TWI284465B - Blind signal separation using correlated antenna elements - Google Patents

Blind signal separation using correlated antenna elements Download PDF

Info

Publication number
TWI284465B
TWI284465B TW094133246A TW94133246A TWI284465B TW I284465 B TWI284465 B TW I284465B TW 094133246 A TW094133246 A TW 094133246A TW 94133246 A TW94133246 A TW 94133246A TW I284465 B TWI284465 B TW I284465B
Authority
TW
Taiwan
Prior art keywords
signal
antenna
source
matrix
signals
Prior art date
Application number
TW094133246A
Other languages
Chinese (zh)
Other versions
TW200627841A (en
Inventor
Ivica Kostanic
Steven J Goldberg
Thomas E Gorsuch
John E Hoffmann
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/232,500 external-priority patent/US7414579B2/en
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200627841A publication Critical patent/TW200627841A/en
Application granted granted Critical
Publication of TWI284465B publication Critical patent/TWI284465B/en

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communications device for separating source signals provided by M signal sources includes an antenna array comprising N correlated antenna elements for receiving at least N different summations of the M source signals, with N and M being greater than 1. A receiver is connected to the antenna array for receiving the at least N different summations of the M source signals. A blind signal separation processor is connected to the receiver for forming a mixing matrix comprising up to the at least N different summations of the M source signals, and for separating desired source signals from the mixing matrix. The mixing matrix has a rank equal to at least N.

Description

'1284465 九、發明說明: 〔發明所屬之技術領域〕 本發明係有關於訊號處理領域。特別是,本發明係有關 於應用盲訊號分離(BSS)技術,進而自混合來源訊號中分 離得到想要之來源訊號。 〔先前技術〕 Φ 盲訊號分離(BSS)係包括自混合訊號中回復來源訊號, 其中,混合訊號係包括混合來源訊號。這種,,訊號分離,, 係”盲(blind) ” ,因為這種”訊號分離,,之實施通常僅 能夠具有訊號、訊號來源、及傳遞頻道對訊號造成效應之 有限資訊。 一種例子係熟悉之”雞尾舞會,,效應,亦即:舞會成員 能夠自屋内全部語音中分離得到單一語音。特別是,盲來 源分離(BSS)係可以應用於行動電話及個人無線通訊裝 φ 置,當許多頻帶係經由各種射頻發射器塞滿,並且,各種 射頻發射器通常係共存於相同頻譜。在低功率、免授權無 線技術(諸如··藍芽)、及其他個人區域網路之發展趨勢下, 共同頻道發射器於未來幾年間之問題似乎僅會更加惡化。 三種常用之盲訊號分離(BSS)技術係主要成分分析 (PCA)、獨立成分分析(10八)、及單一數值分解(8\〇3)。 主要成分分析(PCA)係包括來源訊號之第一及第二動差統 計(moment statistic),並且,主要成分分析(PCA)係可 以應用於來源訊號之訊號雜訊比(SNR)偏高之情況。除此 1284465 以外’獨立成分分析(ICA)係可以應用,其係包括主要成 分分析(PCA)處理、併跟隨來源訊號之第三及第四動差統 計(moment statistic)。或者,單一數值分解(SVD)係可 以應用,藉以基於特徵值而自混合來源訊號中分離得到想 要之來源訊號。 無論應用何種盲訊號分離(BSS)技術,複數感應器係 可以應用,進而經由各種訊號來源接收不同混合來源訊 號各個感應器係輸合混合來源訊號,其係來源訊號之獨 特總和。一般而言,頻道係數及原始來源訊號兩者均不為 接收器所知悉。來源訊號之獨特總和係可以用來填滿混合 矩陣。隨後,適當盲訊號分離(BSS)技術係可以應用於混 合矩陣,藉以自混合來源訊號中分離得到想要之來源訊號。 在一種例子中,美國專利號碼US679917〇係揭露一種方 法,其係應用獨立成分分析(ICA),藉以自混合來源訊號 中分離得到獨立來源訊號。複數感應器係接收混合來源訊 號,並且,處理器係在時間上取樣混合來源訊號、並將各 個取樣儲存為資料向量以產生:紐#合。各_應器係輪 出混合來祕號,其絲源訊狀獨特總和。獨立成分分 析(ICA)模_實施資料向量之獨立成分分析,藉以分離 獨立來源訊號及混合來源訊號之其他訊號。 感應器係於空間上彼此分離,並且,處理器係產生單一 資料向量給各_,藉以產生資料集合。除此以外, 美國專利號碼脳799削亦揭露:感應器數目N係等於或 大於來源數目M ,藉以填滿資料集合。這種 1284465 實施方式之問題在於··當來源數目M增加時,感應器…數 目亦會隨之增加。小型可攜式通訊裝置幾乎不存在可用體 積以容納大;數目N,並且,設置感絲於可攜式通 訊裝置外部亦可能造成使用者困擾。 有鑑於此’美國專利號碼US6931362係揭露另一種方 法,藉以應用盲訊號分離(BSS)技術,進而分離得到想要 之來源訊號。揭露之盲訊號分離(BSS)技術係形成具有混 合型矩陣筆束適應性陣列權值(hybrid matrix — pencil adaptive array weights)之混合矩陣,藉以使同時基於干擾 奄射器及咼斯雜訊之最小平方誤差最小化。混合型矩陣筆 束適應性陣列權值(hybrid matrix-pencil adaptive army weights)係可以使訊號干擾雜訊比(SINR)最小化。類似 於美國專利號碼US6799170,感應器亦於空間上彼此分離, 並且’感應器數目N係等於或大於來源數目μ,亦即: NgM,藉以填滿混合矩陣。除此以外,各個感應器儀提供 單輸入至混合矩陣,藉以導致可攜式通訊裝置之較大體 積。 〔發明内容〕 有鑑於上述背景,本發明之一目的係提供一種通訊裝 置,該楂通訊裝置係包括一小型天線陣列,該小型天線陣 列係接收混合來源訊號以提供盲訊號分離(BSS)技術應 用,藉以自混合來源訊號中分離得到想要之來源訊號。 根據本發明之上述及其他目的、特徵、及優點係可以經 1284465 由一種通訊裝置提供,藉以分離]V[個訊號來源提供之來源 訊號,其中,該通訊裝置係包括一天線陣列,藉以接收M 個訊號來源之不同總和。一接收器或接收器構件係連接至 該天線陣列,並且,一盲訊號分離(BSS)處理器係連接至 該接收器,藉以形成一混合矩陣。該混合矩陣係包括該天 線陣列接收之Μ個來源訊號之不同總和。隨後,該盲訊號 分離(BSS)處理器係自該混合矩陣中分離得到想要之來源 訊號。 相對於應用空間上分離之感應器提供Μ個訊號之不同 總和以形成該混合矩陣,一小型天線陣列係可以應用。有 鑑於此,盲訊號分離(BSS)技術係可以應用於可攜式通訊 裝置’因為該天線陣列係可以提供不止一組輸入至該混合 矩陣、並可以同時維持小型體積。 特別是,該天線陣列係可以包括Ν個關速天線元件,藉 以接收Μ個來源訊號之至少Ν個不同總和,其中,Ν及Μ 係大於一。該盲訊號分離(BSS)處理器係可以形成該混合 矩陣,其中,該混合矩陣係包括Μ個來源訊號之高達至少 Ν個不同總和。該混合矩陣係可以具有等於至少Ν之一秩 數(rank)〇 天線元件數目係可以等於來源訊號數目,亦即:。 或者’天線元件數目係可以大於來源訊號數目,亦即:N> Μ。在另一種架構中,該混合矩陣之秩數(rank)係等於κ, 其中,K<N,並且,該盲訊號分離(BSS)處理器係自該 混合矩陣中分離得到Μ個來源訊號之K値來源訊號。 1284465 N個關連天線元件係可以包括N個主動天線元件,藉 此,天線陣列係可以形成相位陣列。或者,N個關連天線元 件係可以包括至少一主動天線元件、及高達(n—D個被 動天線元件,藉此,天線陣列係可以形成切換波束天線。 富接收Μ個來源訊號之不同總和時,場型及波束間係可 能產生區別。在這種例子中,天線陣列係可以形成至少Ν 個天線波束,藉以接收Μ個來源訊號之至少Ν個不同總 和,其中,各個天線波束係具有最大增益點下方之點, 進而提供一到達訊號於至少一方向之訊號拒絕。在另一種 例子中,天線陣列係形成至少一天線場型,藉以接收撾個 來源訊號之Ν個不同總和之至少一個總和,其中,至少一 天線場型大體上係不具有最大增益點下方之3dB點,也因 此無法提供一到達訊號於任何方向之訊號拒絕。 Μ個來源訊號之各個總和係線性的。該盲訊號分離 (BSS)處理斋係可以基於主要成分分析(pCA)、獨立成 分分析(ICA)、及單一數值分解(SVD)之至少一種技術, 進而自該混合矩陣中分離得到想要之來源訊號。 本叙明之另一種特徵係有關於一種方法,該種方法係操 作先别定義之通訊裝置,藉以分離M個訊號來源提供之來 、原晟號這種方法係可以包括:應用天線陣列接收Μ個來 源訊號之至少Ν個不同總和,其中,天線陣列係包括Ν個 關^天線元件,並且,Ν及Μ敍於—。μ個來源訊號之 至夕Ν個不同總和係提供至接收器。盲訊號分離(BSS) 處理器係處理接收器接收之M個來源訊號之至少N個不同 1284465 \ 總和。盲訊號分離(BSS)處理器之處理係可以包括:形成 -混合矩陣,該混合矩陣包括M個來源訊號之高達至少N 個不同總和,以及,自該混合矩陣中分離得到想要之來源 訊號。該混合矩陣係可以具有等於至少N之一秩數^滅)。 〔實施方式〕 現在,本發明將會應用較佳實施例、配合所附圖示詳細 瞻說明如下。然而,本發明亦可以實施於許多不同形式,而 不應该限定於本發明所述之較佳實施例。相對於此,該等 較佳實施例之提供僅是使本發明之揭露能夠徹底且完整, 進而充分地傳達給熟習此項技術領域之人士。除此以外, 在本發明之較佳實施例中,相同數目係表示相同元件,並 且’撇號係表示替代較佳實施例之類似元件。 在通訊網路中,特定通訊裝置之想要來源訊號係可能存 在’並且,操作於相同頻帶之其他通訊裝置之想要來源訊 瞻 號亦可能存在。除此以外,雜訊來源亦會同時存在,其雖 然不會產生應用於通訊之訊號、但卻仍然會被個別通訊裝 置接收。 為促進重要來源訊號之解碼,盲訊號分離(BSS)技術 係可以應用,藉以分離特定通訊裝置欲接收之來源訊號。 如先前所述,術語,,盲,,係表示:在理想例子中,來源訊 號^系可以分離,而不需要知道來源訊號之特性或基於來源 訊號及通訊頻道間互動所造成之轉換。在實際應用中,任 何可提供知識均可以應用。有鑑於此,在這種例子中,訊 11 1284465 號分離係不完全盲的(semi — blind)。 盲訊號分離(BSS)技術之三種常用技術係包括:主要 成分分析(PCA)、獨立成分分析(ICA)、及單一數值分解 (S VD )。只要來源訊號之部分可量測特徵係獨立的,並 且’只要來源訊號之總和係彼此線性獨立的,單一或複數 盲訊號分離(BSS)技術係可以應用,藉以自混合來源訊號 中分離得到想要之來源訊號。一般而言,可量測特徵係來 源訊號之第一、第二、第三、或第四動差。 主要成分分析(PCA)係漂白來源訊號、應用第一及第 二動差、並基於關連特性旋轉資料集合。若來源訊號之訊 號雜§fl比較南’訊號分離處理係可以停止於主要成分分析 (PCA) 〇 若來源訊號之訊號雜訊比較低,獨立成分分析(ICA) 係可以基於來源訊號之第第三及第四動差之統計屬性,進 而分離得到想要之來源訊號。由於來源訊號係呈現高斯 (Guassian)分佈,第三及第四動差係取決於第一及第二動 差。除了主要成分分析(PCA)及獨立成分分析(ICA)以 外,單一數值分解(SVD)亦可以基於特徵值^丨驭爪^收), 進而自混合來源訊號中分離得到想要之來源訊號。 第1圖係表示一種典型情境,其中,複數訊來源2〇 係可以應用’進而傳輸來源訊號泣。來源訊號2^、沿著個 別訊號來源20之關連天線波束24之方向進行傳輸。複數 訊號來源20係包括f —職來源2G⑴至第%訊號來源 20 (M)。同樣地’個別來源訊號係表示為第一來源訊號^ 12 1284465 (1 )至第Μ來源訊號22 (Μ)。在通訊網路中,具有全向 性天線場型及方向性天線場型形式之更直覺實施方式亦可 以應用。 在通訊裝置30中,天線陣列32係接收經由訊號來源20 之來源訊號22之線性組合(亦即··混合來源訊號)。天線 陣列32係包括複數天線元件34,其中,各個天線元件係提 供經由訊號來源20之來源訊號22之至少一線性組合。天 線元件34係具有第一天線元件34 ( 1)至第ν天線元件34 (Ν) 〇 首先,接收來源訊號22 (1)至22 (Μ)係可以形成混 合矩陣36。接著,通訊裝置30係應用盲訊號分離(BSS) 技術以決定分離矩陣38,進而自混合矩陣中分離得到想要 之來源訊號。分離訊號係表示為數目39。 通訊裝置30係取樣接收來源訊號之聚集或混合(不需要 知道來源訊號之特徵),進而共同擷取天線陣列32接收之 混合來源訊號。各個天線元件34之輸入係可以模擬為來源 訊號22在旋繞(convolved)於頻道脈衝響應以後之總和(頻 道係表示讯號來源20之輸出及天線元件34之輸出間之傳 遞路徑)加上額外高斯(Guassian)雜訊。 分離IV[個訊號來源20 (1)至2〇 (M)提供之來源訊號 之通訊裝置30將會配合第2圖進一步詳細說明如下。天線 陣列32係包括N個天線元件34 (工)至% (N),藉以接收 Μ個來源訊號之高達^^個不同總和,其中,μ係大於 一。天線陣列32並不需要限定於任何特定架構。天線陣列 13 ,1284465 3^2係可以包括單一或複數天線元件%。個別天線元件% 射以適當架構,藉此,天鱗列32係可以形成,舉例來 說,相位陣列或切換波束天線,其將會進一步詳細說明如 下0 收發裔40係連接至天線陣列32之下行串流,藉以接收 Μ個來源峨22之高達至個不同總和。處理器42係 連接至收發器40之下行串流。在第2圖中,即使處理器42 _ 係、獨立於收發$ 40,然而,處理器42亦可以包含於收發器 40内部。收發器4〇接收之M個來源訊號22之]^個不同總 和係可以應用,藉以填滿混合矩陣36。隨後,混合矩陣36 係可以應用處理器42内部之單一或複數盲訊號分離(BSS) 處理模組44、46、及48處理。 這些單一或複數盲訊號分離(BSS)處理模組係包括主 要成分分析(PCA)模組44、獨立成分分析(ICA)模組 46、及單一數值分解(SVD)模組48。這些單一或複數盲 馨 訊號分離(BSS)處理模組44、46、及48係可以適當架構, 藉以構成盲訊號分離(BSS)處理器49之部分。主要成分 分析(PCA)模組44係基於接收來源訊號之不同總和之第 一及第二動差操作,相對於此,獨立成分分析(ICA)模組 46係基於接收來源訊號之不同總和之第三及第四動差操 作。除此以外,單一數值分解( SVD)模組48係基於接收 來源號之不同總和之特徵值(eigenvalue)實施訊號分離。 首先’主要成分分析(PCA)模組44實施之關連處理係 決定接收來源訊號之不同總和之啟始分離矩陣38 (1),且 14 ^284465 k後’獨立成分分析(ICA)模組46係決定加強分離矩陣 38 (2),藉以自混合矩陣36中分離得到想要之來源訊號。 若來源訊號係應用單一數值分解(SVD)模組48分離,分 離矩陣38 (3)亦可以決定’藉以自混合矩陣36中分離得 到接收來源訊號之不同總和。 經由個別分離矩陣38 (1)至38 (3),分離訊號係表示 為數目39。隨後,分離訊號39係可以應用訊號分析模組 泰 50進行訊號分析,藉以決定那些訊號為重要訊號以及那些 訊號為干擾訊號。應用相關處理模組52係處理訊號分析模 組50輪出之訊號。 那些訊號為重要訊號之決定可能不會始終包含欲解碼之 最後訊號。舉例來說,個別應用係可能需要識別干擾來源 並將其自接收來源訊號之不同總和中刪去、隨後再將删去 干擾來源後之訊號饋入波形解碼器。在這種例子中,重要 訊號係最終拒絕之訊號。 • 饋入主要成分分析(PCA)模組44之資訊係獨特訊號總 和Xj。假設Μ個獨立成分之N個線性混合Xl,…,χΝ係表 示如下: XI (t) ^ansi (t) +...aiksk (t) +*..aiMSM (t) xj (0 =^lsl (t) +...^kSk (t) (t) XN (t) =aNisi (t) (t) +...aNMSM (t) 一般而言,收發器40並無從得知頻道係數〇jk及原始訊 號sk。應用矩陣表示法,上述等式係可以簡化並重寫為x 15 1284465 =As,其中,A係混合矩陣。統計上模型x=As亦可以稱 為獨立成分分析(ICA)模型。習知技術係嘗試找到頻道之 反向矩陣(inverse ),亦即:s = A— 。 獨立成分分析(ICA)模組46係可以決定分離矩陣w, 並且,y=W(As) =Wx。向量y係具有盲順序及縮放改變 之s之子集合。若全部訊號係不可分離,向量y之通用形式 係可以表示為y = W (As) +Wn=Wx+Wn,其中,額外 | 之η項係表示基於無法識別來源之剩餘雜訊。 獨立成分分析(ICA)模型係產生模型,亦即:獨立成 分分析(ICA )模型係描述觀察資料是如何經由成分%之混 合處理產生。獨立成分係潛在變數,亦即:獨立成分並無 法直接觀察得知。除此以外,混合矩陣A係假定為盲矩陣。 由上述可知,僅有隨機向量x係可以直接觀察得知,相對 於此,A及s均是基於X之預測值。 獨立成分分析(ICA)之起點係假設獨立成分〜係統計 > 上獨立的。除此以外,獨立成分%亦假設至多具有高斯分 佈(Guassian distribution)之一訊號。,,高斯分佈(⑼挪如 diSt_tion)之一訊號”限制係基於高斯訊號 之第二動差等於零、且第四動差係無從辨識於高斯 (Guassian)訊號之事實。 為簡單起見,盲混合矩陣A係假設為方形(square)矩 陣。藉此,獨立成分之數目鱗於觀察混合訊號之數目。 然而,這種假設之限制有時候亦可以解除。只要訊號私之 特定可里測特徵為統計上獨立的,分離矩陣w係可以決定。 16 1284465 混合矩陣A之秩數(rank)係決定可以實際分離之來源 訊號數目。舉例來說,秩數(rank)為四之混合矩陣係表示 可以分離四個來源訊號。理論上,混合矩陣A之秩數(rank) 應该至少專於訊號來源數目Μ。秩數(rank)愈大,可以分 離之來源訊號亦愈多。當訊號來源數目Μ增加時,需要天 線元件數目亦會隨之增加。在發明背景中,美國專利號碼 US6799170及US6931362均揭露··天線元件數目Ν應該等 於或大於訊號來源數目Μ ’亦即:,否則訊號分離即 應该使用不同於盲訊號分離(BSS)技術之其他技術。 產生來源訊號之線性獨立總和之一種工業標準係應用非 關連感應器,亦即··各個感應器係彼此間隔至少一個波長。 這個波長係基於通訊裝置30之操作頻率。ν個感應器於空 間上係非關連的,但於極性及角度上則存在關連。Ν個非關 連感應器係提供線性獨立訊號之Ν個總和,其中,各個感 應器係提供混合矩陣Α之單一項目。 第3圖係表示根據本發明之不同手段之規劃圖或概述 圖,藉以產生混合矩陣A之來源訊號之線性獨立總和。在 簡短提示以後,各種手段將會進一步詳細說明如下。 規劃圖之第一區段係提出天線架構。方塊1〇〇係表示非 關連感應器’其中,各個感應器係提供單一輸入至混合矩 陣A。方塊102係表示非關連天線陣列,其中,非關連天線 陣列係提供複數輸入,進而填滿混合矩陣A。除此以外,方 棒104亦表示天線陣列,其中,天線元件之部分係關連, 並且,個別天線元件係具有不同極性,#以填滿混合矩陣 1284465 A。方塊1〇〇、102、及104提出之感應器及天線陣列之不同 組合係可以應用方塊106組合,藉以進一步填滿方塊ι〇6 之混合矩陣A 〇 規劃圖之第二區段係提出第一區塊提供之天線架構之加 強。這些加強係可以實施,藉以收集來源訊號之額外或替 代總和而進一步填滿混合矩陣A。方塊108係包含陣列偏向 (deflection)操作,其中,天線場型之高度(elevati〇n)係 可以改變,進而接收來源訊號之額外總和。方塊1〇6之任 何組合係可以應用於進行陣列偏向(deflection)操作之方 塊 108。 在方塊110中,路徑選擇係可以進行,藉以使應用於填 滿混合矩陣A之來源訊號之全部總和均可以存在關連(第 一及第二動差)及/或統計上獨立(第三及第四動差)。換 句話說,入射訊號係可以選擇性地選定,進而替代不存在 關速及/或統計上獨立之總和。方塊110係可以饋入方塊 106及方塊108之任何組合。除此以外,方塊1〇8及方塊ι1〇 係可以直接饋入混合矩陣方塊116。 規劃圖之第三區段係提出訊號分割,藉以進一步填滿方 塊116之混合矩陣A。舉例來說,方塊112係應用擴頻數碼 (spreading code)分割不同總和。若總和訊號具有k個擴 頻數碼(spreading code),這個特定總和訊號係可以處理, 進而&供k個關連總和訊號。擴頻數碼(Sprea(jing⑺和) 係可以配合方塊106、108、及no之輸出合併應用。方塊 114係可以將不同總和訊號分割為同相(j)成分及正交(q) 18 J284465 成分,藉以進一步填滿混合矩陣A。藉此,同相(〗)成分 及正父(Q)成分係可以做為遺漏矩陣之乘數二,並且,同 相(I)成分及正交(q)成分係可以配合方塊1〇6、1〇8、 110、及112之輸出合併應用。 規劃圖之最後區段係表示方塊116形成之混合矩陣a。 如規劃圖所示’基於先前所述之任何方塊,混合矩陣A係 可以填滿來源訊號之不同總和。第一區段之天線陣列架構 鲁 ^優點在於·小型天線陣列係可則彡成,進而填滿混合矩 陣A。第二區段及第三區段之天線陣列架構之優點在於:N 個天線元件(其中,天線元件數目N係小於來源訊號數目 M)係可以應用,進而應用來源訊號之M個或更多個不同 總和填滿混合矩陣A〇 基於規劃圖所示之天線架構,一種天線陣列將可以進一 步詳細討論如下,其中,該種天線陣列係包括N個關連天 線元件,藉以接收Μ個來源訊號所形成之至少]^個不同總 和’且其中’ Ν及Μ係大於一。在一種較佳實施例中,這 種天線陣列係如第4圖所示之切換波束天線14〇。 切換波束天線140係可以產生複數天線場型,包括:方 向性天線場型及全向性天線場型。切換波束天線14〇係具 有一個主動天線元件142及一對被動天線元件144。主動天 線元件142及被動天線元件144之實際數目係可以根據想 要之應用而有所變動。請參考美國專利申請案號碼η/ 065752,其係切換波束天線陣列之進一步詳細討論。這篇 美國專利申請案與本專利申請案係具有相同受讓人,並 19 1284465 且,這篇美國專利申請案之内容係可以提供本專利申請案 參考。 各個被動天線元件144係包括上半部144a及下半部 144b。被動天線元件144之上半部144a係經由反應式負載 148連接至地面146。反應式負載148係可變電抗,其係應 用變容器(varactor)、傳輸線、或切換以改變電容電感比。 經由變動反應式負載148,放射場型係可以改變。由於切換 天線元件140係具有兩個被動天線元件,四種不同天線場 型係可以形成。 四種不同天線場型之前三種天線場型係可以應用,進而 接收獨特sfL號總和χ」·。四種不同天線場型之第四種天線場型 係其他三種天線場型之線性組合,因此,第四種天線場型 係無法做為混合矩陣A之項目。由此可知,應用三種天線 元件,三種獨特訊號總和Xj係可以輸入混合矩陣A。切換 波束天線之優點在於:應用三個天線元件142及144,秩數 (rank)為三之混合矩陣係可以支援。 在另一種較佳實施例中,這種天線陣列係包括N個關連 主動天線元件,藉以使這種天線陣列能夠形成相位陣列 160,如第5圖所示。相位陣列160係包括複數主動天線元 件162、及耦接於主動天線元件之複數權值控制元件164。 權值控制元件164係調整接收訊號之振幅及/或相位,藉 以形成混合波束。 分割器/組合器166及控制器168係連接至權值控制元 件164。請參考美國專利號碼US6473036,其係進一步詳細 20 1284465 ί Γ =種主動相位陣列16°。這篇美國專利與本專利申請案 :、有相同賴人,並且,這篇美國專利之内容係可以提 供本專利申請案參考。 主動元件162之數目係支援具有相同秩數(服^之混 口矩陣A即使峨來源數目M係等於主動元件數目n , 亦卩Μ N這種主動相位陣列⑽仍然可以維持小型, 因為’相較於翻麵連天線元件(非關連天線錯彼此 間大於-個波長)之習知技術,主動元件162於空間及 極性上係存在關連。 在其他較佳貫施例中,混合矩陣Α之秩數(rank)係可 =等於κ (其中’ K<N),藉此,盲訊號分離(bss)處理 裔49係可以自混合矩陣a中分離得到从個來源訊號之κ 個來源訊號。在其他較佳實施例中,其將會進一步詳細說 明如下,Ν亦可以大於μ。 無論在切換波束天線Mo或相位天線16〇中,個別天線 元件142、144、及146間之距離均可以適當設定,藉以容 卉理想之後部前部比(back to front ratio)。這乃是基於··這 些天線陣列之典型應用即是拒絕不想要之訊號(亦即:背 部到達)、並強化想要之訊號(亦即:前部到達)。 然而,為了建立混合矩陣,本發明之主要目標係產生不 同訊號總和。實際上,重要訊號可能會始終低於這種應用 之干擾來源、並仍舊被分離出去。基於目的之顯著差異, 天線元件間之距離並不需要具有特定間隔。 天線元件係可以彼此距離更遠或更近,以及,天線元件 21 1284465 係了以應用4知技術之不良”前部後部比(迕⑽t t〇 back ratio)產生場型,而仍舊合適於混合矩陣之應用。事實上, 在盲訊號分離(BSS)應用中,這種場型通常是非常大量的。 口為應用良好剷部後部比(front t〇 back ratio )係需要 ,蹤喊方向,藉以維持前部指向想要之訊號,及/或, 藉以維持後部指向干擾來源。相對於此,應用於各個方向 存在差異、但部仍舊具有顯著增益之場型,這種訊號追蹤 瞻 係不再需要。 —天線波束係可以定義為具有低於最大增益點 3dB之點, 藉以將訊號拒絕提供給至少一方向之到達訊號。同樣地, 天線波束亦可以定義為大體上不具有低於最大增益點3dB 之點,因此無法將訊號拒絕提供給任何方向之到達訊號。 在許多應甩中,天線元件間之特定距離之,偏差 (deviation)係可以大幅降低整體天線陣列之尺寸。在其他 應用中,天線元制錢轉可以增加,藉⑽和追縱問 瞻 越並々力口某種程度之額夕卜訊號去關連(如⑶订咖廿⑽)。 在另一種較佳實施例中,天線陣列18〇係包括N個天線 元件,藉以接收Μ個源訊號之至個不同總和,如第6 目所不。N個天線元件之至少兩個天線元件182&、職係 存在關連並具有不同極性,藉以接收M個來源訊號之1^個 不同總和之至少兩個總和,其中,m係大於一。 在天線陣列180中,其他天線元件18如、18仆係可以與 天線元件182a、182b存在關連或不存在關連。即使另一對 極性天線το件184a、184b係加人,這些天線元件係可以反 22 1284465 而具有相同極性。除此以外,這些天線元件亦可能彼此不 存在關連。 天線元件182a、182b之不同極性係可能彼此正交。在另 一種較佳實施例中,除了天線元件182a、182b以外,天線 陣列180係具有第三天線元件182c,藉以支援三極性、並 接收]VI個來源訊號之三種不同總和。 下列之進一步詳細討論係支援應用極性以填滿混合矩陣 | A。三種不同極性之天線元件182a、182b、182c係接收三 種線性及獨立之訊號總和。第7圖所示之^、乂、2軸之定義 及關連係可以應用。舉例來說,下列關連係存在: x=Scos (Θ) sin (φ) y=Ssin (Θ) sin (φ) z=Scos (φ) 為了簡化數學運算,這種較佳實施例係假設:訊號係具 有線性極性、訊號係線性獨立、及三個線性天線元件係分 > 別存在於各個正交軸。舉例來說,天線元件182&係存在於 X軸、天線元件182b係存在於y軸、且天線元件182c係存 在於z轴。 經由定位三個線性天線元件182a、182b、182c於各個正 交軸,數學運算係可以顯著簡化。在實際部署中,天線元 件182a、182b、182c並不需要嚴格正交,並且,天線元件 182a、182b、182c亦不需要交會於某個共同點。移除這種 假設並不會導致一般結論之失效,相對於此,移除這種假 設將只會改變出現秩數(rank)不足之情況。 23 1284465 v ** ·· 下列定義係可以應用,其中,數字下標係表示訊號i、 訊號2、及訊號3之關連: S!、S2、S3 :入射至天線元件之訊號; ㊀1、θ2、θ3 :訊號之χγ平面電場角度; Φι、Φ2、Φ3 :訊號之Ζ軸電場角度;以及 Χχ、Xy、Χζ :入射至天線元件之訊號總和之點乘積。 有鐘於此,向量元件係表示為: X y Z 元件” X” ·· 1 0 0 元件” y” : 0 1 0 元件” Z” : 0 0 1 Si係數: cos (θι) sin (φΟ sin (θι) sin (φι) cos (Φ0 s2係數: cos (θ2) sin (()¾) sin (Θ2) sin (Φ2) COS (Φ2) S3係數: cos (θ3) sin (扣) sin (θ3) sin (Φ3) COS (如) 計算各個天線元件及訊號之點乘積,(X.Ysx^+y^+Zi:^) 係決定各個天線元件加總之相對E場成分。這些數值係可以應用, 進而產生混合矩陣:'1284465 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to the field of signal processing. In particular, the present invention relates to the application of blind signal separation (BSS) techniques to separate desired source signals from mixed source signals. [Prior Art] Φ Blind Signal Separation (BSS) includes a reply source signal from a self-mixing signal, wherein the mixed signal includes a mixed source signal. In this way, the signal is separated, and it is "blind". Because of this "signal separation," the implementation usually only has the limited information of the signal, the source of the signal, and the effect of the transmission channel on the signal. An example is familiar. The "Chicken Dance Party," the effect, that is, the members of the ball can separate a single voice from all the voices in the house. In particular, the blind source separation (BSS) system can be applied to mobile phones and personal wireless communication devices. When many frequency bands are filled with various radio frequency transmitters, various radio frequency transmitters usually coexist in the same frequency spectrum. Under the trend of low-power, unlicensed wireless technologies (such as Bluetooth) and other personal area networks, the problem of common channel transmitters in the next few years seems to be only worse. The three commonly used blind signal separation (BSS) techniques are principal component analysis (PCA), independent component analysis (10), and single numerical decomposition (8\〇3). The main component analysis (PCA) includes the first and second momentum statistics of the source signal, and the principal component analysis (PCA) can be applied to the signal to noise ratio (SNR) of the source signal. . In addition to this 1284465, the Independent Component Analysis (ICA) system can be applied, which includes the main component analysis (PCA) processing, and follows the third and fourth momentum statistic of the source signal. Alternatively, a single numerical decomposition (SVD) can be applied to separate the desired source signal from the mixed source signal based on the eigenvalue. Regardless of the blind signal separation (BSS) technology applied, the complex sensor system can be applied to receive different mixed source signals through various signal sources. Each sensor is a mixed source signal, which is the unique sum of the source signals. In general, neither the channel coefficient nor the original source signal is known to the receiver. The unique sum of the source signals can be used to fill the hybrid matrix. Subsequently, the appropriate blind signal separation (BSS) technique can be applied to the hybrid matrix to separate the desired source signal from the mixed source signal. In one example, U.S. Patent No. 6,679,917 discloses a method of applying independent component analysis (ICA) to separate independent source signals from mixed source signals. The complex sensor receives the mixed source signal, and the processor samples the mixed source signal over time and stores each sample as a data vector to generate: New #合。. Each _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Independent Component Analysis (ICA) Module _ Implementation of the independent component analysis of the data vector to separate the independent source signal and other signals from the mixed source signal. The sensors are spatially separated from each other, and the processor generates a single data vector for each _ to generate a data set. In addition, the US patent number 脳799 also reveals that the number N of sensors is equal to or greater than the number M of sources to fill the data set. The problem with this 1284465 implementation is that as the number of sources M increases, the number of sensors... increases. Small portable communication devices have almost no usable capacity to accommodate large numbers; N, and the provision of a wire outside the portable communication device may also cause user confusion. In view of this, U.S. Patent No. 6,931,362 discloses another method by which a blind signal separation (BSS) technique is applied to separate the desired source signals. The disclosed blind signal separation (BSS) technology forms a hybrid matrix with hybrid matrix - pencil adaptive array weights, thereby minimizing the simultaneous interference based on the chirp and the muse noise. The squared error is minimized. Hybrid matrix-pencil adaptive army weights minimize signal interference noise ratio (SINR). Similar to U.S. Patent No. 6,799,170, the sensors are also spatially separated from each other, and the number N of sensors is equal to or greater than the number of sources μ, i.e., NgM, thereby filling the mixing matrix. In addition, each sensor provides a single input to the mixing matrix, resulting in a larger volume of portable communication devices. SUMMARY OF THE INVENTION In view of the above background, it is an object of the present invention to provide a communication device that includes a small antenna array that receives mixed source signals to provide blind signal separation (BSS) technology applications. By separating the desired source signal from the mixed source signal. The above and other objects, features, and advantages of the present invention can be provided by a communication device via 1284465, thereby separating the source signals provided by the [V source], wherein the communication device includes an antenna array for receiving M The sum of the different sources of signals. A receiver or receiver component is coupled to the antenna array and a blind signal separation (BSS) processor is coupled to the receiver to form a mixing matrix. The hybrid matrix includes different sums of the source signals received by the antenna array. Subsequently, the blind signal separation (BSS) processor separates the desired source signal from the mixing matrix. A small antenna array can be applied, relative to the spatially separated sensors providing a different sum of signals to form the hybrid matrix. In view of this, Blind Signal Separation (BSS) technology can be applied to portable communication devices because the antenna array can provide more than one set of inputs to the hybrid matrix and can simultaneously maintain a small size. In particular, the antenna array can include a plurality of off-speed antenna elements to receive at least one different sum of the plurality of source signals, wherein the Ν and Μ are greater than one. The blind signal separation (BSS) processor can form the hybrid matrix, wherein the hybrid matrix includes at least one different sum of the plurality of source signals. The hybrid matrix may have a rank equal to at least one of the ranks. The number of antenna elements may be equal to the number of source signals, i.e., . Or 'the number of antenna elements can be greater than the number of source signals, ie: N> Μ. In another architecture, the rank of the hybrid matrix is equal to κ, where K<N, and the blind signal separation (BSS) processor separates the source signals from the hybrid matrix.値 Source signal. 1284465 N connected antenna elements can include N active antenna elements, whereby the antenna array can form a phase array. Alternatively, the N connected antenna elements may include at least one active antenna element, and up to (n-D passive antenna elements, whereby the antenna array may form a switched beam antenna. When receiving different sums of the source signals, The field type and the inter-beam system may make a difference. In this example, the antenna array may form at least one antenna beam to receive at least one different sum of the two source signals, wherein each antenna beam has a maximum gain point. The lower point further provides a signal rejection of the arrival signal in at least one direction. In another example, the antenna array forms at least one antenna field type to receive at least one sum of the different sums of the source signals of the country, wherein At least one antenna field type generally does not have a 3dB point below the maximum gain point, and thus cannot provide a signal rejection of any arrival signal in any direction. The sum of each source signal is linear. The blind signal separation (BSS) Processing of fasting can be based on principal component analysis (pCA), independent component analysis (ICA), and single values At least one technique of solving (SVD), and then separating the desired source signal from the mixing matrix. Another feature of the present description relates to a method for operating a previously defined communication device to separate M The method of providing a signal source, the original nickname, may include: applying at least one different sum of the source signals by the antenna array, wherein the antenna array includes one antenna element, and Ν and Μ In the case of - source signals, the different sums are provided to the receiver. The blind signal separation (BSS) processor processes at least N different 1284465 \ sums of the M source signals received by the receiver. The processing of the separation (BSS) processor may include a formation-mixing matrix comprising up to at least N different sums of the M source signals, and separating the desired source signals from the mixing matrix. The matrix system may have a rank number equal to at least one of N. [Embodiment] Now, the present invention will be described in detail with reference to the preferred embodiments and the accompanying drawings. However, the invention may be embodied in many different forms and should not be limited to the preferred embodiments described herein. In contrast, the preferred embodiments are provided so that this disclosure will be thorough and complete and will be fully conveyed by those skilled in the art. In addition, in the preferred embodiment of the invention, the same number denotes the same elements, and the 'numbers' denotes similar elements of the preferred embodiment. In a communication network, the desired source signal of a particular communication device may be present and the desired source of other communication devices operating in the same frequency band may also exist. In addition, the sources of noise will also exist at the same time. Although they will not generate signals for communication, they will still be received by individual communication devices. To facilitate the decoding of important source signals, the Blind Signal Separation (BSS) technology can be applied to separate the source signals that a particular communication device is intended to receive. As previously mentioned, the term, blind, means that, in the ideal case, the source signal can be separated without knowing the characteristics of the source signal or based on the interaction between the source signal and the communication channel. In practical applications, any knowledge that can be provided can be applied. In view of this, in this example, the separation of the signal 11 1284465 is not blind (semi-blind). Three common techniques for Blind Signal Separation (BSS) technology include: principal component analysis (PCA), independent component analysis (ICA), and single numerical decomposition (S VD ). As long as the measurable features of the source signal are independent, and 'as long as the sum of the source signals is linearly independent of each other, single or multiple blind signal separation (BSS) techniques can be applied to separate from the mixed source signal. Source signal. In general, the feature can be measured as the first, second, third, or fourth momentum of the source signal. The principal component analysis (PCA) is a bleach source signal, applying the first and second motion differences, and rotating the data set based on the related characteristics. If the signal of the source signal is mixed, the signal separation process can stop at the principal component analysis (PCA). If the signal noise of the source signal is low, the independent component analysis (ICA) can be based on the third source signal. And the statistical properties of the fourth motion difference, and then the desired source signal is separated. Since the source signal exhibits a Gaussian distribution, the third and fourth motion differences are dependent on the first and second motion differences. In addition to principal component analysis (PCA) and independent component analysis (ICA), a single numerical decomposition (SVD) can also be based on the eigenvalues, and the desired source signal can be separated from the mixed source signal. Figure 1 shows a typical scenario in which the source of multiple sources can be applied to transmit the source signal. The source signal 2^ is transmitted along the direction of the connected antenna beam 24 of the individual signal source 20. The plural signal source 20 series includes f-service source 2G(1) to the first signal source 20 (M). Similarly, the 'individual source signal' is expressed as the first source signal ^ 12 1284465 (1) to the third source signal 22 (Μ). In the communication network, a more intuitive implementation with an omnidirectional antenna field and a directional antenna field form can also be applied. In communication device 30, antenna array 32 receives a linear combination of source signals 22 (i.e., mixed source signals) via signal source 20. Antenna array 32 includes a plurality of antenna elements 34, wherein each antenna element provides at least one linear combination of source signals 22 via signal source 20. The antenna element 34 has a first antenna element 34(1) to a νth antenna element 34(Ν). First, the source signals 22(1) to 22(Μ) are received to form a mixing matrix 36. Next, the communication device 30 applies blind signal separation (BSS) techniques to determine the separation matrix 38, thereby separating the desired source signals from the mixing matrix. The separation signal is expressed as the number 39. The communication device 30 collects or mixes the received source signals (without knowing the characteristics of the source signals), and collectively captures the mixed source signals received by the antenna array 32. The input of each antenna element 34 can be modeled as the sum of the source signal 22 after convolved by the channel impulse response (the channel represents the transmission path between the output of the signal source 20 and the output of the antenna element 34) plus additional Gaussian (Guassian) noise. The communication device 30 that separates the source signals provided by the IV signal sources 20 (1) to 2 (M) will be further described in detail below with reference to FIG. The antenna array 32 includes N antenna elements 34 (work) to % (N), thereby receiving up to a different sum of the source signals, wherein the μ system is greater than one. Antenna array 32 need not be limited to any particular architecture. The antenna array 13 , 1284465 3^2 may comprise a single or multiple antenna element %. The individual antenna elements % are shot in a suitable architecture, whereby the scales 32 can be formed, for example, a phase array or a switched beam antenna, which will be described in further detail below. The 0 transceivers are connected to the antenna array 32. Streaming, so as to receive a source of 峨22 up to a different sum. Processor 42 is coupled to the downstream stream of transceiver 40. In FIG. 2, processor 42 may be included within transceiver 40, even though processor 42 is independent of transceiving $40. The different sums of the M source signals 22 received by the transceiver 4 can be applied to fill the mixing matrix 36. Hybrid matrix 36 can then be processed by single or complex blind signal separation (BSS) processing modules 44, 46, and 48 within processor 42. These single or multiple blind signal separation (BSS) processing modules include a primary component analysis (PCA) module 44, an independent component analysis (ICA) module 46, and a single numerical decomposition (SVD) module 48. These single or multiple blind signal separation (BSS) processing modules 44, 46, and 48 can be suitably architected to form part of a blind signal separation (BSS) processor 49. The principal component analysis (PCA) module 44 is based on the first and second motion differences of the different sums of the received source signals. In contrast, the independent component analysis (ICA) module 46 is based on the different sums of the received source signals. Three and fourth motion operations. In addition, the single numerical decomposition (SVD) module 48 performs signal separation based on the eigenvalues of the different sums of the received source numbers. First, the related component of the 'Principal Component Analysis (PCA) module 44 determines the start separation matrix 38 (1) that receives the different sums of the source signals, and the 'Independent Component Analysis (ICA) module 46 after 14 ^ 284465 k It is decided to strengthen the separation matrix 38 (2) by which the desired source signal is separated from the mixing matrix 36. If the source signal is separated by a single numerical decomposition (SVD) module 48, the separation matrix 38 (3) may also determine the different sums of the received source signals separated by the self-mixing matrix 36. The separation signal is represented by the number 39 via the individual separation matrices 38 (1) through 38 (3). Subsequently, the separation signal 39 can be applied to the signal analysis module to perform signal analysis to determine which signals are important signals and those signals are interference signals. The application-related processing module 52 processes the signals that the signal analysis module 50 rotates. The decision that the signal is an important signal may not always contain the last signal to be decoded. For example, individual applications may need to identify the source of the interference and remove it from the different sums of the received source signals, and then feed the signal from the source of the interference to the waveform decoder. In this case, the important signal is the signal that is ultimately rejected. • The information fed into the Principal Component Analysis (PCA) module 44 is the unique signal sum Xj. Suppose that N linear mixtures of independent components, Xl,..., are expressed as follows: XI (t) ^ansi (t) +...aiksk (t) +*..aiMSM (t) xj (0 =^lsl (t) +...^kSk (t) (t) XN (t) = aNisi (t) (t) +...aNMSM (t) In general, the transceiver 40 does not know the channel coefficient 〇 Jk and the original signal sk. Applying the matrix representation, the above equation can be simplified and rewritten as x 15 1284465 = As, where A is a mixed matrix. Statistically, the model x = As can also be called independent component analysis (ICA). Model. The conventional technique attempts to find the inverse of the channel, ie: s = A — The Independent Component Analysis (ICA) module 46 can determine the separation matrix w, and y = W(As) = Wx. Vector y is a subset of s with blind order and scaling change. If all signals are inseparable, the general form of vector y can be expressed as y = W (As) + Wn = Wx + Wn, where extra | The η term indicates the residual noise based on the unrecognized source. The Independent Component Analysis (ICA) model generates the model, that is, the Independent Component Analysis (ICA) model describes how the observed data is mixed by the component %. The combination process is generated. The independent component is a potential variable, that is, the independent component cannot be directly observed. In addition, the hybrid matrix A is assumed to be a blind matrix. From the above, only the random vector x can be directly observed. In contrast, both A and s are based on the predicted value of X. The starting point of independent component analysis (ICA) is assumed to be independent of the independent component to the system. In addition, the independent component % also assumes at most Gaussian distribution. (Guassian distribution) one of the signals., Gaussian distribution ((9) move as diSt_tion) one signal "limit is based on the fact that the second motion difference of the Gaussian signal is equal to zero, and the fourth motion difference is not recognized by the Gaussian signal. For the sake of simplicity, the Blind Mixing Matrix A is assumed to be a square matrix. By this, the number of independent components is scaled to observe the number of mixed signals. However, the limitations of this assumption can sometimes be lifted. The specific measurable features are statistically independent, and the separation matrix w can be determined. 16 1284465 The rank of the mixed matrix A is determined by the actual decision. For example, the mixed matrix with a rank of four means that four source signals can be separated. In theory, the rank of the mixed matrix A should be at least the number of signal sources. The larger the rank, the more source signals can be separated. As the number of signal sources increases, the number of antenna elements needs to increase. In the background of the invention, U.S. Patent Nos. 6,799,170 and 6,693,362 disclose that the number of antenna elements should be equal to or greater than the number of signal sources Μ 'that is, otherwise signal separation should use other than blind signal separation (BSS) technology. technology. An industry standard that produces a linear independent sum of source signals is the application of non-contact sensors, i.e., each sensor is spaced apart from each other by at least one wavelength. This wavelength is based on the operating frequency of the communication device 30. ν sensors are unrelated in space, but there is a correlation between polarity and angle. A non-connected sensor provides a sum of linear independent signals, where each sensor provides a single item of the hybrid matrix. Figure 3 is a diagram showing a plan or overview of different sources in accordance with the present invention to produce a linear independent sum of the source signals of the mixing matrix A. After a brief reminder, the various means will be further elaborated below. The first section of the plan map proposes an antenna architecture. Block 1 represents a non-connected sensor' wherein each sensor provides a single input to the hybrid matrix A. Block 102 represents a non-connected antenna array in which a non-connected antenna array provides a complex input to fill the mixing matrix A. In addition, the square bar 104 also represents an antenna array in which portions of the antenna elements are related, and individual antenna elements have different polarities, #to fill the mixing matrix 1284465 A. The different combinations of the inductors and antenna arrays proposed by blocks 1〇〇, 102, and 104 can be combined with block 106 to further fill the mixed matrix of block 〇6, and the second segment of the plan is presented first. The enhancement of the antenna architecture provided by the block. These enhancements can be implemented to further fill the hybrid matrix A by collecting additional or alternate sums of source signals. Block 108 includes an array deflection operation in which the height of the antenna pattern can be varied to receive an additional sum of source signals. Any combination of blocks 1-6 can be applied to block 108 for performing array deflection operations. In block 110, path selection may be performed such that all sums of the source signals applied to fill the hybrid matrix A may be related (first and second motion differences) and/or statistically independent (third and third) Four motions). In other words, the incoming signal can be selectively selected to replace the absence of a speed and/or a statistically independent sum. Block 110 can be fed into any combination of block 106 and block 108. In addition, blocks 1〇8 and ι1〇 can be fed directly into the mixing matrix block 116. The third section of the plan map proposes signal segmentation to further fill the mix matrix A of block 116. For example, block 112 applies a spreading code to split the different sums. If the sum signal has k spreading codes, this particular sum signal can be processed, and then < k for the associated sum signal. Spread spectrum (Sprea (jing) and jing (7) and) can be combined with the output of blocks 106, 108, and no. Block 114 can divide the different sum signals into in-phase (j) components and orthogonal (q) 18 J284465 components. Further filling the mixing matrix A. Thereby, the in-phase (〗) component and the positive parent (Q) component can be used as the multiplier of the missing matrix, and the in-phase (I) component and the orthogonal (q) component can be matched. The outputs of blocks 1〇6, 1〇8, 110, and 112 are combined and applied. The last segment of the plan graph represents the blending matrix a formed by block 116. As shown in the plan diagram, 'based on any of the previously described blocks, the blending matrix The A system can fill different sums of the source signals. The antenna array architecture of the first segment has the advantage that the small antenna array can be formed to fill the hybrid matrix A. The second segment and the third segment are The advantage of the antenna array architecture is that N antenna elements (where the number of antenna elements N is smaller than the number of source signals M) can be applied, and then the M or more different sums of the source signals are used to fill the hybrid matrix A. An antenna array as shown in the drawing, an antenna array will be discussed in further detail below, wherein the antenna array includes N connected antenna elements to receive at least a different sum of the source signals and wherein The Ν and Μ are greater than one. In a preferred embodiment, the antenna array is a switched beam antenna 14 第 as shown in Figure 4. The switched beam antenna 140 can generate a complex antenna pattern, including: directionality Antenna field type and omnidirectional antenna pattern. The switching beam antenna 14 has an active antenna element 142 and a pair of passive antenna elements 144. The actual number of active antenna elements 142 and passive antenna elements 144 can be applied according to the desired application. For a more detailed description, please refer to U.S. Patent Application Serial No. The content of this U.S. Patent Application is hereby incorporated by reference. 44a and lower half 144b. The upper half 144a of the passive antenna element 144 is coupled to the ground 146 via a reactive load 148. The reactive load 148 is a variable reactance that is applied to a varactor, transmission line, or switching. To change the capacitance-to-inductance ratio, the radiation field system can be changed via the varying reactive load 148. Since the switching antenna element 140 has two passive antenna elements, four different antenna field types can be formed. Before the four different antenna patterns The three antenna field types can be applied to receive the unique sum of the sfL numbers. The fourth antenna field of the four different antenna patterns is a linear combination of the other three antenna patterns. Therefore, the fourth antenna pattern is Cannot be used as a hybrid matrix A project. It can be seen that with three antenna elements, the three unique signal sums Xj can be input to the mixing matrix A. The advantage of switching the beam antenna is that three antenna elements 142 and 144 are applied, and a mixed matrix system having a rank of three can be supported. In another preferred embodiment, the antenna array includes N associated active antenna elements to enable the antenna array to form a phase array 160, as shown in FIG. Phase array 160 includes a plurality of active antenna elements 162 and a complex weight control element 164 coupled to the active antenna elements. Weight control component 164 adjusts the amplitude and/or phase of the received signal to form a hybrid beam. Splitter/combiner 166 and controller 168 are coupled to weight control element 164. Please refer to US Patent No. US6473036, which is further detailed 20 1284465 ί 种 = active phase array 16°. This U.S. Patent and the present patent application are hereby incorporated by reference. The number of active elements 162 is supported by the same rank number (the mixed matrix A of the service is even if the number of sources M is equal to the number of active elements n, and also the active phase array (10) can still be kept small because In the conventional technique of flipping the antenna elements (the non-connected antennas are more than one wavelength apart), the active elements 162 are related in terms of space and polarity. In other preferred embodiments, the rank of the mixing matrix Α (rank) can be equal to κ (where 'K<N), whereby the blind signal separation (bss) processing family 49 can separate the κ source signals from the source signal from the mixing matrix a. In the preferred embodiment, it will be further described in detail below, and Ν may also be larger than μ. Regardless of the switching beam antenna Mo or the phase antenna 16 ,, the distance between the individual antenna elements 142, 144, and 146 may be appropriately set, thereby Rong Hui ideals the back to front ratio. This is based on the typical application of these antenna arrays to reject unwanted signals (ie, back arrival) and to strengthen the desired message. (ie, the front arrives.) However, in order to establish a hybrid matrix, the primary goal of the present invention is to generate a sum of different signals. In fact, important signals may always be below the source of interference for such applications and still be separated. Based on the significant difference in purpose, the distance between the antenna elements does not need to have a specific spacing. The antenna elements can be farther apart or closer to each other, and the antenna element 21 1284465 is tied to the "front" ratio of the application technology. (迕(10)t t〇back ratio) produces field patterns that are still suitable for hybrid matrix applications. In fact, in blind signal separation (BSS) applications, this type of field is usually very large. The front t〇back ratio is required to trace the direction to maintain the front pointing to the desired signal and/or to maintain the rear pointing to the source of the interference. In contrast, there are differences in all directions. This type of signal tracking system is no longer needed. The antenna beam system can be defined as having a lower than maximum gain. A point of 3 dB, whereby the signal rejection is provided to the arrival signal of at least one direction. Similarly, the antenna beam can also be defined as having substantially no point below the maximum gain point by 3 dB, so that the signal rejection cannot be provided to any direction. In many applications, the deviation of the specific distance between the antenna elements can greatly reduce the size of the overall antenna array. In other applications, the antenna element can be increased, and (10) and tracking In some other preferred embodiments, the antenna array 18 includes N antenna elements for receiving a plurality of source signals. To a different sum, as in the sixth. At least two antenna elements 182 &, grades of the N antenna elements are associated and have different polarities, thereby receiving at least two sums of different sums of M source signals, wherein m is greater than one. In antenna array 180, other antenna elements 18, such as 18 servants, may or may not be associated with antenna elements 182a, 182b. Even if another pair of polar antennas τa 184a, 184b are added, these antenna elements can have the same polarity as 22 1284465. In addition to these, these antenna elements may also be disconnected from each other. The different polarities of the antenna elements 182a, 182b may be orthogonal to one another. In another preferred embodiment, in addition to antenna elements 182a, 182b, antenna array 180 has a third antenna element 182c for supporting three polarities and receiving three different sums of VI source signals. The following further discussion discusses the application polarity to fill the mixing matrix | A. Three different polarity antenna elements 182a, 182b, 182c receive three linear and independent signal sums. The definitions of ^, 乂, and 2 axes shown in Figure 7 can be applied. For example, the following correlation exists: x = Scos (Θ) sin (φ) y = Ssin (Θ) sin (φ) z = Scos (φ) In order to simplify the mathematical operation, this preferred embodiment assumes: signal It has a linear polarity, the signal is linearly independent, and three linear antenna element components are present in each orthogonal axis. For example, antenna elements 182 & are present on the X-axis, antenna element 182b is present on the y-axis, and antenna element 182c is present on the z-axis. By locating the three linear antenna elements 182a, 182b, 182c to the respective orthogonal axes, the mathematical operating system can be significantly simplified. In actual deployment, antenna elements 182a, 182b, 182c do not need to be strictly orthogonal, and antenna elements 182a, 182b, 182c need not intersect at some common point. Removing this assumption does not invalidate the general conclusion. In contrast, removing this hypothesis will only change the situation where the rank is insufficient. 23 1284465 v ** ·· The following definitions can be applied, where the digital subscript indicates the connection of signal i, signal 2, and signal 3: S!, S2, S3: the signal incident on the antenna element; Θ3: χ γ plane electric field angle of the signal; Φι, Φ2, Φ3: the electric field angle of the Ζ axis of the signal; and Χχ, Xy, Χζ: the product of the sum of the signals incident on the antenna element. In this case, the vector component is expressed as: X y Z component "X" ·· 1 0 0 component "y": 0 1 0 component "Z": 0 0 1 Si coefficient: cos (θι) sin (φΟ sin (θι) sin (φι) cos (Φ0 s2 coefficient: cos (θ2) sin (()3⁄4) sin (Θ2) sin (Φ2) COS (Φ2) S3 coefficient: cos (θ3) sin (deduction) sin (θ3) Sin (Φ3) COS (for example) Calculate the point product of each antenna element and signal. (X.Ysx^+y^+Zi:^) determines the relative E-field component of each antenna element. These values can be applied. Generate a hybrid matrix:

Xx ^"cos (θι) sin (φι) cos (θ2) sin (Φ2) Xy sin (θι) sin (φι) sin (θ2) sin (Φ2) XzJ ^cos (φι) cos (Φ2) cos (θ3) sin (如广 sin (θ3) sin (φ3) cos (如) xyXx ^"cos (θι) sin (φι) cos (θ2) sin (Φ2) Xy sin (θι) sin (φι) sin (θ2) sin (Φ2) XzJ ^cos (φι) cos (Φ2) cos (θ3 ) sin (such as wide sin (θ3) sin (φ3) cos (such as) xy

Lv 24 ,1284465 其中, det Xy 、XZ」 =cos (θι) sin (φι) sin (Θ2) sin (如)cos (Φ3) +cos (Θ2) sin (如)sin (Θ3) sin (如)cos (φι) +cos (Θ3) sin (如)sin (Θ1) sin (φι) cos (如)一cos (φι) sin (Θ2) sin (Φ2) cos (θ3) sin (如)一cos (Φ2) sin (θ3) sin (Φ3) cos (θι) sin (φι) —cos (扣)sin (θι) sin (φΐ) cos (θ2) sin (Φ2) =cos (θι) sin (Θ2) sin (φι) sin (如)cos (如)+cos (Θ2) sin (Θ3) cos (φι) sin (如)sin (Φ3) +sin (Θ1) cos (Θ3) sin (φΐ) cos (如)sin (如)一sin (Θ2) cos (Θ3) cos (φι) sin (φ2) sin (如)一cos (θι) sin (Θ3) sin (φι) cos (如)sin (如)—sin (θι) cos (Θ2) sinLv 24 , 1284465 where det Xy , XZ′′ =cos (θι) sin (φι) sin (Θ2) sin (eg) cos (Φ3) +cos (Θ2) sin (eg) sin (Θ3) sin (eg) cos (φι) +cos (Θ3) sin (eg) sin (Θ1) sin (φι) cos (eg) a cos (φι) sin (Θ2) sin (Φ2) cos (θ3) sin (eg) a cos (Φ2) Sin (θ3) sin (Φ3) cos (θι) sin (φι) —cos (deduction) sin (θι) sin (φΐ) cos (θ2) sin (Φ2) =cos (θι) sin (Θ2) sin (φι) Sin (eg) cos (eg) +cos (Θ2) sin (Θ3) cos (φι) sin (eg) sin (Φ3) +sin (Θ1) cos (Θ3) sin (φΐ) cos (eg) sin (eg) a sin (Θ2) cos (Θ3) cos (φι) sin (φ2) sin (eg) a cos (θι) sin (Θ3) sin (φι) cos (eg) sin (eg)-sin (θι) cos (Θ2 Sin

(φΐ) sin (Φ2) cos (cfe) =〔cos (θι) sin (Θ2) sin (φι) sin (Φ2) cos (如)一sin (Θ1) cos (Θ2) sin (φΐ) sin (Φ2) cos (Φ3)〕+〔cos (Θ2) sin (Θ3) cos (φ】)sin (如)sin (如)一sin (Θ2) cos (Θ3) cos (φι) sin (φ2) sin (如)〕+〔sin (θι) cos (03) sin (φΐ) cos (如)sin (如)一cos (θι) sin (03) sin (φι) cos (如)sin (如)〕 =sin (φι) sin (如)cos (如)〔cos (Θ】)sin (θ2) —sin (θι) cos (θ2)〕 +cos (φι) sin (cfe) sin (φ3)〔cos (θ2) sin (θ3) -sin (θ2) cos (θ3)〕 +sin (φι) cos (如)sin (()¾)〔sin (θι) cos (03) —cos (θι) sin (03)〕 =sin (φι) sin (Φ2) cos (Φ3) sin (Θ1—Θ2) +cos (φι) sin (Φ2) sin (cfe) sin (θ2—θ3) +ώι (φι) cos (如)sin (如)sin (θ「θ3) 接著,秩數(rank)不足之情況將會進一步詳細討論如 下。當行列式(determinant)等於零時,混合矩陣係出現秩 數(rank)不足。秩數(rank)不足係出現於下列情況: (1) 01=02=03 ’’ X”元件及” y”元件係接收全部三個訊號之相同貢獻 部分。 25 象 1284465 (2 c 9090 G g90°g90° 如 0)0°0 0)0° 增加180。至表格項目之任何組合,另-秩數(rank)不 足之例子係可以得到。這些秩數(rank)不足之例子係出現 於訊號並未應用天線元件之足夠組合獨立加總之情況。 (3 )根據(1)及(2 ),全部個別總和不等於零,但是: sin (φ!) sin (如)cos (扣)血(θι—02) +cos (φι) sin (Φ2) sin (扣)sin (02—03) +sin (φι) cos (φζ) sin sin (θι~θ3) =0 這種情況係暗示小立體間隔角之訊號、約略相等極性之 號、對齊但卻來自天線陣列相對側邊之訊號、或部分可 能性極低之訊號入射事件,其係可能導致兩元件之相同能 階。 如先前所述’規劃圖之第一區段係提出天線架構。先前 所述之天線架構,包括非關連感應器,係可以組合成各種 不同架構,藉以提供Μ個來源訊號之總和訊號給混合矩陣。 請參考第8圖,其係表示一種通訊裝置200,藉以分離 Μ個訊號來源提供之來源訊號。天線陣列202係包括Ν個 天線元件,藉以接收Μ個來源訊號所形成之至少Ν個不同 總和,其中,Ν及Μ係大於一。 26 I284465 N個天線元件係包括至少一天線元件2〇4,藉以接收M 個來源訊號所形成之N個不同總和中至少一個總和,並且, N個天線元件係包括至少兩個關連天線元件2〇6,藉以接收 Μ個來源吼號所形成之n個不同總和中至少兩個總和。兩 個關連天線元件206與天線元件204係不存在關連。天線 陣列係可以具有任何組合之額外天線元件,其中,各個天 線元件係可以存在關連、不存在關連、且具有極性。 • 接收器210係連接至天線陣列202,藉以接收Μ個來源 吼號所形成之至少Ν個不同總和。盲訊號分離(BSS)處 理器212係連接至接收器21〇,藉以形成混合矩陣214,其 中,混合矩陣列214係包括μ個來源訊號所形成之至少N 個不同總和。混合矩陣214係具有等於高達至少N之一秩 數(rank),並且,盲訊號分離(BSS)處理器212係自混 合矩陣A中分離得到想要之來源訊號216。 規劃圖之第二區段係提出第一區段提供之天線架構之加 鲁強。這些加強係可以實施,藉以收集來源訊號之額外或替 代總和而進一步填滿混合矩陣A。 一種加強係包含陣列偏向(deflecti〇n )操作,藉以接收 來源訊號之額外總和,進而提供混合矩陣A應用,而不需 要增加額外天線元件。陣列偏向(deflecti〇n)操作係包括 控制方位(azimuth)方向及/或高度(elevati〇n)方向之天 線場型。 凊參考第9圖,其係表示一種通訊裝置24〇,其中,這 種通訊裝置24〇係應用陣列偏向操‘,藉以 27 1284465 分離Μ個訊號來源提供之來源訊號。天線陣列242係包括 Ν個天線元件244 ’藉以產生ν個啟始天線場型,進而接收 Μ個來源訊號之至少Ν個不同總和。除此以外,天線陣列 242亦包括高度(elevation)控制器246,藉以選擇性地改 變N個啟始天線場型之至少一天線場型之高度,藉此,μ 個來源訊號之至少一個額外不同總和係可以接收。 接收器248係連接至天線陣列242,藉以應用ν個啟始 藝 天線場型而接收Μ個來源訊號之Ν個不同總和,以及,藉 以應用至少一額外天線場型而接收Μ個來源訊號之至少一 個額外不同總和。 目成號分離(BSS )處理器250係連接至接收器248,藉 以幵>成混合矩陣252,其中,混合矩陣列252係包括jy[個 來源訊號之Ν個不同總和及μ個來源訊號之至少一個額外 不同總和。混合矩陣252之秩數(rank)係等於Ν加上應 用額外天線場型接收之Μ個來源訊號之額外不同總和數 » 目,並且’盲訊號分離(BSS)處理器250係自混:矩陣 252中分離得到想要之來源訊號254。 一般而言,提供訊號總和以增加混合矩陣252之秩數 (rank )之任何天線陣列裝置係可以應用陣列偏向 (deflection)機制。陣列偏向(deflecti〇n)機制係可以為 各天線_裝置產生_㈣且齡鱗W之訊號總 和。有鑑於此,應用這種技術將可以產生兩倍乘數作用。。 若陣列偏向(defleetion)機織分割為關連天線之&個 獨特區域之各侧特區域係可啸供兩個獨 28 .1284465 立偏向(deflection)區域及項目給混合矩陣。舉例來說, 若天線陣列係可以自行提供N個總和且存在κ個獨特偏向 (deflection)區域,混合矩陣之訊號總和數目係可以等於2 *K*N〇 為說明方便起見,請參考第1〇圖,其中,第4圖所示之 切換波束天線100’係適當調整,藉以使天線場型可以進行高 度(elevation)之向上傾斜或向下傾斜。特別是,被動天線 元件104’之各個上半部i〇4a’係經由反應式負載1〇8,連接至 地面106’。被動天線元件104,之各個下半部1〇41?,亦經由反 應式負載108’連接至地面1〇6,。被動天線元件1〇4,之電抗係 具有加長或縮短被動天線元件之作用。電感負載係加長被 動天線元件104,之電性長度,相對於此,電容負載係縮短被 動天線元件10#之電性長度。 天線波束係可以根據上半部,之反應式負载1(^及 下半部104b’之反應式負載1〇8,之比例,進而進行高度 (elevation)之向上傾斜或向下傾斜。經由調整上半部1〇如, 之反應式負載108’及下半部獅,之反應式負載1〇8,之比 例’天線場型係可以向上對準97或向下對準99,如第U 圖所示。§天線場型之高度角度(elevati〇n angle)係適當 调整以接㈣合訊號時,至少—額外秩數(mnk)係增加至 作匕s矩陣A應用陣列偏向(deflecti〇n )技術,混合矩陣a 係可以接收好訊號,而不f要增加天線元件數目. 讀特定實财式㈣有_獨特偏向(defleeti〇n)區 域’並且’兩個獨特偏向(deflecti〇n)區域係、可以應用電 29 •1284465 抗118’個別控制。天線陣列之場型產生能力係三個獨立場 型’有鑑於此’產生混合矩陣之訊號總和之數目係等於十 —(2*2*3=12)。 請再度參考先前所述之美國專利申請案η/〇65752,其 係進一步洋細揭露應該如何調整天線波束之高度。陣列偏 向(deflection)技術係可以應用於先前所述之天線陣列之 任何較佳實施例、或對於地面互動敏感之任何其他天線陣 列。 高度(elevation)控制器之另一種較佳實施例係基於耦 接於天線元件274之地面272之可控制射頻(RF)抗流270, 如第12圖所示。天線元件274之關連天線場型係控制射頻 (RF)抗流270以移動其高度(eievati〇n),如熟習此項技 術之人士所瞭解。 請參考第13圖,其係表示一種通訊裝置3〇〇,其中,這 種通訊裝置300係基於路徑選擇,藉以分離M個訊號來源 提供之來源訊號。這種通訊裝置3〇〇係規劃圖提供之第一 區段之天線架構之另一種加強、及先前所述之陣列偏向 (deflection)技術之加強。通訊裝置3〇〇係包括天線陣列 3〇2 ’其中,天線陣列302係包括n個天線元件以形成至少 N個天線波束,藉以接收河個來源訊號之至少^^個不同總 和,且其中,N&M係大於二。 控制器306係連接至天線陣列3〇2,藉以選擇性地形成 至少N個天線波束。接收器構件3〇8係連接至夭線陣列 302,藉以接收Μ個來源訊號之至少N個不同總和。盲訊 30 1284465 號分離(BSS)處理器31〇係連接至接收器構件3〇8,藉以 形成混^矩陣312 ’其中,混合矩陣312係包括M個來源 訊號之兩達至少N個不同總和。 盲訊號分離(BSS)處理器310亦決定Μ個來源訊號之 不同、、、心和疋否存在關連或統計上獨立的,若否,盲訊號分 離(BSS)處理器31〇係與控制器3〇6合作以形成不同波束, 藉以接收]V[個來源訊號之新增不同總和,進而取代混合矩 陣312中不存在關連或統計上獨立之Μ個來源訊號之不同 、’、心和後’想要之來源訊號Μ#係可以自混合矩陣312 中分離得到。 耙式(rake)接收器係無線接收器,藉以抵銷多重路徑 衰減之作用。耙式(raj^)接收器係應用數個分別輕微延遲 之獨立接收恭以調諧各個多重路徑元件,藉以抵銷多重路 徑衰減之作用。耙式(rake)接收器係可以應用於大多數類 型之無線存取網路。已知,擴頻數碼(Spreading e〇de)調 變類型係格外有利。應用選擇特定入射訊號路徑之能力, 擴頻數碼(spreading c〇de)調變類型係格外合適做為改變 盲訊號分離(BSS)處理之饋入路徑之裝置。 選擇性地形成先前所述之N個天線波束係可以應用於各 種無線存取網聲’如熟習此項技術之人士所瞭解。對於分 碼多重存取(CDMA)系統而言,接收器構件308係包括n 個耙式(rake)接收器316。各個耙式(rake)接收器316 係包括k個相關器(fmger),藉以為各個連接天線元件接收 之Μ個來源訊號之n個不同總和之各個總和選擇k個不同 31 1284465 夕重路#成分。在這種雜中,f訊號分離(BSS)處理器 310係連接個耙式(rake)接收器316,藉以形成混合 矩陣312。混合矩陣312係包括M個來源訊號之至少 不同總和之高達至少k*N個不同多重路徑成分,並且,混 合矩陣312係具有等於高達k*N之—秩數(rank)。 夕特別是,當分碼多重存取(CDMA)波形傳遞時,分碼 多重存取(CDMA)波形通常會遭遇來源及目的間之複數路 徑。有鑑於此,耙式(rake)接收器316係可以特別設計, 藉以擷取__路彳i、並將其組合而得到更耐用之訊號 解碼。雖然原始訊號係沿著個別路徑傳遞,然而,原始訊 號之特性亦可能基於個別路徑之獨特特徵而調整。在部分 情況中,接收訊號之關連及/或統計特性之調整將會足夠 顯著’藉以使接收訊號能夠視為分離之訊號串流。在這種 情況中,調整型耙式(rake)接收器316係可以應用,藉以 擷取各個調整訊號串流、並將各個調整訊號串流饋入混合 矩陣312以做為獨特項目。雖然這種增加秩數(rank)之裝 置並不見得始終存在,然而,高度之多重路徑環境,因其 貫際需要’卻通常會具有這種增加秩數(rank)之裝置。 雖然把式(rake)接收器316係可以應用不同路徑,然 而,應用於任何調變技術之更普遍方法係波束成型技術, 如第13圖所示。波束成型技術係不同於耙式(rake)接收 器316,因為波束成型技術係用於想要訊號之加強及想要訊 號之拒絕。然而,兩者差異在於:實際上,波束成型技術 之拒絕訊號係可以形成接收器想要訊號之另一種版本。然 32 1284465 而’接收器構件308係需要偵測相同訊號之數個獨特傳遞 路瓜版本,藉以建立具有一足夠秩數之混合矩陣 312 〇 規劃圖之第三區段係提出訊號分割,藉以進一步填滿混 合矩陣A°在一種手段中,總和訊號係可以應用擴頻數碼 (spreading code)分割。在另一種手段中,總和訊號係可 以應用同相(I)模組及正交(Q)模組分割。 參 清參考第14圖,其係表示如何應用同相(I)模組及正 交(Q)模組進行訊號分割。通訊裝置4〇〇係包括天線陣列 402,其中,天線陣列4〇2係包括N個天線元件4〇4,藉以 接收Μ個來源訊號之至少N個不同總和。數碼解擴頻器 (despreader) 406係連接至ν個天線元件404,藉以解碼 Μ個來源訊號之至少n個不同總和。n個不同總和之各個 總和係包括k個數碼,藉以提供肘個關連來源訊號之让個 不同總和。 • 接收器構件408係連接至數碼解擴頻器(despreader) 406 ,藉以接收]VI個來源訊號之至少k*N個不同總和。盲 訊號分離(BSS)處理器410係連接至接收器構件4〇8,藉 以形成混合矩陣412,其中,混合矩陣412係包括]^個來 源號之至少k*N個不同總和。除此以外,混合矩陣μ。 係具有等於高達k氺N之一秩數(rank>。盲訊號分離(BSS) 處理器410係可以自混合矩陣412中分離得到想要之來源 訊號。 根據接收訊號之調變類型,先前所述之訊號分割係可以 33 1284465 應用,藉以增加混合矩陣A之秩數(rank),而不需要增加 天線元件數目N。IS — 95分碼多重存取( CDMA IS —95 )、 分碼多重存取二千(CDMA2000)、及寬頻分碼多重存取 (WCDMA)係擴頻頻譜通訊系統之例子,其中,擴頻數碼 (spreading code )係可以應用。共同執行緒(comm〇n thread ) 係表示·獨特數碼係應用於各個訊號處理,藉以將資料擴 頻於更大頻帶。 φ 相同擴頻數碼(spreading code)係應用於接收訊號總和 (想要訊號、不想要訊號、盲雜訊来源)處理。藉此,想 要訊號係可以重建回復至原始頻帶,並且,干擾來源亦可 以擴頻至寬頻頻帶上。 事貫上,先剷所述之分碼多重存取(CDMA)實施方式 係具有同時應用相同頻帶之許多訊號串流。萁中,各個訊 號串流係應用一組數碼,並且,理論上,這組數碼係正交 於全部其他數碼。若解碼器侧邊係滿足這種條件,其表示 • 僅有重要訊號將會被解擴頻出來。若第K訊號總和之數喝 係應錄賴縣作’制接收職總和xk將會大部分利 用增加振幅sk項及不變或降低數值之(k—丨)項組成。 分碼多重存取(CDMA)訊賴通常存在某種程度之關 連,有鑑於此,或多或少地,干擾訊號亦會與想要訊號合 併地韻建立。這種情況縣於__之延遲及個別訊 狀多重雜。部分*想要喊(翻是,分碼多重存取 (CDMA)訊號)係可能會增加數值。雖然這種增加並不會 如想要訊號那般顯著,然而這種增加卻仍然會增加整體雜 34 .1284465 讯數值,且有鑑於此,導致訊號雜訊比(SNR)之降低。 解擴頻§fL號方程式之形式及訊號本身係滿足盲訊號分離 (BSS)處理之準則。事實上,若某一解擴頻數碼 (despreading code)係個別應用於通訊裝置働接收之各 個已知訊號,滿足獨立成分分析(ICA)模型要件之個別總 和係可以得到。 有鑑於此,混合矩陣係可以提供與已知數碼具有相同數 目之可用列項目’假設各個列項目係分別產生祕獨立之 足夠數值。在正销況巾,混合贿係可能增加至大於數 碼數目之數值。舉例來說,N個天線元件及M她碼係可 以提供N*M個矩陣列。 為了方便說明起見,假設已知三個數碼,並且,假設三 個數碼係維持其正交性。在數碼解擴頻器獅 中:混合矩陣A係具有分職於天線串流之上面三列及下 面三列,在各個天線串流已經利用三個已知數碼解擴頻以 後运離對角線之零值係基於個別數碼之正交性。行項目 四、五、六係可以應用於相同指數之盲訊號之通用例子。(φΐ) sin (Φ2) cos (cfe) = [cos (θι) sin (Θ2) sin (φι) sin (Φ2) cos (eg) a sin (Θ1) cos (Θ2) sin (φΐ) sin (Φ2) Cos (Φ3)]+[cos (Θ2) sin (Θ3) cos (φ))sin (eg) sin (eg) a sin (Θ2) cos (Θ3) cos (φι) sin (φ2) sin (eg) +[sin (θι) cos (03) sin (φΐ) cos (eg) sin (eg) a cos (θι) sin (03) sin (φι) cos (eg) sin (eg)] =sin (φι) sin (eg) cos (eg) [cos (Θ)) sin (θ2) — sin (θι) cos (θ2)] +cos (φι) sin (cfe) sin (φ3) [cos (θ2) sin (θ3) - Sin (θ2) cos (θ3)] +sin (φι) cos (eg) sin (()3⁄4)[sin (θι) cos (03) —cos (θι) sin (03)] =sin (φι) sin ( Φ2) cos (Φ3) sin (Θ1—Θ2) +cos (φι) sin (Φ2) sin (cfe) sin (θ2—θ3) +ώι (φι) cos (eg) sin (eg) sin (θ“θ3) Next, the case where the rank is insufficient will be discussed in further detail as follows. When the determinant is equal to zero, the rank of the mixed matrix is insufficient. The rank deficiency is caused by the following cases: 1) 01=02=03 '' X” Member and "y" are all identical elements provided for receiving part of the contribution of three signals. 25 Image 1284465 (2 c 9090 G g90°g90° such as 0) 0°0 0) 0° Increase by 180. For any combination of the table items, another example of a less-ranked rank is available. Examples of such a lack of rank are those in which the signal is not applied to a sufficient combination of antenna elements. (3) According to (1) and (2), all individual sums are not equal to zero, but: sin (φ!) sin (eg) cos (deduction) blood (θι—02) +cos (φι) sin (Φ2) sin (扣)(in) (s) (s) A signal on the opposite side, or a signal incident with a very low probability, which may result in the same energy level of the two components. The first section of the plan diagram as previously described proposes an antenna architecture. The previously described antenna architecture, including non-connected sensors, can be combined into a variety of different architectures to provide a sum signal of the source signals to the mixing matrix. Please refer to Fig. 8, which shows a communication device 200 for separating source signals provided by one source of signals. The antenna array 202 includes a plurality of antenna elements for receiving at least one different sum of the plurality of source signals, wherein the Ν and Μ are greater than one. 26 I284465 N antenna elements comprising at least one antenna element 2〇4, thereby receiving at least one sum of N different sums formed by M source signals, and N antenna elements comprising at least two connected antenna elements 2〇 6. At least two sums of n different sums formed by receiving one source nickname. There is no connection between the two connected antenna elements 206 and the antenna elements 204. The antenna array can have additional antenna elements in any combination, wherein each antenna element can be associated, non-existent, and polar. • Receiver 210 is coupled to antenna array 202 to receive at least one different sum formed by the source apostrophes. A blind signal separation (BSS) processor 212 is coupled to the receiver 21A to form a mixing matrix 214, wherein the mixing matrix column 214 includes at least N different sums formed by the μ source signals. The mixing matrix 214 has a rank equal to at least one of N, and the blind signal separation (BSS) processor 212 separates the desired source signal 216 from the blending matrix A. The second section of the plan map proposes the reinforcement of the antenna architecture provided by the first section. These enhancements can be implemented to further fill the hybrid matrix A by collecting additional or alternate sums of source signals. A reinforcement system includes an array deflection operation to receive an additional sum of source signals to provide a hybrid matrix A application without the need to add additional antenna elements. The array biasing operation includes an antenna pattern that controls the azimuth direction and/or the elevation (elevati〇n) direction. Referring to Figure 9, there is shown a communication device 24, wherein the communication device 24 applies an array bias operation, by which 27 1284465 separates the source signals provided by the source of the signals. The antenna array 242 includes a plurality of antenna elements 244' to generate ν initial antenna patterns and thereby receive at least one different sum of the one source signals. In addition, the antenna array 242 also includes an elevation controller 246 for selectively changing the height of at least one antenna pattern of the N starting antenna patterns, whereby at least one of the μ source signals is additionally different. The sum system can be received. The receiver 248 is coupled to the antenna array 242 to receive a different sum of the plurality of source signals using the ν starter antenna field patterns, and to receive at least one additional antenna pattern to receive at least one of the source signals. An extra different sum. A directory separation (BSS) processor 250 is coupled to the receiver 248 for 幵 > into a mixing matrix 252, wherein the mixing matrix column 252 includes jy [a different sum of the source signals and the μ source signals. At least one extra different sum. The rank of the mixing matrix 252 is equal to Ν plus the additional different sums of the source signals received by the additional antenna field type, and the 'Blind Signal Separation (BSS) processor 250 is self-mixing: matrix 252 The desired source signal 254 is separated. In general, any antenna array device that provides a summation of signals to increase the rank of the mixing matrix 252 can apply an array deflection mechanism. The array biasing mechanism can generate a sum of _ (four) and age scale W signals for each antenna_device. In view of this, applying this technique will produce a double multiplier effect. . If the array deflection is divided into the adjacent antennas of the associated antennas, each side of the unique area can provide two separate 28.1284465 vertical deflection areas and items to the mixing matrix. For example, if the antenna array can provide N total sums and there are κ unique deflection regions, the total number of signals of the hybrid matrix can be equal to 2 * K * N 〇 for convenience, please refer to the first In the figure, the switching beam antenna 100' shown in FIG. 4 is appropriately adjusted so that the antenna pattern can be tilted upward or downward. In particular, each of the upper half i〇4a' of the passive antenna element 104' is connected to the ground 106' via a reactive load 1〇8. The passive antenna element 104, each of the lower half 1〇41?, is also connected to the ground 1〇6 via a reactive load 108'. The passive antenna element 1〇4 has a reactance system that has the effect of lengthening or shortening the passive antenna element. The inductive load lengthens the electrical length of the passive antenna element 104, whereas the capacitive load shortens the electrical length of the driven antenna element 10#. The antenna beam system can be tilted upward or downward according to the ratio of the reactive load 1 (^ and the reactive load 1〇8 of the lower half 104b' in the upper half. For example, the reaction load 108' and the lower half of the lion have a reactive load of 1〇8, and the ratio 'antenna field type can be aligned upwards 97 or down 99, as shown in Figure U. § § Antenna field type elevation angle (elevati〇n angle) is adjusted to connect (4) the signal, at least - the extra rank (mnk) is added to the 匕 s matrix A application array bias (deflecti〇n) technology The hybrid matrix a can receive good signals without increasing the number of antenna elements. The specific real financial formula (4) has a _ unique bias (defleeti〇n) region and 'two unique biases (deflecti〇n) region, It is possible to apply the electric 29 • 1284465 anti-118' individual control. The field generation capability of the antenna array is three independent field types. The number of sums of the signals that generate the mixing matrix is equal to ten—(2*2*3=12 Please refer again to the previously mentioned US patent application Case η/〇65752, which further reveals how the height of the antenna beam should be adjusted. The array deflection technique can be applied to any of the preferred embodiments of the previously described antenna array, or any sensitive to ground interaction. Other antenna arrays. Another preferred embodiment of the elevation controller is based on a controllable radio frequency (RF) anti-flow 270 coupled to ground 272 of antenna element 274, as shown in Fig. 12. Antenna element 274 The connected antenna field type controls the radio frequency (RF) anti-flow 270 to move its height, as is known to those skilled in the art. Referring to Figure 13, there is shown a communication device 3, wherein The communication device 300 is based on path selection to separate the source signals provided by the M signal sources. The communication device 3 is another enhancement of the antenna architecture of the first segment provided by the plan, and previously described The enhancement of the array deflection technique. The communication device 3 includes an antenna array 3 〇 2 ' wherein the antenna array 302 includes n antenna elements to form at least N days a beam for receiving at least a different sum of the river source signals, and wherein the N&M system is greater than two. The controller 306 is coupled to the antenna array 3〇2 to selectively form at least N antenna beams. The components 3〇8 are connected to the array of wires 302 for receiving at least N different sums of the source signals. The blind 30 1284465 separation (BSS) processor 31 is connected to the receiver component 3〇8, thereby A hybrid matrix 312' is formed in which the mixing matrix 312 includes at least N different sums of the M source signals. The blind signal separation (BSS) processor 310 also determines whether the different source signals, the heart, and the heart are related or statistically independent. If not, the blind signal separation (BSS) processor 31 and the controller 3 〇6 cooperate to form different beams, so as to receive the different sums of the [V source signals], and then replace the difference between the source signals of the connected matrix 312 that are not related or statistically independent, ', heart and back' The source signal Μ# can be separated from the mixing matrix 312. The rake receiver is a wireless receiver that offsets the effects of multiple path fading. The raj^ receiver uses several independent delays with a slight delay to tune each multipath component to offset the effects of multiple path attenuation. Rake receivers can be used in most types of wireless access networks. Spreading type modulation is known to be particularly advantageous. The ability to select a particular incident signal path, the spreading type is particularly suitable as a means of changing the feed path for blind signal separation (BSS) processing. The selective formation of the previously described N antenna beam systems can be applied to a variety of wireless access network sounds as would be appreciated by those skilled in the art. For a code division multiple access (CDMA) system, the receiver component 308 includes n rake receivers 316. Each rake receiver 316 includes k correlators (fmger), thereby selecting k different sums for each of the n different sums of the source signals received by the respective connected antenna elements. 31 1284465 夕重路#Component . In this hybrid, the f-signal separation (BSS) processor 310 is coupled to a rake receiver 316 to form a hybrid matrix 312. The mixing matrix 312 includes at least k*N different multipath components of at least different sums of M source signals, and the mixing matrix 312 has a rank equal to up to k*N. In particular, when a code division multiple access (CDMA) waveform is transmitted, a code division multiple access (CDMA) waveform typically encounters a complex path between source and destination. In view of this, rake receivers 316 can be specifically designed to capture __路彳i and combine them for more robust signal decoding. Although the original signal is transmitted along an individual path, the characteristics of the original signal may also be adjusted based on the unique characteristics of the individual paths. In some cases, the adjustment of the correlation and/or statistical characteristics of the received signal will be significant enough to enable the received signal to be treated as a separate signal stream. In this case, an adjustment type rake receiver 316 can be applied to capture each of the adjusted signal streams and feed each of the adjusted signal streams to the mixing matrix 312 as a unique item. Although such a device for increasing the rank does not always exist, however, a highly multipath environment, because of its continuous need, usually has such a device for increasing the rank. Although a different path can be applied to the rake receiver 316, a more general method for any modulation technique is the beamforming technique, as shown in FIG. The beamforming technique is different from the rake receiver 316 because beamforming techniques are used to enhance the signal and reject the desired signal. However, the difference between the two is that, in fact, the rejection signal of the beamforming technique can form another version of the receiver wanted signal. However, 32 1284465 and the 'receiver member 308 need to detect a plurality of unique pass-through versions of the same signal, thereby establishing a third stage of the mixed matrix 312 〇 plan map with a sufficient rank number to signal splitting, thereby further Filling the Mixing Matrix A° In one approach, the sum signal can be split using spreading code. In another approach, the sum signal can be applied to the in-phase (I) module and the quadrature (Q) module segmentation. Refer to Figure 14, which shows how to apply the in-phase (I) module and the quadrature (Q) module for signal segmentation. The communication device 4 includes an antenna array 402, wherein the antenna array 4〇2 includes N antenna elements 〇4 to receive at least N different sums of the one source signals. A digital despreader 406 is coupled to ν antenna elements 404 to decode at least n different sums of the one source signals. Each of the n different sums includes k digits to provide a different sum of the related sources of the elbow. • Receiver component 408 is coupled to a digital despreader 406 to receive at least k*N different sums of the ]VI source signals. A blind signal separation (BSS) processor 410 is coupled to the receiver component 〇8 to form a mixing matrix 412, wherein the mixing matrix 412 includes at least k*N different sums of the source numbers. In addition to this, the matrix μ is mixed. The system has a rank number equal to up to k氺N (rank>. The blind signal separation (BSS) processor 410 can separate the desired source signal from the mixing matrix 412. According to the modulation type of the received signal, previously described The signal division can be applied to 33 1284465 to increase the rank of the hybrid matrix A without increasing the number of antenna elements N. IS - 95 code division multiple access (CDMA IS - 95 ), code division multiple access Two thousand (CDMA2000) and wideband code division multiple access (WCDMA) are examples of spread spectrum communication systems, in which spreading code can be applied. Common thread (comm〇n thread) indicates The unique digital system is applied to each signal processing to spread the data over a larger frequency band. φ The same spreading code is used to process the sum of received signals (desired signals, unwanted signals, blind sources). In this way, the wanted signal can be reconstructed and restored to the original frequency band, and the interference source can also be spread to the broadband frequency band. In the event of a shovel, the code division multiple access (CDMA) implementer is first shoveled. The system has a plurality of signal streams that simultaneously apply the same frequency band. In the case, each signal stream applies a set of numbers, and, theoretically, the set of numbers is orthogonal to all other numbers. If the decoder side satisfies this Conditions, which indicate that only important signals will be despread. If the total number of K signals is to be recorded in the county, the system will receive the majority and xk will increase the amplitude of the sk term and will remain unchanged. Or reduce the (k-丨) component of the value. The code division multiple access (CDMA) message usually has a certain degree of correlation. In view of this, more or less, the interference signal will also be merged with the desired signal. Rhyme establishment. In this case, the county has a delay of __ and multiple miscellaneous miscellaneous. Part of * want to shout (turn over, code division multiple access (CDMA) signal) may increase the value. Although this increase is not It will be as significant as the signal, but this increase will still increase the overall value of 34.1284465, and in view of this, the signal-to-noise ratio (SNR) is reduced. Despreading §fL equation form And the signal itself is a blind signal Separation (BSS) processing criteria. In fact, if a despreading code is applied to each of the known signals received by the communication device, the individual sum of the components of the Independent Component Analysis (ICA) model can be met. In view of this, the hybrid matrix system can provide the same number of available column items as the known digits. 'Assume that each column item is separately sufficient to generate a secret value. In the case of a sales situation, the mixed bribe may increase to more than the number. The number of values. For example, N antenna elements and M her code system can provide N*M matrix columns. For convenience of explanation, it is assumed that three numbers are known, and it is assumed that the three digital systems maintain their orthogonality. In the digital despreader lion: the hybrid matrix A is divided into the upper three columns and the lower three columns of the antenna stream, and is transported away from the diagonal after each antenna stream has been spread using three known digital despreading frequencies. The zero value is based on the orthogonality of individual numbers. Line Items Four, five, and six lines can be applied to the general example of blind signals of the same index.

Xl ai1 〇 〇 aH ai5 a% si r X2 0 a22 0 a24 a25 a26 s2 U3〕=〔 〇 〇 细 /34 a35 a36〕〔S3〕 ^ 341 〇 ^ 344 a45 Θ46 S4 X5 〇 a51 〇 ^54 a55 a56 S5 ^ 0 0 細如 365 366 S6 句行項目四、五、六之對應減可以是已知數褐之其他路 &版本、或已知數碼之其他胞元訊號。除此以外,某一兮孔 35 1284465 號玎以是高斯(Guassian)訊號,且,另一訊號可以是恪守 中心限制理論之分碼多重存取(CDMA)訊號群組,藉以使 其能夠呈現單一高斯(Guassian)訊號,舉例來說,釋放四 個頻道。換句話說,足夠數量之非隨機訊號將會增加至高 斯(Guassian)訊號。干擾來源可能是非高斯(Guassian) 訊號來源、或網路盲之至多一個高斯(Guassian)訊號。 在利用數碼解擴頻器(Spreader) 406解擴頻已知數碼以 _ 後,盲訊號分離(BSS)處理器410係接收秩數(rank)等 於六之混合矩陣412。等於六之秩數(rank)係基於兩個天 線元件乘以二倍,因為三個數碼係已知。 六個訊號係應用於盲訊號分離(BSS)處理器41〇,其中, 具有等於六之秩數(rank)之混合矩陣412係可以形成。盲 訊號分離(BSS)處理器410係僅僅經由應用頻道調整之接 收訊號決定分離矩陣w,亦即·· X==AS。在第14圖所示之 例子中,六個訊號係可分離的。 丨 盲訊號分離(BSS)處理器410係選擇欲解碼之訊號。 舉例來說,干擾來源訊號係可以捨棄,並且,想要訊號之 全部版本係可以選擇。選擇訊號係應用於解調變模組以進 订解調變操作。解調變模組係應用已知等化技術,並且, 已知等化技術係組合相同訊號之多重路徑版本。 在通用例子中,遠離對角線之數值(為方便說明起見, 先則例子係以零表示)亦可能是非零數值。在數碼訊號並 非70美之情況下,遠離對角線之非零數值可能會更加普 遍。遂離對角線之非零數值係表示各個分離訊號之額外雜 36 1284465 吼。然而,如先前所述,混合矩陣之秩數(rank)係足以分 離這些訊號,因此,在實施盲訊號分離(BSS)操作以後, 遠離對角線之非零數值將會顯著降低。藉此,雜訊降低、 訊號雜訊比(SNR)增加、及頻道能力增加(如夏農定律 (Shannon’s Theorem)所示)係可以得到。 接著,請參考第15圖,其係表示不需要增加天線元件數 目N即可以增加混合矩陣A之秩數(rank)之其他手段, 其中,這種手段係將接收混合訊號分離為同相(j)成分及 正父(Q)成分。相關射頻(RF)訊號之同相(〗)成分及 正父(Q)成分係具有相同振幅、但相位分離9〇度之成分。 通成裝置500係包括天線陣列502,其中,天線陣列502 係包括N個天線元件504,藉以接收μ個來源訊號之至少 Ν個不同總和。個別同相〇)及正交((^)模組5〇6係連 接,各個天線元件504之下行串流,藉以將Μ個接收來源 訊號之Ν個不同總和之各個總和分離為同相(1)及正交 成分集合。 接收器構件508係連接至個別同相(1)及正交(Q)模 、、且506之下行串流,藉以接收μ俩來源訊號之至少n個不 同總和之至少Ν個同相⑴及正交⑼成分集合。盲訊 號分,(BSS)處理器51〇係連接至接收器構件5〇8之下行 串抓,藉以形成混合矩陣512,其中,混合矩陣512係包括 ⑷固來源訊,至少2倾個不同總和。個別同相⑴及 正父(Q)成分集合係提供兩個輪入至混合矩陣512。混合 矩陣512係具有等於高達2倾之一秩數(rank),並且, 1284465 盲訊號分離(BSS)處理器51G係可以由混合矩陣512中分 離得到想要之來源訊號514。 第16圖係表示天線元件5〇2下行連結之個別同相(幻 及正交(Q)模組506。天線元件502接收之混合訊號係利 用一對混合II 52G分割。_⑴及正交(Q)成分係應 用兩個同步彳貞測H (其中,兩個具有9Q度相位差之相同參 考訊號係應用於兩朗步彻!m),㈣射頻(IF)訊號 轉譯至另—頻率範圍而共同產生。同相⑴及正交(Q) 係同$保邊中頻(IF)吼號之相位資訊,藉以使具有正頻率 之訊號能狗與具有負頻率之訊號區別。 、 b經由將接收混合訊號分割為同相(1)及正交成分, 混合矩陣之尺寸係可以增加兩倍。只要同相(Z)及正交(q) 成分係利用不同資料串流編碼,任何天線元件接收之混合 訊號係可以分割為兩種不同混合訊號。 在差動編碼之例子中,調變特性係需要分析,藉以決定 同相(I)及正父(Q)成分是否滿足線性要件。舉例來說, 對於全球機通訊⑽(刪)而言,已知,高斯最小移 位鍵匕(GMSK)編|在應肖適當_紐術時係可以假設為 線丨生的,並且’鬲斯最小移位鍵控(GMSK)編碼係可以彷 梯二進位移相鍵控(BPSK)編碼般地操作。由於二進位移 (BPSK) (BSS) 件’先前所述之同相⑴及正交(Q)處理係可以應用。 同相(1)及正交(Q)處理係可以應用於先前所述之天 線陣列較佳實_,藉轉滿齡矩陣A。當應用同相⑴ 38 1284465 及正交(Q)處理時’混合矩陣A係可以彷彿應用二倍天線 元件數目般地填滿。另一種例子係應用兩個天線元件(二 倍)’其係不存在關連且具有不同極性(2 *2 = 4倍),藉以 配合同相(I)及正交(Q)成分(2*2*2=8倍)而產生 八個獨立混合訊號。 這種機制亦可以配合天線陣列偏向(deflecti〇n)操作, 藉以產生更多訊號。各個總和亦可以依序分離為同相(工) 及正交(Q)成分。 本發明之另一種特徵係有關於多重輸入多重輸出 (ΜΙΜΟ)天線技術’藉以重複應用相同射頻(Rp)頻道。 刪除干擾來源之接收器處理技術係可以應甩場型多樣性需 要天線數目之最小化、而非應用天線多樣性,藉以達成訊 號耐用及對應資料速率之增加。 天線陣列之接收裔路徑係具有可改變權值。當權值改變 牯’接收天線場型係可以調整。經由應用盲訊號分離(BSS) 技術之類似技術,想要訊號係可以自包含數個干擾來源訊 號之接收器資料中擷取出來。 —,娜%型疋如何形成,在多重輸入多重輸出(MlM〇) 只方:方式之接收結構中,應用場型多樣性替代天線多樣性 均疋y仃做法,如第17圖所示。理論上,κ個場型之數目 將έ等於Ν個天線元件之數目。然而,κ個場型亦可以應 用少於f知技術所需Ν個天線元件之L個天線元件產生。 應用既存天線陣列多重輸入多重輸出(μιμ〇)實施方式之 類似手I又’ IV[及κ僅會在全部傳輸乂個空間頻道可以應用 39 J284465 κ個接收器場型識別之情況下彼此相等。由於這種情況通常 僅會出現於固定傳輸器及接收器之例子中,額外接收器場 型或傳輸器天線將有其需要,藉以達到Κ或Μ空間增益之 最小值。除此以外,多重使用者偵測(MUD)處理技術亦 可以應用,藉以分離得到接收器系統之資料頻道。建立現 合矩陣之全部先前所述方法係可以應用於這種實施方式之 部分。Xl ai1 〇〇aH ai5 a% si r X2 0 a22 0 a24 a25 a26 s2 U3]=[ 〇〇细/34 a35 a36][S3] ^ 341 〇^ 344 a45 Θ46 S4 X5 〇a51 〇^54 a55 a56 S5 ^ 0 0 As the 365 366 S6 line item, the corresponding reduction of the fourth, fifth, and sixth lines can be other roads and versions of the known number of browns, or other cell signals of known numbers. In addition, one pupil 35 1284465 is a Gaussian signal, and the other signal can be a group of code division multiple access (CDMA) signals that adheres to the central limit theory, so that it can present a single The Guassian signal, for example, releases four channels. In other words, a sufficient number of non-random signals will be added to the Guassian signal. The source of the interference may be a source of non-Gassian signals, or at least one Gaussian signal on the Internet. After despreading the known number to _ using a digital despreader (Spreader) 406, the blind signal separation (BSS) processor 410 receives a mixed matrix 412 having a rank equal to six. The rank equal to six is multiplied by two times based on two antenna components because the three digital systems are known. The six signals are applied to a blind signal separation (BSS) processor 41A, wherein a mixing matrix 412 having a rank equal to six can be formed. The blind signal separation (BSS) processor 410 determines the separation matrix w only by the received signal of the application channel adjustment, that is, X==AS. In the example shown in Figure 14, the six signals are separable. The blind signal separation (BSS) processor 410 selects the signal to be decoded. For example, the interference source signal can be discarded, and all versions of the desired signal can be selected. The selection signal is applied to the demodulation module to customize the demodulation operation. The demodulation module applies a known equalization technique, and it is known that the equalization technique combines multiple path versions of the same signal. In the general case, the value away from the diagonal (for convenience of explanation, the example is represented by zero) may also be a non-zero value. In the case where the digital signal is not 70 US dollars, the non-zero value away from the diagonal may be more common. The non-zero value of the diagonal line indicates the additional impurity of each separate signal 36 1284465 吼. However, as previously stated, the rank of the mixing matrix is sufficient to separate these signals, so that after performing a blind signal separation (BSS) operation, the non-zero value away from the diagonal will be significantly reduced. As a result, noise reduction, increased signal-to-noise ratio (SNR), and increased channel capability (as shown by Shannon’s Theorem) are available. Next, please refer to FIG. 15 , which shows another means for increasing the rank of the mixing matrix A without increasing the number of antenna elements N, wherein the means separates the received mixed signals into in-phase (j). Ingredients and the parent (Q) component. The in-phase (〗) component and the positive-father (Q) component of the associated radio frequency (RF) signal have the same amplitude but a phase separation of 9 degrees. The pass-through device 500 includes an antenna array 502, wherein the antenna array 502 includes N antenna elements 504 for receiving at least one different sum of the μ source signals. Individual in-phase 〇) and orthogonal ((^) module 5〇6 series are connected, and each antenna element 504 is streamed downstream, thereby separating the sum of the different sums of the one receiving source signals into the same phase (1) and The set of orthogonal components. The receiver component 508 is coupled to the respective in-phase (1) and quadrature (Q) modes, and 506 is downlinked to receive at least one of the n different sums of the two source signals. (1) and orthogonal (9) component sets. The blind signal sub-segment (BSS) processor 51 is connected to the receiver component 5〇8 under the line string capture to form a hybrid matrix 512, wherein the hybrid matrix 512 includes (4) solid source information. At least 2 different sums. The individual in-phase (1) and positive-father (Q) component sets provide two rounds to the mixing matrix 512. The mixing matrix 512 has a rank equal to one of up to 2 degrees, and 1284465 The blind signal separation (BSS) processor 51G can separate the desired source signal 514 from the mixing matrix 512. Figure 16 shows the individual in-phase (phantom and quadrature (Q) modules of the downlink connection of the antenna elements 5〇2. 506. Mixing of antenna elements 502 received The system uses a pair of hybrid II 52G divisions. The _(1) and quadrature (Q) components apply two simultaneous measurements H (where two identical reference signals with a phase difference of 9Q are applied to the two lang step! m (4) The radio frequency (IF) signal is translated to another frequency range and generated together. The in-phase (1) and quadrature (Q) are the same as the phase information of the marginal intermediate frequency (IF) nickname, so that the signal with positive frequency can The dog is distinguished from the signal with a negative frequency. b. By dividing the received mixed signal into in-phase (1) and orthogonal components, the size of the mixing matrix can be doubled. As long as the in-phase (Z) and orthogonal (q) components are With different data stream coding, the mixed signal received by any antenna element can be divided into two different mixed signals. In the case of differential coding, the modulation characteristics need to be analyzed to determine the in-phase (I) and the positive (Q) Whether the component satisfies the linear requirement. For example, for global machine communication (10) (deletion), it is known that the Gaussian minimum shift key GM (GMSK) can be assumed to be a line when appropriate. Raw, and 'Muse minimum displacement The control (GMSK) coding system can operate as a binary-shifted phase-keyed (BPSK) code. Since the binary-input (BPSK) (BSS) device's previously described in-phase (1) and quadrature (Q) processing systems can Application: The in-phase (1) and quadrature (Q) processing systems can be applied to the previously described antenna array, which is better than the full-age matrix A. When applying in-phase (1) 38 1284465 and orthogonal (Q) processing' The hybrid matrix A can be filled as if the number of double antenna elements is used. Another example is to apply two antenna elements (double), which are not related and have different polarities (2 * 2 = 4 times). Eight independent mixed signals are generated by combining the contract phase (I) and the quadrature (Q) component (2*2*2=8 times). This mechanism can also be used in conjunction with antenna array biasing to generate more signals. The sums can also be separated into in-phase (work) and quadrature (Q) components in sequence. Another feature of the invention relates to multiple input multiple output (MIMO) antenna technology by which the same radio frequency (Rp) channel is repeatedly applied. The receiver processing technique for removing interference sources can minimize the number of antennas required for field diversity, rather than applying antenna diversity, thereby achieving signal robustness and corresponding data rate increases. The receiving path of the antenna array has a changeable weight. When the weight changes 牯' the receiving antenna field type can be adjusted. By applying a similar technique to Blind Signal Separation (BSS) technology, the wanted signal can be extracted from the receiver data containing several sources of interference. —, how to form a Na-type ,, in the multi-input multiple-output (MlM〇) only: mode receiving structure, the application of field diversity instead of antenna diversity is 疋 仃 仃, as shown in Figure 17. In theory, the number of κ field patterns will be equal to the number of antenna elements. However, the κ field patterns can also be generated using L antenna elements of less than one antenna element required by the known technique. The application of the existing antenna array multiple input multiple output (μιμ〇) implementation of the similar hand I and 'IV [and κ will only be equal to each other in the case where all transmission spatial channels can be applied with 39 J284465 κ receiver field identification. Since this situation usually only occurs in the case of fixed transmitters and receivers, an additional receiver field or transmitter antenna will have its need to achieve a minimum of Κ or Μ spatial gain. In addition, multiple user detection (MUD) processing techniques can be applied to separate the data channels of the receiver system. All of the previously described methods of establishing an integrated matrix can be applied to portions of such an implementation.

本發明之另一種特徵係有關於松互符號干擾(ISI)。請 參考第18圖,其提供之架構係可以提出應用傅立葉 (Fourier)轉換方法以降低相互符號干擾(ISI)之限制。 下列方塊係增加於傳輸侧邊,藉以改善降低相互符號干擾 (ISI)之傅立葉(Fourier )轉換方法,亦即:費特比(Viterbi) 編碼、重覆或穿刺、及方塊冗餘交錯係增加於傳輸側邊。 除此以外,下列方塊係增加於接收側邊,亦即:盲訊號分 離(BSS)干擾來源移除、方塊解交錯、解重覆/解穿刺、 及費特比(Viterbi)解碼係增加於接收侧邊。 ”費特比(Viterbi)、編碼,,係具有克服資料解碼處理不 精叙耐用冗餘。除此以外,替代編碼形式,諸如:渦輪 (=。)編碼’亦可以應用。,,重覆或穿刺”係可以達^ 來源貝料速率及傳射料速率狀諸錢匹配。,,方塊 冗餘交錯”係可以促進依序到達來源資料之隨機化,梦以 方塊;差了:兄’由於嚴重哀減’這種實施方式係可能加入 方塊㈣(方塊誤差係分佈方塊誤差於費特比(Viterbi)解 .1284465 碼5^^)並且,相較於方塊誤差,費特比(Viterbi)解 在轉=2有效率地自隨機分佈誤差中回復資料串流: ;i時域以前’ ”盲訊號分離(Bss)干擾來源移除 係可以降低訊號至想要訊號。Another feature of the invention relates to loose inter-symbol interference (ISI). Please refer to Figure 18, which provides an architecture that can be applied to reduce the mutual symbol interference (ISI) by applying a Fourier transform method. The following blocks are added to the transmission side to improve the Fourier transform method for reducing mutual symbol interference (ISI), ie: Viterbi coding, repetition or puncture, and block redundancy interleaving are added to Transfer the sides. In addition, the following blocks are added to the receiving side, ie: blind signal separation (BSS) interference source removal, block deinterlacing, de-repeating/de-puncturing, and Viterbi decoding are added to receive. Side. "Viterbi, coding, has the advantage of overcoming the redundancy of the data decoding process. In addition, alternative coding forms, such as: turbo (=.) coding ' can also be applied.,, repeat or puncture "The system can reach the source of the material rate and the rate of the material to match the money. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Viterbi solves .1284465 code 5^^) and, compared to the block error, the Viterbi solution efficiently returns the data stream from the random distribution error in the transition = 2: i time domain The previous 'Bss' interference source removal system can reduce the signal to the desired signal.

是訊號係具有已知之統計上特性(不太韻 ^ 的),處理非—致性分佈(峰值平均比(PAR)位 、套佳方式將會是在快速傅立葉轉換(FFT)之輸出側 $㈣線性映像器(mapper) (藉以等化各個頻率之訊號 反向轉換並妓触稍立_(IFFT)讀人侧邊增加 除此以外,在實際情況中,這個訊號通常會調變、並調 整頻率至傳輸頻率範目,@此增加觀器、、上轉換器及下 2換器、解調變H係可以完成圖片。傳輸彳皮形間邊界係可 =出現不連續特性。這種不連續特性係可以利用數種方式 緩和。一種方式即是在波形間(曲線係内插於波形間)增 加看守頻帶(guard band),藉以使產生頻率成分最小化。 建立混合矩陣之全部先前所述方法係可以應用於這種實施 方式之部分。 本發明之另一種特徵係有關於場型多樣性,藉以支援分 層空間通訊。請參考第19圖,在較佳實施例中,傳輸器係 以時槽為基礎地改變各個分層空間串流之功率位準。有鑑 於此’各個分層空間串流係可以利用不同功率位準到達接 收器’進而提供接收訊號之適當差異以填滿合適於盲訊號 分離(BSS)處理之矩陣。由於全部功率調整係完成於傳輸 41 ,1284465 器侧邊,接收器侧邊之L個天線元件數目係等於一,並且, 接收器側邊亦不需要場型產生硬體或軟體元件。 這種手段亦可以克服習知技術之問題,因為產生訊號間 適當不同場型輪廓而使到達訊號間存在小角度差異將不再 成為問題。 在另一種較佳實施例中,除了想要傳輸器之干擾來源以 外,其他顯著干擾來源亦可能存在。若僅僅存在單一干擾 • 來源,這個干擾來源與改變想要傳輸器波前間之差異將會 合適應用於盲訊號分離(BSS)處理以分離全部訊號。若存 在不止單一干擾來源,矩陣秩數(rank)可能並不適當。經 由在接收器側邊產生額外場型改變,改系統效能將可以改 善。雖然這種手段僅是較佳實施例之偏差(deviati〇n),然 而’运種手段仍然能夠較先前所述實施方式有顯著較少之 場型,也因此,這種手段亦較無關於接收器侧邊之實施方 式。 • 在另一種較佳實施例中,複數資料串流係總和,藉以經 由單一天線70件之功率放大器傳輸。以時槽為基礎,總和 虎之相對功率位準係可以改變,進而適合應用於接收器 侧邊之解碼。這種手段之優點在於:混合訊號之個別訊號 串流係可以經歷個別傳遞路徑作用,其表示:傳輸器及接 收态間之相對訊號關係將可以維持。藉此,接收器側邊之 非當耐用解碼係可以得到。 以種觀念係可以縮放,藉此,複數個別總和訊號係可以 ㈣不同天線元件傳送。有鑑於此,耐祕號分離係可以 42 J284465 , 伴隨多重路禋多樣性增益及/或空間容量增益而得到。要 解決理淪上固定之峰值平均訊號功率比問題,總和訊號之 功率係可以適當調整,藉以維持接近固定之功率位準。建 立此S矩陣之先前所述全部方法係可以應用於這種實施方 式之部分。 本叙明之另一種特徵係有關於波動場型以支援複數同步 傳輸器。請參考第20圖,傳輸至無線網路基地台(AP)之 複數裝置係調變其射頻(RF)場型。有鑑於此,想要無線 籲 祕基地台(AP)及不想要無線網路基地台(Ap)將可以 接收傳輸訊號之不同功率位準版本。藉此,盲訊號分離 (BSS)技術將可以得到足夠資訊以分離訊號。 這種調變係可以如改變傳輸功率般地簡單。這種調變係 可以獨立於場型輪廓地完成,因此,全向性、區段化、或 絲成型場型均可以應用。除此以外,諸如改變傳輸波束 對準器(bore sight)之其他技術亦可以應用。 籲 最有效之手段係使傳輸器應用對準時槽。時序係可以應 用裝置之内部時脈設定、或同步於無線網路基地台(Ap) 傳送之共同時間標記。若訊號到達接收器之時間呈現不對 準(misalignment),盲訊號分離(BSS)分離訊號之能力係 而進行雜。隨後’時序領先或延遲技術係可以提供存 裝置應用。 ’、 假設訊號接收增益改變係同時應用於將其視為目標之盲 訊號分離(BSS)配備無線網路基地台(Ap)及其他例= 43 1284465 之干擾來源,欲對準之適當接收器係可以變動。若不存在 整體網路協調,想要接收器係應該被對準。若存在整體網 路協調,量測係可以顯示:最佳手段係使訊號能夠如干擾 來源敖地各易移除,但卻仍然能夠在想要接收器侧邊提供 適當對準以進行分離操作。 若存在不使用射頻(RF)功率位準調變技術之其他訊號 來源,傳統訊號拒絕技術係可以應用。或者,接收器係可 以應用%型或其他手段,進而增加盲訊號分離(Bss)合適 矩陣之秩數(rank)。即使應用後面那些手段,推導矩陣資 訊程度仍將會大幅降低在無線網路基地台(Ap)接收器侧 邊貝施之負擔。建立混合矩陣之先前所述全部方法係可以 應用於這種實施方式之部分。 本發明之另一種特徵係有關於調整盲訊號分離(BSS) 射頻(RF)解碼以得到最佳處理及功率汲(drain)。需要分 離以解碼重要串流之訊號數目係可以降低。一般而言,解 碼矩陣之秩數(rank)係決定將會分離之最重要訊號數目, 而其他訊號則會視為雜訊。有鑑於此,這個數值係需要包 含欲解碼訊號之最小值。除此以外,降低雜訊成分係可能 需要較高之最小值,藉以使訊號雜訊比(SNR)能夠得到可 接受之解碼錯誤率。 第21圖係表示僅有接收器操作之實施方式。第22圖係 第21圖之超集合,其亦包括傳輸器至接收器之資料,及選 擇性地,接收器至傳輸器之資料。 若填滿矩陣之選擇超過操作需要之秩數(rank),天線選 44 ,1284465 ,控^可以降低應用選擇之數目。可料合之部分選擇 優於其他麟’並且,最佳麟射啸供最低矩 (rank)之選擇。這個集合係可以經由比較各種選擇 及其他選擇之訊號檢查結果而決定,其 錯誤技術_來說,啸應用及不應崎擇==,、 或者,其係可以應用條件及結果之歷史追蹤。應用何種方 f或方献合之蚊係可以基於給定條件及敎證效 • 率考量。 *已知裝置位於數個來源之重要訊號範圍時,啫如·出 現於覆蓋重疊區域時,最大功率訊號係可以預“自顯著 *冋方向。有鑑於此,這些選擇係可以決定,進而提供這 些方向之重要訊號差異。 對於編碼而言,錯誤校正編碼係決定可以容忍於原始解 碼串流之錯誤率。由於原始錯誤率亦是矩陣填滿選擇子集 合之函數,這些設定間係存在取捨關係。編竭器及解碼器 # 間之回饋及控制迴路係可以應用,進而選擇最佳相互設定。 若已知接收器不在功率限制情況(舉例來說,線電紐 供功率),解碼器將會增加其矩陣秩數(rank)。這種手段係 可以應用於數種目的。較高秩數(rank)儀可以降低雜二、 其可以增加訊號雜訊比(SNR)、並進而降低錯誤率。降低 雜訊係可以應用於傳輪資料速率之增加、錯誤校正編碼^ 降低、或整體連結可靠性之改善。 除此以外,將矩陣填滿負擔轉移至接收器亦可以降低傳 輸器側邊之負載,其可以應用於兩者間存在控制迴路乏情 45 1284465 地:利用電池之裝置將會試圖達成秩數(磁)產 广㈢口,藉以成為更耐用供電裝置。 個符,最财用操作係要求解碼矩陣每隔一 符號數目二斤一次。然而,一般而言,關連時間係超過 速率接心 ’量測僅僅需要以輕微略快於關連時間之 處理器負擔P可。降低解碼矩陣決定出現係可以節省功率及 計算^見^車之^次改變出現係可以決定解碼矩陣需要重新 間。各個子頻t寬頻系、統中,子頻道通常具有個別關連時 率。藉此己之解瑪矩陣及關連量測速 =:二’子解一測總和將會: 調,胸係可以 收器係可以將其】5進而提供適當秩數(叫接 訊、接收串;魬民 '立於傳輪器告知傳輸特徵之相關資 礎上。右血Γ知貪料之量測、或與來源談判設定之基 二=:::定::子中,來源之資源限制“ 一侧邊可側邊可以承擔較高負擔、並使另 著般而言,解碼矩陣將不會隨 求解決定:種ΐ進: 當開始求解大型矩陣時,反覆 46 1284465 盲狀態開始求解之情況。這種手段係大秩數 填滿矩陣之習知求解方式。 一般而言,根據可用成分、修改數碼位準、適當設備、 可㈣作之其賴素,先前所述全部方法之組合亦 二可能。建立混合矩陣之先前所述全部方法係可以應用於 這種實施方式之部分。The signal system has a known statistical characteristic (not very rhyme), and the non-distributive distribution (the peak-to-average ratio (PAR) bit, the set-wise mode will be on the output side of the fast Fourier transform (FFT) $ (4) Linear mapper (mapper) (by equalizing the signal reverse conversion of each frequency and touching the _ (IFFT) reader side increase. In addition, in actual situations, this signal usually modulates and adjusts the frequency. To the transmission frequency range, @ increase the viewer, the up converter and the lower converter, and the demodulation variable H system can complete the picture. The transmission of the boundary between the skins can be discontinuous. The system can be mitigated in several ways. One way is to increase the guard band between waveforms (interpolated between waveforms) to minimize the frequency component. Establish all the previously described methodologies for the hybrid matrix. It can be applied to parts of this embodiment. Another feature of the invention relates to field diversity to support hierarchical spatial communication. Referring to Figure 19, in a preferred embodiment, the transmitter is timed. Basically changing the power level of each hierarchical space stream. In view of this, 'each hierarchical space stream system can use different power levels to reach the receiver' to provide appropriate differences in received signals to fill the appropriate blind signals. Separate (BSS) processed matrix. Since all power adjustments are done on the side of the transmission 41, 1284465, the number of L antenna elements on the receiver side is equal to one, and the receiver side does not need the field type to generate hard Body or software component. This approach also overcomes the problems of the prior art because it is no longer a problem to have a different angular profile between the signals such that there is a small angular difference between the arriving signals. In another preferred embodiment, In addition to the source of interference from the transmitter, other significant sources of interference may also exist. If there is only a single source of interference, the source of the interference and the difference between the wanted and the wavefront of the wanted transmitter will be suitable for blind signal separation (BSS). Processing to separate all signals. If there is more than one single source of interference, the rank of the matrix may not be appropriate. Additional field type changes are generated on the side of the device, and the system performance can be improved. Although this method is only the deviation of the preferred embodiment, the means can still be significantly better than the previously described embodiments. There is a small field type, and therefore, this method is also less relevant to the implementation of the receiver side. • In another preferred embodiment, the sum of the plurality of data streams is transmitted via a single antenna 70 piece power amplifier. Based on the time slot, the relative power level of the sum tiger can be changed, which is suitable for decoding on the side of the receiver. The advantage of this method is that the individual signal streams of the mixed signal can undergo individual transmission paths. , which means that the relative signal relationship between the transmitter and the receiving state can be maintained, whereby the non-durable decoding system on the side of the receiver can be obtained. The concept can be scaled, whereby a plurality of individual sum signals can be transmitted by different antenna elements. In view of this, the separation of the secret number can be obtained in 42 J284465 with multiple loop diversity gain and/or space capacity gain. To solve the problem of fixed peak-to-average signal power ratio, the power of the sum signal can be adjusted appropriately to maintain a near-fixed power level. All of the previously described methods of establishing this S-matrix can be applied to portions of this implementation. Another feature of this description relates to the volatility field to support complex sync transmitters. Referring to Figure 20, the multiple devices transmitted to the wireless network base station (AP) are tuned to their radio frequency (RF) field types. In view of this, it is desirable to have a wireless base station (AP) and an undesired wireless network base station (Ap) that can receive different power level versions of the transmission signal. In this way, Blind Signal Separation (BSS) technology will get enough information to separate the signals. This modulation can be as simple as changing the transmission power. This modulation can be done independently of the field profile, so omnidirectional, segmented, or wire-formed fields can be applied. In addition to this, other techniques such as changing the transmission beam aligner can also be applied. The most effective means is to align the transmitter application with the time slot. The timing can be set by the internal clock settings of the application or synchronized with the common time stamp transmitted by the wireless network base station (Ap). If the time at which the signal arrives at the receiver is misaligned, the ability of the blind signal separation (BSS) to separate the signals is mixed. Subsequent 'time-leading or delay technology' can provide storage applications. ', assuming that the signal reception gain change is applied to the blind signal separation (BSS) that is considered as the target, and the interference source to be equipped with the wireless network base station (Ap) and other examples = 43 1284465, the appropriate receiver system to be aligned Can be changed. If there is no overall network coordination, the receiver system should be aligned. If there is overall network coordination, the measurement system can show that the best means is to enable the signal to be easily removed as the source of the interference, but still provide proper alignment on the side of the receiver for separation. Traditional signal rejection techniques can be applied if there are other sources of signals that do not use radio frequency (RF) power level modulation techniques. Alternatively, the receiver can apply % or other means to increase the rank of the appropriate matrix of blind signal separation (Bss). Even with the latter approach, deriving the matrix information level will significantly reduce the burden on the side of the wireless network base station (Ap) receiver. All of the previously described methods of establishing a hybrid matrix can be applied to portions of such an embodiment. Another feature of the invention relates to adjusting blind signal separation (BSS) radio frequency (RF) decoding for optimal processing and power drain. The number of signals that need to be separated to decode the important stream can be reduced. In general, the rank of the decoding matrix determines the number of most important signals that will be separated, while other signals are treated as noise. In view of this, this value needs to contain the minimum value of the signal to be decoded. In addition, reducing the noise component may require a higher minimum, so that the signal to noise ratio (SNR) can achieve an acceptable decoding error rate. Figure 21 shows an embodiment in which only receiver operation is performed. Figure 22 is a superset of Figure 21, which also includes the transmitter-to-receiver data and, optionally, the receiver-to-transmitter data. If the selection of the filled matrix exceeds the rank required for the operation, the antenna selects 44, 1284465, and the control can reduce the number of application choices. The combination of the choices is better than the other ones, and the best choice is the lowest. This collection can be determined by comparing the results of various selections and other selections of signal checks. The error technique _, the application of the whistle and the choice of ==, or, can be applied to the history of the application of conditions and results. Which type of f or prescription is used can be based on given conditions and the effectiveness of the test. *When the known device is located in the important signal range of several sources, such as when it appears in the overlapping area, the maximum power signal can be pre-exposed to the direction of the *. In view of this, these choices can be determined, and thus provide these The important signal difference of direction. For coding, the error correction coding determines that the error rate of the original decoded stream can be tolerated. Since the original error rate is also a function of the matrix filling the selected subset, there is a trade-off between these settings. The feedback and control loop between the programmer and the decoder # can be applied to select the optimal mutual setting. If the receiver is known not to be in the power limit (for example, the line power supply), the decoder will increase. Its matrix rank (rank). This method can be applied to several purposes. A higher rank (rank) meter can reduce the noise, which can increase the signal-to-noise ratio (SNR) and thus reduce the error rate. The noise system can be applied to the increase of the transmission data rate, the error correction coding ^ reduction, or the improvement of the overall connection reliability. In addition, the matrix is filled up. Transferring the load to the receiver can also reduce the load on the side of the transmitter, which can be used to control the loop between the two. There is a lack of control. 45 1284465: The device using the battery will try to achieve the rank (magnetic) production wide (three) port, thereby It becomes a more durable power supply device. The most economical operation system requires the decoding matrix to be 2,000 kilograms every other symbol. However, in general, the connection time is more than the rate connection. The measurement only needs to be slightly slightly faster than the connection. The processor load of time can be reduced. Decreasing the decoding matrix determines the appearance of the system can save power and the calculation ^ see ^ car ^ change the appearance can determine the decoding matrix needs to be re-interval. Each sub-frequency t broadband system, system, sub-channel usually It has an individual correlation time rate. By means of its own solution matrix and related measure speed =: two 'sub-solutions and one test sum will be: tune, the chest system can be used to provide the appropriate rank number (called News, receiving string; 魬民's standing on the relevant information of the transmission characteristics. The right blood knows the measurement of greed, or negotiates with the source to set the base ==::::: Source of resources Restricted "One side can be shouldered to bear a higher burden, and in another case, the decoding matrix will not be determined by the solution: the type of intrusion: when starting to solve large matrices, repeat 46 1284465 blind state begins to solve Situation. This method is a conventional solution to fill a matrix with a large rank. In general, the combination of all the methods described above is based on the available components, the modified digital level, the appropriate equipment, and the (4) It is possible that all of the previously described methods of establishing a hybrid matrix can be applied to portions of such an embodiment.

(rank )、相當 卜本發明之另-種肖徵係有關於波動場型以支援有效面積 覆蓋。對於場型傳輸而言,基本觀念係在基礎架構側邊應 用區段化覆蓋場型。實際區段數目係可以隨著容量需要及 相關費用因素岐變。實際實施方式係可以㈣—區段數 目變動至隨意多個區段數目。區段自身係可以區分為方位 (azimuth)或高度(elevation)或方位(紉叻她)及高度 (elevation)平面。利甩區段的主要優點在於:相對於波束 成型方法’區段可以缓衝追縱連結另一侧邊之裝置追蹤。 有鑑於此,保留某個區段之覆蓋面積給另一個區段係可以 降低至傳統遞交(handoff)情況。 習知技術係可以使接收器產生場型改變,藉以提供盲訊 號分離(BSS)訊號分離處理應用。相對於此,傳輸器係應 用技術,藉以使適當盲訊號分離(BSS)解碼器環境係至少 4刀存在。在部分貫施方式中’這種手段係表示收器 並不需要產生任何波動場型。在其他實施方式中,這種手 段意指··波動場型數目係可以顯著降低。 一種較佳實施例係應用於早一傳輸點。這種較佳實施例 係解決下列情況之問題’當無法知道區域内其他傳輸來源 47 .1284465 是否亦在操作時。請參考第23圖,傳輪場型輪輪_波動 於接收器已知之時序。 傳輸場型之改變係定時’藉以對準傳輸符號之分割。相 對於對準器(bore sight)移動,場型輪廓係適度改變、並 在各個時槽係維持固定。有鑑於此’覆蓋面積並不會顯著 變化,並且,欲解決之前視追縱問題亦不存在。 基於改變之傳輸輪廓,接收器將會經歷波前功率位準之 • 改變。有鑑於此,盲訊號分離(BSS)矩陣將會利用不同相 對增益數值之各種訊號串流差異填滿。 若接收主要訊號係全部來自應用波動訊號之單一或複數 傳輸器,接收器僅僅需要在各個場型改變期間取樣、並應 用得到資料填滿混合_,藉以提供盲訊號分離(Bss) ^ 理進行訊號分離。 若存在應用及不應用波動訊號之混合傳輸器,接收器係 可以應用傳統訊號分離技術以進行補償。舉例來說,諸如 • 波束成型及多重使用者偵測(MUD)之方法係可以應用。 然而,盲訊號分離(BSS)方法通常會較為耐用。實務上, 接收器係可以實施場型變形及產生足夠額外場型以增加盲 訊號分離(BSS)矩陣之秩數(rank)至欲分離訊號數目以 上。 舉例來說,對於盲訊號分離(BSS)解碼器而言,若三 種σ孔破之二種輪廊係應用傳輸器傳送’並且,存在兩種盆 他接收號,接收裔係需要產生至少兩種輪廓以分離干擾 來源及其他訊號。這種手段係較需要減少三種輪廓,若傳 48 .1284465 輸器並未產生自身集合,因此,這種手段對於接收器之負 擔係始終較低。 /右傳輸裔係沿著單一路徑傳送單一串流,場型輪廊集合 係不需要旋轉或相異。這是由於接收器偵測訊號已經相對 於全部其他接收訊號地改變。有鑑於此,傳輸器係可以應 用簡:功率改變於整體場型,而不需要改變輪廓形狀。若 僅有單一其他串流總和於接收器,盲訊號分離(Bss)處理 將能夠分離,即使單一串流之振幅係維持固定。這是由於 功率顫動(dithering)來源係提供操作需要之改變。若不只 單一其他串流係接收,這些串流係可以視為盲訊號分離 (BSS)處理之單一群組干擾來源,除非接收器自身係應用 其他分離裝置,或者,除非接收器自身係具有波動場型產 生能力。 接收模式之場型傳輸器將會進一步詳細討論如下。由於 夕重场型輪廓之盲訊號分離(BSS)處理係訊號分離之極佳 方法,應用來分離傳輸場型之相同技術亦可以應用於產生 多重接收器數值。有鑑於此,盲訊號分離(BSS)接收之唯 一成本因素,當傳輸已經支援時,係盲訊號分離(BSS)處 理之處理負擔。 使用者設備(UE)接收器至傳輸器之回饋將會進一步詳 鈿討論如下。雖然不是嚴格需要,使甩者設備(UE)接收 器之回饋資訊係可以應用,進而改善整體連結操作。舉例 來說,接收器係可以決定各個場型輪廓改變提供有用資料 之程度。這種資訊係回饋至傳輸器。隨後,傳輸器係可以(rank), quite similar to the invention, is related to the volatility field type to support effective area coverage. For field-type transmissions, the basic idea is to apply segmentation coverage patterns on the side of the infrastructure. The actual number of segments can vary with capacity needs and associated cost factors. The actual implementation may be (four) - the number of segments varies to a random number of segments. The segment itself can be distinguished as an azimuth or elevation or a herm and elevation plane. The main advantage of the Leo section is that the section tracking can be buffered relative to the beamforming method section. In view of this, retaining the coverage area of one section to another section can be reduced to the traditional handoff situation. Conventional techniques enable the receiver to generate field type changes to provide blind signal separation (BSS) signal separation processing applications. In contrast, the transmitter is an application technique whereby a suitable blind signal separation (BSS) decoder environment is present at least four. In the partial implementation mode, this means that the receiver does not need to generate any wave pattern. In other embodiments, this means that the number of fluctuating field types can be significantly reduced. A preferred embodiment is applied to the early transmission point. This preferred embodiment solves the problem of the following situation 'When it is not known whether other transmission sources 47.1284465 in the area are also operating. Please refer to Figure 23 for the wheel-type wheel _ fluctuations at the known timing of the receiver. The change in transmission pattern is the timing by which the segmentation of the transmitted symbols is aligned. The field profile changes moderately with respect to the bore sight movement and remains fixed at each time slot. In view of this, the coverage area will not change significantly, and there is no such problem as before. Based on the changed transmission profile, the receiver will experience a change in the wavefront power level. In view of this, the Blind Signal Separation (BSS) matrix will be filled with various signal stream differences for different relative gain values. If the main signal received is from a single or multiple transmitters that use the heartbeat signal, the receiver only needs to sample during each field change and apply the data to fill the mix_ to provide blind signal separation (Bss). Separation. If there is a hybrid transmitter with and without wave signals, the receiver can apply traditional signal separation techniques to compensate. For example, methods such as • Beamforming and Multiple User Detection (MUD) can be applied. However, the blind signal separation (BSS) method is generally more durable. In practice, the receiver can perform field-type deformation and generate enough additional field patterns to increase the rank of the blind signal separation (BSS) matrix to more than the number of signals to be separated. For example, for a blind signal separation (BSS) decoder, if two types of sigma-holes are used to transmit the transmitter, and there are two types of pedestal reception numbers, the receiving system needs to generate at least two types. Contours to separate sources of interference and other signals. This method is more necessary to reduce the three contours. If the transmission of the 48.1284465 transmitter does not produce its own set, the means for this receiver is always low. /Right transmissions carry a single stream along a single path, and the field-type gallery collection does not need to be rotated or different. This is because the receiver detection signal has changed relative to all other received signals. In view of this, the transmitter can be applied simply: the power is changed to the overall field type without changing the contour shape. If only a single other stream is summed to the receiver, the blind signal separation (Bss) process will be able to separate even if the amplitude of a single stream remains fixed. This is due to the fact that the power dithering source provides a change in operational requirements. If more than one other stream is received, these streams can be considered as a single source of interference for blind signal separation (BSS) processing, unless the receiver itself applies other separation devices, or unless the receiver itself has a wave field Type generation ability. The field mode transmitter of the receive mode will be discussed in further detail below. Since the blind signal separation (BSS) processing of the unequal field profile is an excellent method for signal separation, the same technique applied to separate the transmission field types can also be applied to generate multiple receiver values. In view of this, the only cost factor for blind signal separation (BSS) reception is the processing burden of blind signal separation (BSS) processing when transmission is already supported. Feedback from the User Equipment (UE) Receiver to Transmitter will be discussed in further detail below. Although not strictly required, the feedback information of the receiver (UE) receiver can be applied to improve the overall connection operation. For example, the receiver can determine the extent to which each field profile change provides useful information. This information is fed back to the transmitter. Subsequently, the transmitter system can

4Q •1284465 調整操作以改盖鱼 較少干擾4二;#=少功率、她 及符號傳輪^^=;^括··各個場型之應用順序、 各個符號之輪 佳效能。 將會傳遞至接收器,藉以得到最4Q • 1284465 adjustment operation to change the fish less interference 4 2; #= less power, her and symbol transmission wheel ^^=; ^ bracket · · the application sequence of each field type, the wheel performance of each symbol. Will be passed to the receiver for the most

前所第述Γ2/施Γ有關於多數傳輸點,其係已知應用先 側邊之實重傳輸器側邊之實施方式與單一傳輸器 认方式基本上係具有相同之接收器操作。兩者差 "在於··各個傳輸器產生之場型係可以計數於接收考,藉 以進行盲訊齡離(BSS )處理之訊號分離。 曰 =而耐用操作亦可以自網路接收協調餘參數特性 之負Λ而得到。舉例來說,紐車秩數(&),其接著主導 需要,型數目’係可以調整。有鑑於此,接收器之場型產 生:當可吨供時,係可贿據這㈣测整。網路寬無 線貧源管理係可以應用回饋至使用者設備(UE)之資訊以 建立網路寬場型應用、走向、功率位準、及時序。建立混 合矩陣之先前所述全部方法係可以應用於這種實施方式之 部分。 本發明之另一種持徵係有關於盲訊號分離(BSS)及場 型波動’藉以協助分碼多重存取(CDMA)訊號分離。盲訊 號分_ (BSS)演异法欲有效分離訊號,※接收訊號必須是 個別訊號關連相對不同權值因素之天線之接收訊號集合。 這種手段係可以完成於傳輸器、接收器、或同時完成於兩 者位置。無論權值因素係改變於傳輸側邊或接收侧邊,權 .1284465 值因素係可以根據片段或連續片段集合而改變。基本要東 在於··集合訊號於各個符號期間係調整欲分離訊號數^ 次數。 之 第24圖係表示一種情況,其中,符號係於頻率上變動十 二次(十二個片段)。變動參數係維持固定達到四個片俨 各個符號之三種變動係表示··三種不同訊號係可以自^隼 接收訊號中分離出來。 # 若傳輸器係沿著單-路徑傳送單一串流,場型輪摩集人 並不需要旋轉或差異。這是因為接收器偵測訊號係相對二 全部其他接收訊號地改變。有鏗於此,傳輸器係可⑽用 整,場型之簡單功率變化,而不需要改變輪廊形狀。^僅 有單一其他串流係總和於接收器側邊,盲訊?虎分離(聰) 處理將能夠將其分離,即使單一串流之振幅係維持固定。 這是由於功率顫動(碰ering)來源係提供操作需要之改 义m種其他串流係接收得到,這些串流係可以視 _ 衫訊號分離(BSS)處理之單—群組干擾來源,除非接收 器自身應用其他分離裳置,或者,除非接收器自身具有波 動場型產生能力。 、雖鮮是嚴格需要,使用者設備(UE)接收器之回饋資 窃係可以決定各個場型輪廓改變提供有用資料之程度。這 拜貝⑽回饋至傳輸||。隨後,傳輸㈣可以調整操作, 藉㈣善連結、朗較少功率、或對其他連結誠較少干 擾。雖然存在許多方式錢變功率外形,部分調整係可以 51 1284465 包括:各個場型之應_序、符號 及調變或顫動(dither)功率至個別連結=之改變數目、 之輪靡改變調整將會傳遞至糾欠器 式。各個符號 實際功率放大«概夠絲料mm ° 大夺值平均功料,祕操叙操作^^圍°利用 而導致功率放大器之線性動態控制範圍之降低==此進 及=器間之操作距離之降低。當功率係 應用傳輸參數¥,這種考量係可以應用數種方式緩和下來。 这些手段係可以包括··當不止單一源(s 以 以 、同放大器提供功率時,盲訊號分離(BSS)改變可二:相 藉以使全部訊號之功率總和能夠雉持固定。換句話說,邛 分傳輸之增加係可朗為其他傳輸之減少㈣所偏移^ 功率係調變於接近片段速率之數值,額外功率通常係可 利用_合儲存元件魏,並且,_合儲存元件係可 僅僅產生少量波動。額外功率係可以轉移至散熱負载。 二維或三維場型係以利用數種手段產生,藉以提供傳輪 天線及接收天線應用。這些手段係包括··調整相位陣列天 線之延遲及功率位準、調整可切換負載之寄生天線元件、 調整極性改變、調整造成場型偏向(deflection)之功率平 面負載改變、調整元件或反射器之機械移動、及隨後組合 先前所述之調整。建立混合矩陣之先前所述全部方法係可 以應用於這種實施方式之部分。 本發明之另一種特徵係有關於多重空間獨立頻道之單一 接收器。切換寄生天線係可以麵合於高速數位器及下轉換 52 • 1284465 早一低雜訊放大器(lna)、混合器、 ^ m皮器(LPF)、及類比數位轉換 态(ADC)提供。 禾i用這種技術得狀乡重㈣獨㈣祕可以應用各種 夕:处理舉例來說,關連組合、盲訊號分離(勝)、或 夕重輸入多重輸出(MIM0)接收處理。The foregoing description of Γ2/Γ has been concerned with most transmission points, and it is known that the implementation of the side of the real heavy transmitter side of the application side has substantially the same receiver operation as the single transmitter mode. The difference between the two is that the field type generated by each transmitter can be counted in the receiving test to perform signal separation for blind age separation (BSS) processing.曰 = and durable operation can also be obtained from the network receiving the negative correlation of the parameters of the coordination parameters. For example, the car rank (&), which then dominates the need, the number of models can be adjusted. In view of this, the type of receiver is produced: when it is available, it can be measured according to this (4). The Network Broad Wireless Resource Management System can apply information fed back to User Equipment (UE) to establish network wide field applications, trends, power levels, and timing. All of the previously described methods of establishing a hybrid matrix can be applied to portions of such an embodiment. Another type of signature of the present invention relates to blind signal separation (BSS) and field fluctuations to assist in code division multiple access (CDMA) signal separation. Blind Signals _ (BSS) Derivatives are intended to effectively separate signals. ※ The receiving signal must be a collection of received signals from antennas whose individual signals are related to different weighting factors. This means can be done at the transmitter, receiver, or both. Regardless of whether the weighting factor is changed to the transmission side or the receiving side, the weight of the .1284465 value factor can be changed according to the segment or the set of consecutive segments. The basic thing is that the set signal is adjusted during the period of each symbol to adjust the number of signals to be separated ^ times. Fig. 24 shows a case in which the symbol is changed ten times in frequency (twelve segments). The variable parameters are fixed to four slices. Three variations of each symbol indicate that three different signals can be separated from the received signal. # If the transmitter transmits a single stream along a single-path, the field wheel set does not require rotation or difference. This is because the receiver detection signal changes relative to all other received signals. In this case, the transmitter can (10) use a simple, field-type power change without the need to change the shape of the porch. ^ Only a single other stream system sums up on the receiver side, and the blind? Tiger Separation (Cong) process will be able to separate it even if the amplitude of a single stream remains fixed. This is because the source of the power turbulence (the ering) source provides the operational needs of the modified m other types of streaming systems. These streams can be treated as a single-group interference source, unless received. The device itself applies other separate skirts, or unless the receiver itself has a fluctuating field type generating capability. Although rarely required, the User Equipment (UE) receiver's feedback smuggling system can determine the extent to which each field profile change provides useful information. This Baibei (10) is fed back to the transmission ||. Subsequently, transmission (4) can be adjusted to operate, borrowing (4) good links, less power, or less interference with other connections. Although there are many ways to change the power shape, some adjustments can be 51 1284465 including: the order of each field type, the symbol and the modulation or dither power to the individual link = the number of changes, the rim change adjustment will Pass to the yoke. The actual power amplification of each symbol «small enough material mm ° large value average material, the secret operation of the operation ^ ^ ° ° utilization resulting in a reduction in the linear dynamic control range of the power amplifier == this and the operating distance between the device Reduced. When the power system applies the transmission parameter ¥, this consideration can be mitigated in several ways. These means can include: · When more than a single source (s to provide power to the same amplifier, the blind signal separation (BSS) can be changed by two: so that the sum of the powers of all signals can be fixed. In other words, The increase of the sub-transmission is the reduction of other transmissions. (4) The offset is 2. The power is modulated to a value close to the fragment rate. The extra power is usually used to store the component, and the storage component can only be generated. A small amount of fluctuations. The extra power can be transferred to the heat dissipation load. The 2D or 3D field type is generated by several means to provide the transmitting antenna and the receiving antenna application. These methods include: · Adjusting the delay and power of the phase array antenna Level, adjust parasitic antenna elements that can switch loads, adjust polarity changes, adjust power plane load changes that cause field deflection, adjust mechanical movement of components or reflectors, and then combine the previously described adjustments. All of the previously described methods of the matrix can be applied to portions of such an embodiment. There is a single receiver for multiple spatial independent channels. The switching parasitic antenna can be used for high-speed digitizers and down conversion 52 • 1284465 Early low noise amplifier (lna), mixer, ^ m skin (LPF), And the analog digital conversion state (ADC) is provided. The use of this technology to get the township weight (four) alone (four) secret can be applied to various evenings: processing, for example, related combinations, blind signal separation (win), or evening input multiple output (MIM0) Receive processing.

第25圖係進一步詳細說明各種系統原則。這種較佳實施 =包括單-天線_,其中,天線陣列係具有切換元件, 猎以切換至電感H或電容ϋ。帶通濾、波器係可以同時限制 低雜磁大杰(LNA)呈現之頻帶及整體射頻(RF)功率。 ,雜,放大器(LNA)不僅是接收訊號之低雜訊放大器。 w器及區域震盪器(L〇)係向下調整射頻(处)訊號至 中間頻率(IF)或基頻直流(Dc)。任何實施方式係相容於 後端處理。 天線切換、選擇性之區域震盈器(L〇)切換及解多工器 切換係全部彻相隨位序列產生器軸,藉以使N個訊 號頻道能_由天線之N個乡樣賴歧生。藉此,混合 器之單一頻道射頻(RF)輸出係可以產生,進而呈現於低 通濾波器(LPF)及類比數位轉換器(ADC) 類比數位轉換器(ADC),雖然未詳細見於圖式,係同 步於驅動天線模式、選擇性之區域震盪器(LO)及解多工 裔之相同數位序列產生器。考量具有載波頻專Fc及具有調 4頻X* B之訊號,解多工器係可以實施時脈形狀脈衝之下 1284465 取樣操作。對於具有N個元件之陣列而言,類比數位轉換 器(ADC)之取樣頻率需要至少2*N*B。需要n係因為 ,隔N個取樣僅齡存在—個呈現於鮮處理器之解調變 器連結。需要2 * B個為需要滿足奈克斯特(咖咖)取 樣理論。有鑑於此,這種純接收之訊號頻寬亦會受 到裝置切換速率之限制。 -解多工器係交替取樣至基頻處理器⑽p)㈣N個平 行解調變器電路之各個解調變器電路。取樣分佈方法必須 不為群組分佈形式、而是循序分佈形式。舉例來說,若存 在二種天線多樣性選擇(左、右、全向),則^^^。類比數 位轉換器(ADC)之取樣 i、2、3、4、5、6、7、8、91()、 11、12將可能具有下列分佈形式,亦即:丨、4、7、傳送 至第-解調變器連結;2、5、8'11傳送至第二解調變器連 結;且3、6、9、12傳送至第三解調變器連結。 如先前所述,解調變器可能是關連結合、盲訊號分離 (BSS)或兩種共同多重輸入多重輸出(mim〇)解調變技 術之任一種多重輸入多重輸出(MIM〇)解調變技術之形 式。這種實施方式可以是單一解調變電路之N種例子或期 待N個空間獨立頻道之單一包裝。關連組合係可以是軟決 定之加權或硬決定之處理。部分實施方式限制係進一步詳 細討論如下。這些限制係包括··訊號雜訊& (SNR)考量、 雜吼數據、阻抗匹配、及接收訊號功率。 若假a又天線陣列係具有匹配於接收訊號之頻寬,内頻帶 號雜訊比(SNR)係維持相同。然而,相較於習知陣列, 54 1284465 内頻帶訊號能量卻降低為(1/N2)倍。 由於低雜訊放大器(LNA)係天線陣列以後之訊號路徑 苐個有效元件,雜訊數據並不會如切換陣列開始於光 偵测器(PIN)二極體時那般顯著。由於解多工器以後之各 個頻道係接收訊號功率之(丨/N)倍,低雜訊放大器(LNA) 乓盈要求係增加(10*l〇gi()N)倍,藉以在混合器輸出維持 相當訊號振幅。 切換於不同天線元件將會導致阻抗匹配特徵之改變。這 並不疋下列天線貫施方式之例子,其係始終應用,,主動,, 天線元件為直接連接射頻(RJ7)路徑之天線元件。其他,, 寄生天線元件僅僅對射頻(RF)路徑具有影響力而已。 可以相容於部分多重輸入多重輸出(mim〇)之另一種 較佳實施例以及其他平行路徑傳輸手段係整合下列動作, 亦即:調整區域震盪器(L0)至不同載波頻率,以及,切 換至天線陣列之不同多樣性模式。這種實施方式係可以同 步完成,或者,這種實施方式係可以彼此獨立地完成。時 間上,他們仍然必須同步出現,但個別狀態(陣列模式相 對於載波頻率)並不需要具有相同相位。 這種實施方式將會是接收IEEE 802Jlg波形之有用實施 方式,其中,兩個規則IEEE 802.11g波形係平行傳輪於= 同載波。在這種例子中,上部及下部載波頻率係可以替代 於區域震盪器(L0),且隨後在不同場型中,上部及下^載 波頻率係可以替代天線陣列之不同多樣性模式。 混合器係可以適當設定,進而下轉換射頻(Rp)波开3至 55 ,1284465 中間頻率(IF)或基頻直流(DC)。這種實施方式係可以改 變類比數位轉換器(ADC)之部分取樣要求。故意失真 (aliasing )或其他技術係可以實施中間頻率(顶)下取樣: 並仍舊能夠回復想要資訊内容。 這種手段亦考量重覆應用天線於接收及傳輸功能。對於 諸如衛星接收之部分應用而言,傳輸功能並不需要。然而 對於分時雙工(TDD)系統而言(諸如··無線區域網路 _ (WLAN)、無線都會區域網路(WiMAX)、寬頻分碼多重Figure 25 is a further detailed description of various system principles. This preferred implementation includes a single-antenna _, wherein the antenna array has switching elements that are switched to switch to inductance H or capacitance ϋ. The bandpass filter and the waver system can simultaneously limit the frequency band and overall radio frequency (RF) power exhibited by the low-frequency magnetic amplifier (LNA). The hybrid, amplifier (LNA) is not only a low noise amplifier that receives signals. The w and the regional oscillator (L〇) adjust the RF signal to the intermediate frequency (IF) or the fundamental DC (Dc). Any implementation is compatible with backend processing. The antenna switching, the selective regional oscillator (L〇) switching and the demultiplexer switching are all the phase-separated sequence generator generator axes, so that the N signal channels can be generated by the N rural antennas. Thereby, the single-channel radio frequency (RF) output of the mixer can be generated, which is presented in a low-pass filter (LPF) and an analog-to-digital converter (ADC) analog-to-digital converter (ADC), although not shown in detail in the drawings. It is synchronized with the same antenna sequence generator that drives the antenna mode, the selective regional oscillator (LO), and the multiplexed work. Considering the carrier frequency Fc and the signal with the 4 frequency X* B, the demultiplexer can implement the 1284465 sampling operation under the clock shape pulse. For arrays with N components, the sampling frequency of an analog digital converter (ADC) requires at least 2*N*B. The n-series is required because the N samples are only age-independent - a demodulator link is presented to the fresh processor. It takes 2 * B to satisfy the Nykster (Caf) sampling theory. In view of this, the signal bandwidth of this pure reception is also limited by the device switching rate. The demultiplexer is alternately sampled to the baseband processor (10) p) (iv) each of the demodulation transformer circuits of the N parallel demodulation transformer circuits. The sampling distribution method must not be a group distribution form, but a sequential distribution form. For example, if there are two antenna diversity options (left, right, omnidirectional), then ^^^. Samples i, 2, 3, 4, 5, 6, 7, 8, 91(), 11, 12 of analog-to-digital converters (ADCs) will likely have the following distributions, ie: 丨, 4, 7, and transmitted to The first demodulation transformer is connected; 2, 5, 8'11 are transmitted to the second demodulation transformer link; and 3, 6, 9, 12 are transmitted to the third demodulation transformer link. As mentioned previously, the demodulator may be a combination of multiple input multiple output (MIM〇) demodulation of the associated combination, blind signal separation (BSS) or two common multiple input multiple output (mim〇) demodulation techniques. The form of technology. Such an implementation may be N examples of a single demodulation circuit or a single package of N spatially independent channels. The associated portfolio can be a weighted or hard decision of the soft decision. Some embodiments are discussed in further detail below. These limitations include • Signal Noise & (SNR) considerations, noise data, impedance matching, and received signal power. If the false a and the antenna array have a bandwidth matching the received signal, the inner band number noise ratio (SNR) remains the same. However, the internal band signal energy of 54 1284465 is reduced to (1/N2) times compared to the conventional array. Since the low noise amplifier (LNA) is the signal path of the antenna array in the future, the noise data is not as significant as when the switching array starts with the photo detector (PIN) diode. Since each channel after the multiplexer receives the signal power (丨/N) times, the low noise amplifier (LNA) pitching requirement is increased (10*l〇gi()N) times, so that it is output at the mixer. Maintain a fairly signal amplitude. Switching to different antenna elements will result in a change in impedance matching characteristics. This is not the case for the following antenna implementations, which are always applied, active, and the antenna elements are antenna elements that are directly connected to the radio frequency (RJ7) path. Other, parasitic antenna elements have only an impact on the radio frequency (RF) path. Another preferred embodiment that can be compatible with partial multiple input multiple outputs (mim〇) and other parallel path transmission means integrate the following actions, namely: adjusting the regional oscillator (L0) to different carrier frequencies, and switching to Different diversity modes of the antenna array. Such an embodiment can be done synchronously, or such an implementation can be done independently of each other. In time, they still have to appear synchronously, but the individual states (array mode versus carrier frequency) do not need to have the same phase. Such an implementation would be a useful implementation for receiving IEEE 802 Jlg waveforms in which two rules IEEE 802.11g waveforms are transmitted in parallel = the same carrier. In this example, the upper and lower carrier frequencies can be substituted for the regional oscillator (L0), and then the upper and lower carrier frequencies can be substituted for different diversity modes of the antenna array in different field types. The mixer can be set appropriately to down convert the RF (Rp) wave to 3 to 55, 1284465 intermediate frequency (IF) or fundamental frequency DC (DC). This implementation can change the partial sampling requirements of an analog digital converter (ADC). Attentional or other techniques can perform intermediate frequency (top) downsampling: and still be able to respond to the desired information content. This approach also considers the repeated application of antennas for receiving and transmitting functions. For some applications such as satellite reception, the transmission function is not required. However, for time-division duplex (TDD) systems (such as wireless local area network _ (WLAN), wireless metropolitan area network (WiMAX), broadband code division multiple

存取分時雙工(WCDMA-TDD)、分時同步分碼多重存取 (TD-SCDMA)等等),或者,對於時槽分頻雙工(fdd) 系統而言(諸如··全球行動通訊系統〆整體封包無線服務 (GSM/GPRS)等等),其中,接收及傳輸並非同步,當 傳輸模式可以視為獨立時,接收天線亦可以多工。對於全 雙工分頻雙工(FDD)系統而言(諸如:分碼多重存取二 千(CDMA2〇〇〇)或寬頻分碼多重存取分頻雙工(wcDMA . —FDP)),傳輪功能係可以利用分離天線完成。任何大氣 界面係可以應用任何致能解調變器技術(關連組合、盲訊 唬分離(BSS)、多重輸入多重輪出(ΜΙΜΟ))。 本毛明之另一種特徵係有關於分碼多重存取(CDMA) 2收器處理應用之盲訊號分離(BSS)。天線元件間具有通 田間隔之天線陣列係合適於回饋解碼連結。可得文獻調查 係顯示:一般而言,熟習此項技術者係深信於此。 〜其他文件係討論所謂之單一天線干擾刪除(SAIC)技 術。應用盲訊號分離(BSS)之人士係要求:調變具有關連 56 ,1284465 立之同相⑴及正交⑼頻道,藉以產 以八離) #於—之矩陣。有鑑於此,這些解碼器係可 既^早—干擾來源及想要賴。紳麵個干擾來源, 既存早-天軒制除(SAic)技術 況係稱為應用,,虛擬,,第二天線。η丁⑽ 習知雜之改善射妓於制畴裝置取得獨立訊號Access time division duplex (WCDMA-TDD), time division synchronous code division multiple access (TD-SCDMA), etc., or, for time slot frequency division duplex (fdd) systems (such as · Global Action The communication system is a whole packet wireless service (GSM/GPRS), etc., in which reception and transmission are not synchronized, and when the transmission mode can be regarded as independent, the receiving antenna can also be multiplexed. For full-duplex frequency division duplex (FDD) systems (such as: code division multiple access two thousand (CDMA2〇〇〇) or wideband code division multiple access frequency division duplex (wcDMA. — FDP)) The wheel function can be done with a separate antenna. Any enabling interface technology can be applied to any of the enabling demodulation techniques (Connected Combination, Blind Separation (BSS), Multiple Input Multiple Rounds (ΜΙΜΟ)). Another feature of Ben Maoming is blind signal separation (BSS) for code division multiple access (CDMA) 2 receiver processing applications. An antenna array having a field spacing between antenna elements is suitable for feedback decoding connections. Available literature surveys show that, in general, those who are familiar with this technology are convinced. ~ Other documents discuss the so-called Single Antenna Interference Cancellation (SAIC) technology. Persons applying blind signal separation (BSS) require that the modulation have a correlation of 56, 1284465 in-phase (1) and orthogonal (9) channels, so as to produce a matrix of eight. In view of this, these decoders can both be early and interfere with the source and desire. A source of interference, the existing pre-existing SAIC technology is called application, virtual, and second antenna. η丁(10) Conventional improvement of shooting at the domain device to obtain independent signals

,和’以及,制未讀之其财法。雖朗相⑴ =父(Qj裝置係可行於部分無線存取網路,然而,同相 及正父(Q)裝置卻不適合分碼多重存取(cdma) =。建域合矩教先麵述全部絲係可以應用於這 種實施方式之部分。 雖然這種麟係增加獨域分分析(ICA)可用矩陣之 秩數^滅)、並使應關減分分析(ica)擷取想要訊 賴付更為可能,但這部分卻無法保證。因此,先前所述, and 'and, the unread financial law. Although Langxiang (1) = parent (Qj device is feasible for some wireless access networks, however, the in-phase and right-of-father (Q) devices are not suitable for coded multiple access (cdma) =. The silk system can be applied to this part of the implementation. Although this kind of lining increases the rank of the available matrix of the ICA, and makes the ICA analysis Paying is more likely, but this part is not guaranteed. Therefore, as previously stated

技術仍然需要適當應用,細卿適#解碼連結。舉例來 說,自獨立成分分析(ICA)處理退回仍舊存在可能,若其 極度有害於處理訊號總和。 在第二較佳實施射’第26 _表示不同解碼連結之應 用。在節點A,訊號聚集之例子係表示於第27圖。為方便 說明起見,第27圖係表示單-干擾來源,然爾目同論述亦 可以應餘多重干擾來源及增加矩陣秩數(rank)。雜訊基 準係由窄頻干㈣源超過’並且’想要分碼多重存取 (CDMA)訊號係低於雜訊基準。 在第28圖之節點B,干擾來源係擷取出來。”選擇器” 57 ♦1284465 係決定擷取訊號是否真的是干擾來源。若不存在干擾來 源,沒有訊號會被選擇。若訊號具有想要訊號之特徵,$ 個訊號將不會被選擇。若單一或複數干擾來源係選擇,這 些干擾來源係呈現於”反相器”(節點c)。獨立成分分析 (ICA)擷取係可以反向或不反向接收訊號,並且,各個訊 號是否需要反向以匹配接收訊號之決定係有所需要。 具有正確振幅符號之干擾來源係呈現於節點D之加法 之負輸入。熟習此項技術之人·士應該瞭解其他替代或等效 實施方式亦是可能的。舉例來說,單純加法器係可以應用 於這個電路級,並且,反向器僅會在擷取訊號具有非反向 波形時應用。原始接收訊號(節點A)之延遲版本係呈現於 另一個加法器輸入。延遲數值係等於網路連線共用(ICS)、 選擇、及”反向器”處理產生之延遲。熟習此項技術之人 士應該瞭解其他替代或等效實施方式亦是可能的。舉例來 说’延遲及加法态功能方塊係可以應用最小方塊取代,其 係平移及加總兩個訊號,直到得到最小值為止。 在第29圖之節點干擾來源係可以移除。在第3〇圖 之即點E,把式(rake)接收器係可以解擴頻訊號,進而呈 現於基頻解碼$。這種較佳實施例之進—步細節係:天線 、乡口構收集虎係可以經由先前所述較佳實施例之選擇取 得,藉以加強既存技術。 $ 26騎示之結構僅是實施本發明之一 種^式。除了讓選擇器,’在適當時機不呈現訊號以外, &處理或後處理位置選擇不同路徑之習知實施方式亦可 • 1284465 以應用。其間取捨係在於:處理延遲、實施成本、整體操 作耐用程度、及某個程度之設計者選擇。僅有在呈現至耙 式(rake)接收器以前自訊號串流中減去干擾來源之基本觀 念需要保留於本發明全部變動。 雖然先前解釋係可以理想地移除干擾來源,應該瞭解的 是,並非全部干擾來源均可以移除。然而,一般而言,任 何干擾來源之移除均可以較習知技術提供更好效能,假設 耙式(rake)接收器將會處理改善訊號聚集。 为碼多重存取(CDMA)訊號之特性,相較於其解擴頻 版本係具有更顯者之南斯(Guassian)分佈,並且,會使 獨立成分分析(ICA)更為難以偵測。然而,移除關連於想 要汛號之部分資料亦是可能的,因為訊號仍然會保留部分 統計上之重要性。再一次,移除干擾來源通常係更為重要, 並且’呈現於耗式(rake)解碼器之整體增益亦可以改善。 或者,整體解碼處理係可以應用遞變手段而進一步加強。 意即:訊號之加入或排除係可以進一步檢查、及/或移除 訊號數目係可以遞增或遞增、及解碼訊號完整性係可以量 測以得到結果改善/惡化程度。 這種較佳實施例之要點在於··獨立成分分析(ICA)係 應用於可能識別之訊號,及在耙式(rake)處理以前不應用 於分碼多重存取(CDMA)訊號,其間,分瑪多重存取 (CDMA)訊號係難以識別及/或擷取。 本發明之另一種特徵係有關於經由場型之盲訊號分離之 混合型最小平均平方誤差矩陣筆束分離權值。請參考美國 59 ,1284465 專利號碼US6931362,其中,複數區段係需要提供線性獨 立總和訊號。美國專利號碼US6931362之内容係可以提供 本專利申請案參考。先前所述之天線陣列係可以替代複數 區段而加以應用,然而,美國專利號碼US6931362所揭露 之後處理則仍然可以應用。 雖然本發明已經利用較佳實施例詳細說明如上,然而, 熟習此項技術之人士,在瞭解本發明說明及所附圖式後, 亦可能對本發明進行各種調整及變動。有鑑於此,應該瞭 解的是,本發明應不限定於先前所述之特定較佳實施例, 在不違背本發_神及範圍之前提下,本發·佳實施例 之各種調整及變動亦應該包含於下列申請專利範圍。 •1284465 〔圖式簡單說明〕 第1圖係表示根據本發明之一種典型操作情境之方塊 圖’其中,一通訊裝置係經由個別訊號來源接收想要及不 想要之訊號; 第2圖係表示第1圖所示之通訊裝置之細部方塊圖; 第3圖係表示根據本發明之不同手段之規劃圖,藉以產 生混合矩陣之來源訊號之線性獨立總和; ❿ 第4圖係表示根據本發明之天線陣列之方塊圖,其中, 天線陣列係架構為切換波束天線; 第5圖係表示根據本發明之天線陣列之方塊圖,其中, 天線陣列係架構為相位陣列; 第6圖係表示根據本發明之天線陣列之方塊圖,其中, 天線陣列係架構有極性天線元件; 第7圖係表示根據本發明之三極性應用之三維示意圖; 第8圖係表示根據本發明之一種通訊裝置之方塊圖,其 春 中’該種通訊裝置係具有一天線陣列,並且,該天線陣列 係包括關連及非關連天線元件,藉以提供來源訊號之不同 總和,進而提供盲訊號分離(BSS)處理應用; 第9圖係表示根據本發明之一種通訊裝置之方塊圖,其 中’该種通訊裝置係基於陣列偏向(如行如丨〇11)操作,藉 以提供來源訊號之不同總和,進而提供盲訊號分離(BSS) 處理應用; 第10圖係表示根據本發明之一種切換波束天線之方塊 S ,、中,該種切換波束天線係具有一高度(elevation)控 61 ,1284465 制器,藉以選擇性地改變一天線場型之高度(elevati〇n); 第11圖係表示一種天線場型之天線示意圖,其中,該種 天線場型係沿著方位(azimuth)方向,且隨後,該種天線 %型係基於第9圖所示之高度(eievati〇n)控制器以沿著高 度(elevation)方向旋轉; 第12圖係表示根據本發明之一種天線元件之方塊圖,其 中,该種天線元件係具有一射頻(PJ7)抗流,該射頻(rf) • 抗流係形成於地面,藉以沿著高度(elevation)方向旋轉天 線場型; 第13圖係表示根據本發明之一種通訊裝置之方塊圖,其 中,该種通訊裝置係基於路徑選擇操作,藉以提供來源訊 號之不同總和,進而提供盲訊號分離(Bss)處理應用; 第14圖係表示根據本發明之一種通訊裝置之方塊圖,其 中,該種通訊裝置係基於擴頻數碼(spreading c〇de)操作^ 藉以提供來源訊號之不同總和,進而提供盲訊號分離(BSS) • 處理應用,· 第15圖係表示根據本發明之一種通訊裝置之方塊圖,其 :’該,訊裂置係基於同相⑴及正交(Q)訊號‘ 才呆作猎以k供來源5虎之額外總和.,進雨提供盲訊號分 離(BSS)處理應用; 第Μ圖係表示一種同相(I)及正交(Q)模組之細部 方塊圖’其中,該種同相⑴及正交(Q)模組係連接至 第15圖所示之天線元件; 第〗7圖係表示根據本發明之—種多重輸入多重輸出 62 1284465 (ΜΙΜΟ)系統之方塊圖,其中,該種多重輸入多重輸出 (ΜΙΜΟ)系統係基於場型多樣性操作; 第18圖係表示根據本發明之一種傅立葉轉換通訊系統 之方塊圖,其中,該種傅立葉轉換通訊系統係可以對付相 互符號干擾(ISI); 第19圖係表示根據本發明之一種通訊系統之方塊圖,其 中,一傳輸器係基於一時槽以改變各個分層空間串流 (layered space stream)之功率位準; 第20圖係表示根據本發明之一種通訊系統之方塊圖,其 中,波動%型係可以支援傳輸至相同無線網路基地台(AP) 之複數傳輸器; 第21圖係表示根據本發明之一種接收器之方塊圖,其 中,該種接收器係可以使處理及功率吸收最佳化; 第22圖係表示第21圖所示之接收器之方塊圖,其中, 該種接收器之操作係協調於一傳輸器; 弟23圖係表示根據本發明之傳輸場型輪廓隨接收器已 知之時序波動之示意圖,; 第24圖係表示根據本發明之時間軸,其中,一符號期間 係具有十一個異動(亦即:十二個缺口),並且,變動參數 係維持固定於四個缺口; 第25圖係表示根據本發明之一種接收器之方塊圖,其 中’該種接收器係應用於複數空間獨立頻道; 第26圖係表示根據本發明之一種接收器解碼鏈結之方 塊圖;以及 63 1284465 7至30圖係表示振幅相對於 '〜_,再中, 應於第26圖所示之節點 各個振幅相對於頻率之示意圖係對2 A、B、D、&e〇 〔元件符號說明〕 ADC 類比數位轉換器 ΒΒΡ 基頻處理器 BPF 帶通濾波器 C 電容器 ICA 獨立成分分析 L 電感器 LNA 低雜訊放大器 LO 區域振盪器 LPF 低通濾波器 20 複數訊號來源 20⑴〜20(Μ) 第一〜第Μ訊號來源 22 複數來源訊號 22(1)〜22 (Μ) 第一〜 第Μ來源訊號 24 複數天線波束 24(1)〜24(5) 第一〜第μ天線波束 30、200、240、300、400、500 通訊裝置 32、180、202、242、3〇2、402、5〇2 天線陣列 34 複數天線元件 34(1)〜34(Ν) 第一〜第Ν天線元件 36、116、214、252、312、412、512 混合矩陣 38、 38⑴〜38(3) 分離矩陣 39、 216、254、314、414、514 分離訊號 40 收發器 , 42、250、310、410、510 處理器 64 1284465 44 PCA主要成分分析模組 46 ICA獨立成分分析模組 48 SVD訊號數值分解模組 49、212盲訊號分離處理器 50 訊號分析模組 52 應用相關處理才 1 100 非關連感應器 100、 140 切換波束天線 102 關連天線陣列 104 極性天線陣列 104f > 144 被動天線元件 104af 、144a 上半部 140bf 、144b 下半部 106 感應器及陣列結合 108 陣列偏向 110 路徑選擇 112 解擴頻數碼 114 同相及正交成分 140 切換波束天線 142、 162 主動天線元件 144 被動天線元件 144a 上半部 144b 下半部 146 接地平面 148、 108f、118,反J 160 相位陣列 164 權值控制元件 166 分割器/組合器 168 控制器 182a、182b、182c、184a、184b、204、244、274、304、404 504 天線元件 206 兩個相關天線元件 210、248 接收器 246 高度控制器 270 可控制無線電頻率調節裝置 272 平面 65 1284465Technology still needs to be properly applied, and the code is broken. For example, it is still possible to return from independent component analysis (ICA) processing if it is extremely detrimental to the sum of the processed signals. In the second preferred embodiment, the 26th_ indicates the application of a different decoding link. At node A, an example of signal aggregation is shown in Figure 27. For convenience of explanation, Figure 27 shows the source of single-interference, and it is also possible to cope with multiple sources of interference and increase the rank of the matrix. The noise reference is made by a narrow-band dry (four) source that exceeds 'and' wants a code division multiple access (CDMA) signal to be below the noise reference. At node B of Figure 28, the source of the interference is taken out. "Selector" 57 ♦ 1284465 determines whether the signal is really the source of interference. If there is no interference source, no signal will be selected. If the signal has the characteristics of the desired signal, the $ signal will not be selected. If single or multiple sources of interference are selected, these sources of interference are presented in the "inverter" (node c). The Independent Component Analysis (ICA) acquisition system can receive signals in the reverse or non-reverse direction, and it is necessary to determine whether each signal needs to be reversed to match the received signal. The source of interference with the correct amplitude sign is presented as the negative input of the addition of node D. Those skilled in the art should understand that other alternative or equivalent embodiments are also possible. For example, a simple adder can be applied to this circuit stage, and the inverter will only be applied when the capture signal has a non-inverted waveform. The delayed version of the original received signal (Node A) is presented at another adder input. The delay value is equal to the delay caused by network connection sharing (ICS), selection, and "reverse" processing. Those skilled in the art should understand that other alternative or equivalent embodiments are also possible. For example, the 'Delay and Addition function block can apply the minimum block substitution, which translates and sums up the two signals until the minimum value is obtained. The node interference source in Figure 29 can be removed. At point E in Figure 3, the rake receiver can despread the signal and present it at the baseband decoding $. The further details of this preferred embodiment are: Antennas, and the collection of the tigers can be obtained through the selection of the previously described preferred embodiments to enhance the existing technology. The structure of the $26 ride is only one of the embodiments of the present invention. In addition to having the selector, 'there is no signal at the appropriate time, the conventional implementation of the & processing or post-processing location to select a different path can also be applied to 1284465. The trade-offs are: processing delays, implementation costs, overall operational durability, and some degree of designer choice. The basic idea of subtracting the source of interference from the signal stream only before presenting to the rake receiver needs to remain in all variations of the invention. While the previous explanations are ideal for removing sources of interference, it should be understood that not all sources of interference can be removed. However, in general, any removal of interference sources can provide better performance than conventional techniques, assuming that the rake receiver will handle improved signal aggregation. The characteristics of Code Multiple Access (CDMA) signals have a more prominent Guassian distribution than their despreading versions, and make Independent Component Analysis (ICA) more difficult to detect. However, it is also possible to remove some of the information related to the nickname, as the signal will retain some statistical significance. Again, it is often more important to remove the source of the interference, and the overall gain presented by the rake decoder can also be improved. Alternatively, the overall decoding process can be further enhanced by applying a means of scaling. This means that the addition or exclusion of the signal can be further checked and/or removed. The number of signals can be incremented or incremented, and the decoded signal integrity can be measured to obtain an improvement/deterioration of the result. The gist of this preferred embodiment is that • Independent Component Analysis (ICA) is applied to signals that may be identified and not applied to code division multiple access (CDMA) signals prior to rake processing. Multi-access (CDMA) signals are difficult to identify and/or capture. Another feature of the present invention relates to a hybrid minimum mean squared error matrix pen beam separation weight separated by a field type blind signal. Please refer to U.S. Patent No. 59,128,465, the patent number US6931362, in which a plurality of segments are required to provide a linear independent sum signal. The content of U.S. Patent No. 6,931,362 is hereby incorporated by reference. The previously described antenna array can be used in place of a plurality of sections, however, the processing disclosed in U.S. Patent No. 6,931,362 is still applicable. Although the present invention has been described in detail with reference to the preferred embodiments of the present invention, various modifications and variations of the present invention are possible. In view of the above, it should be understood that the present invention is not limited to the specific preferred embodiments described above, and that various modifications and changes of the present preferred embodiment are also made without departing from the scope of the present invention. It should be included in the scope of the following patent application. • 1284465 [Simple Description of the Drawings] Figure 1 is a block diagram showing a typical operating scenario in accordance with the present invention, wherein a communication device receives desired and unwanted signals via individual signal sources; 1 is a detailed block diagram of a communication device shown in FIG. 1; FIG. 3 is a plan view showing different means according to the present invention, thereby generating a linear independent sum of source signals of the mixing matrix; ❿ FIG. 4 is a view showing an antenna according to the present invention. a block diagram of an array, wherein the antenna array architecture is a switched beam antenna; FIG. 5 is a block diagram of an antenna array according to the present invention, wherein the antenna array architecture is a phase array; and FIG. 6 is a diagram showing the antenna array according to the present invention. a block diagram of an antenna array, wherein the antenna array is structured with a polar antenna element; FIG. 7 is a three-dimensional diagram showing a three-polarity application according to the present invention; and FIG. 8 is a block diagram showing a communication device according to the present invention. In the spring, the communication device has an antenna array, and the antenna array includes related and non-connected antenna elements. To provide a blind signal separation (BSS) processing application by providing different sums of source signals; FIG. 9 is a block diagram showing a communication device according to the present invention, wherein 'the communication device is based on array bias (such as丨〇11) operation for providing different sums of source signals to provide a blind signal separation (BSS) processing application; FIG. 10 is a block diagram S of a switched beam antenna according to the present invention, wherein the switching beam antenna The system has an elevation control 61, 1284465 device for selectively changing the height of an antenna field type (elevati〇n); FIG. 11 is a schematic diagram of an antenna field type antenna, wherein the antenna field The pattern is along the azimuth direction, and then, the antenna type is rotated according to the height (eievati〇n) controller shown in Fig. 9 in the elevation direction; Fig. 12 is based on A block diagram of an antenna element of the present invention, wherein the antenna element has a radio frequency (PJ7) anti-flow, and the radio frequency (rf) • anti-flow system is formed on the ground, thereby The antenna pattern is rotated in an elevation direction; Figure 13 is a block diagram showing a communication device according to the present invention, wherein the communication device is based on a path selection operation to provide different sums of source signals, thereby providing a blind signal. Separating (Bss) processing application; Figure 14 is a block diagram showing a communication device according to the present invention, wherein the communication device is based on a spreading digital operation to provide different sums of source signals. Further providing blind signal separation (BSS) • processing application, Fig. 15 is a block diagram showing a communication device according to the present invention, which: 'The spur is based on the in-phase (1) and quadrature (Q) signals. Staying in the hunt for the additional sum of the source 5 tigers, the rain provides blind signal separation (BSS) processing applications; the second map shows a detailed block diagram of the in-phase (I) and quadrature (Q) modules The in-phase (1) and quadrature (Q) modules are connected to the antenna element shown in FIG. 15; the seventh diagram shows the multiple input multiple output 62 1284465 (ΜΙΜΟ) according to the present invention. a block diagram of a system in which the multiple input multiple output (ΜΙΜΟ) system is based on field diversity operation; and Fig. 18 is a block diagram showing a Fourier transform communication system in accordance with the present invention, wherein the Fourier transform communication The system can deal with mutual symbol interference (ISI); Fig. 19 is a block diagram showing a communication system according to the present invention, wherein a transmitter is based on a time slot to change each layered space stream. Figure 20 is a block diagram showing a communication system in accordance with the present invention, wherein the fluctuation % type can support a plurality of transmitters transmitted to the same wireless network base station (AP); A block diagram of a receiver of the present invention, wherein the receiver is capable of optimizing processing and power absorption; and FIG. 22 is a block diagram showing the receiver shown in FIG. 21, wherein the receiver The operation is coordinated to a transmitter; the second diagram shows a schematic diagram of the transmission field profile according to the present invention as the receiver knows the timing fluctuations; The figure shows a time axis according to the present invention, wherein one symbol period has eleven different motions (ie, twelve notches), and the variation parameter is maintained fixed at four notches; A block diagram of a receiver of the invention, wherein 'the receiver is applied to a plurality of spatially independent channels; FIG. 26 is a block diagram showing a receiver decoding link according to the present invention; and 63 1284465 7 to 30 Indicates the amplitude relative to '~_, and then, the relationship between the amplitudes and the frequencies of the nodes shown in Fig. 26 is 2 A, B, D, & e 〇 [component symbol description] ADC analog digital converter ΒΒΡ Baseband processor BPF Bandpass filter C Capacitor ICA Independent component analysis L Inductor LNA Low noise amplifier LO Region oscillator LPF Low-pass filter 20 Complex signal source 20(1)~20(Μ) First to third signal source 22 plural source signals 22(1)~22 (Μ) first ~ first source signal 24 complex antenna beams 24(1)~24(5) first to pp antenna beams 30, 200, 240, 300, 400, 500 communication 32, 180, 202, 242, 3〇2, 402, 5〇2 antenna array 34 complex antenna elements 34(1) to 34(Ν) first to second antenna elements 36, 116, 214, 252, 312, 412, 512 Mixed Matrix 38, 38(1)~38(3) Separation Matrix 39, 216, 254, 314, 414, 514 Separation Signal 40 Transceiver, 42, 250, 310, 410, 510 Processor 64 1284465 44 PCA Principal Component Analysis Module 46 ICA Independent Component Analysis Module 48 SVD Signal Value Decomposition Module 49, 212 Blind Signal Separation Processor 50 Signal Analysis Module 52 Application Related Processing 1 100 Non-Connected Sensor 100, 140 Switch Beam Antenna 102 Related Antenna Array 104 polar antenna array 104f > 144 passive antenna element 104af, 144a upper half 140bf, 144b lower half 106 sensor and array combination 108 array bias 110 path selection 112 despreading digital 114 in-phase and quadrature component 140 switching beam antenna 142, 162 active antenna element 144 passive antenna element 144a upper half 144b lower half 146 ground plane 148, 108f, 118, anti J 160 phase array 164 weight control element 166 Controller/combiner 168 controller 182a, 182b, 182c, 184a, 184b, 204, 244, 274, 304, 404 504 antenna element 206 two associated antenna elements 210, 248 receiver 246 height controller 270 can control radio frequency Adjustment device 272 plane 65 1284465

308、408、508 接收器構件 316 RR靶式耙式接收器406 編碼解分散器 502 天線陣列(第15圖)502 天線元件(第16圖) 506 同相及正交模組 520 混合器 66308, 408, 508 Receiver Components 316 RR Target 耙 Receiver 406 Code Despreader 502 Antenna Array (Figure 15) 502 Antenna Components (Figure 16) 506 In-Phase and Orthogonal Modules 520 Mixer 66

Claims (1)

:1284465 十、申請專利範圍: 1· 一種通訊裝置,用以分離由Μ個訊號來源所提供之 來源訊號,該通訊裝置包括: 一天線陣列’具有Ν個關連天線元件,用以接收該]V[個 來源dl號之至少Ν個不同總和,其中,ν及Μ大於一; 一接收器,連接至該天線陣列,藉以接收該乂個來源訊 號之該至少Ν個不同總和;以及 龜 一盲訊號分離處理器,連接至該接收器,藉以形成一混 合矩陣,其十,該混合矩陣包括該Μ個來源訊號之高達該 至少Ν個不同總和,並且,該混合矩陣係具有等於至少Ν 之一秩數’該盲訊號分離處理器係自該混合矩陣中分離想 要之來源訊號。 2·如申請專利範圍第1項所述之通訊裝置,其中, Μ。 ’ 3·如申請專利範圍第1項所述之通訊裝置,其中,該混 合矩陣之該秩數為Κ,其中,Κ<Ν,並且,該盲訊號分離 處理杰係自該混合矩陣中分離得到該Μ個來源訊號之κ個 來源訊號。 4·如申請專利範圍第1項所述之通訊裝置,其中,Ν> Μ 〇 、 5·如申請專利範圍第1項所述之通訊裝置,其中,該Ν 個關連天線元件包括Ν個主動天線元件,使得該'天線陣列 形成一相位陣列。 .1284465 6. 如申請專利範圍第1項所述之通訊裝置,其中,該n 個關連天線元件包括至少—主動天線元件、及高達N- 1個 被動天線元件,使得該天線陣列形成一切換波束天線。 7. 如申請專利範圍第1項所述之通訊裝置,其中,該天 線陣列形成至少N個天線波束,藉以接收該%個來源訊號 所,成之至少N個不同總和,射,各天線波束具有一低 於最大增盈點3dB之點,以將訊號拒絕提供給至少一方向 之一到達訊號。 8·如申睛專利範圍第1項所述之通訊裝置,其中,該天 線陣列形成至少-天線場型,藉以接_ M個來源訊號所 形,之N個不同總和中至少一個總和,該至少一個天線場 型實質上不具有一低於最大增益點3dB之點,因此無訊號 拒絕於任何方向中的一到達訊號。 9·如申請專利範圍第丨項所述之通訊襞置’其中^該“ 個來源訊號之各個總和係線性的。 10·如申請專利範圍第丨項所述之通訊裝置,其中,該盲 訊號分離處理ϋ基社魏分分析(PCA),以自該混合矩 陣中分離該想要之來源訊號。 11·如申請專利範圍第丨項所述之通訊裴置,其中,該盲 訊號分離處理_基於獨立成分分析(ICA),藉以自該混 合矩陣中分離該想要之來源訊號。 I2·如申請專利範圍第1項所述之通訊裝置,其中,該盲 訊號分離處理器基於單一數值分解(SVD),以自該混合矩 陣中分離該想要之來源訊號。 .1284465 13. -麵作通訊裝置的方法,該觀裝置分離由M個 訊號來源所提供之來源訊號,該通訊裝晉由虹· 且匕枯‘一天線陣 列、連接至該天線陣列之一接收器、及連接該接收器之一 盲訊號分離處理器,該方法包括下列步驟: 由該天線陣列接收該Μ個來源訊號之至少Ν個不同總 和,該天線陣列包括Ν個關連天線元件,其中,= 於一; • 提供該Μ個來源訊號之該至少Ν個不同總和至該接收 器;以及 在該盲訊號分離處理器處理由該接收器接收之該Μ個 來源訊號之該至少Ν個不同總和,該處理包括下列步驟: 形成一混合矩陣,其中,該混合矩陣包括該Μ個來 源訊號之高達該至少Ν個不同總和,該混合矩陣具有等於 至少Ν之一秩數,以及 自該混合矩陣中分離得到想要之來源訊號。 _ 14·如申請專利範圍第13項所述之方法,其中,ν=μ。 15·如申請專利範圍第13項所述之方法,其中,該]^個 關連天線元件包括Ν個主動天線元件,使得該天線陣列形 成一相位陣列。 16·如申明專利範圍第項所述之方法,其中,該Ν個 關連天線元件包括至少一主動天線元件、及高達(Ν—/) 個被動天線元件,使得該天線_形成—切換波束天線。 17·如申請專利範圍第13項所述之方法,其中,該天線 陣列形成至少Ν個天線波束,藉以接收該μ個來源訊號所 69 1284465 形成之至^ is[個不同總和,其中,各個天線波束具有一低 於最大增細3dB之點,以魏號她提供給至少一方向 之一到達訊號。 18·如申請專利範圍第13項所述之方法,其中,該天線 陣歹他成至)-個天線場型,藉以接收該Μ個來源訊號所 开y成之Ν個不同總和之其中至少一個總和,該至少一個天 線場型貫貝上不具有低於最大增益點3dB之點,因此無訊 號拒絕於任何方向中的一到達訊號。 I9·如申請專利範圍第13項所述之方法,其中,該Μ個 來源§fl说之各個總和係線性的。 20·如申請專利範圍第13項所述之方法,其中,該盲訊 號分離處理器基於主要成分分析(PCA),以自該混合矩陣 中分離該想要之來源訊號。 21·如申請專利範圍第13項所述之方法,其中,該盲訊 號分離處理器係基於獨立成分分析(ICA ),以自該混合矩 陣中分離該想要之來源訊號。 22·如申請專利範圍第13項所述之方法,其中,該盲訊 號分離處理器係基於單一數值分解(SVD),以自該混合矩 陣中分離該想要之來源訊號。 1284465 七、 指定代表圖: (一) 本案指定代表圖為:第(2 )圖。 (二) 本代表圖之元件符號簡單說明: 30 通訊裝置 32 天線陣列 34(1)〜34(N)第一〜第N天線元件 36 混合矩陣 38(1)〜38(3) 分離矩陣 39 分離訊號 40 收發器 42 處理器 44 PCA主要成分分析 46 ICA獨立成分分析 48 SVD單一數值分解 49 盲訊號分離處理器 50 訊號分析模組 52 應用相關處理模組 八、 本案若有化學式時,請揭示最能顯示發明特徵的化學 式: 5: 1284465 X. Patent application scope: 1. A communication device for separating source signals provided by one signal source, the communication device comprising: an antenna array having one connected antenna element for receiving the V [at least one different sum of the source dl numbers, wherein ν and Μ are greater than one; a receiver connected to the antenna array to receive the at least one different sum of the one source signals; and the turtle-blind signal Separating a processor, connecting to the receiver, to form a mixing matrix, wherein the mixing matrix comprises up to the at least one different sum of the one source signals, and the hybrid matrix has a rank equal to at least Ν The number of the blind signal separation processor separates the desired source signal from the mixing matrix. 2. The communication device according to item 1 of the patent application, wherein, Μ. 3. The communication device according to claim 1, wherein the rank of the hybrid matrix is Κ, where Κ <Ν, and the blind signal separation processing is separated from the mixing matrix κ source signals of the source signals. 4. The communication device according to the first aspect of the invention, wherein: the communication device of claim 1, wherein the one of the connected antenna elements comprises one active antenna The components are such that the 'antenna array' forms a phase array. The communication device of claim 1, wherein the n connected antenna elements comprise at least an active antenna element and up to N-1 passive antenna elements such that the antenna array forms a switching beam antenna. 7. The communication device of claim 1, wherein the antenna array forms at least N antenna beams, thereby receiving the % source signals, forming at least N different sums, and each antenna beam has A point below the maximum gain point of 3 dB to provide a signal rejection to at least one of the directions to reach the signal. 8. The communication device according to claim 1, wherein the antenna array forms at least an antenna field type, wherein at least one of the N different sums is formed by the _M source signals, the at least An antenna pattern does not substantially have a point 3 dB below the maximum gain point, so no signal rejects an arrival signal in any direction. 9. The communication device as described in the third paragraph of the patent application scope is in which the sum of the respective source signals is linear. 10. The communication device according to the scope of the patent application, wherein the blind signal Separating and processing the ϋ基社魏分分析 (PCA) to separate the desired source signal from the mixing matrix. 11. The communication device according to the scope of the patent application, wherein the blind signal separation processing _ Based on an independent component analysis (ICA), the desired source signal is separated from the hybrid matrix. The communication device according to claim 1, wherein the blind signal separation processor is based on a single numerical decomposition ( SVD) to separate the desired source signal from the mixing matrix. .1284465 13. The method for the communication device, the device separates the source signal provided by the M signal sources, and the communication device is supported by the rainbow And an antenna array, a receiver connected to the antenna array, and a blind signal separation processor connected to the receiver, the method comprising the steps of: receiving by the antenna array At least one different sum of the source signals, the antenna array includes one of the associated antenna elements, wherein = one; • providing the at least one different sum of the one source signals to the receiver; and the blind The signal separation processor processes the at least one different sum of the one source signals received by the receiver, the process comprising the steps of: forming a mixing matrix, wherein the mixing matrix comprises the source signals up to the at least混合 a different sum, the mixing matrix having a rank number equal to at least one of Ν, and separating the desired source signal from the mixing matrix. _14. The method of claim 13, wherein ν= The method of claim 13, wherein the connected antenna element comprises one active antenna element such that the antenna array forms a phase array. The method, wherein the one of the connected antenna elements comprises at least one active antenna element, and up to (Ν - /) passive antenna elements, such that the day The method of claim 13, wherein the antenna array forms at least one antenna beam, thereby receiving the μ source signal 69 1284465 formed to ^ is [ a different sum, wherein each antenna beam has a point that is less than 3 dB below the maximum thinning, and the Wei number is provided to one of the at least one direction to reach the signal. 18. The method of claim 13, wherein The antenna array is configured to receive an antenna field type to receive at least one sum of the different sums of the one source signals, and the at least one antenna pattern has no lower than maximum The gain point is 3dB, so no signal rejects an arrival signal in any direction. I9. The method of claim 13, wherein the respective sums of the sources §fl are linear. The method of claim 13, wherein the blind signal separation processor is based on principal component analysis (PCA) to separate the desired source signal from the mixing matrix. The method of claim 13, wherein the blind signal separation processor is based on an independent component analysis (ICA) to separate the desired source signal from the hybrid matrix. The method of claim 13, wherein the blind signal separation processor is based on a single numerical decomposition (SVD) to separate the desired source signal from the hybrid matrix. 1284465 VII. Designated representative map: (1) The representative representative of the case is: (2). (2) Brief description of the component symbols of the representative diagram: 30 Communication device 32 Antenna array 34(1) to 34(N) First to Nth antenna elements 36 Mixed matrix 38(1)~38(3) Separation matrix 39 Separation Signal 40 Transceiver 42 Processor 44 PCA Main Component Analysis 46 ICA Independent Component Analysis 48 SVD Single Value Decomposition 49 Blind Signal Separation Processor 50 Signal Analysis Module 52 Application Related Processing Module 8. If there is a chemical formula in this case, please reveal the most Chemical formula that shows the characteristics of the invention: 5
TW094133246A 2004-09-23 2005-09-23 Blind signal separation using correlated antenna elements TWI284465B (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
US61254704P 2004-09-23 2004-09-23
US61254804P 2004-09-23 2004-09-23
US61247104P 2004-09-23 2004-09-23
US61255104P 2004-09-23 2004-09-23
US61243504P 2004-09-23 2004-09-23
US61254604P 2004-09-23 2004-09-23
US61263204P 2004-09-23 2004-09-23
US61243304P 2004-09-23 2004-09-23
US61255004P 2004-09-23 2004-09-23
US61246904P 2004-09-23 2004-09-23
US61526004P 2004-10-01 2004-10-01
US61533804P 2004-10-01 2004-10-01
US62077604P 2004-10-20 2004-10-20
US62086204P 2004-10-20 2004-10-20
US62077504P 2004-10-20 2004-10-20
US62111304P 2004-10-22 2004-10-22
US63922304P 2004-12-23 2004-12-23
US11/232,500 US7414579B2 (en) 2004-09-23 2005-09-22 Blind signal separation using correlated antenna elements

Publications (2)

Publication Number Publication Date
TW200627841A TW200627841A (en) 2006-08-01
TWI284465B true TWI284465B (en) 2007-07-21

Family

ID=38291589

Family Applications (7)

Application Number Title Priority Date Filing Date
TW094133236A TWI287366B (en) 2004-09-23 2005-09-23 Blind signal separation using I and Q components
TW094133245A TWI284464B (en) 2004-09-23 2005-09-23 Blind signal separation using polarized antenna elements
TW094133241A TWI269544B (en) 2004-09-23 2005-09-23 Blind signal separation using array deflection
TW094133244A TWI279099B (en) 2004-09-23 2005-09-23 Blind signal separation using a combination of correlated and uncorrelated antenna elements
TW094133237A TWI279995B (en) 2004-09-23 2005-09-23 Blind signal separation using spreading codes
TW094133239A TWI281795B (en) 2004-09-23 2005-09-23 Blind signal separation using signal path selection
TW094133246A TWI284465B (en) 2004-09-23 2005-09-23 Blind signal separation using correlated antenna elements

Family Applications Before (6)

Application Number Title Priority Date Filing Date
TW094133236A TWI287366B (en) 2004-09-23 2005-09-23 Blind signal separation using I and Q components
TW094133245A TWI284464B (en) 2004-09-23 2005-09-23 Blind signal separation using polarized antenna elements
TW094133241A TWI269544B (en) 2004-09-23 2005-09-23 Blind signal separation using array deflection
TW094133244A TWI279099B (en) 2004-09-23 2005-09-23 Blind signal separation using a combination of correlated and uncorrelated antenna elements
TW094133237A TWI279995B (en) 2004-09-23 2005-09-23 Blind signal separation using spreading codes
TW094133239A TWI281795B (en) 2004-09-23 2005-09-23 Blind signal separation using signal path selection

Country Status (1)

Country Link
TW (7) TWI287366B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9094102B2 (en) 2009-04-13 2015-07-28 Viasat, Inc. Half-duplex phased array antenna system
TWI504056B (en) * 2009-04-13 2015-10-11 Viasat Inc Differential phase generatng hybrid and method for generating differential phase
US9425890B2 (en) 2009-04-13 2016-08-23 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US10516219B2 (en) 2009-04-13 2019-12-24 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8724717B2 (en) 2008-04-10 2014-05-13 Mediatek Inc. Pilot pattern design for high-rank MIMO OFDMA systems
US8126094B2 (en) * 2009-01-07 2012-02-28 Skyworks Solutions, Inc. Circuits, systems, and methods for managing automatic gain control in quadrature signal paths of a receiver
US8670432B2 (en) 2009-06-22 2014-03-11 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells
US8605777B2 (en) 2010-06-01 2013-12-10 Etron Technology, Inc. Circuit for recognizing a beginning and a data rate of data and method thereof
TWI809390B (en) * 2021-03-01 2023-07-21 新加坡商台達電子國際(新加坡)私人有限公司 Method and audio processing system for blind source separation without sampling rate mismatch estimation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9094102B2 (en) 2009-04-13 2015-07-28 Viasat, Inc. Half-duplex phased array antenna system
TWI504056B (en) * 2009-04-13 2015-10-11 Viasat Inc Differential phase generatng hybrid and method for generating differential phase
US9425890B2 (en) 2009-04-13 2016-08-23 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US9537214B2 (en) 2009-04-13 2017-01-03 Viasat, Inc. Multi-beam active phased array architecture
US9843107B2 (en) 2009-04-13 2017-12-12 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US10305199B2 (en) 2009-04-13 2019-05-28 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US10516219B2 (en) 2009-04-13 2019-12-24 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US10797406B2 (en) 2009-04-13 2020-10-06 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US11038285B2 (en) 2009-04-13 2021-06-15 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US11509070B2 (en) 2009-04-13 2022-11-22 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US11791567B2 (en) 2009-04-13 2023-10-17 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control

Also Published As

Publication number Publication date
TW200627835A (en) 2006-08-01
TW200627840A (en) 2006-08-01
TWI284464B (en) 2007-07-21
TW200627841A (en) 2006-08-01
TWI279099B (en) 2007-04-11
TW200629777A (en) 2006-08-16
TW200627839A (en) 2006-08-01
TWI269544B (en) 2006-12-21
TWI287366B (en) 2007-09-21
TWI279995B (en) 2007-04-21
TW200627836A (en) 2006-08-01
TW200627834A (en) 2006-08-01
TWI281795B (en) 2007-05-21

Similar Documents

Publication Publication Date Title
TWI284465B (en) Blind signal separation using correlated antenna elements
JP4445017B2 (en) Blind signal separation using I and Q components
JP4594394B2 (en) Blind signal separation using signal path selection
US8031117B2 (en) Blind signal separation using polarized antenna elements
JP4625501B2 (en) Brand signal separation using spreading codes
JP4677451B2 (en) Blind signal separation using a combination of correlated and uncorrelated antenna elements
JP5140090B2 (en) Wave transmission pattern for multiple simultaneous transmitters to support signal separation at the receiver
JP5140089B2 (en) Wave transmission patterns to support signal separation in receivers
JP4570660B2 (en) Blind signal separation using array deflection
US7414579B2 (en) Blind signal separation using correlated antenna elements

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees