WO2006011275A1 - 金属イオン溶出ユニット及びこれを備えた機器 - Google Patents

金属イオン溶出ユニット及びこれを備えた機器 Download PDF

Info

Publication number
WO2006011275A1
WO2006011275A1 PCT/JP2005/007673 JP2005007673W WO2006011275A1 WO 2006011275 A1 WO2006011275 A1 WO 2006011275A1 JP 2005007673 W JP2005007673 W JP 2005007673W WO 2006011275 A1 WO2006011275 A1 WO 2006011275A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
current
metal ion
ion elution
period
Prior art date
Application number
PCT/JP2005/007673
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Ikeboh
Mugihei Ikemizu
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US10/589,393 priority Critical patent/US8419907B2/en
Priority to CN2005800132743A priority patent/CN101044095B/zh
Priority to EP05734440.0A priority patent/EP1772434B1/en
Publication of WO2006011275A1 publication Critical patent/WO2006011275A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4606Treatment of water, waste water, or sewage by electrochemical methods for producing oligodynamic substances to disinfect the water
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/003Washing machines, apparatus, or methods not otherwise provided for using electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • C02F2209/055Hardness
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/12Location of water treatment or water treatment device as part of household appliances such as dishwashers, laundry washing machines or vacuum cleaners

Definitions

  • the present invention relates to a metal ion elution unit for eluting antibacterial metal ions into water, and an apparatus using water containing metal ions eluted by the metal ion elution unit.
  • Patent Document 1 describes an electric washing machine equipped with an ion generator that generates metal ions having sterilizing power.
  • Patent Document 2 describes a washing machine equipped with a silver ion addition unit for adding silver ions to washing water.
  • Silver ions and copper ions are known as antibacterial metal ions.
  • silver ions have a bactericidal action.
  • antibacterial metal ions have the characteristics that they are more stable than chlorine, have a bactericidal effect, and do not produce harmful substances.
  • Electrode type metal ion elution unit When a voltage is applied between the electrodes, a current flows between the electrodes, and the metal ions are eluted as an anode according to Coulomb's law. Normally, the concentration of metal ions eluted is controlled by the amount of water flowing between the electrodes and the current flowing through the electrodes.
  • Patent Document 1 Japanese Utility Model Publication No. 5-74487
  • Patent Document 2 JP 2001-276484 A
  • the electrode serving as the anode is a silver electrode or a silver-containing electrode, and this is placed in water together with the electrode serving as the cathode.
  • a voltage is applied between the electrodes, contact with the electrode is an anode!, Te, occur Ag ⁇ Ag + + e _ reaction, silver ions (Ag +) are eluted into water. If silver ions (Ag +) continue to elute, the electrode that is the anode will wear out.
  • the elution efficiency of metal ions may be reduced due to water quality.
  • the hardness of water is high, when the conductivity of water is high, or when the concentration of salt ions in water is high, the metal ion concentration can be obtained even if no scale is deposited on the surface of the cathode electrode.
  • the problem is that the elution amount decreases and the metal ion concentration decreases. There was a point.
  • the elution efficiency of metal ions also decreases depending on the water quality not only by the adhesion of the scale.
  • scale adhesion can be prevented to some extent by periodically inverting the polarity of the voltage applied between the electrodes so that the anode and the cathode are periodically switched.
  • the reduction of the elution efficiency of metal ions due to this scale adhesion and water quality is involved in a complex manner, and there is also a synergistic effect with each other. When elution efficiency further decreased, there was a problem.
  • an object of the present invention is to provide a metal ion elution unit capable of performing metal ion elution efficiently and stably over a long period of time and an apparatus including the same. .
  • a metal ion elution unit includes a plurality of electrodes and a drive circuit for applying a voltage between the electrodes, and applying a voltage between the electrodes.
  • the electrode force that is the anode is also a metal ion elution unit that elutes metal ions, and the polarity of the voltage applied between the electrodes is periodically reversed and the polarity of the voltage applied between the electrodes is reversed.
  • the current value of the current flowing through the electrode becomes the first current mode, which is the first current value, and then the current value of the current flowing through the electrode becomes the first current value.
  • a control circuit for controlling the drive circuit so as to be in a second current mode having a different second current value is provided.
  • the first current value is set to an optimum current value for preventing scale adhesion
  • the second current value is a current at which the elution efficiency of metal ions is optimized according to the water quality.
  • the period of the first current mode is made shorter than the period of the second current mode. It is desirable.
  • the driving circuit performs constant voltage driving in the first current mode period and performs constant current driving in the second current mode period.
  • the driving circuit performs constant voltage driving in the first current mode period, the maximum current corresponding to the water quality and the state between the electrodes can flow during the first current mode period. The stopping effect can be enhanced.
  • the polarity of the voltage applied between the electrodes is periodically reversed with a voltage application pause period in between.
  • the electrode force that was the anode before the voltage application quiescent period can be separated from the electrode force sufficiently far away from the electrode force. Even if it becomes the cathode after the quiescent period, it does not pull back the metal ions eluted before the voltage application quiescent period. As a result, it is possible to avoid wasting electric power consumed for elution of metal ions, and to avoid a situation where a desired total amount of metal ions cannot be obtained.
  • the concentration variation of metal ions in water is reduced by providing a voltage application suspension period.
  • the eluted metal ion is an antibacterial metal ion, it becomes easy to exert a uniform antibacterial effect over a wide range.
  • the scale deposited on the electrode that was the cathode before switching the polarity of the voltage applied between the electrodes is the polarity of the voltage applied between the electrodes during the first current mode period.
  • metal ions are eluted from the electrode electrode, which is the anode, and are peeled off from the electrode. Then, the scale peeled off from the electrode cover can be separated far enough from the electrode force facing the electrode during the voltage application suspension period, so that the peeled scale is reattached. This prevents the deposition of scales on the electrode surface and enables stable elution of metal ions.
  • the residual potential difference between the electrodes during the voltage application pause period can be made completely zero, so that scale deposition during the voltage application pause period can be prevented.
  • a water quality detection unit for detecting the quality of water interposed between the electrodes is provided, and the control circuit detects at least one of the first current value and the second current value by the water quality detection unit. It is desirable to change according to the water quality. According to such a configuration, it is possible to always prevent the scale from adhering properly and to ensure an appropriate elution concentration of Z or metal ions regardless of the quality of the water used.
  • a water quality detection unit that detects the quality of water interposed between the electrodes
  • the control circuit has a time ratio of a period of the first current mode to a period of the second current mode, and the electrode It is desirable to change at least one of the polarity reversal periods of the voltage applied between them according to the water quality detected by the water quality detection unit. According to such a configuration, even when there is an upper limit on the current value due to circuit restrictions, regardless of the quality of the water used, it is always possible to prevent the scale from adhering to the Z and always ensure an appropriate metal ion elution concentration. It becomes possible to do.
  • the water quality detection unit detects at least one of water hardness, water conductivity, and water salt ion concentration. Since the elution efficiency of metal ions correlates with the hardness of water, the conductivity of water, and the concentration of salt ions of water, according to such a configuration, an appropriate metal ion can always be used regardless of the quality of the water used. It is possible to secure the elution concentration.
  • the water quality detection unit detects water quality by detecting at least one of a voltage between the electrodes and a current flowing through the electrodes.
  • the water quality detection unit can be realized with a relatively simple and inexpensive circuit.
  • the eluted metal ions are any of silver ions, copper ions, or zinc ions. According to such a configuration, the excellent bactericidal and antifungal effects of silver ions, copper ions, or zinc ions can be used.
  • an apparatus according to the present invention includes a metal ion elution unit having any one of the above structures.
  • An example of the device according to the present invention is a washing machine.
  • FIG. 1 is a horizontal sectional view of an ion elution part provided in a metal ion elution unit according to the present invention.
  • FIG. 2 is a perspective view of an electrode provided in a metal ion elution unit according to the present invention.
  • FIG. 3 is a diagram showing an electrical configuration of a metal ion elution unit according to the present invention.
  • FIG. 4 is a timing chart of each part signal and current flowing in the electrode in the first embodiment.
  • FIG. 5 is a timing chart of each part signal and current flowing in the electrode in the second embodiment.
  • FIG. 6 is a timing chart of each part signal and current flowing in the electrode in the third embodiment.
  • FIG. 7 is a timing chart of each part signal and current flowing in the electrode in the fourth embodiment.
  • FIG. 8 is a graph showing the relationship between elution efficiency and water hardness.
  • FIG. 9 is a graph showing the relationship between elution efficiency and water conductivity.
  • FIG. 10 is a graph showing the relationship between elution efficiency and water salt ion concentration.
  • FIG. 11C is a timing chart of the current flowing through the electrode when the current value is changed according to the water quality.
  • FIG. 12B is a timing chart of the current flowing through the electrodes when the time ratio between the first current mode and the first current mode is changed according to the water quality.
  • FIG. 13B is a timing chart of the current flowing through the electrode when both the polarity inversion period and the time ratio are changed according to the water quality.
  • FIG. 14 is a longitudinal sectional view of the washing machine according to the present invention.
  • FIG. 1 A horizontal cross-sectional view of the ion elution part is shown in Fig. 1, and a perspective view of the electrode is shown in Fig. 2.
  • the ion elution part 100 has a case 101.
  • the case 101 includes a water inlet 104 at one end in the longitudinal direction and a water outlet 105 at the other end.
  • the ion elution part 100 has two electrodes 102 and 103 in a case 101. Inside the case 101, two plate electrodes 102 and 103 are arranged facing each other in such a way that the inlet 104 force is also directed to the outlet 105 along the countercurrent water flow.
  • the electrodes 102 and 103 may be silver plates each having a size of about 20 mm ⁇ 50 mm and a thickness of about 1 mm, and may be configured to be arranged at a distance of about 5 mm by the electrode holding members 106 and 107.
  • the electrode 102 and the connection terminal 108, and the electrode 103 and the connection terminal 109 are made of the same metal material and are integrally formed.
  • silver ion-containing water with a silver ion concentration of approximately 90 ppb is generated with a water flow rate of 20 LZ. be able to. This means that silver ion-containing water can be produced at a concentration that can sufficiently exhibit antibacterial properties even when water is passed at a water pressure as high as tap water pressure.
  • the material of the electrodes 102 and 103 is not limited to silver. Any metal can be used as a source of antibacterial metal ions.
  • copper, an alloy of silver and copper, zinc and the like can be selected. Silver ions that elute from the silver electrode, copper ions that elute from the copper electrode, and zinc ions that elute from the zinc electrode exhibit excellent bactericidal and antifungal effects. Silver and copper alloys are silver On and copper ions can be eluted simultaneously.
  • elution of metal ions and non-elution of metal ions can be selected depending on whether or not a voltage is applied between the electrodes 102 and 103. Moreover, the elution amount of metal ions can be controlled by controlling the current flowing through the electrode and the voltage application time.
  • Metal ion carrier strength such as zeolite used in general antibacterial materials Compared with controlled release method that elutes metal ions, select whether to introduce metal ions and adjust the concentration of metal ions. It is easy to use because it can be done electrically.
  • FIG. 3 shows the electrical configuration of the metal ion elution unit according to the present invention.
  • the insulation transformer 2 steps down the 100V AC voltage output from the commercial power source 1 on the primary side to a predetermined AC voltage and outputs it to the secondary side. Insulate from the side.
  • the output voltage of the isolation transformer 2 is rectified by the full-wave rectifier circuit 3, smoothed by the smoothing capacitor C1, and then made constant by the constant voltage circuit 4.
  • the constant voltage output from the constant voltage circuit 4 is supplied to the constant current circuit 5 via the resistor R1.
  • the constant current circuit 5 operates so as to output a predetermined current regardless of a change in resistance value between the electrodes 102 and 103.
  • the collector of the NPN transistor Q1 and the collector of the NPN transistor Q2 are connected to the output side of the constant current circuit 5.
  • the emitter of NPN transistor Q1 and the collector of NPN transistor Q3 are connected in common and connected to electrode 102, and the emitter of NPN transistor Q2 and the collector of NPN transistor Q4 are connected in common and connected to electrode 103.
  • the emitter of NPN transistor Q3 and the emitter of NPN transistor Q4 are connected in common and grounded through resistor R2. Then, control signals S1 to S4 output from the main control unit 6 composed of a microcomputer or the like are input to the bases of the NPN transistors Ql to Q4, respectively.
  • control signals S1 and S4 are high level signals and the control signals S2 and S3 force are low level signals
  • the NPN transistors Q1 and Q4 are turned on, and the NPN transistors Q2 and Q3 Turns off.
  • a positive voltage is applied to the electrode 102 and a negative voltage is applied to the electrode 103.
  • the electrode 103 serves as a cathode, and current flows from the electrode 102 serving as the anode to the electrode 103 serving as the cathode.
  • the metal ion elution unit generates cations antibacterial metal ions and anions.
  • the NPN transistors Q1 and Q4 are turned off, and the NPN transistors Q2 and Q3 Turns ON.
  • a negative voltage is applied to the electrode 102
  • a positive voltage is applied to the electrode 103.
  • the electrode 103 becomes the anode
  • the electrode 102 becomes a force cathode
  • a current flows from the electrode 103 serving as the anode toward the electrode 102 serving as the cathode.
  • cations antibacterial metal ions and anions are generated from the metal ion elution unit.
  • the voltage detection circuit 9 detects the output voltage of the constant current circuit 5 and outputs the detection result to the main control unit 6.
  • the current detection circuit 10 detects the current flowing through the resistor R2 and outputs the detection result to the main control unit 6.
  • the voltage value setting circuit 8 sets the output voltage value of the constant voltage circuit 4 in accordance with an instruction from the main control unit 6.
  • the current value setting circuit 7 sets the output current value of the constant current circuit 5 in response to an instruction from the main control unit 6.
  • FIG. 4 is a timing chart of each part signal and the current flowing through the electrode when the metal ion elution unit according to the present invention performs the operation according to the first embodiment.
  • the main control unit 6 includes a counter (not shown), and internally generates a mode switching signal S5 based on the count number of the counter.
  • the mode switching signal S5 is a signal for periodically switching between a high level period and a low level period. Also, the high level period and low level period of the mode switching signal S5 are set to different values.
  • the main control unit 6 generates control signals S1 to S4 based on the mode switching signal S5, and outputs the control signals S1 to S4 to the NPN transistors Q1 to Q4, respectively.
  • the control signals Sl and S4 and the control signals S2 and S3 are complementarily switched between high level and low level.
  • the mode switching signal S5 rises and is inverted
  • the control signals S1 to S4 are inverted.
  • the electrode 102 becomes the anode and the electrode 103 becomes the cathode.
  • the main control unit 6 increases the value of the current output by the constant current circuit 5 when the mode switching signal S5 is at a high level compared to when the mode switching signal S5 is at a low level.
  • the current value setting circuit 7 is controlled.
  • the main control unit 6 controls the current setting value circuit 7 so that the current Io flowing through the electrode becomes the first current value set in advance, and the mode switching signal S5 is In the case of the low level, the main controller 6 controls the current set value circuit 7 so that the current Io flowing through the electrode becomes a preset second current value larger than the first current value.
  • the anode after the polarity reversal of the voltage applied between the electrodes In the electrode, the metal electrode such as silver on the adhesion surface of the scale is melted, so that the bonding force between the scale and the electrode is lowered, and the electrical repulsion between the scale and the electrode surface is considered.
  • the metal ion elution unit according to the present invention is applied between the electrodes.
  • a large current flows through the electrode only at the initial stage of voltage application after the polarity reversal of the applied voltage.
  • the value of the current Io flowing through the electrode during the first current mode ml (first current value) is changed to the value during the second current mode m2.
  • the period of the first current mode ml should be shorter than the period of the second current mode m2 so as not to cause the problem that the electrode life is shortened or the metal ion elution concentration becomes too high. desirable.
  • the constant current drive is performed in both the period of the first current mode ml and the period of the second current mode m2, but in each of the sections T1 to T5.
  • the constant current driving may be performed during the first current mode ml, and the constant current driving may be performed during the second current mode m2.
  • the main control unit 6 controls the current value setting circuit 7 and the voltage value setting circuit 8 so that the voltage detected by the voltage detection circuit 9 is constant.
  • the maximum current according to the water quality and the state between the electrodes can flow during the period of the first current mode ml. Will increase.
  • constant current driving is performed in both the period of the first current mode ml and the period of the second current mode m2, so the voltage value setting circuit 8 is not provided. It doesn't matter.
  • the constant voltage drive is to control a constant voltage value regardless of the resistance value change between the electrodes.
  • the voltage value between the electrodes varies, and it is difficult to make it completely constant. In some cases, such as when the resistance between the electrodes is extremely low! If there is a risk that a current exceeding the allowable range may flow, the voltage may need to be lowered.
  • constant voltage drive is defined as controlling the voltage so that it is not changed regardless of changes in the resistance value between the electrodes, and a substantially constant voltage is applied between the electrodes.
  • Constant current control is control to maintain a constant current value regardless of changes in the resistance value between the electrodes Force generation of bubbles on the electrode surface, changes in the distance between electrodes due to electrode vibration, etc.
  • the resistance value between the electrodes always changes, it is difficult to make it completely constant, and some current fluctuation occurs. Also, because the resistance value is extremely high, a constant current may not flow at a voltage within the allowable range of the circuit, and the current may decrease. Here, even if this is the case, the voltage is changed in response to the change in the resistance value between the electrodes. When the resistance value increases, the voltage is increased, and when the resistance value decreases, the voltage is decreased. Control to stabilize the current value is defined as constant current drive.
  • FIG. 5 is a timing chart of each part signal and current flowing through the electrode when the metal ion elution unit according to the present invention performs the operation according to the second embodiment.
  • the same parts as those in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the mode switching signal S5 is a signal that switches to the high level via the middle level for a predetermined period when switching from the low level to the high level.
  • the main control unit 6 sets all the control signals S1 to S4 to the Low level. As a result, the polarity of the voltage applied between the electrodes is reversed across the voltage application rest period RT.
  • the metal ions eluted from the electrode that was the anode before the voltage application pause period RT can also move far enough away from the electrode force. Even if it becomes the cathode after this, the metal ions eluted before the voltage application rest period RT will not be pulled back. As a result, it is possible to avoid wasting electric power consumed for elution of metal ions, and to avoid a situation where a desired total amount of metal ions cannot be obtained.
  • the metal ion elution unit according to the present invention is incorporated in a device and used, the concentration variation of metal ions in water is reduced by providing the voltage application suspension period RT. Therefore, when the eluted metal ions are antibacterial metal ions, it becomes easy to exert a uniform antibacterial effect over a wide range.
  • FIG. 6 is a timing chart of each part signal and current flowing to the electrode when the metal ion elution unit according to the present invention performs the operation according to the third embodiment.
  • FIG. 6 the same parts as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the main control unit 6 sets the control signals S1 to S4 to the low level for a predetermined period after the inversion of the falling edge of the mode switching signal S5, so that the period force voltage application suspension period rt of the first current mode ml is sandwiched.
  • the transition to the period of the second current mode m2 occurs.
  • the scale deposited on the electrode that was the cathode before switching the polarity of the voltage applied between the electrodes is the anode after the polarity switching of the voltage applied between the electrodes in the period of the first current mode ml.
  • FIG. 7 is a timing chart of each part signal and the current flowing through the electrode when the metal ion elution unit according to the present invention performs the operation according to the fourth embodiment.
  • the same parts as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the fourth embodiment differs from the second embodiment described above in that when the mode switching signal S5 is at the middle level, the control signals SI and S2 force become low level, and the control signals S3 and S4 become high level. is there.
  • the electrodes 102 and 103 are short-circuited, and the potential difference between the electrodes 102 and 103 can be made zero.
  • Voltage application pause period The residual potential difference between electrodes 102 and 103 during RT causes a small amount of scale to be deposited, so the electrodes 102 and 103 are short-circuited so that the residual potential difference between electrodes 102 and 103 is completely zero. By doing so, the deposition of scale during the voltage application rest period RT is prevented.
  • the control signals S1 and S2 are set to the low level
  • the control signals S3 and S4 are set to the high level
  • the electrodes 102 and 103 are short-circuited.
  • the residual potential difference between 102 and 103 may be completely zero.
  • Figure 8 shows the relationship between elution efficiency and water hardness, which is one element of water quality
  • Figure 9 shows the relationship between elution efficiency and water conductivity, which is one element of water quality
  • Fig. 10 shows the relationship between water and salt ion concentration, which is one of the factors. 8 to 10, the standard water quality of Japanese tap water (hardness 100 mgZL, conductivity 340 / z SZcm, chloride ion concentration 54 mg / L) as the standard, the metal ion elution efficiency is 100% when the current value flowing through the electrode of the metal ion elution unit is 29 mA using this quality water, the electrode size is the same, and metal ion elution is performed.
  • the voltage application pattern applied between the unit electrodes is the same.
  • characteristic lines A1 to A3 are characteristic lines when the current value flowing through the electrode of the metal ion elution unit is 29 mA, and characteristic lines A4 to A6 are metal ion elutions. This is a characteristic line when the current flowing through the unit electrode is 94 mA.
  • the elution efficiency of metal ions decreases as the hardness of water increases, the conductivity of water increases, and the salt ion concentration of water increases. I will do it. Further, as is clear from comparison between the characteristic lines A1 to A3 and the characteristic lines A4 to A6, the metal ion elution efficiency is improved by increasing the value of the current flowing through the electrode of the metal ion elution unit.
  • the value of the current Io (second current value) flowing through the electrode during the second current mode m2 is changed according to the water quality.
  • the value of the current Io (first current value) flowing through the electrode during the period of the first current mode ml is set according to the water quality. This makes it possible to always prevent the scale from adhering appropriately. Therefore, change the value of the current Io flowing through the electrode during the first current mode ml (first current value) according to the water quality.
  • the set value of the current value was changed according to the water quality, but the time between the period of the first current mode ml and the period of the second current mode m2 was changed according to the water quality.
  • the ratio may be changed.
  • the current Io value (second current value) flowing through the electrode during the period of m2 is increased to increase the conductivity and the scale is easily deposited.
  • the value of the current Io flowing through the electrode during the first current mode ml period (first current value) and the current Io flowing through the electrode during the second current mode m2 as shown in Fig. 12B It is recommended to increase the value (second current value) and increase the time ratio of the period of the first current mode ml to the period of the second current mode m2.
  • the value of the current Io flowing through the electrode during the period of the first current mode ml (first current value) and the second current mode every time the device including the metal ion elution unit according to the present invention is used.
  • the value of the current Io flowing through the electrode during the m2 period (second current value) or the time ratio of the period of the first current mode ml to the period of the second current mode m2 is set to an optimal value in advance. Aspects are possible.
  • a device for inputting information on water quality is provided in a device equipped with the metal ion elution unit according to the present invention, and the current Io flowing through the electrode during the period of the first current mode ml according to the input information on water quality.
  • first current value current Io value flowing through the electrode during the second current mode m2 (second current value), or first current mode for the second current mode m2 period
  • second current value current Io value flowing through the electrode during the second current mode m2
  • first current mode current Io value flowing through the electrode during the second current mode m2
  • second current value current Io value flowing through the electrode during the second current mode m2
  • first current value current Io value flowing through the electrode during the second current mode m2
  • second current value the time ratio of the period of the first current mode ml to the period of the second current mode m2
  • Water quality can also be accommodated by changing the polarity inversion period of the voltage applied between the electrodes. For example, if the period is increased while maintaining the time ratio between the current mode ml period and the current mode m2 period, the ion elution efficiency can be increased as a result.
  • both the polarity inversion period and the time ratio may be changed.
  • FIG. 13A and FIG. 13B are examples in which the period of the current mode ml is changed according to the water quality and the period of the current mode m2 is not changed. When water with high conductivity and scale is easy to deposit is used, as shown in Fig. 13A. Like that.
  • the water quality detector is composed of the voltage detection circuit 9 and the current detection circuit 10 in FIG.
  • the voltage detection circuit 9 has a period in which NPN transistors Ql and Q4 are ON and NPN transistors Q2 and Q3 are OFF, or a period in which NPN transistors Ql and Q4 are OFF and NPN transistors Q2 and Q3 are ON.
  • the voltage applied between the electrodes 102 and 103 is detected.
  • the current detection circuit 10 detects the current flowing through the electrodes 102 and 103.
  • the water quality is detected by detecting the voltage value applied between the electrodes 102 and 103 and the current value flowing through the electrodes 102 and 103 when a voltage is applied between the electrodes 102 and 103 under a predetermined condition.
  • a low electrical conductivity which is one element of water quality, can be detected by a decrease in the current flowing through the electrodes 102 and 103 even though the voltage applied between the electrodes 102 and 103 is high. .
  • the metal ion elution unit according to the present invention can be mounted on various devices.
  • FIG. 14 shows a longitudinal sectional view of a washing machine equipped with the metal ion elution unit according to the present invention described above.
  • the washing machine shown in FIG. 14 has the ion elution part 100 included in the metal ion elution unit according to the present invention described above mounted in the water supply path 110, and has antibacterial properties produced by the ion elution part 100.
  • Metal ions are added to the wash water.
  • the laundry can be treated with antibacterial metal ions to prevent the growth of bacteria and mold, and to prevent the generation of odors.
  • the washing machine shown in Fig. 14 can maintain an optimum metal ion concentration without being affected by water quality even when sold in various regions with different water quality overseas, and exhibits an antibacterial effect. In addition, it is possible to eliminate variations in electrode life due to differences in water quality.
  • the metal ion elution unit of the present invention can be used in various devices using water, including a washing machine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)

Abstract

 本発明に係る金属イオン溶出ユニットは、複数の電極102、103と、前記電極間に電圧を印加する駆動回路(図示せず)と、前記電極間に印加される電圧の極性が周期的に反転するとともに、前記電極間に印加される電圧の極性が反転してから所定の期間が経過する迄の間前記電極に流れる電流の電流値が第1の電流値である第1の電流モードとなり、その後前記電極に流れる電流の電流値が第1の電流値と異なる第2の電流値である第2の電流モードになるように前記駆動回路を制御する制御回路(図示せず)を備える。このような構成によると、金属イオンの溶出を長期間にわたり効率良く安定して行うことができる。

Description

明 細 書
金属イオン溶出ユニット及びこれを備えた機器
技術分野
[0001] 本発明は、抗菌性のある金属イオンを水中に溶出する金属イオン溶出ユニット及び 当該金属イオン溶出ユニットによって溶出された金属イオンを含有している水を用い る機器に関するものである。
背景技術
[0002] 近年、女性就労率の向上や核家族化などにより、 日中は家に誰もいないという家庭 が増え、このような家庭では室内干しをする機会が多くなつている。また日中誰かが 在宅している家庭にあっても、雨天の場合は、室内干しをすることになる。このような 室内干しの場合、天日干しに比べ洗濯物に細菌やカビが繁殖しやすくなる。梅雨時 のような高湿時や低温時など、洗濯物の乾燥に時間が力かる場合にこの傾向は顕著 である。繁殖状況によっては洗濯物が異臭を放っときもある。このため、日常的に室 内干しを余儀なくされる家庭では、細菌やカビの繁殖を抑制するため、布類に抗菌 処理を施した ヽと 、う要請が強くなつて 、る。
[0003] このため最近では繊維に抗菌防臭加工ゃ制菌加工を施した衣類も多くなつて!/、る 。し力しながら家庭内の繊維製品をすベて抗菌防臭加工済みのもので揃えるのは困 難である。また抗菌防臭加工の効果は洗濯を重ねるにつれ落ちて行く。
[0004] そこで、洗濯の都度洗濯物を抗菌処理する技術が提案されて!ヽる。例えば特許文 献 1には殺菌力を有する金属イオンを発生するイオン発生機器を装備した電気洗濯 機が記載されている。また、特許文献 2には洗浄水に銀イオンを添加する銀イオン添 加ユニットを具備した洗濯機が記載されて 、る。
[0005] 抗菌性のある金属イオンとして、銀イオン、銅イオンなどが知られて 、る。特に、銀ィ オンに殺菌作用があることは昔から良く知られて 、る。このような抗菌性のある金属ィ オンは、塩素よりも安定であり、殺菌効果が持続し、有害物質を生成しないという特徴 を有する。
[0006] 通常、金属イオンの溶出は、電極方式金属イオン溶出ユニットを用いて行われる。 電極方式金属イオン溶出ユニットでは、電極間に電圧を印加することで、電極間に電 流が流れ、クーロンの法則に従って金属イオンが陽極である電極力 溶出する。通常 、溶出する金属イオン濃度は、電極間を流れる水の水量と電極に流れる電流とによ つて制御される。
[0007] また、電極方式金属イオン溶出ユニットでは、一般的に炭酸カルシウムなどが陰極 である電極に付着するいわゆるスケール付着の問題が起こるために、電極間に印加 される電圧の極性を周期的に反転させて、陽極と陰極が周期的に切り替わるようにし てスケールの付着を防止するのが一般的である。
特許文献 1:実開平 5— 74487号公報
特許文献 2:特開 2001 - 276484号公報
発明の開示
発明が解決しょうとする課題
[0008] 電極方式金属イオン溶出ユニットにおいて、溶出する金属イオンを例えば銀イオン にする場合、陽極である電極を銀電極或いは銀を含有する電極とし、これを陰極とな る電極とともに水中に入れて電極間に電圧を印加すると、陽極である電極にお!、て、 Ag→Ag+ + e_の反応が起こり、水中に銀イオン (Ag+)が溶出する。銀イオン (Ag+) が溶出しつづければ陽極である電極は減耗していく。
[0009] 他方陰極である電極では、電極の材質に関わらず H+ + e_→l/2Hの反応が生じ
2
、水素が発生するとともに、水の溶存成分力 構成されるスケール (炭酸カルシウム や炭酸マグネシウムなど)が電極表面に析出する。また、陽極である電極の成分金属 の塩ィ匕物や硫ィ匕物も陰極である電極の表面に析出する。従って、電極方式金属ィォ ン溶出ユニットの使用が長期にわたると、スケールや金属塩化物、金属硫化物が陰 極である電極の表面に厚く堆積し、金属イオンの溶出を妨げる。このため、金属ィォ ンの溶出量が不安定になったり、電極の減耗が不均一になったりする。
[0010] また、陰極である電極にスケールが付着しなくても、水質により金属イオンの溶出効 率が低下する場合もある。例えば水の硬度が高い場合、水の導電率が高い場合、水 の塩ィ匕物イオン濃度が高 、場合などは、陰極である電極の表面にスケールが析出し ていなくても、金属イオンの溶出量が低下し、金属イオン濃度が下がるといった問題 点があった。
[0011] このようにスケールの付着だけでなぐ水質によっても、金属イオンの溶出効率は低 下する。スケールの付着については、上述したように電極間に印加される電圧の極 性を周期的に反転させて、陽極と陰極が周期的に切り替わるようにすることで、ある 程度防ぐことができるが、実際の環境では、このスケール付着と水質による金属ィォ ンの溶出効率の低下が複雑に絡み、さらにお互いの相乗効果もあり、スケールの付 着を十分に防止できな力 たりして金属イオンの溶出効率がさらに低下するといつた 問題点があった。
[0012] 一般的に電極に流れる電流の値を上げれば、スケールの付着防止及び金属ィォ ンの溶出効率の改善を行うことができる力 電極の減耗が激しくなり電極寿命が短く なるという問題や金属イオン溶出濃度が高くなり過ぎるという問題があった。金属ィォ ン溶出濃度が高くなり過ぎると、電極方式金属イオン溶出ユニットを搭載した洗濯機 で洗濯された衣類に変色が生じるなどの問題があった。
[0013] 本発明は、上記の問題点に鑑み、金属イオンの溶出を長期間にわたり効率良く安 定して行うことができる金属イオン溶出ユニット及びこれを備えた機器を提供すること を目的とする。
課題を解決するための手段
[0014] 上記目的を達成するために本発明に係る金属イオン溶出ユニットは、複数の電極と 、前記電極間に電圧を印加する駆動回路とを備え、前記電極間に電圧を印加するこ とにより陽極である電極力も金属イオンを溶出させる金属イオン溶出ユニットであって 、前記電極間に印加される電圧の極性が周期的に反転するとともに、前記電極間に 印加される電圧の極性が反転してから所定の期間が経過する迄の間前記電極に流 れる電流の電流値が第 1の電流値である第 1の電流モードとなり、その後前記電極に 流れる電流の電流値が第 1の電流値と異なる第 2の電流値である第 2の電流モード になるように前記駆動回路を制御する制御回路を備える構成とする。
[0015] このような構成によると、第 1の電流値をスケール付着の防止に最適な電流値に設 定し、第 2の電流値を水質に応じて金属イオンの溶出効率が最適になる電流値に設 定することによって、電極間に印加される電圧の極性反転後の電圧印加初期時にス ケールの付着を防止することができるともに、電極間に印加される電圧の極性反転後 の電圧印加初期経過後に電極に流れる電流が高くなり過ぎることを防止することがで きる。これにより、電極間に印加される電圧の極性反転後の電圧印加初期経過後の 金属イオン溶出が安定するとともに、電極寿命が短くなるという問題や金属イオン溶 出濃度が高くなり過ぎるという問題が生じなくなる。したがって、金属イオンの溶出を 長期間にわたり効率良く安定して行うことができる。
[0016] また、電極寿命が短くなるという問題や金属イオン溶出濃度が高くなり過ぎるという 問題が生じないようにする観点から、第 1の電流値を第 2の電流値より大きくすること が望ましい。
[0017] また、電極寿命が短くなるという問題や金属イオン溶出濃度が高くなり過ぎるという 問題が生じないようにする観点から、第 1の電流モードの期間を第 2の電流モードの 期間より短くすることが望ましい。
[0018] また、前記駆動回路が、第 1の電流モードの期間において定電圧駆動を行い、第 2 の電流モードの期間において定電流駆動を行うことが望ましい。前記駆動回路が、 第 1の電流モードの期間において定電圧駆動を行うことにより、第 1の電流モード期 間中に水質や電極間の状態に応じた最大電流が流せるようになり、スケール付着防 止効果を高めることができる。
[0019] また、前記電極間に印加される電圧の極性が電圧印加休止期間を挟んで周期的 に反転することが望ましい。このような構成にすると、電圧印加休止期間中に、電圧 印加休止期間の前に陽極であった電極力 溶出した金属イオンは当該電極力 十 分遠くまで離れることができるので、当該電極が電圧印加休止期間の後に陰極にな つても、電圧印加休止期間の前に溶出した金属イオンを引き戻すことがない。結果と して、金属イオン溶出のために消費した電力を無駄にせずに済むうえ、所期の総量 の金属イオンが得られないといった事態を避けることができる。また、本発明に係る金 属イオン溶出ユニットを機器に組み込んで使用する場合、電圧印加休止期間を設け ることにより、金属イオンの水中での濃度ばらつきが少なくなる。このため、溶出する 金属イオンを抗菌性のある金属イオンとした場合、広い範囲にわたり均一な抗菌効 果を及ぼすことが容易となる。 [0020] また、第 1の電流モードから電圧印加休止期間を挟んで第 2の電流モードに移行す ることが望ましい。このような構成によると、電極間に印加される電圧の極性切替前に 陰極であった電極に析出したスケールなどは、第 1の電流モードの期間において、電 極間に印加される電圧の極性切替後に陽極である電極カゝら金属イオンが溶出するこ とにより当該電極から剥離する。そして、当該電極カゝら剥離したスケールは電圧印加 休止期間中に当該電極に対向する電極力 十分遠くまで離れることができるため、 剥離したスケールの再付着が生じに《なる。これにより、電極表面へのスケールなど の堆積が防止され、金属イオンの安定した溶出が可能となる。
[0021] また、前記電圧印加休止期間に前記電極間を短絡することが望ましい。このような 構成によると、電圧印加休止期間における電極間の残留電位差を完全にゼロにする ことができるので、電圧印加休止期間におけるスケールの析出を防止することができ る。
[0022] また、前記電極間に介在する水の水質を検出する水質検出部を備え、前記制御回 路が第 1の電流値及び第 2の電流値の少なくとも一つを前記水質検出部によって検 出された水質に応じて変化させることが望ましい。このような構成によると、用いる水 の水質にかかわらず、常に適切なスケール付着防止を行うこと及び Z又は常に適切 な金属イオン溶出濃度を確保することが可能になる。
[0023] また、前記電極間に介在する水の水質を検出する水質検出部を備え、前記制御回 路が第 2の電流モードの期間に対する第 1の電流モードの期間の時間比率と、前記 電極間に印加される電圧の極性反転周期とのうち、少なくとも一つを前記水質検出 部によって検出された水質に応じて変化させることが望ましい。このような構成による と、回路などの制約で電流値に上限がある場合でも、用いる水の水質にかかわらず、 常に適切なスケール付着防止を行うこと及び Z又は常に適切な金属イオン溶出濃度 を確保することが可能になる。
[0024] また、前記水質検出部が、水の硬度、水の導電率、及び水の塩ィ匕物イオン濃度の 少なくとも一つを検出することが望ましい。金属イオン溶出効率は、水の硬度、水の 導電率、及び水の塩ィ匕物イオン濃度と相関があるので、このような構成によると、用い る水の水質にかかわらず常に適切な金属イオン溶出濃度を確保することが可能にな る。
[0025] また、前記水質検出部が、前記電極間の電圧及び前記電極に流れる電流の少なく とも一つを検出することによって水質を検出することが望まし 、。このような構成による と、水質検出部を比較的簡単かつ低廉な回路で実現することができる。
[0026] また、溶出する金属イオンの一部又は全部力 銀イオン、銅イオン、又は亜鉛ィォ ンのいずれかであることが望ましい。このような構成によると、銀イオン、銅イオン、又 は亜鉛イオンの優れた殺菌効果や防カビ効果を利用することができる。
[0027] また、上記の目的を達成するために本発明に係る機器は、上記いずれかの構成の 金属イオン溶出ユニットを備える構成とする。本発明に係る機器の一例としては、洗 濯機が挙げられる。
発明の効果
[0028] 本発明によると、金属イオンの溶出を長期間にわたり効率良く安定して行うことがで きる金属イオン溶出ユニット及びこれを備えた機器を実現することができる。
図面の簡単な説明
[0029] [図 1]は、本発明に係る金属イオン溶出ユニットが具備するイオン溶出部の水平断面 図である。
[図 2]は、本発明に係る金属イオン溶出ユニットが具備する電極の斜視図である。
[図 3]は、本発明に係る金属イオン溶出ユニットの電気的構成を示す図である。
[図 4]は、第 1実施形態における各部信号及び電極に流れる電流のタイミングチヤ一 トである。
[図 5]は、第 2実施形態における各部信号及び電極に流れる電流のタイミングチヤ一 トである。
[図 6]は、第 3実施形態における各部信号及び電極に流れる電流のタイミングチヤ一 トである。
[図 7]は、第 4実施形態における各部信号及び電極に流れる電流のタイミングチヤ一 トである。
[図 8]は、溶出効率と水の硬度との関係を示す図である。
[図 9]は、溶出効率と水の導電率との関係を示す図である。 [図 10]は、溶出効率と水の塩ィ匕物イオン濃度との関係を示す図である。
[図 11A]、
[図 1 IB]及び
[図 11C]は、水質に応じて電流値を変化させる場合の電極に流れる電流のタイミング チャートである。
[図 12A]及び
[図 12B]は、水質に応じて第 1の電流モードと第 1の電流モードの時間比率を変化さ せる場合の電極に流れる電流のタイミングチャートである。
[図 13A]及び
[図 13B]は、水質に応じて極性反転周期と時間比率の両方を変化させる場合の電極 に流れる電流のタイミングチャートである。
[図 14]は、本発明に係る洗濯機の縦断面図である。
符号の説明
1 商用電源
2 絶縁トランス
3 全波整流回路
4 定電圧回路
5 定電流回路
6 主制御部
7 電流値設定回路
8 電圧値設定回路
9 電圧検出回路
10 電流検出回路
100 イオン溶出部
101 ケース
102、 103 電極
104 流入口
105 流出口 106、 107 電極保持材
108、 109 接続端子
C1 平滑コンデンサ
Q1〜Q4 NPN型トランジスタ
R1、R2 抵抗
発明を実施するための最良の形態
[0031] 本発明の実施形態について図面を参照して以下に説明する。まず、本発明に係 る金属イオン溶出ユニットが具備するイオン溶出部の構造にっ 、て説明する。イオン 溶出部の水平断面図を図 1に示し、電極の斜視図を図 2に示す。
[0032] イオン溶出部 100はケース 101を有する。ケース 101は、長手方向の一方の端に 水の流入口 104、他方の端に水の流出口 105を備える。
[0033] また、イオン溶出部 100は、ケース 101の中に 2枚の電極 102、 103を有する。ケー ス 101内部には、流入口 104力も流出口 105へと向力 水流に沿う形で、 2枚の板状 電極 102、 103が向かい合わせに配置されている。
[0034] ケース 101の中に水が存在する状態で電極 102、 103間に所定の電圧を印加する と、陽極である電極カゝら電極構成金属の金属イオンが溶出する。電極 102、 103は、 一例として大きさ 20mm X 50mm、厚さ lmm程度の銀プレートとし、電極保持材 10 6、 107によって約 5mmの距離を隔てて配置する構成とすることができる。また、電極 102と接続端子 108、及び電極 103と接続端子 109はそれぞれ同一の金属素材で あって一体成形される。
[0035] 通水中の電流値を 29mAにする定電流制御を行いながら電極 102、 103間に電圧 を印加すると、 20LZ分の通水量で銀イオン濃度が約 90ppbの銀イオン含有水を生 成することができる。これは、水道圧ほどの水圧で水が通水されても十分に抗菌性を 発揮できる濃度の銀イオン含有水を生成することができることを意味している。
[0036] なお電極 102、 103の材料は銀に限らない。抗菌性を有する金属イオンのもとにな る金属であればよい。銀の他、銅、銀と銅の合金、亜鉛などが選択可能である。銀電 極から溶出する銀イオン、銅電極から溶出する銅イオン、及び亜鉛電極から溶出す る亜鉛イオンは優れた殺菌効果や防カビ効果を発揮する。銀と銅の合金カゝらは銀ィ オンと銅イオンを同時に溶出させることができる。
[0037] イオン溶出部 100では、電極 102、 103間への電圧の印加の有無で金属イオンの 溶出 Z非溶出を選択できる。また電極に流れる電流や電圧印加時間を制御すること により金属イオンの溶出量を制御できる。一般的な抗菌材に用いられているゼォライ トなどの金属イオン担持体力 金属イオンを溶出させる除放方式と比較した場合、金 属イオンを投入するかどうかの選択や金属イオンの濃度の調節をすベて電気的に行 えるので使い勝手がよい。
[0038] 次に、本発明に係る金属イオン溶出ユニットの電気的構成について説明する。本 発明に係る金属イオン溶出ユニットの電気的構成を図 3に示す。
[0039] 絶縁トランス 2は、 1次側である商用電源 1から出力される 100Vの交流電圧を所定 の交流電圧に降圧して 2次側に出力するとともに、安全のため 1次側と 2次側とを絶 縁する。絶縁トランス 2の出力電圧は、全波整流回路 3によって整流され、平滑コンデ ンサ C1によって平滑ィ匕された後、定電圧回路 4によって定電圧にされる。
[0040] 定電圧回路 4から出力される定電圧は、抵抗 R1を介して定電流回路 5に供給され る。定電流回路 5は、電極 102、 103間の抵抗値変化にかかわらず所定の電流を出 力するように動作する。
[0041] 定電流回路 5の出力側に、 NPN型トランジスタ Q1のコレクタ及び NPN型トランジス タ Q2のコレクタが接続される。また、 NPN型トランジスタ Q1のェミッタと NPN型トラン ジスタ Q3のコレクタとが共通接続され電極 102に接続され、 NPN型トランジスタ Q2 のェミッタと NPN型トランジスタ Q4のコレクタとが共通接続され電極 103に接続され る。また、 NPN型トランジスタ Q3のェミッタと NPN型トランジスタ Q4のェミッタとが共 通接続され抵抗 R2を介して接地される。そして、マイクロコンピュータなどで構成され る主制御部 6から出力される制御信号 S1〜S4がそれぞれ NPN型トランジスタ Ql〜 Q4のベースに入力される。
[0042] 制御信号 S1及び S4が Highレベルの信号であり、制御信号 S2及び S3力Lowレべ ルの信号である場合、 NPN型トランジスタ Q1及び Q4が ONになり、 NPN型トランジ スタ Q2及び Q3が OFFになる。この状態では、電極 102に正の電圧が印加され、電 極 103には負の電圧が印加されることになる。この結果、電極 102力陽極となり、電 極 103が陰極となり、陽極である電極 102から陰極である電極 103に向力つて電流 が流れる。これによつて金属イオン溶出ユニットからは、陽イオンの抗菌性の金属ィォ ンと陰イオンとが発生する。
[0043] 他方、制御信号 S1及び S4が Lowレベルの信号であり、制御信号 S2及び S3が Hi ghレベルの信号である場合、 NPN型トランジスタ Q1及び Q4が OFFになり、 NPN型 トランジスタ Q2及び Q3が ONになる。この状態では、電極 102に負の電圧が印加さ れ、電極 103には正の電圧が印加されることになる。この結果、電極 103が陽極とな り、電極 102力陰極となり、陽極である電極 103から陰極である電極 102に向かって 電流が流れる。これによつて金属イオン溶出ユニットからは、陽イオンの抗菌性の金 属イオンと陰イオンとが発生する。
[0044] 電圧検出回路 9は、定電流回路 5の出力電圧を検出し、その検出結果を主制御部 6に出力する。電流検出回路 10は、抵抗 R2に流れる電流を検出し、その検出結果 を主制御部 6に出力する。電圧値設定回路 8は、主制御部 6からの指示に応じて定 電圧回路 4の出力電圧値を設定する。電流値設定回路 7は、主制御部 6からの指示 に応じて定電流回路 5の出力電流値を設定する。
[0045] 以下、本発明に係る金属イオン溶出ユニットの動作にっ 、て説明する。まず、本発 明に係る金属イオン溶出ユニットの第 1実施形態に係る動作について図 3及び図 4を 参照して説明する。図 4は本発明に係る金属イオン溶出ユニットが第 1実施形態に係 る動作を行う際の各部信号及び電極に流れる電流のタイミングチャートである。
[0046] 主制御部 6は、カウンタ(図示せず)を内蔵しており、当該カウンタのカウント数に基 づいてモード切替信号 S5を内部で生成する。モード切替信号 S5は、 Highレベル期 間と Lowレベル期間とが周期的に切り替わる信号である。また、モード切替信号 S5 の Highレベル期間と Lowレベル期間とは互いに異なる値に設定されて 、る。
[0047] 主制御部 6は、モード切替信号 S5に基づいて制御信号 S1〜S4を生成し、制御信 号 S1〜S4それぞれを NPN型トランジスタ Q1〜Q4に出力する。制御信号 Sl、 S4と 制御信号 S2、 S3とは、相補的に Highレベルと Lowレベルが切り替わる。そして、モ ード切替信号 S5の立ち上がり反転時に、制御信号 S1〜S4はそれぞれ反転する。こ れにより、区間 Tl、 Τ3、 Τ5においては、電極 102が陽極、電極 103が陰極となり、 陽極である電極 102から陰極である電極 103に向かって電流が流れ、区間 T2、 Τ4 においては、電極 103が陽極、電極 102力陰極となり、陽極である電極 103から陰極 である電極 102に向かって電流が流れる。このように、電極間に印加される電圧の極 性が周期的に反転するので、スケール付着の防止が可能となる。
[0048] また、主制御部 6は、モード切替信号 S5が Highレベルである場合は、モード切替 信号 S5が Lowレベルである場合に比べて定電流回路 5が出力する電流の値が大き くなるように、電流値設定回路 7を制御する。モード切替信号 S5が Highレベルである 場合は、電極に流れる電流 Ioが予め設定された第 1の電流値になるように主制御部 6が電流設定値回路 7を制御し、モード切替信号 S5が Lowレベルである場合は、電 極に流れる電流 Ioが第 1の電流値よりも大きい予め設定された第 2の電流値になるよ うに主制御部 6が電流設定値回路 7を制御する。これにより、モード切替信号 S5が Hi ghレベルである場合は、モード切替信号 S5が Lowレベルである場合に比べて電極 に流れる電流 Ioの値が大きくなる。
[0049] 電極間に印加される電圧の極性反転後の電圧印加初期時に電極に流れる電流を 大きくすることで、スケール付着防止効果を高めることができる。また、電極間に印加 される電圧の極性反転後の電圧印加初期時にスケールの付着が防止されるので、 電極間に印加される電圧の極性反転後の電圧印加初期経過後の金属イオン溶出が 安定する。電極間に印加される電圧の極性反転後の電圧印加初期時に電極に流れ る電流を高くすることによってスケール付着防止効果を高めることができる作用として 、電極間に印加される電圧の極性反転後に陽極となった電極において、スケール付 着面の銀などの金属電極が溶け出すことでスケールと電極との結合力が低下するこ とと、スケールと電極表面の電気的反発とが考えられる。
[0050] なお、電極に流れる電流を高くすると、電極寿命が短くなるという問題や金属イオン 溶出濃度が高くなり過ぎるという問題が生じるため、本発明に係る金属イオン溶出ュ ニットでは、電極間に印加される電圧の極性反転後の電圧印加初期時のみ電極に 大電流が流れるようにしている。このため、区間 T1〜T5それぞれにおいて、第 1の電 流モード mlの期間中に電極に流れる電流 Ioの値 (第 1の電流値)を、第 2の電流モ ード m2の期間中に電極に流れる電流 Ioの値 (第 2の電流値)よりも大きくして!/、る。ま た、電極寿命が短くなるという問題や金属イオン溶出濃度が高くなり過ぎるという問題 が生じないように、第 1の電流モード mlの期間を第 2の電流モード m2の期間よりも短 くすることが望ましい。
[0051] 上述した実施形態では、区間 T1〜T5それぞれにおいて、第 1の電流モード mlの 期間、第 2の電流モード m2の期間ともに定電流駆動であつたが、区間 T1〜T5それ ぞれにおいて、第 1の電流モード mlの期間中は定電圧駆動とし、第 2の電流モード m2の期間中は定電流駆動としてもよい。定電圧駆動の場合、電圧検出回路 9によつ て検出される電圧が一定になるように、主制御部 6が電流値設定回路 7及び電圧値 設定回路 8を制御する。第 1の電流モード mlの期間中は定電圧駆動とすることで、 第 1の電流モード mlの期間中に水質や電極間の状態に応じた最大電流が流せるよ うになり、さらにスケール付着防止効果が高まる。なお、上述した実施形態では、区 間 T1〜T5それぞれにおいて、第 1の電流モード mlの期間、第 2の電流モード m2 の期間ともに定電流駆動であるので、電圧値設定回路 8を設けなくても構わない。
[0052] 定電圧駆動とは、電極間の抵抗値変化にかかわらず一定の電圧値を保つように制 御することであるが、電源電圧の変動や、温度による回路部品の抵抗の変化などで 電極間の電圧値は変動し、完全に一定にすることは困難である。また、電極間の抵 抗値が著しく低!、場合などで、許容範囲以上の電流が流れる恐れがある場合に電圧 を下げる必要がある場合もある。ここでは、そういうことがあっても、電極間の抵抗値の 変化にかかわらず、電圧を変化させず、電極間に概ね一定の電圧を印加するように 制御することを定電圧駆動と定義する。定電流制御とは、電極間の抵抗値変化にか かわらず一定の電流値を保つように制御することである力 電極表面での気泡の発 生や、電極の振動による電極間距離の変化などで電極間の抵抗値は常に変化する ため、完全に一定にすることは困難で、多少の電流変動は発生する。また、抵抗値が 著しく高いなどで、回路の許容範囲の電圧では一定の電流が流せず、電流が低下 することもある。ここでは、そういうことがあっても、電極間の抵抗値の変化に対応して 、電圧を変化させ、概ね抵抗値が上がれば電圧を上げ、抵抗値が下がれば電圧を 下げて、電極間の電流値を安定させるように制御することを定電流駆動と定義する。
[0053] 次に、本発明に係る金属イオン溶出ユニットの第 2実施形態に係る動作について図 3及び図 5を参照して説明する。図 5は本発明に係る金属イオン溶出ユニットが第 2実 施形態に係る動作を行う際の各部信号及び電極に流れる電流のタイミングチャート である。なお、図 5において図 4と同一の部分には同一の符号を付し詳細な説明を省 略する。
[0054] モード切替信号 S5は、 Lowレベルから Highレベルに切り替わる際に Lowレベル 力 所定期間の Middleレベルを経由して Highレベルに切り替わる信号である。モ ード切替信号 S5が Middleレベルのとき、主制御部 6は、制御信号 S1〜S4全てを L owレベルにする。これにより、電極間に印加される電圧の極性力 電圧印加休止期 間 RTを挟んで反転することになる。
[0055] 電圧印加休止期間 RT中に、電圧印加休止期間 RTの前に陽極であった電極から 溶出した金属イオンは当該電極力も十分遠くまで離れることができるので、当該電極 が電圧印加休止期間 RTの後に陰極になっても、電圧印加休止期間 RTの前に溶出 した金属イオンを引き戻すことがない。結果として、金属イオン溶出のために消費した 電力を無駄にせずに済むうえ、所期の総量の金属イオンが得られないといった事態 を避けることができる。また、本発明に係る金属イオン溶出ユニットを機器に組み込ん で使用する場合、電圧印加休止期間 RTを設けることにより、金属イオンの水中での 濃度ばらつきが少なくなる。このため、溶出する金属イオンを抗菌性のある金属ィォ ンとした場合、広い範囲にわたり均一な抗菌効果を及ぼすことが容易となる。
[0056] 次に、本発明に係る金属イオン溶出ユニットの第 3実施形態に係る動作について図 3及び図 6を参照して説明する。図 6は本発明に係る金属イオン溶出ユニットが第 3実 施形態に係る動作を行う際の各部信号及び電極に流れる電流のタイミングチャート である。なお、図 6において図 5と同一の部分には同一の符号を付し詳細な説明を省 略する。
[0057] 主制御部 6は、モード切替信号 S5の立ち下がり反転後所定の期間、制御信号 S1 〜S4を Lowレベルにするので、第 1の電流モード mlの期間力 電圧印加休止期間 rtを挟んで第 2の電流モード m2の期間に移行する。これにより、電極間に印加される 電圧の極性切替前に陰極であった電極に析出したスケールなどは、第 1の電流モー ド mlの期間において、電極間に印加される電圧の極性切替後に陽極である電極か ら金属イオンが溶出することにより当該電極力も剥離する。そして、当該電極から剥 離したスケールは電圧印加休止期間 rt中に当該電極に対向する電極から十分遠く まで離れることができるため、剥離したスケールの再付着が生じに《なる。これにより 、電極表面へのスケールなどの堆積が防止され、金属イオンの安定した溶出が可能 となる。
[0058] 次に、本発明に係る金属イオン溶出ユニットの第 4実施形態に係る動作について図 3及び図 7を参照して説明する。図 7は本発明に係る金属イオン溶出ユニットが第 4実 施形態に係る動作を行う際の各部信号及び電極に流れる電流のタイミングチャート である。なお、図 7において図 5と同一の部分には同一の符号を付し詳細な説明を省 略する。
[0059] 第 4実施形態が上述した第 2実施形態と異なる点は、モード切替信号 S5が Middle レベルのときに制御信号 SI及び S2力Lowレベルとなり制御信号 S3及び S4が High レベルとなることである。これにより、電圧印加休止期間 RTにおいて、電極 102, 10 3間が短絡し、電極 102、 103間の電位差をゼロにすることができる。電圧印加休止 期間 RT中の電極 102, 103間の残留電位差は、スケールを微量ながら析出させる 要因となるため、電極 102、 103間を短絡させ電極 102、 103間の残留電位差を完 全にゼロにすることで、電圧印加休止期間 RTにおけるスケールの析出を防ぐように する。
[0060] なお、第 3実施形態の電圧印加休止期間 rtにおいても、同様に制御信号 S1及び S 2を Lowレベルとし制御信号 S3及び S4を Highレベルとして、電極 102、 103間を短 絡させ電極 102、 103間の残留電位差を完全にゼロにしてもよい。
[0061] 次に、第 2の電流モード m2の期間中に電極に流れる電流 Ioの値 (第 2の電流値) の設定について説明する。 [発明が解決しょうとする課題]の欄で既に説明したように 、スケールの付着だけでなぐ水質によっても、金属イオンの溶出効率は低下する。
[0062] 溶出効率と水質の一要素である水の硬度との関係を図 8に示し、溶出効率と水質 の一要素である水の導電率との関係を図 9に示し、溶出効率と水質の一要素である 水の塩ィ匕物イオン濃度との関係を図 10に示す。図 8〜図 10において、日本の水道 水の標準的な水質 (硬度 100mgZL、導電率 340/z SZcm、塩化物イオン濃度 54 mg/L)を基準とし、この水質の水を用いて金属イオン溶出ユニットの電極に流れる 電流値を 29mAにした場合の金属イオン溶出効率を 100%にして、電極サイズを同 一、金属イオン溶出ユニットの電極間に印加する電圧印加パターンを同一にしてい る。
[0063] また、図 8〜図 10において、特性線 A1〜A3は、金属イオン溶出ユニットの電極に 流れる電流値を 29mAにした場合の特性線であり、特性線 A4〜A6は、金属イオン 溶出ユニットの電極に流れる電流値を 94mAにした場合の特性線である。
[0064] 図 8〜図 10から明らかなように、水の硬度が高くなるほど、水の導電率が高くなるほ ど、水の塩ィ匕物イオン濃度が高くなるほど、それぞれ金属イオン溶出効率は低下して いく。また、特性線 A1〜A3と特性線 A4〜A6を比較すると明らかなように、金属ィォ ン溶出ユニットの電極に流れる電流値を大きくすることで、金属イオン溶出効率が改 善される。
[0065] したがって、第 2の電流モード m2の期間中に電極に流れる電流 Ioの値(第 2の電 流値)を水質に応じて設定することで、常に適切な金属イオン溶出濃度を確保するこ とが可能になる。
[0066] このため、本発明に係る金属イオン溶出ユニットでは、第 2の電流モード m2の期間 中に電極に流れる電流 Ioの値 (第 2の電流値)を水質に応じて変化させる。
[0067] 例えば、導電率が小さい水質の水を用いる場合、図 11Aのように第 2の電流モード m2の期間中に電極に流れる電流 Ioの値 (第 2の電流値)を小さくし、導電率が大き!/、 水質の水を用いる場合、図 11Cのように第 2の電流モード m2の期間中に電極に流 れる電流 Ioの値 (第 2の電流値)を大きくする。
[0068] また、スケールの析出し易さも水質に応じて変化するので、第 1の電流モード mlの 期間中に電極に流れる電流 Ioの値 (第 1の電流値)を水質に応じて設定することで、 常に適切なスケール付着防止を行うことが可能になる。このため、第 1の電流モード mlの期間中に電極に流れる電流 Ioの値 (第 1の電流値)を水質に応じて変化させて ちょい。
[0069] スケールの析出し易い水質の水を用いる場合、図 11Aや図 11Cのように第 1の電 流モード mlの期間中に電極に流れる電流 Ioの値 (第 1の電流値)を大きくし、スケー ルの析出し難!、水質の水を用いる場合、図 11Bのように第 1の電流モード mlの期間 中に電極に流れる電流 Ioの値 (第 1の電流値)を小さくするとよ!/、。
[0070] また、図 11A〜図 11Cにおいては水質に応じて電流値の設定値を変化させたが、 水質に応じて第 1の電流モード mlの期間と第 2の電流モード m2の期間の時間比率 を変えるようにしてもよい。
[0071] 例えば、導電率が大きく尚かつスケールの析出し易い水質の水を用いる場合、図 1 2Aのように第 1の電流モード mlの期間中に電極に流れる電流 Ioの値(第 1の電流 値)、第 2の電流モード m2の期間中に電極に流れる電流 Ioの値 (第 2の電流値)を大 きくし、導電率が大きく尚かつ非常にスケールの析出し易 、水質の水を用いる場合、 図 12Bのように第 1の電流モード mlの期間中に電極に流れる電流 Ioの値(第 1の電 流値)、第 2の電流モード m2の期間中に電極に流れる電流 Ioの値 (第 2の電流値)を 大きくするとともに、第 2の電流モード m2の期間に対する第 1の電流モード mlの期 間の時間比率を大きくするとよい。
[0072] スケールが析出し易いほど、第 1の電流モード mlの期間中に電極に流れる電流 Io の値 (第 1の電流値)を大きく設定すればよいが、回路などの制約で電流値に上限が ある場合が多い。このように電流値に上限がある場合、上記のように水質に応じて第 1の電流モード mlの期間と第 2の電流モード m2の期間の時間比率を変えることが有 用である。
[0073] 本発明に係る金属イオン溶出ユニットを備えた機器の使用時毎に第 1の電流モード mlの期間中に電極に流れる電流 Ioの値 (第 1の電流値)、第 2の電流モード m2の期 間中に電極に流れる電流 Ioの値 (第 2の電流値)或いは、第 2の電流モード m2の期 間に対する第 1の電流モード mlの期間の時間比率を予め最適値に設定する態様が 考えられる。また、水質に関する情報を入力する手段を本発明に係る金属イオン溶 出ユニットを備えた機器に設け、入力した水質に関する情報に応じて第 1の電流モー ド mlの期間中に電極に流れる電流 Ioの値 (第 1の電流値)、第 2の電流モード m2の 期間中に電極に流れる電流 Ioの値 (第 2の電流値)或いは、第 2の電流モード m2の 期間に対する第 1の電流モード mlの期間の時間比率を最適値に設定する態様が考 えられる。しカゝしながら、本発明に係る金属イオン溶出ユニット自体が水質を検出す る水質検出部を備え、検出した水質に応じて第 1の電流モード mlの期間中に電極 に流れる電流 Ioの値 (第 1の電流値)、第 2の電流モード m2の期間中に電極に流れ る電流 Ioの値 (第 2の電流値)或いは、第 2の電流モード m2の期間に対する第 1の電 流モード mlの期間の時間比率を最適値に設定する態様が望ましい。
[0074] また、電極間に印加する電圧の極性反転周期を変化させることによつても水質に対 応することができる。例えば、電流モード mlの期間と電流モード m2の期間の時間比 率を保ったまま周期を長くすれば、結果的にイオン溶出効率を高めることが可能であ る。あるいは、図 13A及び図 13Bのように、極性反転周期と時間比率の両方を変化さ せてもよい。図 13A及び図 13Bは、電流モード mlの期間を水質に応じて変化させ、 電流モード m2の期間を変化させていない場合の例である。導電率が大きく尚かつス ケールの析出し易い水質の水を用いる場合、図 13Aのようにし、導電率が大きく尚か つ非常にスケールの析出し易 、水質の水を用いる場合、図 13Bのようにする。
[0075] ここで、本発明に係る金属イオン溶出ユニットに設けることが望ま 、水質検出部の 一例について説明する。図 3中の電圧検出回路 9及び電流検出回路 10によって水 質検出部が構成される。電圧検出回路 9は、 NPN型トランジスタ Ql、 Q4が ONであ り NPN型トランジスタ Q2、 Q3が OFFである期間又は NPN型トランジスタ Ql、 Q4が OFFであり NPN型トランジスタ Q2、 Q3が ONである期間において、電極 102、 103 間に印加される電圧を検出する。また、電流検出回路 10は電極 102、 103に流れる 電流を検出する。
[0076] 所定の条件で電極 102、 103間に電圧を印加したときの電極 102、 103間に印カロ される電圧値と電極 102、 103に流れる電流値を検出することによって、水質を検知 する。例えば、水質の一要素である導電率が低いことは、電極 102、 103間に印加さ れる電圧が高いのに拘わらず電極 102、 103に流れる電流が小さくなることで検知す ることがでさる。
[0077] 本発明に係る金属イオン溶出ユニットは種々の機器に搭載することが可能である。
ここでは、本発明に係る金属イオン溶出ユニットを搭載した洗濯機を例に挙げて説明 する。上述した本発明に係る金属イオン溶出ユニットを搭載した洗濯機の縦断面図 を図 14に示す。なお、図 14において図 1と同一の部分には同一の符号を付す。 [0078] 図 14に示す洗濯機は、上述した本発明に係る金属イオン溶出ユニットが具備する イオン溶出部 100を給水経路 110に搭載しており、このイオン溶出部 100の生成した 抗菌性のある金属イオンを洗濯水に添加して用いている。これにより、洗濯物を抗菌 性のある金属イオンで抗菌処理して細菌やカビの繁殖を防ぎ、悪臭の発生も防止す ることがでさる。
[0079] また、図 14に示す洗濯機は、海外の水質の異なる様々な地域に販売しても、水質 の影響を受けることなぐ最適な金属イオン濃度を維持でき、抗菌効果を発揮するこ とが可能であるとともに、水質の違いによる電極の寿命ばらつきをなくすことが可能で ある。
[0080] 以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定される ものではなぐ発明の主旨を逸脱しない範囲で種々の変更をカ卩えて実施することがで きる。
産業上の利用可能性
[0081] 本発明の金属イオン溶出ユニットは、洗濯機をはじめ、水を用いる種々の機器に利 用することができる。

Claims

請求の範囲
[1] 複数の電極と、前記電極間に電圧を印加する駆動回路とを備え、前記電極間に電 圧を印加することにより陽極である電極力 金属イオンを溶出させる金属イオン溶出 ユニットにおいて、
前記電極間に印加される電圧の極性が周期的に反転するとともに、前記電極間に 印加される電圧の極性が反転してから所定の期間が経過する迄の間前記電極に流 れる電流の電流値が第 1の電流値である第 1の電流モードとなり、その後前記電極に 流れる電流の電流値が第 1の電流値と異なる第 2の電流値である第 2の電流モード になるように前記駆動回路を制御する制御回路を備えることを特徴とする金属イオン 溶出ユニット。
[2] 第 1の電流値が第 2の電流値より大きい請求項 1に記載の金属イオン溶出ユニット。
[3] 第 1の電流モードの期間が第 2の電流モードの期間より短い請求項 1に記載の金属 イオン溶出ユニット。
[4] 前記駆動回路が、第 1の電流モードの期間において定電圧駆動を行い、第 2の電 流モードの期間において定電流駆動を行う請求項 1に記載の金属イオン溶出ュニッ
[5] 前記電極間に印加される電圧の極性が電圧印加休止期間を挟んで周期的に反転 する請求項 1に記載の金属イオン溶出ユニット。
[6] 第 1の電流モードから電圧印加休止期間を挟んで第 2の電流モードに移行する請 求項 1に記載の金属イオン溶出ユニット。
[7] 前記電圧印加休止期間に前記電極間を短絡する請求項 5に記載の金属イオン溶 出ユニット。
[8] 前記電圧印加休止期間に前記電極間を短絡する請求項 6に記載の金属イオン溶 出ユニット。
[9] 前記電極間に介在する水の水質を検出する水質検出部を備え、前記制御回路が 第 1の電流値及び第 2の電流値の少なくとも一つを前記水質検出部によって検出さ れた水質に応じて変化させる請求項 1に記載の金属イオン溶出ユニット。
[10] 前記電極間に介在する水の水質を検出する水質検出部を備え、前記制御回路が 第 2の電流モードの期間に対する第 1の電流モードの期間の時間比率と、前記電極 間に印加される電圧の極性反転周期とのうち、少なくとも一つを前記水質検出部によ つて検出された水質に応じて変化させる請求項 1に記載の金属イオン溶出ユニット。
[11] 前記水質検出部が、水の硬度、水の導電率、及び水の塩化物イオン濃度の少なく とも一つを検出する請求項 9に記載の金属イオン溶出ユニット。
[12] 前記水質検出部が、水の硬度、水の導電率、及び水の塩化物イオン濃度の少なく とも一つを検出する請求項 10に記載の金属イオン溶出ユニット。
[13] 前記水質検出部が、前記電極間の電圧及び前記電極に流れる電流の少なくとも一 つを検出することによって水質を検出する請求項 9に記載の金属イオン溶出ユニット
[14] 前記水質検出部が、前記電極間の電圧及び前記電極に流れる電流の少なくとも一 つを検出することによって水質を検出する請求項 10に記載の金属イオン溶出ュ-ッ
[15] 溶出する金属イオンの一部又は全部が、銀イオン、銅イオン、又は亜鉛イオンのい ずれかである請求項 1に記載の金属イオン溶出ユニット。
[16] 請求項 1〜15のいずれかに記載の金属イオン溶出ユニットを備えることを特徴とす る機器。
[17] 機器が洗濯機である請求項 16に記載の機器。
PCT/JP2005/007673 2004-07-27 2005-04-22 金属イオン溶出ユニット及びこれを備えた機器 WO2006011275A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/589,393 US8419907B2 (en) 2004-07-27 2005-04-22 Ion eluting unit, device provided therewith, and washing machine
CN2005800132743A CN101044095B (zh) 2004-07-27 2005-04-22 金属离子溶出组件以及具有该组件的设备
EP05734440.0A EP1772434B1 (en) 2004-07-27 2005-04-22 Metal ion elution unit and apparatus equipped with it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004218216A JP3714945B1 (ja) 2004-07-27 2004-07-27 金属イオン溶出ユニット及びこれを備えた電気機器
JP2004-218216 2004-07-27

Publications (1)

Publication Number Publication Date
WO2006011275A1 true WO2006011275A1 (ja) 2006-02-02

Family

ID=35445630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007673 WO2006011275A1 (ja) 2004-07-27 2005-04-22 金属イオン溶出ユニット及びこれを備えた機器

Country Status (7)

Country Link
US (1) US8419907B2 (ja)
EP (1) EP1772434B1 (ja)
JP (1) JP3714945B1 (ja)
KR (1) KR100803113B1 (ja)
CN (1) CN101044095B (ja)
MY (1) MY136057A (ja)
WO (1) WO2006011275A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515488A (ja) * 2007-01-08 2010-05-13 ミリピード リミテッド ライアビリティー カンパニー 心臓特徴の再構成
JP2011206622A (ja) * 2010-03-29 2011-10-20 Toto Ltd 電解水生成装置
US9795480B2 (en) 2010-08-24 2017-10-24 Millipede, Inc. Reconfiguring tissue features of a heart annulus
US9848983B2 (en) 2015-02-13 2017-12-26 Millipede, Inc. Valve replacement using rotational anchors
US9913706B2 (en) 2014-07-17 2018-03-13 Millipede, Inc. Adjustable endolumenal implant for reshaping the mitral valve annulus
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10548731B2 (en) 2017-02-10 2020-02-04 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US10555813B2 (en) 2015-11-17 2020-02-11 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070074119A (ko) * 2006-01-06 2007-07-12 엘지전자 주식회사 스팀발생장치 및 이를 이용한 세탁기
JP4702807B2 (ja) * 2007-10-29 2011-06-15 日出雄 江口 水殺菌装置および水殺菌方法
JP5289119B2 (ja) * 2009-03-18 2013-09-11 住友不動産株式会社 ユニットバスの洗浄装置
CN101993135B (zh) * 2009-08-28 2012-05-09 明达实业(厦门)有限公司 用于游泳池的2合1氯铜/溴铜消毒器
JP4535514B1 (ja) * 2009-10-08 2010-09-01 丸八殖産株式会社 銀イオン溶液製造方法及びその装置
JP5383435B2 (ja) * 2009-10-29 2014-01-08 シャープ株式会社 洗濯機
CN103359806B (zh) * 2012-04-09 2016-06-22 Hlc废水技术公司 一种通过电化学设备处理废水的工艺
WO2014199950A1 (ja) * 2013-06-10 2014-12-18 森永乳業株式会社 電力制御装置、及び電力制御装置の制御方法
US11618696B2 (en) 2013-08-15 2023-04-04 Applied Silver, Inc. Antimicrobial batch dilution system
US10640403B2 (en) 2013-08-15 2020-05-05 Applied Silver, Inc. Antimicrobial batch dilution system
US9689106B2 (en) 2013-12-06 2017-06-27 Applied Silver, Inc. Antimicrobial fabric application system
US20170050870A1 (en) 2015-08-21 2017-02-23 Applied Silver, Inc. Systems And Processes For Treating Textiles With An Antimicrobial Agent
US11634860B2 (en) 2016-05-12 2023-04-25 Applied Silver, Inc. Articles and methods for dispensing metal ions into laundry systems
US11622557B2 (en) 2016-10-31 2023-04-11 Applied Silver, Inc. Dispensing of metal ions into batch laundry washers and dryers
US10760207B2 (en) 2017-03-01 2020-09-01 Applied Silver, Inc. Systems and processes for treating textiles with an antimicrobial agent
JP6963869B2 (ja) * 2017-09-04 2021-11-10 マクセル株式会社 電解水生成装置
CN116854203A (zh) 2017-10-05 2023-10-10 伊莱克崔西有限公司 船舶上船载使用的电解型杀生剂生成系统
WO2021175698A1 (de) * 2020-03-06 2021-09-10 Fabio And Markus Colloid Engineering Gmbh Steuervorrichtung und verfahren zum ansteuern von elektroden mindestens einer elektrolyseeinrichtung für die elektrochemische herstellung von nanoteilchen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126775A (ja) * 1998-10-27 2000-05-09 Toto Ltd 電解殺菌方法及びその装置
JP2002081121A (ja) * 2000-09-11 2002-03-22 Toto Ltd 便器の殺菌装置
JP2002219463A (ja) * 2001-01-24 2002-08-06 Mitsubishi Plastics Ind Ltd 水の電解殺菌方法
JP2004173717A (ja) * 2002-11-22 2004-06-24 Sharp Corp イオン溶出ユニット及びこれを搭載した機器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769119A (en) * 1986-03-24 1988-09-06 Waterdynamics (Proprietary) Limited Water treatment
JPH11207352A (ja) 1998-01-20 1999-08-03 Hoshizaki Electric Co Ltd 抗菌性の金属イオン水の生成方法
KR20000057105A (ko) * 1998-12-28 2000-09-15 오오자와 슈지로 수용성 윤활유제의 살균장치
JP2000219463A (ja) 1999-01-28 2000-08-08 Hitachi Building Systems Co Ltd エレベータ
JP2001276484A (ja) 2000-03-30 2001-10-09 Toto Ltd 洗濯機
IL143131A0 (en) 2000-05-18 2002-04-21 Applied Oxidation Technologies Waste water treatment method and apparatus
US6793801B2 (en) * 2002-01-03 2004-09-21 Herbert W. Holland Method and apparatus for removing contaminants from conduits and fluid columns
GB2385060B (en) * 2002-01-14 2005-09-21 T P Technology Plc Water purification system
US6780306B2 (en) * 2002-02-12 2004-08-24 Bioelectromagnetics, Inc. Electroionic water disinfection apparatus
US20030213503A1 (en) * 2002-05-17 2003-11-20 The Procter & Gamble Company Signal-based electrochemical methods for automatic dishwashing
JP4017504B2 (ja) 2002-11-19 2007-12-05 シャープ株式会社 洗濯機
KR100669014B1 (ko) 2003-04-18 2007-01-18 삼성전자주식회사 세탁기 및 그 제어 방법
JP3763836B2 (ja) 2004-06-25 2006-04-05 シャープ株式会社 金属イオン溶出ユニット及びそれを備えた機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126775A (ja) * 1998-10-27 2000-05-09 Toto Ltd 電解殺菌方法及びその装置
JP2002081121A (ja) * 2000-09-11 2002-03-22 Toto Ltd 便器の殺菌装置
JP2002219463A (ja) * 2001-01-24 2002-08-06 Mitsubishi Plastics Ind Ltd 水の電解殺菌方法
JP2004173717A (ja) * 2002-11-22 2004-06-24 Sharp Corp イオン溶出ユニット及びこれを搭載した機器

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515488A (ja) * 2007-01-08 2010-05-13 ミリピード リミテッド ライアビリティー カンパニー 心臓特徴の再構成
JP2011206622A (ja) * 2010-03-29 2011-10-20 Toto Ltd 電解水生成装置
US9795480B2 (en) 2010-08-24 2017-10-24 Millipede, Inc. Reconfiguring tissue features of a heart annulus
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10695160B2 (en) 2014-07-17 2020-06-30 Boston Scientific Scimed, Inc. Adjustable endolumenal implant for reshaping the mitral valve annulus
US12023235B2 (en) 2014-07-17 2024-07-02 Boston Scientific Scimed, Inc. Adjustable endolumenal implant for reshaping the mitral valve annulus
US9913706B2 (en) 2014-07-17 2018-03-13 Millipede, Inc. Adjustable endolumenal implant for reshaping the mitral valve annulus
US10136985B2 (en) 2014-07-17 2018-11-27 Millipede, Inc. Method of reconfiguring a mitral valve annulus
US10258466B2 (en) 2015-02-13 2019-04-16 Millipede, Inc. Valve replacement using moveable restrains and angled struts
US11918462B2 (en) 2015-02-13 2024-03-05 Boston Scientific Scimed, Inc. Valve replacement using moveable restraints and angled struts
US9848983B2 (en) 2015-02-13 2017-12-26 Millipede, Inc. Valve replacement using rotational anchors
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
US10555813B2 (en) 2015-11-17 2020-02-11 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US10548731B2 (en) 2017-02-10 2020-02-04 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus

Also Published As

Publication number Publication date
JP3714945B1 (ja) 2005-11-09
EP1772434A4 (en) 2009-08-26
MY136057A (en) 2008-08-29
CN101044095A (zh) 2007-09-26
US8419907B2 (en) 2013-04-16
EP1772434A1 (en) 2007-04-11
JP2006034558A (ja) 2006-02-09
KR20070028315A (ko) 2007-03-12
KR100803113B1 (ko) 2008-02-14
US20070175833A1 (en) 2007-08-02
EP1772434B1 (en) 2014-04-02
CN101044095B (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2006011275A1 (ja) 金属イオン溶出ユニット及びこれを備えた機器
JP3763836B2 (ja) 金属イオン溶出ユニット及びそれを備えた機器
JP3957619B2 (ja) イオン溶出ユニット及びこれを搭載した機器
US20100005838A1 (en) Washing machine and method for recovering metal ions in the same
WO2005021857A1 (ja) 洗濯機
JP4118298B2 (ja) イオン溶出ユニット及びそれを備えた機器
JP2010136738A (ja) 洗濯機
KR100883259B1 (ko) 금속 이온 용출 유닛 및 그것을 구비한 기기
JP3960842B2 (ja) 洗濯機
JP2006081915A (ja) 金属イオン溶出ユニットおよびそれを備えた機器
JP4474910B2 (ja) 電気分解装置、および同装置を備えた洗濯機
JP2004057856A (ja) イオン溶出ユニット及びこれを搭載した洗濯機
JP2008183174A (ja) 洗濯機
KR100591258B1 (ko) 은 및 구리 이온수 제조장치
JP4417404B2 (ja) 洗濯機
JP2010136791A (ja) 洗濯機
JPS63119895A (ja) 飲料水製造装置における洗浄装置
JPH06312179A (ja) 浄水殺菌装置及びその使用方法
CN113165915A (zh) 电极催化剂层及涂覆有电极催化剂的杀菌水生成模块
JP2004033996A (ja) イオン溶出ユニット及びこれを搭載した洗濯機
JPH03242289A (ja) 局部洗浄装置に於ける洗浄水の殺菌方法と局部洗浄装置用給水タンク
JP2000213036A (ja) 便器洗浄水の殺菌装置
JP2008168027A (ja) 洗濯機
JP2000301150A (ja) 殺菌装置
KR20070006171A (ko) 세탁기

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10589393

Country of ref document: US

Ref document number: 2007175833

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067017502

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580013274.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005734440

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 1020067017502

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005734440

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10589393

Country of ref document: US