WO2006010328A1 - Procede d'entrelacement et de desentrelacement pour l'inhibition de l'interference de position periodique - Google Patents

Procede d'entrelacement et de desentrelacement pour l'inhibition de l'interference de position periodique Download PDF

Info

Publication number
WO2006010328A1
WO2006010328A1 PCT/CN2005/001130 CN2005001130W WO2006010328A1 WO 2006010328 A1 WO2006010328 A1 WO 2006010328A1 CN 2005001130 W CN2005001130 W CN 2005001130W WO 2006010328 A1 WO2006010328 A1 WO 2006010328A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
channel
interleaving
transmission channel
interleaved
Prior art date
Application number
PCT/CN2005/001130
Other languages
English (en)
French (fr)
Inventor
Huajia Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP05771655A priority Critical patent/EP1768276B1/en
Priority to AT05771655T priority patent/ATE484111T1/de
Priority to DE602005023995T priority patent/DE602005023995D1/de
Publication of WO2006010328A1 publication Critical patent/WO2006010328A1/zh
Priority to US11/626,896 priority patent/US7684448B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • H03M13/271Row-column interleaver with permutations, e.g. block interleaving with inter-row, inter-column, intra-row or intra-column permutations
    • H03M13/2714Turbo interleaver for 3rd generation partnership project [3GPP] universal mobile telecommunications systems [UMTS], e.g. as defined in technical specification TS 25.212
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2742Irregular interleaver wherein the permutation pattern is not obtained by a computation rule, e.g. interleaver based on random generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/7097Direct sequence modulation interference
    • H04B2201/709709Methods of preventing interference

Definitions

  • the present invention relates to the field of wireless channel coding and interleaving, and more particularly to an interleaving and deinterleaving method for resisting periodic position interference. Background of the invention
  • a channel in a communication system employing WCDMA technology, includes a dedicated channel and a common channel, and a common channel includes a common pilot channel, a paging channel, and the like.
  • Dedicated channels for different user communications and most of the shared channels use the same time period and frequency band. These channels are generally transmitted synchronously, and the channels are distinguished by uncorrelated "codes", such as orthogonal variable length spreading. Code (OVSF ).
  • code such as orthogonal variable length spreading. Code (OVSF ).
  • the downlink data is framingly transmitted to the wireless channel.
  • data from different transport channels are cascade-multiplexed through the transport channel, and a second interleaving is required. 2nd Interleaving) to disturb the mutual order of these data to break up the bursty bunching errors that occur in the wireless channel transmission.
  • 2nd Interleaving For the second interleaving technology, please refer to 3GPP TS25.212 V5.4.0.
  • the second interleaving process mainly includes: First, data is written line by line into a (N x 30) matrix. The matrix is then column swapped and read out column by column.
  • the rules for column exchange are as follows Bottom: Set the original column number to 0, 1 29, and the column order after column exchange is ⁇ 0.
  • the interleaving process is illustrated by taking the three transmission channels A, B, and C of the WCDMA system multiplexed into one physical channel as an example. It is assumed that the three transmission channel data are A1 ⁇ A30, B31 ⁇ B90, C91 - C180, respectively, and the second interleaving process package S G includes the following steps:
  • the channel multiplexing unit cascades the input transmission channels A, B, and C to obtain data to be interleaved for the second time as ⁇ A1, A2 ⁇ A30, B31, B31 ⁇ B90, C91, C92 ⁇ C180. >.
  • the data is then written row by row into the interleaving matrix of the interleaved memory.
  • the results are as follows:
  • the data frame read out is as follows:
  • each frame of data consists of 15 time slots, and the data read according to the above interleaved matrix is 30 groups, so that each group corresponds to half of the time slots in one frame. Due to the distribution of the transmission channels A, B, and C at each group position, a distribution map of the data distribution and the periodic relationship shown in Fig. 4 is obtained.
  • the primary/secondary synchronization channel of WCDMA forms burst interference with a slot as a period, as shown in FIG. 5, the relationship between the data and the primary/secondary synchronization signal, and the interference is for the wireless channel. In other words, it becomes an interference sequence.
  • the primary/secondary synchronization channel interference is all concentrated on one transmission channel. This will result in deterioration of the performance of the interfered transmission channel, which may cause deterioration in decoding or even a phenomenon such as call disconnection that seriously affects communication quality.
  • the main object of the present invention is to provide an interleaving and deinterleaving method for anti-periodic position interference, so as to prevent all of the synchronization interference signals in the radio channel from being concentrated on the data of the same transmission channel.
  • the present invention provides an interleaving and deinterleaving method for anti-periodic position interference, including a data interleaving step and a data deinterleaving step.
  • the data interleaving step is: the channel multiplexing unit multiplexes data of different transport channels, and then The multiplexed data is interleaved, of course After outputting the interleaved data;
  • the data deinterleaving step is: receiving the interleaved data, performing deinterleaving processing, and then demultiplexing the deinterleaved data into different transport channels by the channel demultiplexing unit; and, in the data
  • the randomization operation is used in the interleaving step, wherein the randomization operation makes the output position of the different transmission channel data after the interleaving random; correspondingly, the inverse operation corresponding to the randomization operation is used in the data deinterleaving step.
  • the step of the randomizing operation for multiplexing data of different transport channels includes:
  • the channel multiplexing unit calculates the number of data transmitted by each transmission channel, and records the minimum value of the number of data Nmin;
  • the channel multiplexing unit calculates a multiple of the number of data of each transmission channel with respect to Nmin, and rounds down the record to a multiple value;
  • the channel multiplexing unit sequentially reads the multiple value data corresponding to the transmission channel from each transmission channel, and returns to step C1 until all the data of all the transmission channels are read; wherein, the number of remaining data of a certain transmission channel When the value is less than the multiple value corresponding to the transmission channel, the remaining data is used as the data to be read when reading; when the number of remaining data of a certain transmission channel is 0, the data is no longer read from the transmission channel;
  • the randomizing operation inverse operation is used in the step of demultiplexing data into different transmission channels by a channel demultiplexing unit, including:
  • the channel demultiplexing unit calculates the number of data transmitted by each transmission channel, and records the minimum value of the number of data Nmin;
  • the channel demultiplexing unit calculates a multiple of the number of data of each transmission channel with respect to Nmin, and rounds down the record to a multiple value;
  • the channel demultiplexing unit sequentially reads the multiple value data corresponding to each transmission channel from the deinterleaved data, sequentially writes the data into the corresponding transmission channel, and returns to step C2 until all the data is written; , when the number of data that can be written to a transmission channel is less than the transmission When the multiple value corresponding to the channel is input, the number of writeable data is used as the number of data to be written when writing; when the number of data that can be written to a certain transmission channel is 0, the data is stopped from being written. Transport channel.
  • the applying the randomization operation to the interleaving process is:
  • step ⁇ is interleaved to obtain data as data to be interleaved, and return to step ⁇ to interleave again until the number of interleaving times set by the user;
  • the data to be deinterleaved is deinterleaved according to the inverse operation of the interleaving method
  • step ⁇ 2 the data obtained after deinterleaving is used as data to be interleaved, and the process returns to step ⁇ 2, and deinterleaving is performed again until the number of times of interleaving set by the user.
  • the interleaving method is: writing data to be interleaved row by row into an interleaving matrix of the interleave memory, performing column switching, and then reading out column by column;
  • the inverse operation of the corresponding interleaving method is: writing the received data column by column to the interleaving matrix of the deinterleaving memory, performing inverse column switching, and then reading out row by row.
  • the present invention alternately reads data for each transport channel, so that the interleaved data avoids the appearance of a simple periodic relationship of data locations of different transport channels.
  • the interfered data can be prevented from being concentrated on one transmission channel.
  • Figure 1 is a schematic diagram of the primary/secondary synchronization signal.
  • FIG. 2 is a flow diagram of downlink data framing to a wireless channel.
  • Figure 3 is a schematic diagram of the data transmission process.
  • Figure 4 shows the distribution of data distribution and periodic relationships.
  • Figure 5 shows the relationship between data and primary/secondary synchronization signals.
  • FIG. 6 is a flow chart of data transmission. Mode for carrying out the invention
  • the present invention makes the output positions of different transmission channel data after interleaving random, rather than a simple periodic position repetition, so that the said synchronization interference can be avoided.
  • the present invention reads the data from the simple concatenation of the respective transmission channels in the background art, and alternately reads the data from the respective transmission channels as the data to be interleaved, so that the data of the input interlace matrix has no background technology.
  • the regularity is such that synchronization interference is prevented from being concentrated on data of one transmission channel.
  • Step 602 The channel multiplexing unit calculates a multiple of the number of data of each transmission channel relative to the minimum number of transmission channel data according to the following formula, and the multiple is denoted as Ki.
  • Step 603 The channel multiplexing unit sequentially reads Ki data corresponding to the transport channel from each transport channel, and returns the step until all data of all transport channels is read, and reads The data is used as data to be interleaved.
  • the specific data reading method is as follows: K1 data is read from the transmission channel 1, then K2 data is read from the transmission channel 2... Kk data is read from the transmission channel k; then the transmission channel 1 is returned, read Taking K1 data...
  • a transmission channel such as the remaining data of the i-th transmission channel
  • Ki data the remaining data is used as the data to be read; when the data of a certain transmission channel has been read At the end, it jumps to the next transmission channel to continue reading until all data of all transmission channels is read.
  • Step 604 The channel multiplexing unit sends the data read in step 603 to the interleave memory for the second interleaving process, and then sends the data to the wireless channel.
  • the data of the transmission channel cascade order is disturbed, so that after the second interleaving, the periodic problem is not generated, that is, transmitted in the wireless channel.
  • the interference is not concentrated on the data of one transmission channel.
  • the inverse operation may be performed according to the above method.
  • the inverse operation will be briefly described below.
  • the number of data to be received by the transport channel is known.
  • the transport channel is demultiplexed, the following steps are included:
  • the channel demultiplexing unit first performs deinterleaving processing on the received data, and then calculates Ki according to the steps of steps 601 and 602;
  • the channel demultiplexing unit that is, the receiver sequentially reads K1 to Ki data from the deinterleaved data, sequentially writes the first to the ith transmission channels, and returns to this step until all the data is written.
  • the specific data is written to each transport channel as follows:
  • read K1 data write transmission channel 1 When the data to be written is less than Ki data, only the number of data to be written is written; when the data of a certain transmission channel has been written, it jumps to the next transmission channel to continue writing until all the data is written The data is all written into these demultiplexed transport channels.
  • the number K of transmission channels is 3, and the number of data Ni of each transmission channel is assumed to be 2, 5, 6, respectively.
  • the data of the transmission channel 1 is recorded as Al, A2, the data of the transmission channel 2 is Bl, B2, B3, B4, B5, and the data of the transmission channel 3 is CI, C2, C3, C4, C5, C6.
  • the channel multiplexing unit reads the data of each transmission channel according to step 603, and the read results are Al, Bl, B2, CI, C2, C3, A2, B3, B4, C4, C5, C6, B5.
  • the data is then subjected to a second interleaving process and sent to the wireless channel.
  • Another interleaving and deinterleaving method for anti-periodic position interference adopts an interleaver cascaded iterative interleaving method. Iterative interleaving will inevitably produce a certain delay, but from the perspective of the entire data transmission process, data will be generated in the data transmission. The delay of transmission and the delay of waiting for all data transmission, these delays are much longer than the delay of the interleaving process, so the delay caused by multi-secondary interleaving can still be ignored in the transmission process.
  • This interleaving method includes the following steps:
  • the data outputted by the multiple transmission channels are cascaded in sequence, and then the cascaded data is written into the interleave memory for interleaving.
  • the interleaving algorithm is the same as in the background art. For details, refer to the 3GPP TS25212 V5.4.0 2nd Interleaving algorithm.
  • the data to be interleaved is interleaved according to the interleaving method, and the result is as follows.
  • the data is obtained by interleaving the data, and the data to be interleaved is recycled and re-interleaved.
  • the loop is interleaved repeatedly until the number of times N is set by the user.
  • the iteratively interleaved data is then sent to the wireless channel for transmission.
  • the data receiver After the data receiver receives the interleaved data, it performs N inverse operations, and then can be restored to the original data, and then demultiplexed into each transport channel.
  • the channel demultiplexing process is in 3GPP TS 25.212 V5. .4.0 is described in detail and will not be described here.
  • the inverse operation is: writing the received data column by column into the interleaving matrix of the deinterleaving memory, performing inverse column exchange, and then reading out row by row.
  • the data of each cascaded transmission channel of the input wireless channel after interleaving is not arranged according to a certain periodicity, so as to avoid the data interfered by the data of one transmission channel when subjected to periodic interference of the wireless channel.
  • the data that is interfered after deinterleaving does not concentrate on one transmission channel, but randomly appears on each transmission channel. That is, it is possible to randomize the data positions of the different transmission channel data after interleaving, and significantly suppress the unbalanced interference of the periodic position interference to the respective transmission channels. Thereby improving the performance of the decoding process and further improving the overall performance of the wireless link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computing Systems (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Waveguide Aerials (AREA)
  • Ceramic Products (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

一种抗周期位置干扰的交织和去交织方法
技术领域
本发明涉及无线信道编码和交织技术领域, 特别是指一种抗周期位 置干扰的交织和去交织方法。 发明背景
在采用 WCDMA技术的通信系统中, 信道包括专用信道与公共信 道, 公共信道中包括公共导频信道、 寻呼信道等。 不同用户通信用的专 用信道以及大部分的共用信道均使用相同的时段和频段, 这些信道一般 采用同步发送, 信道之间通过不相关的 "码" 进行区分, 如采用正交可 变长扩频码 ( OVSF )。在接收端, 如果没有多径并且解调时是准确同步, 采用正交码的信道间就不会相互干扰。
但是某些信道并没有采用与其他信道正交的码, 并且不是占用全部 的时段, 如图 1示出的主 /次同步信号, 该信号占用每个时隙的前 256个 码片。 这样, 在时间上, 主 /次同步信道就是一个以时隙为周期, 占空比 为 256/2560=1/10的序列, 由于未采用正交码, 对于无线信道中的其他 信道的信号而言, 主 /次同步信道构成了一个以时隙为周期的干扰信号。
如图 2示出的下行链路数据成帧发送到无线信道的流程图, 在数据 发送到无线信道之前, 来自不同传输信道的数据经过传输信道级连复用 后, 需要进行第二次交织(2nd Interleaving ), 以扰乱这些数据的相互顺 序, 以将在无线信道传输中出现的突发的聚堆性误码打散。 第二次交织 技术具体可参见 3GPP TS25.212 V5.4.0, 下面仅进行简介。
第二次交织的过程主要包括: 将数据首先逐行写入一个(N x 30 ) 的矩阵里面。 然后矩阵进行列交换, 再逐列读出。 其中列交换的规则如 下: 设原来的列编号为 0、 1 29, 则列交换后的列顺序为< 0、
20、 10、 5、 15、 25、 3、 13、 23、 8、 18、 28、 1、 11、 21、 6、 16、 26、 4、 14、 24、 19、 9、 29、 12、 2、 7、 22、 27、 17 >。
C C C
下面参照图 11
472,以及图 3示出的数据传输过程示意图,并以 WCDMA 系统三个传输信道 A、 B、 C复用到一个物理信道为例对该交织过程进 行说明。 假设这三个传输信道数据分别为 A1 ~ A30、 B31 ~ B90、 C91 - C180, 所述第二次交织过程包 S G括 2以下步骤:
w Π M
首先, 信道复用单元将输入的传输信道 A、 B、 C进行级连复用,得 到将要进行第二次交织的数据为 < A1、 A2 ~ A30、 B31、 B31 ~ B90、 C91、 C92 ~ C180>。
然后数据逐行写入交织存储器的交织矩阵, 结果如下:
0 1 2 .. . 28 29
A1 A2 A3 .. . A29 A30
B31 B32 B33 . . B59 B60
B61 B62 B63 . . B89 B90
C91 C92 C93 . . C119 C120
C121 C122 C123 . . C149 C150
C151 C152 C153 . . C179 C180 进行列变换, 结果如下:
0 10 17
Figure imgf000004_0001
C91 C101 C108
C121 C131 C138
C151 C161 C168 然后, 将数据从交织存储器的交织矩阵逐列读出, 发送到无线信道 中, 读出的该数据帧如下所示:
< A1B31B61C91C121C151 A21B51B81C111C141C171
A18B48B78C108C138C168 > 分析以上的交织过程, 从交织矩阵可以看出: 3 个传输信道级连写 入交织矩阵后, 传输信道 A数据会写在交织矩阵的前面几行, 后面几行 写入的是传输信道 B的数据,再后面几行是传输信道 C的数据。其中的 列交换并不能改变这个数据的布局。 并且, 正因为这个布局, 在按列读 出交织矩阵的数据时, 读出的数据帧是由 30组都是按照 "传输信道 A 数据 +传输信道 B数据 +传输信道 C数据" 排列组成。
对于 WCDMA来说每帧数据由 15个时隙组成, 而按照上面交织矩 阵读出的数据为 30组, 这样每组正好对应一帧中的半个时隙。 由于传 输信道 A、 B、 C在各组位置分布情况, 得到图 4示出的数据分布和周 期关系的分布图来。
另一方面,如前面所述, WCDMA的主 /次同步信道形成以时隙为周 期的突发干扰, 如图 5示出的数据与主 /次同步信号的关系图, 这个干扰 对无线信道而言, 成了一个干扰序列。 这样, 在移动台接收无线信道传 输的受到主 /次同步信号干扰的信号后, 在各个信道解复用后,极有可能 出现主 /次同步信道干扰全部集中出现在一个传输信道上。这样就会导致 被干扰到的传输信道性能的恶化, 而使译码时恶化甚至导致通话断链等 严重影响通信质量的现象出现。 发明内容
有鉴于此, 本发明的主要目的在于提供一种抗周期位置干扰的交织 和去交织方法, 以避免无线信道中的同步干扰信号全部集中在同一传输 信道的数据上。
本发明提供了一种抗周期位置干扰的交织和去交织方法, 包括数据 交织步骤和数据去交织步骤; 其中, 数据交织步骤为: 信道复用单元将 不同传输信道的数据进行复用, 然后将复用后的数据进行交织处理, 然 后输出交织后的数据; 数据去交织步骤为: 接收交织后的数据, 进行去 交织处理, 然后将去交织后的数据由信道解复用单元解复用到不同传输 信道中; 并且, 在数据交织步骤中使用随机化运算, 其中, 随机化运算 使不同传输信道数据在交织后的输出位置是随机的; 相应的在数据去交 织步骤中使用与随机化运算对应的逆运算。
其中所述随机化运算用于不同传输信道的数据进行复用的步骤中, 包括:
Al、 信道复用单元计算各个传输信道传输数据个数, 记录所述数据 个数的最小值 Nmin; 、
Bl、 信道复用单元分别计算各个传输信道的数据个数相对 Nmin的 倍数, 并向下取整记录为倍数值;
C 1、 信道复用单元依次从各个传输信道读取该传输信道对应的倍数 值个数据, 并返回步骤 C1 直到读取所有传输信道的所有数据; 其中, 当某个传输信道剩余的数据个数小于该传输信道对应的倍数值时, 读取 时将所述剩余数据作为所要读取的数据; 当某个传输信道剩余的数据个 数为 0时, 不再从该传输信道读取数据;
所述的随机化运算逆运算用于将数据由信道解复用单元解复用到不 同传输信道的步骤中, 包括:
A2、 信道解复用单元计算各个传输信道传输数据个数, 记录所述数 据个数的最小值 Nmin;
B2、 信道解复用单元分别计算各个传输信道的数据个数相对 Nmin 的倍数, 并向下取整记录为倍数值;
C2、 信道解复用单元从去交织后的数据中, 依次读取各个传输信道 对应的倍数值个数据,依次分别写入对应的传输信道中,并返回步骤 C2 直到写完所有的数据; 其中, 当某个传输信道可写入数据个数小于该传 输信道对应的倍数值时, 写入时将所述的可写入数据个数作为要写入的 数据个数; 当某个传输信道可写入数据个数为 0时, 数据停止写入该传 输信道。
其中, 所述使用随机化运算应用于所述交织过程中, 为:
ΑΓ、 将待交织的数据按照一交织方法进行交织;
ΒΓ、 将步骤 ΑΓ交织后得到数据作为待交织的数据, 返回步骤 ΑΓ 再次进行交织, 直到用户设定的交织次数为止;
对应的所述的逆运算应用于所述去交织过程中, 为:
Α2,、 将待去交织的数据按照所述交织方法的逆运算进行去交织,
Β2,、 将去交织后得到的数据作为待去交织的数据, 返回步骤 Α2, 再次进行去交织, 直到所述用户设定的交织次数为止。
其中, 所述的交织方法为: 将待交织的数据逐行写入交织存储器的 交织矩阵, 并进行列交换, 然后逐列读出;
对应的所述的交织方法的逆运算为: 将接收的数据逐列写入去交织 存储器的交织矩阵, 并进行反列交换, 然后逐行读出。
由上述方法可以看出 , 本发明通过对各个传输信道交替读取数据, 使交织后的数据, 避免出现不同传输信道的数据位置呈现简单的周期关 系。 这样, 在无线信道传输中, 受到同步干扰后, 在去交织并传输信道 解复用后, 就可以避免受干扰的数据集中在一个传输信道上。 从而, 抑 制了无线信道中的周期性干扰对去交织后的译码性能的影响, 提高无线 链路整体性能。 附图简要说明
图 1为主 /次同步信号示意图。
图 2为下行链路数据成帧发送到无线信道的流程图。 图 3为数据传输过程示意图。
图 4为数据分布和周期关系的分布图。
图 5为数据与主 /次同步信号的关系图。
图 6为数据发送流程图。 实施本发明的方式
本发明通过增加随机化过程, 使不同传输信道数据在交织后的输出 位置是随机的, 而不是简单的周期位置重复, 这样可以避免出现所述的 同步干扰。
为使本发明的目的、 技术方案及优点更加清楚明白, 以下通过具体 实施例和参照附图, 对本发明进一步详细说明。
下面参见图 6示出的流程图, 并结合实施例对本发明数据交织和去 交织方法进行说明。 该例中, 本发明将背景技术所述从各个传输信道简 单的级连后读取数据 , 改为从各个传输信道交替读取数据作为要进行交 织的数据, 使得输入交织矩阵的数据没有背景技术所述的规律性, 以达 到避免同步干扰集中到一个传输信道的数据上。 假设该例中有 k个传输 信道, 这 k个传输信道数据的个数分别为 Ni, i = l ~ k, 包括以下步骤。
步骤 601: 信道复用单元计算各个传输信道数据个数 Ni 的最小值 Nmin = Min ( NI , N2...Nk )。不失一般性,假设本例中 Nmin = Min ( NI, N2...Nk ) = N1, 也就是说 NI为最小值。
步骤 602: 信道复用单元按照下面的公式计算各个传输信道数据个 数相对最小传输信道数据个数的倍数, 这个倍数记为 Ki。
i = [Ni /N minJ = [M mJ , i = 1 ~ k。 其中 |_」表示向下取整运算。 步骤 603: 信道复用单元依次从各个传输信道读取该传输信道对应 的 Ki 个数据 , 并返回该步骤直到读取所有传输信道的所有数据, 读取 的数据作为要进行交织处理的数据。 具体的数据读取方法如下: 从传输信道 1读取 K1个数据,然后从传输信道 2读取 K2个数据… ... 从传输信道 k读取 Kk个数据; 然后再返回传输信道 1 , 读取 K1个数 据……其中, 当某个传输信道, 如第 i 个传输信道剩余的数据不足 Ki 个数据时, 就把剩余数据作为所要读取的数据; 当某个传输信道的数据 已经被读完时, 就跳到下个传输信道继续读取, 直到把所有传输信道的 所有数据全部读取出来。
步骤 604: 信道复用单元将步驟 603读取出的数据发送到交织存储 器进行第二次交织处理, 然后发送到无线信道中。
按照以上步驟 603读取的数据, 便是打乱了传输信道级连顺序的数 据, 因此在进行第二次交织后, 不会产生所述的周期性问题,也就是说, 在无线信道中传输受到同步干扰后, 干扰不会集中在一个传输信道的数 据上。
对于数据接收方, 在进行传输信道的解复用时, 按照上述的方法进 行逆运算即可。下面对该逆运算进行简要说明。对于每个传输信道来说, 该传输信道要接收的数据个数是已知的, 在传输信道解复用时, 包括以 下步骤:
信道解复用单元首先将接收的数据进行去交织处理, 然后按照步骤 601和 602的步骤计算出 Ki;
然后信道解复用单元, 即接收方从去交织的数据中依次读取 K1 到 Ki个数据, 分别依次写入第 1个到第 i个传输信道, 并返回该步驟直到 写完所有的数据。 具体的数据写入各传输信道的方法如下:
首先读取 K1个数据写入传输信道 1 , 然后读取 K2个数据写入传输 信道 2.....读取 Kk个数据写入传输信道 k;然后再读取 K1个数据写入传 输信道 1 , 读取 K2个数据 .....当某个传输信道如第 i个传输信道数据需 要写入的数据不足 Ki个数据时, 仅写入所需要写入的数据个数; 当某 个传输信道的数据已经写完时, 就跳到下个传输信道继续写入, 直到把 所有的数据全部写入这些解复用的传输信道中。
下面将该方法结合实施例进一步详细说明, 为了方便起见, 这里假 设传输信道个数 K为 3,并且假设每个传输信道的数据个数 Ni分别为 2, 5, 6。 传输信道 1的数据记为 Al , A2, 传输信道 2的数据为 Bl , B2, B3, B4, B5, 传输信道 3的数据为 CI , C2, C3 , C4, C5 , C6。
首先, 信道复用单元根据步骤 601所述公式 Nmin = Min ( 2, 5, 6 ), 可以求出 Nmin为传输信道 1的个数 2。
然后, 根据步骤 602, 信道复用单元可以计算出各个传输信道相对 传输信道 1 数据个数的倍数分别为 Kl = l_2/2」 = 1 , Κ2=|_5/2」= 2 , K3=L6/2」 = 3。
然后, 信道复用单元根据步骤 603读取各传输信道数据的方法, 读 出的结果为 Al , Bl , B2, CI , C2, C3, A2, B3, B4, C4, C5, C6, B5。 然后将这些数据进行第二次交织处理, 发送到无线信道中。
对应的, 在接收方进行传输信道解复用时, 包括以下步骤: 由于每个传输信道的数据个数是已知的, 首先将接收的数据去交织 后, 信道解复用单元按照步骤 601和 602的步骤计算出 Kl = l , Κ2=2, Κ3=3。 然后依次读取 Kl ~ Κ3个数据, 分别写入第 1到第 3个传输信道 内。 当某个传输信道个数写满后, 后续的写数据便跳过该传输信道, 写 入下一个传输信道内。 通过该步骤, 可还原出各个传输信道的数据, 完 成传输信道的解复用。
本发明提供的另一种抗周期位置干扰的交织和去交织方法, 是采用 交织器级连迭代交织方式。 采用迭代交织的方式不可避免会产生一定的 时延, 但是从整个数据传输的过程来看, 数据传输中会产生数据在线路 上的传输时延和等待所有数据传输的时延, 这些时延要远远大于交织过 程的时延, 因此多次级连交织产生的时延还是可以在传输过程中忽略 的。 这个交织方法包括以下步驟:
首先, 将多个传输信道输出的数据按顺序级连, 然后将级连后的数 据写入交织存储器进行交织处理, 该交织算法与背景技术中相同, 具体 可参见 3GPP TS25212 V5.4.0里面的第 2次交织( 2nd Interleaving )算法。 将待交织的数据按照交织方法进行交织, 得到结果如下。
< A1B31B61C91C121C151 A21B51B81C111C141C171
A18B48B78C108C138C168 >
然后, 将该次交织后得到数据, 再作为待交织的数据, 再循环重新 进行交织处理。 这样反复循环交织, 一直进行到用户设定的交织次数 N 为止。 然后将迭代交织后的数据发送到无线信道传送出去。
对于数据接收方在接收到交织后的数据后, 进行 N次逆运算, 即可 还原为原来的数据, 然后解复用到各个传输信道中, 该信道解复用的过 程在 3GPP TS25.212 V5.4.0进行了详细描述, 此处不再叙述。 其中, 逆 运算为: 将接收的数据逐列写入去交织存储器的交织矩阵, 并进行反列 交换, 然后逐行读出。
通过本发明, 使得交织后输入无线信道的各个級连传输信道数据不 会按照一定的周期规律排列, 从而避免在受到无线信道的周期性干扰 时, 所干扰的数据为一个传输信道的数据。 去交织后受到干扰的数据不 会集中在一个传输信道出现, 而随机在各个传输信道出现。 也就是可以 随机化不同传输信道数据在交织后的数据位置, 显著抑制周期位置干扰 对各个传输信道的不平衡干扰。 从而提高译码过程的性能, 进一步实现 提高无线链路的整体性能。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明。

Claims

权利要求书
1、一种抗周期位置干扰的交织和去交织方法, 包括数据交织步骤和 数据去交织步骤; 其中, 数据交织步骤为: 信道复用单元将不同传输信 道的数据进行复用, 然后将复用后的数据进行交织处理, 然后输出交织 后的数据; 数据去交织步骤为: 接收交织后的数据, 进行去交织处理, 然后将去交织后的数据由信道解复用单元解复用到不同传输信道中; 其 特征在于,
在数据交织步骤中使用随机化运算, 其中, 随机化运算使不同传输 信道数据在交织后的输出位置是随机的;
相应的在数据去交织步骤中使用与随机化运算对应的逆运算。
2、根据权利要求 1所述的方法, 其特征在于, 所述随机化运算用于 不同传输信道的数据进行复用的步骤中, 包括:
Al、 信道复用单元计算各个传输信道传输数据个数, 记录所述数据 个数的最小值 Nmin;
Bl、 信道复用单元分别计算各个传输信道的数据个数相对 Nmin的 倍数, 并向下取整记录为倍数值;
C1、 信道复用单元依次从各个传输信道读取该传输信道对应的倍数 值个数据, 并返回步骤 C1直到读取所有传输信道的所有数据; 其中, 当某个传输信道剩余的数据个数小于该传输信道对应的倍数值时, 读取 时将所述剩余数据作为所要读取的数据; 当某个传输信道剩余的数据个 数为 0时, 停止从该传输信道读取数据;
所述的随机化运算逆运算用于将数据由信道解复用单元解复用到不 同传输信道的步骤中, 包括:
A2、 信道解复用单元计算各个传输信道传输数据个数, 记录所述数 据个数的最小值 Nmin;
B2、 信道解复用单元分别计算各个传输信道的数据个数相对 Nmin 的倍数, 并向下取整记录为倍数值;
C2、 信道解复用单元从去交织后的数据中, 依次读取各个传输信道 对应的倍数值个数据,依次分别写入对应的传输信道中,并返回步驟 C2 直到写完所有的数据; 其中, 当某个传输信道可写入数据个数小于该传 输信道对应的倍数值时, 写入时将所述的可写入数据个数作为要写入的 数据个数; 当某个传输信道可写入数据个数为 0时, 数据停止写入该传 输信道。
3、根据权利要求 1所述的方法, 其特征在于, 所述使用随机化运算 应用于所述交织处理步骤中, 包括:
ΑΓ、 将待交织的数据进行交织;
ΒΓ、 将步骤 ΑΓ交织后得到数据作为待交织的数据, 返回步骤 ΑΓ 再次进行交织, 直到用户设定的交织次数为止;
对应的所述的逆运算应用于所述去交织处理步骤中, 包括:
Α2,、 将待去交织的数据按照对应的逆运算进行去交织,
Β2,、 将去交织后得到的数据作为待去交织的数据, 返回步骤 Α2, 再次进行去交织, 直到所述用户设定的交织次数为止。
4、根据权利要求 3所述的方法, 其特征在于, 所述的将待交织的数 据进行交织的交织方法为: 将待交织的数据逐行写入交织存储器的交织 矩阵, 并进行列交换, 然后逐列读出;
对应的所述的交织方法的逆运算为: 将接收的数据逐列写入去交织 存储器的交织矩阵, 并进行反列交换, 然后逐行读出。
PCT/CN2005/001130 2004-07-27 2005-07-27 Procede d'entrelacement et de desentrelacement pour l'inhibition de l'interference de position periodique WO2006010328A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05771655A EP1768276B1 (en) 2004-07-27 2005-07-27 Interleaving and deinterleaving method for preventing periodic position interference
AT05771655T ATE484111T1 (de) 2004-07-27 2005-07-27 Ver- und entschachtelungsverfahren zur vermeidung von periodischer positionsstörung
DE602005023995T DE602005023995D1 (de) 2004-07-27 2005-07-27 Ver- und entschachtelungsverfahren zur vermeidung von periodischer positionsstörung
US11/626,896 US7684448B2 (en) 2004-07-27 2007-01-25 Method and apparatus for data interleaving and data de-interleaving against periodical position interference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410054670.8 2004-07-27
CNB2004100546708A CN100571088C (zh) 2004-07-27 2004-07-27 一种抗周期位置干扰的交织和去交织方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/626,896 Continuation US7684448B2 (en) 2004-07-27 2007-01-25 Method and apparatus for data interleaving and data de-interleaving against periodical position interference

Publications (1)

Publication Number Publication Date
WO2006010328A1 true WO2006010328A1 (fr) 2006-02-02

Family

ID=35785901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001130 WO2006010328A1 (fr) 2004-07-27 2005-07-27 Procede d'entrelacement et de desentrelacement pour l'inhibition de l'interference de position periodique

Country Status (6)

Country Link
US (1) US7684448B2 (zh)
EP (1) EP1768276B1 (zh)
CN (1) CN100571088C (zh)
AT (1) ATE484111T1 (zh)
DE (1) DE602005023995D1 (zh)
WO (1) WO2006010328A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174937B (zh) * 2006-11-03 2010-11-03 中兴通讯股份有限公司 一种上行链路的传输信道复用的方法
US9130728B2 (en) * 2009-06-16 2015-09-08 Intel Mobile Communications GmbH Reduced contention storage for channel coding
CN103533287B (zh) * 2013-10-15 2016-12-07 广东威创视讯科技股份有限公司 一种视频处理方法及装置
WO2019034229A1 (en) 2017-08-14 2019-02-21 Optos Plc OPTICAL ELEMENT CONTROL
CN107666332B (zh) * 2017-09-27 2019-12-10 普联技术有限公司 无线模块间抗干扰的方法和装置、一种终端
US10469126B1 (en) * 2018-09-24 2019-11-05 Huawei Technologies Co., Ltd. Code synchronization for analog spread spectrum systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101478A (ja) * 1998-07-24 2000-04-07 Matsushita Electric Ind Co Ltd Cdma無線通信システム
WO2000064073A1 (en) * 1999-04-15 2000-10-26 Qualcomm Incorporated Interleaver and deinterleaver for use in a diversity transmission communication system
CN1347213A (zh) * 2001-10-22 2002-05-01 信息产业部电信传输研究所 一种实现wcdma上行信道复接的方法
WO2003079601A1 (en) * 2002-03-14 2003-09-25 Qualcomm, Incorporated Method and apparatus for reducing inter-channel interference in a wireless communication system employing a non-periodic interleaver

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2327578A (en) * 1997-07-18 1999-01-27 Nokia Mobile Phones Ltd Convolutional interleaver for preventing the transmission of unwanted data
KR100457895B1 (ko) * 1999-05-10 2004-11-18 가부시키가이샤 엔.티.티.도코모 다중화 방법과 다중화 장치 및 데이터 신호 송신 방법과데이터 신호 송신 장치
GB2361850B (en) * 2000-04-25 2003-12-24 Ubinetics Ltd Multiplexing and de-multiplexing
WO2002032079A1 (fr) * 2000-10-06 2002-04-18 Mitsubishi Denki Kabushiki Kaisha Procede de transmission de donnees et dispositif de transmission de donnees
AU2003263448A1 (en) * 2002-09-25 2004-04-19 Koninklijke Philips Electronics N.V. Method of calculating an intra-row permutation pattern for an interleaver
US20040100918A1 (en) * 2002-11-27 2004-05-27 Antti Toskala Method and system for forwarding a control information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101478A (ja) * 1998-07-24 2000-04-07 Matsushita Electric Ind Co Ltd Cdma無線通信システム
WO2000064073A1 (en) * 1999-04-15 2000-10-26 Qualcomm Incorporated Interleaver and deinterleaver for use in a diversity transmission communication system
CN1347213A (zh) * 2001-10-22 2002-05-01 信息产业部电信传输研究所 一种实现wcdma上行信道复接的方法
WO2003079601A1 (en) * 2002-03-14 2003-09-25 Qualcomm, Incorporated Method and apparatus for reducing inter-channel interference in a wireless communication system employing a non-periodic interleaver

Also Published As

Publication number Publication date
US20070195739A1 (en) 2007-08-23
DE602005023995D1 (de) 2010-11-18
CN100571088C (zh) 2009-12-16
ATE484111T1 (de) 2010-10-15
CN1728619A (zh) 2006-02-01
EP1768276A4 (en) 2007-08-08
EP1768276B1 (en) 2010-10-06
US7684448B2 (en) 2010-03-23
EP1768276A1 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US8335962B2 (en) Interleaver apparatus and receiver for a signal generated by the interleaver apparatus
JP4571362B2 (ja) 通信システムにおける複数のチャネルのデータフレームの時間合わせ装置及び方法
US5742612A (en) Method and device for interleaving a sequence of data elements
EP0981218A2 (en) Error-correcting encoding apparatus
WO2006010328A1 (fr) Procede d&#39;entrelacement et de desentrelacement pour l&#39;inhibition de l&#39;interference de position periodique
EP1100204A1 (en) Multiplexing method and multiplexing device, and data signal transmission method and data signal transmission device
US20020048313A1 (en) Variable throughput reduction spread-spectrum communications
TW201031157A (en) Software parameterizable control blocks for use in physical layer processing
CN109257147A (zh) 传输方法及装置
CN1399825A (zh) 用于提供带有预定时间偏移的多个信道的数据帧的时间对准设备和方法
WO2014090045A1 (zh) Td-scdma上行传输信道处理方法
KR102082704B1 (ko) 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법
CN101517911B (zh) 下行链路接收机比特率处理器中的重新量化
EP2903167B1 (en) Method and apparatus for forward error correction (fec) coding based on time-division duplex (tdd)
CN101517912A (zh) 下行链路接收机比特速率处理器的结构
KR100784283B1 (ko) 트랜스포트 채널의 버퍼링없이 디레이트 매칭을 수행하는방법과 장치
US7313118B2 (en) Method and arrangement for asynchronous processing of CCTrCH data
JP2003510959A (ja) 入力データパケットストリームを出力データ符号ストリームへ変換するコンバータ及び方法
JP4427886B2 (ja) 測位システム
US6976138B2 (en) Semiconductor device for data communication control and radio communication apparatus
EP0981217A1 (en) Modulating method, modulating device, demodulating method, and demodulating device
CN106330394B (zh) 一种具有循环特性的可配置式交织器及解交织器
JP2008263470A (ja) デジタル放送復調装置
JP2003110430A (ja) インターリーブ装置、及びデインターリーブ装置
JP4496416B2 (ja) デジタル放送受信装置、およびデジタル放送受信方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11626896

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005771655

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005771655

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11626896

Country of ref document: US