducer from which an output is taken out from a support, and when the input rotational speed to the first stage speed reducer is 2000 RPM to 4000 RPM, the output from the eccentric oscillating speed reducer is 20 RPM to In the reducer attached to the joint of an industrial robot that rotates at 40 RPM, Wherein the output from the machine to come to be rotated as 20RPM to 40
  • the speed reducer attached to the joint portion of the industrial robot according to the third aspect of the present invention is a speed reducer including a first speed reduction mechanism and a second speed reduction mechanism, wherein the first speed reduction mechanism A speed reduction mechanism is a speed reducer that reduces the rotation of the motor force and transmits it to the second speed reduction mechanism, and the second speed reduction mechanism is an internal gear body and an external gear that meshes with the internal gear body.
  • Body or the support body force is an eccentric oscillating speed reducer from which the output is taken out, and when the rotational speed force S4001 to 6000 RPM is input to the first stage speed reducer, the output of the eccentric oscillating speed reducer force is output.
  • the reduction ratio is selected in the first stage reduction mechanism, Ru.
  • the reduction ratio of the first stage reduction mechanism is between 1Z3 and 1Z6.5.
  • the second stage reduction The reduction ratio of the mechanism is preferably between 1Z20 and 1Z60.
  • the total reduction ratio which is the product of the reduction ratio of the first stage reduction mechanism and the reduction ratio of the second stage reduction mechanism, is 1Z90 to 1Z30.
  • the total reduction ratio which is the product of the reduction ratio of the first stage reduction mechanism and the reduction ratio of the second stage reduction mechanism, is 1Z90 to 1Z200. It is preferred to be between! /.
  • the total reduction ratio which is the product of the reduction ratio of the first stage reduction mechanism and the reduction ratio of the second stage reduction mechanism, is 1Z150 to 1Z3
  • the output from the eccentric rocking reduction gear is preferably 30 RPM to 40 RPM! /.
  • the reduction ratio of the first stage reduction mechanism is selected, and the rotation of the crankshaft of the eccentric oscillating speed reducer that is the second stage reduction mechanism Therefore, even if it is attached to the joint part of an industrial robot and used at a higher input speed or output speed to the reducer, heat generation is suppressed and a reduction in life is prevented.
  • FIG. 1 is an overall view of an industrial robot 50
  • FIG. 2 is a diagram showing a cross-sectional structure of a reduction gear attached to the joint portion of the industrial robot according to the first embodiment of the present invention.
  • FIG. 3 is a diagram representing the diagram of FIG. 2 in a specific structure.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a diagram schematically showing cross sections taken along arrows V-V in FIGS. 2 and 3.
  • FIG. 6 is a diagram showing a drive system of joint portions 54, 55 and 56 in FIG. 1.
  • FIG. 6 is a diagram showing a drive system of joint portions 54, 55 and 56 in FIG. 1.
  • FIG. 7 is a diagram showing a cross-sectional structure of a reduction gear attached to a joint portion of an industrial robot according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing a cross-sectional structure of a speed reducer attached to a joint portion of an industrial robot according to a third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a speed reducer attached to a joint part of an industrial robot according to a fourth embodiment of the present invention.
  • FIG. 1 is an overall view of the industrial robot 50.
  • Industrial robot 50 ⁇ 1 axis joint part 51, J2 axis joint part 52, J3 axis joint part 53, J4 axis joint part 54, J5 axis joint part 55 and J6 axis joint part 56 Is attached.
  • the proximal arm 58 (swivel head) is rotatably mounted on the J1 axis joint 51 of the base 59.
  • a first arm 200 to be described later is rotatably attached on the J2 axis joint portion 52 of the proximal arm 58.
  • FIG. 2 is a diagram showing a cross-sectional structure of the speed reducer attached to the J3 axis joint 53 of the industrial robot according to the first embodiment of the present invention
  • FIG. 3 is an aid for understanding FIG. It is a diagram expressing the diagram in a specific structure.
  • Fig. 4 is a cross-sectional view taken along line IV-IV in Fig. 3. 2, FIG. 3 and FIG. 4, the speed reducer 100 and the electric motor 1 are attached to the J3 axis joint portion 53 of the industrial robot in which the first arm 200 and the second arm 300 rotate relatively.
  • the speed reducer 100 is composed of a first stage speed reduction mechanism (front stage side speed reduction mechanism) 10 and a second stage speed reduction mechanism (back stage side speed reduction mechanism) 30 that reduce the rotational speed from the electric motor 1.
  • the first speed reduction mechanism 10 includes a first input gear portion 3 and three second spur gears 5 that are respectively meshed with the first input gear portion 3 and arranged equally around the first input gear portion 3. It has a spur gear type reduction part.
  • the second stage reduction mechanism 30 also has a plurality of pin forces as internal teeth.
  • Internal gear body 9 having internal teeth 7 and external teeth 11 having external teeth 11 meshing with the internal teeth 7 of the internal gear body 9
  • Each of the gear body 13 and the second spur gear 5 is provided, and the three crankshafts are engaged with the external gear body 13 to cause the external gear body 13 to swing eccentrically with respect to the internal gear body 9.
  • 15 and an eccentric oscillating speed reducer having a support 17 for supporting the three crankshafts 15.
  • the speed reducer 100 has an input rotational speed to the first input gear unit 3 of 2000 RPM or more (when the rotational speed of the output shaft of the electric motor 1 is 2000 RPM or more, (In this embodiment, the internal gear body 9 is fixed, and the output rotation is taken out from the support body 17).
  • the reduction ratio of the first-stage reduction mechanism 10 (first input gear section) is set so that each crankshaft 15 does not exceed 1000 RPM when the output of the oscillating speed reducer is 20 RPM or more.
  • the reduction ratio of the second stage reduction mechanism 30 (the rotation speed of the crankshaft 15 and the output rotation speed of the support 17) Ratio) is selected between 1Z20 and 1Z60, and the reduction ratio of the first reduction mechanism 10 and the reduction ratio of the second reduction mechanism 30 And the total reduction ratio is between from 1Z90 to 1Z300 is.
  • FIG. 5 is a diagram schematically showing cross sections taken along arrows VV in FIGS. 2 and 3.
  • the tooth portion pitch circle dimension of the second spur gear 5 is at most the distance between the rotation centers of the crankshafts 15 (rotation centers are indicated by reference numeral 15). Only half can be taken.
  • the tooth part pitch circle dimension of the first input gear part 3 is arranged at the center part of the tooth part pitch circle dimension of the limited three second spur gears 5. Therefore, the maximum value of the ratio of the tooth pitch circle radius of the second spur gear 5 to the tooth pitch circle radius of the first input gear portion 3 is the maximum of both ends (P1 and P2) of each crankshaft distance and each crankshaft.
  • the trigonometric force of the triangle (PI—P2—P3) specified by the center connecting the two (rotation center of the first input gear section 3) P3 can be obtained, which is theoretically 6.46 times.
  • the spur gear-type reduction unit is provided on each of the three crankshafts that mesh with the first input gear unit 3 and the first input gear unit 3 respectively. It consists of three second spur gears 5 equally distributed around the first input gear part 3
  • the maximum reduction ratio obtained by the first input gear unit 3 and the three second spur gears 5 in the spur gear type reduction unit is 1Z6.5 even if an attempt is made to correct the tooth profile. Therefore, the upper limit of the reduction ratio of the first stage reduction mechanism 10 is set to 1Z6.5.
  • the reduction ratio of the first stage reduction mechanism 10 is selected from 1Z3 to 1Z6.5.
  • the total reduction ratio which is the product of the reduction ratio of the two-stage reduction mechanism 30, is considered to be used between about 1Z90 and about 1Z300.
  • the reduction ratio of the second reduction mechanism 30 is 1Z20 to 1Z60. If it is selected, the total reduction ratio can be satisfied in relation to the reduction ratio of the first stage reduction mechanism 10.
  • the rolling bearing 21 is provided between the support body 17 and the internal gear body 9 so that they can rotate relatively.
  • the seal member 23 is provided between the support body 17 and the internal gear body 9 so that grease and lubricating oil inside the speed reducer do not leak to the outside from between them.
  • the rolling bearing 25 is provided between the crankshaft 15 and the support 17 so that they can rotate relative to each other! /.
  • the rolling bearing 27 is provided between the crankshaft 15 and the external gear body 11 so that they can rotate relatively.
  • the support 17 includes a pair of plate-like portions 28 and a column portion 29 that couples the pair of plate-like portions 28.
  • the pair of plate-like portions 28 are provided with hollow holes 16.
  • the external gear body 11 is provided with a hollow hole 14.
  • the internal gear body 9 is fixed and the output rotation is taken out from the support body 17, but the support body 17 is fixed and the output rotation is taken out from the internal gear body 9. There may be. It can also be attached to the J1 axis, J2 axis, J4 axis, J5 axis and J6 axis joints of industrial robots.
  • the first stage reduction mechanism 10 can also have a two-stage structure.
  • the reduction ratio of the first stage reduction mechanism 10 can be reduced to a ratio 1Z12 greater than 1Z6.5, even if the input rotational speed to the first stage reduction mechanism 10 becomes higher. It becomes possible to respond.
  • the reduction ratio of the first stage reduction mechanism is selected to limit the rotation of the crankshaft so that it does not exceed 1000 RPM, so it can be attached to the joint of an industrial robot and input rotation speed to the reducer. Even when the output rotational speed is increased, heat generation from the crankshaft portion is suppressed, and a reduction in life can be prevented.
  • the output from the eccentric rocking reduction gear is set to 20 RPM to 40 RPM, and it is attached to the joint portion of the industrial robot that rotates.
  • the reduction ratio of the first stage reduction mechanism 10 (first input gear) is set so that each crankshaft 15 does not exceed 1000 RPM when the output from the eccentric oscillating speed reducer is 20 RPM to 40 RPM.
  • the speed reduction ratio between the part 3 and the second spur gear 5) is selected between 1Z3 and 1Z6.5
  • the speed reduction ratio of the second stage reduction mechanism 30 (the rotational speed of the crankshaft 15 and the output speed of the support 17) Is selected between 1Z20 and 1Z60
  • the total reduction ratio which is the product of the reduction ratio of the first stage reduction mechanism 10 and the reduction ratio of the second stage reduction mechanism 30, is between 1Z90 force and 1Z200.
  • the reduction ratio of the first stage reduction mechanism 10 at the joint of the industrial robot is considered to be used between about 1Z90 and about 1Z200.
  • the reduction ratio of the second reduction mechanism 30 is 1Z20 to 1Z60. Is selected, the total reduction ratio can be satisfied in relation to the reduction ratio of the first stage reduction mechanism 10.
  • the reduction ratio of the first-stage reduction mechanism is selected to limit the rotation of the crankshaft so that it does not exceed 1000 RPM, so it can be attached to the joint of an industrial robot and input to the reducer. Even when the output rotation speed is increased, heat generation from the crankshaft portion is suppressed, and a reduction in life can be prevented. [0020] When the rotational speed force input to the first input gear section 3 is 001RPM to 6000RPM, the output from the eccentric rocking reduction gear is set to 20RPM to 40RPM and is attached to the joint section of the industrial robot that rotates.
  • the reduction ratio of the first-stage reduction mechanism 10 (first input gear)
  • the speed reduction ratio between the part 3 and the second spur gear 5) is selected between 1Z3 and 1Z6.5
  • the speed reduction ratio of the second stage reduction mechanism 30 (the rotational speed of the crankshaft 15 and the output speed of the support 17) Is selected between 1Z20 and 1Z60
  • the total reduction ratio which is the product of the reduction ratio of the first stage reduction mechanism 10 and the reduction ratio of the second stage reduction mechanism 30, is between 1Z150 and 1Z300.
  • the total reduction ratio is about 1Z150.
  • the reduction ratio of the first stage reduction mechanism is 1Z6.3
  • the reduction ratio of the second stage reduction mechanism is 1Z24
  • the reduction ratio of the first stage reduction mechanism 10 at the joint of the industrial robot is considered to be used between about 1Z 150 and about 1Z300.
  • the reduction ratio of the second reduction mechanism 30 is 1Z20.
  • the total reduction ratio can be satisfied in relation to the reduction ratio of the first stage reduction mechanism 10.
  • the reduction ratio of the first stage reducer is selected to limit the rotation of the crankshaft so that it does not exceed 1000 RPM, so it can be attached to the joint part of an industrial robot and input rotation speed to the reducer. Even when the output rotational speed is increased, the heat generation from the crankshaft portion is suppressed and the life can be prevented from being shortened.
  • Three movements (twisting, swinging, and rotating movements described later) of the robot tip are arranged in the three electric motors, the J4 axis joint 54, the J5 axis joint 55, and the J6 axis joint 56. It is driven by a two-stage speed reducer.
  • the rotary shaft arm 311 «J4 axis joint 54 is rotatable (twisted) with respect to the second arm base 309.
  • the wrist 313 is attached to the tip of the rotary shaft arm 311 and can be rotated (run-out motion) by the J5 shaft joint portion 55.
  • the grip portion 315 is attached to the tip of the wrist portion 313 and can be rotated (rotated) by the J6 axis joint portion 56.
  • a gripping device provided in the gripping section 315 grips a workpiece (not shown) in a detachable manner.
  • the rotary shaft portions constituting the six degrees of freedom are each driven by a motor and a two-stage reduction type speed reducer according to an embodiment of the present invention to which the rotation of the motor is input, to reduce the motor rotation speed. Is driven precisely.
  • Three motors 317a, 317b, 317c force S are installed on the second arm base 309.
  • Each motor has two-stage reduction gears 319a, 319b, 319c via transmission gears. It is consolidated.
  • the rotation of each motor is transmitted to three transmission shafts 323a, 323b, and 323c arranged concentrically through a pair of spur gears 321a, 321b, and 321c.
  • the rotation of the outermost transmission shaft 323a is transmitted to the rotation shaft arm 311 via the two-stage reduction type reduction gear 319a, and is responsible for the motion of the J4 shaft joint.
  • the rotation of the intermediate transmission shaft 323b is transmitted to the two-stage reduction type speed reducer 319b via the transmission bevel gear 325, and the J5 axis joint which is a rotation axis perpendicular to the J4 axis joint of the wrist 313 It is converted into a rotational motion on the part.
  • the rotation of the innermost transmission shaft 323c is transmitted to the two-stage reduction type reduction gear 3 19c attached to the tip of the wrist 313 via the transmission bevel gear 327, the pair of transmission spur gears 329, and the transmission bevel gear 331. Be transmitted.
  • the gripping portion 315 is rotated on the J6 axis with the number of rotations reduced by a two-stage reduction type speed reducer 319c.
  • the output speed from the eccentric oscillating speed reducer is 20RPM with the input rotational speed force 000RPM to 6000RPM or more to 6001RPM to the first stage reducer 319a, 319b and 319c of each two-stage reduction type.
  • the reduction ratio of the first stage reduction mechanism is 1Z3 ⁇ 1Z6.5
  • the reduction ratio of the second stage reduction mechanism is 1Z 20 ⁇ 1Z50
  • the total reduction ratio is 1Z90 Set to ⁇ 1Z300 and crankshaft max.
  • the rotation number is preferably 1000 RPM or less, or 900 RPM or less.
  • Industrial robots that perform spot welding, arc welding, and assembly work have short movements between operations and a short drive time at the maximum rotation speed.
  • crankshaft portion of the rear stage reduction mechanism on the Jl, J2 and J3 shafts is heavily loaded and heat generation increases. Therefore, it is preferable to suppress the heat generation at the crankshaft portion by setting the maximum rotation speed of the crankshaft to 900 RPM or less. Therefore, in this case, it is only necessary to set the reduction ratio of the front reduction gear so that the maximum rotation speed of the crankshaft can be set to 900 RPM or less.
  • the maximum rotational speed of the crankshaft of the rear stage reduction mechanism be 900 RPM or less.
  • the maximum rotational speed of the crankshaft of the rear stage reduction mechanism it is preferable to set the maximum rotational speed of the crankshaft of the rear stage reduction mechanism to 900 RPM or less.
  • This reduction device has a configuration in which a spur gear type reduction mechanism is further provided on the final output side of the reduction device according to the first embodiment.
  • the same parts as those of the structure of the reduction gear according to the first embodiment are denoted by the same reference numerals, and description of the reference numerals is omitted.
  • the reduction gear 100 and the electric motor 1 are attached to the J4 axis joint portion 54 of the industrial robot in which the second arm 300 and the rotary shaft arm 311 rotate relatively.
  • the reduction gear 100 and the electric motor 1 are provided on the second arm 300 by shifting the force on the rotation axis of the rotation shaft arm 311.
  • the rotary shaft arm 311 is rotatably supported by the second arm 300 by a bearing 404.
  • the reducer 100 basically includes a first stage reduction mechanism 10 and a second stage reduction mechanism 30 that reduce the number of revolutions from the electric motor 1.
  • a spur gear 401 is fixed to the support 17 of the second stage reduction mechanism 30.
  • the spur gear 402 is fixed to the rotary shaft arm 311 and meshes with the spur gear 401.
  • the pitch circle diameter of the teeth of the spur gear 402 is larger than the pitch circle diameter of the teeth of the spur gear 401, and the rotation of the support 17 is reduced to 1Z1.5 to 1Z4 and transmitted to the rotary shaft arm 311.
  • the input rotation speed to the first stage reducer is 2000RPM to 6000RPM, or 6001RPM or more
  • the output from the eccentric rocking reducer is 20RPM to 60RPM, or 61RPM or more
  • the rotation speed is preferably 1000 RPM or less, or 900 RPM or less.
  • the spur gear 402, the second arm 300, and the rotary shaft arm 311 have a hollow center 403 at the center of rotation, and the hollow 403 can be inserted with wiring, piping, etc. required by an industrial robot. ing.
  • This speed reducer employs a two-stage spur gear speed reducer for the first speed reduction mechanism of the speed reducer according to the first embodiment.
  • the same parts as those of the structure of the speed reducer according to the first embodiment are denoted by the same reference numerals, and description of the reference numerals is omitted.
  • the reduction gear 100 and the electric motor 1 are attached to the J3 axis joint portion 53 of the industrial robot in which the first arm 200 and the second arm 300 rotate relatively.
  • the reducer 100 includes a first stage reduction mechanism 10 and a second stage reduction mechanism 30 that reduce the number of revolutions from the electric motor 1.
  • the first stage reduction mechanism 30 is an intermediate having a spur gear 501 fixedly provided on the output shaft of the electric motor 1, a spur gear 502 fixedly provided on the crankshaft 15, a spur gear 503, and a spur gear 504. It consists of a shaft 505.
  • the first stage reduction mechanism 10 has a two-stage structure, so that the reduction ratio of the first stage reduction mechanism 10 can be reduced to a ratio 1Z12 greater than 1Z6.5. Even if the input rotation speed of the is higher, it becomes possible to cope.
  • the crankshaft 15 is rotatably supported by a support 17 by a bearing 506.
  • Spur gear 503 meshes with spur gear 501
  • spur gear 504 meshes with spur gear 502.
  • the pitch circle diameter of the spur gear 503 teeth is larger than the pitch circle diameter of the spur gear 501 teeth, and the pitch circle diameter of the spur gear 502 teeth is greater than the pitch circle diameter of the spur gear 504 teeth. It's getting bigger.
  • the rotation of the electric motor 1 is decelerated to 1Z2 to 1Z5 and transmitted to the intermediate shaft 505, and the rotation of the intermediate shaft 505 is decelerated to 1Z2 to 1Z5 and transmitted to the crankshaft 15.
  • This speed reducer is a modified form of the speed reducer according to the first embodiment, and transmits the rotational driving force of the electric motor to only one specific crankshaft.
  • the same parts as those of the structure of the speed reducer according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the speed reducer 100 and electric motor 1 have a base arm 58 (swivel head) and base 59 relative to each other It is attached to the Jl-axis joint of an industrial robot that rotates in a straight line.
  • the speed reducer 100 includes a first speed reduction mechanism 10 and a second speed reduction mechanism 30 that reduce the rotational speed from the electric motor 1.
  • the first speed reduction mechanism 10 includes a spur gear 601 fixedly provided on the output shaft of the electric motor 1 and a spur gear 602 fixedly provided on only one specific crankshaft 15. . Therefore, the rotational driving force of the electric motor 1 is first transmitted to only one specific crankshaft 15 of the second stage reduction mechanism 30.
  • the pitch circle diameter of the tooth portion of the spur gear 602 is larger than the pitch circle diameter of the tooth portion of the spur gear 601. The rotation of the electric motor 1 is decelerated to 1Z2 to 1Z5 and transmitted to one crankshaft 15.
  • the hollow intermediate gear body 603 meshes with the spur gear 602 and meshes with a spur gear (not shown) different from the spur gear 602 provided on the other two crankshafts (not shown). Therefore, the rotation transmitted to the intermediate gear body 603 is distributed and transmitted to the other two crankshafts.
  • the intermediate gear body 603 is rotatably supported by the base end arm 58 by a bearing 604.
  • the hollow cylindrical cover 605 is sealed with a bolt 607 on the support 17 of the reducer 100 whose outer periphery is in contact with and sealed against an oil seal 606 provided on the proximal arm 58 and whose other end rotates with respect to the base 59. And sealed. In the cover 605, wiring 608 and piping 608 necessary for the industrial robot are inserted.
  • the deceleration of the first stage reduction mechanism 10 is performed.
  • the ratio is set to 1Z3 to 1Z6.5
  • the reduction ratio of the second stage reduction mechanism is set to 1Z20 to lZ40
  • the total reduction ratio is set to 1Z90 to 1Z200
  • the maximum speed of the crankshaft is set to 1000 RPM or less, or 900 RPM or less is preferable.
  • the first stage speed reduction mechanism Since the rotation of the crankshaft of the eccentric oscillating reducer, which is the second-stage reduction mechanism, is limited by selecting the reduction ratio, it is attached to the joint part of an industrial robot and the input rotation speed and output to the reducer Even when the rotational speed is increased, heat generation is suppressed and a reduction in life is prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Retarders (AREA)
  • Manipulator (AREA)

Abstract

 産業ロボットの関節部の減速機100は、第1段減速機構10が平歯車式減速部、並びに第2段減速機構30が偏心揺動式減速部からなり、偏心揺動式減速部からの出力が前記内歯歯車体または前記支持体から取り出される減速機100であって、前記第1入力歯車部への入力回転数が2000RPM以上であるときに、該偏心揺動式減速部からの出力を20RPM以上として回転させる産業ロボットの関節部に取り付けられる減速機において、前述の偏心揺動式減速部からの出力を20RPM以上として回転させているときに前記各々のクランク軸が1000RPMを超えないよう回転するように、前記第1段減速機構の減速比が選択されている。

Description

明 細 書
産業ロボットの関節部に取り付けられる減速機
技術分野
[0001] 本発明は、熱発生を低減した産業ロボットの関節部に取り付けられる減速機に関す る。
背景技術
[0002] 従来、ロボットの関節駆動用減速機として、偏心揺動型減速機の前段部に平歯車 を設けた 2段式の減速機が知られている。この減速機は、その前段部の減速比を口 ボット関節駆動系の固有振動数およびモータ回転数との関係で適宜選択することに より、溶接作業等の精密作業領域においてロボットの共振現象を回避できるという効 果を有するものである。従って、この減速機の前段部の減速比は、上記固有振動数、 モータ回転数、および必要な総減速比との関係力 選択されるというものであった( 例えば、特許文献 1参照。 ) o一方、従来における上記減速機の出力回転数は、 0〜 15RPM程度で使用されて!、た。そのときのモータ回転数力^〜 1500RPM程度で あつたため、上記減速機に実用上問題となるような高熱は生じず、したがって発熱を 考慮した観点力も前段部平歯車の減速比が選択されてはいな力つた。
特許文献 1 :特開昭 62— 4586号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、近年、ロボットの高速運転ィ匕等に伴い、上記減速機の出力回転数は 0〜40RPM程度に、その使用モータ回転数は 0〜6000RPM程度にまで上昇し、口 ボットの連続繰返し運転と相俟って、全作業領域にお 、て減速機に実用上問題とな る高熱を発生するようになり、減速機の寿命が短くなるという問題が生じてきた。本件 発明は、力かる問題を解決することを目的とする。
上記減速機における熱発生の主原因は、常識的には、偏心揺動型減速機部の滑 り接触を生じる部分、つまり内歯歯車体の内歯と該内歯歯車体に嚙み合う外歯歯車 体の外歯との嚙み合い接触に起因していると考えられており、ころがり接触部分、つ まり通常ころがり軸受を介して外歯歯車体に係合するクランク軸の回転条件には起因 して ヽな 、と考えられて 、た。
し力しながら、発明者は、上記発熱の主原因がクランク軸の回転条件に起因し生じ ることを突き止めた。例えば、モータ回転数(2段式の減速機への入力回転数)を 400 ORPM、 2段式減速機の最終出力回転数を 35RPMとして使用したい場合、総減速 比は約 1Z114であり、前段減速機構機の減速比を 1Z2. 5とすると後段減速機構 機の減速比は 1Z46となり、クランク回転数は 1600RPM (=4000Z2. 5)の高速 回転となって高熱が発生するのである。すなわち、クランク軸の高速回転により、ダリ ース (又は潤滑油)が遠心力により飛散し、クランク軸と外歯歯車体との係合部分やこ ろがり軸受部にグリースが十分に行き渡らず潤滑性や除熱が不十分となり、ころがり 軸受部といえども滑りが生じて高熱を生じていること、また、前述の係合部分やころが り軸受部に減速機内の鉄分が入り込み発熱を助長していることを解明した。また、上 記のような発熱は、潤滑剤の粘性を低下させるため、潤滑性能が低下するだけでなく 上記遠心力による潤滑剤飛散を更に助長するという悪循環を招く。
本発明は、力かる知見に基づきなされたものであり、クランク軸の回転数を制限し、 前述の係合部分やころがり軸受部からグリースの飛散を最小限に押さえるようにして 、前述した従来の問題を解決するものである。
課題を解決するための手段
(1)本発明の第 1の観点における産業ロボットの関節部に取り付けられる減速機は 、第 1段減速機構および第 2段減速機構を含む減速機であって、該第 1段減速機構 がモータ力 の回転を減速して前記第 2段減速機構へ伝達する減速機であり、該第 2段減速機構が内歯歯車体、該内歯歯車体に嚙み合う外歯歯車体、該外歯歯車体 に係合し該外歯歯車体を前記内歯歯車体に対して偏心揺動運動させるクランク軸、 及び該クランク軸を支持する支持体を有し前記内歯歯車体または前記支持体から出 力が取り出される偏心揺動式減速機であって、前記第 1段減速機への入力回転数が 2000RPM以上であるとき、該偏心揺動式減速機力もの出力を 20RPM以上で回転 させる産業ロボットの関節部に取り付けられる減速機において、前記偏心揺動式減 速機からの出力を 20RPM以上として回転させているときに前記クランク軸が 1000R PMを超えな 、で回転するように、前記第 1段減速機構の減速比が選択されて!、る。
[0005] (2)本発明の第 2の観点における産業ロボットの関節部に取り付けられる減速機は 、第 1段減速機構および第 2段減速機構を含む減速機であって、該第 1段減速機構 がモータ力 の回転を減速して前記第 2段減速機構へ伝達する減速機であり、該第 2段減速機構が内歯歯車体、該内歯歯車体に嚙み合う外歯歯車体、該外歯歯車体 に係合し該外歯歯車体を前記内歯歯車体に対して偏心揺動運動させるクランク軸、 及び該クランク軸を支持する支持体を有し前記内歯歯車体または前記支持体から出 力が取り出される偏心揺動式減速機であって、前記第 1段減速機への入力回転数が 2000RPM乃至 4000RPMであるとき、該偏心揺動式減速機からの出力を 20RPM 乃至 40RPMで回転させる産業ロボットの関節部に取り付けられる減速機において、 前記偏心揺動式減速機からの出力を 20RPM乃至 40RPMとして回転させていると きに前記クランク軸が 1000RPMを超えないで回転するように、前記第 1段減速機構 の減速比が選択されて!ヽる。
[0006] (3)本発明における第 3の観点における産業ロボットの関節部に取り付けられる減 速機は、第 1段減速機構および第 2段減速機構を含む減速機であって、該第 1段減 速機構がモータ力 の回転を減速して前記第 2段減速機構へ伝達する減速機であり 、該第 2段減速機構が内歯歯車体、該内歯歯車体に嚙み合う外歯歯車体、該外歯 歯車体に係合し該外歯歯車体を前記内歯歯車体に対して偏心揺動運動させるクラ ンク軸、及び該クランク軸を支持する支持体を有し前記内歯歯車体または前記支持 体力も出力が取り出される偏心揺動式減速機であって、前記第 1段減速機への入力 回転数力 S4001乃至 6000RPMであるとき、該偏心揺動式減速機力もの出力を 20R PM乃至 40RPMで回転させる産業ロボットの関節部に取り付けられる減速機におい て、前記偏心揺動式減速機力 の出力を 20RPM乃至 40RPMとして回転させてい るときに前記クランク軸が 1000RPMを超えないで回転するように、前記第 1段減速 機構の減速比が選択されて 、る。
[0007] (4)本発明の産業ロボットの関節部に取り付けられる減速機において、第 1段減速 機構の減速比が 1Z3から 1Z6. 5までの間であることが好ましい。
[0008] (5)本発明の産業ロボットの関節部に取り付けられる減速機において、第 2段減速 機構の減速比が 1Z20から 1Z60までの間であることが好ましい。
[0009] (6)本発明の産業ロボットの関節部に取り付けられる減速機において、第 1段減速 機構の減速比と第 2段減速機構の減速比との積である総減速比が 1Z90から 1Z30
0までの間であることが好まし!/、。
[0010] (7)本発明の産業ロボットの関節部に取り付けられる減速において、第 1段減速機 構の減速比と第 2段減速機構の減速比との積である総減速比が 1Z90から 1Z200 までの間であることが好まし!/、。
[0011] (8)本発明の産業ロボットの関節部に取り付けられる減速機において、第 1段減速 機構の減速比と第 2段減速機構の減速比との積である総減速比が 1Z150から 1Z3
00までの間であることが好まし!/、。
[0012] (9)本発明の産業ロボットの関節部に取り付けられる減速機において、偏心揺動式 減速機からの出力が 30RPM乃至 40RPMであることが好まし!/、。
発明の効果
[0013] 本発明の産業ロボットの関節部に取り付けられる減速機によれば、第 1段減速機構 の減速比を選定して第 2段減速機構である偏心揺動式減速機のクランク軸の回転を 制限しているので、産業ロボットの関節部に取り付けられて減速機への入力回転数 や出力回転数を高くして用いる場合であっても、発熱が抑制されて寿命の低下が防 止される。
図面の簡単な説明
[0014] [図 1]産業ロボット 50の全体図である
[図 2]本発明の第 1の実施の形態に係る産業ロボットの関節部に取り付けられた減速 機の断面構造を示す線図である
[図 3]図 2の線図を具体的構造に表現した図である。
[図 4]図 3の IV— IV矢視断面図である。
[図 5]図 2および図 3の各 V— V矢視断面を概略で示す線図である。
[図 6]図 1の関節部 54、 55および 56の駆動系を示す線図である。
[図 7]本発明の第 2の実施の形態に係る産業ロボットの関節部に取り付けられた減速 機の断面構造を示す線図である。 [図 8]本発明の第 3の実施の形態に係る産業ロボットの関節部に取り付けられた減速 機の断面構造を示す線図である。
[図 9]本発明の第 4の実施の形態に係る産業ロボットの関節部に取り付けられた減速 機の断面図である。
発明を実施するための最良の形態
以下、本発明の実施の形態を添付図面に基づいて説明する。
図 1は産業ロボット 50の全体図である。産業ロボット 50ίお 1軸関節部 51、J2軸関節 部 52、 J3軸関節部 53、 J4軸関節部 54、 J5軸関節部 55及び J6軸関節部 56を備え、 それぞれの関節部には減速機が取り付けられている。基端アーム 58 (旋回ヘッド)は ベース 59の J1軸関節部 51上で回動可能に取り付けられている。後述する第 1アーム 200は基端アーム 58の J2軸関節部 52上で回動可能に取り付けられている。
図 2は本発明の第 1の実施の形態に係る産業ロボットの J3軸関節部 53に取り付けら れた減速機の断面構造を示す線図であり、図 3は図 2の理解の補助として、当該線 図を具体的構造に表現した図である。図 4は図 3の IV— IV矢視断面図である。図 2、 図 3及び図 4において、減速機 100及び電動モータ 1は、第 1アーム 200と第 2アーム 300が相対的に回動する産業ロボットの J3軸関節部 53に取り付けられている。減速 機 100は、電動モータ 1からの回転数を減速する第 1段減速機構 (前段側減速機構) 10及び第 2段減速機構 (後段側減速機構) 30から構成されて ヽる。
第 1段減速機構 10は第 1入力歯車部 3、及び該第 1入力歯車部 3にそれぞれ嚙み 合い該第 1入力歯車部 3の周囲に等配された三枚の第 2平歯車 5を有する平歯車式 減速部から構成されて 、る。第 2段減速機構 30は内歯としての複数のピン力もなる 内歯 7を有する内歯歯車体 9、該内歯歯車体 9の内歯 7に嚙み合う外歯 11を有する 二つの外歯歯車体 13、第 2平歯車 5の各々が設けられると共に外歯歯車体 13に係 合し該外歯歯車体 13を該内歯歯車体 9に対して偏心揺動運動させる三個のクランク 軸 15及び該三個のクランク軸 15を支持する支持体 17を有する偏心揺動式減速機 から構成されている。
第 1アーム 200には、電動モータ 1のケース及び内歯歯車体 9がボルト 40で取り付 けられている。第 2アーム 300には、支持体 17がボルト 40で取り付けられている。 [0016] この減速機 100は、第 1入力歯車部 3への入力回転数が 2000RPM以上 (電動モ ータ 1の出力軸の回転数が 2000RPM以上であるときに、偏心揺動式減速機からの 出力(本実施の形態においては内歯歯車体 9が固定され、支持体 17から出力回転 が取り出される。)を 20RPM以上として回転させる産業ロボットの J3軸関節部 53に取 り付けられる。偏心揺動式減速機力 の出力を 20RPM以上として回転させていると きに各々のクランク軸 15が 1000RPMを超えないで回転するように、第 1段減速機構 10の減速比(第 1入力歯車部 3と第 2平歯車 5との減速比)が 1Z3から 1Z6. 5の間 で選択され、第 2段減速機構 30の減速比 (クランク軸 15の回転数と支持体 17の出力 回転数との比)が 1Z20から 1Z60の間で選択され、第 1段減速機構 10の減速比と 第 2段減速機構 30の減速比との積である総減速比を 1Z90から 1Z300までの間と している。
具体的設定として例えば、モータ回転数 (第 1段減速機構への入力回転数)を 300 0RPM、第 2段減速機の最終出力回転数を 30RPMとして使用したい場合、総減速 比は約 1Z100であり、第 1段減速構機の減速比を 1Z3. 6とすると第 2段減速機構 機の減速比は 1Z28となり、クランク回転数は 833RPM ( = 3000Z3. 6)の低速回 転となって発熱が制限されるのである。
[0017] 図 5は、図 2及び図 3の各 V—V矢視断面を概略で示す線図である。図 5において、 二点鎖線 Wで示したように第 2平歯車 5の歯部ピッチ円寸法は、最大でも、互いのク ランク軸 15 (回転中心を符号 15で示す)の回転中心間距離の半分しかとれな 、。第 1入力歯車部 3の歯部ピッチ円寸法は制限された三つの第 2平歯車 5の歯部ピッチ 円寸法の中心部に配置されている。従って、第 2平歯車 5の歯部ピッチ円半径と第 1 入力歯車部 3の歯部ピッチ円半径との比の最大値は、各クランク軸間距離の両端 (P 1および P2)と各クランクを結ぶ中心 (第 1入力歯車部 3の回転中心) P3とで特定され る三角形 (PI— P2— P3)についての三角関数力も求めることができ、理論的に 6. 4 6倍である。
前述したように本発明の第 1の実施形態に係る平歯車式減速部は、第 1入力歯車 部 3、及び該第 1入力歯車部 3にそれぞれ嚙み合い三つのクランク軸の各々に設けら れて該第 1入力歯車部 3の周囲に等配された三枚の第 2平歯車 5から構成されており 、当該平歯車式減速部において第 1入力歯車部 3及び三枚の第 2平歯車 5で得られ る最大減速比は、歯形修正等を試みても 1Z6. 5が限界である。従って、第 1段減速 機構 10の減速比の上限は 1Z6. 5としている。
各々のクランク軸 15が 1000RPMを超えな 、ように回転させるためには、第 1段減 速機構 10の減速比が大きいほど良いが、実用上の好ましい下限と制限の有る上限と を考慮して、第 1段減速機構 10の減速比は 1Z3から 1Z6. 5の間で選択している。 第 1入力歯車部 3への入力回転数を 2000RPM以上にして偏心揺動式減速部から の出力を 20RPM以上として回転させる場合、産業ロボットの関節部における第 1段 減速機構 10の減速比と第 2段減速機構 30の減速比との積である総減速比は 1Z90 程度から 1Z300程度までの間で使用されると考えられ、この場合、第 2段減速機構 30の減速比は 1Z20から 1Z60の間で選択されれば、第 1段減速機構 10の減速比 との関係でその総減速比が満足できる。
ころがり軸受 21は支持体 17及び内歯歯車体 9間に設けられ、それらが相対的に回 転できるようになつている。シール部材 23は支持体 17及び内歯歯車体 9間に設けら れ、それら間から減速機内部のグリースや潤滑油が外部へ漏れな 、ようにされて 、る 。ころがり軸受 25はクランク軸 15及び支持体 17間に設けられ、それらが相対的に回 転できるようになって!/、る。ころがり軸受 27はクランク軸 15及び外歯歯車体 11間に設 けられ、それらが相対的に回転できるようになつている。支持体 17は一対の板状部 2 8及び該一対の板状部 28を結合する柱部 29から構成している。一対の板状部 28〖こ は中空孔 16が設けられて 、る。外歯歯車体 11には中空孔 14が設けられて 、る。 なお、本実施の形態においては内歯歯車体 9が固定され、支持体 17から出力回転 が取り出されているが、支持体 17が固定され、内歯歯車体 9から出力回転が取り出さ れる形態であっても良い。また、産業ロボットの J1軸、 J2軸、 J4軸、 J5軸、 J6軸の各関 節部に取り付けることもできる。
また、図 8について後述するように、第 1段減速機構 10を二段構造とすることも可能 である。二段構造とすることによって、第 1段減速機構 10の減速比を 1Z6. 5より大き な比率 1Z12まで減速することができ、第 1段減速機構 10への入力回転数がより高く なっても対応可能になる。 以上のように、第 1段減速機構の減速比を選定してクランク軸の回転が 1000RPM を超えないように制限しているので、産業ロボットの関節部に取り付けられて減速機 への入力回転数や出力回転数を高くして用いる場合であっても、クランク軸部からの 発熱が抑制されて寿命の低下が防止できる。
第 1入力歯車部 3への入力回転数が 2000RPM乃至 4000RPMであるときには、 偏心揺動式減速機からの出力を 20RPM乃至 40RPMとして回転させる産業ロボット の関節部に取り付けられる。偏心揺動式減速機からの出力を 20RPM乃至 40RPM として回転させているときに各々のクランク軸 15が 1000RPMを超えないで回転する ように、第 1段減速機構 10の減速比 (第 1入力歯車部 3と第 2平歯車 5との減速比)が 1Z3から 1Z6. 5の間で選択され、第 2段減速機構 30の減速比 (クランク軸 15の回 転数と支持体 17の出力回転数との比)が 1Z20から 1Z60の間で選択され、第 1段 減速機構 10の減速比と第 2段減速機構 30の減速比との積である総減速比を 1Z90 力も 1Z200までの間としている。
具体的設定として例えば、モータ回転数 (第 1段減速機構への入力回転数)を 400 0RPM、第 2段減速機の最終出力回転数を 35RPMとして使用したい場合、総減速 比は約 1Z114であり、第 1段速機構機の減速比を 1Z4. 5とすると第 2段減速機構 の減速比は 1Z25となり、クランク回転数は 889RPM (=4000Z4. 5)の低速回転 となって発熱が制限されるのである。
第 1入力歯車部 3への入力回転数が 2000RPM乃至 4000RPMとして偏心揺動 式減速機からの出力を 20RPM乃至 40RPMで回転させる場合、産業ロボットの関節 部における第 1段減速機構 10の減速比と第 2段減速機構 30の減速比との積である 総減速比は 1Z90程度から 1Z200程度までの間で使用されると考えられ、この場合 、第 2段減速機構 30の減速比は 1Z20から 1Z60の間で選択されれば、第 1段減速 機構 10の減速比との関係でその総減速比が満足できる。以上のように、第 1段減速 機構の減速比を選定してクランク軸の回転が 1000RPMを超えないように制限して いるので、産業ロボットの関節部に取り付けられて減速機への入力回転数や出力回 転数を高くして用いる場合であっても、クランク軸部からの発熱が抑制されて寿命の 低下が防止できる。 [0020] 第 1入力歯車部 3への入力回転数力 001RPM乃至 6000RPMであるときには、 偏心揺動式減速機からの出力を 20RPM乃至 40RPMとして回転させる産業ロボット の関節部に取り付けられる。偏心揺動式減速機からの出力を 20RPM乃至 40RPM として回転させているときに各々のクランク軸 15が 1000RPMを超えないで回転する ように、第 1段減速機構 10の減速比 (第 1入力歯車部 3と第 2平歯車 5との減速比)が 1Z3から 1Z6. 5の間で選択され、第 2段減速機構 30の減速比 (クランク軸 15の回 転数と支持体 17の出力回転数との比)が 1Z20から 1Z60の間で選択され、第 1段 減速機構 10の減速比と第 2段減速機構 30の減速比との積である総減速比を 1Z15 0から 1Z300までの間としている。
具体的設定として例えば、モータ回転数 (第 1段減速機構への入力回転数)を 600 ORPM、第 2段減速機構の最終出力回転数を 40RPMとして使用したい場合、総減 速比は約 1Z150であり、第 1段減速機構の減速比を 1Z6. 3とすると第 2段減速機 構の減速比は 1Z24となり、クランク回転数は 952RPM ( = 6000Z6. 3)の低速回 転となって発熱が制限されるのである。
第 1入力歯車部 3への入力回転数力4001RPM乃至 6000RPMとして偏心揺動 式減速部からの出力を 20RPM乃至 40RPMで回転させる場合、産業ロボットの関節 部における第 1段減速機構 10の減速比と第 2段減速機構 30の減速比との積である 総減速比は 1Z 150程度から 1Z300程度までの間で使用されると考えられ、この場 合、第 2段減速機構 30の減速比は 1Z20から 1Z60の間で選択されれば、第 1段減 速機構 10の減速比との関係でその総減速比が満足できる。
以上のように、第 1段減速機の減速比を選定してクランク軸の回転が 1000RPMを 超えないように制限しているので、産業ロボットの関節部に取り付けられて減速機へ の入力回転数や出力回転数を高くして用いる場合であっても、クランク軸部からの発 熱が抑制されて寿命の低下が防止できる。
[0021] 次に、図 1の多関節型産業用ロボットの先端部、つまり第 2アーム 300前方の J4〜J 6軸関節部 54、 55及び 56の駆動系の構造を、図 6に基づいて説明する。
ロボット先端部の三つの動作 (後述する捩れ、振れ、回動の動作)は、三つの電動 モータ並びに J4軸関節部 54、 J5軸関節部 55及び J6軸関節部 56に配置されている 二段減速型の減速機により駆動される。
回転軸アーム 311«J4軸関節部 54によって第 2アーム基部 309に対して回転可能 (捩れ運動)となっている。手首部 313は回転軸アーム 311の先端に取り付けられて おり、 J5軸関節部 55によって回動可能 (振れ運動)となっている。
把持部 315は、手首部 313の先端に取り付けられており、 J6軸関節部 56によって 回転可能(回動運動)となっている。把持部 315に設けられた把持装置はワーク(図 示なし)を着脱自在に把持する。手首部 313の先端において、 6個の自由度を持ち、 ワークを、自在に搬送して、位置決めすることができる。前記 6個の自由度を構成する 回転軸部はそれぞれモータと該モータの回転が入力される本発明の実施の形態に 係る二段減速型の減速機により、モータの回転数を落として駆動部を精密駆動して いる。
第 2アーム基咅 309に ίま 3つのモータ 317a、 317b, 317c力 S酉己設されており、各モ 一タには伝達ギアを介して二段減速型の減速機 319a、 319b, 319cが連結されて いる。各モータの回転は各々の一対の平歯車 321a、 321b, 321cを介して同心円 状に配置されている 3本の伝動軸 323a、 323b, 323cに伝達される。このうち最外側 の伝動軸 323aの回転は、二段減速型の減速機 319aを介して回転軸アーム 311に 伝達されており、 J4軸関節部の運動を担っている。中間の伝動軸 323bの回転は、伝 達傘歯車 325を介して二段減速型の減速機 319bに伝達されており、手首部 313の J 4軸関節部に垂直な回転軸である J5軸関節部上での回動運動に変換される。最内 側の伝動軸 323cの回転は、伝達傘歯車 327、一対の伝達平歯車 329および伝達 傘歯車 331を介して手首部 313の先端に取り付けられている二段減速型の減速機 3 19cに伝動される。把持部 315は二段減速型の減速機 319cにより回転数を落とされ て J6軸上で回動運動する。
この場合、各二段減速型の減速機 319a、 319b及び 319cの第 1段減速機への入 力回転数力 000RPM〜6000RPM、もしくは 6001RPM以上で、偏心揺動式減 速機からの出力を 20RPM〜60RPM、もしくは 61RPM以上で回転させるとき、その 第 1段減速機構の減速比を 1Z3〜1Z6. 5に、その第 2段減速機構の減速比を 1Z 20〜1Z50に、その総減速比を 1Z90〜1Z300に設定して、クランク軸の最高回 転数を 1000RPM以下に、もしくは 900RPM以下にするのが好ましい。
[0023] 次に、 6個の関節部 (J1軸、 J2軸、 J3軸、 J4軸、 J5軸、 J6軸)に取り付ける用途 Z使 用条件に応じた最適な二段減速型の減速機の構成につ 、て説明する。
[0024] スポット溶接作業、アーク溶接作業、組み立て作業を行なう産業ロボットは、作業間 の移動が短くて最高回転数での駆動時間が短いので、作業中において、 Jl, J2及び J3軸における第 2段減速機構のクランク軸の平均回転数が 1000RPM以下に設定 できるように前段減速機の減速比を設定すればょ 、。
しかしながら、塗装作業や搬送作業を行なう産業ロボットは、作業中長時間に亙つ て電動モータが高回転数で駆動され、且つワーク把持時に高負荷がかかる場合が 多い。この場合、 Jl, J2及び J3軸における後段部減速機構のクランク軸部に大きな負 担がかかり発熱が増加する。よって、該クランク軸の最高回転数を 900RPM以下に して該クランク軸部分で発熱を押さえることが好ましい。従ってこの場合、クランク軸の 最高回転数を 900RPM以下に設定できるように前段減速機の減速比を設定すれば よい。
即ち、塗装作業や搬送作業を行なう産業ロボットの Jl, J2及び J3軸においては、後 段部減速機構のクランク軸の最高回転数を 900RPM以下にするのが好ましい。
[0025] スポット溶接作業、アーク溶接作業、組み立て作業を行なう産業ロボットにおいては 、 J4J5及び J6軸上での低速動作と高速の素早い動作を必要とし、且つ長時間連続 で電動モータを高速駆動するので、後段部減速機構のクランク軸部での発熱が顕著 となる。よって、該クランク軸の最高回転数を 900RPM以下にして該クランク軸部分 で発熱を押さえることが好ましい。従ってこの場合、クランク軸の最高回転数を 900R PM以下に設定できるように前段減速機の減速比を設定すればよい。
即ち、スポット溶接作業、アーク溶接作業、組み立て作業を行なう産業ロボットの J4 , J5及び J6軸においては、後段部減速機構のクランク軸の最高回転数を 900RPM 以下にするのが好ましい。
また、高速回転電動モータを用いることにより電動モータを小型化することができるの で、第 2アーム部の軽量ィ匕ができて、 Jl, J2および J3軸への負担を軽くすることができ る。 [0026] 次に、図 7を用いて本発明の第 2の実施の形態に係る産業ロボットの J4軸関節部に 取り付けられた減速機を説明する。本減速機は、第 1の実施に係る減速機の最終出 力側に更に平歯車式の減速機構を備えた形態のものである。第 1の実施に係る減速 機の構造と同じ部分は同じ符号を付しその符号の説明は省略する。
減速機 100及び電動モータ 1は、第 2アーム 300と回転軸アーム 311が相対的に回 動する産業ロボットの J4軸関節部 54に取り付けられている。減速機 100及び電動モ ータ 1は、回転軸アーム 311の回転軸線上力 シフトして第 2アーム 300に設けられ て!、る。回転軸アーム 311は第 2アーム 300に軸受 404で回転自在に支持されて!ヽ る。
減速機 100は、電動モータ 1からの回転数を減速する第 1段減速機構 10及び第 2 段減速機構 30から基本的に構成されている。第 2段減速機構 30の支持体 17には、 平歯車 401が固定されて!、る。平歯車 402は回転軸アーム 311に固定され平歯車 4 01に嚙み合っている。平歯車 402の歯部のピッチ円直径は平歯車 401の歯部のピ ツチ円直径より大きくなつていて、支持体 17の回転が 1Z1. 5乃至 1Z4に減速され て回転軸アーム 311に伝達されて 、る。
この実施例においては、第 1段減速機への入力回転数が 2000RPM〜6000RP M、もしくは 6001RPM以上で、偏心揺動式減速機からの出力を 20RPM〜60RP M、もしくは 61RPM以上で回転させるとき、その第 1段減速機構 10の減速比を 1Z3 〜1Z6. 5に、その第 2段減速機構の減速比を 1Z20〜1Z50に、その総減速比を 1Z90〜1Z300に設定して、クランク軸の最高回転数を 1000RPM以下に、もしく は 900RPM以下にするのが好ましい。
平歯車 402、第 2アーム 300及び回転軸アーム 311は、それらの回転中央部が中 空 403となっていて、該中空 403には産業ロボットが必要とする配線、配管等が挿入 できるようになつている。
[0027] 次に、図 8を用いて本発明の第 3の実施の形態に係る産業ロボットの J3軸関節部に 取り付けられた減速機を説明する。本減速機は、第 1の実施に係る減速機の第 1段 減速機構に、二段の平歯車式減速機を採用した形態のものである。第 1の実施に係 る減速機の構造と同じ部分は同じ符号を付しその符号の説明は省略する。 減速機 100及び電動モータ 1は、第 1アーム 200と第 2アーム 300が相対的に回動 する産業ロボットの J3軸関節部 53に取り付けられている。減速機 100は、電動モータ 1からの回転数を減速する第 1段減速機構 10及び第 2段減速機構 30から構成され ている。第 1段減速機構 30は、電動モータ 1の出力軸に固定的に設けられた平歯車 501、クランク軸 15に固定的に設けられた平歯車 502、平歯車 503および平歯車 50 4を有する中間軸 505から構成されている。また、第 1段減速機構 10を二段構造とす ることによって、第 1段減速機構 10の減速比を 1Z6. 5より大きな比率 1Z12まで減 速することができ、第 1段減速機構 10への入力回転数がより高くなつても対応可能に なる。
クランク軸 15は支持体 17に軸受 506で回転自在に支持されている。平歯車 503は 平歯車 501と嚙み合い、平歯車 504は平歯車 502と嚙み合っている。
平歯車 503の歯部のピッチ円直径は平歯車 501の歯部のピッチ円直径より大きくな つており、平歯車 502の歯部のピッチ円直径は平歯車 504の歯部のピッチ円直径よ り大きくなつている。電動モータ 1の回転は 1Z2乃至 1Z5に減速されて中間軸 505 に伝達され、中間軸 505の回転は 1Z2乃至 1Z5に減速されてクランク軸 15に伝達 されている。
この実施例においては、第 1段減速機への入力回転数力 000RPM〜6000RP M、もしくは 6001RPM以上で、偏心揺動式減速機からの出力を 20RPM〜60RP M、もしくは 61RPM以上で回転させるとき、その第 1段減速機構 10の減速比を 1Z3 〜1Z12に、その第 2段減速機構の減速比を 1Z20〜1Z50に、その総減速比を 1 Z90〜: LZ500に設定して、クランク軸の最高回転数を 1000RPM以下に、もしくは 900RPM以下にするのが好まし!/、。
次に、図 9を用いて本発明の第 4の実施の形態に係る産業ロボットの J1軸関節部に 取り付けられた減速機を説明する。本減速機は、第 1の実施に係る減速機の変形形 態であり、特定の 1本のクランク軸のみに電動モータの回転駆動力を伝達するもので ある。第 1の実施に係る減速機の構造と同じ部分は同じ符号を付しその符号の説明 は省略する。
減速機 100及び電動モータ 1は、基端アーム 58 (旋回ヘッド)とベース 59が相対的 に回動する産業ロボットの Jl軸関節部に取り付けられている。減速機 100は、電動モ ータ 1からの回転数を減速する第 1段減速機構 10及び第 2段減速機構 30から構成さ れている。第 1段減速機構 10は、電動モータ 1の出力軸に固定的に設けられた平歯 車 601、特定の 1本のクランク軸 15のみに固定的に設けられた平歯車 602から構成 されている。従って、第 2段減速機構 30の特定の 1本のクランク軸 15のみにまず電動 モータ 1の回転駆動力が伝達されている。平歯車 602の歯部のピッチ円直径は平歯 車 601の歯部のピッチ円直径より大きくなつている。電動モータ 1の回転は 1Z2乃至 1Z5に減速されて 1本のクランク軸 15に伝達されている。
中空の中間歯車体 603は、平歯車 602と嚙み合うとともに、他の 2本のクランク軸( 図示なし)に設けた前記平歯車 602と異なる平歯車(図示なし)に嚙み合っている。 従って、中間歯車体 603に伝達された回転は、前記他の 2本のクランク軸に分配され て伝達されている。中間歯車体 603は、基端アーム 58に軸受 604で回転自在に支 持されている。中空円筒状のカバー 605は、その一端外周が基端アーム 58に設けた オイルシール 606に当接しシールされ、その他端がベース 59に対して回転する減速 機 100の支持体 17にボルト 607で固定されシールされている。カバー 605内には、 産業ロボットが必要とする配線、配管等 608が挿入されて 、る。
この実施例においては、第 1段減速機への入力回転数が 2000RPM〜4000RP Mで、偏心揺動式減速機力もの出力を 20RPM〜60RPMで回転させるとき、その第 1段減速機構 10の減速比を 1Z3〜1Z6. 5に、その第 2段減速機構の減速比を 1 Z20〜lZ40に、その総減速比を 1Z90〜1Z200に設定して、クランク軸の最高 回転数を 1000RPM以下に、もしくは 900RPM以下にするのが好ましい。
[0029] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 8月 11日出願の日本特許出願 (特願 2004— 234559)に基づくも のであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0030] 本発明の産業ロボットの関節部に取り付けられる減速機によれば、第 1段減速機構 の減速比を選定して第 2段減速機構である偏心揺動式減速機のクランク軸の回転を 制限しているので、産業ロボットの関節部に取り付けられて減速機への入力回転数 や出力回転数を高くして用いる場合であっても、発熱が抑制されて寿命の低下が防 止される。

Claims

請求の範囲
[1] 第 1段減速機構および第 2段減速機構を含む減速機であって、該第 1段減速機 構がモータ力 の回転を減速して前記第 2段減速機構へ伝達する減速機であり、該 第 2段減速機構が内歯歯車体、該内歯歯車体に嚙み合う外歯歯車体、該外歯歯車 体に係合し該外歯歯車体を前記内歯歯車体に対して偏心揺動運動させるクランク軸 、及び該クランク軸を回転自在に支持する支持体を有し前記内歯歯車体または前記 支持体力 出力が取り出される偏心揺動式減速機であって、前記第 1段減速機への 入力回転数が 2000RPM以上であるとき、該偏心揺動式減速機からの出力を 20RP M以上で回転させる産業ロボットの関節部に取り付けられる減速機において、前記 偏心揺動式減速機からの出力を 20RPM以上として回転させているときに前記クラン ク軸が 1000RPMを超えないで回転するように、前記第 1段減速機構の減速比が選 択されていることを特徴とする産業ロボットの関節部に取り付けられる減速機。
[2] 第 1段減速機構および第 2段減速機構を含む減速機であって、該第 1段減速機 構がモータ力 の回転を減速して前記第 2段減速機構へ伝達する減速機であり、該 第 2段減速機構が内歯歯車体、該内歯歯車体に嚙み合う外歯歯車体、該外歯歯車 体に係合し該外歯歯車体を前記内歯歯車体に対して偏心揺動運動させるクランク軸 、及び該クランク軸を回転自在に支持する支持体を有し前記内歯歯車体または前記 支持体力 出力が取り出される偏心揺動式減速機であって、前記第 1段減速機への 入力回転数が 2000RPM乃至 4000RPMであるとき、該偏心揺動式減速機からの 出力を 20RPM乃至 40RPMで回転させる産業ロボットの関節部に取り付けられる減 速機において、前記偏心揺動式減速機力 の出力を 20RPM乃至 40RPMとして回 転させて!/、るときに前記クランク軸が 1000RPMを超えな 、で回転するように、前記 第 1段減速機構の減速比が選択されていることを特徴とする産業ロボットの関節部に 取り付けられる減速機。
[3] 第 1段減速機構および第 2段減速機構を含む減速機であって、該第 1段減速機 構がモータ力 の回転を減速して前記第 2段減速機構へ伝達する減速機であり、該 第 2段減速機構が内歯歯車体、該内歯歯車体に嚙み合う外歯歯車体、該外歯歯車 体に係合し該外歯歯車体を前記内歯歯車体に対して偏心揺動運動させるクランク軸 、及び該クランク軸を回転自在に支持する支持体を有し前記内歯歯車体または前記 支持体力 出力が取り出される偏心揺動式減速機であって、前記第 1段減速機への 入力回転数が 4001乃至 6000RPMであるとき、該偏心揺動式減速機力もの出力を 20RPM乃至 40RPMで回転させる産業ロボットの関節部に取り付けられる減速機に おいて、前記偏心揺動式減速機からの出力を 20RPM乃至 40RPMとして回転させ ているときに前記クランク軸が 1000RPMを超えないで回転するように、前記第 1段 減速機構の減速比が選択されていることを特徴とする産業ロボットの関節部に取り付 けられる減速機。
[4] 前記第 1段減速機構の減速比が 1Z3から 1Z6. 5までの間であることを特徴とす る請求項 1記載の産業ロボットの関節部に取り付けられる減速機。
[5] 前記第 2段減速機構の減速比が 1Z20から 1Z60までの間であることを特徴とす る請求項 4記載の産業ロボットの関節部に取り付けられる減速機。
[6] 前記第 1段減速機構の減速比が 1Z3から 1Z6. 5までの間であることを特徴とす る請求項 2記載の産業ロボットの関節部に取り付けられる減速機。
[7] 前記第 2段減速機構の減速比が 1Z20から 1Z60までの間であることを特徴とす る請求項 6記載の産業ロボットの関節部に取り付けられる減速機。
[8] 前記第 1段減速機構の減速比が 1Z3から 1Z6. 5までの間であることを特徴とす る請求項 3記載の産業ロボットの関節部に取り付けられる減速機。
[9] 前記第 2段減速機構の減速比が 1Z20から 1Z60までの間であることを特徴とす る請求項 8記載の産業ロボットの関節部に取り付けられる減速機。
[10] 前記第 1段減速機構の減速比と前記第 2段減速機構の減速比との積である総減 速比を 1Z90から 1Z300までの間であることを特徴とする請求項 1記載の産業ロボ ットの関節部に取り付けられる減速機。
[11] 前記第 1段減速機構の減速比と前記第 2段減速機構の減速比との積である総減 速比を 1Z90から 1Z200までの間であることを特徴とする請求項 2記載の産業ロボ ットの関節部に取り付けられる減速機。
[12] 前記第 1段減速機構の減速比と前記第 2段減速機構の減速比との積である総減 速比を 1Z150から 1Z300までの間であることを特徴とする請求項 3記載の産業ロボ ットの関節部に取り付けられる減速機。
[13] 前記偏心揺動式減速機力 の出力が 30RPM乃至 40RPMであることを特徴とす る請求項 1記載の産業ロボットの関節部に取り付けられる減速機。
[14] 前記偏心揺動式減速機力 の出力が 30RPM乃至 40RPMであることを特徴とす る請求項 2記載の産業ロボットの関節部に取り付けられる減速機。
[15] 前記偏心揺動式減速機力 の出力が 30RPM乃至 40RPMであることを特徴とす る請求項 3記載の産業ロボットの関節部に取り付けられる減速機。
PCT/JP2005/014681 2004-08-11 2005-08-10 産業ロボットの関節部に取り付けられる減速機 WO2006016616A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05770527A EP1798444A4 (en) 2004-08-11 2005-08-10 SPEED REDUCER INSTALLED IN THE ARTICULATION OF AN INDUSTRIAL ROBOT
US11/571,749 US20080295623A1 (en) 2004-08-11 2005-08-10 Speed Reducer to be Attached to Articulated Portion Industrial Robot
JP2006531694A JPWO2006016616A1 (ja) 2004-08-11 2005-08-10 産業ロボットの関節部に取り付けられる減速機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-234559 2004-08-11
JP2004234559 2004-08-11

Publications (1)

Publication Number Publication Date
WO2006016616A1 true WO2006016616A1 (ja) 2006-02-16

Family

ID=35839382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014681 WO2006016616A1 (ja) 2004-08-11 2005-08-10 産業ロボットの関節部に取り付けられる減速機

Country Status (7)

Country Link
US (1) US20080295623A1 (ja)
EP (1) EP1798444A4 (ja)
JP (1) JPWO2006016616A1 (ja)
KR (1) KR20070044008A (ja)
CN (1) CN101006287A (ja)
TW (1) TW200621455A (ja)
WO (1) WO2006016616A1 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9879760B2 (en) 2002-11-25 2018-01-30 Delbert Tesar Rotary actuator with shortest force path configuration
WO2007091568A1 (ja) 2006-02-07 2007-08-16 Nabtesco Corporation 減速装置
US8353798B2 (en) * 2008-02-07 2013-01-15 Nabtesco Corporation Gear transmission
JP5270462B2 (ja) * 2009-06-15 2013-08-21 ナブテスコ株式会社 偏心揺動型歯車装置および偏心揺動型歯車装置におけるクランク軸の組み付け方法
JP5103444B2 (ja) * 2009-06-26 2012-12-19 住友重機械工業株式会社 遊星歯車減速装置
CN102114629B (zh) * 2009-12-30 2014-06-25 鸿富锦精密工业(深圳)有限公司 机器人结构
JP5782321B2 (ja) * 2011-07-15 2015-09-24 ナブテスコ株式会社 歯車装置
EP2829371A1 (en) * 2012-03-22 2015-01-28 Kabushiki Kaisha Yaskawa Denki Work robot and robot system
CN102632374A (zh) * 2012-05-04 2012-08-15 宁波中大力德传动设备有限公司 一种摆线减速器的输出法兰与支撑法兰一体加工方法
CN102644720A (zh) * 2012-05-04 2012-08-22 宁波中大力德传动设备有限公司 一种摆线减速器针齿壳的内齿加工方法
JP6050999B2 (ja) * 2012-09-28 2016-12-21 日本電産サンキョー株式会社 産業用ロボット
JP5418704B1 (ja) * 2013-01-17 2014-02-19 株式会社安川電機 ロボット
JP6018520B2 (ja) * 2013-02-25 2016-11-02 住友重機械工業株式会社 ロボットの関節駆動用の偏心揺動型の減速機
US10414271B2 (en) 2013-03-01 2019-09-17 Delbert Tesar Multi-speed hub drive wheels
US9862263B2 (en) 2013-03-01 2018-01-09 Delbert Tesar Multi-speed hub drive wheels
US9365105B2 (en) 2013-10-11 2016-06-14 Delbert Tesar Gear train and clutch designs for multi-speed hub drives
CN103753529B (zh) * 2014-01-16 2016-04-06 南京埃斯顿机器人工程有限公司 一种工业机器人关节无间隙传动机构
US10422387B2 (en) 2014-05-16 2019-09-24 Delbert Tesar Quick change interface for low complexity rotary actuator
US9915319B2 (en) 2014-09-29 2018-03-13 Delbert Tesar Compact parallel eccentric rotary actuator
US9657813B2 (en) 2014-06-06 2017-05-23 Delbert Tesar Modified parallel eccentric rotary actuator
US11014658B1 (en) 2015-01-02 2021-05-25 Delbert Tesar Driveline architecture for rotorcraft featuring active response actuators
JP6841595B2 (ja) 2015-12-25 2021-03-10 協同油脂株式会社 減速機用潤滑剤組成物及び減速機
KR101967507B1 (ko) 2016-02-22 2019-04-09 명지대학교 산학협력단 와이어 감속기
US10464413B2 (en) 2016-06-24 2019-11-05 Delbert Tesar Electric multi-speed hub drive wheels
CN106594184A (zh) * 2016-12-19 2017-04-26 传仕重工(苏州)有限公司 一种减速器的双齿轮关节结构
JP6670454B2 (ja) * 2017-08-18 2020-03-25 株式会社安川電機 ロボット及びロボットシステム
JP7170389B2 (ja) * 2017-11-28 2022-11-14 住友重機械工業株式会社 ギヤモータ
FR3085651B1 (fr) 2018-09-10 2023-10-27 Valeo Systemes Dessuyage Reducteur mecanique et moto-reducteur associe
JP2020183763A (ja) * 2019-04-26 2020-11-12 ナブテスコ株式会社 減速機、および、その減速機を用いる駆動装置
CN110985611A (zh) * 2019-05-22 2020-04-10 苏州华震工业机器人减速器有限公司 精密控制用中空减速机
CN110185748B (zh) * 2019-06-05 2022-02-22 南通振康机械有限公司 一体式机器人关节结构
JP7348772B2 (ja) * 2019-08-21 2023-09-21 住友重機械工業株式会社 ロボット
JP7440240B2 (ja) * 2019-10-23 2024-02-28 ファナック株式会社 ロボット
CN113618735B (zh) * 2021-08-16 2022-07-19 深圳市优必选科技股份有限公司 一种机器人关节的配置信息的确定方法、装置及终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272598A (ja) * 1992-03-25 1993-10-19 Sumitomo Heavy Ind Ltd 内接噛合遊星歯車構造のシリーズ
JPH07299791A (ja) * 1994-12-02 1995-11-14 Teijin Seiki Co Ltd 産業ロボットの関節駆動用減速装置
JPH11198086A (ja) * 1985-01-18 1999-07-27 Teijin Seiki Co Ltd 産業ロボットの関節駆動用減速装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1244855A (en) * 1985-01-18 1988-11-15 Kazuyuki Matsumoto Robot arm drive apparatus of industrial robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11198086A (ja) * 1985-01-18 1999-07-27 Teijin Seiki Co Ltd 産業ロボットの関節駆動用減速装置
JPH05272598A (ja) * 1992-03-25 1993-10-19 Sumitomo Heavy Ind Ltd 内接噛合遊星歯車構造のシリーズ
JPH07299791A (ja) * 1994-12-02 1995-11-14 Teijin Seiki Co Ltd 産業ロボットの関節駆動用減速装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1798444A4 *

Also Published As

Publication number Publication date
JPWO2006016616A1 (ja) 2008-05-01
TW200621455A (en) 2006-07-01
KR20070044008A (ko) 2007-04-26
CN101006287A (zh) 2007-07-25
EP1798444A4 (en) 2010-12-15
US20080295623A1 (en) 2008-12-04
EP1798444A1 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
WO2006016616A1 (ja) 産業ロボットの関節部に取り付けられる減速機
TWI273009B (en) Speed reducer for industrial robot
CN107405771B (zh) 传动器、电驱动装置和工业机器人
JP2006077980A (ja) 産業ロボットの関節部に取り付けられる減速機
WO2006104216A1 (ja) 産業用ロボットの旋回部構造
US20050204850A1 (en) Industrial robot
WO2010127701A1 (en) Pitch and roll robot joint and industrial robot
CN100581758C (zh) 工业机器人的摆动部分结构
CN102230518B (zh) 滚筒式齿环板少齿差齿轮减速器
US6582338B1 (en) Differential unit with worm gearsets
CN213647610U (zh) 一种高速高刚性的多关节焊接机器人
US7694601B2 (en) Gear device and electric power steering apparatus
JP2001113490A (ja) 産業用ロボットの手首駆動装置
WO2021060223A1 (ja) 駆動ユニット
JP2742912B2 (ja) 産業ロボットの関節装置
CN217951146U (zh) 一种左右旋滑动丝杠结构
JP2590404B2 (ja) 産業ロボットの関節装置
CN86104988A (zh) 自行车传动装置
TW202314142A (zh) 減速機及旋轉裝置
CN2377169Y (zh) 电动车驱动装置
JPH085026B2 (ja) 産業用ロボツト
JPH0429988Y2 (ja)
JP2006036125A (ja) クローラ式走行装置
CN115467951A (zh) 一种动力传递装置及使用该装置的动力车
JPH0451313B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531694

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11571749

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005770527

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077003217

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580027453.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005770527

Country of ref document: EP