TWI279099B - Blind signal separation using a combination of correlated and uncorrelated antenna elements - Google Patents

Blind signal separation using a combination of correlated and uncorrelated antenna elements Download PDF

Info

Publication number
TWI279099B
TWI279099B TW094133244A TW94133244A TWI279099B TW I279099 B TWI279099 B TW I279099B TW 094133244 A TW094133244 A TW 094133244A TW 94133244 A TW94133244 A TW 94133244A TW I279099 B TWI279099 B TW I279099B
Authority
TW
Taiwan
Prior art keywords
signal
antenna
different
source signals
communication device
Prior art date
Application number
TW094133244A
Other languages
Chinese (zh)
Other versions
TW200629777A (en
Inventor
Steven J Goldberg
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/233,300 external-priority patent/US7113129B2/en
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200629777A publication Critical patent/TW200629777A/en
Application granted granted Critical
Publication of TWI279099B publication Critical patent/TWI279099B/en

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communications device for separating source signals provided by M signal sources includes an antenna array comprising N antenna elements for receiving at least N different summations of the M source signals, with N and M being greater than 1. The N antenna elements include at least one antenna element for receiving at least one of the N different summations of the M source signals, and at least two correlated antenna elements for receiving at least two of the N different summations of the M source signals. The at least two correlated antenna elements are uncorrelated with the at least one antenna element. A receiver is connected to the antenna array. A blind signal separation processor is connected to the receiver for forming a mixing matrix comprising the at least N different summations of the M source signals, and for separating desired source signals from the mixing matrix. The mixing matrix has a rank equal up to at least N.

Description

1279099 不論應用哪一種盲信號分離技術’其都使用多數感應器 以從該不同的信號來源,接收不同的來源信號混合。每個 感應器都輸出一來源信號混合,其是該來源信號的某種獨 特總和。一般上,該接收器並不知道該頻道係數與該原始 來源信號兩者。該信號的獨特總和則用於填入一混合矩陣 之中。接著對該混合矩陣應用適當的盲信號分離技術,以 從該來源信號混合中,分離出想要的來源信號。 做為一範例,U.S· Patent No. 6,799,170公開了使用獨立 鲁成分分析,從一來源信號混合中,分離一獨立來源信號的 方法。多數感應器接收該來源信號混合,而一處理器隨著 時間對該來源信號混合進行採樣,並將每個樣本儲存為資 、料向量,以成為資料集合。每個感應器輸出一來源信號混 合’其是該來源信號的某種獨特總和。一獨立成分分析模 、組則實作資料向量的獨立成分分析,以從該來源信號混合 中的其他信號,分離出一獨立來源信號。 、该來源彼此之間為空間分離,而該處理器對於每個各自 應裔,只產生一資料向量,以形成該資料集合。該申請 $利170也公開了該感應器的數目n,為了填入該資料集 合,疋等於或大於該來源的數目M,也就是N^M。這樣的 實作問題在於當該來源數目M增加時,感應器的數目N也 要同時增加。對於大數目的感應器N而言,小型可攜式通 j置只具有較小的可用體積,而在該通訊裝置外侧固定 μ感應器,也造成使用者的問題。1279099 Regardless of which blind signal separation technique is applied, it uses a number of inductors to receive different source signal mixes from different sources. Each sensor outputs a source signal mix that is a unique sum of the source signals. In general, the receiver does not know both the channel coefficient and the original source signal. The unique sum of the signals is used to fill a mixing matrix. An appropriate blind signal separation technique is then applied to the hybrid matrix to separate the desired source signal from the source signal mix. As an example, U.S. Patent No. 6,799,170 discloses a method of separating an independent source signal from a source signal mixture using independent Lu component analysis. Most of the sensors receive the source signal mix, and a processor samples the source signal mix over time and stores each sample as a resource vector to become a data set. Each sensor outputs a source signal mixture 'which is some unique sum of the source signals. An independent component analysis module and group implement independent component analysis of the data vector to separate an independent source signal from other signals in the source signal mixture. The source is spatially separated from each other, and the processor generates only one data vector for each respective belonging to form the data set. The application $170 also discloses the number n of the sensors. To fill the data set, 疋 is equal to or greater than the number M of the sources, that is, N^M. The problem with this implementation is that as the number M of sources increases, the number N of inductors also increases. For a large number of sensors N, the small portable device has only a small available volume, and fixing the μ sensor outside the communication device also causes a problem for the user.

Patent No· 6,931,362公開了另〆種使用盲信號分離 1279099 以進仃 > 離信號的方法。該公開的盲4言號分離技術利用混 成的矩陣f適應陣列權重,形成一混合矩陣,其將由干擾 發射與高斯雜訊兩者產生的均方差最小化。該混成矩陣 將該仏號對於干擾加上雜訊的比例最大化。當利用申請專 利170、日守,該感應器彼此也是空間分離,而該感應器的數 目Ν’為了填入該混合矩陣,是等於或大於該來源數目μ。 此外母個感應器提供輸入至該混合矩陣的一個信號,造 成一可攜式通訊裝置需要較大的體積面積。 在前述背景的觀點中,本發明所因而產生的目標,便是 .提供一種通訊裝置,其包括小型的天線陣列,用以接收盲 信號分離技術所使用的來源信號混合,因此可以從其中分 離出想要的信號。 與本發明一致的此項與其他目標、特徵以及優點,則利 用一種通訊裝置提供,其用以分離由Μ個信號來源所提供 #來源信號,該通訊裝置包括用以接收該Μ個來源信號不 同總和的天線陣列。一接收器或接收器組件則連接至該天 線陣列,而一盲信號分離處理器則連接到該接收器,以形 成一混合矩陣。該混合矩陣包括由該天線陣列所接收Μ個 來源信號的不同總和。該盲信號分離處理器接著從該混合 矩陣中,分離出想要的來源信號。 代替為了該混合矩陣所提供Μ個來源信號不同總和而利 用的空間分離感應器,其可使用一種小型天線。對於可攜 1279099 式通訊裝置而言,因為該天線陣列可以提供多於一個輸入 至《亥此合矩陣,並同時維持小型,因此仍可使用盲信號分 離技術。 特別的,該天線陣列可以是一種相關與非相關天線元件 的t合。舉例來說’該天線陣列可以包括n個天線元件, 用以接收該Μ個來源#號的至少n個不同總和,其中n與 Μ大於1。該Ν個天線元件可以包括至少一個天線元件, 用以接收該Μ個來源信號的至少ν個不同總和之一,以及 馨至少兩個相關天線元件,用以接收該Μ個來源信號的至少 Ν個不同總和之二。該至少兩相關天線元件與該至少一天 線元件非相關。該盲信號分離處理器可以形成一種包括該 1 Μ個來源信號至少ν個不同總和的混合矩陣。該混合矩陣 _的秩數目至少等於Ν。 • 該天線元件的數目可以等於該來源信號的數目,換言 之,Ν>Μ。當該混合矩陣的秩數目等於κ時,可以產生另 一種配置,其中Κ<Ν,且該盲信號處理器從該混合矩陣中, #離出該Μ個來源信號的Ν個。 該至少兩個相關的天線元件,可以具有不同的偏極。該 不同偏極彼此可以正交。該相關並具有不同偏極的至少兩 個天線元件,可以包括三個天線元件,其也彼此空間相關, 並具有不同的偏極,因此支援一種三偏極,以接收該]V[個 來源信號的三個不同總和。 該至少兩個相關天線元件可以包括至少兩個主動天線元 件,以形成一相位陣列。替代的,該至少兩相關元件可以 1279099 包括至少一主動天線元件與至少一被動元件,以形成一種 切換波束天線。 當接收該Μ個信號的不同總和時,可以在場型與波束之 間進行區隔。在一情況中,該天線陣列為了接收該Μ個來 ,信號的至少Ν個不同總和,可以形成至少Ν個天線波束, 每個天線波束具有從一最大增益點以下的3分貝點,其是 為了在一接近信號的至少一方向中,回絕信號而作準備。 在另一情況中’該天線陣列為了接收該Μ個來源信號的ν 鲁個不同總和之一,可以形成至少一天線場型,該至少一天 線場型大體上不具有從一最大增益點以下的3分貝點,造 成在一接近信號的任何方向中都沒有信號回絕。 '该Μ個來源信號的每個總和是線性的。該盲信號分離處 理器可以根據至少主成分分析(pCA)、獨立成分分析(ICA) 以及#號數值分解(SVD )之一,從該混合矩陣中分離出 想要的來源信號。 本發明的另一觀點,是應用一種為了分離由該M個信號 #源所提供的來源信號,而操作如以上定義通訊裝置的方 法。該方法可以包括在該天線陣列處,接收該M個來源信 號的至少N個不同總和。該N個天線元件可以包括至少一 天線元件’用以接收該Μ個來源信號的至少n個不同總和 之一,以及至少兩個相關天線元件,用以接收該Μ個來源 k號的至少Ν個不同總和之二。該至少兩相關元件與該至 少一天線兀件非相關。該處理可以包括形成一種包括該M 個來源#號至少N個不同總和的混合矩陣,並從該混合矩 ⑧ 1279099 •陣中分離出想要的來源信號。該混合矩陣的秩數目至少等 於N 〇 實施方式 本發明現在將參考顯示本發明較佳實施例的伴隨圖示, 在之後進行更完整的敘述。然而,此發明可以實作為許多 不同形式,而在此不應該被建構為如該實施例所設定的限 制。當然,這些提供的實施例將是徹底且完整的,並且可 _以王地傳達至本領域的技術者。相同的數字參照為相同 的元件’而主標則用來標示替代實施例中的相似元件。 口在通訊網路中,具有為了特定通訊裝置所準備的來源信 、並且在相同的頻帶中’具有為了其他通訊裝置所準備 的來,信號。同時也存在不被通訊所使用,來自雜訊所產 生的信號,然而其也同樣地由通訊裝置所接收。 為了促進對於有興趣來源信號的解碼,其使用 離二,,分離出一通訊裝置接收的信號。如以上所指, ¥術語Μ盲目,,是指為在一理想情狀中,該信號不需要豆他 號與該通訊頻道之間,由於交互作用所產生信號轉 、 的矣識,便可以被分離。在實際實作中,則時常利 用任何可3ft P n h ^ ^ &于的知識。在此情況中,該信號分離則為半盲 分離中’三種常使用的技術為主成分分析 σ φ 立成分分析(ICA )以及信號數值分解(s VD )。 ^ ^號在某些可量測特性是獨立的,且如果其信號總 12 1279099 20來源信號22的至少一個線性結合(混合)。該天線元件 34包含一第一天線元件34(1)至一第N天線元件34(N)。 該接收的來源彳§號22(1)至22(M)最初是形成於一混合矩 陣36之中。該通訊裝置30使用盲信號分離技術,以確定 位於分離來源信號的一分離矩陣3 8,是否在該混合矩陣之 中。該分離信號則以數字3 9表示。 該通訊裝置30利用對該接收來源信號的集合或混成採 樣的方式,不需要其特性知識,共同地取得由天線陣列32 馨所接收的來源信號混合。每個天線元件34的輸出,在已經 利用該頻道脈衝回應所旋繞,換言之介於該信號來源2〇輸 出與一天線兀件34輸出之間的傳遞路徑加上額外的高斯雜 訊之後,做為該來源信號22的模型。 … 見在將參考第2圖,詳細討論用於分離由該M個信號來 源20(1)至20(M)所提供來源信號的通訊裝置3〇。一天線陣 =包含㈣天線元件34⑴至34(n),崎㈣m個 的至少N個不同總和,其中_大於i。該天線 *?式夕/ 制為任何的特定配置。該天線陣列可以包含 二Γ該天線元件34可以配置該天線陣 在之後i行=陣列或切換波束陣列的形式,其將 m線陣列32下游連接一 該Μ個來源信號2 知器40以接收 發器40下游則連接/ Ν個不同總和。在該無線電收 七器40分離,該處理器芯也可以包含於 1279099 該無線電收發器40之中。由該無線電收發器4〇所接收% 個來源信號22的不同總和,則用於填入該混合矩陣36之 中。該混合矩陣36接著以在該處理器42之中的一或多個 盲信號分離處理模組44、46以及48進行處理。 該盲信號分離處理模組包含一主成分分析模組44、一獨 立成分分析模組46以及一信號數值分解模組48。這些模組 44、46以及48,可以配置為一盲信號分離處器的一部份。 該主成分分析模組44根據該接收來源信號不同總和的第一 鲁與第二動差操作,而該獨立成分分析模組46根據該相同信 號的第三與第四動差操作。該信號數值分解模組48根據該 接收來源信號不同總和的特徵值實作信號分離。 該相關性處理最初是以主成分分析模組44實作,確認用 於該來源信號不同總和的初始分離矩陣38(〗),而獨立成分 分析模組46接著決定在該混合矩陣36中,用於該來源信 號分離的一強化分離矩陣38(2)。如果該信號是由信號數值 分解模組48所分離,也從該混合矩陣36中,決定用於該 拳接收來源信號不同總和分離的一分離矩陣38(3)。 來自於每個各自的分離矩陣38(1)至38(3)的分離信號, 是以參照數字3 9所表示。該分離信號3 9接著利用一信號 分析模組5 0進行信號分析,以決定有興趣的信號以及干擾 信號。一種應用相關處理模組52處理從該信號分析模組5〇 輸出的信號。 對於哪些信號為感興趣的決定,並不總是與被解碼的最 終信號有關。舉例來說,該應用可以在為了確認干擾,旅 15 1279099 器提供該混合矩陣A中的—個信號項次。 >考第3 ϋ將知到為了該混合矩陣a,所產生該來源 信號線性獨立總和的不回士斗、# nn > 同方式說明或概要的最初說明。在 -簡短介狀後’將詳細賴每個方法。 該說明圖的第一部份接ψ不綠两;7 S , , 、 |忉杈出天線配置。塊狀圖1 〇〇表示非 相關的感應器,其中每個感應器提供一信號輸入,至該混 口矩陣A之中。塊狀圖1〇2表示一相關天線陣列,其中該 陣列提供多數輸入,以填入該混合矩陣A之中。塊狀圖1〇4 •也表示-天線陣列’其中該天線元件的一部份是相關的, 且該天線元件具有不同的偏極,用以填入該混合矩陣A之 中。以塊狀圖100、102與104所提出該感應器與天線陣列 的不同結合,也可以整合在塊狀圖1〇6之中,以進一步在 塊狀圖116中填入該混合矩陣。 该說明圖的第二部份,提出在該第一部份所提供天線配 置的強化。該強化是以增加或取代該收集來源信號的總和 所產生,並進一步填入該混合矩陣A之中。塊狀圖J08與 列偏位有關,其中改變该天線場型的高度,以接收該來 源k ί虎的額外總和。在塊狀圖1 〇 6中的任^结合,也可以 在該陣列偏位塊狀圖108中使用。 在塊狀圖110中,實作路徑選擇,因此所有用於填入該 混合矩陣A之中的來源信號總和是相關(第一與第二動差) 及/或統計(第三與第四動差)獨立的。換句話說,該伴隨 信號是為了接收該來源信號的新總和所選擇,以取代非相 關及/或統計上不獨立的總和。塊狀圖11 〇也可由在塊狀圖 1279099 :以1〇8中的任一結合所回饋。塊狀圖108與110也 二接回饋至該混合矩陣塊狀圖116。 有種2的乘法效應’並可以與該塊狀圖1〇6、1〇8、11〇 及112的輸出結合應用。 :亥說明圖的第三部份提出信號分裂,用以進一步填入在 =圖116中的混合矩陣。舉例而言,塊狀圖m使用分 月、馬以分裂不同的總和信號。如果一總和信號具有k 固刀政編碼’貞彳可以處理該特定總和信號,以提供與之相 關的k個總和信號。該分散編碼可以與該塊狀冑ι〇6、⑽ 及no的輸出結合應用。塊狀圖114將不同的總和信號, >刀4為同相(I)與正交(q )成分,以進一步填入該混合 矩陣之中。該同相與正交成分因此對於遺失矩陣而言,具 該說明圖的最後部份,是在塊狀圖11(5中形成混合矩陣 A。如在该說明圖中所描述,該混合矩陣a可利用根據該上 述描述的任一塊狀圖,將該來源信號的不同總和填入。這 種在該第一部份中的天線陣列配置優點,在於可以形成小 g天線陣列以填入該混合矩陣A之中。在該第二與第三部 分中的天線陣列配置優點,在於該N個天線元件,其中n 小於來源信號的數目Μ ’可以利用該來源信號的μ個或更 多總和,填入該混合矩陣之中。 在該說明圖中討論的天線配置觀點中,將討論一種包括 Ν個相關天線元件的天線陣列’用以接收該Μ個來源信號 的至少Ν個不同總和,其中Ν與Μ大於1。在一實施例中, 該天線陣列是一種如在第4圖中所描述的切換波束天線 1279099 140 〇 該切換波束天線陣列14〇產生多數天線場型,包含指向 性天線場型與泛方向性天線場型。該切換波束天線14〇包 含一主動天線元件142與一對被動天線元件144。該主動與 被動天線元件142、144的實際數目,可根據想要的應用進 行改變。參考 U.S· Patent Application Νο· 10/06~5,752 可得 到對該切換波束天線陣列的詳細討論。此申請專利是設定 為本發明的現行受讓人,在此其完整文字都整合為本發明 鲁的參考。 母個被動天線元件144都包含一上半部144a與一下半部 144b。該被動天線元件144的上半部H4a,則透過反應負 載148連接至一接地平面146。該反應負載148是一種可變 的電抗,其藉由使用變容器、傳輸線或開關,可以改變其 電容與電感。藉由變化該反應負載148,可以改變該輻射場 型。因為存在兩個被動天線元件144,因此可形成四個不同 的天線場型。 _該二個天線場型可以用以接收信號~的獨特總和。該第 四個天線場型則是其他三個的線性組合,所以其並不用於 該混合矩陣A之中的項次。因此,利用所使用的三個天線 元件,可輸入三個信號Xj的獨特總和,至該混合矩陣A之 中。該切換波束天線的優點,在於藉由使用3元件142與 144 ’可以支援具有秩數目為3的混合矩陣。 在另一實施例中,該天線陣列包括N個相關主動天線元 件,因此如在第5圖中所描述,該天線陣列形成一種相位 1279099 .陣列160。該相位陣列16〇包括多數主動天線元件162,以 及與δ亥主動天線元件結合的多數權重控制組件丨64。該權重 控制組件164調整該接收信號的振幅及/或相位,以形成一 合成波束。 一分裂器/結合器166與一控制器168則連接至該權重控 制組件 164。參考 u.s· Patent Appiication ν〇· 6,473,036, 可得到對该切換波束天線陣列的詳細討論。此申請專利是 設定為本發明的現行受讓人,在此其完整文字都整合為本 ⑩發明的參考。 該主動元件162的數目,支援具有相同秩數目的混合矩 陣A即使5亥來源的數目Μ等於該主動元件的數目n,也 就是Μ=Ν,該主動陣列100仍為一種小型形式,因為該主 動兀件162在空間與偏極中相關,在與使用非相關天線元 件的傳統方式相比之下,該傳統方式超過多於一個波長的 距離。 在另外的實施例中,該混合矩陣的秩數目可以為κ,其 鲁中Κ<Ν,因此該盲信號分離處理器49,從該混合矩陣中分 離該Μ個來源信號的κ個。如在之後將進一步討論的,ν 也可以大於]VI。 在該切換波束天線140與相位陣列160兩者中,介於其 各自天線元件142、144與162之間的距離,是設定為二^ 適合的後前比例(bake to front ratio )。這是因為這些天線 陣列的傳統使用,是用於拒絕不想要的信號(換言之,後 方接近)並強化想要的信號(換言之,強方接近)。 21 1279099 無論如何,為了建立混合矩陣的目的,其目標是建立信 號的不同總和。在此應用中,有興趣的信號實際上可以總 是小於該干擾,並仍舊可以被分離,因為此目的的明顯差 異’介於天線元件之間的距離便不需要是一種特定的分離。 该天線元件可以進一步地彼此靠近,以傳統,,差的,,前後 比例產生%型’並仍舊十分適合用於混合矩陣。而實際上, 這樣的場型在盲信號來源分離應用中將較常見。該理由是 使用好的前後比率,需要追蹤該信號方向,以保持指向想 籲要信號處的前方,及/或指向干擾的後方。藉由使用在不同 方向中具有差異,但仍舊有明顯增益的場型,便不需要如 此的信號追縱。 一天線波束可以被定義為具有從一最大增益點以下的3 分貝點,藉此提供信號接近至少一方向中的信號回絕。相 同地 天線場型可以定義為不具有從一最大增益點以下 的3分貝點,而其在信號接近的任何方向中便不產生信號 回絕。 _在許多應用中,介於元件之間特定距離的差異,可以大 大的減低整體天線陣列的尺寸。在另外的應用+,其實際 上則可以增加元件之間的距離,以減輕追縱的問題,但獲 知一些額外#號的非相關程度。 在另實施例巾如在第6圖中所描述,該天線陣列刚 包括N個天線件,以接l|A- Λ>Γ Vrci -H rr τ M接收该M個來源信號的至少N個不 同總和。該N個天線亓杜从s , 、 深兀件的至少兩個182a、182b彼此相關, 並具有不同偏極以接收兮兮7 士 μ。亥Μ個來源信號Ν個不同總和的 ⑧ 22 1279099 至少之二,其中N與Μ大於1。 在該陣列180中的其他天線元件184a、184b,對於該天 線元件1 82、1 82b可以為相關或非相關。雖然所描述的另 一對為偏極天線元件184a、184b,這些元件也可以取代為 具有相同的偏極。此外,這些元件也可以彼此非相關。 用於天線元件182、182b的不同偏極彼此可以正交。在 另一實施例中,該天線元件182a、182b包含一第三元件 1 82c,因此三偏極是用以支援接收該Μ個信號的3個不同 •總和。 後續的討論支援該偏極的使用,以填入該混合矩陣Α之 中。該三個不同的偏極天線元件182a、182b、182c接收三 個線性並獨立的信號總和。X、y與Z軸的定義與關係,將 在第7圖中描述並使用。舉例而言,其存在以下關係: - X = s cos ⑻ sin ⑷ y = S sin((9)sin(^) z-S cos(^) 簡化的假設是該信號具有線性偏極,該信號是線性獨 钃^ ’以及在每個正交軸上具有三個線性天線元件之一。舉 例而言’天線元件182a位於x軸上,天線元件丨82b位於y 轴上’而天線元件18 2 c位於z軸上〇 藉由定位該三個線性天線元件182a、182b、182c於一正 父軸上,可簡化數學式。在一實際發展中,該天線元件 182a、182b、182c並不需要嚴格正交,或是必須交會於一 共同點上。此假設的移除將不違反一般的結論,而是在秩 數目不足的情況產生。 23 1279099 之後將採用以下定義,其中數字下標與1、2、3參照關 聯· ·入射至该天線70件的信號; Μ2,θ3 :該信號的X、Y平面電場(E)角度; 為,(M3 :該信號的Ζ轴電場角度;以及 :入射信號總和與一天線元件的内積。 因此 ,該向量成分為: X y Z g’x’元素 1 0 0 _’y’元素 0 1 0 ,z’元素 0 0 1 S1係數 cos⑹sin⑷ sin(0)sin(决) cosfe) ' S2係數 cos(02)sin(02) sin(02)sin(么) cos(么) _ S3係數 cosfe)sinfe) sin(巧)sin(也) cos(^3) 對每個天線元件與信號採取内積’(x ·Y=XlX2+y iy2+ZlZ2) 決定在元素中的相對電場成分總和。這些數值則用來建立 混合矩陣: r,i rcos(^)sin(^) sinfe sinW cosW V 一 cosfe)sin(^2) sin(^2)sin^) cos(^2 A y kJ cosfe)sinfc) sinfe)sinfc) cosfejj 其中: 24 1279099 det cos(0 )sin ⑷ sin(02 )sin(么)cos(么) + cos(^2)sjn^ \ . 33 丨 —(♦os(wsin ⑷ cos(么)sin&)—co命) =sinWsinWc。办Xcos ⑹ sin⑹-sinh)_ + cos(^)sin(^2)sin(^)[cos(<92)sin(^3)- sin(<92)c〇s^2 \t :smWsm02)c〇S(色)[cos ⑹ Sin(%) - 如化)咖( .cos ⑷ sin ⑷ sin(色)[cos(<92)sin@3)_ sin^^cosg sm ⑷ cos(么)sin(色)[sin((9丨)cos(<93) - 3、iPatent No. 6,931,362 discloses another method of using blind signal separation 1279099 to input > off-signal. The disclosed blind 4-symbol separation technique utilizes the blended matrix f to accommodate the array weights to form a mixing matrix that minimizes the mean square error produced by both the interference emissions and the Gaussian noise. The blending matrix maximizes the ratio of the nickname to interference plus noise. When the application patent 170 is used, the sensors are also spatially separated from each other, and the number 该 of the sensor is equal to or larger than the number μ of the source in order to fill the mixing matrix. In addition, the parent sensor provides a signal input to the mixing matrix, resulting in a portable communication device requiring a larger volume area. In view of the foregoing background, the object of the present invention is to provide a communication device comprising a small antenna array for receiving source signal mixing used by blind signal separation techniques, and thus can be separated therefrom The signal you want. This and other objects, features, and advantages consistent with the present invention are provided by a communication device for separating the # source signal provided by one of the signal sources, the communication device including receiving the one source signal differently The sum of the antenna arrays. A receiver or receiver component is coupled to the antenna array and a blind signal separation processor is coupled to the receiver to form a mixing matrix. The mixing matrix includes different sums of signals received by the antenna array. The blind signal separation processor then separates the desired source signal from the hybrid matrix. Instead of a spatially separated sensor for the different sums of the source signals provided by the mixing matrix, a small antenna can be used. For the portable 1279099 communication device, blind signal separation techniques can still be used because the antenna array can provide more than one input to the matrix and maintain small size. In particular, the antenna array can be a t-tie of associated and unrelated antenna elements. For example, the antenna array can include n antenna elements for receiving at least n different sums of the plurality of source # numbers, where n and Μ are greater than one. The one antenna element may include at least one antenna element for receiving at least one of the different sums of the one source signals, and at least two associated antenna elements for receiving at least one of the one source signals Two different sums. The at least two associated antenna elements are uncorrelated with the at least one day line component. The blind signal separation processor can form a mixing matrix comprising at least ν different sums of the one of the source signals. The number of ranks of the mixing matrix _ is at least equal to Ν. • The number of antenna elements can be equal to the number of signals from the source, in other words Ν>Μ. When the rank number of the mixing matrix is equal to κ, another configuration may be generated, where Κ < Ν, and the blind signal processor deviates from the one of the source signals from the hybrid matrix. The at least two associated antenna elements may have different polarizations. The different poles can be orthogonal to each other. The at least two antenna elements that are related and have different polarizations may include three antenna elements that are also spatially related to each other and have different polarizations, thus supporting a tripolar pole to receive the [V] source signal Three different sums. The at least two associated antenna elements can include at least two active antenna elements to form a phase array. Alternatively, the at least two associated components can include at least one active antenna component and at least one passive component to form a switched beam antenna. When different sums of the signals are received, the field type and the beam can be separated. In one case, the antenna array may form at least one antenna beam for receiving at least one different sum of the signals, and each antenna beam has a 3 dB point below a maximum gain point, which is for In at least one direction of a proximity signal, the signal is rejected and prepared. In another case, the antenna array may form at least one antenna field type in order to receive one of the different sums of the two source signals, the at least one antenna field type having substantially no sub-maximum gain point The 3 decibel point causes no signal to be rejected in any direction of the proximity signal. 'The sum of the two source signals is linear. The blind signal separation processor can separate the desired source signal from the hybrid matrix based on at least one of principal component analysis (pCA), independent component analysis (ICA), and #number numerical decomposition (SVD). Another aspect of the present invention is to apply a method of operating a communication device as defined above in order to separate source signals provided by the M signal # sources. The method can include receiving, at the antenna array, at least N different sums of the M source signals. The N antenna elements may include at least one antenna element 'to receive one of at least n different sums of the one source signals, and at least two related antenna elements to receive at least one of the plurality of source k numbers Two different sums. The at least two associated components are not associated with the at least one antenna element. The processing can include forming a mixing matrix comprising at least N different sums of the M source # numbers, and separating the desired source signal from the mixing moment 8 1279099 • array. The number of ranks of the hybrid matrices is at least equal to N 实施. DETAILED DESCRIPTION OF THE INVENTION The present invention will now be described with reference to the accompanying drawings that illustrate the preferred embodiments of the invention. However, the invention may be embodied in many different forms and should not be construed as limited by the embodiment. Of course, these provided embodiments will be thorough and complete and can be communicated to those skilled in the art. The same reference numerals are used for the same elements and the main elements are used to identify similar elements in the alternative embodiments. The port has a source signal for a particular communication device in the communication network and has a signal for other communication devices in the same frequency band. There are also signals from noise that are not used by the communication, but they are also received by the communication device. In order to facilitate the decoding of signals of interest, it uses a separate signal to separate the signals received by a communication device. As mentioned above, the term “Μ blind” means that in an ideal situation, the signal does not need to be separated between the bean number and the communication channel, and the signal can be separated due to the interaction of the signal generated by the interaction. . In practical implementations, any knowledge of 3 ft P n h ^ ^ & In this case, the signal separation is a semi-blind separation of 'three commonly used techniques for principal component analysis σ φ vertical component analysis (ICA ) and signal numerical decomposition (s VD ). The ^^ number is independent in some of the measurable characteristics, and if its signal is total 12 1279099 20 at least one of the source signals 22 is linearly combined (mixed). The antenna element 34 includes a first antenna element 34(1) to an Nth antenna element 34(N). The source of the reception 彳§ 22(1) to 22(M) is initially formed in a hybrid matrix 36. The communication device 30 uses a blind signal separation technique to determine if a separation matrix 308 located at the separated source signal is in the mixing matrix. The separated signal is represented by the numeral 3 9 . The communication device 30 uses the method of sampling or mixing the received source signals to acquire the source signal mixture received by the antenna array 32 in a manner that does not require knowledge of the characteristics. The output of each antenna element 34, after having been circulated with the channel impulse response, in other words, between the signal source 2 〇 output and the output of an antenna element 34 plus additional Gaussian noise, The model of the source signal 22. ... See, in reference to Fig. 2, the communication device 3 for separating the source signals provided by the M signal sources 20(1) to 20(M) will be discussed in detail. An antenna array = contains (four) antenna elements 34(1) to 34(n), and at least N different sums of m(s), where _ is greater than i. The antenna is in any specific configuration. The antenna array may include two antenna elements 34. The antenna array may be configured in the form of an i-row = array or a switched beam array. The m-line array 32 is downstream connected to the one source signal 2 to receive the signal. Downstream of the unit 40 is connected / a different sum. At the radio receiver 40, the processor core can also be included in the 1279099 radio transceiver 40. The different sums of the % source signals 22 received by the radio transceiver 4 are used to fill the mixing matrix 36. The mixing matrix 36 is then processed by one or more blind signal separation processing modules 44, 46 and 48 among the processors 42. The blind signal separation processing module includes a principal component analysis module 44, an independent component analysis module 46, and a signal value decomposition module 48. These modules 44, 46 and 48 can be configured as part of a blind signal splitter. The principal component analysis module 44 operates according to different first and second motion differences of the received source signals, and the independent component analysis module 46 operates according to the third and fourth motion differences of the same signal. The signal value decomposition module 48 performs signal separation based on the eigenvalues of the different sums of the received source signals. The correlation process is initially implemented by the principal component analysis module 44 to identify an initial separation matrix 38 (") for the different sums of the source signals, and the independent component analysis module 46 then determines to use the hybrid matrix 36. A strengthened separation matrix 38(2) separated from the source signal. If the signal is separated by the signal value decomposition module 48, also from the mixing matrix 36, a separation matrix 38(3) for different summation of the source of the punch received source is determined. The separated signals from each of the respective separation matrices 38(1) through 38(3) are indicated by reference numeral 39. The split signal 39 then performs signal analysis using a signal analysis module 50 to determine the signals of interest as well as the interference signals. An application related processing module 52 processes the signals output from the signal analysis module 5A. The decision as to which signals are of interest is not always related to the final signal being decoded. For example, the application can provide one of the signal items in the hybrid matrix A in order to confirm the interference. > Test No. 3 will know the initial description of the same mode description or summary for the hybrid matrix a, which produces a linear independent sum of the source signals. After - short mediation, each method will be detailed. The first part of the diagram is not green; 7 S , , , | Block 1 shows an unrelated sensor, where each sensor provides a signal input to the mixed matrix A. Block diagram 1-2 shows an associated antenna array in which the array provides a majority of inputs to fill the mixing matrix A. Block diagram 〇4 • Also shows an antenna array where a portion of the antenna element is correlated and the antenna elements have different polarizations for filling the mixing matrix A. The different combinations of the inductor and the antenna array proposed by the block diagrams 100, 102 and 104 can also be integrated in the block diagram 1-6 to further fill the hybrid matrix in the block diagram 116. The second part of the illustration proposes an enhancement of the antenna configuration provided in the first part. The enhancement is generated by adding or replacing the sum of the collected source signals and further filling the mixing matrix A. The block diagram J08 is related to the column offset, where the height of the antenna pattern is changed to receive the additional sum of the source k ί. Any combination in the block diagram 1 〇 6 can also be used in the array offset block diagram 108. In the block diagram 110, the path selection is implemented, so that the sum of the source signals used to fill the hybrid matrix A is correlated (first and second motion differences) and/or statistics (third and fourth motions). Poor) Independent. In other words, the companion signal is selected to receive a new sum of the source signals to replace non-related and/or statistically independent sums. The block diagram 11 can also be fed back in block diagram 1279099: in any combination of 1〇8. The block diagrams 108 and 110 are also fed back to the hybrid matrix block diagram 116. There is a multiplication effect of 2' and can be applied in combination with the outputs of the block diagrams 1,6, 1, 8, 11, and 112. The third part of the diagram illustrates the splitting of the signal to further fill in the mixing matrix in Fig. 116. For example, the block diagram m uses a fractional month, a horse to split different sum signals. If a sum signal has a k-fixed code, the particular sum signal can be processed to provide the k sum signals associated therewith. This scatter code can be applied in conjunction with the output of the block 胄ι〇6, (10) and no. The block diagram 114 sets the different sum signals, > knife 4, into in-phase (I) and quadrature (q) components to further fill the hybrid matrix. The in-phase and quadrature components are therefore the last part of the illustration for the missing matrix, which is formed in block diagram 11 (5). As described in the illustrative diagram, the hybrid matrix a can The different sums of the source signals are filled in with any of the block diagrams described above. This antenna array configuration in the first portion has the advantage that a small g antenna array can be formed to fill the mixing matrix. A. The antenna array configuration in the second and third portions is advantageous in that the N antenna elements, wherein n is smaller than the number of source signals Μ ' can be filled with μ or more sums of the source signals Among the mixing matrices. In the antenna configuration perspective discussed in the illustrative diagram, an antenna array comprising one of the associated antenna elements is used to receive at least one different sum of the one source signals, where Ν and Μ Greater than 1. In an embodiment, the antenna array is a switched beam antenna 1279099 140 as described in FIG. 4, and the switched beam antenna array 14 produces a plurality of antenna patterns, including pointing The antenna antenna pattern and the directional antenna pattern. The switching beam antenna 14A includes an active antenna element 142 and a pair of passive antenna elements 144. The actual number of active and passive antenna elements 142, 144 can be as desired. The application is changed. A detailed discussion of the switched beam antenna array can be obtained by referring to US Patent Application Νο· 10/06~5, 752. This patent application is set as the current assignee of the present invention, where the complete text is integrated into The parent passive antenna element 144 includes an upper half 144a and a lower half 144b. The upper half H4a of the passive antenna element 144 is coupled to a ground plane 146 via a reactive load 148. The load 148 is a variable reactance that can change its capacitance and inductance by using a varactor, transmission line or switch. The radiation pattern can be varied by varying the reactive load 148. Because there are two passive antenna elements 144 Thus, four different antenna patterns can be formed. _ The two antenna patterns can be used to receive a unique sum of signals ~. The fourth antenna field The type is a linear combination of the other three, so it is not used for the term in the mixing matrix A. Therefore, using the three antenna elements used, a unique sum of three signals Xj can be input to the mixing matrix A. The advantage of the switched beam antenna is that a mixing matrix having a rank number of 3 can be supported by using the 3 elements 142 and 144'. In another embodiment, the antenna array includes N associated active antenna elements, Thus, as depicted in Figure 5, the antenna array forms a phase 1279099. The array 160. The phase array 16A includes a plurality of active antenna elements 162, and a majority weight control component 64 coupled to the delta-sigma active antenna elements. The weight control component 164 adjusts the amplitude and/or phase of the received signal to form a composite beam. A splitter/combiner 166 and a controller 168 are coupled to the weight control component 164. A detailed discussion of the switched beam antenna array can be obtained by referring to u.s. Patent Appiication ν〇· 6,473,036. This patent application is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in The number of the active elements 162 supports the mixing matrix A having the same rank number. Even if the number of 亥 sources is equal to the number n of the active elements, that is, Μ=Ν, the active array 100 is still a small form because the initiative The element 162 is spatially related to the poles, which exceeds the distance of more than one wavelength in comparison to conventional methods using unrelated antenna elements. In a further embodiment, the number of ranks of the mixing matrix may be κ, which is Κ, 因此, so the blind signal separation processor 49 separates κ of the source signals from the mixing matrix. As will be discussed further later, ν can also be greater than ]VI. In both the switched beam antenna 140 and the phase array 160, the distance between its respective antenna elements 142, 144 and 162 is set to a suitable bake to front ratio. This is because the traditional use of these antenna arrays is used to reject unwanted signals (in other words, to be close behind) and to enhance the desired signal (in other words, strong proximity). 21 1279099 In any case, for the purpose of establishing a hybrid matrix, the goal is to establish different sums of signals. In this application, the signal of interest may actually be less than the interference and still be separable, since the apparent difference in this purpose is not necessarily a specific separation between the antenna elements. The antenna elements can be further close to each other, producing a %-type in conventional, poor, front-to-back ratios and still well suited for use in a hybrid matrix. In practice, such field types will be more common in blind signal source separation applications. The reason is to use a good front-to-back ratio, which needs to be tracked to keep pointing to the front of the desired signal and/or to the rear of the interference. By using a field pattern that differs in different directions but still has significant gain, the signal tracking is not required. An antenna beam can be defined as having a 3 decibel point below a maximum gain point, thereby providing signal proximity to signal rejection in at least one direction. Similarly, the antenna pattern can be defined as having no 3 decibels below a maximum gain point, and it does not cause signal rejection in any direction where the signal is close. _ In many applications, the difference in specific distances between components can greatly reduce the size of the overall antenna array. In another application +, in practice, the distance between the components can be increased to alleviate the problem of tracking, but the degree of non-correlation of some additional # is known. In another embodiment, as described in FIG. 6, the antenna array includes just N antenna elements, and at least N different signals of the M source signals are received by l|A- Λ > Γ Vrci - H rr τ M sum. The N antennas are related to each other from at least two 182a, 182b of the s, and deep members, and have different polarizations to receive 兮兮7 士μ. The source signal of the Μ Ν is a different sum of 8 22 1279099 at least two, where N and Μ are greater than 1. The other antenna elements 184a, 184b in the array 180 may be correlated or uncorrelated for the antenna elements 1 82, 182b. Although the other pair described is a polarized antenna element 184a, 184b, these elements may be replaced with the same bias. Moreover, these elements can also be unrelated to each other. The different bias poles for the antenna elements 182, 182b may be orthogonal to each other. In another embodiment, the antenna elements 182a, 182b include a third component 128c, such that the three biases are used to support the reception of the three different sums of the signals. Subsequent discussions support the use of this polarization to fill in the hybrid matrix. The three different dipole antenna elements 182a, 182b, 182c receive three linear and independent signal sums. The definitions and relationships of the X, y, and Z axes will be described and used in Figure 7. For example, it has the following relationship: - X = s cos (8) sin (4) y = S sin((9)sin(^) zS cos(^) The simplified assumption is that the signal has a linear polarization and the signal is linear钃^' and one of three linear antenna elements on each orthogonal axis. For example, 'antenna element 182a is on the x-axis, antenna element 丨82b is on the y-axis' and antenna element 18 2 c is on the z-axis The upper simplifies the mathematical expression by locating the three linear antenna elements 182a, 182b, 182c on a positive parent axis. In a practical development, the antenna elements 182a, 182b, 182c do not need to be strictly orthogonal, or It is necessary to meet at a common point. The removal of this hypothesis will not violate the general conclusion, but will occur in the case of insufficient number of ranks. 23 1279099 The following definitions will be adopted, where the numerical subscript and 1, 2, 3 reference Correlation · · Signal incident on 70 pieces of the antenna; Μ2, θ3 : X, Y plane electric field (E) angle of the signal; (M3: Ζ-axis electric field angle of the signal; and: sum of incident signals and an antenna The inner product of the component. Therefore, the vector component is: X y Z g 'x' element 1 0 0 _'y' element 0 1 0 , z' element 0 0 1 S1 coefficient cos(6)sin(4) sin(0)sin(decision) cosfe) ' S2 coefficient cos(02)sin(02) sin(02) Sin(么) cos(么) _ S3 coefficient cosfe)sinfe) sin(巧)sin(also) cos(^3) Take inner product for each antenna element and signal '(x ·Y=XlX2+y iy2+ZlZ2) Determine the sum of the relative electric field components in the element. These values are used to establish the mixing matrix: r, i rcos(^)sin(^) sinfe sinW cosW V a cosfe)sin(^2) sin(^2)sin^) cos(^2 A y kJ cosfe)sinfc ) sinfe)sinfc) cosfejj where: 24 1279099 det cos(0)sin (4) sin(02 )sin(m)cos(m) + cos(^2)sjn^ \ . 33 丨—(♦os(wsin (4) cos( What) sin&)-co life) = sinWsinWc. Xcos (6) sin(6)-sinh)_ + cos(^)sin(^2)sin(^)[cos(<92)sin(^3)- sin(<92)c〇s^2 \t :smWsm02 )c〇S(color)[cos (6) Sin(%) - as )) coffee (.cos (4) sin (4) sin (color) [cos(<92)sin@3)_ sin^^cosg sm (4) cos (who )sin(色)[sin((9丨)cos(<93) - 3, i

:sin ⑷ sin⑷cos ⑷ sin(% -0) 3;J + cos ⑷ sin(么)sin(《3 jsin(<93 - (¾) sin ⑷ cos ⑷ Sin“ jsin“一 a) 現在將討論秩數目不足的情況。A 時候,將發生混合矩陣秩數目/ 。當行列式數值等於〇的 形中發生: 不足的情況。這在以下的情 1) Θ 产 0 2= 0 3 該元素’X’與’y’將從所有的= 有的一個信號接收到相同的貢獻。 2) φ i φ 2 φ 3 ο 0 0 0 0 90° 0 90° 〇 90° 0 〇 90° 90° 90° 對該表格項次加入180度的任何結合方式,會產生其他 的秩數目不足情形。當該信號並不是獨立地由天線元件的 足夠結合所加總時便會發生。 3)每個1或2所有單獨加總等於〇 ,但是: 25 1279099 sin(為)sin(么)cos(也)sin(02 - 0 ) - + cos(^)sin(^2)sin(^3)sin(03 -θ2) + sinfe )cos(^2 )sin(^3 )sin(^ - ) = 〇 這隱示了在接近相等的偏極信號處,信號之間存在一小 的固在分離角度,信號對齊但從該陣列相反侧靠近,或某 些其他非吊偶然的心就入射’對兩元素造成相同的能量程 度。 如同以上时論’该說明圖的第一部份提出天線配置。該 上述討論的天線配置,包含非相關的感應器,可以利用多 鲁種結合方式裝配,以提供該Μ個來源信號的不同總和至該 混合矩陣之中。 現在參考第8圖,將討論一種通訊裝置200,其用以分 離由Μ個信號來源所提供的來源信號。該天線陣列202包 括Ν個天線元件,用以接收該μ個來源信號的至少Ν個不 •同總和,其中Ν與Μ大於1。 該Ν個天線元件包括至少一個天線元件204,用以接收 該Μ個來源信號Ν個不同總和的至少之一,以及至少兩個 •目關的天線元件206,用以接收該Μ個來源信號Ν個不同 總和的至少之二。該兩個相關天線元件206與該天線元件 2〇4非相關。該天線陣列可以包含多種結合方式的額外天線 元件,其中該元件是相關、非相關或偏極。 一接收器210是連接至該天線陣列202,用以接收該μ 個來源信號的至少Ν個不同總和。一盲信號分離處理器212 則連接至該接收器,用以形成包括該Μ個來源信號至少ν 個不同總和的混合矩陣214。該混合矩陣具有等於至少為Ν 26 1279099 212從該混合矩陣a之 的秩數目,且該盲信號分離處理器 中’分離出想要的來源信號216。 该說明圖的第二部份提出該箆 ,» & ®通第一部份提供天線配置的強 ,#, 9刀飞取代鑌收集來源信號的總和所產 生’並進一步填入該混合矩陣Α之中。 =,化則與為了由該混合矩陣A在不增加額外天線元 1下所㈣,以接收額外信號總和的陣列偏位有關。陣列 偏位則與在該方位角及/或高度方向中,控制天線場型有關。 鲁現在將參考第9圖討論-種通訊裝置24(),其使用陣列 偏位,分離由Μ個信號來源所提供的來源信號。該天線陣 列242包括Ν個天線元件244,為了接收該Μ個來源信號 的Ν個不同總和’而產生則固初始天線場型。該天線陣列 242也包括一高度控制器246,為了產生至少一個額外天線 場型,而選擇性地改變該Ν個初始天線場型的至少之一, 因此藉以接收該Μ個來源信號的至少一個額外不同總和。 一接收态248是連接到該天線陣列242,並使用該Ν個 #始天線場型接收該Μ個來源信號的Ν個不同總和,也使 用該至少一個額外天線場型,接收該Μ個來源信號的至少 一個額外不同總和。 一盲信號分離處理器250則連接到該接收器248,用以 形成一混合矩陣252,其包括該Μ個來源信號的ν個不同 總和,以及該Μ個來源信號的至少一個額外不同總和。該 混合矩陣的秩數目,等於Ν加上使用該額外天線場型,接 收該Μ個來源信號額外不同總和的數目。該處理器2 5 0從 27 1279099 該混合矩陣中,分離出想要的信號254。 一般上,任何能夠提供信號加總的天線陣列裝置,都適 用於以一偏位機制來增加所能使用的混合矩陣秩數目。嗜 偏位將為了每個天線陣列裝置,產生兩個不同且混合矩陣 了使用的號加總。因此在使用此技術之下,將有2倍 乘積的效果。 如果該天線偏位被區分為K個與天線有關的不同區域, 該K個區域的每個,都可以為了兩個獨立偏位區域作準 #備,並填入至該混合矩陣之中。舉例來說,如果該天線本 身可以提供N個總和,並存在有尺個不同偏位區域,在該 混合矩陣中的信號總和數目將是2*κ*Ν。 ^為了描述目的,第圖的參考將顯示修正第4圖中切換 波束天線100,,因此該天線場型可以在高度中向上翹起或 向下偏斜。特別的,每個被動天線元件1〇4,的上半部 l〇4a’,是透過一反應負載1〇8,連接至該接地平面1〇6,。每 個被動天線元件104,的下半部104b,,也透過一反應負載 _18連接至該接地平面1〇6,。在該被動天線元件,上的 電抗’具有延長或縮短該被動天線元件的效果。電感負載 將延長該被動天線元件1〇4,的電力長度,而電容負載則將 其縮短。 一天線波束是根據該上半部104,的反應負載108,,與該 下半部104b’的反應負載118,比例,在高度方向中向上 或向下偏斜。藉由調整該比例,如在第丨丨圖中所描述,該 天線場型將可向上指到97或向下指到99。當調整一天線場 28 1279099 型的尚度角度以接收一混合信號時,至少有一個額外的秩 =目被加入該混合矩陣A中。使用該陣列偏位,對於該混 合矩陣A而言可以接收更多的信號,而不需增加該天線元 件的數目N。 、此特定實作具有兩個由該電抗所獨自控制的不同偏位區 域。该陣列的場型產生能力為3個獨立場型,因此可以用 來建立该混合矩陣的信號加總數目為12 ( 2*2*3 )。 參考上述文獻 U.S· Patent Application No· 10/065,752 中 馨所#曰出的内谷,其詳細地公開如何在高度中調整天線波 f。該陣列偏位技術也可以用在所有上述討論的天線陣列 實施例中,3戈是任㈣於接地平面交互作用敏感的其他天 線陣列。 该咼度控制器的另一種實施例,如第12圖所描述,是根 據一種與該一天線元件274接地平面272 調節裝置270。與該天線元件274 = 天線%型,疋利用控制該無線電頻率調節裝置27〇的方式, β^高度中移動’其是由本領域專精者所欣然同意的。 第13圖,討論—種通訊裝置_, 該說明圖第-部份中所提供天線配置的另-種強化t 以上讨淪的陣列偏位強化相同。該通訊裝置300包括一妥、 線陣列302 ’其包括為了接收該M個來源信 Π::形成至”個天線波束的N個元^ 中N與Μ大於2。 八 29 1279099 一控制器306連接到該天線陣列,用以選擇性地形成該 至少N個天線波束。而一接收器組件308則連接到該天線 陣列302 ’用以接收該Μ個來源信號的至少n個不同總和。 一目彳§號分離處理器3 10則連接到該接收器組件% ,用以 形成包括該Μ個來源信號至少ν個不同總和的混合矩陣 312 〇 該盲信號分離處理器310也決定該μ個來源信號的不同 總和’是否相關或統計獨立,而如果不是時,接著與該控 馨制器306 —起操作形成不同的波束,用以接收該Μ個來源 信號的新的不同總和,以取代在該混合矩陣3丨2中,並非 相關或統計獨立的Μ個來源信號不同總和。接著便從該混 合矩陣312中,分離出該想要的來源信號314。 •犛耙式接收器,是一種設計用來抵抗多路徑凋零影響的 •無線電接收器。其為了調準至各自的多重路徑成分,使用 許多彼此之間稍微延遲的獨立接收器,以完成此項工作。 其也可以利用大多數的無線電存取網路形式。其已經知道 子於調變的分散編碼形式而言是特別有利的。其具有選擇 特定入射信號路徑的能力,以使其適合做為一種改變供應 至a亥盲js號分離處理器路徑的裝置。 如以上所討論選擇性地形成該N個天線波束,也可以應 用於所有的無線電存取網路之中,其也是由本領域專精者 所欣然瞭解的。對於分碼多重存取(CDMA )系統而言,該 接收器組件308包括N個犛耙式接收器316。每個犛耙式 接收器316包括k個指枝,以為了由與其連接的各自天線 1279099 元件’所接收該Μ個來源信號N個不同總和的每一個,而 選擇k個不同的多重路徑成分。在此配置中,該盲信號分 離處理器310是連接至該^^個犛耙式接收器316,用以形 成該混合矩陣312。該混合矩陣312包括該M個來源信號 至少N個不同總和的至少kN個不同多重路徑成分,並具有 專於kN的秩數目。 特別的,當分碼多重存取波形傳遞時,其通常面臨從來 源到目標的多數路徑選擇。一犛耙式接收器316則為了一 馨種更強健的信號解碼目的,特別設計用於捕捉多數的這些 各自事件,並將其結合。當該原始信號沿著每個路徑傳遞 時,其性質則由該路徑的特徵所調整。在某些情況中,該 接收信號的相關及/或統計特性的調整,將大到可以將其視 為可分離的信號流。也可以使用—種調整璋♦巴式接收器 ^16,以擷取每個調整信號流,並將其視為獨特項次,填入 ^混合矩陣312之中。然而這種增加秩數目的方法並不總 二:利用的’當其最可能需要時,在高度多重路徑環境中 #應是可利用的。 當一犛耙式接收器316可以利用該不同路徑時,如參考 曰丄3圖所討論的,對於任何調變技術而言,波束成形方式 =種更-般的解決應用。這與該犛把式接收器316不同, 絕::束成形疋用於想要的信號加強以及想要的信號回 預期;::此差異在於對該接收器而言,該回絕信號是該 窄相、°Λ的另一種形式。無論如何’該接收器組件308必 、、測該相同信號的這些多數獨特傳遞路徑,以將該混合 ⑧ 31 1279099 矩陣312建立為具有足夠的秩數目。 該說明圖的第三部份提出為了進一步填入該混合矩陣a 之中’所進行的信號分裂。在一方法中,該總和信號則利 用分散編碼所分裂。在另一方法中,該總和信號是使用同 相(I)與正交(Q)模組所分裂。 現在將參考第14圖,討論使用分散編碼的信號分裂。該 描述的通訊裝置400包括一天線陣列4〇2,其包括N個天 線元件404以接收該Μ個來源信號的至少N個不同總和。 馨一編碼解分散器(code despreader) 406,連接到該N個天 線元件404,用以將該M個來源信號的至少N個不同總和 進行解碼。該N個不同總和的每一個都包含k個編碼,用 以提供與其相關的Μ個來源信號的k個不同總和。 龜 一接收器組件408則連接到該編碼解分散器406,用以 接收該Μ個來源信號的至少kN個不同總和。一盲信號分 離處理器410則連接到該接收器組件408,用以形成包括該 M個來源信號至少kN個不同總和的混合矩陣412。該混合 •陣412的秩數目等於kN。該盲信號分離處理器41 〇從該 混合矩陣412中,分離出想要的來源信號414。 根據該接收信號的調變,以上敘述的信號分離,也可以 用於增加該混合矩陣412的秩數目,而不增加該天線元件 的數目N。分碼多重存取IS-95、分碼多重存取2〇〇〇以及 寬頻分竭多重存取(WCDMA )便是使用分散編碼的分散頻 4通訊系統範例。一種普通的線程,則是以每個信號處理 一獨特編碼,以將該資料散佈至一較大的頻帶中。 32 1279099 立的有效數值。在適當的情沉之下,這將使得該混合矩陣 增加到大於該編碼數目的數值。舉例而言,N個天線元件 與Μ個編碼可以提供nm個矩陣列。 =了料目的,假設已知3個編碼,且該3個已知編碼 ”、,、正父性。在該編碼解分散器4〇6中該混合矩A 3頂部的3列與底部的3 % ’其每個都來自於在每個作 =都利用3冑已知編竭所解分散之後,所得到的天線信 的一般情況 V X2 Χ3 Χ4 Χ5 0 hi 0 αιι 0 Ο α4ΐ Ο 0 ο ο ο α33 ο ο α63 項 次 4、 ^14 αΐ5 ( α24 α25 «26 α34 α35 α36 α44 α45 «46 α54 α55 α56 α64 ^65 4 、5 、6 ^3 Λ ν α人Ί土压王 6是用於該相同指標未知信键 #可以Α:疋未知編碼的其他胞元信號。同樣的,… ^的分其他的信號可以是遵守中央極限』 斯信就:?取信號群集’因此他們出現為-種單-; ί非隨機信號,將意味著一種高斯二說二種足夠數」 在d! 路所未知的-高斯信號。 號分離處二解二散器接, 目為6是柙減” t秩數目為6的混合矩陣412。秩卖 根據2個天線元件乘以因子為3的方式推導而得 34 1279099 •因為有三個已知編碼。 "亥6個號被應用至該盲信號分離處理器410,其中形 成具有秩數目為6的混合矩陣412。該盲信號分離處理器 410=認該分離矩陣w只來自於由該頻道:χ=Α5所調整的° 接收信號。在該描述的範例中,可分離6個信號。 i該盲,號分離處理器41〇選擇被解碼信號。舉例而言, 邊干擾h號可以被丟棄,而選擇該想要信號的所有形式。 該選擇信號為了解調,而應用至一解調器模組。該解調器 ,使用已知的同等化技術,其將該相同信號的多重路徑形“ 結° 在以上為了簡化所顯示為〇的對角線以外數值的 、情:中,其實際上可以不為零。這是更一般在二 性並不完全時的情況。其表示每個分離信號具: 雜訊。然而,如同之前顯示,該矩陣的秩數目是足 ^ 刀離廷些信號’所以其數值將在該盲信號分離處理 二”的減少。此造成雜訊減少及信號雜訊比的增加,】 辰法則(—_’S law)所指出的’使得頻道能力增 現在參考第15圖,用以增加該混合矩陣A的秩數目, 2需增加該天線元件數目N的另—種方式, 〜合信號分離為同相與正交成分。一 收 的同相與正交成分,為振幅相同但相位差里;^電頻率信號 該通訊装置則包括-天線陣列 …04以接收該Μ個來源信號的至少N個不同總和。f 35 1279099 分別的同相與正交模組5〇6,則連接至每個天線元件504的 下游端’以將藉此接收該Μ個來源信號N個不同總和的每 個 77離為同相與正交成分集合。 一接收器組件508是連接至每個同相與正交模組506的 下游端’為了該Μ個來源信號的至少ν個不同總和,接收 至少Ν個同相與正交成分集合。一盲信號分離處理器51〇 則連接至該接收器組件508的下游端,以形成包括該Μ個 來源6號至少2Ν個不同總和的混合矩陣5丨2。每個同相與 鲁正父成分集合,提供兩個填入至該混合矩陣512之中的輸 入。該混合矩陣512的秩數目等於2Ν,且該盲信號分離處 理器510從該混合矩陣512中,分離出想要的來源信號514。 第16圖中描述在一天線元件5〇2下游端的分別同相與正 '交模組506之-。在該天線元件繼處所接收的一混合信 號’是由-對混合器520所分裂。同相與正交成分,通常 以利用兩同步化積測器,將一中介頻帛(IF)信號轉譯至 另一頻率範圍所產生,其應用同一個相位外的9〇度參考俨 #。該同相與正交信號-起保存在該中介頻率信號中的相 位資訊,藉此可以區分一具有正向頻率的信號以及一具有 負向頻率的信號。 利用分離該接收的混合信號為同相與正交成分的方式, 該混合矩陣的大小便以2倍的方+ +祕a 〜万式增加。只要該同相與正 交成分是利用不同的資料流所編碼,户& y A ^ ^ ^ 在任何天線元件處所 接收的混合信號’接著都可被分裂炎 刀髮為兩個不同的混合信號。 在差分編碼的情況中,必須分柄兮 、刀斫遺凋變本身,以決定同 36 1279099 相與正交成分Μ滿足隸要求。舉㈣說 通訊系統(刪”’已經顯示當使用適當的濾波:仃: 以假设“斯最小位移鍵控(GMSK)編碼為線性,而 2雙相移鍵_)編碼時,可以在接收器中處理。: 為雙相移鍵控滿足盲信號分離處理因 的同相與正交處理。 要卩便可使用敘述 同相與正交成分可錢用上述的任何—種天線 例’填入該混合矩陣A之中。當使用同相與正交成分:施 产果使用該天線it件數目的2倍數目時,便可填入該混人 矩陣A之中。另一個範例是使用兩個天線元件(因子為2 σ, 其彼此非相關並具有不相同的偏極(因子為2*2),並與誃 同相與正交成分結合(因子為2*2*2),因此產生8個獨立 的混合信號總和。 此機制也可以利用天線陣列偏位技術,以建立更多的信 號總和。這些總和的每一個,接著也可以被分離為同相^ 正交成分。 籲本發明的另一觀點則針對用於利用該相同無線電頻率多 重使用的多輸入多輸出(ΜΙΜΟ)天線。一種用於干擾消除 的接收器處理技術,其使用場型分散而非使用天線分散,' 而將所需要的天線數目最小化,以達到增加信號強健性與 相關的資料比率。 一天線陣列在其接收器路徑上具有可變重量。當這些重 量被改變時’便調整該接收天線場型。藉由使用與為了盲 仏號分離(B S S )所發表文件的相同技術,可以從包含來:sin (4) sin(4)cos (4) sin(% -0) 3;J + cos (4) sin(m) sin("3 jsin(<93 - (3⁄4) sin (4) cos (4) Sin" jsin"-a) The number of ranks will now be discussed Insufficient situation. When A, the number of mixed matrix ranks will occur. When the determinant value is equal to the shape of 〇 occurs: Insufficient situation. This is in the following case 1) 产 Production 0 2= 0 3 The element 'X' and 'y' will receive the same contribution from all = one signal. 2) φ i φ 2 φ 3 ο 0 0 0 0 90° 0 90° 〇90° 0 〇90° 90° 90° Any combination of 180 degrees added to the table entry will result in other insufficient number of ranks. . This occurs when the signal is not independently added by a sufficient combination of antenna elements. 3) Each 1 or 2 all add up to 〇, but: 25 1279099 sin (for) sin (m) cos (also) sin(02 - 0 ) - + cos(^)sin(^2)sin(^ 3) sin(03 -θ2) + sinfe )cos(^2 )sin(^3 )sin(^ - ) = 〇 This implies that there is a small solid between the signals at nearly equal polar signals. The angle of separation, the signal is aligned but close from the opposite side of the array, or some other non-hanging accidental heart incident 'has the same level of energy for both elements. As in the above discussion, the first part of the illustration proposes an antenna configuration. The antenna configuration discussed above, including non-correlated sensors, can be assembled using a multi-layer combination to provide different sums of the one source signals into the mixing matrix. Referring now to Figure 8, a communication device 200 will be discussed for separating source signals provided by one of the signal sources. The antenna array 202 includes a plurality of antenna elements for receiving at least one of the sum of the μ source signals, wherein Ν and Μ are greater than one. The one antenna element includes at least one antenna element 204 for receiving at least one of the different sums of the one source signals, and at least two antenna elements 206 for receiving the source signals. At least two of the different sums. The two associated antenna elements 206 are not associated with the antenna elements 2〇4. The antenna array can include additional antenna elements in a variety of combinations, where the elements are correlated, uncorrelated or polarized. A receiver 210 is coupled to the antenna array 202 for receiving at least one different sum of the μ source signals. A blind signal separation processor 212 is coupled to the receiver for forming a mixing matrix 214 comprising at least ν different sums of the one source signals. The mixing matrix has a rank number equal to at least 12 26 1279099 212 from the mixing matrix a, and the desired source signal 216 is separated in the blind signal separation processor. The second part of the diagram presents the 箆, » & ® pass the first part to provide the antenna configuration strong, #, 9 刀飞 instead of 镔 collecting the sum of the source signals generated 'and further fill the hybrid matrixΑ Among them. =, and the correlation is related to the array offset for receiving the sum of the additional signals by the hybrid matrix A without adding additional antenna elements 1 (4). The array offset is related to controlling the antenna pattern in the azimuth and/or height direction. Lu will now discuss with reference to Figure 9 a communication device 24() that uses array offsets to separate the source signals provided by one of the signal sources. The antenna array 242 includes a plurality of antenna elements 244 that produce a fixed initial antenna pattern in order to receive a different sum of the one source signals. The antenna array 242 also includes a height controller 246 that selectively changes at least one of the one of the initial antenna patterns in order to generate at least one additional antenna pattern, thereby receiving at least one additional of the one source signals Different sums. A receive state 248 is coupled to the antenna array 242 and receives the different sums of the one source signals using the one of the first antenna patterns, and also uses the at least one additional antenna pattern to receive the one source signals At least one extra different sum. A blind signal separation processor 250 is coupled to the receiver 248 for forming a mixing matrix 252 that includes ν different sums of the one source signals and at least one additional different sum of the one source signals. The number of ranks of the mixing matrix, equal to Ν plus the additional antenna pattern, is used to receive the number of additional different sums of the source signals. The processor 250 separates the desired signal 254 from the hybrid matrix of 27 1279099. In general, any antenna array device capable of providing signal summing is suitable for increasing the number of mixed matrix ranks that can be used with a biasing mechanism. The eccentricity will result in two different sums of the mixed matrix used for each antenna array device. So with this technique, there will be a 2x product effect. If the antenna offset is divided into K different regions related to the antenna, each of the K regions can be used for two independent offset regions and filled into the hybrid matrix. For example, if the antenna itself can provide N sums and there are different offset regions, the sum of the signals in the mixing matrix will be 2*κ*Ν. For the purpose of description, the reference to the figure will show the modification of the switched beam antenna 100 in Fig. 4, so that the antenna pattern can be tilted up or down in height. Specifically, the upper half l〇4a' of each passive antenna element 1〇4 is connected to the ground plane 1〇6 through a reactive load 1〇8. The lower half 104b of each passive antenna element 104 is also coupled to the ground plane 1〇6 via a reactive load _18. The reactance on the passive antenna element has the effect of lengthening or shortening the passive antenna element. The inductive load will lengthen the power of the passive antenna element 1〇4, while the capacitive load will shorten it. An antenna beam is proportional to the reaction load 108 of the upper half 104, and the reaction load 118 of the lower half 104b, is deflected upward or downward in the height direction. By adjusting the ratio, as described in the figure, the antenna pattern will be able to point up to 97 or down to 99. When adjusting the grace angle of an antenna field 28 1279099 to receive a mixed signal, at least one additional rank = mesh is added to the mixing matrix A. Using the array offset, more signals can be received for the hybrid matrix A without increasing the number N of antenna elements. This particular implementation has two different offset regions that are controlled by the reactance alone. The field generation capability of the array is three independent field types, so the total number of signals that can be used to establish the hybrid matrix is 12 (2*2*3). Referring to the above-mentioned document U.S. Patent Application No. 10/065,752, the inner valley of the Xinsuo #, which discloses in detail how to adjust the antenna wave f in height. The array offset technique can also be used in all of the antenna array embodiments discussed above, and any other antenna array that is sensitive to ground plane interaction. Another embodiment of the temperature controller, as depicted in Figure 12, is an adjustment device 270 in accordance with a ground plane 272 with the antenna element 274. With the antenna element 274 = antenna % type, β is controlled in the manner of controlling the radio frequency adjusting device 27 β, which is readily agreed by the experts in the field. Figure 13, Discussion - Communication Device _, the other type of enhancement of the antenna configuration provided in the first part of the illustration is the same as the array offset enhancement discussed above. The communication device 300 includes a proper line array 302' which includes N elements for forming the M source signals to form "one antenna beam" and N is greater than 2. 8 29 1279099 A controller 306 is connected The antenna array is operative to selectively form the at least N antenna beams, and a receiver component 308 is coupled to the antenna array 302' for receiving at least n different sums of the one source signals. The number separation processor 3 10 is coupled to the receiver component % for forming a mixing matrix 312 comprising at least ν different sums of the one source signals. The blind signal separation processor 310 also determines the difference of the μ source signals. The sum 'whether correlated or statistically independent, and if not, then operates with the controller 306 to form a different beam for receiving a new different sum of the one source signals to replace the hybrid matrix 3 In Fig. 2, there is no different sum of statistically independent source signals. Then, the desired source signal 314 is separated from the mixing matrix 312. • The rake receiver is a type • Radio receivers designed to withstand the effects of multipath fading. To align to their respective multipath components, use a number of independent receivers that are slightly delayed from each other to do the job. It can also take advantage of most Radio access network form. It is already known to be particularly advantageous in terms of modulated scatter coding format, which has the ability to select a particular incident signal path to make it suitable for a change to supply a blitzing js number. Means for separating the processor paths. The N antenna beams are selectively formed as discussed above, and can also be applied to all radio access networks, which are also well known to those skilled in the art. In the case of a multiple access (CDMA) system, the receiver component 308 includes N rake receivers 316. Each rake receiver 316 includes k fingers for the respective antenna 1279099 elements connected thereto Each of the N different sums of the one source signals is received, and k different multipath components are selected. In this configuration, the blind signal separation processor 310 is coupled to the 牦耙 receiver 316 for forming the mixing matrix 312. The mixing matrix 312 includes at least kN different multipath components of the M source signals for at least N different sums, and has a special In particular, when a coded multiple access waveform is passed, it typically faces most path selections from source to destination. One-shot receiver 316 is used for a more robust signal decoding purpose. Specifically designed to capture and combine the majority of these respective events. When the original signal is passed along each path, its properties are adjusted by the characteristics of the path. In some cases, the correlation of the received signal And/or the adjustment of statistical characteristics will be large enough to be considered as a detachable signal stream. It is also possible to adjust the 璋 巴 接收 receiver ^16 to capture each conditioned signal stream and treat it as a unique term, filling in the ^mixing matrix 312. However, this method of increasing the number of ranks is not always two: the use of 'when it is most likely needed, in the highly multipathing environment # should be available. When the one-shot receiver 316 can utilize the different paths, as discussed with reference to Figure 3, for any modulation technique, beamforming mode = a more general solution. This is different from the 接收 receiver 316, which is used for the desired signal enhancement and the desired signal back to expectations;: the difference is that the rejection signal is narrow for the receiver. Another form of phase, °Λ. In any event, the receiver component 308 must measure these majority unique transmission paths of the same signal to establish the hybrid 8 31 1279099 matrix 312 to have a sufficient number of ranks. The third part of the explanatory diagram proposes signal splitting performed to further fill in the mixing matrix a. In one method, the sum signal is split using scatter coding. In another method, the sum signal is split using in-phase (I) and quadrature (Q) modules. Reference will now be made to Figure 14, which discusses signal splitting using scatter coding. The communication device 400 described includes an antenna array 〇2 that includes N antenna elements 404 to receive at least N different sums of the one source signals. A code despreader 406 is coupled to the N antenna elements 404 for decoding at least N different sums of the M source signals. Each of the N different sums contains k codes for providing k different sums of the source signals associated therewith. A turtle-receiver component 408 is coupled to the coded de-disperser 406 for receiving at least kN different sums of the one source signals. A blind signal separation processor 410 is coupled to the receiver component 408 for forming a mixing matrix 412 comprising at least kN different sums of the M source signals. The number of ranks of the array 412 is equal to kN. The blind signal separation processor 41 分离 separates the desired source signal 414 from the mixing matrix 412. The signal separation described above can also be used to increase the number of ranks of the mixing matrix 412 without increasing the number N of antenna elements, depending on the modulation of the received signal. Code division multiple access IS-95, code division multiple access 2〇〇〇, and wideband demultiplexed multiple access (WCDMA) are examples of distributed frequency 4 communication systems using decentralized coding. An ordinary thread processes a unique code with each signal to spread the data into a larger frequency band. 32 1279099 Effective value. Under appropriate conditions, this will cause the mixing matrix to increase to a value greater than the number of codes. For example, N antenna elements and 编码 codes can provide nm matrix columns. For the purpose of the purpose, it is assumed that 3 codes are known, and the 3 known codes are ",", and the positive father. In the code de-disperser 4〇6, the top 3 of the mixture moment A 3 and the bottom 3 % 'Each of them comes from the general situation of the antenna signal obtained after each work = use 3 known known to be decentralized. V X2 Χ3 Χ4 Χ5 0 hi 0 αιι 0 Ο α4ΐ Ο 0 ο ο ο 3333 ο ο α63 Item 4, ^14 αΐ5 (α24 α25 «26 α34 α35 α36 α44 α45 «46 α54 α55 α56 α64 ^65 4 , 5 , 6 ^3 Λ ν α 人Ί土压王 6 is used for the same The indicator unknown letter # can be: 疋 unknown encoding other cell signals. The same, ... ^ other signals can be observed in accordance with the central limit 』 斯 信 : : 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取 取; ί non-random signal, will mean a Gaussian two said two kinds of sufficient number - Gaussian signal unknown in the d! road. The number is separated by two solutions, the target is 6 is reduced" t rank number is The mixing matrix 412 of 6. The rank selling is derived by multiplying two antenna elements by a factor of three. 4 1279099 • Since there are three known codes, "Hai 6 numbers are applied to the blind signal separation processor 410, in which a mixing matrix 412 having a rank number of 6 is formed. The blind signal separation processor 410= recognizes the separation The matrix w is only derived from the ° received signal adjusted by the channel: χ = Α 5. In the example of the description, six signals can be separated. i The blind, number separation processor 41 selects the decoded signal. The side interference h number can be discarded, and all forms of the desired signal are selected. The selection signal is applied to a demodulator module for demodulation. The demodulator uses a known equalization technique. The multipath shape of the same signal is "in the above, in order to simplify the value of the value other than the diagonal line shown as 〇, it may not actually be zero. This is more generally when the two sexes are not complete. It means that each separate signal has: noise. However, as shown before, the rank number of the matrix is a reduction of the signal 'so its value will be reduced in the blind signal separation process'. Causing noise reduction And the increase of the signal-to-noise ratio, as indicated by the law of the law (-_'S law), so that the channel capability is increased by referring to Figure 15, to increase the number of ranks of the hybrid matrix A, and 2 to increase the number of antenna elements N. In another way, the signal is separated into the in-phase and quadrature components. The in-phase and quadrature components of the received signal are the same amplitude but in the phase difference; the electrical frequency signal includes the antenna array...04 to receive the signal. At least N different sums of one source signal. f 35 1279099 respective in-phase and quadrature modules 5〇6 are connected to the downstream end of each antenna element 504 to separate each 77 of the N different sums from which the source signals are received thereby in-phase and positive A collection of components. A receiver component 508 is coupled to the downstream end of each in-phase and quadrature module 506 for receiving at least one of the in-phase and quadrature component sets for at least ν different sums of the one source signals. A blind signal separation processor 51 is coupled to the downstream end of the receiver component 508 to form a mixing matrix 5丨2 comprising at least two different sums of the plurality of source numbers. Each in-phase and Lu-Father component set provides two inputs that are populated into the blending matrix 512. The number of ranks of the mixing matrix 512 is equal to 2 Ν, and the blind signal separation processor 510 separates the desired source signal 514 from the mixing matrix 512. Figure 16 depicts the respective in-phase and positive-intersection modules 506 at the downstream end of an antenna element 5〇2. A mixed signal 'received at the antenna element is split by the - mixer 520. The in-phase and quadrature components are typically generated by translating an intermediate frequency (IF) signal into another frequency range using two simultaneous accumulators, applying a 9-degree reference 俨 # outside the same phase. The in-phase and quadrature signals - the phase information stored in the intermediate frequency signal, whereby a signal having a forward frequency and a signal having a negative frequency can be distinguished. By separating the received mixed signal into in-phase and quadrature components, the size of the hybrid matrix is increased by 2 times square + + secret a ~ 10,000. As long as the in-phase and quadrature components are encoded using different data streams, the mixed signal received by the household & y A ^ ^ ^ at any antenna element can then be split into two different mixed signals by the splitting knife. In the case of differential coding, it is necessary to divide the handle and the blade itself to determine the same as the orthogonal component 36. (4) Say the communication system (deleted) 'has been shown when using the appropriate filtering: 仃: can be in the receiver by assuming that the "Minimum Shift Keying (GMSK) encoding is linear and the 2 Biphase Shift Key _) encoding deal with. : In-phase and quadrature processing for blind signal separation processing for bi-phase shift keying. The use of the in-phase and quadrature components can be filled into the hybrid matrix A using any of the antenna examples described above. When the in-phase and quadrature components are used: when the production result uses twice the number of the antenna pieces, the mixed matrix A can be filled. Another example is the use of two antenna elements (factors of 2 σ, which are uncorrelated with each other and have different polarities (factor 2*2), and are combined with 誃 in-phase and quadrature components (factor is 2*2*) 2), thus producing 8 independent mixed signal sums. This mechanism can also utilize antenna array offset techniques to create more signal sums. Each of these sums can then be separated into in-phase ^ orthogonal components. Another aspect of the present invention is directed to a multiple input multiple output (MIMO) antenna for multiple use of the same radio frequency. A receiver processing technique for interference cancellation that uses field dispersion rather than antenna dispersion, And minimizing the number of antennas required to achieve increased signal robustness and associated data ratio. An antenna array has a variable weight in its receiver path. When these weights are changed, the antenna field is adjusted Type. By using the same technique as the document published for blind nickname (BSS), it can be included

CC 1279099 多數:擾信號的接收器資料,擷取想要的信號。 二!1亥場型是如何形成,如在第17圖中所描述,在多輸 結構中,可以以場型分散替換天線分 ί Π 場型數目,將與❹個天線元件數目相 n個=::LK個場型將利用比起在先前技術中,小於該 個天線元件所產生。在與目前天線陣列 作的相同方法中,只有在所有傳輸的μ個 k相等。因為這是一,二分辨時,與〖才 ,達到最小的丄二固:/:::接收器的情況,為了 器天線的超額。將使 要接收11場型或傳輸 接收器系統中分離出資處理技術,以在該 、合矩陣的方法有討論用來建立該 本U的另—觀點料對—種碼際干擾(ISI) 的傅利葉轉換限制,則在第18圖提供的 #減二輸:的後續塊狀^ $碼、重複/消1 .轉換,包含:維特比㈤咖) 位,其已經加入5 /epetm〇n/puncturing)與插入的團塊冗 今接:側卜二该傳輸侧。該後續的塊狀圖也被加入至 特:::分離干擾移除、移除團塊、解重複/解 處二特::::有二;广其克服在該編瑪 用的。該,,重福m象,輪碼的替代編碼形式也是適 5 / ,使得在該來源資料比率與傳輸資 1279099 才Π之間的資料團塊相對應。該”插入團塊,,將該連續抵 、Λ源 > 料心機化,以最大化適當解碼的可能性,其中, 其改良,遞頻道狀況的恢復性。此引入的團塊錯誤,是來 象疋在D亥維特比解碼器之前的團塊錯誤分佈所造成的 ?:凋#: a亥維特比解碼器可以比團塊錯誤,更有效率地 從,Ik機化的刀政錯誤中復原資料流。該”盲信號分離干擾移 除”在:換回時間域之前’減少該預期信號的信號。 、假f該形成的頻率域信號具有-種已知的統計特性,其 籲並不疋句勻的,以利用非均勻分佈(峰均值比的程度)的 最佳複製方法,將是在該快速傅利葉轉換(FFT)的輸出處, 加入一非線性映射(以均等遍及頻率的信號程度),並在該 逆快速傅利葉轉換(IFFT)的輸人處增加—反向轉換。 此外’此信號一般上是被調變,並在實際可行的方案中, 聯結於一傳輸頻率之中,所以在該圖中將增加一調變器、 上轉換器與下轉換器、解調器。在傳輸波形之間的邊界處 將存在不連續性。這可以利用許多方式消除。一個方法是 #該波形之間,加入一防護帶,其中在該波形之間進行内 插,以將產生的頻率成分最小化。上述討論用以建立該混 合矩陣的所有方法,可以做為此實作的一部份。 本發明的另一觀點則針對場型分散,以支援層空間通 訊。現在參考第19圖,在該較佳實施例中,該傳輸器為了 在一時槽基礎上的每個層空間流,改變該功率程度。該資 料流因此以不同的功率程度抵達接收器,其在該接收信號 中提供適當的差異,以為了盲信號分離處理填入一適當的 39 1279099 矩陣之中。因為所有的功率調整都在傳輸器處進行,在該 接收器處L天線元件的數目則為丨,且在該接收器處不需要 產生場型的硬體或軟體。 此方法也滿足先前技術,其中在該抵達信號之間的小角 度差異,對於產生在該信號之間有適當差異的場型等值線 中,便不再是個問題。 在另貫施例中,具有來自該想要的傳輸器所不同的明 顯干擾。如果這樣的干擾是單一的,介於其中的差異以及 ,該改變的想要傳輸器波前’毅以使得盲信號分離處理分 離所有的信號。如果具有多於一個的明顯干擾,該矩陣的 秩數目便不足夠。該系統效能可藉由在該接收器處產生額 外場型改變而得到改善。雖然這是與該較佳實施例不同, 其仍然需要與之前相比的明顯少量場型,以及因此 。收器側的較少相關實作。 Μ 在另一實施例中,多數資料流是為了透過一功 的傳輸,而透過一單一天線元件所加總。在一 。 t = 的相對功率程度,是以-種適二該接 離解碼的方式變化。此方法的侵點在 中的各自信號流’都遭受到相同傳遞路徑 衫響、、忍味者該相對信號的關係,仍 之間所保持。這在該接跄哭_担糾卞 』盗/、接收口σ 狀態。 在該接收器處如供了-種非常強健的解碼 此概念是可調整的, 過不同的天線元件傳輸 其中信號的多數各自總和,可以透 。因此可沿著多數路徑分散增益, 1279099 及/或空間能力增益獲得強健的信號分離 率峰均值比率為常數,該加總信號的功率:、、:可=號功 持為-種接近m力率程度的方式調整 j用維 立合矩陣的所有方法,可以做為此實作的^ 本毛明的另一觀點則針對波浪形 多數傳輸器。現在來考笫20 . 用乂支杈同時的 置,調變其盖線;頻丄V 該存取點的多數裝 六佐 電頻率场型。該預期的存取點與非預期的 :取點二將因此接收該傳輸信號的不同功率形式。此提 >用於盲k號分離在分離信號時所需要的資訊。 ’、 該調變可以與改變該傳輸功率 行’所以可以使用泛方向性、 束%型。也可以使用其他像是改變—傳輸波束 的万式。 該最有效率的方式,是使該傳輸器使 ::=r裝置中的内在時鐘所設定,或與^ 日士位5時間以同步°如果對於該信號抵達接收器的 c不對齊的現象’機信號分離中的分離信號 月匕s 曰下降。對齊可以利用確認與該裝置之間的距離, ,疋I測該時間延遲的方式調整。接著可以由該存取裝 置,使用時脈前進或延遲的技術。 假設該接收信號的增益改變,是已經由將其視為目標的 配備盲信號分離存取點,以及其他情況的干擾兩者所使 用人所對齊的適當接收器可能會變化。如果沒有總體網路 整合時’該預期的接收器便應該被對齊。如果存在總體網 1279099 路整〇,里測可以顯示該最佳的方法,是讓該信號簡單的 如同干擾一般所移除,但在該預期接收器處,仍然提供 於分離的適當對齊。 ’、 如果存在不使用該無線電頻率功率程度調變技術的1他 k唬,便可使用典型的信號回絕技術。替代的,該接收器 :以使用場型或其他的方式,以增加該盲信號分離適用二 P的秩數目。即使使用後者的方法,該推導矩陣資訊的自 由度,將大大的減少在該存取點接收器處用以實作的花 鲁費二上述討論用以建立該混合矩陣的所有方法,可以做^ 此實作的一部份。 … 本發明的另一觀點,是針對調整盲信號分離無線電頻 '觫:二以最佳,處理與功率祕(drain)。需要被分離而 ,、、、、有興趣資料流信號數目便可減少。一般 、陣的秩數目,決定該最大的被分離有效信號數目 號=剩餘部分便被視為雜訊。因此此數值需要位在-被解 碼仏就的最小包含處。可能需要一可能的較大最小值,以 成分’因此該信號雜訊比形成-可接受的解碼 的圖描述只操作該接收器的實作。第22圖為第21圖 、%、口,包括來自該傳輸器至該接收器的資料, 性地包括來^該接收器至該傳輸器的資料。 、擇 >如,填入該矩陣的選項,超過用於操作所需的秩數目, 。亥2 ?車列控制,可以減少被使用的選項數目。來自可利 用-口的某些選擇,對於其他而言可能是更令人滿意的, 42 1279099 而《亥最佳選擇形成一較低的矩陣秩數目。此集合可以利用 將來自該不同選項,對於其他選項的比較,藉由試誤法(例 如比較利用選項k與不利用時的結果)檢驗,或是對條件 /、、β果的歷史追縱檢驗所決定。所使用的方法或方法的結 口 也可以根據給定已知條件與歷史事證的有效性所決定。 田裝置疋已知位於來自許多來源的有效信號範圍之中 Η二:同在覆蓋重疊區域中所發生的’可以期望該最高功 率U疋來自於明顯不同的方向。該選項因此應該被選 •擇,以在那些方向中提供有效的信號差異。 對於編碼而言,該錯誤校正編碼決定在縣始解碼資料 流中’所能容忍的錯誤比率。因為該原始錯誤比率也是該 、矩陣填人選項子集合的函數,在這些設定之間便存在權 衡。-種介於該編碼器與解碼器之間的回饋與控制回圈, 可以用來選擇該最佳的相互設定。 一如果该接收器發現並不在一受限功率情況中(舉例來 說’由線電壓供應的功率),該解碼器可以增加其矩陣秩數 ^。此可為了許多目的所使用。較高的秩數目可以減少雜 说,其增加信號雜訊比,並接著減少錯誤比率。減少的畔 音可以用於用增加傳輸資料比率,減少錯誤校正編碼 改進該鏈結的全體可靠度。 :該矩陣的負擔轉換填入該接收器,也可以減少在該傳 輸裔上的負載’其可以在該兩者之間存在一控制回路時使 :2目反的,一種使用電池的裝置可以試著與更強健供摩 的裝置,進行增加秩數目的交涉。 ^ 43 1279099 藉由改變時脈設定,該最強健操作需要對每個 解碼矩陣重新計算。然而,通常該時間總和超過一: 目’因此量測只在比率是輕微地快於該時間總和;:數 減少該解碼矩陣確認、的事件,將更節冑電力與處理 + 費。 p J化 對於%型傳輸而言,如果該來源產生場型,該接收器可 以5周整其矩陣填入接收選項,以提供適當的矩陣秩數目。 該接收器可以在有關傳輸特性的資訊上建立基礎,其包括 該傳輸器所知會的資訊、對該接收#料流與解碼資料的量 監測在該矩陣中事件彼此之間的改變,是用來 碼矩陣必須多常重新計算。在寬頻系統中,該子頻道常 1 具有各自的時間總和。每個子頻道可以具有其本身的 •矩陣以及相對應的量測比率。此排除在該最快需要比率 處,對一非常大解碼矩陣的重新計算。一般上,該用於子 解碼矩陣的量測總和’將小於用於大矩陣的量測總和。 負擔’以卸下其他的負載。 測,或是與該來源的交涉設定。在該交涉情況中,也可以 #量該來源的資源限制,因此任一個可以假設為一較高的 對於矩陣求解技術而言,一般上該解碼矩陣彼此之間並 不變化。因此該先前數值可以做為解答疊代決定的種子, 其與來自於重新開始的決定相比之下,為較少的處理器負 擔。當該矩陣是大到可以開始,通常疊代解碼將變的較快, 即使當解答S從-未知情況所決定。這是―種求解大秩數 目、元全矩陣的已知方式。 44 1279099 一般上,根據可利用成分、修正編碼程度、可適用配備, 以及其他影響像是可信操作的因子,可以對以上的所有進 行結合。上述討論用以建立該混合矩陣的所有方法,可以 做為此實作的一部份。 本發明的另一觀點是針對波浪形場型,用以支援有效區 域覆蓋。對於該場型傳輸而言,該基本概念是在基礎建設 位置處,使用分區的覆蓋場型。該實際的使用分區數目隨 著所需要的能力與相關的成本因子變化。實際實作可以從 #單为區,至一任意大的數目。該分區本身可以在方位 角或高度中,或是方位角與高度平面中次區分。使用分區 的主要好處在於如同每個波束成形方法一樣,其減輕在該 '鏈結的其他端點處,追蹤裝置的需求。離開一分區的覆蓋 區域至另一個,便因此減少為一種典型的遞交(hand〇ff) 情況。 ^亥先前技術使得產生該場型的接收器,為了盲信號分離 的仏號分離處理,而適當地改變。相比之下,該傳輸器使 鲁=技術,因此至少存在部分的適用盲信號分離解碼器環 扰。在某些實作中,這將意味著該接收器不需要產生任何 的波浪形場型。在其他實作中,其意味著該波浪形場型的 數目是被明顯的減少。 有個用於傳輸點的實施例。此實施例滿足在該區域 ^正在操作的其他傳輸來源為未知的情況。參考第圖, λ傳輸%型專值線為該接收器所已知,是一種在時脈序列 中的波浪形。 45 1279099 在該傳輸場型中的改變,是與該傳輸符元的區域所一致 定時。取代準星的移動,可以改變該場型等值線,並在每 個時槽中維持固定。該覆蓋區域因此不再明顯的改變,並 且不產生為了與其競爭的前視追蹤議題。 由於該改變的傳輸等值線,該接收器將遭遇一種波前功 率程度的改變。該盲信號分離矩陣因此將以在不同相對增 益數值處的不同信號流差異填入。 如果該接收的優勢信號,是全部來自使用波浪形信號的 修一個或多個傳輸器,該接收器只在每個場型改變期間進行 抓樣’並使用這些形成的資料,填入用於盲信號分離信號 分離的矩陣之中。 如果存在另一個使用該波浪形信號的傳輸器,而其他傳 輸器並不使用的混合情況,該接收器可以使用典型的信號 分離技術將其處理。舉例而言,可以使用像是波束成形以 及多數使用者 <貞測的方法。然而,該盲信號分離方法一般 來說疋更強健的。^貫際上,該接收器可以實作場型變形 严產生足夠的額外場型,以增加該盲信號分離矩陣的秩 數目,超過該被分離的信號數目。 對於該盲信號分離解碼器實作,舉例而言,如果具有三 個信號的三個等值線是由該傳輸器所傳輸,並有其他兩個 信號被接收,該接收器蔣雪It , 為肘而要產生至少兩個等值線,以將 彼此干擾的信號分離。如果兮值w 入^ ^ P ^ 如果”亥傳輸斋本身不產生其本身集 合的活,便已經需要少於r細上人_人 、一個的等值線,所以便可減少 對該接收器的實作負擔。 $ j 46 1279099 如果一傳輸器沿著一信號路徑傳輸一信號流,該場型等 值線集合便不需要被旋轉或相異。這是因為在該接收器偵 測的信號’是已經對於所有其他的接收信號所改變。該傳 輸器因此可以使用一種對於總體場型的簡單功率改變,而 不需要改變該等值線的形狀。如果在該接收器處只有另一 個資料流被加總時,則即使其中一個的振幅為固定,盲信 號分離仍可將他分離。這是因為該功率混亂來源,提供其 本身操作所需要的改變。如果接收到多於一個的其他資料 修流,他們便出現為對於盲信號分離的一種單一群集干擾, 除非該接收器本身使用其他的分離裝置,否則便增加^本 身的波浪形場型產生能力。 現在將討論一種在該接收模式中的場型傳輸器。因為盲 信號分離的多數場型等值線處理,對於信號分離而言是一 種良好的方法,使用以產生該傳輸場型的相同技術,也可 以=來產生多數接收器數值。當傳輸是已經被支援時,用 二=分離接收的成本因子,則因此只是該盲信號分離 埋化費。 討論使用者配備接收器對於該傳輸器的回饋。雖 =並:…的需要,來自該使用者配備接收器的回饋資 料以t用以改善該鍵結的總體操作。舉例而言’該接收 ;可:ί定哪個場型等值線改變的程度,提供有用的資 貝戒是被回饋至該傳輸器。該傳輸 其刼作以改盖金牵έ士,枯田仏,“ J ^ ^二、 使用杈少的功率,或對其他通訊赫蚌 干擾。這些調整可能是:使用哪個及哪個之中的序列, 1279099 遽波器(LPF)以及一類比數位轉換器(ADC)所提供。 以此技術所獲得的多數空間獨立頻道,可以利用多種方 式所處理,範例則包含整體結合、盲信號分離,或多輸入 多輸出處接收處理。 參考第25圖,該系統原則將在之後敘述。該較佳實施例 包含一單一天線陣列,其具有切換至電感與電容的組件。 该頻帶通過濾波器限制存在於低雜訊放大器的頻帶與總體 無線電頻率功率兩者。該低雜訊放大器不只是用於接收信 _號的低雜訊放大器而已。該混合器與局部振盪器調整該無 線電頻率信號為一種中介頻率或基頻帶數位轉換器(Dc) 之一。任一種實作也適用於後端處理。 該天線切換、選擇局部振盪器切換以及解多工處理器切 換,是由相同的數位序列產生器所驅動,因此該信號的N /個頻道,是由該天線的N個分散模式所產生。這從該混合 器產生一種信號頻道無線電頻率輸出,並存在於該低通過 濾波器與類比數位轉換器。 _雖然在該圖示中並未顯示,該類比數位轉換器是與該驅 動天線模式的相同數位序列產生器、選擇局部振盪器以及 解多工處理器所同步。考慮具有一載流頻率Fe的信號以及 調變帶寬B,該解多工處理器為了該脈衝形狀,作用為一 種具有脈衝的下採樣操作。對於具有N個元件的陣列而 言,該類比數位轉換器的採樣頻率必須至少為2*N*B。N 的需要是因為在該基頻帶處理器中,每N個樣本只會有一 個存在於一解調器之中。2*B的需要則是為了滿足該奈奎 51 1279099 ,一 無線寬頻接取技術(WiMAX)、寬頻分碼多重存取_時分多 工(WCDMA-TDD )、單頻道同步分碼多重存取(TDScdm^ 等等)或時槽頻分多=(FDD)系統(像是全球行動通訊 糸統/通用無線封包服務(GSM/GPRS))而言,其並不同時 接收與傳輸信號,當該傳輸模式被獨立考量時,該接收天 線便可視為多工。對於完全頻分多工系統而言(像是分碼 多重存取2000 ( CDMA2000 )或寬頻分碼多重存取_頻分多 工(WCDMA-FDD))而言,該傳輸功能可以以分離天線的 #方式完成。這些空中介面的任何—個,都可以使用任何的 致能解調器技術(整體結合、盲信號分離、多輸入輸出)。 本發明的另-觀點是針對盲信號分離應用至分碼多重存 取接收器處理。具有在天線元件之間適當分離的天線陣 列’則適用於填人該解碼序列之中。該可利用文獻的回顧 才曰出般上這是對此技術專精者而言為信服的。 其他參考的文件討論’則與信號天線干擾消除(saic) 技術有關。使用盲信號分離的那些,需要該調變已經是相 /或統計獨立的同相與正交頻道,以產生秩數目為2的矩 陣。這些解碼器因此分離單一干擾及想要的信號。如果存 在兩個干擾,現有的信號天線干擾消除技術便不能實行。 他們便參考為一種使用,,虛擬,,第二天線。 該先前技術可以根據由現有技術裝置,以及在文獻中並 未存在使用的其他,獲得信號獨立的總和所改善。狹而同 相與正交裝置,實際上位於某些無線電存取網路之中,他 們可以不適用於分碼多重存取編瑪。上述討論用以建立該 54 1279099 混合矩陣的所有方法,可以做為此實作的一部份。 雖然這些技術增加該獨立成分分析可使用矩陣的秩數 目田並使θ獨立成分分析應用可更能取得該想要的信號, 但是其並不是肯定的。所以為了選擇適當的解碼序列仍需 要細微技術。舉例來說,如果對被處理 害時,便需要從獨立成分分析處理復原。 在一第二實施例中,如在第26圖所描述,其使用一種不 同=解馬序歹J在第27圖中顯示,位於節點a處的信號集 鲁合範例。為了清楚顯示只有—信號干擾,但該相同的論點 也可以應用至多數干擾以及一增加的矩陣秩數目。該雜訊 程度是以-種窄頻帶干擾所超越,且該想要的分碼多重存 取信號是在該雜訊程度之下。 在第28圖中的節點B處,已經決取出該干擾。該,,選擇 斋”確認該擷取信號是否真的是干擾。如果—信號具有該想 要信號的特徵,其便不被選擇。如果選擇一個或更多的干 擾,他們便存在於該”倒轉器,,處(節點C)。獨立成分分析 員取 了以倒轉或不倒轉一接收信號,且需要對於每個信 號是否需要被倒轉以與該接收信號相符進行確認。 與°亥正確振幅符號一起的干擾,是存在於在節點D處的 加總器負向輸入中。本領域的專精者當然可能識別該替 代,但不是相等的實作。舉例來說,可以在此階段使用一 種純粹加總器,且該倒轉器可以只在該信號不與該非倒轉 波形一起擷取時使用。該原始接收信號(節點A )的一種 延遲形式,是存在於其他加總器輸入處。該延遲數值是等 55 1279099 於由該獨立成分分析、選擇、以及,,倒轉,,處理所產生的延 遲。本領域的專精者當然可能識別該替代,但不是相等的 貫作。舉例來說,該延遲與加總器功能塊狀圖,可以利用 一最小化塊狀圖所取代,其轉移並加總兩個信號,直到達 到一最小值為止。 在第29圖中的節點D處,該干擾已經被移除。在第3〇 圖中的節點E處,該犛耙式接收器已經減少信號的分散, 其,在可以存在於該基頻帶解碼器中。此實施例的進一步 籲=即,在於由該天線結構收集的信號可以透過對於每個先 前討論實施例的選擇所獲得,用以強化該目前的技術。 —應該被辨別的是如在第26圖中所顯示的結構,只是一種 實作該描繪發明的方式。而不是具有,,選擇器,,存在,但適 ^地不具有信號的時候,可以使用—種不論在前處理或後 ,理中’該選擇不同路徑的先前技術實#。該權衡必須與 ==延遲、實作成本、全體操作強健性以及某些的設: 進行。只有在進行該犛耗式接收器之前,從該 Ύίΐ 的基本概念,需要在該相同發明的所有變 雖然對於干擾的完全移除已經^ 實作的並不是蒋昤斛古从工说^〜”兄β甲顯不,應忒 假設該犛耙弋解碼1、干擾 '、、、而任何干擾的移除,在 而古是=處理一改善的信號集合之下,-般上 口疋用於改進先前技術的效能。 相比=夕f存取^就其本身而言,與其解分散的形式 下’更是一種高斯型態,並具有更難以由獨立成分 ⑧ 56 1279099 二向。然而:與該想要信號相關的某些資料 一旦再—~ ’因為該信號仍舊保持某種統計顯著性。 增益便:在於二2:2 ’通常將變的更加顯著,而總體 處理可以=;:=解碼器之中。替代的,該總體解碼 著wf 種遞增的處理方式所強化。意味 被逐二力=含或不包含’及/或該移除信號的數目可以 θ σ或減〉、,以及該解碼信號量測對於改善或惡化 =程度的整體性,可以更詳細的檢驗。此實施例的主 S鍵’在於獨立成分分析是對於幾乎相同的信號所使 ,旦不纟該犛耗式處理之前對於分碼多重存取信號使 ,因為在此期間是難以確認及/或擷取。 本發明的另-觀點是針對混合最小均方差料束分離權 重,其透過場型用於盲信號分離。可再一次參考u s Patnet 6,93 1,362,其中需要多數感應器以提供線性獨立加總信 號。該申請專利案’362在此以文獻方式所整合。該上述天 線陣列可以使用替代該多數感應器,然而在該申請專利 .案’362中公開的後處理也仍舊適用。 本發明的許多修正與其他實施例,對於本領域專精者而 言是可瞭解的,其在之前敘述與相關圖示之中具有教學的 優點。因此,應該被瞭解的是本發明並不限制於此處公開 的特定實施例,且預期該修正與實施例是包含在該附加申 請專利範圍的觀點之中。 d 57 1279099 圖式簡單說明 第/圖是為據本發明的一種典型操作方案塊狀圖,其中 通汛虞置從各自的信號來源,接收想要與不想要的信號。 ^ 2圖疋在第丨圖中所顯示通訊裝置的更詳細塊狀圖。 u第3圖為根據本發明,為了該混合矩陣而產生該來源信 號線性獨立總和的不同方法說明。 第4圖為根據本發明,配置為-種切換波束天線的天線 陣列塊狀圖。 配置為一種相位陣列的天線陣列 配置為偏極天線元件的天線陣列 描述該三偏極(tri-polarization) 第5圖為根據本發明 塊狀圖。 第6圖為根據本發明 塊狀圖。 第7圖為根據本發明 使用的三維圖示。 第8圖為根據本發明, ^ ^ ^ ^ . 具有包括相關與非相關天線陣列CC 1279099 Most: The receiver data of the scrambled signal, the desired signal is taken. How is the formation of the second! 1 sea field type, as described in Fig. 17, in the multi-transmission structure, the number of field segments can be replaced by field-distribution, and the number of antenna elements will be n = The ::LK field type will be generated less than the antenna element compared to the prior art. In the same method as the current antenna array, only μ k of all transmissions are equal. Because this is one, two resolution, and 〖, the minimum 丄 二固: /::: receiver case, for the antenna antenna excess. Will be required to receive the 11-field or transmission receiver system in the separate processing technology, in the method of the matrix, there is a discussion of the Four-dimensional inter-frame interference (ISI) The conversion limit is the subsequent block type ^ $ code, repeat / elimination 1 conversion provided in Figure 18, including: Viterbi (5) coffee), which has been added to 5 /epetm〇n/puncturing) It is connected with the inserted mass: the side is the transmission side. This subsequent block diagram is also added to the special::: separation interference removal, removal of the agglomerate, solution repetition / solution two special:::: two; broadly overcome the use of the code. In this case, the alternative coding form of the wheel code is also suitable for 5/, so that the data link between the source data ratio and the transmission resource 1279099 corresponds. The "insert block, the continuous, the source" is machined to maximize the possibility of proper decoding, wherein its improvement, the recovery of the channel condition. The introduced clump error is coming疋 造成 疋 D D D D D 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在Data stream. The "blind signal separation interference removal" is: 'reducing the signal of the expected signal before switching back to the time domain. · False f The formed frequency domain signal has a known statistical characteristic, and its appeal is not The best method of copying the sentence, using the non-uniform distribution (the degree of peak-to-average ratio), will be to add a non-linear mapping at the output of the Fast Fourier Transform (FFT) (to the extent of the signal over the frequency) And add - reverse conversion at the input of the inverse fast Fourier transform (IFFT). In addition, this signal is generally modulated, and in a practical solution, is connected to a transmission frequency, so Will increase in the picture Modulator, upconverter and downconverter, demodulator. There will be discontinuities at the boundary between the transmitted waveforms. This can be eliminated in many ways. One method is to add a guard band between the waveforms. Interpolating between the waveforms to minimize the resulting frequency components. All of the methods discussed above for establishing the hybrid matrix can be part of this implementation. Another aspect of the present invention is For field dispersion, to support layer space communication. Referring now to Figure 19, in the preferred embodiment, the transmitter changes the power level for each layer space stream on a time slot basis. Arriving at the receiver at different levels of power, which provides the appropriate difference in the received signal for filling into a suitable 39 1279099 matrix for blind signal separation processing. Since all power adjustments are made at the transmitter, The number of L antenna elements at the receiver is 丨, and there is no need to generate field-type hardware or software at the receiver. This method also satisfies the prior art, where The small angular difference between the signals is no longer a problem in generating field-type contours with appropriate differences between the signals. In other embodiments, there are differences from the desired transmitter. Significant interference. If such interference is singular, the difference between it and the desired transmitter wavefront of the change is such that the blind signal separation process separates all signals. If there is more than one significant interference, The rank number of the matrix is not sufficient. The system performance can be improved by generating additional field type changes at the receiver. Although this is different from the preferred embodiment, it still requires a significant amount of field compared to before. Type, and therefore, less relevant implementation on the receiver side. Μ In another embodiment, most of the data stream is added for transmission through a single antenna element through a single transmission. The relative power level is changed in such a way that it is separated from the decoding. The respective signal flows in the intrusion point of this method are subject to the same transmission path, and the relationship between the relative signals of the taster is still maintained. This is in the state of crying _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A very robust decoding is provided at the receiver. This concept is adjustable, and the majority of the signals transmitted by different antenna elements can be transmitted. Therefore, the gain can be dispersed along most paths, and 1279099 and/or the spatial capability gain can obtain a strong signal separation rate peak-to-average ratio constant, and the power of the summed signal: ,: can be = the number of powers is close to the m-force rate The degree of mode adjustment j uses all methods of the dimension matrix, which can be done for this purpose. Another point of view of Mao Ming is for wave-shaped majority transmitters. Now take the test 20. Use the 乂 杈 杈 , 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调 调The expected access point is unintended: taking point two will therefore receive different power forms of the transmitted signal. This is used to separate the information needed to separate the signals. ', the modulation can be changed with the transmission power line' so that the general directionality, the bundle type can be used. It is also possible to use other variants like the change-transmission beam. The most efficient way is to make the transmitter set the internal clock in the ::=r device, or to synchronize with the ^5 bit time. If the signal arrives at the receiver, the c is not aligned. The separation signal in the machine signal separation is decreased by 匕 匕 曰. Alignment can be adjusted in a manner that confirms the distance to the device and measures the time delay. Techniques for clock advancement or delay can then be used by the access device. Assuming that the gain of the received signal changes, the appropriate receiver that has been aligned by the user with the blind signal separation access point that is considered to be the target, and otherwise the interference may vary. If there is no overall network integration, the intended receiver should be aligned. If there is an overall network 1279099 way, the best measure is to show that the signal is simply removed as if it were interference, but at the intended receiver, the proper alignment of the separation is still provided. ', if there is a 1 k唬 that does not use this radio frequency power level modulation technique, a typical signal rejection technique can be used. Alternatively, the receiver: in a field type or other manner, to increase the number of ranks for which the blind signal is separated. Even if the latter method is used, the degree of freedom of deriving the matrix information will greatly reduce the method used to implement the hybrid matrix at the access point receiver. All the methods discussed above for establishing the hybrid matrix can be done ^ A part of this implementation. ... Another aspect of the present invention is to separate the radio frequency for the blind signal '觫: two to best, processing and power drain. Need to be separated, the number of data streams of interest, ,,, and interest can be reduced. In general, the number of ranks of the array determines the maximum number of valid signals to be separated. Number = the remainder is treated as noise. Therefore, this value needs to be at the minimum inclusion of - being decoded. A possible larger minimum may be required, with the component 'so that the signal noise ratio is formed - an acceptable decoded picture describing the operation of only operating the receiver. Figure 22 is a 21st, %, port, including data from the transmitter to the receiver, including data from the receiver to the transmitter. , select >, for example, the option to fill in the matrix exceeds the number of ranks required for operation. Hai 2? Train Control can reduce the number of options used. Some choices from available-ports may be more satisfactory for others, 42 1279099 and the best choice for the formation of a lower matrix rank number. This set can be used to compare the other options from the different options, by trial and error (such as comparing the use of the option k with the results when not used), or the historical / test of the condition /,, beta fruit Determined. The boundaries of the methods or methods used may also be determined by the validity of given known conditions and historical evidence. The field device is known to be located in a range of effective signals from a number of sources. Second, the same occurs in the coverage overlap area. The highest power U疋 can be expected to come from a distinctly different direction. This option should therefore be chosen to provide a valid signal difference in those directions. For coding, the error correction code determines the error rate that can be tolerated in the county-decoded data stream. Because this raw error ratio is also a function of the subset of the matrix fill option, there is a trade-off between these settings. A feedback and control loop between the encoder and the decoder can be used to select the optimal mutual setting. If the receiver finds that it is not in a limited power situation (for example, the power supplied by the line voltage), the decoder can increase its matrix rank number ^. This can be used for many purposes. A higher rank number can reduce the miscellaneous, which increases the signal to noise ratio and then reduces the error ratio. The reduced panning can be used to improve the overall reliability of the link by increasing the transmission data ratio and reducing the error correction coding. : The burden conversion of the matrix is filled in the receiver, and the load on the transmission source can also be reduced. 'It can be used when there is a control loop between the two: 2 mesh reverse, a device using a battery can try With a more robust supply of equipment, the number of negotiations to increase the number of ranks. ^ 43 1279099 By changing the clock settings, this most robust operation requires recalculation of each decoding matrix. However, usually the sum of the times exceeds one: the target is therefore measured only if the ratio is slightly faster than the sum of the time;: the number of events that reduce the decoding matrix acknowledgement, will be more thrifty power and processing + fees. p J. For %-type transmissions, if the source produces a field type, the receiver can fill the matrix with a receive option for 5 weeks to provide the appropriate number of matrix ranks. The receiver can establish a basis on the information about the transmission characteristics, including the information that the transmitter knows, and monitor the amount of the received stream and the decoded data in the matrix. The incoming code matrix must be recalculated frequently. In a wideband system, this subchannel often has its own time sum. Each subchannel can have its own matrix and corresponding measurement ratio. This excludes the recalculation of a very large decoding matrix at this fastest required ratio. In general, the sum of the measurements for the sub-decoding matrix will be smaller than the sum of the measurements for the large matrix. Burden 'to remove other loads. Test, or negotiate with the source. In this negotiation case, the resource limit of the source can also be quantified, so any one can be assumed to be a higher. For the matrix solving technique, the decoding matrices generally do not change from each other. Thus the previous value can be used as a seed to solve the iterative decision, which is less burdened by the processor than the decision from the restart. When the matrix is large enough to start, usually the iterative decoding will become faster, even when the solution S is determined from the -unknown case. This is a known way of solving large rank numbers and meta-matrices. 44 1279099 In general, all of the above can be combined based on available components, modified coding levels, applicable equipment, and other factors that affect trusted operations. All of the methods discussed above for establishing the hybrid matrix can be used as part of this implementation. Another aspect of the present invention is directed to a wavy field pattern to support effective area coverage. For this type of transmission, the basic concept is to use the coverage field of the partition at the infrastructure location. The actual number of used partitions varies with the required capabilities and associated cost factors. The actual implementation can range from #单为区 to an arbitrarily large number. The partition itself can be distinguished in azimuth or height, or in azimuth and height planes. The main benefit of using partitions is that, like each beamforming method, it mitigates the need for tracking devices at other endpoints of the 'link. Leaving the coverage area of one partition to another is therefore reduced to a typical handoff situation. The prior art makes it possible to generate a receiver of this field type, which is appropriately changed for the nickname separation processing of the blind signal separation. In contrast, the transmitter makes Lu = technology, so there is at least some part of the applicable blind signal separation decoder loop. In some implementations, this would mean that the receiver does not need to generate any wavy field patterns. In other implementations, it means that the number of wavy field patterns is significantly reduced. There is an embodiment for a transmission point. This embodiment satisfies the case where the other transmission source being operated in the area is unknown. Referring to the figure, the λ transmission % type of special line is known to the receiver and is a wave shape in the clock sequence. 45 1279099 The change in the transmission pattern is the timing coincident with the area of the transmission symbol. Instead of the movement of the crosshairs, the field contour can be changed and fixed in each time slot. The coverage area is therefore no longer significantly changed and does not create a forward-looking tracking issue in order to compete with it. Due to the changed transmission contour, the receiver will experience a change in the degree of wavefront power. The blind signal separation matrix will therefore be filled with different signal flow differences at different relative gain values. If the received dominant signal is all from one or more transmitters that use a wavy signal, the receiver only performs a grab during each field change and uses the resulting data to fill in the blind message. The number is separated from the matrix separated by the signal. If there is another mix that uses the wavy signal and the other transmitters are not used, the receiver can process it using typical signal separation techniques. For example, methods such as beamforming and most users can be used. However, this blind signal separation method is generally more robust. In a continuous manner, the receiver can implement field-type deformation to generate sufficient additional field patterns to increase the number of ranks of the blind signal separation matrix beyond the number of separated signals. For the blind signal separation decoder implementation, for example, if three contours with three signals are transmitted by the transmitter and two other signals are received, the receiver Jiang Xue It, The elbow is to produce at least two contours to separate the signals that interfere with each other. If the 兮 value w is ^ ^ P ^ If the "Hai transmission fast itself does not produce its own set of activities, it will already need less than r fine people _ person, one contour, so you can reduce the receiver $ j 46 1279099 If a transmitter transmits a signal stream along a signal path, the set of field contours does not need to be rotated or different. This is because the signal detected at the receiver' It has been changed for all other received signals. The transmitter can therefore use a simple power change for the overall field type without changing the shape of the contour. If there is only another data stream at the receiver When summing up, even if the amplitude of one of them is fixed, the blind signal separation can separate him. This is because the power chaos source provides the change required for its own operation. If more than one other data is received, it will be repaired. They appear as a single cluster interference for blind signal separation, unless the receiver itself uses other separation devices, it increases the wave shape generation of itself A field type transmitter in this receive mode will now be discussed. Since most field-type contour processing of blind signal separation is a good method for signal separation, the same is used to generate the transmission pattern. The technique can also be used to generate a majority of receiver values. When the transmission is already supported, the cost factor of the received signal is separated by two =, so only the blind signal is separated from the buried fee. Discussion User equipped receiver for the transmitter The feedback from the user is equipped with the feedback data from the receiver to improve the overall operation of the key. For example, 'the reception; can: determine which field contour The extent of the change, providing a useful resource or not is being fed back to the transmitter. The transmission is made to change the gold tie gentleman, Kuitian, "J ^ ^ two, use less power, or other Communication Hertz interference. These adjustments may be: which one and which of the sequences are used, the 1279099 chopper (LPF) and an analog-to-digital converter (ADC). Most of the spatially independent channels obtained by this technique can be processed in a variety of ways, including examples of overall integration, blind signal separation, or multiple input multiple output reception processing. Referring to Figure 25, the system principles will be described later. The preferred embodiment includes a single antenna array having components that switch to inductors and capacitors. This band limits both the frequency band present in the low noise amplifier and the overall radio frequency power through the filter. This low noise amplifier is not just a low noise amplifier for receiving signal signals. The mixer and local oscillator adjust the radio frequency signal to be one of an intermediate frequency or baseband digital converter (Dc). Either implementation is also available for backend processing. The antenna switching, selective local oscillator switching, and demultiplexing processor switching are driven by the same digital sequence generator, so the N/channels of the signal are generated by the N dispersion modes of the antenna. This produces a signal channel radio frequency output from the mixer and is present in the low pass filter and analog to digital converter. Although not shown in the illustration, the analog-to-digital converter is synchronized with the same digital sequence generator, selective local oscillator, and demultiplexing processor of the drive antenna mode. Considering a signal having a current carrying frequency Fe and a modulation bandwidth B, the demultiplexing processor acts as a pulse downsampling operation for the pulse shape. For an array with N components, the analog-to-digital converter must have a sampling frequency of at least 2*N*B. The need for N is because in the baseband processor, only one out of every N samples exists in a demodulator. The 2*B needs to meet the Naiku 51 1279099, a wireless broadband access technology (WiMAX), broadband code division multiple access _ time division multiplexing (WCDMA-TDD), single channel synchronous code division multiple access (TDScdm^, etc.) or time slot frequency division = (FDD) system (such as Global System for Mobile Communications/General Packetless Service (GSM/GPRS)), which does not receive and transmit signals at the same time, when When the transmission mode is considered independently, the receiving antenna can be regarded as multiplex. For a fully frequency division multiplexed system (such as code division multiple access 2000 (CDMA2000) or wideband code division multiple access_frequency division multiplexing (WCDMA-FDD)), the transmission function can be used to separate antennas. #方式完了. Any of these empty intermediaries can use any of the enabling demodulator techniques (integral combining, blind signal separation, multiple input and output). Another aspect of the present invention is directed to blind signal separation application to code division multiple access receiver processing. An antenna array having appropriate separation between antenna elements is adapted to be used in the decoding sequence. This review of the available literature is just as convincing as this technical expert. Other referenced document discussions are related to signal antenna interference cancellation (saic) techniques. Those using blind signal separation require that the modulation be already phase-and statistically independent in-phase and orthogonal channels to produce a matrix of rank number two. These decoders thus separate the single interference and the desired signal. If there are two interferences, the existing signal antenna interference cancellation technique cannot be implemented. They refer to a use, virtual, and second antenna. This prior art can be improved in accordance with the sum of signal independence obtained by prior art devices, as well as others that are not used in the literature. Narrow, in-phase and quadrature devices are actually located in certain radio access networks, and they may not be suitable for code division multiple access marshalling. All of the methods discussed above for establishing the 54 1279099 hybrid matrix can be used as part of this implementation. While these techniques increase the independent component analysis, the rank of the matrix can be used and the θ independent component analysis application can more readily achieve the desired signal, but it is not certain. So there is still a need for subtle techniques in order to choose the appropriate decoding sequence. For example, if the pair is being dealt with, it needs to be restored from the independent component analysis process. In a second embodiment, as described in Fig. 26, it uses a different = solution 歹 J, which is shown in Fig. 27, and the signal set at node a is a closed example. In order to clearly show only - signal interference, the same argument can be applied to most interferences as well as an increased number of matrix ranks. The level of noise is exceeded by a narrowband interference and the desired coded multiple access signal is below the level of noise. At node B in Fig. 28, the interference has been determined. And, select fast to confirm whether the captured signal is really interference. If the signal has the characteristics of the desired signal, it is not selected. If one or more interferences are selected, they exist in the "reverse" , , (node C). The independent component analyst takes a receive signal to reverse or not reverse, and needs to confirm for each signal whether it needs to be inverted to match the received signal. The interference with the correct amplitude symbol of °H is present in the adder negative input at node D. It is of course possible for a specialist in the field to identify the alternative, but not an equivalent implementation. For example, a pure adder can be used at this stage, and the inverter can be used only when the signal is not captured with the non-inverted waveform. A form of delay of the original received signal (Node A) is present at the other adder inputs. The delay value is the delay resulting from the analysis, selection, and, reversal, processing of the independent component by 55 1279099. Those skilled in the art may of course recognize this alternative, but not equal. For example, the delay and adder function block diagram can be replaced with a minimized block diagram that shifts and sums the two signals until a minimum is reached. At node D in Figure 29, the interference has been removed. At node E in Figure 3, the rake receiver has reduced the dispersion of the signal, which may be present in the baseband decoder. Further to this embodiment, i.e., the signals collected by the antenna structure can be obtained by selection for each of the previously discussed embodiments to enhance the current technique. - What should be discerned is the structure as shown in Figure 26, but a way of implementing the invention. Instead of having, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , This trade-off must be made with == delay, implementation cost, overall operational robustness, and certain settings: Only before the implementation of the consumable receiver, from the basic concept of the Ύίΐ, all the changes in the same invention are required. Although the complete removal of the interference has been implemented, it is not Jiang Yigu’s work. The brother β is not shown, it should be assumed that the 牦耙弋 decoding 1, interference ',, and any interference removal, while the ancient is = processing an improved signal set, generally used for improvement The performance of the prior art. Compared to the = ̄ f access ^ in its own right, it is a Gaussian type with its de-dispersed form, and it is more difficult to be bidirectional by the independent component 8 56 1279099. However: Some information related to the signal is wanted again~~ 'Because the signal still maintains some statistical significance. The gain is: the second 2:2 'will usually become more significant, and the overall processing can be =;:= decoder Alternatively, the overall decoding is enhanced by the wf incremental processing method, meaning that the force is divided by two = with or without 'and/or the number of removed signals can be θ σ or subtracted, and the decoding Signal measurement for improvement or deterioration = degree The physicality can be examined in more detail. The main S key of this embodiment is that the independent component analysis is made for almost the same signal, and it is not for the coded multiple access signal before the lossy processing, because This period is difficult to confirm and/or capture. Another aspect of the present invention is directed to the mixed minimum mean square difference beam separation weight, which is used for blind signal separation through the field type. Reference once again to us Patnet 6, 93 1,362 Most of the inductors are required to provide a linear independent summed signal. The '362 patent is incorporated herein by reference. The antenna array described above can be used in place of the plurality of inductors, however in the '362 patent. The disclosed post-processing is still applicable. Many modifications and other embodiments of the present invention are known to those skilled in the art, which have the teaching advantages of the prior description and related illustrations. It is understood that the invention is not limited to the specific embodiments disclosed herein, and it is contemplated that the modifications and embodiments are included in the scope of the appended claims. 7 1279099 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a typical operational scheme according to the present invention, wherein the wanted devices receive desired and unwanted signals from respective signal sources. ^ 2 Figure at 丨A more detailed block diagram of the communication device shown in the figure. Figure 3 is a different method for generating a linear independent sum of the source signals for the mixing matrix in accordance with the present invention. Figure 4 is a configuration according to the present invention - An antenna array block diagram of a switched beam antenna. An antenna array configured as a phase array is configured as an antenna array of a dipole antenna element to describe the tri-polarization. FIG. 5 is a block diagram according to the present invention. Figure 6 is a block diagram in accordance with the present invention. Figure 7 is a three-dimensional illustration used in accordance with the present invention. Figure 8 is a diagram showing the relationship between ^ ^ ^ ^ and the related and non-correlated antenna arrays according to the present invention.

的通訊裝置塊狀圖,复A 产咕地』 、馬了盲#號分離處理而提供不同的 j吕现多恩和。 第9圖為根據本發明, 士舍灿圖甘& 基於陣列偏位所操作的通訊裝置 塊狀圖,其為了盲作缺八私& 帛1Ω SI & # 儿刀離處理而提供不同的信號總和。 第10圖為根據本發明, _ 綠掄此国 屯 ^ /、有一面度控制器的切換波束天 線塊狀圖,用以選擇性地 第11圖為在方位角方向中史天線场型的尚度。 示,其接著反應在第9圖中中打=一天線場型的天線圖 度方向中旋轉。 闯千撝述的南度控制器,而在該高 58 1279099 第u圖為根據本發明,在該接地 電頻率調節裝置的天線元件堍肤冑K r:n ‘、、、線 旋轉該天線場型。件塊狀圖用以在該高度方向中 狀圖第,=為„月,基於路徑選擇操作的通訊裝置塊 :一了盲饧號分離處理而提供不同的信號總和。 第U圖為根據本發明,基於分散編碼操作的通訊裝置塊 ”為了f信號分離處理而提供額外的信號總和。 通二 15署二據本發明,基於同相與正交信號成分操作的 逋Λ裝置塊狀圖,直為τ亡 /、馬了目佗號分離處理而提供額外的信 就總和。 第16圖為連接至如第15圖中所顯示 正交模組詳細塊狀圖。 干祁一 第1 7圖為根據本發明 出(ΜΙΜΟ)系統塊狀圖 第18圖為根據本發明 定址的塊狀圖。 .第19圖為根據本發明的通訊系統塊狀圖,其中一傳輪考 疋=時槽為基礎。改變用於每個分層空間流的功率程度.。° =〇圖為根據本發明的通訊系統塊狀圖,其中使用波浪 ,以支杈傳輸至相同存取點的多數傳輸器。 ^ 21圖為根據本發明,一最佳化處理與功率消耗(如 的接收器塊狀圖。 第22圖為在第21圖中描述的接收器塊狀圖,其與 輸器整合其本身的操作。 、/' 基於場型分散操作的多輸入多輸 一傅利葉轉換通訊系統碼際干擾The block diagram of the communication device, the complex A 咕 咕 』 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Figure 9 is a block diagram of a communication device operated by Shishang Cangan & based on array offset according to the present invention, which provides different for the blinding of the eight private & 帛1 Ω SI & The sum of the signals. Figure 10 is a block diagram of a switched beam antenna with a one-degree controller according to the present invention, for selectively selecting the antenna pattern in the azimuth direction. degree. It is shown that it then rotates in the antenna pattern direction of the hit = one antenna field type in Fig. 9.南 撝 的 南 南 , , , , , , 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 type. The block diagram is used to map the communication device block in the height direction, which is based on the path selection operation: a blind signal separation process provides different signal sums. The U-picture is according to the present invention. The communication device block based on the decentralized coding operation provides an additional signal sum for the f signal separation process. According to the invention, the block diagram of the 逋Λ device based on the operation of the in-phase and quadrature signal components provides an additional sum of letters for the τ / / 马 分离 分离 separation process. Figure 16 is a detailed block diagram of the orthogonal module connected as shown in Figure 15. Figure 1 is a block diagram of a system according to the present invention. Figure 18 is a block diagram of an address according to the present invention. Figure 19 is a block diagram of a communication system in accordance with the present invention in which a transmission wheel test is based on a time slot. Change the power level used for each hierarchical spatial stream. ° = diagram is a block diagram of a communication system in accordance with the present invention in which waves are used to transfer to a plurality of transmitters of the same access point. Figure 21 is a block diagram of the receiver and power consumption according to the present invention (e.g., a receiver block diagram. Figure 22 is a block diagram of the receiver described in Figure 21, which integrates itself with the transmitter Operation, /' Multi-input and multi-input-Fourier transform communication system inter-symbol interference based on field-distributed operation

5959

Claims (1)

1279099 A月1明$)正慰' 巧 十、申請專利範圍: 1 · 一種將Μ個信號來源所提供的來源信號進行分離的 通訊裝置,該通訊裝置包括: 一天線陣列,包括Ν個天線元件,用以接收該Μ個來源 信號的至少Ν個不同總和,其中Ν與Μ大於1,該Ν個天 線元件包括: 至天線元件,用以接收該Μ個來源信號的ν個不同 總和至少其一,以及 # 至少兩相關天線元件,用以接收該Μ個來源信號的ν個 不同總和的至少其中之二; 該至少兩相關天線元件與該至少一天線元件非相關; 一接收裔’其連接至該天線陣列,用以接收該Μ個來源 信號的至少Ν個不同總和;以及 一盲信號分離處理器,其連接至該接收器,用以形成一 此S矩陣’該混合矩陣包括該Μ個來源信號的Ν個不同總 和,忒混合矩陣具有一秩數,該秩數至少等於Ν,該盲信 5虎刀離處理斋用以從該混合矩陣中,分離出想要的來源信 號。 2·根據申請專利範圍第1項的通訊裝置,其中Ν=Μ。 3·根據申請專利範圍第1項的通訊裝置,其中該混合矩 陣的秩數為Κ’其中Κ<Ν,且該盲信號分離處理器用以從 該混合矩陣中分離出該Μ個來源信號的Κ個。 4_根據申請專利範圍第1項的通訊裝置,其中Ν>Μ。 5·根據申請專利範圍第1項的通訊裝置,其中該至少兩 62 1279099 年月r修(更)正泛: 相關天線元件具有不同的偏極。 6·根據申請專利範圍第5項的通訊裝置,其中該不同的 偏極彼此正交。 7·根據申請專利範圍第1項的通訊裝置,其中該至少雨 天線元件包括三天線元件,其彼此相關並具有不同的偏 極’因此為了該Μ個來源信號的3個不同總和,支援三偏 才亟° 8·根據申請專利範圍第7項的通訊裝置,其中該至少兩 相關天線元件具有不同的偏極。 9.根據申請專利範圍第1項的通訊裝置,其中該至少一 天線元件也包括至少兩相關天線元件,用以接收該Μ個來 源k號的Ν個不同總和至少其二。 1 〇·根據申請專利範圍第i項的通訊裝置,其中該至少 兩相關天線元件包括至少兩主動天線元件,以形成一相位 陣列。 11·根據申請專利範圍第1項的通訊裝置,其中該至少 兩相關天線元件包括至少一主動天線元件與至少一被動天 線元件,以形成一切換波束天線。 12·根據申請專利範圍第1項的通訊裝置,其中該天線 陣列形成至少N個天線波束,用以接收該M個來源信號的 至少N個不同總和,各天線波束具有從一最大增益點以下 的3分貝點,其是為了在一接近信號的至少一方向中提供 信號回絕。 13 ·根據申請專利範圍第1項的通訊裝置,其中該天線 631279099 A month 1 明 $)正慰' Qiao X, patent application scope: 1 · A communication device that separates the source signals provided by one signal source, the communication device includes: an antenna array including one antenna element And receiving at least one different sum of the one source signals, wherein Ν and Μ are greater than 1, the one antenna element comprises: to the antenna element, to receive the ν different sums of the one source signals, at least one of And at least two associated antenna elements for receiving at least two of ν different sums of the one source signals; the at least two associated antenna elements being uncorrelated with the at least one antenna element; The antenna array is configured to receive at least one different sum of the one source signals; and a blind signal separation processor coupled to the receiver to form an S matrix. The hybrid matrix includes the plurality of sources a different sum of the signals, the 忒 mixing matrix has a rank number, the rank number is at least equal to Ν, and the blind letter 5 is used to process the mixed matrix from the mixed matrix. The source of the signal you want. 2. According to the communication device of claim 1, wherein Ν=Μ. 3. The communication device according to claim 1, wherein the rank of the hybrid matrix is Κ' where Κ<Ν, and the blind signal separation processor is configured to separate the source signals from the hybrid matrix One. 4_ According to the communication device of claim 1, wherein Ν>Μ. 5. The communication device according to claim 1 of the patent application, wherein the at least two 62 1279099 months r repair (more) positive: the relevant antenna elements have different polarizations. 6. The communication device according to item 5 of the patent application, wherein the different polarization poles are orthogonal to each other. 7. The communication device according to claim 1, wherein the at least rain antenna element comprises three antenna elements which are related to each other and have different polarizations. Therefore, for three different sums of the one source signals, three biases are supported. 8. The communication device according to claim 7, wherein the at least two related antenna elements have different polarizations. 9. The communication device of claim 1, wherein the at least one antenna element also includes at least two associated antenna elements for receiving at least two different sums of the plurality of source k numbers. The communication device according to claim i, wherein the at least two associated antenna elements comprise at least two active antenna elements to form a phase array. 11. The communication device of claim 1, wherein the at least two associated antenna elements comprise at least one active antenna element and at least one passive antenna element to form a switched beam antenna. 12. The communication device according to claim 1, wherein the antenna array forms at least N antenna beams for receiving at least N different sums of the M source signals, each antenna beam having a maximum gain point or less A 3 decibel point that is used to provide signal rejection in at least one direction of the proximity signal. 13. According to the communication device of claim 1, wherein the antenna 63 1279099 ^ 陣列形成至少一天線場型,用以接收該M個來源信號的至 少Ν個不同總和之一,該至少一個天線場型不具有從一最 大增益點以下的3分貝點,造成在一接近信號的任何方向 中無信號回絕。 14·根據申請專利範圍第1項的通訊裝置,其中該Μ個 來源信號的各總和是線性的。 15.根據申請專利範圍第1項的通訊裝置,其中該盲信 號分離處理器根據主成分分析(PCA),從該混合矩陣中分 • 離出想要的來源信號。 16·根據申請專利範圍第1項的通訊裝置,其中該盲信 號分離處理器根據獨立成分分析(ICA),從該混合矩陣中 分離出想要的來源信號。 17·根據申請專利範圍第i項的通訊裝置,其中該盲信 號分離處理器根據信號數值分解(SVD ),從該混合矩陣中 分離出想要的來源信號。 鲁 18· —種用於操作一通訊裝置以分離由M個信號來源所 提供來源信號的方法,該通訊裝置包括一天線陣列、與該 天線陣列連接的一接收器,以及與該接收器連接的一盲信 號處理器,該方法包括: 在該天線陣列處,接收該M個來源信號的至少N個不同 總和,該N個天線元件包括 至少一天線70件,用以接收該M個來源信號的N個不同 總和至少其一,以及 至少兩相關天線兀件,用以接收該M個來源信號的N個 64 1279099 不同總和至少其二;1279099 ^ The array forms at least one antenna pattern for receiving at least one of a different sum of the M source signals, the at least one antenna pattern having no 3 dB points below a maximum gain point, resulting in an approach No signal is rejected in any direction of the signal. 14. The communication device according to claim 1, wherein the sum of the one source signals is linear. 15. The communication device of claim 1, wherein the blind signal separation processor separates the desired source signal from the mixing matrix based on principal component analysis (PCA). 16. The communication device according to claim 1, wherein the blind signal separation processor separates the desired source signal from the mixing matrix based on an independent component analysis (ICA). 17. The communication device according to claim i, wherein the blind signal separation processor separates the desired source signal from the mixing matrix based on a signal value decomposition (SVD). Lu 18 - A method for operating a communication device to separate source signals provided by M signal sources, the communication device comprising an antenna array, a receiver coupled to the antenna array, and a receiver coupled to the receiver A blind signal processor, the method comprising: receiving at least N different sums of the M source signals at the antenna array, the N antenna elements comprising at least one antenna 70 for receiving the M source signals At least one of N different sums, and at least two associated antenna elements, for receiving N of the M source signals, at least two different sums of 64 1279099; 該至少兩相關元件與該至少一天線元件非相關; 將該Μ個來源信號的至少n個不同總和提供至該接收 器;以及 以盲信號分離處理器,處理該接收器所接收的該Μ個來 源"ί§號至少Ν個不同總和,該處理包括 形成一混合矩陣,其包括該Μ個來源信號的至少Ν個不 同總和,該混合矩陣具有一秩數,該秩數至少等於Ν,以 及 、 從該混合矩陣中分離出想要的信號。 19·根據申請專利範圍第18項的方法,其中。 20. 根據申請專利範圍第18項的方法,其中該至少兩相 關天線元件具有不同的偏極。 21. 根據申請專利範圍第20項的方法’其中該不同的偏 極彼此正交。 22·根據申請專利範圍第i 8項的方法,其中該至少兩天 線元件,包括三天線元件,其彼此相關並具有不同的偏極, 因此為了該Μ個來源信號的3個不同總和,支援三偏極。 23.根據申請專利範圍第22項的方法,其中該至少兩相 關天線元件具有不同的偏極。 24·根據申請專利範圍第18項的方法,其中該至少一天 線元件也包括至少兩天線元件,用以接收該Μ個來源信號 的Ν個不同總和至少其二。 25.根據申請專科範圍第18項的方法,其中該至少兩相 65 1279099 R修(意)- 顏丨 關天、線元件包括至少兩主動天線元件,以形列。 26.根據中請專利範圍第18項的方法,其中該至少兩相 關天線元件包括至少-主動天線元件與至少—被動天線元 件,以形成一切換波束天線。 27·根據申請專利範圍帛18項的方法,纟中該天線陣列 开^成至y Ν個天線波束,用以接收該Μ個來源信號的至少 Ν個不同總和、,各天線波束具有從一最大增益點以下的3 分貝點,其是為了在一接近信號的至少一方向中用以信號 參回絕。 28·根據申請專利範圍第18項的方法,其中該天線陣列 形成至少一天線場型,用以接收該Μ個來源信號的Ν個不 同總和至少其一,該至少一天線場型實質上不具有從一最 大增显點以下的3分貝點,造成在一接近信號的任何方向 中無信號回絕。 29·根據申請專利範圍第18項的方法,其中該μ個來 源信號的各總和是線性的。 3〇·根據申請專利範圍第18項的方法,其中該盲信號分 離處理器根據主成分分析(PCΑ),從該混合矩陣中分離出 想要的來源信號。 31 ·根據申請專利範圍第18項的方法,其中該盲信號分 離處理器根據獨立成分分析(ICA),從該混合矩陣中°分^= 出想要的來源信號。 32·根據申請專利範圍第18項的方法,其中該盲信號分 離處理器根據信號數值分解(SVD),從談混合矩陣中分離 66 1279099 出想要的來源信號。The at least two correlation elements are uncorrelated with the at least one antenna element; providing at least n different sums of the one source signals to the receiver; and separating the processor by the blind signal, processing the ones received by the receiver The source " ί § at least a different sum, the process comprising forming a mixing matrix comprising at least one different sum of the one source signals, the mixing matrix having a rank number, the rank number being at least equal to Ν, and Separating the desired signal from the mixing matrix. 19. According to the method of claim 18, wherein. 20. The method of claim 18, wherein the at least two associated antenna elements have different polarizations. 21. The method according to claim 20, wherein the different polarities are orthogonal to each other. The method of claim i, wherein the at least two antenna elements, including the three antenna elements, are related to each other and have different polarizations, so for three different sums of the one source signals, support three Extremely extreme. 23. The method of claim 22, wherein the at least two associated antenna elements have different polarizations. The method of claim 18, wherein the at least one day line component also includes at least two antenna elements for receiving at least two different sums of the one source signals. 25. The method of claim 18, wherein the at least two phases 65 1279099 R (Yi)-Yan Yu Guan Tian, the line element comprises at least two active antenna elements in a shape. 26. The method of claim 18, wherein the at least two associated antenna elements comprise at least an active antenna element and at least a passive antenna element to form a switched beam antenna. 27. According to the method of claim 18, the antenna array is turned on to y 天线 antenna beams for receiving at least one different sum of the one source signals, and each antenna beam has a maximum from one A 3 decibel point below the gain point for signal entry in at least one direction of the proximity signal. The method of claim 18, wherein the antenna array forms at least one antenna field type for receiving at least one of a plurality of different sums of the one source signals, the at least one antenna field type having substantially no From a point of 3 decibels below the maximum increase point, no signal is rejected in any direction of the proximity signal. 29. The method of claim 18, wherein the sum of the μ source signals is linear. The method according to claim 18, wherein the blind signal separation processor separates the desired source signal from the mixing matrix based on principal component analysis (PCΑ). The method according to claim 18, wherein the blind signal separation processor extracts a desired source signal from the mixing matrix according to an independent component analysis (ICA). 32. The method of claim 18, wherein the blind signal separation processor separates the desired source signal from the mixing matrix based on the signal value decomposition (SVD). 67 1279099. i or Τ. ________________67 1279099. i or Τ. ________________ 週期 參劂 時間 V V [fill [3¾ BPF 符元週期 鏨時間mmmmi ill! 第24 LPF ADC 多處器 解工理 BBP L0 (選擇性的) 第25圖 81 1279099 ,七、指定代表圖: (一) 本案指定代表圖為:第(2 )圖 (二) 本代表圖之元件符號簡單說明: 30 34(1)〜34(N) PCA ICA SVD 通訊裝置 第1〜第N天線元件 主成分分析模組 獨立成分分析模組 信號數值分解模組 32 天線陣列 36 混合矩陣 38(1)〜38(3)分離矩陣 39 分離信號 40 無線電收發器 42 處理器 44 主成分分析核組 46 獨立成分分析彳旲組 48 信號數值分解模組 49 盲信號分離處理器 50 信號分析模組 52 應用相關處理模組Period reference time VV [fill [33⁄4 BPF symbol period 錾 time mmmmi ill! 24th LPF ADC multi-processor solution BBP L0 (optional) Figure 25 81 8179099, seven, designated representative map: (1) The representative representative figure of this case is: (2) Figure (2) The component symbol of this representative figure is simple: 30 34(1)~34(N) PCA ICA SVD communication device 1st to Nth antenna element principal component analysis module Independent Component Analysis Module Signal Numerical Decomposition Module 32 Antenna Array 36 Hybrid Matrix 38(1)~38(3) Separation Matrix 39 Separation Signal 40 Radio Transceiver 42 Processor 44 Principal Component Analysis Core Group 46 Independent Component Analysis Group 48 Signal Value Decomposition Module 49 Blind Signal Separation Processor 50 Signal Analysis Module 52 Application Related Processing Module 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 68. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: 6
TW094133244A 2004-09-23 2005-09-23 Blind signal separation using a combination of correlated and uncorrelated antenna elements TWI279099B (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
US61246904P 2004-09-23 2004-09-23
US61247104P 2004-09-23 2004-09-23
US61243504P 2004-09-23 2004-09-23
US61254704P 2004-09-23 2004-09-23
US61255004P 2004-09-23 2004-09-23
US61243304P 2004-09-23 2004-09-23
US61255104P 2004-09-23 2004-09-23
US61254604P 2004-09-23 2004-09-23
US61254804P 2004-09-23 2004-09-23
US61263204P 2004-09-23 2004-09-23
US61526004P 2004-10-01 2004-10-01
US61533804P 2004-10-01 2004-10-01
US62086204P 2004-10-20 2004-10-20
US62077504P 2004-10-20 2004-10-20
US62077604P 2004-10-20 2004-10-20
US62111304P 2004-10-22 2004-10-22
US63922304P 2004-12-23 2004-12-23
US11/233,300 US7113129B2 (en) 2004-09-23 2005-09-22 Blind signal separation using a combination of correlated and uncorrelated antenna elements

Publications (2)

Publication Number Publication Date
TW200629777A TW200629777A (en) 2006-08-16
TWI279099B true TWI279099B (en) 2007-04-11

Family

ID=38291589

Family Applications (7)

Application Number Title Priority Date Filing Date
TW094133245A TWI284464B (en) 2004-09-23 2005-09-23 Blind signal separation using polarized antenna elements
TW094133241A TWI269544B (en) 2004-09-23 2005-09-23 Blind signal separation using array deflection
TW094133237A TWI279995B (en) 2004-09-23 2005-09-23 Blind signal separation using spreading codes
TW094133246A TWI284465B (en) 2004-09-23 2005-09-23 Blind signal separation using correlated antenna elements
TW094133236A TWI287366B (en) 2004-09-23 2005-09-23 Blind signal separation using I and Q components
TW094133239A TWI281795B (en) 2004-09-23 2005-09-23 Blind signal separation using signal path selection
TW094133244A TWI279099B (en) 2004-09-23 2005-09-23 Blind signal separation using a combination of correlated and uncorrelated antenna elements

Family Applications Before (6)

Application Number Title Priority Date Filing Date
TW094133245A TWI284464B (en) 2004-09-23 2005-09-23 Blind signal separation using polarized antenna elements
TW094133241A TWI269544B (en) 2004-09-23 2005-09-23 Blind signal separation using array deflection
TW094133237A TWI279995B (en) 2004-09-23 2005-09-23 Blind signal separation using spreading codes
TW094133246A TWI284465B (en) 2004-09-23 2005-09-23 Blind signal separation using correlated antenna elements
TW094133236A TWI287366B (en) 2004-09-23 2005-09-23 Blind signal separation using I and Q components
TW094133239A TWI281795B (en) 2004-09-23 2005-09-23 Blind signal separation using signal path selection

Country Status (1)

Country Link
TW (7) TWI284464B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8724717B2 (en) 2008-04-10 2014-05-13 Mediatek Inc. Pilot pattern design for high-rank MIMO OFDMA systems
US8126094B2 (en) * 2009-01-07 2012-02-28 Skyworks Solutions, Inc. Circuits, systems, and methods for managing automatic gain control in quadrature signal paths of a receiver
US10516219B2 (en) 2009-04-13 2019-12-24 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
WO2010120768A2 (en) 2009-04-13 2010-10-21 Viasat, Inc. Active hybrids for antenna systems
US8693970B2 (en) 2009-04-13 2014-04-08 Viasat, Inc. Multi-beam active phased array architecture with independant polarization control
JP5591322B2 (en) 2009-04-13 2014-09-17 ビアサット・インコーポレイテッド Half-duplex phased array antenna system
US8670432B2 (en) 2009-06-22 2014-03-11 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells
US8605777B2 (en) 2010-06-01 2013-12-10 Etron Technology, Inc. Circuit for recognizing a beginning and a data rate of data and method thereof
TWI809390B (en) * 2021-03-01 2023-07-21 新加坡商台達電子國際(新加坡)私人有限公司 Method and audio processing system for blind source separation without sampling rate mismatch estimation

Also Published As

Publication number Publication date
TW200627840A (en) 2006-08-01
TW200627841A (en) 2006-08-01
TWI281795B (en) 2007-05-21
TW200629777A (en) 2006-08-16
TWI269544B (en) 2006-12-21
TWI284464B (en) 2007-07-21
TW200627834A (en) 2006-08-01
TW200627835A (en) 2006-08-01
TWI284465B (en) 2007-07-21
TW200627836A (en) 2006-08-01
TWI279995B (en) 2007-04-21
TW200627839A (en) 2006-08-01
TWI287366B (en) 2007-09-21

Similar Documents

Publication Publication Date Title
TWI279099B (en) Blind signal separation using a combination of correlated and uncorrelated antenna elements
EP1792367B1 (en) Blind signal separation using i and q components
EP1800147B1 (en) Blind signal separation using signal path selection
EP1792198B1 (en) Blind signal separation using a combination of correlated and uncorrelated antenna elements
EP1792197B1 (en) Blind signal separation using spreading codes
US20060069531A1 (en) Blind signal separation using polarized antenna elements
TWI345887B (en) Method and apparatus for rate compatible dirty paper coding
CN101023372B (en) Blind signal separation using a combination of correlated and uncorrelated antenna elements
EP1792366B1 (en) Blind signal separation using array deflection
US7414579B2 (en) Blind signal separation using correlated antenna elements
CN109417429B (en) Radio base station apparatus and radio communication method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees