TWI269544B - Blind signal separation using array deflection - Google Patents

Blind signal separation using array deflection Download PDF

Info

Publication number
TWI269544B
TWI269544B TW094133241A TW94133241A TWI269544B TW I269544 B TWI269544 B TW I269544B TW 094133241 A TW094133241 A TW 094133241A TW 94133241 A TW94133241 A TW 94133241A TW I269544 B TWI269544 B TW I269544B
Authority
TW
Taiwan
Prior art keywords
antenna
signal
source
different
signals
Prior art date
Application number
TW094133241A
Other languages
Chinese (zh)
Other versions
TW200627840A (en
Inventor
Steven J Goldberg
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/233,160 external-priority patent/US7098849B2/en
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200627840A publication Critical patent/TW200627840A/en
Application granted granted Critical
Publication of TWI269544B publication Critical patent/TWI269544B/en

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communications device for separating source signals provided by M signal sources includes an antenna array comprising N antenna elements for generating N initial antenna patterns for receiving N different summations of the M source signals, with N being less than M. The antenna array includes an elevation controller for selectively changing an elevation of at least one of the N initial antenna patterns for generating at least one additional antenna pattern so that at least one additional different summation of the M source signals is received thereby. A blind signal separation processor forms a mixing matrix comprising the N different summations of the M source signals, and the at least one additional different summation of the M source signals. The mixing matrix has a rank equal to N plus the number of additional different summations of the M source signals received using the additional antenna patterns. The blind signal separation processor separates desired source signals from the mixing matrix.

Description

1269544 九、發明說明: 【發明所屬之技術領域】 本發明與信號處理的領域有關,更特別的,與使用盲信 • 號分離(BSS)技術,從一來源信號混合中,分離出想要的 - 信號有關。 【先前技術】 目仏號分離(BSS)與從一混成信號中回復來源信號有 • 關,該混成信號包含來源信號混合。因為該分離通常是以 有關該信號、該信號來源,以及在該信號上具有傳遞頻道 影響的有限資訊所實作,因此該分離是,,盲目的,,。 一種眾所皆知的範例是當群體中的某人,可以從房間所 _ 有聲音的結合中,分離出一信號聲音的,,雞尾酒會,,現象。盲 信號分離特別可應用於蜂巢式與個人無線通訊裝置,其^ 許多頻帶,是因為通常共同存在於相同頻譜中的多數無線 f頻率發射n而變的凌亂。該共同頻道發射器的問題y隨 著低功率、像是藍芽與其他個人區域網路的未授權無線技 術發展,而在這幾年變得惡化。 一般所使用的三種盲信號分離技術,為主成分分析 (PCA)、獨立成分分析(ica)與信號數值分解(svD)。 主成分分析牽涉到該來源信號的第一與第二動差統計值, 並在該來源信號的信號雜訊比高時死使用。在其他方面, 獨立成分分析則使用該主成分分析之後的第三與第四階動 差統計值。做為一種替代,信號數值分解可以根據特徵值, 7 ⑨ 1269544 從來源信號混合中分離出一來源信號。 不·應用哪-種盲信號分離技術,其都使用多數感應器 以從,不同的信號來源,接收不同的來源信號混合。每個 感應為都輸出-來源信軌合,其是該來源錢的某種獨 特總和。-般上’該接收器並不知道該頻道係數與該原始 來源信號^者。該信號的獨特總和卿於填人—混合矩陣 之卜接著對該混合矩陣應㈣#的盲信號分離技術,以 從該來源信號混合中,分離出想要的來源信號。 ,為-範例’ U.S. Patent Να 6,799,17〇公開了使用獨立 =刀,’攸―來源信號混合中,分離—獨立來源信號的 =二,應11接收該來源信號混合,而—處理器隨著 來源信號混合進行採樣,並將每娜本儲存為資 二^ 2為貧料集合。每個感應器輸出—來源信號混 信號的某種獨特總和。—獨立成分分析模 中的八他仏唬,分離出一獨立來源信號。 感二來源離二處,於每個各自 專利,Π。也公開了_應器二合。該申請 合,是等於或大㈣來源的數目Μ,也^^人該資料集 實作問題在於當該來源數目Μ增加時疋:Μ。這樣的 要同時增加。對於大數目的感應器Ν而言以的數目Ν也 訊襄置只具有較小的可用體積,而在型可攜式通 该感應器,也造成使用者的問題。 °、置外侧固定 1269544 U.S· Patent No· 6,931,362公開了另一種使用盲信號分離 以進行分離信號的方法。該公開的盲信號分離技術利用混 成的矩陣束適應陣列權重,形成一混合矩陣,其將由干擾 發射器與咼斯雜訊兩者產生的均方差最小化。該混成矩陣 將該信號對於干擾加上雜訊的比例最大化。當利用申請專 利’170時,該感應器彼此也是空間分離,而該感應器的數 目N,為了填入該混合矩陣,是等於或大於該來源數目M。 此外,每個感應器提供輸入至該混合矩陣的一個信號,造 成一可攜式通訊裝置需要較大的體積面積。 【發明内容】 在前述背景的觀點中,本發明所因而產生的目標,便是 提供一種通訊裝置,其包括小型的天線陣列,用以接收盲 k號分離技術所使用的來源信號混合,因此可以從其中分 離出想要的信號。 與本發明一致的此項與其他目標、特徵以及優點,則利 用一種通訊裝置提供,其用以分離由M個信號來源所提供 的來源信號,該通訊裝置包括用以接收該M個來源信號不 同總和的天線陣列。一接收器或接收器組件則連接至該天 線陣列,而一盲信號分離處理器則連接到該接收器,以形 成一混合矩陣。該混合矩陣包括由該天線陣列所接收Μ個 來源k號的不同總和。該盲信號分離處理器接著從該混合 矩陣中,分離出想要的來源信號。 代替為了該混合矩陣所提供M個來源信號不同總和而 1269544 利用的空間分離感應|§ ’其可使用一種小型天線。對於可 攜式通訊裝置而言,因為該天線陣列可以提供多於一個輪 入至該混合矩陣,並同時維持小型’因此仍可使用盲信號 分離技術。 特別的,對於盲信號分離處理而言,可以使用陣列偏位 以提供彳S唬的不同總和。陣列偏位與在方位角及/或高度方 向中的控制天線場型有關。陣列偏位的優點,在於可以為 了混合輯而接收更多錢’而不需增加在該天線陣列中 ® 的天線元件數目。 該天線陣列可以為了接收該Μ個來源信號的N個不同 總和,而包括用於產生Ν個初始天線場型的Ν個天線元件, 其中Ν小於Μ。該天線陣列可以包括一高度控制器,其為 了產生至少一個額外天線場型,而選擇性地改變至少該ν ,初始天線場型之—的高度,以便藉此接收該Μ個來源信 唬的至少一個額外不同總和。 鲁 接收器可以連接至該天線陣列,用以使用該Ν個初始 天線%型,接收該Μ個來源信號的ν個不同總和,並使用 "亥至;一個額外天線場型,接收該Μ個來源信號的至少一 個領外不同總和。一盲信號分離處理器,其用以形成包括 j Μ個來源信號的Ν個不同總和,以及該μ個來源信號至 ^個額外不同總和的混合矩陣,並從該混合矩陣中,分 離出省要的來源信號。該混合矩陣的秩數(rank),等於ν 上使用该額外天線圖形所接收M個來源信號額外不同總 和的數目。 1 1269544 古庚X二度&制$可以選擇性地改變前個初始天線場型的 生 =_,個來源信號的_額外不同總和,產 名/讀㈣’而舰合轉的紐現在#於2N。 器也可以區分為與該N個天線元件有闕的让 1£域’母個區域都為了改變該N個初始天線場型的高戶 ==立控制,因此為了接收該M個來源信號的 外不同總和,產生Ν個額外 貝 數現在等於2kN。 1外天線地,而該混合矩陣的秩 以配m可魏置為具有相㈣不關偏極,並且可 曰不相關。在—實施例中,n個天線元件 =相_。該N_關天線元件可以包括 ;=該:線陣列形成一種— 才夕目關天線疋件也可以包括至少一個主動天線元件,以及至 in個被動天線元件,因此該天線陣列形成一種切換波 夭^一H例中,該天線陣列包括一接地平面,而該N個 天線兀件包括-個鄰接於該接地平面的主動天線元件,以 及鄰接於職地平_複數被動天線元件 元件可以包括-上半部與-對應的下半部,而一= =的=上半部連接製該接地平面,用以改變; ==方位角。該高度控制器可以包括用於該每個下 /各自下方可變反應負载’用以將該下半部連接至咳 =平面。該N個天線場__整至少該下方可變^ 負載之一,而在高度中移動。 μ 1269544 而在另一實施例中’該天線陣列包括鄰接於該N個天線 元件的接地平面,而該高度控制器包括與該接地平面結合 的一可控制無線電頻率(RF)調節裝置。該n個天線波束 藉由控制該無線電頻率調節裝置,而在高度中移動。 當接收該]VI個信號的不同總和時,可以在場型與波束之 間進行區隔。在一情況中,該天線陣列為了接收該M個來 源信號的至少N個不同總和,可以形成至少n個天線波束, 每個天線波束具有從一最大增益點以下的3分貝點,其是 為了在一接近信號的至少一方向中,回絕信號而作準備。 在另一情況中,該天線陣列為了接收該M個來源信號的N 個不同總和之一,可以形成至少一天線場型,該至少一天 線場型大體上不具有從一最大增益點以下的3分貝點,造 成在一接近信號的任何方向中都沒有信號回絕。 该Μ個來源錢的每個總和是雜的。該盲信號分離處 理器可以根據至少域分分析(pcA)、獨立成分分析(ica) 以及仏说數值分解(SVD)之-,從該混合矩陣中分離出 想要的來源信號。 本毛月的另觀點’是應用—種為了分離由該Μ個信號 來源所提供的來源信號,而操作如以上定義通訊裝置的方 法0 【實施方式】 本么月見在將參考顯示本發明較佳實施例的伴隨圖示, 在之後進4Τ更TO I的敘述。然而,此發明可以實作為許多 (S: 12 1269544 不同形式,而在此不應該被建構為如該實施例所設定的限 制三當然,這些提供的實施例將是徹底且完整的,並且可 以70王地傳達至本領域的技術者。相同的數字參照為相同 的元件,而主標則用來標示替代實施例中的相似元件。 在通吼網路中,具有為了特定通訊裝置所準備的來源信 ^來並^在相同的頻帶中,具有為了其他通訊裝置所準備 生的唬。同時也存在不被通訊所使用,來自雜訊所產 、、"號,然而其也同樣地由通訊裝置所接收。 ϋ足進對於有興趣來源信號的解碼,其使用盲信號分 n-:離出—通訊裝置接收的信號。如以上所指出的, 该術語,,盲目” β此达上 ^j 該信號與#、s理贿㈣,該錢不需要其他在 本質的知頻道之間’由於交互作用所產生信號轉換 任何可^ ’便可以被分離。在實際實作中,則時常利用 的。'㈣知識。在此情对,該錢分賴為半盲目 (pS)S分離中,三種常使㈣技術為主成分分析 只要該信=立成分分析(ICA)以及信號數值分解(SVD )。 和彼此線^某些I置導性是獨立的,且如果其信號總 以用以從一 a立這些目^號分離技術之一或更多,便可 號。該可旦^源信號混合之中,分離獨立或想要的來源信 四動差的通常是該錢的第―、第二、第三或第 於該二該信號,使用該第一與第二動差,並基 ⑧ 生|麵轉該資料集合。如果該來源信號的信號雜 13 1269544 訊比過高,可以停止利用主成分分析進行的信號分離處理。 如果該來源信號的信號雜訊比過低,接著便可基於與兮 來源信號第三與第四動差有關的統計特質,以獨立成分分 析分離來源5虎。因為該來源^3虎為面斯分佈,甘第二命 第四動差便與第一與第二動差有關。做為獨立成分分析與 主成分分析的一種替換,信號數值分解是根據信號特徵 值,從來源信號混合中分離來源信號。 第1圖中描述一種典塑的方案,其中一複數信號來源2〇 傳輸來源信號22。該來源信號22是根據相關於每個各自信 號來源20所產生的天線波束24方向中傳輸。該複數信號 來源20包含一第一信號來源20(1)至一第μ信號來源 20(Μ)。相同地,該各自的來源信號也參照為22(丨)至 22(Μ),而其對應的天線波束則參照為24(1)至24(Μ)。在通 訊網路中,常利用泛方向性天線場型或指向性天線場型進 行更進一步的實作。 一天線陣列32為了該通訊裝置30,從該信號來源2〇接 收該來源信號22的線性結合(混合)。該天線陣列32包括 一複數天線元件34’而每個天線元件提供來自該信號來源 20來源信號22的至少一個線性結合(混合)。該天線元件 34包含一第一天線元件34(1)至一第Ν天線元件34(Ν)。 該接收的來源信號22(1)至22(Μ)最初是形成於一混合矩 陣36之中。該通訊裝置30使用盲信號分離技術,以確定 位於分離來源信號的一分離矩陣38,是否在該混合矩陣之 中。該分離信號則以數字39表示。 1269544 ’、;’不需要其特性知識,共同地取得 所接收的來源伸1人〜m A 早幻32 ^口琥此合。母個天線元件34的輸 利用該頻道脈衝回應胼# M认 J®社匕心 應所域,齡之介於該信絲源20輸 :天線轉34輸出之間的傳遞路徑加上額外的高斯雜 汛之後,做為該來源信號22的模型。1269544 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to the field of signal processing, and more particularly, to the use of blind signal separation (BSS) technology, from a source signal mixture, to separate the desired - Signal related. [Prior Art] The target separation (BSS) is related to the recovery of the source signal from a mixed signal, which includes the source signal mixture. Since the separation is usually performed with respect to the signal, the source of the signal, and limited information on the signal having a channel effect, the separation is blind. A well-known example is when someone in a group can separate a signal, cocktail, and phenomenon from a combination of sounds in the room. Blind signal separation is particularly applicable to cellular and personal wireless communication devices, many of which are due to the messyness of most wireless f-frequency transmissions that typically co-exist in the same spectrum. The common channel transmitter problem y has deteriorated over the years with the development of low-power, unlicensed wireless technologies such as Bluetooth and other personal area networks. The three blind signal separation techniques commonly used are principal component analysis (PCA), independent component analysis (ica), and signal numerical decomposition (svD). The principal component analysis involves the first and second momentum statistics of the source signal and is used dead when the signal to noise ratio of the source signal is high. In other respects, the independent component analysis uses the third and fourth order momentum statistics after the principal component analysis. As an alternative, the signal value decomposition can separate a source signal from the source signal mixture based on the eigenvalue, 7 9 1269544. Do not apply which-blind signal separation technique, which uses most sensors to receive different source signal mixes from different signal sources. Each sense is an output-source link, which is a unique sum of money from that source. - The receiver does not know the channel coefficient and the original source signal. The unique summation of the signal is based on the padding-mixing matrix and then the blind matrix separation technique of the hybrid matrix (#)# to separate the desired source signal from the source signal mixture. , for the -example 'US Patent Να 6,799,17〇 discloses the use of independent = knives, '攸 ― source signal mixing, separation - independent source signal = two, should 11 receive the source signal mixture, and - processor The source signals are mixed and sampled, and each of the samples is stored as a collection of lean materials. Each sensor output—a unique sum of the source signal mixed signals. - The octopus in the independent component analysis model separates an independent source signal. The source of the two sources is two, in each of the respective patents, Π. Also disclosed is the _ _ _ _. The application is equal to or greater than the number of (iv) sources, and ^^ people have the data set. The problem is that when the number of sources increases, 疋:Μ. This will increase at the same time. For a large number of sensors, the number of sensors is only a small available volume, and the portable type of the sensor also causes problems for the user. The outer side is fixed. 1269544 U.S. Patent No. 6,931,362 discloses another method of separating signals using blind signal separation. The disclosed blind signal separation technique utilizes a blended matrix beam to adapt the array weights to form a mixing matrix that minimizes the mean square error produced by both the interfering transmitter and the muse noise. The blending matrix maximizes the ratio of the signal to interference plus noise. When the application patent '170 is utilized, the sensors are also spatially separated from each other, and the number N of the sensors is equal to or greater than the number M of the sources in order to fill the mixing matrix. In addition, each sensor provides a signal input to the mixing matrix, resulting in a portable communication device requiring a larger volumetric area. SUMMARY OF THE INVENTION In view of the foregoing background, the object of the present invention is to provide a communication device including a small antenna array for receiving a source signal mixture used by a blind k-separation technique, thereby The desired signal is separated from it. This and other objects, features, and advantages consistent with the present invention are provided by a communication device for separating source signals provided by M signal sources, the communication device including receiving the M source signals differently The sum of the antenna arrays. A receiver or receiver component is coupled to the antenna array and a blind signal separation processor is coupled to the receiver to form a mixing matrix. The mixing matrix includes different sums of the k sources received by the antenna array. The blind signal separation processor then separates the desired source signal from the hybrid matrix. Instead of the different sums of the M source signals provided for the mixing matrix, the spatial separation sensing utilized by the 1269544|§' can use a small antenna. For portable communication devices, blind signal separation techniques can still be used because the antenna array can provide more than one round to the mixing matrix while maintaining small size. In particular, for blind signal separation processing, array offsets can be used to provide different sums of 彳S唬. The array offset is related to the control antenna pattern in the azimuth and/or height directions. The advantage of array offset is that it can receive more money for the mix, without the need to increase the number of antenna elements in the antenna array. The antenna array may include a plurality of different sums of the one source signals, including one of the antenna elements for generating the initial antenna pattern, wherein Ν is less than Μ. The antenna array can include a height controller that selectively varies at least the height of the ν, initial antenna pattern to generate at least one additional antenna pattern to thereby receive at least the source of the source signal An extra different sum. A lure receiver can be coupled to the antenna array for receiving the different sums of the one source signals using the one initial antenna % type, and using the "Hai to; ̧ additional antenna patterns to receive the one At least one out-of-the-way sum of the source signals. a blind signal separation processor for forming a plurality of different sums including j source signals, and a mixing matrix of the μ source signals to an additional different sum, and separating the provincial matrix from the mixing matrix Source signal. The rank of the mixing matrix is equal to the number of additional different sums of the M source signals received on the additional antenna pattern on ν. 1 1269544 Gu Geng X 2 & System $ can selectively change the life of the previous initial antenna pattern = _, the extra sum of the source signals _ additional name, read / read (four) 'and the ship to turn the new now # At 2N. The device can also be distinguished from the N antenna elements, so that the 1 parent domain is in order to change the high initial value of the N initial antenna patterns == vertical control, so in order to receive the M source signals Different sums, resulting in an extra number of shells is now equal to 2kN. 1 external antenna ground, and the rank of the mixing matrix can be set to have phase (4) non-polarization, and can be irrelevant. In an embodiment, n antenna elements = phase _. The N_off antenna element may include; = the line array forms a type - the antenna element may also include at least one active antenna element, and to the passive antenna elements, such that the antenna array forms a switching wave In a H example, the antenna array includes a ground plane, and the N antenna elements include an active antenna element adjacent to the ground plane, and adjacent to the ground level _ complex passive antenna element elements may include - upper half The part corresponds to the corresponding lower half, and a === upper half is connected to the ground plane for changing; == azimuth. The height controller can include for each of the lower/each lower variable reaction load' to connect the lower half to the cough = plane. The N antenna fields __ are at least one of the lower variable loads and move in height. μ 1269544 In yet another embodiment, the antenna array includes a ground plane adjacent to the N antenna elements, and the height controller includes a controllable radio frequency (RF) conditioning device coupled to the ground plane. The n antenna beams are moved in height by controlling the radio frequency adjusting means. When receiving the different sums of the ]VI signals, the field type and the beam can be separated. In one case, the antenna array can form at least n antenna beams in order to receive at least N different sums of the M source signals, each antenna beam having a 3 dB point below a maximum gain point, In at least one direction of the proximity signal, the signal is rejected and prepared. In another case, the antenna array may form at least one antenna field type in order to receive one of the N different sums of the M source signals, the at least one antenna field type having substantially no 3 from a maximum gain point. The decibel point causes no signal to be rejected in any direction close to the signal. The sum of the money from each source is mixed. The blind signal separation processor can separate the desired source signal from the hybrid matrix based on at least a domain analysis (pcA), an independent component analysis (ica), and a numerical decomposition (SVD). Another point of view of this month is the application - in order to separate the source signals provided by the one signal source, and operate the method as defined above for the communication device. [Embodiment] This month will refer to the display of the present invention. The accompanying drawings of the preferred embodiment are followed by a description of TO I. However, this invention can be implemented in many different forms (S: 12 1269544, and should not be constructed here as a limitation of three as set forth in this embodiment. Of course, these provided embodiments will be thorough and complete, and may be 70 The same numbers are referred to by the same elements, while the same reference numerals are used to designate similar elements in alternative embodiments. In an overnight network, there are sources for a particular communication device. The letter ^ and ^ in the same frequency band, there are 唬 for the other communication devices. At the same time, there is also the use of communication, and the number is not used by the communication, but it is also the same by the communication device Received. For decoding of signals of interest, it uses a blind signal to divide n-: the signal received by the communication device. As indicated above, the term, blindly, "this is up to ^j" Signal and #, s bribery (four), the money does not need to be between the essence of the knowledge channel 'because of the signal conversion caused by the interaction can be ^ can be separated. In actual implementation, then the time The use of '(four) knowledge. In this case, the money is divided into semi-blind (pS) S separation, three kinds of constant (four) technology as the main component analysis as long as the letter = vertical component analysis (ICA) and signal numerical decomposition ( SVD) and each line ^ Some I-conductivity is independent, and if its signal is always used to separate one or more of these objects from a target, it can be numbered. In the signal mixing, the separation of the independent or desired source signal is usually the first, second, third or second of the signal, using the first and second motion differences, and the base 8 raw | face to the data set. If the source signal signal 13 1369544 signal ratio is too high, you can stop the signal separation process using principal component analysis. If the signal noise ratio of the source signal is too low, then you can Based on the statistical characteristics related to the third and fourth movements of the 兮 source signal, the independent source analysis is used to separate the source 5 tiger. Because the source ^3 tiger is the face distribution, the second life of the second life is the first and the first Second motion difference. As independent component analysis and principal component analysis Alternatively, the signal value decomposition is based on the signal characteristic value, separating the source signal from the source signal mixture. Figure 1 depicts a typical scheme in which a complex signal source 2 〇 transmission source signal 22. The source signal 22 is based on The transmission is in the direction of the antenna beam 24 generated by each respective signal source 20. The complex signal source 20 includes a first signal source 20(1) to a μth signal source 20(Μ). Similarly, the respective The source signal is also referred to as 22 (丨) to 22 (Μ), and its corresponding antenna beam is referred to as 24 (1) to 24 (Μ). In the communication network, the general directional antenna field pattern or directivity is often utilized. The antenna pattern is further implemented. An antenna array 32 receives a linear combination (mixing) of the source signal 22 from the signal source 2 for the communication device 30. The antenna array 32 includes a plurality of antenna elements 34' and each antenna element provides at least one linear combination (mixing) of the source signal 22 from the signal source 20. The antenna element 34 includes a first antenna element 34(1) to a second antenna element 34 (Ν). The received source signals 22(1) through 22(Μ) are initially formed in a hybrid matrix 36. The communication device 30 uses a blind signal separation technique to determine if a separation matrix 38 located at the separated source signal is in the mixing matrix. The separated signal is represented by the numeral 39. 1269544 ‘,;’ does not need knowledge of its characteristics, and jointly obtains the source of the received 1 person~m A early illusion 32 ^ mouth hu. The transmission of the mother antenna element 34 utilizes the channel impulse response 胼#M recognizes that the J® community is in the heart of the field, and the age is between the source of the signal source 20: the transmission path between the output of the antenna and the output of the antenna plus an additional Gaussian After the chowder, it is used as a model of the source signal 22.

現在將參考第2圖,詳細討論用於分離由該 源20⑴至2_所提供來源信號的通訊裝置3〇。一天線= 列34包含N個天線元件%⑴至34(n),以接收該μ個來 源信號的至少Ν個不同總和’其中大於丨。該天線 陣列32並不限制為任何的特定配置。該天料列可以包含 或夕/個天線元件34。該天線元件34可以配置該天線陣 列,形成一種像是相位陣列或切換波束陣列的形式,其將 在之後進行討論。 ^在該天線陣列32下游連接-無線電收發器4〇,以接收 忒Μ個來源信號22的至少N個不同總和。在該無線電收 么态40下游則連接一處理器42。雖然該處理器似在描述 上與该無線電收發器4〇分離,該處理器42也可以包含於 邊無線電收發器40之中。由該無線電收發器4〇所接收M 個來源4§號22的不同總和,則用於填入該混合矩陣%之 中。該混合矩陣36接著以在該處理器42之中的一或多個 目k號分離處理模組44、46以及48進行處理。 邊a k號分離處理模組包含一主成分分析模組44、一獨 立成分分析模組46以及一信號數值分解模組48。這些模組 15 1269544 44、46以及48,可以配置為一盲信號分離處器的〆部份。 該主成分分析模組44根據該接收來源信號不同總和的第一 與第二動差操作,而該獨立成分分析模組46根據該相同信 號的第二與第四動差操作。該信號數值分解模組48根據該 接收來源彳§號不同總和的特徵值實作信號分離。 該相關性處理最初是以主成分分析模組44實作,確認用 於該來源信號不同總和的初始分離矩陣38(丨),而獨立成分 分析模組46接著決定在該混合矩陣中,用於該來源信 號分離的一強化分離矩陣38(2)。如果該信號是由信號數值 分解模組48所分離,也從該混合矩陣36中,決定用於該 接收來源信號不同總和分離的一分離矩陣38(3)。 來自於每個各自的分離矩陣38⑴至38(3)的分離信號, 是以參照數字39所表示。該分離信號39接著利用一信號 分析模組50進行信號分析,以決定有興趣的信號以及干擾 信號。一種應用相關處理模組52處理從該信號分析模組5〇 輸出的信號。 對於哪些信號為感興趣的決定,並不總是與被解碼的最 終信號有關。舉例來說,該應用可以在為了確認干擾,並 k瀛接收來源信號的不同總和中減去時呼叫,並接著回饋 該減低信號至一波形解碼器。在此情況中,該有興趣信號 在最終也因為被回絕而終止。 回饋至該主成分分析模組44的資訊,是一種信號的獨特 總和Xj。其假設觀測到M個獨立成分的n個線性混合 X!、· · ·ΧΝ 為: 16 1269544 χι(0=^ιΛ(0+Λ α^(〇+Λ amsM{t) Μ ^W=^iW+A ajksk{t)^K ajMsM{t) Μ ^(i)=%i*yi(〇+A aNksk(t)^A aNMsM{t) 一般上’該無線電收發器4〇知道該頻道係數ajk與該原 始信號Sk。在上述方程式組的矩陣標註中,可以簡寫為 x=As,其中A為混合矩陣。該統計模式x^As也已知為一 種獨立成分分析模式。用以嘗試尋找該頻道的反矩陣傳統 B 技術則是:s=AUx。 該獨立成分分析模組46決定一分離矩陣W,且 y=W(As)=Wx。該向量y是一種s的子集合,其在尺度改變 下大小未知。如果所有的信號都無法分離,其更一般式則 寫為y=W(As)+Wn=Wx+Wn ’其中所加入的η項次則是由 於该未確§忍來源所造成的殘餘雜訊。 該獨立成分分析模式是一種生殖模式,意思是其敘述該 觀測資料是否是由混合該成分Sk的處理方式所產生。該獨 • 立成分則為潛在變數,意思是其無法直接觀測。同樣的, 該混合矩陣A也假設為未知。所能觀測的則是隨機向量χ, 而A與s是根據X所估計。 獨立成分分析的開始點’是假設該成分Sk在統計上獨 立。此外,其假設該獨立成分Sk至多只有一個具有高斯分 佈。該只有一個信號具有高斯分佈的限制,是由於高斯信 5虎的第二動差為零的本質,而該第四動差在高斯信號中β 無法辨識的。 Θ ^ & 17 1269544 為了簡化,該未知的混合矩陣A是假設為平方的。因此, 該獨立成分的數量與該觀測混合的數量相等。此外,此假 設可以隨著時間所鬆弛。只要該信號sk在某些可量測特性 中為統計獨立的,便可決定該分離矩陣w。 該混合矩陣A的秩數,決定實際上可以分離多少信號。 舉例而言,具有秩數為4的混合矩陣,意義為可以分離4 個來源信號。理想上,該混合矩陣A的秩數應該至少等於 §亥仏號來源的數目Μ。秩數愈大,可分離更多的信號。隨 Φ 著違來源的數目Μ增加,所需要的天線元件數目ν也增 加。在此背景中所討論的申請專利案,17〇與,362,都公開了 該天線元件數目Μ應該等於或大於該信號來源數目μ,換 言之Ν2Μ’否則必須使用一種不同於盲信號分離的技術進 行信號分離。 一種用以產生信號線性獨立總和的工業標準,是使用Ν 個不相關感應器,換言之,該感應器至少在波長方面為彼 此分離。該波長是基於該通訊裝置3〇的操作頻率。該^^個 馨感應器在空間中不相關,但在偏極與角度中相關。該彼此 不相關的感應器提供Ν個線性獨立信號總和,而每個感應 器提供該混合矩陣Α中的一個信號項次。 參考第3圖,將得到為了該混合矩陣A,所產生該來源 信號線性獨立總和的不同方式說明或概要的最初說明。在 一簡短介紹之後,將詳細討論每個方法。 該說明圖的第一部份提出天線配置。塊狀圖1〇〇表示不 相關的感應為,其中每個感應器提供一信號輸入,至該混 1269544 合矩陣A之中。塊狀圖102表示一相關天線陣列,其中該 陣列提供多數輸入,以填入該混合矩陣A之中。塊狀圖1〇4 也表示一天線陣列,其中該天線元件的一部份是相關的, 且該天線元件具有不同的偏極,用以填入該混合矩陣A之 中。以塊狀圖100、102與104所提出該感應器與天線陣列 的不同結合,也可以整合在塊狀圖1〇6之中,以進一步在 塊狀圖116中填入該混合矩陣。 瞻 44明_的第二部份’提出在該第—部份所提供天線配 置的強化。該強化是以增加或取代該收集來源信號的總和 所產生,並進一步填入該混合矩陣A之中。塊狀圖1〇8與 陣顺位有關,其中改變該天線場型的高度,以接收該來 源信號的額外總和。在塊狀圖1〇6中的任一結合,也可以 在該陣列偏位塊狀圖108中使用。 、在塊狀® 110中,實作路徑選擇,因此所有用於填入該 混合矩陣A之中的來源信號總和是相關(第一與第二動差) 鲁及/或統計(第三與第四動差)獨立的。換句話說,該伴隨 信號是為了接收該來源信號的新總和所選擇,以取代不相 關及/或統計上不獨立的總和。塊狀圖11〇也可由在塊狀圖 中106及108巾的任-結合所回饋。塊狀圖1〇8與ιι〇也可 以直接回饋至該混合矩陣塊狀圖116。 該說明圖的第三部份提出信號分裂,用以進—步填入在 塊狀圖116巾的混合矩陣。舉例而言,塊狀圖112使用分散 編碼,以分裂不同的總和信號。如果—總和信號具有k個 分散編碼,則可以處理該特定總和信號,以提供與之相關 1269544 的個〜號。5亥分散編碼可以與該塊狀圖l〇6、刪及 110的輸出結合應用。塊狀圖114將不同的總和信號,分裂 為同相ji)與正父(Q)成分,以進一步填入該混合矩陣 之中°亥同相與正父成分因此對於遺失矩陣而言,具有一 種2的乘法效應,並可以與該塊狀1〇6、繼削及ιΐ2 的輸出結合應用。Referring now to Figure 2, a communication device 3 for separating the source signals provided by the sources 20(1) through 2_ will be discussed in detail. An antenna = column 34 contains N antenna elements % (1) through 34 (n) to receive at least a different sum of the μ source signals 'where greater than 丨. The antenna array 32 is not limited to any particular configuration. The antenna column may contain or antenna elements 34. The antenna element 34 can be configured with the antenna array to form a form such as a phase array or a switched beam array, which will be discussed later. The radio transceiver 4A is connected downstream of the antenna array 32 to receive at least N different sums of the source signals 22. A processor 42 is coupled downstream of the radio receiver 40. Although the processor appears to be separated from the radio transceiver 4 in the description, the processor 42 can also be included in the side radio transceiver 40. The different sums of the M sources 4 § 22 received by the radio transceiver 4 are used to fill in the mixing matrix %. The mixing matrix 36 is then processed by one or more of the k-separation processing modules 44, 46, and 48 among the processors 42. The edge a k separation processing module includes a principal component analysis module 44, an independent component analysis module 46, and a signal value decomposition module 48. These modules 15 1269544 44, 46 and 48 can be configured as a defective portion of a blind signal splitter. The principal component analysis module 44 operates according to different first and second motion differences of the received source signals, and the independent component analysis module 46 operates according to the second and fourth motion differences of the same signal. The signal value decomposition module 48 performs signal separation based on the eigenvalues of the different sums of the received sources. The correlation process is initially implemented by the principal component analysis module 44 to identify an initial separation matrix 38 (丨) for the different sums of the source signals, and the independent component analysis module 46 then determines to use in the mixing matrix. The source signal is separated by a strengthened separation matrix 38(2). If the signal is separated by the signal value decomposition module 48, a separation matrix 38(3) for different summation of the received source signals is also determined from the mixing matrix 36. The separated signals from each of the respective separation matrices 38(1) through 38(3) are indicated by reference numeral 39. The split signal 39 is then subjected to signal analysis using a signal analysis module 50 to determine the signals of interest as well as the interference signals. An application related processing module 52 processes the signals output from the signal analysis module 5A. The decision as to which signals are of interest is not always related to the final signal being decoded. For example, the application can call when it is subtracted from the different sums of the received source signals in order to confirm the interference, and then feed back the reduced signal to a waveform decoder. In this case, the signal of interest is eventually terminated because it is rejected. The information fed back to the principal component analysis module 44 is a unique sum of signals Xj. It assumes that n linear mixtures of M independent components are observed X!, · · · ΧΝ are: 16 1269544 χι(0=^ιΛ(0+Λ α^(〇+Λ amsM{t) Μ ^W=^iW +A ajksk{t)^K ajMsM{t) Μ ^(i)=%i*yi(〇+A aNksk(t)^A aNMsM{t) Generally, the radio transceiver 4〇 knows the channel coefficient ajk With the original signal Sk. In the matrix labeling of the above equation group, it can be abbreviated as x=As, where A is a mixing matrix. This statistical mode x^As is also known as an independent component analysis mode. The anti-matrix traditional B technique used to try to find the channel is: s = AUx. The independent component analysis module 46 determines a separation matrix W, and y = W(As) = Wx. The vector y is a subset of s whose size is unknown under scale changes. If all the signals cannot be separated, the more general formula is written as y=W(As)+Wn=Wx+Wn 'The n-th order added is the residual noise caused by the unrecognized source. . The independent component analysis mode is a reproductive mode, which means that it describes whether the observation data is generated by the processing of mixing the component Sk. This independent component is a potential variable, meaning that it cannot be directly observed. Similarly, the mixing matrix A is also assumed to be unknown. What can be observed is the random vector χ, and A and s are estimated according to X. The starting point of independent component analysis is to assume that the component Sk is statistically independent. Furthermore, it is assumed that at most one of the independent components Sk has a Gaussian distribution. The fact that there is only one signal with a Gaussian distribution is due to the fact that the second motion difference of the Gaussian 5 tiger is zero, and the fourth motion difference is not recognizable in the Gaussian signal. Θ ^ & 17 1269544 For simplicity, the unknown mixing matrix A is assumed to be squared. Therefore, the number of independent components is equal to the number of observations mixed. In addition, this assumption can be relaxed over time. The separation matrix w can be determined as long as the signal sk is statistically independent in some of the measurable characteristics. The rank number of the mixing matrix A determines how many signals can actually be separated. For example, a mixed matrix with a rank of 4 means that four source signals can be separated. Ideally, the rank of the mixing matrix A should be at least equal to the number of sources of § 仏 仏. The larger the rank, the more signals can be separated. As the number of violent sources increases, the number of antenna elements required ν also increases. In the patent applications discussed in this background, 17A and 362, it is disclosed that the number of antenna elements should be equal to or greater than the number of signal sources μ, in other words, Μ2Μ' otherwise must be performed using a technique different from blind signal separation. Signal separation. One industry standard for generating a linear independent sum of signals is to use one of the uncorrelated sensors, in other words, the inductors are separated from each other at least in terms of wavelength. This wavelength is based on the operating frequency of the communication device 3〇. The ^^ individual sensors are not related in space, but are related to the polarization and the angle. The sensors that are not related to each other provide a sum of linear independent signals, and each sensor provides one of the signal orders in the mixing matrix. Referring to Figure 3, an initial description of the different ways of explanation or summary of the linear independent sum of the source signals produced for the mixing matrix A will be obtained. After a brief introduction, each method will be discussed in detail. The first part of the illustration presents the antenna configuration. The block diagram 1 〇〇 shows the irrelevant sense, where each sensor provides a signal input to the mixed 1269544 matrices A. Block diagram 102 represents an associated antenna array in which the array provides a majority of inputs to fill the mixing matrix A. Block diagrams 1-4 also show an antenna array in which a portion of the antenna elements are related and the antenna elements have different polarizations for filling the mixing matrix A. The different combinations of the inductor and the antenna array proposed by the block diagrams 100, 102 and 104 can also be integrated in the block diagram 1-6 to further fill the hybrid matrix in the block diagram 116. The second part of Vision _ _ proposes the enhancement of the antenna configuration provided in this section. The enhancement is generated by adding or replacing the sum of the collected source signals and further filling the mixing matrix A. The block diagrams 〇8 are related to the array order in which the height of the antenna pattern is changed to receive an additional sum of the source signals. Any combination in block diagrams 1-6 can also be used in the array offset block diagram 108. In Block® 110, the path selection is implemented, so the sum of the source signals used to fill the mixing matrix A is correlated (first and second motion difference) and/or statistics (third and third) Four motions) Independent. In other words, the companion signal is selected to receive a new sum of the source signals to replace unrelated and/or statistically independent sums. The block diagram 11〇 can also be fed back by any-in combination of 106 and 108 in the block diagram. Block diagrams 〇8 and ιι〇 can also be fed directly to the hybrid matrix block diagram 116. The third part of the diagram proposes signal splitting for step-by-step filling of the mixing matrix in the block diagram 116. For example, block diagram 112 uses scatter coding to split different sum signals. If the sum signal has k scatter codes, then the particular sum signal can be processed to provide a ~~ number associated with 1269544. The 5H dispersion code can be applied in combination with the output of the block diagrams, 6, and 110. The block diagram 114 splits the different sum signals into in-phase ji) and positive-parent (Q) components to further fill the mixed matrix. The in-phase and positive-parent components therefore have a 2 for the missing matrix. Multiplication effect, and can be combined with the output of the block 1,6, and ΐ2.

该說明圖的最後雜,是在塊狀_ 116巾形成混合矩陣 A。如在該說關中所描述,該混合矩陣a可_根據該上 述描述的任一塊狀圖,將該來源信號的不同總和填入。這 種在n亥弟°卩伤中的天線陣列配置優點,在於可以形成小 型天線陣列以填入該混合矩陣A之中。在該第二與第三部 分中的天線陣列配置優點,在於該N個天線元件’其中N 小於來源信號的數目Μ,可以利用該來源信號的M個或更 多總和,填入該混合矩陣之中。 在該說明圖中討論的天線配置觀點中,將討論一種包括 鲁 Ν個相關天線元件的天線陣列,用以接收該Μ個來源信號 的至少Ν個不同總和,其中^^與“大於丨。在一實施例中, 該天線陣列是一種如在第4圖中所描述的切換波束天線 140 〇 該切換波束天線陣列140產生多數天線場型,包含指向 性天線場型與泛方向性天線場型。該切換波束天線14〇包 含一主動天線元件142與一對被動天線元件144。該主動與 被動天線元件142、144的實際數目,可根據想要的應用進 行改變。參考 U.S· Patent Application No· 1〇/〇65,752 可得到 1269544 對該切換波束天線陣列的詳細討論。此申請專利是設定為 本發明的現行受讓人,在此其完整文字都整合為本發明的 參考。 每個被動天線元件144都包含一上半部144a與一下半部 144b。該被動天線元件144的上半部H4a,則透過反應負 載148連接至一接地平面146。該反應負載148是一種可變 的電抗,其藉由使用變容器、傳輸線或開關,可以改變其 電容與電感。藉由變化該反應負載148,可以改變該輻射場 型。因為存在兩個被動天線元件144,因此可形成四個不同 的天線場型。 該三個天線場型可以用以接收信號Xj的獨特總和。該第 四個天線場型則是其他三個的線性組合,所以其並不用於 该混合矩陣A之中的項次。因此,利用所使用的三個天線 兀件,可輸入三個信號χ』的獨特總和,至該混合矩陣A之 中。该切換波束天線的優點,在於藉由使用3元件142與 144,可以支援具有秩數為3的混合矩陣。 在另一實施例中,該天線陣列包括N個相關主動天線元 件,因此如在第5圖中所描述,該天線陣列形成一種相位 陣列160。該相位陣列160包括複數主動天線元件162,以 及與该主動天線元件結合的多數權重控制組件164。該權重 控制組件164調整該接收信號的振幅及/或相位,以形成一 合成波束。 一分裂恭/結合器166與一控制器168則連接至該權重控 制組件 164。參考 U.S· Patent Application No. 6,473,036,可 21 1269544 得到對忒切換波束天線陣列的詳細討論。此申請專利是設 定為本發明的現行受讓人,在此其完整文字都整合為本發 明的參考。 该主動元件162的數目,支援具有相同秩數的混合矩陣 A。即使該來源的數目M 主動元件的數目N,也就 是m=n,該主動陣列10(M乃為一種小型料,因為該主動 兀件162在m與偏極巾侧,在與使肖不細天線元件 _、式概之下,該制方式超過多於—做長的距 •離。 在另外的實施例中,該混合矩陣的秩數可以為κ,其中 Κ<Ν,因此該盲信號分離處理器49,從該混合矩陣中分離 該Μ個來源信號的κ個。如在之後將進一步討論的,ν也 可以大於Μ。 在該切換波束天線140與相位陣列160兩者中,介於其 各自天線元件142、144與162之間的距離,是設定為一種 _ 適合的後前比例(baketofrontmtio)。這是因為這些天線陣 列的傳統使用,是用於拒絕不想要的信號(換言之,後方 接近)並強化想要的信號(換言之,強方接近)。 無論如何,為了建立混合矩陣的目的,其目標是建立信 號的不同總和。在此應用中,有興趣的信號實際上可以總 是小於該干擾,並仍舊可以被分離,因為此目的的明顯^ 異,介於天線元件之間的距離便不需要是一種特定的分離。 該天線元件可以進一步地彼此靠近,以傳統,,差的,,前後 比例產生場型,並仍舊十分適合用於混合矩陣。而實際上, 22 1269544 這樣的場型在盲信號來源分離應財將較常見。該理由是 使用好的前後比率,需要追_信號方向,以㈣指向想 要信號處的前方,及/或指向干擾的後方。藉由使用在不同 方向中具有差異’但仍舊有_增益的場型,便不需要如 此的信號追縱。 天線波束可以被疋義為具有從一最大增益點以下的3 分貝點,藉此提供信號接近至少—方向中的信號回絕。相 同地,-天線拥可以定義Μ具有從―最大增益點以下 的3刀U ’而其在彳§號接近的任何方向中便不產生信號 回絕。 在許多應財,介於元件之間特定距離的差異,可以大 大的減低整體天線陣列的尺寸。在另外的應用中,其實際 上則可以增加元件之間的距離,以減輕追縱的問題,但獲 得一些額外信號的不相關程度。 在另一實施例中,如在第6圖中所描述,該天線陣列18〇 包括Ν個天線元件,以接收該Μ個來源信號的至少Ν個不 同總和。該Ν個天線元件的至少兩個i82a、182b彼此相關, 並具有不同偏極以接收該該Μ個來源信號N個不同總和的 至少之二,其中Ν與Μ大於1。 在該陣列180中的其他天線元件184a、184b,對於該天 線元件182、182b可以為相關或不相關。雖然所描述的另 一對為偏極天線元件184a、184b,這些元件也可以取代為 具有相同的偏極。此外,這些元件也可以彼此不相關。 用於天線元件182、182b的不同偏極彼此可以正交。在The final miscellaneous of the illustration is the formation of a mixing matrix A in a block _116. As described in the context, the mixing matrix a can be filled with different sums of the source signals in accordance with any of the block diagrams described above. An advantage of this antenna array configuration in n 弟 卩 卩 is that a small antenna array can be formed to fill the hybrid matrix A. An advantage of the antenna array arrangement in the second and third portions is that the N antenna elements 'where N is less than the number of source signals Μ can be filled with the M or more sums of the source signals. in. In the antenna configuration perspective discussed in this illustrative diagram, an antenna array comprising reckless associated antenna elements will be discussed for receiving at least one different sum of the one source signals, where ^^ and "greater than 丨. In one embodiment, the antenna array is a switched beam antenna 140 as described in FIG. 4. The switched beam antenna array 140 produces a plurality of antenna patterns, including a directional antenna pattern and a directional antenna pattern. The switched beam antenna 14A includes an active antenna element 142 and a pair of passive antenna elements 144. The actual number of active and passive antenna elements 142, 144 can be varied depending on the intended application. Reference US Patent Application No. 1 A detailed discussion of the switched beam antenna array is available at 126, 752. This patent application is hereby incorporated by reference in its entirety, the entire entire disclosure of the entire disclosure of each of the entire disclosures of the present disclosure. Both include an upper half 144a and a lower half 144b. The upper half H4a of the passive antenna element 144 is connected to the connection through the reaction load 148. Plane 146. The reaction load 148 is a variable reactance that can change its capacitance and inductance by using a varactor, transmission line or switch. By varying the reaction load 148, the radiation pattern can be changed. Passive antenna elements 144, thus forming four different antenna patterns. The three antenna patterns can be used to receive a unique sum of signals Xj. The fourth antenna pattern is a linear combination of the other three, so It is not used for the items in the mixing matrix A. Therefore, with the three antenna elements used, a unique sum of three signals can be input into the mixing matrix A. The switching beam antenna Advantageously, a mixing matrix having a rank number of 3 can be supported by using 3 elements 142 and 144. In another embodiment, the antenna array includes N associated active antenna elements, thus as described in FIG. The antenna array forms a phase array 160. The phase array 160 includes a plurality of active antenna elements 162 and a plurality of weight control components 164 coupled to the active antenna elements. The weight control component 164 adjusts the amplitude and/or phase of the received signal to form a composite beam. A splitter/combiner 166 and a controller 168 are coupled to the weight control component 164. Reference US Patent Application No. 6,473,036 A detailed discussion of the switched beam antenna array is available at 21 1269544. This patent application is hereby incorporated herein by reference in its entirety, the entire entire disclosure of the entire disclosure of the present disclosure is incorporated herein by reference. A mixing matrix A having the same rank number. Even if the number of the source M is the number N of active elements, that is, m = n, the active array 10 (M is a small material because the active element 162 is at m and bias On the side of the towel, the method is more than the length of the antenna. In a further embodiment, the rank of the mixing matrix may be κ, where Κ < Ν, so the blind signal separation processor 49 separates κ of the one source signals from the mixing matrix. As will be discussed further later, ν can also be greater than Μ. In both the switched beam antenna 140 and the phase array 160, the distance between its respective antenna elements 142, 144 and 162 is set to a suitable front-to-back ratio. This is because the traditional use of these antenna arrays is used to reject unwanted signals (in other words, rear proximity) and to enhance the desired signal (in other words, strong proximity). In any case, for the purpose of establishing a hybrid matrix, the goal is to establish different sums of signals. In this application, the signal of interest may actually be less than the interference and still be separable, because for this purpose, the distance between the antenna elements does not need to be a specific separation. The antenna elements can be further close to each other, producing a field pattern in a conventional, poor, front-to-back ratio and still well suited for use in a hybrid matrix. In fact, 22 1269544 such a field type will be more common in blind source separation. The reason is to use a good front-to-back ratio, which needs to follow the _ signal direction, (4) to the front of the wanted signal, and/or to the rear of the interference. By using a field pattern that has a difference in different directions but still has a gain of _, the signal tracking is not required. The antenna beam can be derogated to have a 3 decibel point below a maximum gain point, thereby providing signal rejection in at least the direction of the signal. Similarly, the antenna can be defined as having 3 knives U ′ below the “maximum gain point” and it does not cause signal rejection in any direction where 彳§ is close. In many accounts, the difference in specific distance between components can greatly reduce the size of the overall antenna array. In other applications, it is actually possible to increase the distance between components to alleviate the problem of tracking, but to obtain some degree of irrelevance of additional signals. In another embodiment, as depicted in Figure 6, the antenna array 18A includes one antenna element to receive at least one different sum of the one source signals. At least two i82a, 182b of the one antenna element are associated with each other and have different polarizations to receive at least two of the N different sums of the one source signals, wherein Ν and Μ are greater than one. The other antenna elements 184a, 184b in the array 180 may or may not be related to the antenna elements 182, 182b. Although the other pair described is a polarized antenna element 184a, 184b, these elements may be replaced with the same bias. Furthermore, these elements can also be unrelated to each other. The different bias poles for the antenna elements 182, 182b may be orthogonal to each other. in

(S 23 1269544 另一實施例中,該天線元件182a、182b包含一第三元件 182c ’因此三偏極是用以支援接收該μ個信號的3個不同 總和。 後續的討論支援該偏極的使用,以填入該混合矩陣Α之 中。該三個不同的偏極天線元件182a、182b、182c接收三 個線性並獨立的信號總和。x、y與z軸的定義與關係,將 在第7圖中描述並使用。舉例而言,其存在以下關係: x = S cos(^)sin(^) ^ y = S sin((9)sin(^) z-S cos(^) 簡化的假設是該信號具有線性偏極,該信號是線性獨 立,以及在每個正交軸上具有三個線性天線元件之一。舉 例而言,天線元件182a位於x軸上,天線元件i82b位於y 軸上,而天線元件182c位於z軸上。 藉由定位該三個線性天線元件182a、182b、182c於一正 交轴上,可簡化數學式。在一實際發展中,該天線元件 φ 182a、182b、182c並不需要嚴格正交,或是必須交會於一 共同點上。此假設的移除將不違反一般的結論,而是在秩 數不足的情況產生。 之後將採用以下定義,其中數字下標與丨、2、3參照關 聯·· :入射至該天線元件的信號; ··該信號的X、Υ平面電場(Ε)角度; 為,么,么· 吕號的Ζ轴電場角度;以及 1^0,^ •入射"ί§號總和與一天線元件的内積。 24 1269544 因此,該向量成分為: X y Z ’X’元素:1 0 0 ’y’元素:0 1 0 ’z’元素:0 0 1 Si 係數:cos^sin⑷ sin⑷sin⑷ cos⑷ S2 係數:cos((92)sin($2) sin(^2)sin(^2) cosfe) S3 係數:cos((93)sin(么) sin03)sin(么) cos⑹ 對每個天線元件與信號採取内積,(X· Y^xiXs+yi^^+Azd 決定在元素中的相對電場成分總和。這些數值則用來建立 該混合矩陣: X- cos(0)sin ⑷ sin ⑷ sin⑷ cos ⑷ = cos(^2)sin(^2) sin(^2)sin(^2) cos(^2) 人 cos(03)sin(^3) sin(^3 )sin(^3) cos(^3) A — 其中: det cos(^ )sin(^ )sin(^2 )sin(^2 )cos(^3)+ cos(^2 )sin(^2 )sin(^3 )sin(^3 )cos(^ )+ cos(^3 )sin(^3 )sin(^ )sin(^ )cos(^2) -005(^)3111(^2)8111(^2)008(^3)8111(^3)-008(^2)8111(^3)8111(^3)008(^)8^(^)-008(^3)8111(^)8111(^)008(^2)8111(^2) =cos(⑴ sin(4 )sin(為)sin(么)cos(03)+ cos(⑹ sin(03 )cos(為)sin(么)sin(么)+sin(0 )cos(03 )sin(為)cos(《2 )sin(多3) -5111(^2)008(^3)008(^)8111(^2)8111(03)-008(^)8111(^3)8111(^)008(^2)8111(^3)-8111(^)005(02)8111(^)8111(^2)008(^3) =cos(0 )sin(02 )sin(A )sin(#2 )cos(03)- sin(0 )cos(02 )sin(A )sin(#2 )cos(03) + cos(02)sin(03)cos(A)sin(02)sin(03)-sin(02)cos(03)cos(A)sin(02)sin(03) + 8111((9,)005((93)8111(^)008(^2)8111(^3)-008(^,)8111(^3)8111(^)008(^2)8111(^3) =sin(^,)sin(^2)cos(^3)[cos(<91)sin((92)-sin(^1)cos(i92)] + cos(^,)sin(^2)sin(^3)[cos(^2)sin(^3)- sin(^2)cos(^3)] + sin(^, )cos(^2 )sin(^3 )[sin(^, )cos(^3)- cos(^ )sin(^3)] =sin (私)sin (02) cos(色)sin (02 -0) + cos(為)sin(02)sin (色)sin(θ3 - θ2) + 8111(0,)008(^2)8111(^3)8^(^-^3) 現在將討論秩數不足的情況。當行列式數值等於0的時 候,將發生混合矩陣秩數不足的情況。這在以下的情形中 1269544 發生: 個信號接收到相 同的貢獻。 1) Θ ι-θ 2^0 3 該元素’X,與,y,將從所有的三 2) φ I φ 2 φ 3 〇 ο Ο Ο ο 90° 〇 90° 〇 90° Ο 〇(S 23 1269544 In another embodiment, the antenna elements 182a, 182b comprise a third element 182c' such that the three polarizations are used to support receiving three different sums of the μ signals. Subsequent discussion supports the polarization. Used to fill the hybrid matrix 。. The three different polarized antenna elements 182a, 182b, 182c receive three linear and independent signal sums. The definitions and relationships of the x, y and z axes will be 7 is described and used. For example, it has the following relationship: x = S cos(^)sin(^) ^ y = S sin((9)sin(^) zS cos(^) The simplified assumption is that The signal has a linear polarization, the signal is linearly independent, and has one of three linear antenna elements on each orthogonal axis. For example, antenna element 182a is on the x-axis and antenna element i82b is on the y-axis. The antenna element 182c is located on the z-axis. By positioning the three linear antenna elements 182a, 182b, 182c on an orthogonal axis, the mathematical expression can be simplified. In a practical development, the antenna elements φ 182a, 182b, 182c are Do not need to be strictly orthogonal, or must meet at a common point. This assumption The removal will not violate the general conclusion, but will occur in the case where the rank is insufficient. The following definition will be adopted, in which the numerical subscript is associated with 丨, 2, 3 references...: the signal incident on the antenna element; The X, Υ plane electric field (Ε) angle of the signal; the Ζ-axis electric field angle of the 吕·吕·; and the inner product of the sum of the 1^0, ^ • incident " ί § and an antenna element. 24 1269544 Therefore, the vector component is: X y Z 'X' Element: 1 0 0 'y' Element: 0 1 0 'z' Element: 0 0 1 Si Coefficient: cos^sin(4) sin(4)sin(4) cos(4) S2 Coefficient: cos((92) Sin($2) sin(^2)sin(^2) cosfe) S3 coefficient: cos((93)sin(m) sin03)sin(m) cos(6) Take inner product for each antenna element and signal, (X·Y^ xiXs+yi^^+Azd determines the sum of the relative electric field components in the element. These values are used to establish the mixing matrix: X- cos(0)sin (4) sin (4) sin(4) cos (4) = cos(^2)sin(^2 ) sin(^2)sin(^2) cos(^2) person cos(03)sin(^3) sin(^3 )sin(^3) cos(^3) A — where: det cos(^ ) Sin(^ )sin(^2 )sin(^2 )cos(^3)+ cos(^2 )si n(^2 )sin(^3 )sin(^3 )cos(^ )+ cos(^3 )sin(^3 )sin(^ )sin(^ )cos(^2) -005(^)3111( ^2) 8111(^2)008(^3)8111(^3)-008(^2)8111(^3)8111(^3)008(^)8^(^)-008(^3)8111 (^)8111(^)008(^2)8111(^2) =cos((1) sin(4 )sin(for)sin(m)cos(03)+ cos((6) sin(03)cos(for)sin (y) sin(m)+sin(0)cos(03)sin(for)cos("2)sin(more 3) -5111(^2)008(^3)008(^)8111(^2) 8111(03)-008(^)8111(^3)8111(^)008(^2)8111(^3)-8111(^)005(02)8111(^)8111(^2)008(^3 ) =cos(0 )sin(02 )sin(A )sin(#2 )cos(03)- sin(0 )cos(02 )sin(A )sin(#2 )cos(03) + cos(02) Sin(03)cos(A)sin(02)sin(03)-sin(02)cos(03)cos(A)sin(02)sin(03) + 8111((9,)005((93)8111 (^)008(^2)8111(^3)-008(^,)8111(^3)8111(^)008(^2)8111(^3) =sin(^,)sin(^2)cos (^3)[cos(<91)sin((92)-sin(^1)cos(i92)] + cos(^,)sin(^2)sin(^3)[cos(^2)sin (^3)- sin(^2)cos(^3)] + sin(^, )cos(^2 )sin(^3 )[sin(^, )cos(^3)- cos(^ )sin( ^3)] =sin (private) sin (02) cos (color) sin (02 -0) + cos (for) sin(02)sin (color) sin(θ3 - θ2) + 8111(0,)008( ^2) 8111(^3)8^(^-^3) The case where the rank is insufficient will now be discussed. When the determinant value is equal to 0, the case where the mixed matrix rank is insufficient will occur. This occurs in 1269544 in the following cases: The signals receive the same contribution. 1) ι ι-θ 2^0 3 The element 'X, and y, will be from all three 2) φ I φ 2 φ 3 〇 ο Ο Ο ο 90° 〇 90° 〇 90° Ο 〇

90° 90° 90° 對該表格項次加人⑽度的任何結合方式,會產生盆他 的秩數不足情形。當難號並不是獨立地由天線元件的足 夠結合所加總時便會發生。 3)每個1或2所有單獨加總等於〇,但是: sin(為)sin(么)cos(色)sin(02 — q ) + cosfe )sin(^2 )sin(^3 )sin(^3 ~ 〇2) + sinM )cos(么)sin(么)sin^ — 6/J = 〇 這隱示了在接近相等的偏極信號處,信號之間存在一小 的固在分離角度,信號對齊但從該陣列相反側靠近,或某 些其他非常偶然的信號入射,對兩元素造成相同的能量程 度0 如同以上討論,該說明圖的第一部份提出天線配置。該 上述討論的天線配置,包含不相關的感應器,可以利用多 種結合方式裝配,以提供該Μ個來源信號的不同總和至該 混合矩陣之中。 現在參考第δ圖,將討論一種通訊裝置2〇〇,其用以分 26 1269544 離由Μ個信號來源所提供的來源信號。該天線陣列202包 括Ν個天線元件,用以接收該μ個來源信號的至少ν個不 同總和,其中Ν與Μ大於1。 該Ν個天線元件包括至少一個天線元件204,用以接收 該Μ個來源信號Ν個不同總和的至少之一,以及至少兩個 相關的天線元件206,用以接收該Μ個來源信號Ν個不同 總和的至少之二。該兩個相關天線元件206與該天線元件 204不相關。該天線陣列可以包含多種結合方式的額外天線 元件’其中该元件疋相關、不相關或偏極。 接收器210疋連接至該天線陣列202,用以接收該μ 個來源信號的至少Ν個不同總和。一盲信號分離處理器 則連接至該接收器,用以形成包括該Μ個來源信號至少Ν 個不同總和的混合矩陣214。該混合矩陣具有等於至少為Ν 的秩數,且該盲信號分離處理器212從該混合矩陣a之中, 分離出想要的來源信號216。 。亥。兒明圖的第一部份提出該第一部份提供天線配置的強 化。該強化是以增力口或取代該收集纟源信號的總和所產 生,並進一步填入該混合矩陣A之中。 一種強化則與為了由該混合矩陣A在不增加額外天線元 件下所使用,以接收額外信號總和的陣列偏位有關。陣列 偏位則與在該綠肖及域高度方向巾 場 現在將參考第9圖討論-種通訊裝置,其Hi 偏位,分離由M個信號來源所提供的來源錢。該天線陣 列242包括N個天線元件244,為了接收該m個來源信號90° 90° 90° Any combination of the additions (10 degrees) of this table will result in a lack of rank for the pot. This occurs when the difficulty number is not independently added by the sufficient combination of the antenna elements. 3) Each 1 or 2 all alone is equal to 〇, but: sin (for) sin (m) cos (color) sin(02 — q ) + cosfe )sin(^2 )sin(^3 )sin(^ 3 ~ 〇2) + sinM )cos(m) sin(m) sin^ — 6/J = 〇 This implies that there is a small solid separation angle between the signals at nearly equal polar signals. Alignment but close from the opposite side of the array, or some other very occasional signal incidence, causes the same energy level to both elements. 0 As discussed above, the first part of the illustration presents the antenna configuration. The antenna configuration discussed above, including unrelated sensors, can be assembled in a variety of combinations to provide different sums of the one source signals into the mixing matrix. Referring now to the δ diagram, a communication device 2〇〇 will be discussed which is used to separate the source signals provided by one of the signal sources 26 1269544. The antenna array 202 includes a plurality of antenna elements for receiving at least ν different sums of the μ source signals, wherein Ν and Μ are greater than one. The one antenna element includes at least one antenna element 204 for receiving at least one of the different sums of the one source signals, and at least two associated antenna elements 206 for receiving the one source signal differently At least two of the sum. The two associated antenna elements 206 are not associated with the antenna element 204. The antenna array can comprise a plurality of additional antenna elements in a combined manner 'where the element is correlated, uncorrelated or polarized. Receiver 210 is coupled to the antenna array 202 for receiving at least one different sum of the μ source signals. A blind signal separation processor is coupled to the receiver for forming a mixing matrix 214 comprising at least a different sum of the one source signals. The mixing matrix has a rank number equal to at least Ν, and the blind signal separation processor 212 separates the desired source signal 216 from the mixing matrix a. . Hai. The first part of the figure suggests that this first part provides an enhancement to the antenna configuration. The enhancement is produced by adding or replacing the sum of the collected source signals and further filling the mixing matrix A. One enhancement is related to the array offset used by the hybrid matrix A to add additional signal elements without adding additional antenna elements. The array offset is then discussed with reference to Figure 9 in the Green Shade and Domain Heights. The communication device, which is Hi-biased, separates the source money provided by the M signal sources. The antenna array 242 includes N antenna elements 244 for receiving the m source signals

(D 27 1269544 的N個不同總和,而產生則固初始天線場型。該天線陣列 2曰42也包括—高度控制器施,為了產生至少—個額外天線 場型,而選擇性地改變該N個初始天線場型的至少之一, 因此藉以接收該]^個來源健的至少—购外不同總和。 -接收器248是連接到該天線_ 242,並使用該N個 初始天線場型接_ M個㈣錢的N個不_和,也使 用》亥至J -個額外天線場型,接收該M個來源信號的至少 一個額外不同總和。 ,「盲信號分離處理器250則連接到該接收器248,用以 形成-混合矩陣252 ’其包括該M個來源信號的N個不同 總和’以及該Μ個來源錢的至少—侧外不同總和。該 混合矩陣的秩數,等於Ν加上使用該額外天線場型,接收 該Μ個來源信號額外不同總和的數目。該處理器25〇從該 混合矩陣中,分離出想要的信號254。 一般上,任何能夠提供信號加總的天線陣列裝置,都適 用於以-偏位機制來增加所能使用的混合矩陣秩數。該偏 位將為了每個天線陣列裝置,產生兩個不同且混合矩陣可 使用的信號加總。因此在使用此技術之下,將有2倍數乘 積的效果。 如果該天線偏位被區分為Κ個與天線有關的不同區域, 該Κ個區域的每個’都可以為了兩個獨立偏位區域作準備, 並填入至邊混合矩陣之中。I例來言兒,如果該天線本身可 以提供Ν個總和,並存在有Kjg]不同偏位區域,在該混合 矩陣中的信號總和數目將是。 28 1269544 為了描述目的,第10圖的參考將顯示修正第4圖中切換 波束天線100,,因此該天線場型可以在高度中向上龜起或向 下偏斜。特別的,每個被動天線元件104,的上半部104a,, 疋透過一反應負載108’連接至該接地平面106,。每個被動天 線元件104,的下半部104b,,也透過一反應負載118,連接至 該接地平面106f。在該被動天線元件1〇4’上的電抗,具有延 長或縮短該被動天線元件的效果。電感貞載將延長該被動 天線7L件104f的電力長度,而電容負載則將其縮短。 一天線波束是根據該上半部1〇4,的反應負載1〇8,,與該 下半部l〇4b’的反應負載118,比例,在高度方向中向上輕起 或向下偏斜。藉由調整該比例,如在第u圖中所描述,該 天線場型將可向上指到97或向下指到99。當調整一天線場 型的同度角度以接收一混合信號時,至少有一個額外的秩 數被加入該混合矩陣A中。使用該陣列偏位,對於該混合 矩陣A而言可以接收更多的錢,而不需增加該天線元件 的數目N。 此特定實作具有兩個由該電抗賴自控獅不同偏位區 域。該陣列的場型產生能力為3個獨立場型,因此可以用 來建立该混合矩陣的信號加總數目為12 (2*2*3)。 參考上述文獻 U.S· Patent Application No· 10/065,752 中 所指出的内容,其詳細地公開如何在高度中調整天線波 束。該陣列偏位技術也可以用在所有上述討論的天線陣列 實施例中,或是任何對於接地平面交互作用敏感的其他天 線陣列。 ㊣ 29 1269544 该咼度控制器的另一種實施例,如第12圖所描述,是根 據一種與該一天線元件274接地平面272結合的可控制無 線電頻率(RF)調節裝置270。與該无線元件別有關的天 線場型,是利用控制該無線電頻率調節裝置270的方式, 在向度中移動’其是由本領域專精者所欣然同意的。 現在將參考第13圖,討論一種通訊裝置3〇〇,其根據路 k選擇,分離由Μ個信號來源所提供的來源信號。這是在 該說明圖第一部份中所提供天線配置的另一種強化,其與 以上纣淪的陣列偏位強化相同。該通訊裝置300包括一天 線陣列302,其包括為了接收該Μ個來源信號的至少Ν個 不同總和,而形成至少Ν個天線波束的Ν個元件304,其 中Ν與Μ大於2。 、 一控制裔306連接到該天線陣列,用以選擇性地形成該 至少Ν個天線波束。而一接收器組件撕則連制該天線 陣列302’用以接收該Μ個來源信號的至少ν個不同總和。 一盲信號分離處理器310則連接到該接收器組件308,用以 形成包括該Μ個來源錢至少Ν個不同總和的混合矩陣 312 〇 該盲信號分離處理器也決個來源信號的不同 、、&矛疋否相關或統計獨立,而如果不是時,接著與該控 制器3〇6 一起操作形成不同的波束,用以接收該Μ個來源 信號的新的不同總和,以取代在該混合矩陣312中,並不 相關或統計獨立的Μ個來源信號不同總和。接著便從該混 合矩陣312中’分離出該想要的來源信號314。 1269544 犛把式接收器,是一種設計用來抵抗多路徑凋零影響的 無線電接收$。其為了鮮至各自的多重路徑成分,使用 許多彼此之間稍微延遲的獨立接收器,以完成此項工作。 其也可以利用大多數的無線電存取網路形式。其已經知道 對於调變的分散編碼形式而言是特別有利的。其具有選擇 特定入射信號路徑的能力,以使其適合做為一種改變供應 至該盲信號分離處理器路徑的裝置。 如以上所#論轉性地形賴N個天線波束,也可以應 ♦肖於所有的無線電存取網路之中,其也是由本領域專精者 所欣然瞭解的。對於分碼多重存取(CDMA)系統而言,該 接收β組件期包括N個犛|巴式接收器训。每個犛耙式接 收器316包括k個指枝,以為了由與其連接的各自天線元 件’所接收該Μ個來源個不同總和的每—個,而選 擇^固不同的多重路徑成分。在此配置中,該盲信號分離 處理盗310是連接至該則固犛把式接收器別,用以形成节 混合矩陣3i2。該混合矩陣312包括該_來源信號至少= 攀個不同總和的至少kN個不同多重路徑成分,並具有等於咖 的游童f。 特別的,當分碼多重存取波形傳遞時,其通常面臨從 源到目標的多數路徑選擇。—犛耙式接收器316則 的丄特別設計用於捕捉多數的這些 π 口。當該原始信號沿著每個路 1 寺收由該路徑的特徵所調整。在某些情況中ΐ 接收W的相鼠/或統計特㈣碰,將大财以將^ 1269544 為可分離的信號流。也可以使用一種調整犛耙式接收器 316,以擷取每個調整信號流,並將其視為獨特項次,填入 該混合矩陣312之中。然而這種增加秩數的方法並不總是 可利用的,當其隶可能需要時,在高度多重路徑環境中也 應是可利用的。 當一犛耙式接收器316可以利用該不同路徑時,如參考 第13圖所討論的,對於任何調變技術而言,波束成形方式 是一種更一般的解決應用。這與該犛耙式接收器316不同, ⑩因為波束成形疋用於想要的信號力^強以及想要的信號回 絕。然而,此差異在於對該接收器而言,該回絕信號是該 預期信號的另一種形式。無論如何,該接收器組件3〇8必 須偵測該相同信號的這些多數獨特傳遞路徑,以將該混合 矩陣312建立為具有足夠的秩數。 該說明圖的第三部份提出為了進一步填入該混合矩陣A 之中,所進行的信號分裂。在一方法中,該總和信號則利 用分散編碼所分裂。在另一方法中,該總和信號是使用同 攀相⑴與正交(Q)模組所分裂。 現在將參考第14圖,討論使用分散編碼的信號分裂。該 描述的通訊裝置400包括一天線陣列4〇2,其包括N個天線 元件404以接收該Μ個來源信號的至少N個不同總和。一 編碼解分散器(code despreader) 406,連接到該N個天線 元件404,用以將該]VI個來源信號的至少n個不同總和進 行解碼。該N個不同總和的每一個都包含k個編碼,用以 提供與其相關的Μ個來源信號的k個不同總和。 32 1269544 一接收為組件408則連接到該編碼解分散器4〇6,用以 接收β Μ個來源信號的至少kN個不同總和。一盲信號分 離處理器410則連接到該接收器組件4〇8,用以形成包括該 Μ個來源信號至少kN個不同總和的混合矩陣412。該混合 矩陣412的秩數等於kN。該盲信號分離處理器41〇從該混 合矩陣412中,分離出想要的來源信號414。(N 27 different sums of D 27 1269544, resulting in a fixed initial antenna pattern. The antenna array 2 曰 42 also includes a height controller, selectively changing the N in order to generate at least one additional antenna pattern At least one of the initial antenna patterns, so that at least the different sums of the sources are received. - Receiver 248 is connected to the antenna _ 242 and uses the N initial antenna patterns. N (four) money N not _, also use "Hai to J - an additional antenna field type, receiving at least one additional different sum of the M source signals." "Blind signal separation processor 250 is connected to the reception The 248 is configured to form a -mixing matrix 252 'which includes N different sums of the M source signals and at least one side-to-side different sum of the one source money. The rank of the hybrid matrix is equal to Ν plus The additional antenna pattern receives an additional number of different sums of the one source signals. The processor 25 分离 separates the desired signal 254 from the mixing matrix. In general, any antenna array device capable of providing signal summation Suitable for Used to increase the number of mixed matrix ranks that can be used with a -biasing mechanism. This offset will result in two different and mixed matrix usable signals for each antenna array device. Therefore, using this technique , there will be an effect of 2 times the product. If the antenna offset is divided into two different areas related to the antenna, each of the 'area' can be prepared for two independent offset areas and filled in to In the case of the edge mixing matrix, in the case of I, if the antenna itself can provide a sum, and there are Kjg] different offset regions, the sum of the signals in the mixing matrix will be. 28 1269544 For the purpose of description, The reference in Fig. 10 will show the modification of the switched beam antenna 100 in Fig. 4, so that the antenna pattern can be upwardly or downwardly deflected in height. In particular, the upper half of each passive antenna element 104, 104a, 疋 is connected to the ground plane 106 via a reactive load 108'. The lower half 104b of each passive antenna element 104 is also coupled to the ground plane 106f via a reactive load 118. The reactance on the passive antenna element 1〇4' has the effect of lengthening or shortening the passive antenna element. The inductive load will extend the power length of the passive antenna 7L member 104f, while the capacitive load shortens it. The reaction load of the upper half 1〇4, 1〇8, is proportional to the reaction load 118 of the lower half 104b, rising upward or downward in the height direction. By adjusting the ratio As described in Figure u, the antenna pattern will be able to point up to 97 or down to 99. When adjusting the same angle of an antenna pattern to receive a mixed signal, there is at least one additional rank. The number is added to the mixing matrix A. Using the array offset, more money can be received for the mixing matrix A without increasing the number N of antenna elements. This particular implementation has two different offset regions from the self-controlled lion. The array's field generation capability is three independent fields, so the total number of signals that can be used to create the hybrid matrix is 12 (2*2*3). Reference is made to the content indicated in the above-mentioned document U.S. Patent Application No. 10/065,752, which discloses in detail how to adjust the antenna beam in height. The array offset technique can also be used in all of the antenna array embodiments discussed above, or any other antenna array that is sensitive to ground plane interaction. Positive 29 1269544 Another embodiment of the temperature controller, as depicted in Figure 12, is a controllable radio frequency (RF) conditioning device 270 in combination with a ground plane 272 of the antenna element 274. The antenna field type associated with the wireless component is controlled by the radio frequency adjustment means 270, which is readily accommodating by the experts in the field. Referring now to Figure 13, a communication device 3 is discussed which separates the source signals provided by one of the signal sources based on the path k selection. This is another enhancement of the antenna configuration provided in the first part of the illustration, which is identical to the array offset enhancement above. The communication device 300 includes a line array 302 that includes a plurality of elements 304 that form at least one antenna beam for receiving at least one different sum of the one source signals, wherein Ν and Μ are greater than two. A controller 306 is coupled to the antenna array for selectively forming the at least one antenna beam. And a receiver component tearing interconnects the antenna array 302' for receiving at least ν different sums of the one source signals. A blind signal separation processor 310 is coupled to the receiver component 308 for forming a mixing matrix 312 comprising at least one different sum of the source money. The blind signal separation processor also determines the difference of the source signals. & spears are not related or statistically independent, and if not, then operate with the controller 3〇6 to form a different beam for receiving a new different sum of the one source signals to replace the hybrid matrix In 312, there is no correlation or statistically independent summation of the source signals. The desired source signal 314 is then separated from the mixing matrix 312. The 1269544 牦-type receiver is a radio receiver designed to withstand the effects of multipath fading. In order to freshen to their respective multipath components, a number of independent receivers that are slightly delayed from each other are used to accomplish this task. It can also take advantage of most forms of radio access networks. It is already known to be particularly advantageous for modulated, scatter-coded forms. It has the ability to select a particular incident signal path to make it suitable as a means of changing the path to the blind signal separation processor. As mentioned above, the N antenna beam can also be used in all radio access networks, which is also well known to those skilled in the art. For a code division multiple access (CDMA) system, the receive beta component period includes N 牦 |巴式 receiver trains. Each of the rake receivers 316 includes k fingers to select different multipath components in order to receive each of the different sums of the sources from the respective antenna elements connected thereto. In this configuration, the blind signal separation processing 310 is connected to the fixed receiver to form the node mixing matrix 3i2. The mixing matrix 312 includes at least kN different multipath components of the source signal at least = a different sum, and has a playboy f equal to the coffee. In particular, when a coded multiple access waveform is passed, it typically faces most path selections from source to destination. The 丄 receiver 316 is specifically designed to capture the majority of these π ports. When the original signal is adjusted along the path of each path, the characteristics of the path are adjusted. In some cases, 接收 receive the phase mouse of the W/or the statistic (4) touch, and the big money will be ^ 1269544 as the detachable signal stream. An adjustment rake receiver 316 can also be used to capture each of the adjustment signal streams and treat them as unique terms, filling the mixing matrix 312. However, this method of increasing the rank number is not always available, and should be available in a highly multipath environment when it is needed. When the one-shot receiver 316 can utilize the different paths, as discussed with reference to Figure 13, the beamforming approach is a more general solution for any modulation technique. This is different from the rake receiver 316, 10 because beamforming is used for the desired signal strength and the desired signal is rejected. However, the difference is that the reject signal is another form of the expected signal for the receiver. In any event, the receiver component 〇8 must detect these majority unique transfer paths of the same signal to establish the hybrid matrix 312 to have a sufficient rank number. The third part of the diagram proposes signal splitting for further filling in the mixing matrix A. In one method, the sum signal is split using scatter coding. In another method, the sum signal is split using the same phase (1) and quadrature (Q) modules. Reference will now be made to Figure 14, which discusses signal splitting using scatter coding. The described communication device 400 includes an antenna array 〇2 that includes N antenna elements 404 to receive at least N different sums of the one source signals. A code despreader 406 is coupled to the N antenna elements 404 for decoding at least n different sums of the VI source signals. Each of the N different sums contains k codes to provide k different sums of the source signals associated therewith. 32 1269544 A receive component 408 is coupled to the code despreader 4〇6 for receiving at least kN different sums of the β source signals. A blind signal separation processor 410 is coupled to the receiver component 4A for forming a mixing matrix 412 comprising at least kN different sums of the one source signals. The rank of the mixing matrix 412 is equal to kN. The blind signal separation processor 41 分离 separates the desired source signal 414 from the mixing matrix 412.

根據该接收信號的調變,以上敘述的信號分離,也可以 用於增加該混合矩陣412的秩數,而不增加該天線元件的 數目N。分碼多重存取Ι8·95、分碼多重存取2〇〇〇以及寬頻 刀碼多重存取(WCDMA)便是使用分散編碼的分散頻譜通 訊系統範例。-種普通的線程,則是以每個信號處理一獨 特編碼,以將該資料散佈至一較大的頻帶中。 該相同的分散編碼利用該接收的信號總和(想要的信 號、不想要的錢以及未知_絲源)進行處理。此^ ,該想要的信號被重建至其原始的頻寬之中,然而干 政佈至較廣的頻帶中。 該上朗出的分碼多重存取㈣,實際 號流。每個信號流使用一種對於== 正父的編碼。如果此情況在該解碼器處發生,其 趣,號被解分散。如果該總和的kN個; :ρ用於解,該最後接收的信號總和&,主要將 =的振幅項次Sk以及未改變或較低數值的^個項 通常在分私重存取錢之間具有料相_,所以該 33 ^69544 兮=號或多或少也沿著純要的㈣所重建。這通常由 信號所遭遇的延遲,以及該信號所遇到的多重路徑 數H合±某些不想要的信號,特別是分碼多重存取信號的 值仍二=°該增加對於該想要的健來說並不明顯, 社、、、;w加總體的雜訊數值,並因此降低信號雜訊比。 信贫ΐΓΓ"信號方料的形式,以賤㈣本身,對於盲 ;之二,r理而言將滿足標準。事實上,如果該解分散編 ,疋各自為了該通訊裝置400所接收的每個已知信 斤應用¥ ’將使得各自總和滿足獨立成分分析模式的要 因此,有許多就像是已知編碼一樣,對該混合矩陣而言 =可利用的列(_)項次,當然其假設每個都產生線性獨 的有效數值。在適當的情況之下,這肢得該混合矩陣 ^加到大於該編碼數目的數值。舉例而言,Ν個天線元件與 埘個編碼可以提供ΝΜ個矩陣列。The signal separation described above can also be used to increase the rank of the mixing matrix 412 without increasing the number N of antenna elements, depending on the modulation of the received signal. Code division multiple access Ι8·95, code division multiple access 2〇〇〇, and wideband code code multiple access (WCDMA) are examples of distributed spectrum communication systems using scatter coding. A common thread is to process a unique code for each signal to spread the data into a larger frequency band. This same scatter code is processed using the sum of the received signals (desired signals, unwanted money, and unknown source). This ^, the desired signal is reconstructed into its original bandwidth, but the government is deployed in a wider frequency band. The sub-code multiple access (4), the actual stream. Each signal stream uses a code for == positive parent. If this happens at the decoder, the number is de-spread. If the kN of the sum; :ρ is used for the solution, the sum of the last received signal &, the amplitude term of the main Sk and the unchanging or lower value of the item are usually in the private access money There is a phase _, so the 33 ^ 69544 兮 = number is more or less reconstructed along the pure (four). This is usually caused by the delay experienced by the signal, and the number of multiple paths H encountered by the signal ± some unwanted signals, especially the value of the coded multiple access signal is still two = ° the increase for the desired Jian is not obvious, social,,,; w plus the overall noise value, and thus reduce the signal noise ratio. The form of the letter of inferiority " signal material, to 贱 (four) itself, for blindness; second, will meet the standard. In fact, if the solution is decentralized, the application of each of the known credits received by the communication device 400 will cause the respective sums to satisfy the independent component analysis mode. Therefore, there are many like known codes. For the mixed matrix = the available column (_) term, of course, assuming that each produces a linearly unique effective value. Where appropriate, this limb adds the mixing matrix ^ to a value greater than the number of codes. For example, one antenna element and one code can provide one matrix column.

為:Π田述目的,假设已知3個編碼,且該3個已知編碼 保持其正錄。在簡碼解分㈣概巾,觀合矩陣A 具有頂部的3顺底部的3 N,其每_來自於在每健 破流都利用3個已知編碼所解分散之後,所得到的天線信 號流。該對角線之外的〇數值是由於該編碼的正交性產生。 該行㈤umn)項次4、5、6是用於該相同指標未知信號 的一般情況。 1269544 V 0 0 α14 αΧ5 αιβ' ^2 0 “22 0 α24 α25 α26 *^2 x3 0 0 α35 η r= α33 ^34 α36 χ4 ^41 0 0 α45 ^46 x5 0 _ 0 α52 0 屮4 α56 *^5 0 α63 /7 η α64 α65 U66^ Λ_ 對應於行項次4、5、6的信號可錢該已知㈣㈣他 路㈣式’或是未知編邮其他胞元錢。同_,一传 號可以為高斯縣’㈣他的信號可叹射巾央極限理 論的分瑪多重存取信號群集,因此他們出現為—種單一高 斯信號’也就是釋放4 _道。換句話說,—種足夠數= 的非隨機信號,將意味著一種高斯信號。該干擾可以是非 高斯信號來源’或最多是該網路所未知的—高斯作號。 在該編碼解分散器406將已知編碼解分散之後^靜 號分離處理器410,接收秩數為6的混合矩陣412。秩數為 6是根據2個天線it件乘關子為3的方式推導而得,因為 有三個已知編碼。 ' 該6健號被應紐該盲錢分離處理器㈣,其中形 6 412 信號分離處理器41〇 碟認該分雜陣W只來自於__^賴整的接收 信號。在該描述的範例中,可分離6個俨號 該盲信號分離處理器410選擇被解碼^。。舉例而言, 該干擾㈣可雜丟棄,而選擇錢賴有形式。 該選擇信號為了解調’而應用至一解調器模組。該解調器 使用已知的同等化技術’其將該相同信號的多重路徑形式 結合。For the purpose of Π田, it is assumed that 3 codes are known, and the 3 known codes keep their records. In the shortcode solution (4), the viewing matrix A has a top 3 cis-bottom 3 N, each of which comes from the antenna signal obtained after each healthy stream is de-dispersed by three known codes. flow. The 〇 value outside the diagonal is due to the orthogonality of the code. The line (five) umn) items 4, 5, and 6 are general conditions for the same indicator unknown signal. 1269544 V 0 0 α14 αΧ5 αιβ' ^2 0 “22 0 α24 α25 α26 *^2 x3 0 0 α35 η r= α33 ^34 α36 χ4 ^41 0 0 α45 ^46 x5 0 _ 0 α52 0 屮4 α56 *^ 5 0 α63 /7 η α64 α65 U66^ Λ_ Corresponds to the signal of line 4, 5, 6 can be known as (4) (4) other way (four) type or unknown other postal money. Same as _, one mark It can be Gaussian County's (four) his signal sighs the central limit theory of the mega-access signal cluster, so they appear as a single Gaussian signal 'that is, release 4 _ way. In other words, a sufficient number The non-random signal of = will mean a Gaussian signal. The interference may be a non-Gaussian signal source 'or at most the Gaussian number unknown to the network. After the code de-disperser 406 de-scatters the known code^ The static number separation processor 410 receives the mixing matrix 412 having a rank number of 6. The rank number of 6 is derived from the way that the two antennas are matched by 3, because there are three known codes. Was separated by the blind money processor (four), in which the shape 6 412 signal separation processing The device 41 recognizes that the sub-array W only comes from the received signal of __^. In the example of the description, six apostrophes can be separated, and the blind signal separation processor 410 selects to be decoded. In other words, the interference (4) can be discarded, and the money is selected. The selection signal is applied to a demodulator module for demodulation. The demodulator uses a known equalization technique, which uses the same signal. The combination of multiple path forms.

35 1269544 情、ή上^ 了 @化所顯不為G的對角線以外數值的更一般 之…s’/、實際上可以不為零。這是更—般在該編碼信號 性並不完全時的情況。其表示每個分離信號具有 八離、:二’然而,如同之前顯示,該矩陣的秩數是足以 明顧=乂破’所以其數值將在該盲信號分離處理之後被 ,:、、、減少。此造成雜訊減少及信號雜訊比的增加 ,並如 (Shan_s iaw)所指出的’使得頻道能力增加。 見在 > 考第15圖’用以增加該混合矩陣a的秩數,而 二:加4天線元件數目N的另—種方式,是將_接收混 ^就刀離為同相與正交成分。—相干無線電頻率信號的 同相與正父成分,為振幅相同但相位差異為9G度的成分。 —该通訊裝置500包括一天線陣列5〇2,其包括]^個天線 元件504以接收该μ個來源信號的至少N個不同總和。一 刀別的同相與正父模組5〇6,則連接至每個天線元件5〇4的 下游端,以將藉此接收該M個來源信號N個不同總和的每 一個,分離為同相與正交成分集合。 一接收器組件508是連接至每個同相與正交模組5〇6的 下游端,為了該Μ個來源信號的至少ν個不同總和,接收 至少Ν個同相與正交成分集合。一盲信號分離處理器51〇 則連接至該接收器組件508的下游端,以形成包括該撾個 來源彳§號至少2Ν個不同總和的混合矩陣512。每個同相與 正交成分集合,提供兩個填入至該混合矩陣512之中的輸 入。該混合矩陣512的秩數等於2Ν,且該盲信號分離處理 器510從該混合矩陣512中,分離出想要的來源信號514。 36 1269544 交㈣分則相與正 Τ 一對 _在; 二二:=:::2 袖)信號 _ 味兮〜t 同一個相位外的9〇度參考传 广同相與正交信號一起保存在該中介頻抑號中的相 位資訊,藉此可以區分―具有正向 “二 負向頻率的信號。 千剛口说以及-具有 該=^r=::r;;-式’ 同的__心;天要= 接域’接著料齡__的混合信號。 在差为編碼的情況中’必須分析該調變本身,以決定同 ==交成分是否滿足線性要求。舉例來說,在全球行動 ==iGsM)中’已經顯示當使用適當的濾波時,可 =如斯最小位移鍵控(GMSK)編碼為線性,而如果 2雙相移鍵(BPSK)編碼時’可以在接收器中處理。因 =目目==繼離處理姆,便可使用敎述 同相與正父成分可以使用上述的任何—種天線陣列實施 到里填入該混合矩陣A之中。當使用同相與正交成分時, =使用該天線元件數目的2倍數目時,便可填入該混合 P A之中。另一個範例是使用兩個天線元件(因子為2), 其彼此不相關並具有不相同的偏極(0子為的),並與該 37 1269544 同相與正父成分結合(因 的混合信號總和。 ' *此纽8個獨立 此機魏可明収__麟 號總和。這些總和的每 咬灵夕的k 正交成分。 者口以被分離為同相與 重/觀_針對胁該㈣無線_率多 的接收:處理技術,其使用場型 而將所而要的天線數目最小彳 ^ 相關的資料比率。 判~加域強健性與 旦被一改天在其接收器路徑上具有可變重量。當這也重 二’便调整該接收天線場型。藉由使用與為了盲 “分離⑽S)所發表文件的相 =目 多數干擾信號的接收陶,擷取想要的信號3來自 入多何形成’如在第17财所描述,在多輸 巧。二相沾^结構中’可以以場型分散替換天線分 '、Msl%型數目,將與該1^個天線元件數目相 =1’該κ個場型將利用比起在先前技術中,小於該 =天2件的L個天線元件職生。在與目前天線陣列 夕=夕輪出實作的相同方法中,只有在所有傳輸的則固 空間頻道’是由該K個接收器場型所能分辨時,才 相等1因為這是—般的固定傳輸器與接收ϋ的情況,為了 f:广〒或撾空間增益’將會需要接收器場型或傳輸 為天u、超頜。將使用多重使用者偵測處理技術 ,以在該 d 38 1269544 接收斋系統中分離出資料頻道。以上所有討論用來建立該 混合矩陣的方法,將為此實作的一部份。 本發明的另一觀點則針對一種碼際干擾(ISI)。為了減 少碼際干擾所使用的傅利葉轉換限制,則在第18圖提供的 配置中提出。已經加入至該傳輸側的後續塊狀圖,用以改 進減低碼際干擾的傅利葉轉換,包含··維特比(㈣間編 碼、重複/消去(repetition/puncturing)與插入的團塊冗位, 其已經加入至該傳輸側。該後續的塊狀圖也被加入至該接 收側上·盲信號分離干擾移除、移除團塊、解重複/解消去 以及維特比編碼。 …特比編碼具有一種強健冗位,其克服在該資料編石馬 中^的不正確性。像是渦輪編碼的替代編碼形式也是適 ^ 4重複或>肖去”,使得在該來源資料比率與傳輸資料 來源料團塊相對應。該,,插入團塊,,將該連續抵達的 二7现機化,以最大化適當解碼的可能性,其中,| 於頻道狀況的恢復性。此引入的團塊錯誤,是來自、 重二=:寺比解碼器之前的團塊錯誤分佈所造成的嚴 π嫉/ 〃轉比解碼11可以比®塊錯誤,更有效率地從 “二料流。該”盲信號分離干擾移除” 雜之前,減少該預期信號的信號。 並^^=成_率域信號具有一種已知的統計特性,其 最佳複製方法,/是分佈(峰均值比的程度)的 加入—編_ 細FFT)的輪出處, 句#遍及頻率的信號程度),並在該 39 1269544 延速傅利葉轉換(IFFT)的輸入處增加一反向轉換。 聯』:」=般ΐ是被調變’並在實際可行的方案中, 上轉換ϊ所以在帽增加—調變器、 將存才^轉換為、解調器。在傳輸波形之間的邊界處 1==™利用許多方式消除。-個方法: 插,以將產^ ’加人—防護帶,其中在該波形之間進行内35 1269544 Love, ή上 ^ @化的显不为G's diagonal outside the value of the more general ... s ' /, in fact, may not be zero. This is more the case when the coding signal is not complete. It means that each separate signal has eight departures: two'. However, as previously shown, the rank number of the matrix is sufficient to see = smash 'so its value will be after the blind signal separation process, :, ,, decrease . This results in an increase in noise and an increase in signal-to-noise ratio, and as the (Shan_s iaw) points out, the channel capability increases. See the picture in Figure 15 for increasing the rank of the mixing matrix a, and the other two: adding the number N of the four antenna elements, the method of separating the knives into in-phase and quadrature components. . - In-phase and positive-parent components of the coherent radio frequency signal, which are components of the same amplitude but with a phase difference of 9G degrees. - The communication device 500 comprises an antenna array 5〇2 comprising antenna elements 504 for receiving at least N different sums of the μ source signals. A different in-phase and positive-parent module 5〇6 is connected to the downstream end of each antenna element 5〇4 to thereby receive each of the N different sums of the M source signals, and to be separated into in-phase and positive A collection of components. A receiver component 508 is coupled to the downstream of each of the in-phase and quadrature modules 5〇6 for receiving at least one of the in-phase and quadrature component sets for at least ν different sums of the one source signals. A blind signal separation processor 51 is coupled to the downstream end of the receiver component 508 to form a mixing matrix 512 comprising at least two different sums of the source number. Each in-phase and quadrature component set provides two inputs that are populated into the mixing matrix 512. The rank number of the mixing matrix 512 is equal to 2 Ν, and the blind signal separation processor 510 separates the desired source signal 514 from the mixing matrix 512. 36 1269544 交(四)分相相正正一 Pair _在;二二:=:::2 sleeves signal _ 味兮~t 9 〇 outside the same phase is widely stored in the same phase as the orthogonal signal The phase information in the intermediate frequency suppression number, whereby the signal having the positive "two negative frequency" can be distinguished. The Qiangangkou said that - has the =^r=::r;;-the same as the same __ Heart; day = = mixed signal followed by age __. In the case of difference coding, 'the modulation itself must be analyzed to determine whether the same == cross component meets linear requirements. For example, globally In action == iGsM) 'has been shown that when using the appropriate filtering, the = minimum displacement keying (GMSK) encoding is linear, and if the 2 double phase shifting (BPSK) encoding is 'can be processed in the receiver' By using the in-phase and positive-parent components, the in-phase and positive-parent components can be used to fill in the hybrid matrix A using any of the antenna arrays described above. When using = 2 times the number of antenna elements, it can be filled in the hybrid PA. Another example is Use two antenna elements (factor 2) that are uncorrelated with each other and have different polarizations (zero sub-) and are combined with the positive parent component of the 37 1269544 (since the mixed signal sum. '* this New 8 independent machines Wei Keming received __ 麟号总. The sum of these sums of k orthogonal components. The mouth is separated into in-phase and heavy / view _ against the threat (four) wireless _ rate of more reception: The processing technique, which uses the field type to minimize the number of antennas required. The data ratio associated with the field is strong and the variable has a variable weight on its receiver path. 'Adjust the receiving antenna field type. By using the receiving channel with the majority of the interference signal for the blind "separation (10)S), the desired signal 3 is taken from the input and formed as in the 17th. The financial description is more ingenious. In the two-phase structure, 'the antenna part can be replaced by the field type dispersion', and the Msl% type number will be compared with the number of the 1^ antenna elements = 'the κ field type will be used in comparison with the prior art, less than This is 2 days of L antenna elements. In the same method as the current antenna array implementation, only when all transmitted fixed-space channels 'are discernible by the K receiver field types, are equal 1 because this is general In the case of fixed transmitters and receiving cymbals, in order to f: 〒 or 空间 spatial gain 'will require receiver field type or transmission for day u, super jaw. Multiple user detection processing techniques will be used to separate the data channel in the d 38 1269544 receiving system. All of the above discussion of the method used to build the hybrid matrix will be part of this implementation. Another aspect of the present invention is directed to an inter-symbol interference (ISI). The Fourier transform limit used to reduce inter-symbol interference is proposed in the configuration provided in Figure 18. Subsequent block diagrams that have been added to the transmission side to improve Fourier transforms that reduce inter-symbol interference, including Viterbi (inter-coding, repetition/puncturing, and inserted cluster redundancy) Has been added to the transmission side. This subsequent block diagram is also added to the receiving side. Blind signal separation interference removal, removal of agglomerates, deduplication/de-cancellation, and Viterbi coding. Robust redundancy, which overcomes the inaccuracy of the data in the horse. For example, the alternative coding form of turbo coding is also suitable for &4; repetition, so that the source data ratio and transmission data source The lumps correspond to this. In this case, the lumps are inserted, and the successive arrivals of the two are now machined to maximize the possibility of proper decoding, where | the recovery of the channel condition. This introduced clump error, It is from, and the second is: the π嫉/ 〃 比 解码 解码 11 寺 寺 寺 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码 解码Interference removal" Before, the signal of the expected signal is reduced. And the ^^= into the _ rate domain signal has a known statistical characteristic, the best copying method, / is the distribution (the degree of the peak-to-average ratio) is added - edit _ fine FFT) The round of the round, the sentence #passes the frequency of the signal level), and adds a reverse conversion at the input of the 39 1269544 Extended Fourier Transform (IFFT).联』: "= ΐ ΐ is mutated' and in the practical solution, up-conversion ϊ so in the cap increase - modulator, convert the memory ^ into a demodulator. At the boundary between the transmitted waveforms 1 == TM is eliminated in many ways. - Method: Insert, to add ^ 'Add people - protective band, which is within the waveform

合矩陣的所^鮮成分最小化。上料論㈣建立該混 矩陣的所有方法,可以做為此實作的一部份。 訊。觀闕針料型分散,以域層空間通 在第19圖’在該較佳實施射,該傳輸器為了 在讀基礎上的每個層空間流,改變該功率程度。 ===功率程度,收器’其在該接㈣號 田、差/、,以為了盲信號分離處理填入一適當的 矩陣之中。目為财的功率調整都在傳輸器處進行,在該 接收器處L天線元件的數目則為丨,且在該接收器處不需= 產生場型的硬體或軟體。 此方法也滿足先前技術,其巾在該紐錢之間的小角 度差異’對於產生在該錢之财適當差異的場型等值線 中’便不再是個問題。 在另-實施财’具有來自該想要的傳輸騎不同的明 顯干擾。如果這樣的干肢單—的,介於其巾的差異以及 該改變的想要傳輸n波前,將足以使得盲錢分離處理分 離所有的信號。如果具有多於—個的明顯干擾,該矩陣的 秩數便不足m纟域能可藉由在雌收减產生額外 1269544 場型改變而得到改善。雖然這是與該較佳實施例不同,其 仍然需要與之刖相比的明顯少量場型,以及因此在該接收 器側的較少相關實作。 在另一實施例中,多數資料流是為了透過-功率放大器 的傳輸’而親-單―天線元件所加總。在—時槽基礎上, 在,和信之中的相對功率程度,是以-種適合在該接 收為處用於盲b虎分離解碼的方式變化。此方法的優點在 ·=亥中的各自信號流,都遭受到相同傳遞路徑 衫a ’八思味者該相對信號的關係,仍在傳輸器與接收哭 =所保持。這在該接收器處提供了—種非常強健的解碼 可調整的’其中信號的多數各自總和,可以透 及/或件傳輪。因此可沿著多數路徑錄增益, 率峰二:率得強健的信號分離。為了滿足信號功 持為-種接近固:功率;=的功率,也可以利用維 立該混合矩_财=㈣方式罐。上料論用以建 纽明二法’可以做為此實作的一部份。 多數傳輸哭。sr去則針對波浪形場型,用以支援同時的 置,調變&線^考第2〇圖’傳輸至該存取點的多數裝 存取點,將sum頻率場型。該預期的存取點與非預期的 用於盲作#八純該傳輪信號的不同功率形式。此提供 該調變;:在:離信號時所需要的資訊。 場型等值線進行、改=該傳輸功率—樣簡單。這可以無關於 丁,所以可以使用泛方向性、分段或是相等 1269544 束場型。也可以使用其他像是改變一傳輸波束準星 5亥取有效率的方式,是使該傳輸器使用對齊時槽。該時 脈:乂利用在3緣置中的内在時鐘所設定,或與該存取點 傳送的共同時間記號同步。如果對於該信號抵達接收哭的 時候,存在不對齊的現象,在該盲信號分離中的分離^ 能^會下降。對齊可以利用確認與該裝置之間的距離, 或是量測該時間延遲的方式調整1著可以由該存取裝 置,使用時脈前進或延遲的技術。 、 該接收信號的增益改變H經由將其視為目標的 酉己備目信齡離存㈣,以及其他情簡干擾兩者 X㈣齊_當接收ϋ可能會。如果沒有總體網路 =?預期的接收器便應該被對齊。如果存在總體網 =二,可以顯示該最佳的方法,是讓該信號簡單的 於分離的適當對齊。*展祕收錢,健提供用 如^^不使用該無線電頻率功率程度調變技術的其他 W ’便可使用典型的錢回絕技術 =場f:其他的方式,以增力,信號分離輸 使用後者的方法’該推導矩陣資訊的自由 將大大的減少在該存取點接收器處用以實作的花費。 作建立該混合矩陣的所有方法,可以做為此實 本發明的另-觀點,是針對調整盲信號分離無線電頻率 1269544 解石馬’用以最佳化處理與功率消耗(dl>ain)。需要被分離而 解馬的有興趣負料流信號數目便可減少。一般上該解碼矩 陣的秩數’決定該最大的被分離有效信號數目,而該信號 的剩餘部分便被視為雜訊。因此此數值需要位在一被解碼 ^號的最小包含處。可能需要一可能的較大最小值,以減 少該雜訊成分,因此該信號雜訊比形成一可接受的解碼錯 誤比率。 藝第21圖描述只操作該接收器的實作。第22圖為第2ι 圖的超集合,包括來自該傳輸器至該接收器的資料,並選 擇性地包括來自該接收器至該傳輸器的資料。 如果填入該矩陣的選項,超過用於操作所需的秩數,該 天線陣列控制,可以減少被使用的選項數目。來自可利用 集合的某些選擇,對於其他而言可能是更令人滿意的,而 该最佳選擇形成一較低的矩陣秩數。此集合可以利用將來 自該不同選項,料其他選項的比較,藉由試誤法(例如 φ 比較利用選項k與不利用時的結果)檢驗,或是對條件與 結果的歷史追蹤檢驗所決定。所使用的方法或方法的結 合’也可以根據給定已知條件與歷史事證的有效性所決定。 士當一裝置是已知位於來自許多來源的有效信號範圍之中 日守,如同在覆蓋重疊區域中所發生的,可以期望該最高功 率#號是來自於明顯不同的方向。該選項因此應該被選 擇,以在那些方向中提供有效的信號差異。 對於編碼而言,該錯誤校正編碼決定在該原始解碼資料 流中,所能容忍的錯誤比率。因為該原始錯誤比率也是該 43 1269544 ί陣子集合的函數,在這些設定之間便存在權 可以用來_該最麵紅奴。 /、㈣回圈’ 1如接收器發現並不在—受限功率情況中(舉例來 絲的功率),該解碼器可以増加其矩二 心加的所使用。較高的秩數可以減少雜訊, 、0 4雜概,並接著減少錯誤比率。減少The composition of the mating matrix is minimized. The theory of loading (4) all the methods of establishing the mixed matrix can be done as part of this implementation. News. The viewing volume type is dispersed, and the domain layer space is transmitted in the preferred embodiment of Fig. 19, and the transmitter changes the power level for each layer spatial stream on a read basis. ===The degree of power, the receiver's in the connected (four) field, the difference /, is filled into an appropriate matrix for the blind signal separation process. The power adjustments are all made at the transmitter where the number of L antenna elements is 丨 and there is no need to generate field-type hardware or software at the receiver. This method also satisfies the prior art, where the small angular difference between the new ones is no longer a problem for field-type contours that produce an appropriate difference in the money. In another-implementation, there is a significant interference from the desired transmission ride. If such a dry limb is single, the difference between its towel and the change of the desired wave before the transmission of n waves will be enough to cause the blind money separation process to separate all signals. If there is more than one significant interference, the rank of the matrix is less than the m纟 domain can be improved by generating an additional 1269544 field type change in the female reduction. Although this is different from the preferred embodiment, it still requires a significantly smaller field pattern compared to the top, and thus less relevant implementation on the receiver side. In another embodiment, the majority of the data streams are summed for the transmission of the power amplifier by the pro-single antenna elements. On the basis of the time slot, the relative power level in the sum signal is changed in such a manner that it is suitable for the blind decoding of the blind. The advantage of this method is that the respective signal flows in the ==Hail are subject to the same transmission path, and the relative signal relationship is still maintained in the transmitter and receiving crying =. This provides a very robust decoding at the receiver, where the majority of the signals are summed and can be transmitted through the device. Therefore, the gain can be recorded along most paths, and the rate peak 2: the signal is robust. In order to satisfy the signal power, the power is close to the solid: power; =, and the tank can also be used to maintain the hybrid moment. The theory of loading materials used to build the New Zealand Law can be part of this implementation. Most transmissions cry. Sr goes to the wavy field type to support the simultaneous setting, modulation & line test 2nd map 'transfer to most of the access points of the access point, the sum frequency field type. The expected access point is different from the unintended different power form used for blinding the eight-pass signal. This provides the modulation;: at: information needed to leave the signal. The field type contour is changed, and the transmission power is simple. This can be done without regard to D, so you can use general directionality, segmentation or equal 1269544 beam field type. Other ways of changing the efficiency of a transmission beam can also be used to make the transmitter use an alignment slot. The clock: is set by the internal clock in the 3 edge or synchronized with the common time stamp transmitted by the access point. If there is a misalignment when the signal arrives to receive crying, the separation in the blind signal separation will decrease. Alignment can be accomplished by means of confirming the distance to the device, or by measuring the time delay, by means of the access device, using clock advance or delay. The gain change H of the received signal is separated from the target by which it is regarded as the target (4), and the other emotions are both interfered with X (4). If there is no overall network =? The intended receiver should be aligned. If there is an overall net = two, the best way to show this is to make the signal simple to properly align the separation. *Show secrets to collect money, health provides such as ^^ Do not use the radio frequency power level modulation technology other W 'can use typical money rejection technology = field f: other ways to increase power, signal separation and use The latter method 'the freedom to derive matrix information will greatly reduce the cost of implementation at the access point receiver. All of the methods for establishing the hybrid matrix can be used as a further aspect of the present invention for adjusting the blind signal to separate the radio frequency 1269544 from the stone to optimize processing and power consumption (dl > ain). The number of interested negative stream signals that need to be separated and resolved is reduced. Generally, the rank number of the decoding matrix determines the maximum number of separated effective signals, and the remainder of the signal is treated as noise. Therefore this value needs to be at the minimum inclusion of the decoded ^ number. A possible larger minimum may be required to reduce the noise component, so the signal to noise ratio forms an acceptable decoding error ratio. Art Figure 21 depicts the implementation of operating only the receiver. Figure 22 is a superset of Figure 2, including data from the transmitter to the receiver, and optionally including data from the receiver to the transmitter. If the option to fill in the matrix exceeds the number of ranks required for operation, the antenna array control can reduce the number of options used. Some choices from the available sets may be more satisfactory for others, and the best choice forms a lower matrix rank number. This set can be used to compare the other options from the future, by trial and error (such as φ comparison using the option k and the results when not used), or by historical tracking of conditions and results. The combination of methods or methods used may also be determined by the validity of given known conditions and historical evidence. A device is known to be located in an effective signal range from many sources, as occurs in a coverage overlap region, and it can be expected that the highest power # number is from a distinctly different direction. This option should therefore be chosen to provide valid signal differences in those directions. For encoding, the error correction encoding determines the error rate that can be tolerated in the original decoded data stream. Because the original error ratio is also a function of the set of 43 1269544 ί, there is a right between these settings that can be used to _ the most red slave. /, (d) loop ’ 1 If the receiver finds that it is not in the case of limited power (for example, the power of the wire), the decoder can use its quadratic addition. A higher rank number can reduce noise, and then reduce the error ratio. cut back

率’減少錯誤校正編碼’或二 車的負擔轉換填人雜收11,也可以減少在該傳 ,、、载,其可以在該兩者之間存在一控制回路時# =反的’-種使用電池的裝置可以試著與更強健二 的4置,進行增加秩數的交涉。 藉由改變時脈設定,該最強健操作需要對每個符元進行 解碼矩陣重新計算。然而,通常該時間總和超過該符元^ 目因此i測只在比率是輕微地快於該時間總和才需要。 減少該解碼矩陣確認的事件,將更節省電力與處理器的花 費。 監測在該轉巾事件彼狀_改變,是絲確認該解 碼矩陣必須多常重新計算。在寬頻系統中,該子頻道常常 具有各自的時間總和。每個子頻道可以具有其本身的解碼 矩陣以及相對應的量測比率。此排除在該最快需要比率 處,對一非常大解碼矩陣的重新計算。一般上,該用於子 解碼矩陣的量測總和,將小於用於大矩陣的量測總和。 1269544 對於場型傳輸而言,如果該來源產生場型,該接收器可 以凋整其矩陣填入接收選項,以提供適當的矩陣秩數。該 接收器可以在有關傳輸特性的資訊上建立基礎,其包括該 傳輸器所知會的資訊、對該接收資料流與解碼資料的量 測旦或是與該來源的交涉設定。在該交涉情況中,也可以 考置該來源的資源關,因此任—個可以假設為一較高的 負擔’以卸下其他的負載。 j十於矩陣求解技術而言,一般上該解碼矩陣彼此之間並 不變化。因此該先前數值可以做為解答疊代決定的種子, 其與:㈣新開始的決定相比之下,為較少的處理器負 擔§该矩陣是大到可以開始,通常疊代解碼將變 2使f解答*從—未知情況所蚊。奸-種求解大秩 數、完全矩陣的已知方式。The rate 'reduced error correction code' or the load of the second car is converted into a miscellaneous charge 11, which can also be reduced in the pass, , and load, which can exist in a control loop between the two ##反反'- Devices that use batteries can try to negotiate with the more robust ones to increase the number of ranks. By changing the clock settings, this most robust operation requires a decoding matrix recalculation for each symbol. However, usually the sum of the time exceeds the symbol and therefore the measurement is only needed if the ratio is slightly faster than the sum of the time. Reducing the events identified by the decoding matrix will save more power and processor overhead. Monitoring the change in the scalding event is a confirmation that the decoding matrix must be recalculated frequently. In broadband systems, this subchannel often has its own time sum. Each subchannel can have its own decoding matrix and corresponding measurement ratio. This excludes the recalculation of a very large decoding matrix at this fastest required ratio. In general, the sum of the measurements for the sub-decoding matrix will be less than the sum of the measurements for the large matrix. 1269544 For field-type transmissions, if the source produces a field pattern, the receiver can fill its matrix with the receive option to provide the appropriate matrix rank. The receiver can establish a basis for information about the transmission characteristics, including information that is known to the transmitter, a measure of the received data stream and the decoded data, or a negotiation setting with the source. In the case of this negotiation, the resource level of the source can also be considered, so any one can be assumed to be a higher burden' to unload other loads. In the case of the matrix solving technique, the decoding matrices generally do not change from each other. Therefore, the previous value can be used as a seed to solve the iterative decision, which is compared with the (4) new start decision, which is less processor burden. § The matrix is large enough to start, usually the iterative decoding will change to 2. Make f answer * from - unknown mosquitoes. Rape - a known way of solving large ranks and complete matrices.

一般上,根據可利用成分、修正編碼程度、可適用配借, =及其他影響像是可信操作的因子,可輯以上的H 仃結合。上述討論用以建立該混合矩陣的所有方法 做為此實作的一部份。 本考X明的另一觀點是針對波浪形場型,用以 域覆盍。對於該場型傳輸^言,該基本概念是建: 使用分區的覆蓋場型。該實際的使用分區 要的能力與相_成本因子變化。實際實作可以… 早二分區’至―任意大的數目。該分區本身可以r 角或高度中,或是方位角與高度平面中次區分。使用 的主要好處在於如同每域束方法—樣,其減輕=In general, according to the available components, the degree of correction coding, the applicable lending, and other factors that affect the like operation, the above H 仃 can be combined. All of the methods discussed above for establishing the hybrid matrix are part of this implementation. Another point of view of this test is for the wavy field type, which is used for domain coverage. For this field type transmission, the basic concept is built: Use the coverage field type of the partition. The actual use partition has the ability to change with the phase_cost factor. The actual implementation can be... the second two partitions to the arbitrarily large number. The partition itself can be distinguished from the angle r or height, or the azimuth and height plane. The main benefit of using it is that like each domain beam method, its mitigation =

45 1269544 ,尨的其他端點處,追蹤裝置的需求。離開一分區的覆蓋 區域至另一個,便因此減少為一種典型的遞交 d〇f 情況。 該先前技術使得產生該場型的接收器,為了盲信號分離 的信號分離處理,而適當地改變。相比之下,該傳輸器使 用技術’因此至少存在部分的適用f信號分離解碼器環 境。在某些實作中,這將意味著該接收器不需要產生任何 鲁^浪形。在其他實作中,其意味著該波浪形場型的 數目是被明顯的減少。 训於職點的實_。此實_滿足在該區域 中,正在操作的其他傳輸來源為未知的情況。參考第 =傳輸場型等值線為該接收器所已知,是—種45 1269544, at other endpoints of the ,, track the needs of the device. Leaving the coverage area of one partition to another is therefore reduced to a typical delivery d〇f situation. This prior art makes it possible to generate a receiver of this field type, which is appropriately changed for signal separation processing of blind signal separation. In contrast, the transmitter uses the technology' so there is at least some part of the applicable f-signal separation decoder environment. In some implementations, this would mean that the receiver does not need to generate any shape. In other implementations, it means that the number of wavy field patterns is significantly reduced. Training the actual point of the job. This _ is satisfied in the region where other transmission sources that are operating are unknown. Reference = transmission field type contour is known to the receiver, is -

中的波浪形。 J —在該傳輸場型中的改變,是與該傳輸符元的區域所 定1。取代準星的移動,可以改變該場型等值線,並在每 φ目㈣巾維拥定。該覆魏_此不胸_ 且不產生為了與其競爭的前視追蹤議題。 业 由於該改變的傳輸等值線,該接收器將遭遇— ii呈fr改變。辟信號分離矩_此將以在不同相對辨 现數值處的不同信號流差異填入。 曰 如果該接㈣優勢· ’是全部來自使用波 -個或多㈣鮮,該接《只在每崎= 的 ::的=些形成的資料’填入_信二 46 1269544 „如、果存在另—個制該波浪形信號的傳輸器,而其他傳 輸益並不使用的混合情況,該接收器可以使用典型的信號 分離技術將其處理。舉例而言,可以使用像是波束成形以 及錄使用者偵測的方法。然而,該盲信號分離方法一般 來說是更強健的。當實際上,該接收器可以實作場型變形 以及產生足夠的額外場型,以增加該盲信號分離矩陣的秩 數’超過該被分離的信號數目。 躲該f信號分轉抑實作,舉㈣言,如果具有三 個信號的三個等值線是由該傳輸器所傳輪,並有其他兩個 信號被接收,該接收器將需要產生至少兩個等值線,以將 彼此干擾的信號分離。如果該傳輸器本身不產生其本身集 合的話,便已經需要少於三個的等值線,所以便^以減 對該接收器的實作負擔。 如果-傳輸nm號路徑傳輸—錢流,該場型等 值線集合便不需要被旋轉或相異。這是因為在該接收器偵 _ 測的彳§號,是已經對於所有其他的接收信號所改變。該傳 輸器因此可以使用一種對於總體場型的簡單功率改變,而 不需要改變該等值線的形狀。如果在該接收器處只有另一 個資料流被加總時,則即使其中一個的振幅為固定,盲信 唬分離仍可將他分離。這是因為該功率混亂來源,提供其 本身操作所需要的改變。如果接收到多於一個的其他資料 流,他們便出現為對於盲信號分離的一種單一群集干擾, 除非該接收器本身使用其他的分離裝置,否則便增加其本 身的波浪形場型產生能力。 1269544 丄。現在將討論一種在該接收模式中的場型傳輸器。因為盲 t就分離的多數場型等值線處理,對於信號分離而言是一 種良好的方法’使帛以產生該傳輸場S的相目技術,也可 x =來產生多數接收器數值。當傳輸是已經被支援時,用 於盲信號分離接收的成本因子,則因此只是該盲信號分 處理花費。 妙現在將討論使用者配備接收器對於該傳輸器的回饋。雖 f並不是強制的需要,來自該使用者配備接收器的回饋資 =可以用以改善該鏈結的總體操作。舉例而言,該接收 ί可Ί定哪個場型等值線改變的程度,提供有用的資 ^此魏是被_至該傳輸器。該傳輸器接著可以調整 改#鏈結’使用較少的功率,或對其他通訊鏈結 1。這些雜可能是:使用哪個及哪個之中的, 二在—符元傳輸的工作期間產生多少改變(換言之,俨 個::等值線的改變)°為了最佳效能,將需要傳‘ 寸几的荨值線改變調整至該接收器。 的已_知第方二法=:!=^輸點有關,其是使用上述描述 所產生的場型,可以為了盲信 === 接收器處計算。 ㈣。就刀離’而在該 然而’更強健的操作可以藉由從 合傳輸參數本質的資訊所獲得。轉接收關於该整 陣的秩數,盆接著…:二舉例而s,可以調整該矩 —亥所需場型的數目。當可利用時, 48 1269544 該接收器的場型產生,便因此為了每個此資訊所調整。網 路寬度無線電資源管理可以使用回饋至該使用者配備的資 訊,以建立網路寬度場型使用、方向、功率程度與時脈。 上述討論用以建立該混合矩陣的所有方法,可以做為此實 作的一部份。 本發明的另一觀點是針對盲信號分離與波浪形場型,用 以協助分碼多重存取信號分離。為了 一盲信號分離演算法The wavy shape. J - The change in the transmission pattern is set to 1 with the area of the transmission symbol. Instead of the movement of the crosshairs, the field contour can be changed and held in each φ mesh (four). The wei _ this is not a _ _ and does not produce a forward-looking tracking issue in order to compete with it. Due to the changed transmission contour, the receiver will encounter - ii as fr. The signal separation moment _ this will be filled in with different signal flow differences at different relative identification values.曰 If the connection (four) advantage · 'is all from the use of wave- or more (four) fresh, the connection is only in the per-sale =:: = some of the formed information 'filled in _ letter two 46 1269544 „, if there is another a transmitter that produces the wavy signal, and other transmissions are not used in the mixing case, the receiver can be processed using typical signal separation techniques. For example, beamforming and recording users can be used. The method of detection. However, the blind signal separation method is generally more robust. In practice, the receiver can implement field-type deformation and generate enough additional fields to increase the rank of the blind signal separation matrix. The number ' exceeds the number of signals to be separated. To hide the f signal, the implementation of the signal, (4), if three contours with three signals are transmitted by the transmitter, and there are two other signals Received, the receiver will need to generate at least two contours to separate the signals that interfere with each other. If the transmitter itself does not produce its own set, then less than three contours are already needed, so ^ to reduce the burden on the receiver. If the -nm path is transmitted - the money stream, the set of field contours does not need to be rotated or different. This is because the receiver is Detecting The 彳§ number has been changed for all other received signals. The transmitter can therefore use a simple power change for the overall field type without changing the shape of the contour. If there is only another at the receiver When a data stream is summed, even if the amplitude of one of them is fixed, the blind signal separation can still separate him. This is because the power chaos source provides the change required for its own operation. If more than one is received For other data streams, they appear as a single cluster interference for blind signal separation, unless the receiver itself uses other separation devices to increase its own wavy field generation capability. 1269544 丄. The field type transmitter in this receiving mode. Most field type contour processing separated by blind t is a good method for signal separation. 'Making the target technology to generate the transmission field S, x = can also generate a majority of the receiver value. When the transmission is already supported, the cost factor for blind signal separation reception is therefore only the blind signal Processing costs. The feedback from the user equipped receiver to the transmitter will now be discussed. Although f is not a mandatory requirement, the feedback from the user equipped receiver can be used to improve the overall operation of the link. In this case, the receiving ί can determine which field type contour is changed, providing useful information to the transmitter. The transmitter can then adjust the #link' to use less power. , or to other communication links 1. These miscellaneous may be: which one and which one to use, and how many changes during the work of the symbol transmission (in other words, one: the change of the contour) ° for the most Good performance, will need to pass the inch value of the threshold line to adjust to the receiver. The _ knowing the second method =:!=^ the input point is related to the field type generated by the above description, which can be calculated for the blind letter === at the receiver. (4). In the case of a knife away, a more robust operation can be obtained by information on the nature of the transmission parameters. The number of ranks for the array is transferred, and then the basin is followed by ...: two examples and s, the number of fields required for the moment can be adjusted. When available, 48 1269544 The receiver's field pattern is generated and is therefore adjusted for each of this information. Network Width Radio Resource Management can use the information fed back to the user to establish network width field usage, direction, power level and clock. All of the methods discussed above for establishing the hybrid matrix can be part of this implementation. Another aspect of the present invention is directed to blind signal separation and wavy field patterns for assisting in the separation of coded multiple access signals. For a blind signal separation algorithm

以有效的分離信號,該Xi接收信號必須為一種在該天線處 接收信號的集合,其具有關於每個各自信號的相對不同權 重因子。這可以在該傳輸n、接收器或兩者位置處進行。 不官該權重因子是在該傳輸端或接收端處改變,他們可以 對於每個⑼或連續的晶Μ #合所改變。絲本要求是該 集合々信號被調整的次數,至少與被分離信號的數目相等。 第24圖顯不-種在頻率中,該符元被改變12次⑴個 2)的情況。該被改變的參數在4個晶片中為常數。每With an effectively separated signal, the Xi received signal must be a set of received signals at the antenna with relatively different weighting factors for each respective signal. This can be done at the location of the transmission n, the receiver or both. The weighting factor is changed at the transmitting or receiving end, and they can be changed for each (9) or continuous wafer. The silk requirement is that the number of times the aggregate signal is adjusted, at least equal to the number of signals to be separated. Fig. 24 shows the case where the symbol is changed 12 times (1) 2) in the frequency. The changed parameter is constant in 4 wafers. each

的三個變化暗示了可以從該集合接收信號之中,分 離出三個不同的信號。 刀 值傳輸器沿著—錢路㈣輸—信號流,該場型等 測的信號,是已經對異。這是因為在該接收器偵 輸器因此可以使用—種^其他的接收信號所改變。該傳 不需要改變鱗錢^於誠場型的簡單功率改變,而 —個資料流被加總,則即^如果在該接收器處,只有另 號分離仍可將他分離固定’盲信 疋因為β功率混亂來源提供其本 49 1269544 身操作所需要的改變。如果接收到多於一個的其他資料 流’他們便出現為對於盲信號分離的一種單一群集干擾, 除非該接收器本身使用其他的分離裝置,否則便增加其本 身的波浪形場型產生能力。 、 雖然並不是強制的需要,來自該使用者配備接收器的回 饋資訊,可以用以改善該鏈結的總體操作。舉例而言,該 接收裔可以決定哪個場型等值線改變的程度,提供有用的The three changes imply that three different signals can be separated from the received signal from the set. The knife value transmitter is transmitted along the - money path (four) - the signal stream, and the signal measured by the field type is already different. This is because the receiver detector can therefore be changed using other received signals. The pass does not need to change the scale of the money ^ in the simple field of the power change, and a stream of data is added, that is, ^ at the receiver, only the separation can still separate him from the fixed blind letter because The source of beta power chaos provides the changes required for its operation. If more than one other stream is received, they appear as a single cluster interference for blind signal separation, unless the receiver itself uses other separation devices to increase its own wavy field generation capability. Although not mandatory, feedback from the user equipped with the receiver can be used to improve the overall operation of the link. For example, the recipient can determine which field type contour changes, providing useful

資料。此資訊是被回饋至該傳輸器。該傳輸器接著可以調 整其操作以改善鏈結,使用較少的功率,或對其他通訊鏈 結造成干擾。雖然存在有許多改變功率曲線的方式,其中 的一些調整可能是:使用哪個及哪個之中的序列;在一符 凡傳輸的卫作期間產生多少改變,以及如何調變或混亂一 各自鏈結的功率。為了最佳效能,將需要傳達每個符元的 專值線改變調整至該接收器。 實際的功率放大器可在其線性操作範圍中得到最佳使 用。以-大的峰均值功率比率,可減少用於線性操作的操 作範圍’因此對該峰均值而言,形成—種減少的線性動態 控制範圍’並因此減少在該傳輸器與鋪收^之間的操作 距離。當功率是-種被使㈣傳輸參數時,關害關係可 以利用S午多方式減輕。 I方/包以由該相同的放大器供電至多於一個滅點 Unk) Ν·,該f錢分離改變可叫用—種像是把所有作 號的功率總和,維持為固定的方式所同步。換句钱,某 些傳輸的增加是移自於其他喊少。如_功率是在接近 1269544 變,超過的功率可以轉換至一消 於該晶片比率的數值處改 散負载。 型可==收天線— 功率程$建立,包含該她㈣天線的延遲與 變;功寄生天^件;偏極改 射哭,其糾制的如;元件或反 的機械移動;以及上述的任何結合。上述討論用以建data. This information is fed back to the transmitter. The transmitter can then adjust its operation to improve the chain, use less power, or interfere with other communication links. While there are many ways to change the power curve, some of these adjustments may be: which one and which of the sequences are used; how many changes occur during a transmission's guard, and how to modulate or confuse a respective link power. For best performance, you will need to communicate the value of each symbol change to the receiver. The actual power amplifier is optimally used in its linear operating range. With a large peak-to-average power ratio, the operating range for linear operation can be reduced 'so that for this peak mean, a reduced linear dynamic control range is formed' and thus between the transmitter and the shop Operating distance. When the power is the transmission parameter of (4), the relationship can be mitigated by the S-time multi-mode. The I party/packet is powered by the same amplifier to more than one vanishing point Unk) ,·, the f money separation change can be called—the image is synchronized by maintaining the sum of the powers of all the numbers in a fixed manner. In other words, the increase in some transmissions is shifted from other shouts. If the _ power is near 1269544, the excess power can be converted to a value that is equal to the wafer ratio to dissipate the load. Type == Receive Antenna - Power Range $ is established, including the delay and variation of the antenna (the antenna); the parasitic antenna; the pole-changing crying, its rectification; the mechanical movement of the component or the inverse; Any combination. The above discussion was used to build

立^合轉的所有方法,可以做為此實作的一部份。 毛明的另—觀點是針對一信號接收器,其用於多數空 Γ^Γ。切細寄生天線可以與—種高速度數位化器 所結合,以提供多數空關立縣至—基頻帶 =4。多數空間獨立頻道是由使用—單—的低雜訊放 、^(lna)、-混合器、—局部振盪器α〇)、—低通過 Λ'"波裔(LPF)以及一類比數位轉換1 (ADC)所提供。 以此技術所獲得的多數空間獨立頻道,可以利用多種方 式所處理,範_包含整體結合、盲錢分離,或多輸入 多輸出處接收處理。 參考第25圖,該系統原則將在之後敘述。該較佳實施例 包含一單一天線陣列,其具有切換至電感與電容的組件。 该頻帶通過濾波器限制存在於低雜訊放大器的頻帶與總體 無線電頻率功率兩者。該低雜訊放大器不只是用於接收信 號的低雜訊放大器而已。該混合器與局部振盪器調整該無 線電頻率信號為一種中介頻率或基頻帶數位轉換器(DC) 之一。任一種實作也適用於後端處理。 51 1269544 換,"3天2切換、選擇局部振111城以及解多工處理器切 個頻道,《 2數位序列產生器所驅動,因此該信號的N 哭產生1 "天線^ Ν個分㈣式所起。這從該混合 濾、波器與軸触轉換^。、核出麟在制低通過 調變m 有一载流頻率Fc的信號以及 具有脈衝的下;處:==’作用為-種 該類出數私對於具有N個元件的陣列而言, 要是因為在該基必須至少為2*N*B。N的需 在於一解調器之中。抑③’母N個樣本只會有一個存 (%职⑻採樣理論。因此的需要則是為了滿足該奈奎斯特 也受到該裝置的切算速此綠所接㈣信號頻寬, 該解多工處理哭取> 則固平行解魏基㈣處㈣(酣)中 集n種相八# 鋪本分佈結構必須不為群 散選擇(左、右舉例而言’如果具有三個天線分 器的樣本編號為!_、、2、;:則N=3。來自該類比數位轉換 將 ι、4、7、ω分佈』:5、6'7、8、9、10、11、12 至第二解調器序列;而;7調器序列:2、5、8、U分佈 列。 3、6、9、12分佈至第三解調器序 j斤提到的’該解調器可以是—種整體結合的形 (S: 52 1269544 j ’盲信號分離或該兩個—般多輸人多輸出解調技術之 、。廷可以是一信號調變電路的^^個列舉,或是一種預期 為=個空間獨立頻道的封包。該整體結合可以是軟性決策 的權重或硬性決策的操作。之後將討論一些實作限制。其 包含信號雜訊比考量、雜訊圖形、阻抗相符以及接收信號 功率。 果假设该天線陣列具有與該接收信號相符的頻寬,該 • 頻帶邮號雜訊比將維持相同。然而,該頻帶内信號能量 與一傳統陣列相比之下,以N2的因子減少。 斤因為該低雜訊放大器在該天線陣列之後,是在該信號路 L中的第-影響it件’該雜訊圖形便不像從—piN型二極 體所開始的切換陣列,具有—重要的考量。因為每個頻道 在该解多工處理器之後接收該信號功率的1/N,該低雜訊放 大杰增益要求便以101〇gl()N的方式增加,以保持在該混合 器輸出處的可分辨信號振幅。 • 在不同天線陣列之中的切換,將引入一種阻抗相符特性 的改變。對天線實作而言,這並不總是只具有直接連接至 该無線電頻率路徑的’’主動”天線元件情況。該其他的,,寄生,, 天線元件,只在該無線電頻率路徑具有影響。 一替代的實施例,也可以適用於某些多輸入多輸出以及 其他的平行路徑傳輸結構中,其結合調整該局部振盪器為 不同的載流頻率,並切換至該天線陣列的不同分散模式。 這可以彼此同步或獨立進行。在時間中,他們必須同時發 生,但每個的狀態(陣列模式比上載流頻率)並不需要^ 53 1269544 同相。 這對於接收802.11g+的波形而言是有用的實作,其中兩 個規則的802.11g波形,是平行地在不同載流中傳輸。在此 情況中,可以在該局部振盪器的上方與下方載流之間切 換,並接著在一不同的場型中,切換該天線陣列的不同分 散模式。 該混合器可以被設為將該無線電頻率,下轉換至中介頻 率或基頻帶數位轉換器。這改變了該類比數位轉換器的某 些採樣要求。故意的化名與其他的技術,可以在採樣下實 作中介頻率’並仍然復原預期的資訊内容。 此方法也考慮了對於接收與傳輸功能兩者的天線雙重使 用。對某些像是衛星接收的應用而言,不需要傳輸功能。 對於時分多工系統(像是無線區域網路(WLAN)、新一代 無線寬頻接取技術(WiMAX)、寬頻分碼多重存取_時分多 工(WCDMA-TDD )、單頻道同步分碼多重存取 (TDSCDMA)等等)或時槽頻分多工(FDD)系統(像是 全球行動通訊系統/通用無線封包服務(GSM/GpRS乃而 二二其並不同時接收與傳輸信號,當該傳輸模式被獨立考 里日守,该接收天線便可視為多工。對於完全頻分多工系統 而吕(像是分碼多重存取2000 (CDMA2〇00)或寬頻分碼 多重存取_頻分乡卫(Wcdma_fdd))而言,該傳輸功能 可以以分離天線的方式完成。這些空中介面的任何一個, 都可Μ使驗何的魏解顧技術(整體結合、盲信號分 離、多輸入輸出)。 54 1269544 本發明的另-觀點是針對盲信號分離躺至分碼多重存 取接收器處理。具有在天線元件之間適#分離的天線陣 列,則適用於填入該解碼序列之中。該可利用文獻的回顧 指出-般上這是對此技術專精者而言為信服的。 其他參考的文件討論,則與信號天線干擾消除⑽κ) 技術有關。使用盲信號分離的那些,需要該調變已經是相 關或統計獨立的同相與正交頻道,以產生秩數為2的矩陣。 料解碼㈣此分離單-干擾及想要的信號。如果存在兩 •個干擾,現有的信號天線干擾消除技術便不能實行。他們 便參考為一種使用,,虛擬,,第二天線。 該先前技術可以根據由現有技術裝置,以及在文獻中並 未存錢用的其他,獲得信號獨立的總和所改善。然而同 相與正乂襄置’實際上位於某些無線電存取網路之中,他 們可以不適用於分碼多重存取編碼。上述討論用以建立該 混合矩陣的所有方法,可以做為此實作的一部份。 、賴這些技術增加該獨立成分分析可使用矩陣的秩數, =使該分分析應用可更能取得該想要的信號,但是 微的。所以為了選擇適當的解碼序列仍需要細 技術舉例來說,如果對被處理信號總和為過度有害時, 便需要從獨立成分分析處理復原。 在一第二實施例中,如在第26圖所描述,其使用—種不 同的解碼序列。在第π圖中顯示,位於節點A處的信號集 庵為了清楚顯示只有—信號干擾,但該相同的論點 11 用至多數干擾以及―增加的轉秩數。該雜訊程 55 1269544 度是以一種窄頻帶千板 信號是在該雜訊程度超越’且該想要的分碼多重存取 器” nm即9點δ處’已經決取出該干擾。該”選擇 I^°="疋否真的是干擾。如果一信號具有該想 =號的似’其料被選擇。如果選擇—個或 擾,他們便存在於該,,彳 ’轉态處(即點C)。獨立成分分析 二可以倒轉或不倒轉—接收錢,謂要對於每個信All methods of turning and turning can be done as part of this implementation. Mao Ming's other point of view is for a signal receiver that is used for most of the space. The shredded parasitic antenna can be combined with a high-speed digitizer to provide most of the air-to-county to baseband = 4. Most spatial independent channels are low noise, ^(lna), -mixer, local oscillator α〇, low pass &'"Low wave (LPF) and analog-to-digital conversion 1 (ADC) provided. Most of the spatially independent channels obtained by this technique can be processed in a variety of ways, including integral integration, blind money separation, or multiple input multiple output reception processing. Referring to Figure 25, the system principles will be described later. The preferred embodiment includes a single antenna array having components that switch to inductors and capacitors. This band limits both the frequency band present in the low noise amplifier and the overall radio frequency power through the filter. This low noise amplifier is not just a low noise amplifier for receiving signals. The mixer and local oscillator adjust the radio frequency signal to be one of an intermediate frequency or baseband digital converter (DC). Either implementation is also available for backend processing. 51 1269544 Change, "3 days 2 switch, select local vibration 111 city and solve the multiplex processor to cut a channel, "2 digit sequence generator is driven, so the signal N cry produces 1 " antenna ^ Ν (4) From the beginning. This is converted from the hybrid filter, waver and shaft contact ^. , the core is in the low pass modulation m has a carrier frequency Fc signal and has a pulse; where: == 'acting as a kind of kind of private for an array with N components, if The base must be at least 2*N*B. The need for N lies in a demodulator. 3' mother N samples will only have one (% job (8) sampling theory. Therefore, the need is to satisfy the Nyquist is also subject to the cutting speed of the device. (4) signal bandwidth, the solution Multiple processing, crying > then solid parallel solution, Weiji (four), (four), (酣), middle set, n kinds of phase eight, shop distribution structure must not be selected for group dispersion (left and right, for example, if there are three antennas The sample number is !_, 2,;: then N=3. From the analog-to-digital conversion, the distribution of ι, 4, 7, ω: 5, 6'7, 8, 9, 10, 11, 12 to the second Demodulator sequence; and; 7 modulator sequence: 2, 5, 8, U distribution column. 3, 6, 9, 12 distribution to the third demodulator sequence j kg mentioned 'the demodulator can be - The overall combined shape (S: 52 1269544 j 'blind signal separation or the two-to-many input multi-output demodulation technology, the Ting can be a list of signal modulation circuits, or a Expected to be a packet of spatially independent channels. The overall combination can be the weight of a soft decision or the operation of a hard decision. Some implementation limitations will be discussed later. Signal ratio, noise pattern, impedance matching, and received signal power. If the antenna array has a bandwidth that matches the received signal, the band-to-signal noise ratio will remain the same. However, the signal energy in the band In contrast to a conventional array, the factor of N2 is reduced. Because the low noise amplifier is behind the antenna array, it is the first in the signal path L. The noise pattern is not like the slave. The switching array started by the piN type diode has an important consideration. Since each channel receives 1/N of the signal power after the demultiplexing processor, the low noise amplification gain requirement is 101〇. The way gl()N is increased to maintain the resolvable signal amplitude at the output of the mixer. • Switching between different antenna arrays introduces a change in impedance matching characteristics. For antenna implementation, this It is not always the case of an ''active' antenna element that is directly connected to the radio frequency path. The other, parasitic, antenna element only has an effect on the radio frequency path. The embodiment may also be applied to some multi-input multiple-output and other parallel path transmission structures, which combine to adjust the local oscillator to different current-carrying frequencies and switch to different dispersion modes of the antenna array. They can be synchronized or independent of each other. In time, they must happen at the same time, but each state (array mode is more than the upload stream frequency) does not need to be in phase with ^ 53 1269544. This is useful for receiving 802.11g+ waveforms. The two regular 802.11g waveforms are transmitted in parallel in different carrier streams. In this case, it is possible to switch between the upper and lower current carriers of the local oscillator, and then in a different field pattern. Switching between different dispersion modes of the antenna array. The mixer can be set to downconvert the radio frequency to an intermediate frequency or baseband digital converter. This changes some of the sampling requirements of the analog to digital converter. Intentional pseudonyms and other techniques can be used to calculate the intermediate frequency under sampling and still restore the expected information content. This method also considers the dual use of antennas for both receive and transmit functions. For some applications like satellite reception, no transmission function is required. For time division multiplex systems (such as wireless local area network (WLAN), next-generation wireless broadband access technology (WiMAX), broadband code division multiple access _ time division multiplexing (WCDMA-TDD), single channel synchronization code Multiple access (TDSCDMA), etc. or time slot frequency division multiplexing (FDD) systems (such as the Global System for Mobile Communications/General Wireless Packet Service (GSM/GpRS, which does not simultaneously receive and transmit signals) The transmission mode is independent of the test, and the receiving antenna can be regarded as multiplex. For a complete frequency division multiplexing system (such as code division multiple access 2000 (CDMA2〇00) or broadband code division multiple access_ In the case of the frequency division (Wcdma_fdd), the transmission function can be completed in the form of separate antennas. Any of these empty mediation planes can be used to detect the Wei Jie technology (integral combination, blind signal separation, multiple input). Output) 54 1269544 Another aspect of the present invention is directed to blind signal separation to code division multiple access receiver processing. An antenna array having a separation between antenna elements is suitable for filling in the decoding sequence. The available literature It is recalled that this is generally convincing to the technical experts. The other reference documents are related to the signal antenna interference cancellation (10) κ) technology. Those using blind signal separation need to be correlated. Or statistically independent in-phase and orthogonal channels to generate a matrix with a rank of 2. Material decoding (4) This separate single-interference and desired signal. If there are two interferences, the existing signal antenna interference cancellation technology cannot be implemented. They refer to a use, virtual, and second antenna. The prior art can be improved based on the sum of signal independence obtained by prior art devices and others that are not saved in the literature. Positive devices are actually located in some radio access networks, they may not be suitable for code division multiple access coding. The above discussion is used to establish all methods of the hybrid matrix, which can be used as one for this implementation. In addition, these techniques increase the independent component analysis to use the rank number of the matrix, = making the sub-analytic application more capable of obtaining the desired signal, but micro Therefore, in order to select an appropriate decoding sequence, fine techniques are still needed. For example, if the sum of the processed signals is excessively harmful, it is necessary to recover from the independent component analysis processing. In a second embodiment, as shown in Fig. 26. As described, it uses a different decoding sequence. It is shown in the π-picture that the signal set at node A is only for signal interference, but the same argument 11 uses most interference and "increased turn". The number of ranks. The noise of 55 1269544 degrees is based on a narrow band of signals. The signal is beyond the 'and the desired code division multiple accessor' nm, ie 9 points δ' has already taken out the interference. The "select I^°=" 疋 No is really interference. If a signal has the same meaning as the number = it is selected. If you choose - or a disturbance, they will exist in that, 彳 'turn (ie point C). Independent component analysis 2 can be reversed or not reversed - receiving money, that is, for each letter

號疋否需要被倒轉以_接收信號相符進行確認。 與該正確振幅符號—_干擾,是存在於在節點D處的 加―負=輸人中。本領域的專精者當然可能識別該替 代’但不是相等的實作。舉例來說,可以在此階段使用一 種純幹加魅’且該倒轉、在該信號不與該非倒轉 波形一起擷取時使用。該原始接收信號(節點A)的-種延 遲形式,疋存在於其他加總器輸入處。該延遲數值是等於 由該獨立成分分析、選擇、以及,,倒轉,,處理所產生的延遲 本領域的專精者當然可能識職替代,但不是相等的實 作。舉例來s兒,該延遲與加總器功能塊狀圖,可以利用一 最小化塊狀圖所取代,其轉移並加總兩個信號,直到達到 一最小值為止。 在第29圖中的節點D處,該干擾已經被移除。在第3〇 圖中的節點E處,該犛耙式接收器已經減少信號的分散, 其現在可以存在於該基頻帶解碼器中。此實施例的進一步 細節,在於由該天線結構收集的信號可以透過對於每個先 前討論實施例的選擇所獲得,用以強化該目前的技術。 56 1269544 應碰制的$如在第%圖巾賴*的結構,只是一種 實作該描繪發日_方式。料是具有,,選抑,,存在,但適當 地=具有㈣的時候,可以使用—種不論在 ^ 理中,該選擇不同路徑的先前技術實作。該權衡^^ 處理延遲、實作成本、全體操作強健性以及料的設^ 選擇「起進行。只有在進行該雜式接收器之前,從該信 號流減奸制基本概念,需要在該相㈣所有變化 中維持。No need to be reversed to confirm with _ receiving signal. The interference with the correct amplitude symbol, _, is present in the plus-negative = input at node D. Those skilled in the art may of course recognize this alternative 'but not equal implementation. For example, a pure dry charm can be used at this stage and the inversion is used when the signal is not captured with the non-inverted waveform. The delayed form of the original received signal (Node A) is present at the other adder inputs. The delay value is equal to the delay caused by the analysis, selection, and, reversal, processing of the independent component. Specialists in the field may of course be qualified instead of equal implementation. For example, the delay and adder function block diagram can be replaced with a minimized block diagram that shifts and sums the two signals until a minimum is reached. At node D in Figure 29, the interference has been removed. At node E in Figure 3, the rake receiver has reduced the dispersion of the signal, which may now be present in the baseband decoder. Further details of this embodiment are that the signals collected by the antenna structure can be obtained by selection for each of the previously discussed embodiments to enhance the current technique. 56 1269544 The structure that should be touched, such as the structure of the first figure, is only a kind of implementation. It is assumed that there is,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The tradeoff ^^ processing delay, implementation cost, overall operational robustness, and material selection are selected. Only before the hybrid receiver is implemented, the basic concept of the rape reduction system from the signal flow needs to be in the phase (4) Maintained in all changes.

—雖然對於干擾的完全移除已經在之前說明中顯示,應該 實作的並不疋移除所有的干擾。然酶何干擾的移除 假設該犛耙式解碼n處理—改善的錢#合之下,一般上 而言是用於改進先前技術的效能。 »亥刀碼夕重存取彳§號就其本言’與其解分散的形式 相比之下,更是—種高斯型態,並具有更難以由獨立成分 分析所仙,j的傾向H與該想要錢相_某些資料 雜也是可能的,因為該信號仍舊鱗S種統計顯著性。 一^再次地移除干擾之後,通常將變的更加顯著,而總體 增益便存在於_喊解碼器之中。替代的,該總體解碼 處理可以進一步的使用一種遞增的處理方式所強化。意味 著該信號對於包含或不包含,及/錢移除信號的數目^以 被逐漸增加或減少,以及該解碼信號量測對於改善或惡化 該結果程度的整體性,可以更詳細的檢驗。此實施例的主 要關鍵在於獨立成分分析是對於幾乎相同的信號所使 用,但不在該犛耙式處理之前對於分碼多重存取信號使 57 1269544 用,因為在此期間是難以確認及/或擷取。 本發明的另一觀點是針對混合最小均方差矩陣束分離權 重,其透過場型用於盲信號分離。可再一次參考U.S.Patnet No. 6,931,362,其中需要多數感應器以提供線性獨立加總信 號。該申請專利案,362在此以文獻方式所整合。該上述天 線陣列可以使用替代該多數感應器,然而在該申請專利 案’362中公開的後處理也仍舊適用。 本發明的許多修正與其他實施例,對於本領域專精者 而言是可瞭解的,其在之前敘述與相關圖示之中具有教學 的優點。因此,應該被瞭解的是本發明並不限制於此處: 開的特定實施例,且預期祕正與實施例是包含在= 申請專利範圍的觀點之中。 人ϋ- Although the complete removal of the interference has been shown in the previous description, it should not be implemented to remove all interference. However, the removal of the enzyme interference is assumed to be a function of improving the performance of the prior art. »Haidao code re-access 彳§ is the same as its dissolving form, it is a kind of Gaussian type, and it is more difficult to analyze by independent component, j's tendency H and It is also possible to have some money, because the signal is still statistically significant. Once the interference is removed again, it will usually become more significant, and the overall gain will be in the _ shout decoder. Alternatively, the overall decoding process can be further enhanced using an incremental processing approach. This means that the signal is gradually increased or decreased for the inclusion or absence, and/or the number of money removal signals, and the integrity of the decoded signal measurement to improve or deteriorate the degree of the result can be examined in more detail. The main key to this embodiment is that the independent component analysis is used for almost identical signals, but not for the coded multiple access signals before the 牦耙 processing, because it is difficult to confirm and/or 撷 during this period. take. Another aspect of the present invention is directed to a mixed minimum mean square error matrix beam separation weight that is transmitted through a field type for blind signal separation. Reference may again be made to U.S. Patnet No. 6,931,362, which requires a number of inductors to provide a linear independent summation signal. The patent application, 362, is hereby incorporated by reference. The antenna array described above can be used in place of the plurality of inductors, however the post-processing disclosed in the '362 patent is still applicable. Many modifications and other embodiments of the invention will be apparent to those skilled in the art in the <RTIgt; Therefore, it is to be understood that the invention is not limited to the specific embodiments disclosed herein, and the invention is intended to be included in the scope of the claims. People

58 1269544 【圖式簡單說明】 第1圖是為據本發㈣—種典養作方案塊狀圖,盆中 -通訊裝倾各自驗縣源,接㈣要财想要的信號。 第2圖是在第1圖巾所顯示通訊裝置的更詳細塊狀圖。 第3圖為根據本發明’為了該混合矩_產生該來源信 號線性獨立總和的不同方法說明。 第4圖為根據本發明’配置為一種切換波束天線的天線 陣列塊狀圖。58 1269544 [Simple description of the diagram] The first picture is a block diagram of the program according to the hair (4). The basin-communication equipment is used to check the county source and connect (4) the signal that you want. Figure 2 is a more detailed block diagram of the communication device shown in Figure 1. Figure 3 is a diagram illustrating different methods for generating a linear independent sum of the source signals for the mixing moments in accordance with the present invention. Figure 4 is a block diagram of an antenna array configured as a switched beam antenna in accordance with the present invention.

第5圖為根據本發明’配置為—種相位陣列的天線陣列 塊狀圖。 第6圖為根據本發明,配置為偏極天線树的天線陣列 第7圖為根據本發明,描述該三偏極(tri-P〇larization) 使用的三維圖示。 、第8圖為根據本發明,具有包括相_不侧天線陣列 的通afl衣置塊狀圖,其為了盲信號分離處理而提供不同的 信號總和。 第9圖為㈣本發明,基神顺倾操作的通訊裝置 塊狀圖’其為了盲信號分離處理而提供不同的信號總和。 第10圖為根據本發明,具有—高度控制器的切換波束天 線塊狀圖,用以選擇性地改變—天線場型的高度。 一第11 ®為在方位角方向巾,描述—天線場型的天線圖 不,其接著反應在第9 ®中描述的高度控㈣,而在該高 度方向中旋轉。 59 1269544 第12圖為根據本發明,在該接地平面中形成具有一無線 電頻率調節裝置的天線元件塊狀圖,用以在該高度方向中 旋轉該天線場型。 第13圖為根據本發明,基於路徑選擇操作的通訊裝置塊 狀圖,其為了盲信號分離處理而提供不同的信號總和。 第14圖為根據本發明,基於分散編碼操作的通訊裝置塊 狀圖,其為了盲信號分離處理而提供額外的信號總和。 、第I5圖為根據本發明,基於同相與正交信號成分操作的 通汛裝置塊狀圖,其為了盲信號分離處理而提供額外的信 號總和。 第16圖為連接至如第15圖中所顯示天線元件的同相與 正交模組詳細塊狀圖。 、 基於場型分散操作的多輸入多輸 一傅利葉轉換通訊系統碼際干擾 第17圖為根據本發明, 出(ΜΙΜΟ)系統塊狀圖。Figure 5 is a block diagram of an antenna array configured as a phase array in accordance with the present invention. Figure 6 is an antenna array configured as a dipole antenna tree in accordance with the present invention. Figure 7 is a three-dimensional illustration of the use of the tri-polarization in accordance with the present invention. Figure 8 is a block diagram of a pass-through device comprising a phase-non-side antenna array providing different sums of signals for blind signal separation processing in accordance with the present invention. Fig. 9 is a diagram showing the fourth embodiment of the present invention, a communication device block diagram which provides a different sum of signals for blind signal separation processing. Figure 10 is a block diagram of a switched beam antenna with a - height controller for selectively varying the height of the antenna pattern in accordance with the present invention. An 11th ® is an azimuth direction towel, describing the antenna pattern of the antenna pattern, which is then rotated in the height direction (4) described in the ninth ® and rotated in the height direction. 59 1269544 Figure 12 is a block diagram of an antenna element having a radio frequency adjustment device for rotating the antenna pattern in the height direction in accordance with the present invention. Figure 13 is a block diagram of a communication device based on path selection operations in accordance with the present invention, which provides different signal sums for blind signal separation processing. Figure 14 is a block diagram of a communication device based on a decentralized coding operation that provides an additional sum of signals for blind signal separation processing in accordance with the present invention. Figure I5 is a block diagram of an overnight device operating based on in-phase and quadrature signal components in accordance with the present invention, which provides an additional signal sum for blind signal separation processing. Figure 16 is a detailed block diagram of the in-phase and quadrature modules connected to the antenna elements as shown in Figure 15. Multi-input and multi-transmission based on field type decentralized operation Inter-frame interference of a Fourier transform communication system Fig. 17 is a block diagram of a system according to the present invention.

弟18圖為根據本發明, 定址的塊狀圖。 Η第士19圖為根據本發明的通訊系統塊狀圖,其中一傳輸; 是以/寺槽為基礎。改變用於每個分層空間流的功率程度^ 第20圖為根據本發明的通訊系統塊狀圖,其中 形場型,以支援傳輸至相同存取點的多數傳輸器。 根據本發明’一最佳化處理與功率消耗(― 的接收斋塊狀圖。 器塊狀圖,其與一傳 第22圖為在第21圖中描述的接收 輸器整合其本身的操作。 1269544 第23圖為根據本發明,在一時脈序 知的波浪形傳輸場型等值線圖示。列中由一接收器所已 第24圖為根據本發明的時脈線,龙 12個變化(換言之,12個晶片),一符元週期具有 個晶片而維持固定。 〜破改變參數則為了 4 用於多數空間獨立頻道的接收器 第25圖為根據本發明, 塊狀圖。Figure 18 is a block diagram of addressing in accordance with the present invention. Figure 19 is a block diagram of a communication system in accordance with the present invention, one of which is transmitted; based on the / temple slot. Changing the power level for each hierarchical spatial stream ^ Figure 20 is a block diagram of a communication system in accordance with the present invention, with a field pattern to support a majority of transmitters transmitting to the same access point. According to the present invention, an optimized processing and power consumption ("receiving block diagram" is shown, which is integrated with the operation of the receiving transmitter described in Fig. 21 with the transmission of the 22nd picture. 1269544 Fig. 23 is a diagram showing the wavy transmission field type contours in a clock sequence according to the present invention. In the column, a receiver has been shown in Fig. 24 as a clock line according to the present invention, and the dragon has 12 variations. (In other words, 12 wafers), one symbol period has one wafer and remains fixed. ~ Breaking the change parameter is for 4 receivers for most spatial independent channels. Fig. 25 is a block diagram according to the present invention.

第26圖為根據本發明的接收器解碼鍵 第27至30圖為分別對應第26圖 Α回 點,振幅對於頻率的圖示。 /、Fig. 26 is a diagram showing the decoder decoding keys according to the present invention. Figs. 27 to 30 are diagrams showing amplitude versus frequency, respectively, corresponding to the return point of Fig. 26. /,

【元件符號說明】 ADO 類比數位轉換器 BPF 頻帶通過濾波器 LNA 低雜訊放大器 LPF 低通過濾波器 20(1)〜20(M) 第一〜第 22 複數來源信號 22(1)〜22 (M) 第一〜j 24 複數天線波束 BBP基頻帶處理器 ICA 獨立成分分析 L0 局部振盪器 2〇 複數信號來源 Μ信號來源 〖Μ來源信號 24(1)〜24(5) 第一〜第IV[天線波束 30、200、240、300、400、500 通訊裝置 32、180、202、242、302、402、502 天線陣列 34 複數天線元件 61 1269544 34(1)〜34(N) 第一〜第N天線元件 36、 116、214、252、312、 412、512 混合矩陣 38、 38(1)〜38(3) 分離矩陣 39、 216 &gt; 254 &gt;314、414、 514 分離信號 40 無線電收發器 42、 250、310、410、510 處理器 44 PCA主成分分析模組 46 ICA獨立成分分析模組 48 SVD信號數值分解模組 49 盲信號分離處理 50 信號分析模組 52 應用相關處理模組 100 不相關感應器 102 相關天線陣列 104 偏極天線陣列 106 感應器與陣列結合 108 陣列偏位 110 路徑選擇 112 分散編碼 114 同相與正交成分 140 切換波束天線 142 、162 主動天線元件 144 被動天線元件 144a 上半部 144b 下半部 146 接地平面 148、 108’、118,反 160 相位陣列 164 權重控制組件 166 分裂器/結合器 168 控制器 182a、182b、182c、184a、 184b、204、244、274、3( 504 天線元件 206 兩個相關天線元件 210、 248 接收器 212 盲信號分離處理器 246 高度控制器 62 1269544 1001 切換波束天線 104’ 104a,上半部 l〇4b’ 106f 接地平面 270 可控制無線電頻率調節裝置 272 接地平面 308、408、508 接收器組件 316 RR犛耙式接收器 406 502 天線陣列(第15圖)502 506 同相與正交模組 520 被動天線元件 下半部 編碼解分散器 天線元件(第16圖) 混合器[Component Symbol Description] ADO Analog Digital Converter BPF Band Pass Filter LNA Low Noise Amplifier LPF Low Pass Filter 20(1)~20(M) First to 22nd Complex Source Signal 22(1)~22 (M First to j 24 complex antenna beam BBP baseband processor ICA independent component analysis L0 local oscillator 2 〇 complex signal source Μ signal source Μ source signal 24 (1) ~ 24 (5) first ~ IV [antenna Beam 30, 200, 240, 300, 400, 500 communication device 32, 180, 202, 242, 302, 402, 502 antenna array 34 complex antenna element 61 1269544 34(1)~34(N) first to Nth antenna Element 36, 116, 214, 252, 312, 412, 512 mixing matrix 38, 38(1)~38(3) separating matrix 39, 216 &gt; 254 &gt; 314, 414, 514 separating signal 40 radio transceiver 42, 250, 310, 410, 510 processor 44 PCA principal component analysis module 46 ICA independent component analysis module 48 SVD signal numerical decomposition module 49 blind signal separation processing 50 signal analysis module 52 application related processing module 100 irrelevant sensing 102 related antenna array 104 polarized antenna Column 106 sensor-to-array combination 108 array offset 110 path selection 112 scatter coding 114 in-phase and quadrature component 140 switching beam antenna 142, 162 active antenna element 144 passive antenna element 144a upper half 144b lower half 146 ground plane 148, 108', 118, inverse 160 phase array 164 weight control component 166 splitter/combiner 168 controller 182a, 182b, 182c, 184a, 184b, 204, 244, 274, 3 (504 antenna element 206 two associated antenna elements 210 248 Receiver 212 Blind Signal Separation Processor 246 Height Controller 62 1269544 1001 Switch Beam Antenna 104' 104a, Upper Half 104b' 106f Ground Plane 270 Controls Radio Frequency Conditioning Device 272 Ground Plane 308, 408, 508 Receive 316 RR 牦耙 Receiver 406 502 Antenna Array (Figure 15) 502 506 In-Phase and Orthogonal Module 520 Passive Antenna Element Lower Half Code Despreader Antenna Element (Figure 16) Mixer

Claims (1)

1269544 95Γβ728 年月日修(^)正替換頁 十、申請專利範圍: 1· 一種將Μ個信號來源所提供的來源信號進行分離的通訊 裝置,該通訊裝置包括: 一種包括Ν個天線元件的天線陣列,用於產生ν個初始 天線場型,以接收該Μ個來源信號的ν個不同總和,其中 Ν小於Μ ; 該天線陣列包括一高度控制器,用於選擇性地改變至少 該Ν個初始天線場型之一的高度,以產生至少一額外天線 場型,以便藉此接收該Μ個來源信號的至少一額外不同總 和; 一接收器,其連接至該天線陣列,用以使用該Ν個初始 天線場型’接收該Μ個來源信號的該ν個不同總和,並使 用該至少一額外天線場型,接收該Μ個來源信號的該至少 一額外不同總和; 一盲信號分離處理器,其連接至該接收器,用以形成一 混合矩陣,該混合矩陣包括該Μ個來源信號的該Ν個不同 總和以及該Μ個來源信號至少一額外不同總和,該混合矩 陣具有一秩數,該秩數等於Ν加上使用該額外天線場型所 接收該Μ個來源信號的額外不同總和的數目,該盲信號分 離處理器用以從該混合矩陣分離出想要的來源信號。 2·根據申請專利範圍第1項的通訊裝置,其中Ν二1,使得 該混合矩陣的該秩數等於2。 3·根據申請專利範圍第1項的通訊裝置,其中該高度控制 裔選擇性地改變該Ν個初始天線場型的該高度,使得可產 64 1269544 平月日修(^)正替換頁 ^個額外天線場如接收㈣個來源錢_侧外不 门,和,_混合矩陣的該秩數現在等於撕。 =二申,請第,項的通訊農置、,其中該高度控制 二二與該N個天線钟有_k «域,獨立控制 ^ ^叫_ N個初始天線場型的該高度,使得可產 _ *料天線%型以接㈣M個輪信號的N侧外不 ,和’而該混合矩陣_秩數現在等於2kN。 據巾請專利第丨項的通訊裝置,其中⑽個天線 70的至少兩個是為了不同的偏極而成對。 6 ·根據Ψ請專利範圍第1項的通訊裝置,其中該N個天線 凡件的至少兩個是不相關的。 7」根據申請專利範圍第丨項的軌裝置,其巾㈣個天線 元件是相關的。 8.根據申請專利範圍第7項的通訊裝置,其中該Ν個相關 天線凡件包括Ν餘動天線元件,使得該天_列形成一 相位陣列。 9·根據申請專利範圍第7項的通訊裝置,其中該^^個相關 天線讀包括至少—主動天線元件以及至多Ν]個被動天 線元件,使得該天線陣列形成一切換波束天線。 1〇·根據申請專利範圍第丨項的通訊裝置,其中該天線陣列 包括一接地平面;且其中該N個天線元件包括·· 鄰接於該接地平面的一主動天線元件; 鄰接於該接地平面的複數被動天線元件,各被動天線一 件包括: 70 65 1269544 曰修正替換頁 一上半部與一對應的下半部; 上方可變反應負载,其將該上半部連接至該接地平 面,用以改變一天線場型的方位角; 该南度控制器包括—用於該各被動天線元件的各自下方 可變錢mx將該下半部連接至該接地平面,該N 個天線場型藉由調整至少該下方可變反應負載之—, 高度中移動。 β 11.根射請專利範圍第〗項的通訊裝置,其中該天線陣列 個天線元件的接地平面:且其中該高度控制 ^括”该接地平面結合的一可控制無線電頻率(RF)調 =裝置,N個天線波束藉由控_無線電鮮 在高度中移動。 不直向 =·根據中請專利範圍第i項的通訊裝置,其中該天線陣列 ^ 了接收该Μ個來源信號的至^個不同總和,形成至少 ^個天線波束’每個天線波束具有從—最大增益點以下的3 二貝點,其是為了在—接近信號的至少—方向中 歲而作準備。 15 13.根射請專利範圍第丨項的通訊裝置,其中該天線 為了接收該Μ個來源信號的至少Ν個不同總和之一, 至少-天料型’駐少—天料型域上不具有從二 ,益點以下的3分貝點,造成在—接近信號的任何‘ 中,都沒有信號回絕。 |4,根據中請專利範圍第丨項的通訊裝置,其中個來 振信號的每個總和是線性的。 661269544 95Γβ728 年月修修(^) is being replaced on page 10, the scope of patent application: 1. A communication device that separates the source signals provided by one signal source, the communication device comprising: an antenna comprising one antenna element An array for generating ν initial antenna patterns to receive ν different sums of the one source signals, wherein Ν is less than Μ; the antenna array includes a height controller for selectively changing at least the initial a height of one of the antenna patterns to generate at least one additional antenna pattern to thereby receive at least one additional different sum of the one source signals; a receiver coupled to the antenna array for using the one The initial antenna pattern 'receives the ν different sums of the one source signals and uses the at least one additional antenna pattern to receive the at least one additional different sum of the one source signals; a blind signal separation processor Connected to the receiver to form a mixing matrix comprising the different sums of the one source signals and the ones At least one additional different sum of signals, the mixing matrix having a rank number equal to Ν plus the number of additional different sums of the one received source signals received using the additional antenna pattern, the blind signal separation processor used to The mixing matrix separates the desired source signal. 2. The communication device according to claim 1, wherein the second rank is such that the rank number of the hybrid matrix is equal to two. 3. The communication device according to claim 1 of the patent application, wherein the height control person selectively changes the height of the first initial antenna field type, so that the production of 64 1269544 flat moon repair (^) is replacing the page The extra antenna field is as received (four) source money _ side outside the door, and the rank of the _mixing matrix is now equal to tear. = 二申,请第,的通信农,, where the height control 22 and the N antenna clocks have _k «domain, independent control ^ ^ _ N initial antenna field type of height, making The _ * antenna Ant % is not connected to the N side of the (four) M wheel signals, and 'and the mixing matrix _ rank number is now equal to 2 kN. According to the communication device of the patent application, at least two of the (10) antennas 70 are paired for different polarizations. 6. The communication device according to item 1 of the patent application, wherein at least two of the N antennas are irrelevant. 7) According to the rail device of the scope of the patent application, the four (four) antenna elements are related. 8. The communication device according to claim 7, wherein the one of the associated antenna elements comprises a residual antenna element such that the day_columns form a phase array. 9. The communication device of claim 7, wherein the associated antenna read comprises at least an active antenna element and at most one passive antenna element such that the antenna array forms a switched beam antenna. The communication device according to claim 2, wherein the antenna array comprises a ground plane; and wherein the N antenna elements comprise an active antenna element adjacent to the ground plane; adjacent to the ground plane a plurality of passive antenna elements, each of which comprises: 70 65 1269544 曰Correct replacement page one upper half and one corresponding lower half; upper variable reaction load, which connects the upper half to the ground plane, To change an azimuth of an antenna pattern; the south controller includes - for each of the passive antenna elements, a lower variable mx connecting the lower half to the ground plane, the N antenna patterns being Adjust at least the lower variable reaction load - moving in height. [beta] 11. The communication device of the patent scope, wherein the antenna array has a ground plane of the antenna elements: and wherein the height control comprises a controllable radio frequency (RF) modulation device coupled to the ground plane The N antenna beams are moved in height by the control_radio. The direct communication is not according to the communication device of the i-th patent scope of the patent application, wherein the antenna array has received different signals from the source signals. Sum, forming at least ^ antenna beams 'Each antenna beam has a 3 biberite point below the maximum gain point, which is prepared for ageing in at least the direction of the proximity signal. 15 13. Patented patent The communication device of the third aspect, wherein the antenna is configured to receive at least one of the different sums of the one source signals, and at least the -day type of the station is less than the second-day type The 3 decibel point causes no signal to be rejected in any of the proximity signals. |4, according to the communication device of the third paragraph of the patent application, the sum of each of the signals is linear. 6 1269544 離5處1項_訊裝置’其中該盲信號分 想C析(叫從瓣矩陣一 離卢根據申叫專利範圍第1項的通訊裝置,其中該盲信號分 據獨立成分分析(叫 出想要的來源信號。 根據申w專她圍第丨項的通訊裝置,其中該盲信號分 ^理_據信號數值分解⑽D),從該混合矩陣中分離 出想要的來源信號。 队一種用於操作一通訊裝置以分離由Μ個信號來源所接 共來源信號的方法,該通訊裝置包括-天線陣列,其包括Ν 固讀以及與其連接的—高度㈣$、與該天線陣列連接 =接收②’以及連接至該接㈣的—盲信號分離 益’該方法包括: 也在^天線㈣處產生N個初始天線場型以接收該Μ個 來源信號的Ν個不同總和,其小於μ; ^作II,轉性地改_則目初始天線場型 收^度,以產生至少—個額外天線場型,藉此接 收錢輝_號的至少-料不同總和; 個個純天線場型提健M個來源信號的該N ^同總和至該魏器,並使_至卜額外天 個來源信號的該至少—額外不同總和至該接收器; 以盲信號分離處理器處理該Μ個來賴號的該N個不 67 翠. 月日修(思)正替換頁1269544 From the 5 items of 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The source signal of the desired source. According to the communication device of the application, the blind signal is separated from the signal value (10) D), and the desired source signal is separated from the mixing matrix. A method of operating a communication device to separate a common source signal from a plurality of signal sources, the communication device comprising an antenna array including a tamper read and a connection thereto - a height (four) $, a connection to the antenna array = a reception 2 'and the blind signal separation benefit connected to the connection (four)' includes: generating N initial antenna patterns at the antenna (four) to receive a different sum of the one source signals, which is less than μ; II. Transiently change the initial antenna field type to generate at least one additional antenna field type, thereby receiving at least the different sums of the Qianhui_numbers; each pure antenna field type improving M Source signal of the N ^ Sum to the Wei device and cause the at least-additional sum of the additional source signals to the receiver; the blind signal separation processor processes the N of the N to the 67th. Japanese repair (think) is replacing page 1269544 同總和以及該Μ個來源信號的該至少一額外不同總和,該 處理包括 形成一、合矩陣,该混合矩陣包括該]V[個來源作號 的該N個不同總和以及該Μ個來源信號至少一額外不 同總和,該混合矩陣具有一秩數,該秩數等於Ν加上使 用該額外天線場型所接收該Μ個來源信號額外不同總 和的數目,以及 仗合矩陣中,分離出想要的來源信號。 19. 根據申請專利範圍第18項的方法,其中Ν^,使得該 混合矩陣的該秩數等於2。 于ν 20. 根據申請專利範圍第18項的方法,其中該高 選擇性地改魏Ν個初始天線場型的高度,使得可 1 固額外天線場独減㈣縣源信號的__ 和,而該混合矩陣的該秩數現在等於2ν。 μ .根射請專利範圍第料的方法,其中 =分為與該N個天粒件有_k舰域== 區域以改變該則固初始天線場蜀扛制各 額外天線場型以接收該M可產生N個 和’而該混她她個額外不同總 22. 根據申請專利範圍第18項的 件的至少兩個是為了不同的偏極而成對㈣個天線元 23. 根據申請專利範圍第18項 件的至少兩個是不相關的。 〜中該Ν個天線元 A根據申請專利範圍第18項的方法,其中該Η個天線元 68 8 · ____ 年月日修正替換頁 1269544 件是相關的。 25·根據申清專利範圍第24項的方法,其中該^^個相關天 線兀件包括N個主動天線元件,使得該天線陣列形成一相 位陣列。 26·_根據申响專利範圍第24項的方法,其中該N個相關天 線兀件包括至少-個絲天線元件,以及至多N]個被動 天線元件,使得該天線陣列形成一切換波束天線。1269544 with the sum and the at least one additional different sum of the one source signals, the processing comprising forming a merging matrix comprising the N different sums of the source V and the source signals At least one additional different sum, the mixing matrix having a rank number equal to Ν plus the number of additional different sums of the one source signals received using the additional antenna pattern, and the split matrix, separating out Source signal. 19. The method of claim 18, wherein Ν^ is such that the rank number of the mixed matrix is equal to two.于 20. According to the method of claim 18, wherein the height of the initial antenna pattern is highly selectively changed, so that the additional antenna field can be reduced by (4) the __ and the source signal of the county. The rank number of the mixing matrix is now equal to 2ν. μ. The method of claiming the patent range, wherein = divided into the N-day pieces has a _k ship field == area to change the fixed initial antenna field to control each additional antenna pattern to receive the M can produce N and 'and the mix she and her extra different total 22. According to claim 18, at least two of the pieces are for different polarization pairs (four) antenna elements 23. According to the scope of patent application At least two of the 18th items are irrelevant. ~ The antenna element A in accordance with the method of claim 18, wherein the one antenna element 68 8 · ____ date correction replacement page 1269544 is relevant. The method of claim 24, wherein the associated antenna components comprise N active antenna elements such that the antenna array forms a phase array. The method of claim 24, wherein the N associated antenna elements comprise at least one wire antenna element and at most N] passive antenna elements such that the antenna array forms a switched beam antenna. η根據申請專利範圍帛18J員的方法,其中該天線陣列形 成至少N個天線波束以接收該㈣來源信號的該至少則固 不同芯和’各天線波束具有從一最大增益點以下的3分貝 點,其是為了在-接近錢的至少—方向中提供信號回絕: 28.根據申請專利範圍第18項的方法’其中該天線陣列形 成至^天線场型,以接收該乂個來源信號的N個不同總 ί J 至少—天線場型大體上不具有從-最大增 ^ =的U點,造成在—接近信號的任何方向中無 ^根據申請專利範圍第18項的方法,其中該盲信號分離 30·根據申請專利範圍第18 處理器根據獨立成分分析, 來源信號。 項的方法,其中該盲信號分離 從該混合矩陣中分離出想要的 69 1269544 紧I 2¾修(美)正替換頁 十一、圖式: 1/15η according to the method of claim 18, wherein the antenna array forms at least N antenna beams to receive the at least two different cores of the (four) source signal and each antenna beam has a 3 dB point below a maximum gain point , in order to provide a signal rejection in at least - a direction close to the money: 28. The method according to claim 18, wherein the antenna array is formed to an antenna pattern to receive N of the source signals The total ί J at least - the antenna field type does not substantially have a U-point from -maximum increase, resulting in no method in any direction of the proximity signal, according to the method of claim 18, wherein the blind signal is separated 30 · According to the scope of the patent application, the 18th processor is based on independent component analysis, source signal. The method of the item, wherein the blind signal separation separates the desired from the mixing matrix. 69 1269544 Tight I 23⁄4 repair (US) positive replacement page XI, schema: 1/15 70 1269544 2/15 |5·1· 2s 修( 氣)正替換頁 第2圖 3070 1269544 2/15 |5·1· 2s Repair (gas) replacement page Figure 2 30 、42 71 1269544 _猫_ _ ·8; 年月日修(兔)正替換頁, 42 71 1269544 _Cat _ _ ·8; Year of the month (rabbit) is replacing page 72 1269544 年月日修(之)正替換頁 4/1572 1269544 The day of the month is replaced by the page 4/15 Figure 73 1269544 f 8月·28日修φ正替換頁 5/1573 1269544 f August 28th repair φ positive replacement page 5/15 74 1269544 第8 署&amp; 21修(iu正替換頁 6/15 20074 1269544 The 8th &amp; 21 repair (iu is replacing page 6/15 200 240 244240 244 U48第9 圖 75 1269544 犟V8日修(¾正替換頁 7/15 第10圖U48 9th picture 75 1269544 犟V8 day repair (3⁄4 positive replacement page 7/15 10th picture τ:τ: 76 1269544 8/15 嗶V8日修⑧正替換頁76 1269544 8/15 哔V8 day repair 8 positive replacement page 第13圖 300Figure 13 300 77 1269544 掷:_[烈 ~~™~ 年月日修(采)正替換頁 9/15 40077 1269544 Throw: _[烈~~TM~ Year of the month repair (production) is replacing page 9/15 400 第14圖Figure 14 500500 78 1269544 9 5Γ 8 ; 2 8年月曰修(更)正替換頁 10/1578 1269544 9 5Γ 8 ; 2 8 months 曰 repair (more) replacement page 10/15 第Ϊ6 量 資料進入Dijon 6 amount data entry 第1717th 79 126954479 1269544 翠· %气修(氣)正替換頁 11/15 連續符元Cui·% gas repair (gas) is replacing page 11/15 continuous symbol RF&gt;- 頻率替代 時間 ICA 干擾移除 逆傅利葉 轉換 移除團塊 解重複/ 解消去 維特比 編碼 m isRF>- frequency substitution time ICA interference removal inverse Fourier transform removal agglomeration solution repetition/de-elimination Viterbi coding m is 連續符元 Μ個天線 L個天線 K個場型Continuous symbol Μ antenna L antennas K field types 在該接收器處具有 不同功率程度的波 前 第 19Wavefronts with different power levels at the receiver ''ώ 80 1269544 ·ιι·,_ηι·_ ,|_|丨_ 1 丨 Γι 1 一~r•^*^'**-i1'»1·1111'·111 1 翠· 4 28日修(I;)正替換頁 12/15 L個天線 K個場型''ώ 80 1269544 ·ιι·,_ηι·_ ,|_|丨_ 1 丨Γι 1 一~r•^*^'**-i1'»1·1111'·111 1 Cui·4 28日修( I;) is replacing page 12/15 L antennas K field types L個天線 K個場型L antennas K field types 至傳輸器頻道To transmitter channel 81 T269544 13/15 ——_ 年月曰修(束)正替換頁81 T269544 13/15 —— _ Year 曰 repair (bundle) replacement page 20第20th •符元週期 晶片時間 週期 參數停頓時 間 I I I I I I I I 第• symbol period chip time period parameter pause time I I I I I I I I BPF L0 LPF (選擇性的)BPF L0 LPF (optional) BBP 2Γ第BBP 2Γ 82 126954482 1269544 日修(東)正替換頁 14/15Japanese repair (East) is replacing page 14/15 干擾interference 干擾 振 幅Interference amplitude 83 1269544 嗶8f8日修φ正替换頁 15/1583 1269544 哔8f8 day repair φ positive replacement page 15/15 8484
TW094133241A 2004-09-23 2005-09-23 Blind signal separation using array deflection TWI269544B (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
US61255004P 2004-09-23 2004-09-23
US61246904P 2004-09-23 2004-09-23
US61254604P 2004-09-23 2004-09-23
US61243504P 2004-09-23 2004-09-23
US61254804P 2004-09-23 2004-09-23
US61263204P 2004-09-23 2004-09-23
US61247104P 2004-09-23 2004-09-23
US61254704P 2004-09-23 2004-09-23
US61243304P 2004-09-23 2004-09-23
US61255104P 2004-09-23 2004-09-23
US61526004P 2004-10-01 2004-10-01
US61533804P 2004-10-01 2004-10-01
US62086204P 2004-10-20 2004-10-20
US62077504P 2004-10-20 2004-10-20
US62077604P 2004-10-20 2004-10-20
US62111304P 2004-10-22 2004-10-22
US63922304P 2004-12-23 2004-12-23
US11/233,160 US7098849B2 (en) 2004-09-23 2005-09-22 Blind signal separation using array deflection

Publications (2)

Publication Number Publication Date
TW200627840A TW200627840A (en) 2006-08-01
TWI269544B true TWI269544B (en) 2006-12-21

Family

ID=38291589

Family Applications (7)

Application Number Title Priority Date Filing Date
TW094133244A TWI279099B (en) 2004-09-23 2005-09-23 Blind signal separation using a combination of correlated and uncorrelated antenna elements
TW094133241A TWI269544B (en) 2004-09-23 2005-09-23 Blind signal separation using array deflection
TW094133245A TWI284464B (en) 2004-09-23 2005-09-23 Blind signal separation using polarized antenna elements
TW094133237A TWI279995B (en) 2004-09-23 2005-09-23 Blind signal separation using spreading codes
TW094133239A TWI281795B (en) 2004-09-23 2005-09-23 Blind signal separation using signal path selection
TW094133236A TWI287366B (en) 2004-09-23 2005-09-23 Blind signal separation using I and Q components
TW094133246A TWI284465B (en) 2004-09-23 2005-09-23 Blind signal separation using correlated antenna elements

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW094133244A TWI279099B (en) 2004-09-23 2005-09-23 Blind signal separation using a combination of correlated and uncorrelated antenna elements

Family Applications After (5)

Application Number Title Priority Date Filing Date
TW094133245A TWI284464B (en) 2004-09-23 2005-09-23 Blind signal separation using polarized antenna elements
TW094133237A TWI279995B (en) 2004-09-23 2005-09-23 Blind signal separation using spreading codes
TW094133239A TWI281795B (en) 2004-09-23 2005-09-23 Blind signal separation using signal path selection
TW094133236A TWI287366B (en) 2004-09-23 2005-09-23 Blind signal separation using I and Q components
TW094133246A TWI284465B (en) 2004-09-23 2005-09-23 Blind signal separation using correlated antenna elements

Country Status (1)

Country Link
TW (7) TWI279099B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8724718B2 (en) 2008-04-10 2014-05-13 Mediatek Inc. Pilot pattern design for small size resource block in OFDMA systems
US8126094B2 (en) * 2009-01-07 2012-02-28 Skyworks Solutions, Inc. Circuits, systems, and methods for managing automatic gain control in quadrature signal paths of a receiver
US10516219B2 (en) 2009-04-13 2019-12-24 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US8693970B2 (en) 2009-04-13 2014-04-08 Viasat, Inc. Multi-beam active phased array architecture with independant polarization control
EP2419963B1 (en) 2009-04-13 2013-11-20 ViaSat, Inc. Multi-beam active phased array architecture
EP2419962B1 (en) 2009-04-13 2020-12-23 ViaSat, Inc. Half-duplex phased array antenna system
US8670432B2 (en) 2009-06-22 2014-03-11 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells
US8605777B2 (en) 2010-06-01 2013-12-10 Etron Technology, Inc. Circuit for recognizing a beginning and a data rate of data and method thereof
TWI809390B (en) * 2021-03-01 2023-07-21 新加坡商台達電子國際(新加坡)私人有限公司 Method and audio processing system for blind source separation without sampling rate mismatch estimation

Also Published As

Publication number Publication date
TWI284464B (en) 2007-07-21
TWI281795B (en) 2007-05-21
TW200629777A (en) 2006-08-16
TWI279995B (en) 2007-04-21
TWI284465B (en) 2007-07-21
TWI279099B (en) 2007-04-11
TW200627835A (en) 2006-08-01
TW200627836A (en) 2006-08-01
TW200627841A (en) 2006-08-01
TWI287366B (en) 2007-09-21
TW200627834A (en) 2006-08-01
TW200627839A (en) 2006-08-01
TW200627840A (en) 2006-08-01

Similar Documents

Publication Publication Date Title
TWI269544B (en) Blind signal separation using array deflection
EP1792367B1 (en) Blind signal separation using i and q components
EP1800147B1 (en) Blind signal separation using signal path selection
US8031117B2 (en) Blind signal separation using polarized antenna elements
EP1792197B1 (en) Blind signal separation using spreading codes
CA2581519C (en) Blind signal separation using a combination of correlated and uncorrelated antenna elements
KR101015933B1 (en) Undulating transmit patterns to support signal separation at a receiver
EP1792366B1 (en) Blind signal separation using array deflection
US20060069529A1 (en) Blind signal separation using correlated antenna elements

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees