WO2006011345A1 - 無線通信装置及び無線通信方法 - Google Patents

無線通信装置及び無線通信方法 Download PDF

Info

Publication number
WO2006011345A1
WO2006011345A1 PCT/JP2005/012564 JP2005012564W WO2006011345A1 WO 2006011345 A1 WO2006011345 A1 WO 2006011345A1 JP 2005012564 W JP2005012564 W JP 2005012564W WO 2006011345 A1 WO2006011345 A1 WO 2006011345A1
Authority
WO
WIPO (PCT)
Prior art keywords
secret key
channel
eigenvalue
wireless communication
generated
Prior art date
Application number
PCT/JP2005/012564
Other languages
English (en)
French (fr)
Inventor
Yasuaki Yuda
Tomohiro Imai
Kenichi Miyoshi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05758345A priority Critical patent/EP1758292A4/en
Priority to US11/658,256 priority patent/US20080304658A1/en
Priority to BRPI0513929-5A priority patent/BRPI0513929A/pt
Priority to JP2006528966A priority patent/JPWO2006011345A1/ja
Publication of WO2006011345A1 publication Critical patent/WO2006011345A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • H04L9/0656Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
    • H04L9/0662Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher with particular pseudorandom sequence generator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0875Generation of secret information including derivation or calculation of cryptographic keys or passwords based on channel impulse response [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/34Encoding or coding, e.g. Huffman coding or error correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2463/00Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00
    • H04L2463/061Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00 applying further key derivation, e.g. deriving traffic keys from a pair-wise master key

Definitions

  • the present invention relates to a radio used in a radio communication system using a MIMO (Multiple Input Multiple Output) technique in which radio signals transmitted from a plurality of antenna elements are received by the plurality of antenna elements to perform radio communication.
  • the present invention relates to a communication device and a wireless communication method. Background art
  • a mobile radio communication system to which such a secret key encryption technique is applied is known (see, for example, Patent Document 1).
  • T DD time division duplex
  • the delay profile of the propagation path is estimated on both sides of communication, and the complex amplitude of the estimated delay profile is calculated.
  • a secret key is generated using the information, power information or phase information!
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-273856
  • the object of the present invention is that even if a wireless signal is intercepted by a third party whose propagation path environment approximates to the receiving-side wireless communication device, To provide a wireless communication apparatus and a wireless communication method capable of generating a secret key different from a secret key generated by a third party.
  • a wireless communication apparatus includes a plurality of antennas that receive a radio signal of a MIMO channel, a channel estimation unit that calculates a channel estimation value of a reception signal by the antenna for each channel, and a calculated channel Channel matrix generation means for generating a channel matrix of the MIMO channel from the estimated value, secret key generation means for generating a secret key using information generated by the generated channel matrix force linear operation or nonlinear operation,
  • the structure which comprises is taken.
  • a wireless communication device generates a secret key using information generated from a channel matrix of a MIMO channel by linear operation or non-linear operation, for example, an eigenvalue of the MIMO channel. Even if intercepted by a third party, a secret key different from the secret key generated by the third party can be generated.
  • FIG. 1A is a diagram showing a communication mode when there is one transmission / reception antenna.
  • FIG. 1B A diagram showing the communication mode when there are multiple transmit / receive antennas
  • FIG. 2 is a block diagram showing a configuration of a wireless communication apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the secret key generation unit shown in FIG.
  • FIG. 4 is a flowchart for explaining the operation of the wireless communication apparatus shown in FIG.
  • FIG. 5 is a diagram for explaining eigenvalues for each channel in the first embodiment
  • Figure 6 Diagram showing the correlation between the total number of antenna elements and the gain of the maximum eigenvalue in a wireless communication device
  • FIG. 7 is a diagram for explaining the operation of the eigenvalue selection unit shown in FIG.
  • FIG. 8 is a diagram for explaining a modification of the operation of the eigenvalue selection unit shown in FIG.
  • FIG. 9 is a block diagram showing a configuration of a secret key generation unit in Embodiment 2 of the present invention.
  • FIG. 10 is a diagram for explaining the operation of the secret key generation unit shown in FIG.
  • FIG. 11 is a block diagram showing a configuration of a wireless communication apparatus according to Embodiment 3 of the present invention.
  • FIG. 12 is a diagram for explaining the operation of the wireless communication apparatus shown in FIG.
  • the present invention uses MIMO technology in a radio communication system to which a secret key scheme is applied.
  • the base station apparatus (BS) and the communication terminal apparatus (MS) are linear from the channel matrix of the MIMO channel.
  • a secret key is individually generated using information generated by calculation or nonlinear calculation.
  • Figure 1A shows a communication mode in which both BS and MS have one antenna element, and wireless communication is performed between BS and MS.
  • Fig. 1A it is assumed that a third party is physically located near the MS, and the propagation path environment between the MS and the third party is approximate.
  • a wireless signal transmitted from the BS to the MS may be intercepted by a third party.
  • the MS and the third party generate the secret key from the received signal in the same way, the correlation between the MS received signal and the third party received signal is high. Even if the three parties generate their own private keys, the generated private keys may be the same.
  • channels are formed between the plurality of antenna elements provided in the BS and the plurality of antenna elements provided in the MS. That is, a MIMO channel is formed. For this reason, even if a third party is located near the MS, it is difficult for a third party to intercept all radio signals transmitted from the BS to the MS, and even if the third party Even if a radio signal is intercepted, the correlation between all received signals intercepted by a third party and the MS received signal is shown in Fig. 1A. This is certainly lower than in the case of the communication mode.
  • FIG. 2 is a block diagram showing a configuration of radio communication apparatus 200 according to Embodiment 1 of the present invention.
  • radio communication apparatus 200 is mounted on both an MS such as a BS and a mobile phone constituting the radio communication system.
  • Radio communication apparatus 200 includes a plurality of antenna elements 201-1 to 201-n, a plurality of reception radio processing units 202-1 to 202-n, a plurality of pilot extraction units 203-1 to 203-n, a plurality of Channel estimation units 204-1 to 204-n, channel matrix generation unit 205, eigenvalue detection unit 206, secret key generation unit 207, pilot generation unit 211, and multiple transmission radio processing units 212-1 to 212
  • Each of the antenna elements 201-1 to 201-n captures a plurality of antenna element forces transmitted in the counterpart device and transmits the received radio signal, and receives the received signal as a reception radio processing unit 202 — l to 202-n. To enter.
  • Reception radio processing sections 202-1 to 202-n each include a bandpass filter, an analog Z digital transformation, a low-noise amplifier, and the like, and are input from antenna elements 201-1 to 201 -n.
  • the received signal is subjected to known reception signal processing, and the processed reception signal is input to the pilot extraction units 203-l to 203-n.
  • Pilot extraction sections 203-1 to 203-n extract pilot signals from the received signals input from reception radio processing sections 202-1 to 202-n, respectively, and perform channel estimation on the extracted pilot signals. Enter in part 204-1 to 204-n.
  • Channel estimation sections 204-l to 204-n use the pilot signals input from pilot extraction sections 203-1 to 203-n, respectively, and use a plurality of antenna elements and antenna elements 201 in the counterpart station apparatus. — Channel estimation for each channel formed between 1 and 201-n Then, the calculated channel estimation value for each channel is input to the channel matrix generation unit 205.
  • Channel matrix generation section 205 generates a channel matrix of the MIMO channel from channel estimation values for each channel input from channel estimation sections 204-1 to 204-n, and generates the generated channel matrix as an eigenvalue. Input to the detection unit 206. Details of the channel matrix of the MIMO channel and its generation process will be described later.
  • the eigenvalue detection unit 206 detects the eigenvalue of the channel matrix power MIMO channel input from the channel matrix generation unit 205 and inputs the detected eigenvalue of the MIMO channel to the secret key generation unit 207. Details of the eigenvalue detection process of the MIMO channel will be described later.
  • Secret key generation section 207 selects the maximum eigenvalue in the unique value of the MIMO channel input from eigenvalue detection section 206, generates a secret key using the selected maximum eigenvalue, and generates the generated secret key. Input to a control unit (not shown).
  • the pilot generating unit 211 generates a pilot signal at a predetermined timing, and inputs the generated pilot signal to the transmission radio processing units 212-1 to 212-n, respectively.
  • Transmission radio processing sections 212-1 to 212-n each include a bandpass filter, a digital Z analog converter, a low noise amplifier, and the like, and perform predetermined transmission on a pilot signal input from pilot generation section 211. After signal processing, the antenna elements 201-1 to 20
  • a pilot signal is wirelessly transmitted via 1-n.
  • FIG. 3 is a block diagram showing a more detailed configuration of the secret key generation unit 207.
  • the secret key generation unit 207 includes an eigenvalue selection unit 317, a quantization unit 327, and a key generation unit 337.
  • Eigenvalue selection section 317 selects the maximum eigenvalue among the eigenvalues of the MIMO channel input from eigenvalue detection section 206, and inputs the selected maximum eigenvalue to quantization section 327.
  • the quantization unit 327 generates quantized data by quantizing the size of the maximum eigenvalue input from the eigenvalue selection unit 317 with a predetermined number of quantization bits, and generates a key for the generated quantized data. Enter in part 337.
  • the key generation unit 337 repeats the quantized data input from the quantization unit 327 a predetermined number of times.
  • the private key is generated by a predetermined method such as returning the data length and the generated private key is input to a control unit (not shown).
  • FIG. 4 shows the process until the same secret key is generated for the BS including the wireless communication apparatus 200 and the MS including the wireless communication apparatus 200, and communication is started between them. It is a flowchart which shows a step. Also, in Fig. 4, the branch number “1” is assigned to each step by BS, and similarly, the branch number “2” is assigned to each step by MS. In the following, steps with the same BS and MS operations will be described without branch numbers in order to avoid duplicate descriptions.
  • step ST410 BS and MS mutually transmit pilot signals by radio in order from antenna elements 201-l to 201-n, and the receiving side apparatus transmits all the pilot signals to all antenna elements. Receives sequentially in 201-1 to 201-n.
  • channel estimation section 204 has a channel formed between BS antenna elements 201-1 to 201-n and MS antenna elements 201-1 to 201-n, respectively. Channel estimation is performed every time.
  • channel estimation section 204 In step ST430, in BS and MS, channel estimation section 204 generates a channel matrix of the MIMO channel from the channel estimation value calculated in step ST420.
  • the channel matrix H is illustrated in “Equation 1” below.
  • Each element h (i, j) in this channel matrix H is transmitted from the j-th antenna element 201-j in the transmitting side device and received by the i-th antenna element 201-i in the receiving side device.
  • the channel estimation value of is shown.
  • M represents the total number of transmitting antenna elements
  • N represents the total number of receiving antenna elements. Therefore, in this embodiment, both M and N are “n”.
  • step ST440 the eigenvalues of the MIMO channel are detected using the channel matrix H expressed by Equation 1 in the BS and the MS, respectively.
  • a method for detecting this eigenvalue for example, there is a method in which an eigenvalue is calculated by calculating a correlation matrix from the channel matrix H and performing eigenvalue decomposition on the correlation matrix. Another method is to calculate the eigenvalue by squaring the singular value obtained by singular value decomposition of the channel matrix. In the present embodiment, the former method is adopted.
  • the correlation matrix R is expressed by the following “Equation 2” using the channel matrix H. Note that the superscript “ H ” in Equation 2 indicates a conjugate transpose.
  • the correlation matrix R is expressed by the following "Equation 3" after eigenvalue and eigenvector decomposition.
  • Equation 3 “ ⁇ ” represents “MIMO channel eigenvalue”, and “V” represents the MIMO channel eigenvector.
  • FIG. 5 shows the significance of the relationship between the eigenvalues of the MIMO channel and each channel.
  • MIMO technology multiple channels with the same average power existing between BS and MS can be converted into multiple eigenspaces.
  • the unique value of the MIMO channel represents the power of the eigenspace. More specifically, as shown in the lower part of FIG. 5, the eigenvalue of the MIMO channel is a pair between the BS antenna elements 201-1 to 201-n and the MS antenna elements 201-1 to 201-n. It can be said that this is a necessary condition for assuming that one channel is formed.
  • Eq. 4 shows the result of the result in “Eq. 4” below.
  • L in Equation 4 is n.
  • the eigenvalue selection unit 317 selects the maximum eigenvalue in the eigenvalue ⁇ of the MIMO channel in which the channel matrix H force is also generated.
  • step ST450 a secret key is generated using the maximum eigenvalue selected in step ST440, respectively for BS, MS, and Tsukoo! /.
  • the quantization unit 327 quantizes the maximum eigenvalue input from the eigenvalue selection unit 317 with a predetermined number of quantization bits to generate quantized data, and the generated quantized data is generated as a key generation unit. Enter in 337. Then, the key generation unit 337 generates a secret key by repeating or replacing the quantized data with a predetermined method.
  • step ST460 the BS and the MS mutually confirm whether or not the secret keys generated individually are the same.
  • the irreversible transformation that cannot be restored is performed on the private keys individually generated by the BS and the MS, and the BS performs radio transmission of a signal that has been subjected to the irreversible transformation.
  • the MS is irreversible with the received signal and its own device. Compared with the converted signal, it is confirmed whether the signals subjected to the irreversible conversion match, and a confirmation signal indicating the confirmation result is wirelessly transmitted to the BS.
  • a hash function is exemplified as a signal subjected to such irreversible transformation.
  • step ST470-1 the BS continues to execute step ST480-1 when the confirmation signal transmitted from the MS indicates that the signals subjected to the irreversible conversion match.
  • the BS indicates that the confirmation signals transmitted from the MS do not match the signals subjected to the irreversible transformation, the BS discards the secret key generated by itself and again performs step ST410. — Redo from 1
  • step ST470-2 if the irreversibly transformed signals match, the MS continues to execute step ST480-2 while the irreversible transformed signal does not match. In this case, the private key generated by the own device is discarded, and step ST4 10-2 is executed again.
  • step ST480 BS, MS, and force S each start radio communication using individually generated secret keys.
  • secret key generation section 207 selects the maximum eigenvalue in the eigenvalue of the MIMO channel and generates a secret key using this maximum eigenvalue. Since a higher V SNR than the average SNR for each of the antenna elements 201-1 to 201-n can be realized, the probability that the secret keys generated by the own device and the counterpart device match can be improved.
  • radio communication apparatus 200 may be applied or modified as follows.
  • eigenvalue selection section 317 has explained the case where eigenvalue selection section 317 selects the maximum eigenvalue in the eigenvalue of the MIMO channel input from eigenvalue detection section 206.
  • the eigenvalue selection unit 317 selects an eigenvalue whose ratio to the sum of eigenvalues of the MIMO channel input from the eigenvalue detection unit 206 is equal to or greater than a predetermined value, that is, an eigenvalue in the eigenspace.
  • three eigenvalues may be selected in order from the largest eigenvalue of the MIMO channel, and the selected eigenvalue may be input to the quantization unit 327.
  • the quantization unit 327 can increase the amount of quantized data without increasing the number of quantization bits, the probability that the secret keys generated separately by the BS and the MS will be reduced. The security of the secret key can be improved.
  • step ST410 BS and MS assign a unique spreading code to each of antenna elements 201-1 to 201-n, and pilot signals code-divided by these spreading codes are used as antenna elements. Radio transmission may be simultaneously performed from each of 20 l- l to 201-n. In this way, since one received signal is code division multiplexed for each channel in the receiving side device, the time required for transmitting and receiving the pilot signal is shortened, and communication using the secret key is started early. can do.
  • radio communication apparatus 200 includes secret key generation section 907 shown in FIG. 9 instead of secret key generation section 207 in radio communication apparatus 200 according to Embodiment 1.
  • secret key generation section 907 shown in FIG. 9 instead of secret key generation section 207 in radio communication apparatus 200 according to Embodiment 1.
  • FIG. 9 is a block diagram showing a configuration of secret key generation section 907 in the present embodiment.
  • the secret key generation unit 907 includes an eigenvalue selection unit 317, a quantization unit 327, a key generation unit 337, a mismatch correction control unit 917, and a mismatch correction unit 927.
  • the mismatch correction control unit 917 instructs the quantization unit 327 to increase or decrease the number of quantization bits based on the maximum eigenvalue input from the eigenvalue selection unit 317! / At the same time, the mismatch correction unit 927 is instructed to increase or decrease the amount of redundant data used for error correction processing.
  • the mismatch correction unit 927 regards the secret key input from the key generation unit 337 as a signal subjected to error correction encoding processing, and a part of the data, that is, the mismatch correction control unit 917. Error correction decoding processing is performed by treating the amount of data instructed as redundant data
  • the mismatch correction unit 927 inputs the secret key after the error correction decoding process to a control unit (not shown) or the like.
  • the mismatch correction unit 927 performs an error correction process on the secret key in accordance with the instruction.
  • the discrepancy correction control unit 917 sends to the quantization unit 327. Instructs to reduce the number of quantization bits and reduce the amount of quantized data to be generated. In addition, the mismatch correction unit 927 is notified of the data amount of the suppressed redundant data included in the secret key input from the key generation unit 337.
  • a method for determining the magnitude of the maximum eigenvalue in the mismatch correction control unit 917 for example, a method of determining by the ratio of the size of the maximum eigenvalue to the sum of the eigenvalues for each eigenspace in the eigenvalues of the MIMO channel can be given. It is done. Further, a method of determining by the magnitude of the maximum eigenvalue with respect to the average received power of the antenna elements 201-1 to 201-n can be given.
  • the discrepancy correction control unit 917 determines that the maximum eigenvalue input from the eigenvalue selection unit 317 is large, it means that the influence of noise is small for the maximum eigenvalue, that is, the SNR is large. There is no need to increase the number of quantization bits in the quantization unit 327.
  • the mismatch correction control unit 917 outputs the number of quantization bits to the quantization unit 327 when the maximum unique value input from the eigenvalue selection unit 317 is small (in the right frame of FIG. 10). To increase the amount of quantized data to be generated. Also, the mismatch correction unit 927 is notified of the increased amount of redundant data included in the secret key input from the key generation unit 337.
  • the mismatch correction control unit 917 determines that the maximum eigenvalue input to the eigenvalue selection unit 317 is small, the influence of noise is large on the maximum eigenvalue, that is, SNR. Therefore, it is necessary to correct the error in the secret key derived from this noise. Therefore, in this case, the mismatch correction control unit 917 increases the amount of redundant data included in the secret key by increasing the number of quantization bits in the quantization unit 327, thereby causing the mismatch correction unit 927 to Improve the error correction capability of the private key.
  • private key generation section 907 regards the secret key as an error correction encoded signal and performs error correction decoding processing. It is possible to further improve the probability that the secret keys individually generated by the remote device and the counterpart device match.
  • the mismatch correction control unit 917 controls the number of quantization bits in the quantization unit 327 and the amount of redundant data in the mismatch correction unit 927.
  • the data length (number of bits) of the secret key can be kept constant, and the increase in signal processing load in the control unit or the like can be suppressed.
  • wireless communication apparatus 1100 detects the frequency response of the eigenvalue of the MIMO channel, and generates a secret key by combining the frequency response of the eigenvalue, thereby generating secret key data.
  • security is demonstrated.
  • Radio communication apparatus 1100 according to the present embodiment includes many components that perform the same functions as the components in radio communication apparatus 200 according to Embodiment 1. Therefore, in this embodiment, only points that are substantially different from Embodiment 1 will be described in order to avoid duplication.
  • FIG. 11 is a block diagram showing a configuration of radio communication apparatus 1100 according to the present embodiment.
  • Radio communication apparatus 1100 in radio communication apparatus 200 according to Embodiment 1, uses channel frequency response estimation sections 1104-1 to 1104-n instead of channel estimation sections 204-1 to 204-n and a channel matrix. It includes a channel matrix frequency response generator 1105 instead of the generator 205, an eigenvalue frequency response detector 1106 instead of the eigenvalue detector 206, and a secret key generator 1107 instead of the secret key generator 207. is there.
  • a multicarrier signal such as OFDM (Orthogonal Fre quency Division Multiplexing) Signal power S is used.
  • OFDM Orthogonal Fre quency Division Multiplexing
  • Channel frequency response estimator 1104-1 to: L 104-n estimates the frequency response for each channel from the impulse response of the pilot signal input from pilot extractor 203-l to 203-n, respectively. .
  • the channel frequency response estimators 1104-1 to 1104 -n perform the frequency response of the channel estimation value of the OFDM signal that is the pilot signal, that is, the channel estimation for each channel of the OFDM signal and for each subcarrier. Calculate the value.
  • Channel frequency response estimation sections 1104-1 to 1104-n input the frequency response of the calculated channel estimation value to channel matrix frequency response generation section 1105.
  • the channel matrix frequency response generator 1105 includes a channel frequency response estimator 1104-1 to:
  • the frequency response of the channel estimation value input from L 104-n is also the frequency response of the channel matrix, that is, the channel of the OFDM signal.
  • a channel matrix of the MIMO channel is generated for each subcarrier and the channel estimation value for each subcarrier.
  • Channel matrix frequency response generation section 1105 inputs the frequency response of the generated channel matrix to eigenvalue frequency response detection section 1106.
  • the eigenvalue frequency response detection unit 1106 uses the frequency response of the channel matrix input from the channel matrix frequency response generation unit 1105, and the frequency response of the eigenvalue of the MIMO channel, that is, for each channel of the OFDM signal, and Then, a set of eigenvalues for each subcarrier is detected. Then, the eigenvalue frequency response detection unit 1106 inputs the detected frequency response of the eigenvalue of the MIMO channel to the secret key generation unit 1107.
  • Secret key generation section 1107 generates a secret key using the frequency response of the eigenvalue of the MIM O channel input from eigenvalue frequency response detection section 1106. A specific mode of secret key generation in the secret key generation unit 1107 will be described next.
  • FIG. 12 shows the operation of the secret key generation unit 1107 more specifically.
  • the frequency response of the eigenvalue of the specific eigenspace in the frequency response of the eigenvalue of the MIMO channel input from the eigenvalue frequency response detection unit 1106 is described.
  • the secret key generation unit 1107 quantizes the frequency response of the eigenvalues of the selected specific eigenspace by using a predetermined number of quantization bits for each frequency, that is, the size of the eigenvalue for each subcarrier. Generate quantized data.
  • the secret key generation unit 1107 when determining the number of quantization bits, refers to the SNR of the eigenvalue for each subcarrier in the specific eigenspace and takes the quantization width sufficiently larger than the noise level. Thus, it is possible to generate quantized data that is less affected by noise.
  • the secret key generation unit 1107 can generate a secret key with a long data length and high security by appropriately selecting and combining the generated quantized data.
  • the secret key generation unit 1107 selects only the quantized data generated with the eigenvalue force having a high SNR, so that the own device and the other device individually The probability that the generated secret key matches can be improved.
  • radio communication apparatus 1100 frequency response power quantized data of eigenvalues in a specific eigenspace in eigenvalues of a MIMO channel is generated, so that it is good in quality with little influence of noise. A large amount of quantized data can be obtained. Furthermore, since a secret key is generated using a large amount of high-quality quantized data, the data length of the secret key can be increased and its security can be improved.
  • a large amount of quantized data is obtained using the frequency response V, but a large amount of quantized data is obtained using the time response. Data can also be obtained.
  • a large amount of quantized data can be obtained, and as with this embodiment, the data length of the secret key can be increased and its security is increased. be able to.
  • the channel matrix force of the MIMO channel is described as a force that describes the case where the eigenvalue of the MIMO channel is used as information generated by linear calculation or nonlinear calculation.
  • the present invention is limited to this case.
  • a correlation coefficient indicating a correlation between channels, a correlation matrix indicating a correlation between channel matrices, or an eigenvector obtained by eigenvalue analysis is used as information generated from a channel matrix by linear calculation or nonlinear calculation. Moho.
  • each functional block used in the description of each embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Here, it is sometimes called IC, system LSI, super LSI, or ultra LSI, depending on the difference in power integration.
  • circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA Field Programmable Gate Array
  • reconfigurable 'processor that can reconfigure the connection and settings of circuit cells inside the LSI may be used.
  • a first aspect of the present invention includes a plurality of antennas that receive a radio signal of a MIMO channel, channel estimation means that calculates a channel estimation value of a reception signal from the antenna for each channel, and a calculated channel estimation
  • a wireless communication device is a wireless communication device.
  • the invention further comprises eigenvalue detection means for detecting the generated channel matrix force and eigenvalue of the MIMO channel, and the secret key generation means is detected.
  • eigenvalue detection means for detecting the generated channel matrix force and eigenvalue of the MIMO channel
  • secret key generation means is detected.
  • This is a wireless communication device that generates a secret key using eigenvalues of the MIMO channel.
  • a third aspect of the present invention is the wireless communication apparatus according to the present invention, wherein the secret key generation means generates a secret key using a maximum eigenvalue in the detected eigenvalue of the MIMO channel.
  • the secret key generation means generates a secret key using an eigenvalue having a ratio with respect to a total sum of detected eigenvalues of the MIMO channel equal to or greater than a predetermined value.
  • a wireless communication device A wireless communication device.
  • the secret key generating means generates a quantized data by quantizing the magnitude of the detected eigenvalue of the MIMO channel, and generating A wireless communication apparatus comprising: key generation means for generating the quantized data power key data; and correction means for performing error correction processing on the key data using a part of the generated key data as redundant data .
  • the secret key generation means measures the magnitude of the detected eigenvalue of the MIMO channel, and determines the quantum value according to the magnitude of the measured eigenvalue.
  • the amount of data used as redundant data in the correction means is reduced, while in the case of increasing the number of quantization bits of the quantization means,
  • the wireless communication apparatus further includes a control unit that increases a data amount used as redundant data in the correction unit.
  • the signal received by the antenna is a multicarrier signal
  • the channel estimation means calculates the frequency response of the channel estimation value of the received multicarrier signal.
  • the channel matrix generation means generates a frequency response of the channel matrix from the calculated frequency response of the channel estimation value
  • the eigenvalue detection means calculates the frequency response of the generated channel matrix.
  • a radio frequency response of a unique value of the MIMO channel is detected, and the secret key generation means generates a secret key using the frequency response of the eigenvalue of the MIMO channel detected by the eigenvalue detection means.
  • a wireless communication method comprising:
  • the wireless communication apparatus can generate a secret key different from the secret key generated by the third party even if the third party intercepts the radio signal by utilizing the characteristics of the MIMO technology. It has the effect of! / And is useful as a wireless communication method used in a wireless communication system using MIMO technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 秘密鍵方式が適用される無線通信システムにおいて、受信側無線通信装置と伝搬路環境の近似する第三者に無線信号を傍受されても、この第三者が生成する秘密鍵と異なる秘密鍵を生成することのできる無線通信装置を開示する。この装置では、秘密鍵生成部(207)における固有値選択部(317)は、固有値検出部(206)から入力されてくるMIMOチャネルの固有値における最大固有値を選択し、選択した最大固有値を量子化部(327)に入力する。量子化部(327)は、固有値選択部(317)から入力されてくる最大固有値の大きさを量子化して量子化データを生成し、生成した量子化データを鍵生成部(337)に入力する。鍵生成部(337)は、量子化部(327)から入力されてくる量子化データから所定の方式で秘密鍵を生成し、生成した秘密鍵を図示しない制御部等に入力する。

Description

無線通信装置及び無線通信方法
技術分野
[0001] 本発明は、複数のアンテナ素子から送信された無線信号を複数のアンテナ素子で 受信して無線通信を行う MIMO (Multiple Input Multiple Output)技術を利用した無 線通信システムにおいて使用される無線通信装置及び無線通信方法に関する。 背景技術
[0002] 携帯電話システムや無線 LANをはじめとする移動体無線通信システムの普及に伴 V、、このシステム上で個人情報や企業の機密情報等の秘密情報を送受信する機会 が増力!]している。移動体無線通信システムでは、第三者が無線信号を容易に傍受で きるため、無線信号が傍受されてもその内容を盗聴されないように、暗号ィ匕技術が用 いられる場合がある。
[0003] 暗号化技術の一方式に、鍵を送信側と受信側との双方で秘密裏に共有する秘密 鍵方式がある。移動体無線通信システムでは、無線信号が第三者に傍受されるおそ れがあるため、一方の無線通信装置が鍵を生成してその鍵を他方に無線送信するこ とができない。そこで、双方で共通な鍵を個別に生成することが必要となる。
[0004] このような秘密鍵方式の暗号ィ匕技術を適用した移動体無線通信システムが知られ ている (例えば特許文献 1参照)。特許文献 1に記載された技術では、時分割複信 (T DD :Time Division Duplex)方式を前提として、通信を行う双方において、伝搬路の 遅延プロファイルを推定し、推定された遅延プロファイルの複素振幅情報、電力情報 又は位相情報の!/、ずれかを用いて秘密鍵を生成する。
特許文献 1:特開 2003 - 273856号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特許文献 1に記載された技術では、通信を行う双方で同じ秘密鍵が 生成される確率は、受信側無線通信装置における遅延プロファイルの精度に依存す るため、受信側無線通信装置における信号対雑音比(SNR: Signa卜 to-Noise Ratio) 力 、さくなると低下してしまう問題がある。
[0006] そこで、この問題を解決するために、無線信号の送信電力を高くすることが考えら れるが、そのようにすると、受信側無線通信装置と伝搬路環境の近似する第三者の 受信電力までもが高くなる。このため、この第三者が受信側無線通信装置の生成し た秘密鍵と同一の秘密鍵を独自に生成してしまう危険性も高くなる。
[0007] 本発明の目的は、秘密鍵方式が適用される無線通信システムにお 、て、受信側無 線通信装置と伝搬路環境の近似する第三者に無線信号を傍受されても、この第三 者が生成する秘密鍵と異なる秘密鍵を生成することのできる無線通信装置及び無線 通信方法を提供することである。
課題を解決するための手段
[0008] 本発明に係る無線通信装置は、 MIMOチャネルの無線信号を受信する複数のァ ンテナと、前記アンテナによる受信信号のチャネル推定値をチャネル毎に算出する チャネル推定手段と、算出されたチャネル推定値から MIMOチャネルのチャネル行 列を生成するチャネル行列生成手段と、生成されたチャネル行列力 線形演算もしく は非線形演算により生成される情報を用いて秘密鍵を生成する秘密鍵生成手段と、 を具備する構成を採る。
発明の効果
[0009] 本発明によれば、無線通信装置が、 MIMOチャネルのチャネル行列から線形演算 もしくは非線形演算により生成される情報、例えば MIMOチャネルの固有値を用 ヽ て秘密鍵を生成するため、無線信号を第三者に傍受されてもこの第三者の生成する 秘密鍵と異なる秘密鍵を生成することができる。
図面の簡単な説明
[0010] [図 1A]送受信アンテナが 1本の場合の通信態様を示す図
[図 1B]送受信アンテナが複数の場合の通信態様を示す図
[図 2]本発明の実施の形態 1に係る無線通信装置の構成を示すブロック図
[図 3]図 2に示した秘密鍵生成部の構成を示すブロック図
[図 4]図 1に示した無線通信装置の動作を説明するフロー図
[図 5]実施の形態 1におけるチャネル毎の固有値を説明する図 [図 6]無線通信装置におけるアンテナ素子の総数と最大固有値の利得との相関を示 す図
[図 7]図 3に示した固有値選択部の動作を説明する図
[図 8]図 3に示した固有値選択部の動作の変形例を説明する図
[図 9]本発明の実施の形態 2における秘密鍵生成部の構成を示すブロック図
[図 10]図 9に示した秘密鍵生成部の動作を説明する図
[図 11]本発明の実施の形態 3における無線通信装置の構成を示すブロック図
[図 12]図 11に示した無線通信装置の動作を説明する図
発明を実施するための最良の形態
[0011] 本発明は、秘密鍵方式が適用される無線通信システムにおいて MIMO技術を利 用するものであって、基地局装置(BS)や通信端末装置(MS)が MIMOチャネルの チャネル行列から線形演算もしくは非線形演算により生成される情報を用いて、秘密 鍵を個別に生成するものである。
[0012] ここで、 MIMO技術の概要について、図 1A及び図 1Bを用いて説明する。図 1Aに は、 BSと MSとが共にアンテナ素子を 1つずつ備え、この BSと MSとの間で無線通信 が行われている通信態様を示す。また、図 1Aでは、 MSと物理的に近い所に第三者 が位置しており、 MSと第三者との伝搬路環境が近似しているものとする。
[0013] そのため、図 1Aに示す通信態様では、 BSから MSに送信された無線信号が第三 者に傍受されることがある。このとき、 MSと第三者とが共に受信信号から秘密鍵を同 一方式で生成する場合には、 MSの受信信号と第三者の受信信号との相関が高いこ とから、 MSと第三者とがそれぞれ独自に秘密鍵を生成するとしても、生成された秘 密鍵が同一となるおそれがある。
[0014] これに対し、図 1Bに示すような MIMO技術を利用した無線通信システムでは、 BS の備える複数のアンテナ素子と MSの備える複数のアンテナ素子との間にそれぞれ チャネルが形成される。即ち、 MIMOチャネルが形成されることになる。このため、第 三者が MSの近傍に位置するとしても、第三者が BSから MSに送信された全ての無 線信号を傍受することは困難である上に、たとえ第三者が全ての無線信号を傍受で きたとしても、第三者の傍受した全ての受信信号と MSの受信信号との相関は図 1A の通信態様の場合よりも確実に低下する。
[0015] 従って、秘密鍵方式の適用される無線通信システムにおいて MIMO技術を利用す れば、第三者による無線信号の傍受を回避し易くなる上に、たとえ第三者によって全 ての無線信号を傍受されたとしても、第三者が MSと同一の秘密鍵を生成してしまう 危険性を低下させることができる。
[0016] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0017] (実施の形態 1)
図 2は、本発明の実施の形態 1に係る無線通信装置 200の構成を示すブロック図 である。なお、本実施の形態では、無線通信装置 200は、無線通信システムを構成 する BS及び携帯電話等の MSに共に搭載されるものとする。
[0018] 無線通信装置 200は、複数のアンテナ素子 201— 1〜201— n、複数の受信無線 処理部 202— 1〜202— n、複数のパイロット抽出部 203— 1〜203— n、複数のチヤ ネル推定部 204— 1〜204— n、チャネル行列生成部 205、固有値検出部 206、秘 密鍵生成部 207、パイロット発生部 211及び複数の送信無線処理部 212— 1〜212
—nを具備する。
[0019] アンテナ素子 201— 1〜201— nはそれぞれ、相手側装置における複数のアンテ ナ素子力 送信された無線信号を捕捉して、その受信信号を受信無線処理部 202 — l〜202—nに入力する。
[0020] 受信無線処理部 202— 1〜202— nはそれぞれ、バンドパスフィルタ、アナログ Zデ イジタル変翻及び低雑音アンプ等を具備して、アンテナ素子 201— 1〜201 -nか ら入力されてくる受信信号に公知の受信信号処理を施し、処理後の受信信号をパイ ロット抽出部 203— l〜203—nに入力する。
[0021] パイロット抽出部 203— 1〜203— nはそれぞれ、受信無線処理部 202— 1〜202 —nから入力されてくる受信信号からパイロット信号を抽出して、抽出したパイロット信 号をチャネル推定部 204— 1〜 204— nに入力する。
[0022] チャネル推定部 204—l〜204—nはそれぞれ、パイロット抽出部 203— 1〜203 —nから入力されてくるノ ィロット信号を用いて、相手局装置における複数のアンテナ 素子とアンテナ素子 201— 1〜201—nとの間に形成されるチャネル毎にチャネル推 定を行 ヽ、算出されたチャネル毎のチャネル推定値をチャネル行列生成部 205に入 力する。
[0023] チャネル行列生成部 205は、チャネル推定部 204— 1〜204— nからそれぞれ入 力されてくるチャネル毎のチャネル推定値から MIMOチャネルのチャネル行列を生 成し、生成したチャネル行列を固有値検出部 206に入力する。なお、 MIMOチヤネ ルのチャネル行列及びその生成過程の詳細については後述する。
[0024] 固有値検出部 206は、チャネル行列生成部 205から入力されてくるチャネル行列 力 MIMOチャネルの固有値を検出し、検出した MIMOチャネルの固有値を秘密 鍵生成部 207に入力する。なお、 MIMOチャネルの固有値の検出過程の詳細につ いても後述する。
[0025] 秘密鍵生成部 207は、固有値検出部 206から入力されてくる MIMOチャネルの固 有値における最大固有値を選択し、選択した最大固有値を用いて秘密鍵を生成し、 生成した秘密鍵を図示しない制御部等に入力する。
[0026] ノ ィロット発生部 211は、既定のタイミングでパイロット信号を生成し、生成したパイ ロット信号を送信無線処理部 212— 1〜212— nにそれぞれ入力する。
[0027] 送信無線処理部 212— 1〜212— nはそれぞれ、バンドパスフィルタ、ディジタル Z アナログ変換器及び低雑音アンプ等を具備し、パイロット発生部 211から入力されて くるパイロット信号に所定の送信信号処理を施した後に、アンテナ素子 201— 1〜20
1—nを介してパイロット信号を無線送信する。
[0028] 図 3は、秘密鍵生成部 207のより詳細な構成を示すブロック図である。秘密鍵生成 部 207は、固有値選択部 317、量子化部 327及び鍵生成部 337を具備する。
[0029] 固有値選択部 317は、固有値検出部 206から入力されてくる MIMOチャネルの固 有値における最大固有値を選択し、選択した最大固有値を量子化部 327に入力す る。
[0030] 量子化部 327は、固有値選択部 317から入力されてくる最大固有値の大きさを既 定の量子化ビット数で量子化して量子化データを生成し、生成した量子化データを 鍵生成部 337に入力する。
[0031] 鍵生成部 337は、量子化部 327から入力されてくる量子化データを所定回数繰り 返してデータ長を伸長する等の所定の方式で秘密鍵を生成し、生成した秘密鍵を図 示しない制御部等に入力する。
[0032] 次いで、無線通信装置 200における各構成部の動作について、図 4〜図 7を参照 しつつ説明する。
[0033] 図 4は、無線通信装置 200を具備する BSと無線通信装置 200を具備する MSとに ぉ 、てそれぞれ同一の秘密鍵が生成され、これらの間で通信が開始されるまでのス テツプを示すフロー図である。また、図 4では、 BSによる各ステップに枝番号「1」を付 し、同様に MSによる各ステップに枝番号「2」を付す。なお、以下では、 BSと MSとの 動作が同一であるステップについては、重複説明を避けるため、枝番号を付さずに 説明する。
[0034] ステップ ST410では、 BSと MSとが互いにアンテナ素子 201— l〜201—nそれぞ れカゝら順にパイロット信号を無線送信し、送信されたパイロット信号を受信側装置が 全てのアンテナ素子 201— 1〜201— nで順次受信する。
[0035] ステップ ST420では、 BSと MSとにおいてそれぞれ、チャネル推定部 204が BSの アンテナ素子 201— 1〜201— nと MSのアンテナ素子 201 - 1〜201— nとの間に 形成されたチャネル毎にチャネル推定を行う。
[0036] ステップ ST430では、 BSと MSとにおいてそれぞれ、チャネル推定部 204がステツ プ ST420で算出されたチャネル推定値から MIMOチャネルのチャネル行列を生成 する。下記「式 1」に、チャネル行列 Hを例示する。このチャネル行列 Hにおける各要 素 h (i, j)は、送信側装置における j番目のアンテナ素子 201— jから送信されて受信 側装置の i番目のアンテナ素子 201—iに受信されたパイロット信号のチャネル推定 値を示す。なお、 Mは送信側アンテナ素子の総数を示し、 Nは受信側アンテナ素子 の総数を示す。よって、本実施の形態では、 M及び Nは共に「n」となる。
[数 1]
H '(式 1 )
Figure imgf000008_0001
[0037] ステップ ST440では、 BSと MSとにおいてそれぞれ、式 1で示されるチャネル行列 Hを用いて MIMOチャネルの固有値を検出する。この固有値の検出方法としては、 例えばチャネル行列 Hカゝら相関行列を計算して、その相関行列を固有値'固有べタト ル分解することで固有値を算出する方法が挙げられる。また、チャネル行列を特異値 分解することで得られる特異値を二乗して固有値を算出する方法等が挙げられる。 本実施の形態では、前者の方法を採用する。相関行列 Rは、チャネル行列 Hを用い て下記「式 2」で表される。なお、式 2における上付き添え字「H」は共役転置であること を示す。
[数 2]
R = HHH …(式 2 )
[0038] そして、相関行列 Rは、固有値,固有ベクトル分解されると、下記「式 3」で表される。
なお、式 3における「Λ」は「MIMOチャネルの固有値」を示し、「V」は MIMOチヤネ ルの固有ベクトルを示す。
[数 3]
R = VAVH…(式 3 )
[0039] 図 5に、 MIMOチャネルの固有値と各チャネルとの関係の意義を示す。 MIMO技 術では、 BSと MSとの間に存在する平均電力が同じ複数のチャネルは、複数の固有 空間に変換できる。そして、その固有空間の電力を表すものが MIMOチャネルの固 有値である。より具体的には、 MIMOチャネルの固有値とは、図 5下段に示すように 、 BSのアンテナ素子 201— 1〜201— nと MSのアンテナ素子 201— 1〜201— nと の間にそれぞれ一対一のチャネルが形成されるとみなすために必要な条件であると 言える。ここで、式 3における MIMOチャネルの固有値 Λにおける固有空間毎の固 有値 λを大き!/、方力も順に並べると、下記「式 4」で示すようになる。
λ,≥ ≥ ·· · ≥AL≥0…(式 4 )
[0040] 式 4において、 (l < =i< =L)は MIMOチャネルの固有値 Λにおける i番目の 大きさの固有空間の固有値を示し、 Lはチャネル行列のランク(階数)、即ち BSのァ ンテナ素子の総数と MSのアンテナ素子の総数との少な 、方の総数を示す。なお、 本実施の形態では、式 4における Lは nとなる。また、この固有空間毎の固有値えの 大きさは固有空間の電力を表すため、受信側装置における固有空間の固有値えの 総和は、受信総電力に相当することになる。従って、総電力を P 、 L=Nとすると、
total
下記「式 5」に示す関係が成り立つ。
[数 5] 。, =2 , …(式5 )
[0041] また、受信側装置におけるアンテナ素子毎の平均受信電力を P とすると、総電力
ave
P と P との間には、下記「式 6」に示す関係が成り立つ。
total ave
[数 6] 尸 = W ' …(式6 )
[0042] 式 4に示すように、固有空間の固有値えの大きさは分散するため、 λ >P となる
1 ave 固有値が必ず存在する。そして、受信側アンテナ素子 201— 1〜201— n毎の平均 受信電力に対する最大固有値の大きさの利得は、図 6に示すように、受信側アンテ ナ素子 201— 1〜201— nの総数が増えるほど増大する。従って、本実施の形態で は、図 7に示すように、固有値選択部 317がチャネル行列 H力も生成される MIMOチ ャネルの固有値 Λにおける最大固有値えを選択することにより、受信側アンテナ素 子 201— 1〜201— n毎の平均 SNRよりも高い SNRを確実に実現することができる。
[0043] ステップ ST450では、 BSと MSと〖こお!/、てそれぞれ、ステップ ST440で選択され た最大固有値を用いて秘密鍵が生成される。ステップ ST450では、量子化部 327が 固有値選択部 317から入力されてくる最大固有値の大きさを既定の量子化ビット数 で量子化して量子化データを生成し、生成した量子化データを鍵生成部 337に入力 する。そして、鍵生成部 337は、この量子化データを既定の方式で繰り返したり、入 れ替えたりして秘密鍵を生成する。
[0044] ステップ ST460では、 BSと MSとがそれぞれ、個別に生成した秘密鍵が同一であ るカゝ否かを相互に確認する。本実施の形態では、 BSと MSとがそれぞれ個別に生成 した秘密鍵に復元不可能な不可逆変換を施し、 BSが MSに対してこの不可逆変換 を施した信号を無線送信する。そして、 MSが、受信したこの信号と自装置で不可逆 変換を施した信号とを対比して、それらの不可逆変換を施された信号が一致するか 確認し、その確認結果を示す確認信号を BSに無線送信する。ちなみに、このような 不可逆変換を施された信号としてハッシュ関数が例示される。
[0045] ステップ ST470— 1では、 BSは、 MSから送信されてくる確認信号が不可逆変換を 施された信号同士が一致することを示す場合には、引き続きステップ ST480— 1を 実行する。一方で、 BSは、 MSから送信されてくる確認信号が不可逆変換を施され た信号同士が一致しな 、ことを示す場合には、自装置で生成した秘密鍵を破棄して 、再度ステップ ST410— 1から実行し直す。
[0046] 同様に、ステップ ST470— 2では、 MSは、不可逆変換された信号同士が一致する 場合には、引き続きステップ ST480— 2を実行し、一方で不可逆変換された信号同 士がー致しない場合には、自装置の生成した秘密鍵を破棄して、再度ステップ ST4 10— 2を実行し直す。
[0047] ステップ ST480では、 BSと MSと力 Sそれぞれ、個別に生成した秘密鍵を用いて無 線通信を開始する。
[0048] このように、本実施の形態に係る無線通信装置 200によれば、秘密鍵生成部 207 が MIMOチャネルの固有値における最大固有値を選択し、この最大固有値を用い て秘密鍵を生成するため、アンテナ素子 201— 1〜201— n毎の平均 SNRよりも高 Vヽ SNRを実現できることから、自装置と相手側装置との生成する秘密鍵が一致する 確率を向上させることができる。
[0049] なお、本実施の形態に係る無線通信装置 200について、次のように応用したり、変 形したりしてちよい。
[0050] 本実施の形態に係る無線通信装置 200では、固有値選択部 317が固有値検出部 206から入力されてくる MIMOチャネルの固有値における最大固有値を選択する場 合について説明した力 本発明はこの場合に限定されるものではなぐ例えば固有 値選択部 317が固有値検出部 206から入力されてくる MIMOチャネルの固有値の 総和に対する比が所定値以上である固有値、即ち固有空間の固有値を選択し、図 8 に示す例では MIMOチャネルの固有値における大きい方から順に 3つの固有値を 選択し、選択した固有値を量子化部 327に入力するようにしてもよい。このようにすれ ば、量子化部 327が量子化ビット数を増やすことなく量子化データのデータ量を増や すことができるため、 BSと MSとが個別に生成する秘密鍵の一致する確率を低下さ せることなぐ秘密鍵の安全性を向上させることができる。
[0051] また、本実施の形態では、ステップ ST410において BS及び MSがアンテナ素子 20 1 1〜201—nそれぞれから順にパイロット信号を無線送信する場合にっ ヽて説明 したが、本発明はこの場合に限定されるものではなぐ例えばステップ ST410におい て BS及び MSがアンテナ素子 201— 1〜201— nそれぞれに固有の拡散符号を割り 当てて、それらの拡散符号によって符号分割されたパイロット信号をアンテナ素子 20 l— l〜201—nそれぞれから同時に無線送信するようにしてもよい。このようにすれ ば、受信側装置において、一つの受信信号がチャネル別に符号分割多重されてい ることになるため、パイロット信号の送受信に要する時間を短縮して秘密鍵を用いた 通信を早期に開始することができる。
[0052] (実施の形態 2)
本発明の実施の形態 2では、無線通信装置 200が生成した秘密鍵に誤り訂正復号 処理を行い、さらにその誤り訂正能力を最大固有値の大きさを基準にして制御する。 そのため、本実施の形態に係る無線通信装置 200は、実施の形態 1に係る無線通信 装置 200における秘密鍵生成部 207の代わりに図 9に示す秘密鍵生成部 907を具 備する。以下、本実施の形態について、重複を避けるため、実施の形態 1と相違する 点についてのみ説明する。
[0053] 図 9は、本実施の形態における秘密鍵生成部 907の構成を示すブロック図である。
秘密鍵生成部 907は、固有値選択部 317、量子化部 327、鍵生成部 337、不一致 訂正制御部 917及び不一致訂正部 927を具備する。
[0054] 不一致訂正制御部 917は、固有値選択部 317から入力されてくる最大固有値の大 きさに基づ!/、て、量子化部 327に対して量子化ビット数を増減するように指示すると 伴に、不一致訂正部 927に対しても誤り訂正処理に利用する冗長データのデータ量 を増減するように指示する。
[0055] 不一致訂正部 927は、鍵生成部 337から入力されてくる秘密鍵について、誤り訂正 符号化処理された信号とみなして、そのデータの一部、即ち不一致訂正制御部 917 から指示されたデータ量を冗長データとして扱うことにより、誤り訂正復号処理を行う
。そして、不一致訂正部 927は、誤り訂正復号処理後の秘密鍵を図示しない制御部 等に入力する。なお、不一致訂正部 927は、不一致訂正制御部 917から冗長データ として利用するデータの位置を指示された場合には、その指示に従って秘密鍵に誤 り訂正処理を施す。
[0056] 次いで、秘密鍵生成部 907の動作について、不一致訂正制御部 917の動作を中 心に図 10を用いて詳細に説明する。
[0057] 不一致訂正制御部 917は、固有値選択部 317から入力されてくる最大固有値の大 きさに応じて、最大固有値が大きい場合(図 10左枠内)には、量子化部 327に対して 量子化ビット数を減らして、生成する量子化データのデータ量を抑制するように指示 する。また、不一致訂正部 927に対して鍵生成部 337から入力されてくる秘密鍵に含 まれる抑制された冗長データのデータ量を通知する。
[0058] ここで、不一致訂正制御部 917における最大固有値の大小の判定方法としては、 例えば MIMOチャネルの固有値における固有空間毎の固有値の総和に対する最 大固有値の大きさの割合で判定する方法が挙げられる。また、アンテナ素子 201— 1 〜201— nの平均受信電力に対する最大固有値の大きさで判定する方法等が挙げ られる。
[0059] 固有値選択部 317から入力されてくる最大固有値が大きいと不一致訂正制御部 91 7が判定した場合は、その最大固有値について雑音の影響が小さい、即ち SNRが大 きいことを意味するので、量子化部 327における量子化ビット数を増やす必要はない
[0060] 一方で、不一致訂正制御部 917は、固有値選択部 317から入力されてくる最大固 有値が小さい場合(図 10右枠内)には、量子化部 327に対して量子化ビット数を増 やして、生成する量子化データのデータ量を増大するように指示する。また、不一致 訂正部 927に対して鍵生成部 337から入力されてくる秘密鍵に含まれる増大された 冗長データのデータ量を通知する。
[0061] 固有値選択部 317に入力されてくる最大固有値が小さいと不一致訂正制御部 917 が判定した場合には、その最大固有値については雑音の影響が大きい、即ち SNR が小さいことを意味するので、この雑音に由来する秘密鍵に潜在する誤差を訂正す る必要が生じる。そこで、この場合には、不一致訂正制御部 917は、量子化部 327に おける量子化ビット数を増大させて秘密鍵に含まれる冗長データのデータ量を増や すことにより、不一致訂正部 927による秘密鍵の誤り訂正能力を向上させる。
[0062] このように、本実施の形態に係る無線通信装置 200によれば、秘密鍵生成部 907 において秘密鍵を誤り訂正符号化処理された信号とみなして誤り訂正復号処理する ため、自装置と相手側装置とで個別に生成された秘密鍵同士が一致する確率をさら に向上させることができる。
[0063] また、本実施の形態では、不一致訂正制御部 917が量子化部 327における量子化 ビット数と不一致訂正部 927での冗長データのデータ量と共に制御するため、誤り訂 正復号処理後の秘密鍵のデータ長(ビット数)を一定に保つことができ、図示しな!、 制御部等における信号処理の負荷の増大を抑制することができる。
[0064] (実施の形態 3)
一般に、秘密鍵は、そのデータ長が長いほど安全性が向上する。そこで、本発明に 係る実施の形態 3では、無線通信装置 1100が MIMOチャネルの固有値の周波数 応答を検出して、その固有値の周波数応答を組み合わせて秘密鍵を生成することに より、秘密鍵のデータ長を長くしてその安全性を高める態様について説明する。
[0065] 本実施の形態に係る無線通信装置 1100は、実施の形態 1に係る無線通信装置 2 00における各構成部と同様の機能を発揮する構成部を多く具備する。そこで、本実 施の形態では、重複を避けるため、実施の形態 1と実質的に相違する点についての み説明する。
[0066] 図 11は、本実施の形態に係る無線通信装置 1100の構成を示すブロック図である 。無線通信装置 1100は、実施の形態 1に係る無線通信装置 200において、チヤネ ル推定部 204— 1〜 204— nの代わりにチャネル周波数応答推定部 1104— 1〜 11 04— nを、またチャネル行列生成部 205の代わりにチャネル行列周波数応答生成部 1105を、また固有値検出部 206の代わりに固有値周波数応答検出部 1106を、また 秘密鍵生成部 207の代わりに秘密鍵生成部 1107を具備するものである。また、本実 施の形態では、無線信号としてマルチキャリア信号、例えば OFDM (Orthogonal Fre quency Division Multiplexing)信号力 S使用される。
[0067] チャネル周波数応答推定部 1104— 1〜: L 104— nはそれぞれ、パイロット抽出部 2 03— l〜203—nから入力されてくるパイロット信号のインパルス応答からチャネル毎 の周波数応答を推定する。具体的には、チャネル周波数応答推定部 1104— 1〜11 04—nは、パイロット信号である OFDM信号のチャネル推定値の周波数応答、即ち OFDM信号のチャネル毎で、かつ、サブキャリア毎のチャネル推定値を算出する。 チャネル周波数応答推定部 1104— 1〜1104— nは、算出したチャネル推定値の周 波数応答をチャネル行列周波数応答生成部 1105に入力する。
[0068] チャネル行列周波数応答生成部 1105は、チャネル周波数応答推定部 1104— 1 〜: L 104—nから入力されてくるチャネル推定値の周波数応答力もチャネル行列の周 波数応答、即ち OFDM信号のチャネル毎で、かつ、サブキャリア毎のチャネル推定 値を要素とする MIMOチャネルのチャネル行列を生成する。そして、チャネル行列 周波数応答生成部 1105は、生成したチャネル行列の周波数応答を固有値周波数 応答検出部 1106に入力する。
[0069] 固有値周波数応答検出部 1106は、チャネル行列周波数応答生成部 1105から入 力されてくるチャネル行列の周波数応答を用いて MIMOチャネルの固有値の周波 数応答、即ち OFDM信号のチャネル毎で、かつ、サブキャリア毎の固有値の集合を 検出する。そして、固有値周波数応答検出部 1106は、検出した MIMOチャネルの 固有値の周波数応答を秘密鍵生成部 1107に入力する。
[0070] 秘密鍵生成部 1107は、固有値周波数応答検出部 1106から入力されてくる MIM Oチャネルの固有値の周波数応答を用いて秘密鍵を生成する。この秘密鍵生成部 1 107における秘密鍵の生成の具体的態様について、次に説明する。
[0071] 図 12に、秘密鍵生成部 1107の動作をより具体的に示す。図 12の上段には、固有 値周波数応答検出部 1106から入力されてくる MIMOチャネルの固有値の周波数 応答における特定固有空間の固有値の周波数応答が記載されている。なお、 MIM Oチャネルの固有値の周波数応答から図 12の上段に示す特定固有空間の固有値 の周波数応答を選択する態様としては、例えば固有空間毎の固有値の周波数応答 の平均値が最大の固有空間を選択する態様が挙げられる。 [0072] また、秘密鍵生成部 1107は、選択した特定固有空間の固有値の周波数応答につ いて、各周波数、即ちサブキャリア毎の固有値の大きさを既定の量子化ビット数で量 子化して量子化データを生成する。ここで、秘密鍵生成部 1107は、量子化ビット数 を決定する際に、特定固有空間のサブキャリア毎の固有値の SNRを参照して量子 化の幅を雑音の大きさよりも十分大きくとることにより、雑音の影響の小さい量子化デ ータを生成することができる。
[0073] そして、秘密鍵生成部 1107は、生成した量子化データを適宜選択して組み合わ せることにより、データ長が長く安全性の高い秘密鍵を生成することができる。また、 秘密鍵生成部 1107は、この量子化データを適宜選択して組み合わせる際に、 SNR が高い固有値力 生成された量子化データのみを選択することにより、自装置と相手 側装置とで個別に生成された秘密鍵が一致する確立を向上させることができる。
[0074] このように、本実施の形態に係る無線通信装置 1100によれば、 MIMOチャネルの 固有値における特定固有空間の固有値の周波数応答力 量子化データが生成され るため、雑音の影響が少ない良質な量子化データを多量に得ることができる。さらに 、この良質な多量の量子化データを用いて秘密鍵が生成されるため、秘密鍵のデー タ長を長くすることができ、その安全性を高めることができる。
[0075] なお、本実施の形態では、秘密鍵のデータ長を長くするために、周波数応答を用 V、て多量の量子化データを得て 、るが、時間応答を用いて多量の量子化データを 得ることも可能である。つまり、長い時間にわたり MIMOチャネルの固有値を得ること で、多量の量子化データを得ることができ、本実施の形態と同様に、秘密鍵のデータ 長を長くすることができ、その安全性を高めることができる。
[0076] なお、前記各実施の形態では、 MIMOチャネルのチャネル行列力 線形演算もし くは非線形演算により生成される情報として MIMOチャネルの固有値を用いる場合 について説明した力 本発明はこの場合に限定されるものではなぐ例えばチャネル 行列から線形演算もしくは非線形演算により生成される情報としてチャネル間の相関 関係を示す相関係数、チャネル行列同士の相関関係を示す相関行列又は固有値分 解で得られる固有ベクトルを用いてもょ ヽ。
[0077] 前記各実施の形態では、本発明をノヽードウエアで構成する場合を例にとって説明 したが、本発明はソフトウェアで実現することも可能である。
[0078] また、前記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップ化されてもよいし、一部または全 てを含むように 1チップィ匕されてもよい。ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI、ウルトラ LSIと呼称されることもある。
[0079] また、集積回路化の手法は LSIに限るものではなぐ専用回路または汎用プロセッ サで実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Progra mmable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフ ィギユラブル'プロセッサーを利用してもよい。
[0080] さらには、半導体技術の進歩または派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行って もよい。バイオ技術の適応等が可能性としてありえる。
[0081] 本発明の第 1の態様は、 MIMOチャネルの無線信号を受信する複数のアンテナと 、前記アンテナによる受信信号のチャネル推定値をチャネル毎に算出するチャネル 推定手段と、算出されたチャネル推定値力 MIMOチャネルのチャネル行列を生成 するチャネル行列生成手段と、生成されたチャネル行列から線形演算もしくは非線 形演算により生成される情報を用いて秘密鍵を生成する秘密鍵生成手段と、を具備 する無線通信装置である。
[0082] 本発明の第 2の態様は、前記発明にお 、て、生成されたチャネル行列力も MIMO チャネルの固有値を検出する固有値検出手段をさらに具備し、前記秘密鍵生成手 段は、検出された MIMOチャネルの固有値を用いて秘密鍵を生成する、無線通信 装置である。
[0083] 本発明の第 3の態様は、前記発明において、前記秘密鍵生成手段は、検出された MIMOチャネルの固有値における最大固有値を用いて秘密鍵を生成する、無線通 信装置である。
[0084] 本発明の第 4の態様は、前記発明において、前記秘密鍵生成手段は、検出された MIMOチャネルの固有値の総和に対する比が所定値以上である固有値を用 ヽて秘 密鍵を生成する、無線通信装置である。 [0085] 本発明の第 5の態様は、前記発明において、前記秘密鍵生成手段は、検出された MIMOチャネルの固有値の大きさを量子化して量子化データを生成する量子化手 段と、生成された量子化データ力 鍵データを生成する鍵生成手段と、生成された鍵 データの一部を冗長データとして用いて前記鍵データを誤り訂正処理する訂正手段 と、を具備する無線通信装置である。
[0086] 本発明の第 6の態様は、前記発明において、前記秘密鍵生成手段は、検出された MIMOチャネルの固有値の大きさを測定し、測定された固有値の大きさに応じて、 前記量子化手段の量子化ビット数を減少させる場合には、前記訂正手段に冗長デ ータとして用いるデータ量を減少させ、一方で前記量子化手段の量子化ビット数を増 カロさせる場合には、前記訂正手段に冗長データとして用いるデータ量を増加させる、 制御手段をさらに具備する無線通信装置である。
[0087] 本発明の第 7の態様は、前記発明において、前記アンテナによる受信信号がマル チキャリア信号であって、前記チャネル推定手段は、受信されたマルチキャリア信号 のチャネル推定値の周波数応答を算出し、前記チャネル行列生成手段は、算出され たチャネル推定値の周波数応答カゝらチャネル行列の周波数応答を生成し、前記固 有値検出手段は、生成されたチャネル行列の周波数応答カゝら MIMOチャネルの固 有値の周波数応答を検出し、前記秘密鍵生成手段は、前記固有値検出手段によつ て検出された MIMOチャネルの固有値の周波数応答を用 、て秘密鍵を生成する、 無線通信装置である。
[0088] 本発明の第 8の態様は、 MIMOチャネルの無線信号を複数のアンテナで受信する 受信ステップと、前記アンテナによる受信信号のチャネル推定値をチャネル毎に算 出するチャネル推定ステップと、算出されたチャネル推定値から MIMOチャネルの チャネル行列を生成するチャネル行列生成ステップと、生成されたチャネル行列から 線形演算もしくは非線形演算により生成される情報を用いて秘密鍵を生成する秘密 鍵生成ステップと、を具備する無線通信方法である。
[0089] 本明細書は、 2004年 7月 29日出願の特願 2004— 222389に基づくものである。
この内容は全てここに含めておく。
産業上の利用可能性 本発明に係る無線通信装置は、 MIMO技術の特性を活用することによって無線信 号を第三者に傍受されてもこの第三者の生成する秘密鍵と異なる秘密鍵を生成する ことができると!/、う効果を有し、 MIMO技術を利用した無線通信システムで使用され る無線通信方法等として有用である。

Claims

請求の範囲
[1] MIMOチャネルの無線信号を受信する複数のアンテナと、
前記アンテナによる受信信号のチャネル推定値をチャネル毎に算出するチャネル 推定手段と、
算出されたチャネル推定値から MIMOチャネルのチャネル行列を生成するチヤネ ル行列生成手段と、
生成されたチャネル行列力 線形演算もしくは非線形演算により生成される情報を 用いて秘密鍵を生成する秘密鍵生成手段と、を具備する無線通信装置。
[2] 生成されたチャネル行列力 MIMOチャネルの固有値を検出する固有値検出手 段をさらに具備し、
前記秘密鍵生成手段は、検出された MIMOチャネルの固有値を用いて秘密鍵を 生成する、請求項 1記載の無線通信装置。
[3] 前記秘密鍵生成手段は、検出された MIMOチャネルの固有値における最大固有 値を用いて秘密鍵を生成する、請求項 2記載の無線通信装置。
[4] 前記秘密鍵生成手段は、検出された MIMOチャネルの固有値の総和に対する比 が所定値以上である固有値を用いて秘密鍵を生成する、請求項 2記載の無線通信 装置。
[5] 前記秘密鍵生成手段は、
検出された MIMOチャネルの固有値の大きさを量子化して量子化データを生成 する量子化手段と、
生成された量子化データ力 鍵データを生成する鍵生成手段と、
生成された鍵データの一部を冗長データとして用いて前記鍵データを誤り訂正処 理する訂正手段と、を具備する請求項 2記載の無線通信装置。
[6] 前記秘密鍵生成手段は、
検出された MIMOチャネルの固有値の大きさを測定し、測定された固有値の大き さに応じて、前記量子化手段の量子化ビット数を減少させる場合には、前記訂正手 段に冗長データとして用いるデータ量を減少させ、一方で前記量子化手段の量子化 ビット数を増加させる場合には、前記訂正手段に冗長データとして用いるデータ量を 増加させる、制御手段をさらに具備する、請求項 5記載の無線通信装置。
[7] 前記アンテナによる受信信号がマルチキャリア信号であって、
前記チャネル推定手段は、受信されたマルチキャリア信号のチャネル推定値の周 波数応答を算出し、
前記チャネル行列生成手段は、算出されたチャネル推定値の周波数応答カゝらチヤ ネル行列の周波数応答を生成し、
前記固有値検出手段は、生成されたチャネル行列の周波数応答カゝら MIMOチヤ ネルの固有値の周波数応答を検出し、
前記秘密鍵生成手段は、前記固有値検出手段によって検出された MIMOチヤネ ルの固有値の周波数応答を用いて秘密鍵を生成する、請求項 2記載の無線通信装 置。
[8] MIMOチャネルの無線信号を複数のアンテナで受信する受信ステップと、
前記アンテナによる受信信号のチャネル推定値をチャネル毎に算出するチャネル 推定ステップと、
算出されたチャネル推定値から MIMOチャネルのチャネル行列を生成するチヤネ ル行列生成ステップと、
生成されたチャネル行列力 線形演算もしくは非線形演算により生成される情報を 用いて秘密鍵を生成する秘密鍵生成ステップと、を具備する無線通信方法。
PCT/JP2005/012564 2004-07-29 2005-07-07 無線通信装置及び無線通信方法 WO2006011345A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05758345A EP1758292A4 (en) 2004-07-29 2005-07-07 WIRELESS COMMUNICATION APPARATUS AND WIRELESS COMMUNICATION METHOD
US11/658,256 US20080304658A1 (en) 2004-07-29 2005-07-07 Wireless Communication Apparatus and Wireless Communication Method
BRPI0513929-5A BRPI0513929A (pt) 2004-07-29 2005-07-07 aparelho de comunicação sem fio e método de comunicação sem fio
JP2006528966A JPWO2006011345A1 (ja) 2004-07-29 2005-07-07 無線通信装置及び無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004222389 2004-07-29
JP2004-222389 2004-07-29

Publications (1)

Publication Number Publication Date
WO2006011345A1 true WO2006011345A1 (ja) 2006-02-02

Family

ID=35786096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012564 WO2006011345A1 (ja) 2004-07-29 2005-07-07 無線通信装置及び無線通信方法

Country Status (8)

Country Link
US (1) US20080304658A1 (ja)
EP (1) EP1758292A4 (ja)
JP (1) JPWO2006011345A1 (ja)
KR (1) KR20070046824A (ja)
CN (1) CN1993923A (ja)
BR (1) BRPI0513929A (ja)
RU (1) RU2007107380A (ja)
WO (1) WO2006011345A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228029A (ja) * 2006-02-21 2007-09-06 Fujitsu Ltd 無線通信システム及び受信装置
JP2007306446A (ja) * 2006-05-15 2007-11-22 Hitachi Ltd Mimo無線通信方法およびmimo無線通信装置
JP2008035497A (ja) * 2006-06-23 2008-02-14 Mitsubishi Electric Information Technology Centre Europa Bv チャネル状態情報を報告するための方法及びデバイス、転送を制御するためのシステム、コンピュータプログラム、並びに信号
JP2008529413A (ja) * 2005-01-27 2008-07-31 インターデイジタル テクノロジー コーポレーション 他と共有されないジョイント乱数性(jrnso)を用いて暗号鍵を導出する方法とシステム
JP2010509875A (ja) * 2006-11-10 2010-03-25 クゥアルコム・インコーポレイテッド 無線通信システムにおけるアンテナダイバーシティの提供
US8238551B2 (en) 2005-01-27 2012-08-07 Interdigital Technology Corporation Generation of perfectly secret keys in wireless communication networks
US8280046B2 (en) 2005-09-12 2012-10-02 Interdigital Technology Corporation Method and system for deriving an encryption key using joint randomness not shared by others
KR101275395B1 (ko) 2012-02-10 2013-06-17 고려대학교 산학협력단 Mimo 간섭 채널에서의 채널정보 양자화 장치 및 방법
US9042544B2 (en) 2011-12-14 2015-05-26 Electronics And Telecommunicatons Research Institute Apparatus and method for generating secret key using change in wireless channel on wireless communication network

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070036353A1 (en) * 2005-05-31 2007-02-15 Interdigital Technology Corporation Authentication and encryption methods using shared secret randomness in a joint channel
KR20080083176A (ko) * 2005-12-20 2008-09-16 인터디지탈 테크날러지 코포레이션 결합 랜덤성으로부터 비밀키를 발생하는 방법 및 시스템
JP5068809B2 (ja) * 2006-04-18 2012-11-07 インターデイジタル テクノロジー コーポレーション 無線通信を保護するための方法およびシステム
US8401196B2 (en) 2007-04-19 2013-03-19 Interdigital Technology Corporation Method and apparatus for performing JRNSO in FDD, TDD and MIMO communications
KR101239716B1 (ko) * 2007-11-06 2013-03-06 인터디지탈 패튼 홀딩스, 인크 물리계층 비밀 키를 생성하기 위한 방법 및 장치
US9178597B2 (en) * 2008-01-28 2015-11-03 Broadcom Corporation Method of updating transmission channel information based on eaves-dropping of beamformed signals
WO2009110240A1 (ja) * 2008-03-06 2009-09-11 パナソニック株式会社 無線受信装置及びフィードバック方法
EP2294751A1 (en) * 2008-05-12 2011-03-16 Interdigital Patent Holdings, Inc. Information-theoretically secure secrecy generation
US8270602B1 (en) 2009-08-13 2012-09-18 Sandia Corporation Communication systems, transceivers, and methods for generating data based on channel characteristics
CN101998390B (zh) * 2009-08-27 2015-03-25 华为技术有限公司 保证通信安全的方法及设备
US8711751B2 (en) * 2009-09-25 2014-04-29 Apple Inc. Methods and apparatus for dynamic identification (ID) assignment in wireless networks
CN102056230B (zh) * 2009-11-05 2014-01-08 华为技术有限公司 无线信道互易信息的提取和量化的相关方法、装置及设备
US8401193B2 (en) * 2010-10-29 2013-03-19 Futurewei Technologies, Inc. System and method for securing wireless communications
US8744082B2 (en) * 2010-11-03 2014-06-03 Futurewei Technologies, Inc. System and method for securing wireless communications
FR2976431B1 (fr) * 2011-06-07 2014-01-24 Commissariat Energie Atomique Methode de generation de cle secrete pour systeme de communication sans fil
WO2013000174A1 (zh) * 2011-06-30 2013-01-03 北京邮电大学 基于无线信道特征的一致性密钥生成方法
US8897157B2 (en) * 2011-12-16 2014-11-25 Maxlinear, Inc. Method and apparatus for providing conditional access based on channel characteristics
CN103312389B (zh) * 2012-03-06 2016-05-25 华为技术有限公司 一种多用户干扰抑制方法、终端及基站
KR101977593B1 (ko) * 2012-06-25 2019-08-28 삼성전자주식회사 복수의 안테나들을 이용한 mimo 다중화에 기반하여 전송단에서 시크릿 정보를 전송하는 방법 및 수신단에서 시크릿 정보를 수신하는 방법
US20140376464A1 (en) * 2013-06-21 2014-12-25 Electronics & Telecommunications Research Institute Method for communication using large-scale antenna in multi-cell environment
CN106789771B (zh) * 2016-12-29 2020-05-12 新沂市数聚科技有限公司 数据传输方法及装置
CN112188491A (zh) * 2020-09-24 2021-01-05 江苏恒宝智能系统技术有限公司 一种基于mimo的数据安全传输基站、移动终端和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604806A (en) * 1995-01-20 1997-02-18 Ericsson Inc. Apparatus and method for secure radio communication
KR100327494B1 (ko) * 2000-03-24 2002-03-15 윤종용 다중 접근 방식을 이용한 보안 통신 시스템에서의 키 동의방법
WO2002019569A1 (fr) * 2000-08-30 2002-03-07 Matsushita Electric Industrial Co., Ltd. Dispositif de transmission de donnees, systeme et technique de communications radio
JP4381749B2 (ja) * 2002-09-19 2009-12-09 パナソニック株式会社 無線通信装置及び無線通信方法
JP4197482B2 (ja) * 2002-11-13 2008-12-17 パナソニック株式会社 基地局の送信方法、基地局の送信装置及び通信端末
US7634088B2 (en) * 2003-09-04 2009-12-15 The Doshisha Radio communications system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HERSHEY JOHN E ET AL: "Unconventional Cryptographic Keying Variable Management.", IEEE TRANSACTIONS ON COMMUNICATIONS., vol. 43, no. 1, January 1995 (1995-01-01), pages 3 - 6, XP000487370 *
HORIIKE MOTOKI AND SASAOKA SHUICHI.: "Rikujo Ido Tsushinro no Fukisoku Hendo ni Motozuku Himitsu Kagi Kyoyu Hoshiki.", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU RCS2002-172 TO 180., vol. 102, no. 374, 11 October 2002 (2002-10-11), pages 7 - 12, XP002999362 *
OGAWA YOSHIHIKO ET AL: "MIMO-OFDM System ni okeru Sokan Gyoretsu no Koyuchi Hendo ni Motozuku Himitsu Kahi Kyoyu Hoshiki no Kento.", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU RCS2004-236 TO 258., vol. 104, no. 597, 19 January 2005 (2005-01-19), pages 127 - 132, XP002999363 *
See also references of EP1758292A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529413A (ja) * 2005-01-27 2008-07-31 インターデイジタル テクノロジー コーポレーション 他と共有されないジョイント乱数性(jrnso)を用いて暗号鍵を導出する方法とシステム
JP4734344B2 (ja) * 2005-01-27 2011-07-27 インターデイジタル テクノロジー コーポレーション 他と共有されないジョイント乱数性(jrnso)を用いて暗号鍵を導出する方法とシステム
US8238551B2 (en) 2005-01-27 2012-08-07 Interdigital Technology Corporation Generation of perfectly secret keys in wireless communication networks
US9130693B2 (en) 2005-01-27 2015-09-08 Interdigital Technology Corporation Generation of perfectly secret keys in wireless communication networks
US8280046B2 (en) 2005-09-12 2012-10-02 Interdigital Technology Corporation Method and system for deriving an encryption key using joint randomness not shared by others
JP2007228029A (ja) * 2006-02-21 2007-09-06 Fujitsu Ltd 無線通信システム及び受信装置
JP2007306446A (ja) * 2006-05-15 2007-11-22 Hitachi Ltd Mimo無線通信方法およびmimo無線通信装置
JP2008035497A (ja) * 2006-06-23 2008-02-14 Mitsubishi Electric Information Technology Centre Europa Bv チャネル状態情報を報告するための方法及びデバイス、転送を制御するためのシステム、コンピュータプログラム、並びに信号
JP2010509875A (ja) * 2006-11-10 2010-03-25 クゥアルコム・インコーポレイテッド 無線通信システムにおけるアンテナダイバーシティの提供
US8885744B2 (en) 2006-11-10 2014-11-11 Qualcomm Incorporated Providing antenna diversity in a wireless communication system
US9042544B2 (en) 2011-12-14 2015-05-26 Electronics And Telecommunicatons Research Institute Apparatus and method for generating secret key using change in wireless channel on wireless communication network
KR101275395B1 (ko) 2012-02-10 2013-06-17 고려대학교 산학협력단 Mimo 간섭 채널에서의 채널정보 양자화 장치 및 방법

Also Published As

Publication number Publication date
EP1758292A4 (en) 2011-10-12
JPWO2006011345A1 (ja) 2008-05-01
CN1993923A (zh) 2007-07-04
RU2007107380A (ru) 2008-09-10
EP1758292A1 (en) 2007-02-28
US20080304658A1 (en) 2008-12-11
KR20070046824A (ko) 2007-05-03
BRPI0513929A (pt) 2008-05-20

Similar Documents

Publication Publication Date Title
WO2006011345A1 (ja) 無線通信装置及び無線通信方法
Jin et al. Channel estimation for cell-free mmWave massive MIMO through deep learning
JPWO2006013798A1 (ja) 無線通信方法、無線通信システム及び無線通信装置
KR101125529B1 (ko) 다중-안테나 프로세싱 장치 및 이를 포함하는 이동단말기와 그 방법
WO2006013699A1 (ja) 無線通信装置、無線通信システム及び無線通信方法
Shehadeh et al. A survey on secret key generation mechanisms on the physical layer in wireless networks
WO2004073226A1 (ja) 送信装置及び無線通信方法
TWI269544B (en) Blind signal separation using array deflection
KR20020093185A (ko) 적응 안테나 어레이가 구비된 cdma 시스템에서의 신호처리 방법 이를 위한 시스템
WO2018221431A1 (ja) 無線装置及び無線通信方法
US20060284725A1 (en) Antenna array calibration for wireless communication systems
Ruotsalainen et al. Towards wireless secret key agreement with LoRa physical layer
WO2021091615A1 (en) Physical layer key generation
EP1875632B1 (en) Antenna array calibration for wireless communication systems
WO2007056672A2 (en) Antenna array calibration for wireless communication systems
Li et al. Robust key generation with hardware mismatch for secure MIMO communications
CN109274486B (zh) 基于多径分离的频分双工系统中互易信道增益构建方法
WO2009078529A1 (en) Beamforming method using multiple antennas
Vogt et al. Full-duplex vs. half-duplex secret-key generation
TW201817187A (zh) 通道資訊的估測系統及其方法
Lu et al. RIS-assisted physical layer key generation by exploiting randomness from channel coefficients of reflecting elements and OFDM subcarriers
Zhang et al. 4-WFRFT for Physical Layer Security Enhancement Based on MIMO Correlated Channel
JP5334061B2 (ja) 無線通信方法、及び無線通信システム
KR101207657B1 (ko) 적응 배열 안테나를 이용하는 직교주파수분할다중 통신시스템에서 신호대잡음비 혹은 신호대간섭과잡음비를최대로 하는 신호처리 장치 및 방법
Pang et al. Enhancing Security in RSMA Networks with Cooperative Jamming and Relaying

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528966

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005758345

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11658256

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077002015

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580025524.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007107380

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005758345

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0513929

Country of ref document: BR