WO2006006456A1 - 亜鉛キレート剤を用いたsprによるリン酸化検出方法 - Google Patents

亜鉛キレート剤を用いたsprによるリン酸化検出方法 Download PDF

Info

Publication number
WO2006006456A1
WO2006006456A1 PCT/JP2005/012451 JP2005012451W WO2006006456A1 WO 2006006456 A1 WO2006006456 A1 WO 2006006456A1 JP 2005012451 W JP2005012451 W JP 2005012451W WO 2006006456 A1 WO2006006456 A1 WO 2006006456A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein kinase
ligand
substrate
peptide
kinase activity
Prior art date
Application number
PCT/JP2005/012451
Other languages
English (en)
French (fr)
Inventor
Kazuki Inamori
Yoshiaki Nishiya
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004234635A external-priority patent/JP2006050949A/ja
Priority claimed from JP2004323531A external-priority patent/JP3988147B2/ja
Priority claimed from JP2004323530A external-priority patent/JP2006133118A/ja
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to DE602005019750T priority Critical patent/DE602005019750D1/de
Priority to EP05758205A priority patent/EP1785489B1/en
Priority to US11/631,978 priority patent/US20080064608A1/en
Publication of WO2006006456A1 publication Critical patent/WO2006006456A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase

Definitions

  • the present invention is a method for analyzing protein kinase activity using an array in which one or more kinds of peptides recognizing protein kinases are immobilized on a metal substrate, wherein phosphorylation reaction is performed on the array.
  • the present invention relates to a method for detecting phosphoric acid by allowing a chelating compound modified with piotin to act.
  • SPR surface plasmon resonance
  • a novel method for analyzing protein kinase activity using the surface plasmon resonance imaging method hereinafter also referred to as SPR imaging method
  • SPR imaging method which monitors the interaction between substances analyzed by SPR. It is. Background art
  • Non-Patent Documents 2 and 3 As an example (for example, see Non-Patent Documents 2 and 3) or a detection system for kinase reaction on an array using a radioactive substance ([ ⁇ 3 2 P] ATP).
  • a radioactive substance [ ⁇ 3 2 P] ATP
  • There are some examples see, for example, non-patent documents 4, 5 and 6.
  • none of the prior arts discloses a sufficient technique as a method for efficiently profiling the dynamics of various protein kinases simultaneously. In any of the above methods, it is necessary to use a fluorescent substance or a radioactive substance, and there are major problems in terms of the time required for analysis, the difficulty of handling, the necessity of special techniques and facilities, etc. is there.
  • Non-Patent Document 1 Benjamin T. Houseman et al., Nature Biotechnology pp. 20, 270-274 (issued in March 2002)
  • Non-Patent Document 2 Bioorganic & Medical Chemistry Letters Vol. 12, No. 208, pp. 5-2088 (issued in 2002)
  • Non-Patent Document 3 Bioorganic & Medical Chemistry Letters 12th pp. 207 9-2083 (issued in 2002)
  • Non-Patent Document 4 Current Opinion in Biotechnology 13th, 315-320 (issued in 2002)
  • Non-Patent Document 5 The Journal of Biological Chemistry 277, 27839-27849 (issued in 2002)
  • Non-Patent Document 6 Science 289, pp. 1760-1763 (issued in 2000) Brief description of the drawings
  • FIG. 1 is a diagram showing a pattern in which a substrate peptide is immobilized on an array, and results of SPR analysis and SPR imaging in Example 1.
  • FIG. 2 shows the results of SPR analysis and SPR imaging in Example 2.
  • FIG. 3 is a diagram showing a pattern in which a substrate peptide is immobilized on an array and results of SPR analysis and SPR imaging performed in Example 3.
  • FIG. 4 is a diagram showing a pattern in which a substrate peptide is immobilized on an array and results of SPR analysis and SPR imaging performed in Example 4.
  • FIG. 5 shows the results of SPR analysis in Example 5.
  • the present invention detects the phosphorylation of a substrate peptide by a simple method using an inexpensive substance without requiring a special technique that is rapid and powerful.
  • the kinetics of various protein kinases can be demonstrated. It is intended to establish a method that can be comprehensively profiled. Means for solving the problem
  • the inventors of the present invention have made use of an array in which a peptide recognizing a protein kinase is immobilized on a metal-deposited substrate, and then the protein kinase phosphoric acid is used. After the sputum, a piotin-modified chelate compound with a specific molecular weight is allowed to act, preferably when streptavidin or avidin is further acted on, particularly the interaction between substances on the array is detected by the SPR imaging method. As a result, the present inventors have found that the present invention is extremely useful in conducting a rapid and particularly comprehensive analysis of various protein kinase kinetics.
  • the present invention also has the following constitutional power.
  • the chelate compound modified by the ligand is brought into contact with the determined peptide on the substrate. And a method for analyzing protein kinase activity.
  • a complex of a chelate compound modified with a ligand and a receptor is formed, and the complex is to be determined on the substrate.
  • a method for analyzing protein kinase activity which comprises contacting with a protein.
  • a method for analyzing protein kinase activity according to any one of 1 to 9, wherein a binuclear zinc complex having a polyamine complex as a ligand is used as a chelate complex.
  • the peptide is a cGMP-dependent protein kinase family
  • PKA cAMP-dependent protein kinase
  • PLC protein kinase C
  • PPD protein kinase D
  • PBB protein tin kinase B
  • MAPK MAP kinase cascade Protein kinase family
  • Src tyrosine kinase family and receptor-type tyrosin kinase family
  • a method for analyzing protein kinase activity according to any one of 1 to 11, which is a substrate for at least one protein kinase selected as a group force.
  • a test material capable of containing a protein kinase in a peptide on an array in which at least one corresponding peptide serving as a substrate for at least one protein kinase is immobilized on a metal thin film of the substrate, and The method for analyzing protein kinase activity according to any one of 1 to 13, which comprises detecting the phosphorylated peptide by allowing nucleoside triphosphate to act.
  • Peptides are immobilized in an array on the substrate 1, 4 or 17 Method for analyzing protein kinase activity.
  • Two or more types of peptides containing amino acid residues in combinations of two or more of serine, threonine, and tyrosine at the site to undergo peptide phosphorylation are immobilized in an array 18 Method for analyzing protein kinase activity.
  • a kit for detecting phosphate using a peptide immobilized on a substrate comprising a chelate compound modified by ligand and a ligand-specific receptor. Phosphate detection kit.
  • a 21-phosphate detection kit comprising an antibody recognizing a ligand.
  • Phosphate detection kit using a peptide immobilized on a substrate for detection of phosphate containing a complex of ligand-modified chelate compound and receptor Kits.
  • phosphate detection kits comprising an antibody recognizing a ligand.
  • kit for detecting phosphorylation according to any one of 21 to 29, wherein the compound represented by formula (I) is used as a chelate compound.
  • SPR surface plasmon resonance
  • the method for detecting a phosphoric acid peptide on a substrate is performed using a labeling compound such as a radioactive substance, a fluorescent substance, and a chemiluminescent substance that is well known in the art.
  • a labeling compound such as a radioactive substance, a fluorescent substance, and a chemiluminescent substance that is well known in the art.
  • Applying optical detection methods such as surface plasmon resonance (SPR), ellipsometry (hereinafter referred to as ellipsometry), sum frequency generation (hereinafter referred to as SFG) spectroscopy, etc. Is more preferable.
  • SPR can determine the change in film thickness on the order of nm by simply determining the reflected light intensity without the need to determine the phase difference. It is particularly preferable because it can be used.
  • the SPR imaging method is more preferable because it allows observation of a wide range and enables observation of substance interaction in an array format.
  • Peptide phosphate can be performed by applying a test sample that can have a protein kinase and a nucleoside triphosphate such as ATP onto the array of the present invention.
  • Optimum phosphorylation reaction conditions vary depending on the type of protein kinase.For example, test samples that can have protein kinase in the knofer and nucleoside triphosphate are added, and 10 to 40 ° C.
  • the peptide can be phosphorylated by reacting at a moderate temperature, preferably at a temperature of 30 to 40 ° C., for about 10 minutes to 6 hours, preferably about 30 to 1 hour. If necessary, the phosphorylation reaction solution should coexist with a substance that assists phosphorylation such as cAMP, cGMP, Mg + , and Ca 2+ phospholipids.
  • Protein kinases that are subject to kinetic profiling include enzymes that phosphorylate side chains of amino acids such as protein tyrosin, serine, threonine, and histidine, such as cGMP-dependent proteins.
  • Kinase family include enzymes that phosphorylate side chains of amino acids such as protein tyrosin, serine, threonine, and histidine, such as cGMP-dependent proteins.
  • PKA cAMP-dependent protein kinase
  • PLC protein kinase C
  • PPD protein kinase D
  • PMB protein tin kinase B
  • MAPK MAP kinase cascade
  • Examples include the protein kinase family, the Src tyrosine kinase family, and the receptor tyrosin kinase family.
  • the purpose of the peptide is to comprehensively profile the dynamics of protein kinase, one type of peptide is phosphorylated only by one type of protein kinase, Some protein kinases are not phosphorylated. Peptide sequences that serve as substrates for protein kinases can be appropriately selected based on known forces and known sequences.
  • the array of the present invention needs to grasp its dynamics. If a peptide of a type corresponding to a plurality of types of protein kinase is immobilized, all the protein kinases are profiled in one array. Can be preferable.
  • the film thickness and refractive index can be measured from the change in the deflection state caused by the interference between the light reflected on the surface of the thin film and the light reflected on the back surface of the thin film.
  • it is a means for evaluating the ratio of the absolute value of the reflectance and the ratio of the phase change to the P-polarized light and s-polarized light.
  • the spectroscopic ellipsometry which measures the ellipsometry while changing the wavelength is preferable because the change in the film thickness of the surface can be detected very sensitively.
  • SFG is a kind of second-order nonlinear optical effect.
  • Two types of incident light with different frequencies (frequency ⁇ ⁇ and frequency ⁇ 2) are mixed in the medium, and ⁇ 1 + ⁇ 2 or ⁇ 1 — A phenomenon in which ⁇ 2 light is generated.
  • ⁇ ⁇ and tunable infrared light is used as ⁇ 2
  • vibrational spectroscopy similar to infrared spectroscopy can be performed. Since this method has good surface selectivity, it can perform vibrational spectroscopy of molecules at the monolayer level and is useful as a very sensitive surface analysis method.
  • the present invention comprehensively analyzes various protein kinase activities using SPR.
  • SPR an evanescent wave is generated by the polarized light flux that irradiates the metal and oozes on the surface, excites surface plasmons that are surface waves, consumes light energy, and reduces the intensity of reflected light.
  • the resonance angle at which the reflected light intensity significantly decreases varies depending on the thickness of the layer formed on the metal surface. Therefore, the substance or group of substances to be examined is immobilized on the surface of the metal, and the interaction with the substance or group of substances in the sample changes the resonance angle, or the reflected light intensity changes at a certain angle. Can be detected. Therefore, SPR does not require labeling with fluorescent substances or radioactive substances, and is useful as a quantitative method capable of real-time evaluation.
  • the SPR imaging method that applies this SPR is to monitor the state of interaction between substances by irradiating a polarized light beam over a wide range and analyzing the reflected image. It is possible to screen a chip on which a plurality of substances are fixed, and to observe the morphology of an object adsorbed on the surface with high sensitivity.
  • the type of the light source is not particularly limited, but it is preferable to use light including near infrared light that makes the change in the SPR resonance angle particularly sensitive.
  • a white light source capable of irradiating light over a wide range, such as metal lamps, ride lamps, mercury lamps, xenon lamps, halogen lamps, fluorescent lamps, and incandescent lamps, can be used.
  • a halogen lamp which is simple and inexpensive, with a light power supply having a sufficiently high intensity.
  • An ordinary white light source has a drawback that unevenness of light occurs in the filament portion. If the light from the light source is irradiated as it is, unevenness of light and darkness will occur in the image obtained by reflection, making it difficult to evaluate screening and morphological changes. Therefore, as a means for uniformly irradiating the chip with light, a method in which the light is passed through the pinhole and converted into force-parallel light is preferable.
  • the means through the pinhole is preferable as a means for obtaining a light beam with uniform brightness, but there is a drawback that the illuminance decreases when light passes through the pinhole as it is. Therefore, it is preferable to install a convex lens between the pinhole and the light source, collect light and pass it through the pinhole as a means to ensure sufficient illuminance!
  • the white light source is radiated light, there is a necessary force S to make it parallel light using a convex lens before condensing.
  • Parallel light can be obtained by installing a light source near the focal length of the convex lens.
  • By installing another convex lens and installing a pinhole near the focal length of the lens it is possible to pass the condensed light through the pinhole.
  • the light that crosses and passes through the pinhole is converted into parallel light by the CCTV lens for the camera.
  • the cross-sectional area of the parallel light beam obtained at that time is preferably adjusted to 10 to: LOOOmm2. This method allows extensive screening and
  • the polarized light beam is applied to the opposite surface of the metal thin film on which the substance or the aggregate of substances is fixed.
  • the polarized light beam is applied to the opposite surface of the metal thin film on which the substance or substance aggregate is fixed, and the reflected light beam is obtained.
  • the reflected light beam from the metal thin film passes through a near-infrared wavelength optical interference filter and transmits only light near a certain wavelength and is photographed with a force CCD camera.
  • the center wavelength of the optical interference filter is preferably 600 to 1000 nm, which has high SPR sensitivity.
  • the power to call the wavelength width of the wavelength at which the transmittance of the optical interference filter is half that of the maximum is called the half-value width.
  • Images taken with a CCD camera through an optical interference filter are captured by a computer, and changes in the brightness of a part can be evaluated in real time, and the entire image can be evaluated by image processing. In this way, it is possible to screen a chip on which a plurality of substances are fixed and to observe the morphology of an object adsorbed on the surface with high sensitivity.
  • the SPR chip used in the present invention preferably comprises a metal substrate in which a metal thin film is formed on a transparent substrate, and directly or indirectly on the metal thin film, chemically or physically.
  • a slide on which a substance or a collection of substances is immobilized is used.
  • the material of the substrate is not particularly limited, but it is preferable to use a transparent material. Specific examples include glass or plastics such as polyethylene terephthalate (PET), polycarbonate, and acrylic. I especially like glass!
  • the thickness of the substrate is preferably about 0.1 to 20 mm, and more preferably about 1 to 2 mm.
  • the refractive index nD of the transparent substrate or the transparent substrate and the prism in contact with the transparent substrate is preferably 1.5 or more.
  • Examples of the metal constituting the metal thin film include gold, silver, copper, aluminum, platinum and the like. These may be used alone or in combination, but it is particularly preferable to use gold.
  • the method for forming the metal thin film is not particularly limited, and examples of known methods include vapor deposition, sputtering, and ion coating. Of these, the vapor deposition method is preferred. Also, the thickness of the metal thin film is preferably about 10 to 3000A, more preferably about 100 to 600A.
  • One particularly preferred embodiment of the present invention uses an array in which at least one peptide serving as a protein kinase substrate, preferably a plurality of peptides, is immobilized on a metal-deposited substrate.
  • a solution containing a kinase such as a cell lysate is made to act on the array, and a chelate compound is further allowed to act to make the interaction state particularly SPR. Detected by SPR imaging method.
  • the peptide serving as a protein kinase substrate is a peptide having the property of undergoing a phosphorylation reaction by the protein kinase.
  • the length of the peptide is not particularly limited, but generally a peptide having 100 amino acid residues or less is used. Preferably, those having a strength of about 5 to 60 amino acid residues, more preferably about 10 to 25 amino acid residues are used.
  • the peptide may be a peptide obtained by chemical synthesis based on a known technique! /, Or a peptide produced by a genetic engineering technique may be used.
  • one end of the above peptide is added with cysteine, a cysteine residue having a thiol group, or an oligohistidine (His-tag), glutathione S transferase. It is also useful to use a tag with a commonly used tag such as (GST).
  • the method for immobilizing the above peptide on the metal thin film is not particularly limited, but the substrate peptide is immobilized by introducing a functional group such as an anchor and a scissors on the surface of the metal thin film in advance. It is more preferable to perform a soot treatment.
  • the functional group include an amino group, a mercapto group, a carboxyl group, and an aldehyde group.
  • carboxymethyl dextran on a metal thin film is bonded to a water-soluble polymer such as PEG that is terminally modified with a carboxyl group to introduce a carboxyl group on the surface, and EDC Using a water-soluble carbodiimide such as (1 ethyl 3, 4 dimethylaminopropyl carbodiimide) as an ester of NHS (N-hydroxysuccinimide), reacting the amino group of the peptide or protein with the activated carboxyl group A method is mentioned. Or after modifying the surface with maleimide, Fix it via an amino acid residue containing a thiol group. In this case, the cysteine residue is preferably added to one end of the peptide. In order to reduce the non-specific influence, the latter method of fixing via a thiol group is more preferable, but it is not particularly limited.
  • a water-soluble polymer such as PEG that is terminally modified with a carboxyl group to introduce a carboxyl group on the surface
  • a method for immobilizing a peptide with a tag such as His-tag or GST described above is also very simple and useful.
  • NTA nitrite triacetate
  • dartathione are preferably introduced onto the metal thin film.
  • His-tag the NTA-introduced array is treated with nickel chloride and then the substrate is immobilized.
  • a chelate compound is used for specifically monitoring the phosphate of the substrate on the array with high sensitivity.
  • a chelate compound is generally a polydentate ligand, and refers to a complex formed by coordination of a chelate reagent to a metal ion such as dumbbell, iron, cobalt, or palladium.
  • a polyamine zinc complex in which a compound having a property of selectively and reversibly binding to an acid is preferred. More preferably, a dinuclear zinc complex having a polyamine complex as a ligand is used.
  • a hexamine dinuclear zinc (II) complex having a basic structure of a dinuclear zinc (II) complex.
  • a typical example of such a compound is 1,3-bis [bis (2-pyridylmethyl) amino] -2-hydroxypropanolate (IUPAC name: 1, 3 as shown in formula (I)) -bis [bis (2-pyriayimethyl) ammo] — 2— propanolatodizmc (II) complex dinuclear zinc complex having a polyamine complex as a ligand The hydroxyl group is a bridging ligand of two zinc divalent ions as an alcoholate)
  • the present invention is not particularly limited to this compound.
  • the complex used in the present invention can be synthesized using a general chemical synthesis technique, but can also be synthesized using a commercially available compound as a raw material.
  • the compound represented by the above formula (I) (Zn L) is a commercially available 1, 3 bis [bis (2-pyridylmethyl) amino] -2
  • the ligand and the receptor used in the present invention are preferably selected to have a relationship capable of specifically recognizing and binding each other.
  • ligands and receptors include piotin and avidin, biotin and streptavidin, steroid hormones and steroid hormone receptors, nucleic acids and transcription factors, single-stranded nucleic acid sequences and sequences that are complementary to the single-stranded nucleic acid sequences.
  • a nucleic acid sequence such as a double-stranded nucleic acid.
  • piotin as a ligand and avidin or streptavidin as a receptor, but it is not limited thereto.
  • the present invention is characterized in that the polyamine sub-10 complex as described above is modified with a ligand such as piotin.
  • the ligand may be a steroid hormone or nucleic acid other than those limited to piotin.
  • a linear linker is preferably modified with piotin via a single structure.
  • the molecular weight is in the range of 500 to 1000, more preferably ⁇ is 600 to 900, and further preferably ⁇ is 700 to 900.
  • the force exemplified by the structure shown in the formula ( ⁇ ) is not particularly limited! / ⁇ . If the molecular weight of the polyamine zinc complex modified with piotin exceeds 1000
  • the stability is also deteriorated, which is not preferable from the viewpoint of binding efficiency to phosphoric acid.
  • the solution concentration of the piotin-modified polyamine zinc complex that acts in the present invention is not particularly limited, but is usually 1 ⁇ to 10 ⁇ , preferably ⁇ to 1 ⁇ , more preferably ⁇ to: LOmM It is a range.
  • the mode of action on the array is not particularly limited, but the amount of liquid necessary to spread the piotin-modified polyamine zinc complex solution over the entire array surface may be dropped, or the array may be immersed in the solution. Good.
  • the solution may be applied by bringing the solution into contact with the surface of the array while pumping the solution.
  • the working temperature may be room temperature or it may be incubated at about 20-40 ° C.
  • the action time is preferably about 10 minutes to 2 hours, more preferably about 30 minutes to 1 hour.
  • the receptor may be a steroid hormone receptor, a transcription factor, or a nucleic acid, which is not limited to avidin or streptavidin. It is more preferable to use streptavidin.
  • the concentration of avidin or streptavidin to be actuated is not particularly limited, but is usually in the range of 1 ⁇ to 10 ⁇ , preferably ⁇ to 1 ⁇ , and more preferably ⁇ to: LOmM.
  • the mode of action on the array is not particularly limited, and is the same as in the case of the piotine-modified polyamine zinc complex.
  • an antibody that recognizes avidin or streptavidin is allowed to act further, so that the detection sensitivity can be further enhanced.
  • the concentration at which the antibody is allowed to act is not particularly limited.
  • the force is preferably about 0.01 to 10 ⁇ g / mU, more preferably about 0.1 to ⁇ g Zml.
  • a monoclonal antibody is preferred from the viewpoint of force specificity to which both a monoclonal antibody and a polyclonal antibody can be applied.
  • the mode of action on the array is not particularly limited, and it is the same as in the case of a piotin-modified polyamine zinc complex, avidin or streptavidin.
  • a piotin-modified polyamine zinc complex, avidin or streptavidin is allowed to act as a j jet, a piotin-modified polyamine zinc complex and an avidin or streptavidin complex previously formed are allowed to act directly. May be. Also in this case, as described above, an antibody that recognizes avidin or streptavidin may be allowed to act.
  • the molar ratio of the piotin-modified polyamine zinc complex and avidin or streptavidin is preferably 1: 1 to 4: 1. It is preferable to purify the reaction product to remove unreacted material, but the reaction product can be applied as it is.
  • a chelating compound is advantageous in that it can be synthesized at a very low cost by the method described above. In addition, it can be stored at room temperature, is stable and easy to use, and is advantageous in terms of distribution. Also, it works regardless of the type of amino acid residue that is phosphorylated, and the reaction does not depend on the amino acid sequence in the vicinity of the phosphorylated amino acid! In particular, it has a great advantage compared to the detection method using antibodies.
  • Examples of the protein kinase include various tyrosine kinases and serine Z threonine kinases.
  • the types of protein kinases are not particularly limited, and can be basically applied to all types of protein kinases.
  • the molecular weight of 4ar mPEG is 10000, and it is a molecule with a PEG chain strength of almost the same length from the center, and is very hydrophilic.
  • all four ends of PEG are thiol groups, and particularly exhibit metal binding to gold.
  • a gold-deposited slide in which 3 nm of chromium was vapor-deposited on an 18 mm square, 2 mm-thick SF15 glass slide and 45 nm of gold was vapor-deposited was immersed in the 4armPEG thiol solution for 3 hours to bond 4armPEG thiol to the entire gold substrate.
  • a photomask was placed on this slide and irradiated with a 500 W ultra-high pressure mercury lamp (manufactured by Usio Electric) for 2 hours to remove 4armPEG thiol in the UV irradiation part.
  • the photomask has 96 square holes of 500 m square (consisting of 8 x 12 patterns), and the pitch between the hole centers is designed to be lmm!
  • phosphate substrate and a non-phosphorylated substrate Five types were immobilized on the surface obtained as described above. The arrangement of each substrate peptide with respect to the amino acid sequence and its anchorage is shown in the lower part of FIG. Blank indicates a blank spot where no peptide is immobilized.
  • Each substrate peptide was dissolved in phosphate buffer (20 mM phosphate, 150 mM NaCl; pH 7.2) at lmgZml, and spotted 10 nl at a time using a MultiSPRinter TM spotter (manufactured by Toyobo).
  • the reaction was allowed to stand at room temperature for 16 hours in a wet environment to carry out a fixed reaction.
  • the maleimide group formed on the surface of the chip reacts with the thiol group of the cysteine residue at the end of the substrate peptide to share the substrate peptide It can be fixedly attached to the surface.
  • PEG thiol (SUNBRIGHT MESH — 50H, manufactured by NOF Corporation) is phosphate buffered to an ImM concentration. Dissolved in a solution (20 mM phosphoric acid, 150 mM NaCl; pH 7.2), 3001 was poured onto the chip and allowed to react at room temperature for 30 minutes. The molecular weight of PEG thiol used here is 5,000.
  • Phos-tag TM BTL-104 (purchased from Nard Research Co., Ltd.) represented by the following formula ( ⁇ ) was used.
  • Phos—tag TM BTL—104 is 25 g / ml, and the solution is 10 mM HEPES—NaOH buffer containing 0.005% Tween20, 10% (vZv) ethanol, 0.2M sodium nitrate, ImM zinc nitrate. (PH 7.4) was used. The action lasted for 1 hour at room temperature.
  • the above-treated array was washed with PBS and water, and set in an SPR device (MultiSPRinter TM manufactured by Toyobo Co., Ltd.) for analysis.
  • As the running buffer the same 10 mM HEPES-NaOH buffer (pH 7.4) containing 0.005% Tween 20, 10% (vZv) ethanol, 0.2 M sodium nitrate and ImM zinc nitrate was used.
  • Streptavidin (MolecularProbes) is dissolved in the same buffer to prepare solutions of 1, 5, 10, 50 / z gZ ml concentration, and sequentially using a planner pump (Model 021 from Flume). The solution was allowed to act on the surface of the array while being fed. The temperature was set at 30 ° C. The obtained sensorgram is shown in the upper part of Fig. 1. Although there is a difference in strength depending on the type of phosphate substrate, a significant increase in signal can be confirmed in any phosphate substrate compared to non-phosphate substrate.
  • Example 2 The same array as in Example 1 was used until blocking of the unreacted maleimide group, the array was washed with PBS and water, and set in an SPR device (Toyobo MultiSPRinter TM) for analysis. It was.
  • the same running buffer as in Example 1 was used. Prepare Phos-tag TM BTL-104 in running buffer to prepare solutions of 1, 5, and 10 ⁇ g ml concentration, and use the Planger pump (From Model 021) to feed the solution onto the array surface. Acted. The temperature was set at 30 ° C. Thereafter, washing was carried out while feeding a running buffer, and then the streptavidin solution was fed in the order of 1, 5 and 10 gZml concentrations to act. The obtained sensorgram is shown in the upper part of FIG.
  • Binding of 4armPEG thiol to the gold substrate was performed in the same manner as in Example 1.
  • 16 square holes (4 x 4 x 500 / zm square) were used as a photomask. Pattern power also becomes.
  • Patterning was performed in the same manner as in Example 1 except that what was included was used.
  • Subsequent introduction of amino groups to the array surface and formation of maleimide group surfaces using a crosslinking agent were carried out in the same manner as in Example 1.
  • the spotting of the substrate peptide was performed manually by 0.:1.
  • PKA protein kinase A
  • substrate asame as PKA (Ser) in Fig.
  • PKA catalyst subunit Promega
  • PKA catalyst subunit Promega
  • PKA buffer pH7.4
  • 1M magnesium chloride solution 201 10 mM ATP (Amersham Biosciences) 4 ⁇ It was set to 1.
  • the washed array was washed with PBS and water, and Phos-tag TM BTL
  • Example 3 was operated under the same conditions as in Example 1.
  • the array was washed with PBS and water and set in an SPR device (Toyobo MultiSPRinter TM) for analysis.
  • the same running buffer as in Example 1 was used.
  • the streptavidin solution was allowed to act while being fed in the order of 1, 5, and 10 gZml concentrations.
  • the resulting sensorgram and SPR imaging results are shown in Fig. 3.
  • the strongest binding signal has been confirmed, and in the PKA substrate, a binding signal can be confirmed at a certain rate. There was almost no signal change in the negative control and blank. This result indicates that the phosphate of PKA substrate on the array could be detected.
  • Example 3 Same PKA substrate as in Example 3 and its positive and negative controls
  • an array in which cSrc substrate and its positive control were immobilized at 96 points was prepared in the same manner as in Example 1.
  • the arrangement of the substrate is as shown in the lower part of FIG. Blocking, PKA reaction, and Phos-tag TM BTL-104 were performed in the same manner as in Example 3.
  • the array was washed with PBS and water, and set in an SPR device (Toyobo MultiSPRinter TM). Analysis was performed.
  • the same running buffer as in Example 1 was used.
  • a streptavidin solution (10 gZml) was allowed to act by feeding.
  • the plate was washed with a running buffer solution, and streptavidin antibody (Vector) was adjusted to a concentration of 2.5 gZml and allowed to act by feeding the solution.
  • streptavidin antibody Vector
  • Fig. 4 One gram of the sensor and the results of SPR imaging are shown in Fig. 4.
  • a strong signal increase was confirmed in both cases, and a certain level of signal increase was also confirmed in the PKA substrate.
  • the increase in signal is more pronounced than when streptavidin antibody is allowed to act, and its specificity is also excellent, indicating that it has an excellent sensitizing effect.
  • the array in which phosphorylated and non-phosphorylated substrates were immobilized on the PKA substrate (threonine type), PKC substrate (serine type), and cSrc substrate (Yao; chitocin type) shown in Fig. 1 was the same as in Example 1. Made. Subsequent blocking was performed in the same manner as in Example 1 and set in an SPR device (MultiSPRinter TM manufactured by Toyobo). On the other hand, Phos-tag TM BTL-104 solution (50 ⁇ g / ml) and streptavidin solution (75 ⁇ g / ml) were mixed in equal amounts and reacted at room temperature for 30 minutes to form a complex. .
  • This complex solution was diluted 10-fold and 5-fold with the same running knofer as in Example 1 and allowed to act while being fed. Further, after confirming that the signal rise became a plateau, the plate was washed with a running buffer solution, and a streptavidin antibody (Vector) was adjusted to a concentration of 2.5 ⁇ g Zml and acted on the solution. The obtained sensorgram is shown in FIG. In this case as well, a specific signal increase can be observed only in the phosphate substrate.
  • the method of the present invention does not require any special technique, and particularly when SPR is used. It is now possible to analyze various protein kinase dynamics very easily and quickly without the need to use labels such as fluorescent substances and radioactive substances. By using a chelate compound, it is inexpensive and easy to handle, and has a significant advantage over conventional methods in that it is not affected by the type of phosphate amino acid or the amino acid sequence in the vicinity thereof. By utilizing the present invention, it is possible to comprehensively analyze a wide variety of protein kinase signals, effectively profiling intracellular protein kinase kinetics associated with the introduction of genes with unknown functions or drug administration. Can be eyed. This is expected to contribute to the industrial world, as it is expected to be applied to the functional analysis of new gene abilities, the approach to new drug discovery and the development of genomic drug discovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

亜鉛キレート剤を用いた SPRによるリン酸ィ匕検出方法
技術分野
[0001] 本発明は、金属基板上にプロテインキナーゼを認識するペプチドが 1もしくは複数 種固定ィ匕されてなるアレイを用いたプロテインキナーゼ活性の解析方法であって、ァ レイ上でリン酸化反応を行った後、ピオチン修飾されたキレート化合物を作用させる ことによりリン酸ィ匕を検出する方法に関する。特に表面プラズモン共鳴 (以下、 SPRと 示すこともある。)による分析技術を用いることにより、迅速で効率的であり、し力も簡 便なプロテインキナーゼ活性の解析を実現することができるものである。より具体的に は、 SPRにより解析された物質間の相互作用の様子をモニターした表面プラズモン 共鳴イメージング法 (以下、 SPRイメージング法と示すこともある。)を応用した新規な プロテインキナーゼ活性の解析方法である。 背景技術
[0002] 近年、細胞内シグナル伝達に関する研究は飛躍的に進歩しており、増殖因子ゃサ イト力インにより活性ィ匕した細胞表面の受容体からどのように核へシグナルが伝達さ れるかはもとより、細胞周期、接着、運動、極性、形態形成、分化、生死などを制御す る様々なシグナル伝達経路の実態が明らかになつてきた。これらのシグナル伝達経 路は独立して機能しているのではなぐ互いにクロストークしあい、システムとして機能 している。そして、癌をはじめ色々な疾病の原因力 これらのシグナル伝達経路の異 常として説明されるようになってきた。
[0003] 上述したシグナル伝達経路にぉ 、ては、様々な種類のプロテインキナーゼが複雑 に関連しぁ 、ながら重要な役割を果たして 、ることが知られて 、る。これらプロテイン キナーゼの活性を網羅的に解析して、その細胞内における動態を一度にプロファイリ ングすることができれば、細胞生物学、薬学の基礎的研究はもとより、創薬開発、臨 床応用などの分野においても大きく寄与しうるものと期待される。し力しながら、これま でには簡便で効率よく種々のプロテインキナーゼにおける動態を同時にプロファイリ ングできるような技術は、未だ確立されて!、な 、のが現状である。 [0004] 既に報告されている関連する技術としては、例えばペプチドアレイを用いてチロシ ンキナーゼの一種である cSrcキナーゼの活性を評価したことが報告されて 、る(例え ば、非特許文献 1参照)。また、 p60チロシンキナーゼゃプロテインキナーゼ A (以下 、 PKAとも示す。)などに関して、おのおのの基質ペプチドをガラススライドに固定ィ匕 したアレイを用いて、蛍光標識された抗体を用いたリン酸化反応の検出系につ 、て 報告されて!、る例 (例えば、非特許文献 2及び 3参照)や、あるいは放射性物質( [ γ 3 2P] ATP)を用いたアレイ上でのキナーゼ反応の検出系につ 、て報告されて 、る例( 例えば、非特許文献 4, 5及び 6参照)がある。しかしながら、いずれの先行技術にお いても種々のプロテインキナーゼの動態を同時に効率的にプロフアイリングための方 法としては、十分な技術が開示されているものではない。また上記いずれの方法にお いても、蛍光性物質や放射性物質を用いる必要があり、解析に手間を要する点や、 取り扱いの困難性、特殊な技術や施設の必要性などの点で大きな問題がある。
[0005] 抗体を用いた検出系は広く適用されているものの、特にリン酸ィ匕セリン、リン酸化ス レオニンを認識する抗体に関しては、その結合特異性や親和性の点で十分な特性 を有するものも見出されておらず、精度のよい測定の実現には大きな問題がある。ま た抗体の場合は、リン酸ィ匕アミノ酸の種類に応じて別々なものを作用させる必要があ ることや、リン酸ィ匕アミノ酸の近傍におけるアミノ酸配列への結合依存性が高 、場合 が多ぐユニバーサルな検出系手段として利用するにはあまり有利ではない。
[0006] 非特許文献 1 : Benjamin T. Housemanら、 Nature Biotechnology 第 20卷、 第 270〜274頁(2002年 3月発行)
非特許文献 2 : Bioorganic & Medical Chemistry Letters 第 12卷、第 208 5〜2088頁(2002年発行)
非特許文献 3 : Bioorganic & Medical Chemistry Letters 第 12卷、第 207 9〜2083頁(2002年発行)
非特許文献 4: Current Opinion in Biotechnology 第 13卷、第 315〜320頁 (2002年発行)
非特許文献 5 :The Journal of Biological Chemistry 第 277卷、第 27839〜 27849頁(2002年発行) 非特許文献 6 : Science第 289卷、第 1760〜1763頁(2000年発行) 図面の簡単な説明
[0007] [図 1]実施例 1において、アレイ上に基質ペプチドを固定ィ匕したパターン並びに SPR 解析及び SPRイメージングを行った結果を示す図である。
[図 2]実施例 2における SPR解析及び SPRイメージングを行った結果を示す図である
[図 3]実施例 3において、アレイ上に基質ペプチドを固定ィ匕したパターン並びに SPR 解析及び SPRイメージングを行った結果を示す図である。
[図 4]実施例 4において、アレイ上に基質ペプチドを固定ィ匕したパターン並びに SPR 解析及び SPRイメージングを行った結果を示す図である。
[図 5]実施例 5における SPR解析を行った結果を示す図である。
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、安価な物質を用いて迅速でし力も特別な技術を必要としな 、簡易な手 法により基質ペプチドのリン酸化を検出することにより、特に種々のプロテインキナー ゼにおける動態を網羅的にプロフアイリングできる方法を確立しょうとするものである。 課題を解決するための手段
[0009] 本発明者らは、上記事情に鑑み鋭意検討を重ねた結果、金属を蒸着した基板上に プロテインキナーゼを認識するペプチドが固定ィ匕されてなるアレイを用いてプロティ ンキナーゼによるリン酸ィ匕を行った後、特定の分子量を有するピオチン修飾キレート 化合物を作用させ、好適には更にストレプトアビジンもしくはアビジンを作用させた際 に、特に該アレイ上における物質間の相互作用を SPRイメージング法により検出する ことが、様々なプロテインキナーゼ動態を迅速に特に網羅的な解析を行う上で極め て有用であることを見出し、本発明に到達した。
[0010] 本発明は以下のような構成力もなる。
1.基板上に固定化されたペプチドを用いたリン酸ィ匕の判定において、リガンドにより 修飾されて ヽるキレートイ匕合物を、該基板上の判定した ヽ該ペプチドと接触させるこ とを特徴とするプロテインキナーゼ活性の解析方法。
2.リガンドにより修飾されたキレートイ匕合物を作用させた後、更にレセプターを作用さ せることを特徴とする 1のプロテインキナーゼ活性の解析方法。
3.レセプターを作用させた後、更にレセプターを認識する抗体を作用させることを特 徴とする 1または 2のプロテインキナーゼ活性の解析方法。
4.基板上に固定化されたペプチドを用いたリン酸ィ匕の判定において、リガンドにより 修飾されたキレート化合物とレセプターとの複合体を形成させ、該複合体を該基板上 の判定したい該ペプチドと接触させることを特徴とするプロテインキナーゼ活性の解 析方法。
5.複合体を作用させた後、更にレセプターを認識する抗体を作用させることを特徴 とする 4のプロテインキナーゼ活性の解析方法。
6.リガンドにより修飾されたキレート化合物の分子量が 500〜1000である 1〜5のい ずれかのプロテインキナーゼ活性の解析方法。
7.リガンドにより修飾されたキレートイ匕合物の分子量が 600〜900である 6のプロティ ンキナーゼ活性の解析方法
8.リガンドがピオチンであり、リガンドに特異的なレセプターがアビジンもしくはストレ プトアビジンであることを特徴とする 1〜7のいずれかのプロテインキナーゼ活性の解 析方法。
9.キレートイ匕合物がポリアミン亜鉛錯体であることを特徴とする:!〜 8のいずれかのプ 口ティンキナーゼ活性の解析方法。
10.キレートイ匕合物として、ポリアミンィ匕合物を配位子として有する二核亜鉛錯体を 用いる 1〜9の 、ずれかのプロテインキナーゼ活性の解析方法。
11.キレートイ匕合物として、式 (I)に記載される化合物を用いる 1〜10のいずれかの プロテインキナーゼ活性の解析方法。
[化 3]
Figure imgf000007_0001
12.前記ペプチドが cGMP依存性プロテインキナーゼファミリー、
cAMP依存性プロテインキナーゼ(PKA)ファミリー、ミオシン軽鎖キナーゼファミリー 、プロテインキナーゼ C (PKC)ファミリー、プロテインキナーゼ D (PKD)ファミリー、プ 口ティンキナーゼ B (PKB)ファミリー、 MAPキナーゼ(MAPK)カスケードに属する プロテインキナーゼファミリー、 Srcチロシンキナーゼファミリー、及び受容体型チロシ ンキナーゼファミリ一力もなる群力も選ばれる少なくとも 1種のプロテインキナーゼの 基質である 1〜 11のいずれかのプロテインキナーゼ活性の解析方法。
13.各々が別々のプロテインキナーゼの基質である、少なくとも 2種のペプチドが金 属薄膜上に固定ィ匕されてなるアレイを用いる 1〜12のいずれかのプロテインキナー ゼ活性の解析方法。
14.少なくとも 1種のプロテインキナーゼの基質となる対応する少なくとも 1種のぺプ チドが基板の金属薄膜上に固定ィ匕されてなるアレイ上のペプチドにプロテインキナ ーゼを含み得る供試材料及びヌクレオシド三リン酸を作用させ、リン酸化された前記 ペプチドを検出することを特徴とする 1〜 13の 、ずれかのプロテインキナーゼ活性の 解析方法。
15.リン酸ィ匕されたペプチドを、表面プラズモン共鳴 (SPR)を利用して検出すること を特徴とする 1〜 14のいずれかのプロテインキナーゼ活性の解析方法。
16.リン酸ィ匕されたペプチドを、表面プラズモン共鳴イメージング法により検出するこ とを特徴とする 1〜 15の 、ずれかのプロテインキナーゼ活性の解析方法。
17.基板が、金属薄膜を有する基板であり、該金属薄膜上にペプチドが固定化され ていることを特徴とする 1または 4のプロテインキナーゼ活性の解析方法。
18.基板上にペプチドがアレイ状に固定ィ匕されていることを特徴とする 1、 4または 17 のプロテインキナーゼ活性の解析方法。
19. 2種類以上のペプチドがアレイ状に固定ィ匕されていることを特徴とする 18のプロ ティンキナーゼ活性の解析方法。
20.ペプチドのリン酸化を受ける部位がセリン、スレオニン、チロシンのいずれ力 2つ 以上の組み合わせのアミノ酸残基を含む 2種類以上のペプチドがアレイ状に固定ィ匕 されていることを特徴とする 18のプロテインキナーゼ活性の解析方法。
21.基板上に固定ィ匕されたペプチドを用いたリン酸ィ匕の検出用キットであって、リガ ンドにより修飾されたキレートイ匕合物と、リガンドに特異的なレセプターと、を含んでな るリン酸ィ匕検出用キット。
22.リガンドを認識する抗体を含むことを特徴とする 21のリン酸ィ匕検出用キット。
23.リガンドがピオチンであり、リガンドに特異的なレセプターがアビジンもしくはスト レプトアビジンであることを特徴とする 21または 22のリン酸ィ匕検出用キット。
24.キレートイ匕合物がポリアミン亜鉛錯体であることを特徴とする 21〜23のいずれか のリン酸化検出キット。
25.基板上に固定ィ匕されたペプチドを用いたリン酸ィ匕の検出用キットであって、リガ ンドにより修飾されたキレートイ匕合物とレセプターとの複合体を含むリン酸ィ匕検出用キ ッ卜。
26.リガンドを認識する抗体を含むことを特徴とする 25のリン酸ィ匕検出用キット。
27.リガンドがピオチンであり、リガンドに特異的なレセプターがアビジンもしくはスト レプトアビジンであることを特徴とする 25または 26のリン酸ィ匕検出用キット。
28.キレートイ匕合物がポリアミン亜鉛錯体であることを特徴とする 25〜27のいずれか のリン酸化検出キット。
29.キレートイ匕合物として、ポリアミンィ匕合物を配位子として有する二核亜鉛錯体を 用いる 21〜28のいずれかのリン酸ィ匕検出用キット。
30.キレートイ匕合物として、式 (I)に記載される化合物を用いる 21〜29のいずれかの リン酸化検出用キット。
[化 4]
Figure imgf000009_0001
31.表面プラズモン共鳴(SPR)を利用して検出するための 21〜30のいずれかのリ ン酸化検出用キット。
32. SPRイメージング法により検出するための 21〜31のいずれかのリン酸化検出用 やット。
発明の効果
[0011] 本発明の方法により、特殊な技術を要することもなぐまた特に SPRを用いた場合 には、蛍光性物質、放射性物質等の標識を用いる必要もなぐ非常に簡便で迅速に 様々なプロテインキナーゼ動態の解析を行うことが可能となった。キレート化合物を 用いることにより、安価で取り扱いも容易であるうえに、リン酸ィ匕アミノ酸の種類やその 近傍のアミノ酸配列による影響も受けない点でも従来の方法と比べて大きな優位性 がある。本発明を利用することにより、特に多種類のプロテインキナーゼシグナルを 網羅的に解析することができ、機能が未知な遺伝子の導入、あるいは薬物投与に伴 う細胞内のプロテインキナーゼ動態を効果的にプロフアイリングすることができる。こ れにより新規な遺伝子力もの機能解析、新薬探索へのアプローチと 、つたゲノム創 薬への展開が期待される。
発明を実施するための最良の形態
[0012] 本発明における基板上のリン酸ィ匕ペプチドの検出方法としては、従来力もよく知ら れているような放射性物質、蛍光性物質、化学発光性物質などの標識化合物を利用 して行うことが可能である。し力しながら、表面プラズモン共鳴法 (SPR)、楕円偏光法 (以下、エリプソメトリと示す。)、和周波発生 (以下、 SFGと示す。)分光測定などの光 学的検出方法を適用するのがより好ましい。なかでも SPRは位相差を求める必要が なぐ反射光強度を求めるだけで、表面の nmオーダーの膜厚変化を求めることがで きるため特に好ましい。 SPRイメージング法は広い範囲の観察が可能であり、アレイ フォーマットでの物質相互作用観察が可能である点でより好ましい。
[0013] ペプチドのリン酸ィ匕は、プロテインキナーゼを有し得る供試試料とヌクレオシド三リン 酸、例えば ATPを本発明のアレイ上に適用して行うことができる。最適なリン酸化反 応条件はプロテインキナーゼの種類に応じて変動する力 例えば、ノ ッファー中にプ 口ティンキナーゼを有し得る供試試料とヌクレオシド三リン酸をカ卩え、 10〜40°C程度 の温度で、好ましくは 30〜40°Cの温度で、 10分〜 6時間程度、好ましくは 30〜1時 間程度反応させることで、ペプチドをリン酸ィ匕することができる。必要に応じて、リン酸 化の反応溶液には、 cAMP、 cGMP、 Mg +, Ca2+リン脂質などのリン酸ィ匕を補助する 物質を共存させるのがよい。
[0014] 動態のプロフアイリングの対象となるプロテインキナーゼとしては、蛋白質のチロシ ン、セリン、スレオニン、ヒスチジンなどのアミノ酸の側鎖をリン酸ィ匕する酵素が挙げら れ、例えば cGMP依存性プロテインキナーゼファミリー、
cAMP依存性プロテインキナーゼ(PKA)ファミリー、ミオシン軽鎖キナーゼファミリー 、プロテインキナーゼ C (PKC)ファミリー、プロテインキナーゼ D (PKD)ファミリー、プ 口ティンキナーゼ B (PKB)ファミリー、 MAPキナーゼ(MAPK)カスケードに属する プロテインキナーゼファミリー、 Srcチロシンキナーゼファミリー、及び受容体型チロシ ンキナーゼファミリーなどが例示できる。
[0015] 本発明において、ペプチドはプロテインキナーゼの動態を網羅的にプロフアイリン グすることが目的であるので、 1種類のペプチドは 1種類のプロテインキナーゼによつ てのみリン酸ィ匕され、他のプロテインキナーゼによってはリン酸ィ匕されな 、のが好まし い。プロテインキナーゼの基質となるペプチド配列は公知である力、公知の配列に基 づき適宜選択することが可能である。本発明のアレイがその動態の把握を必要とする 複数のプロテインキナーゼの種類に対応した種類のペプチドを固定ィ匕して 、れば、 1 枚のアレイで全てのプロテインキナーゼのプロフアイリングをすることができ好ましい。 もちろん 1つのアレイに 1種のみのプロテインキナーゼに対応するペプチドを固定化 し、必要な数のアレイを使用してプロテインキナーゼのプロフアイリングを行ってもよい [0016] エリプソメトリは試料に光を照射し、薄膜の表面で反射した光と、薄膜の裏面で反射 してきた光の干渉によって生じる偏向状態の変化から、膜厚、屈折率を測定できる。 すなわち、 P偏光と s偏光の光に対する反射率の絶対値の比及び位相変化の比を評 価する手段である。なかでも波長を変えながらエリプソメトリを測定する分光エリプソメ トリは非常に敏感に表面の膜厚変化が検出できるため好ましい。
[0017] SFGは 2次の非線形光学効果の一種であり、周波数の異なる 2種類の入射光 (周 波数 ω ΐと周波数 ω 2)が媒質中で混合され、 ω 1 + ω 2、あるいは ω 1— ω 2の光が発 生する現象である。特に ω ΐとして可視光を用い、 ω 2として波長可変の赤外光を用 いると赤外分光に類似した振動分光を行うことができる。この手法は表面選択性が良 いため単分子膜レベルの分子の振動分光が可能であり、非常に敏感な表面解析方 法として有用である。
[0018] 上述したように、特に好ましい 1つの実施形態において、本発明は SPRを用いて種 々のプロテインキナーゼ活性を網羅的に解析することが特に好ましい。 SPRは金属 に照射する偏光光束によってエバネッセント波が生じて表面ににじみだし、表面波で ある表面プラズモンを励起し、光のエネルギーを消費して反射光強度を低下させる。 反射光強度が著しく低下する共鳴角は金属の表面に形成される層の厚みによって 変化する。よって、金属の表面に調べられるべき物質あるいは物質の集合体を固定 化し、サンプル中の物質あるいは物質の集合体との相互作用を共鳴角の変化、ある いはある角度での反射光強度の変化で検出可能である。したがって、 SPRは蛍光物 質、放射性物質などによるラベルが不要であり、しかもリアルタイム評価が可能な定 量法として有用である。
[0019] この SPRを応用した SPRイメージング法は、広範囲に偏光光束を照射し、その反射 像を解析することで、物質間の相互作用の様子を画像処理技術等を駆使すること〖こ よりモニター化する方法であり、複数の物質を固定ィ匕したチップをスクリーニングする ことや、表面に吸着する物体のモルホロジーを高感度に観察することが可能である。
[0020] SPRイメージング法にぉ 、ては、反射像を解析するためにチップに広範囲で偏光 光束を照射し、かつ光束の照度を十分に確保するための手段が必要である。図 1に おいてその一例を示した。偏光光束の照度は明るいほどセンサーの感度が上昇して より好まし 、。
[0021] 光源の種類は特に限定されるものではないが、 SPR共鳴角の変化が特に敏感にな る近赤外光を含む光を用いるのが好ましい。具体的には、メタルノ、ライドランプ、水銀 ランプ、キセノンランプ、ハロゲンランプ、蛍光灯、白熱灯などの広範囲に光を照射す ることのできる白色光源を用いることができるが、なかでも得られる光の強度が十分に 高ぐ光の電源装置が簡易で安価なハロゲンランプが特に好ましい。
[0022] 通常の白色光源はフィラメント部に光の明暗ムラが生じる欠点がある。光源の光を そのまま照射すると、反射して得られる像に明暗ムラが生じ、スクリーニングやモルホ ロジ一変化を評価するのが困難となる。したがって、チップに均一に光を照射する手 段として、光をピンホールに通して力 平行光にする方法が好ましい。ピンホールを 通す手段は、明るさの均一な光束を得る手段としては好ましいが、そのままピンホー ルに光を通すと照度が低下する欠点がある。そこで、十分な照度を確保する手段とし て、ピンホールと光源の間に凸レンズを設置し、集光してピンホールを通す方法を用 、ることが好まし!/、。
[0023] 白色光源は放射光であるため、集光する前に凸レンズを用いて平行光にする必要 力 Sある。凸レンズの焦点距離近傍に光源を設置することで、平行光を得ることができ る。もう一枚凸レンズを設置し、そのレンズの焦点距離近傍にピンホールを設置する ことで集光した光をピンホールに通すことが可能である。ピンホール内で交差し、通 過した光はカメラ用の CCTVレンズで平行光とする力 その際に得られる平行光束の 断面面積は 10〜: LOOOmm2に調節するのが好ましい。この方法によって広範囲にわ たるスクリーニングや
モルホロジー観察が可能となる。
[0024] 相互作用をモニターする際に、上記偏光光束は物質あるいは物質の集合体が固 定化されている金属薄膜の反対面に照射される。上記偏光光束は物質もしくは物質 の集合体が固定化されている金属薄膜の反対面に照射され、その反射光束が得ら れる。金属薄膜からの反射光束は近赤外波長の光干渉フィルターを通し、ある波長 付近の光のみを透過させて力 CCDカメラで撮影される。
[0025] 光干渉フィルターの中心波長は、 SPRの感度が高い 600〜1000nmが好ましい。 光干渉フィルターの透過率が極大時の半分になる波長の波長幅を半値巾と呼ぶ力 半値巾は小さい方が波長の分布がシャープとなり好ましぐ具体的には半値巾 ΙΟΟη m以下が好ま 、。光干渉フィルターを通して CCDカメラで撮影された像はコンビュ ータに取り込まれ、ある部分の明るさの変化をリアルタイムで評価することや、画像処 理により全体像の評価が可能である。こうして複数の物質を固定ィ匕したチップをスクリ 一-ングすることや、表面に吸着する物体のモルホロジーを高感度に観察することが できる。
[0026] 本発明において用いる SPR用のチップは好ましくは透明な基板上に金属薄膜が形 成された金属基板からなり、上記金属薄膜上に直接的もしくは間接的に、化学的もし くは物理的に、物質もしくは物質の集合体が固定化されているスライドが用いられる。 基板の素材は特に限定されるものではないが、透明なものを用いるのが好ましい。具 体的にはガラス、あるいはポリエチレンテレフタレート(PET)、ポリカーボネート、ァク リルなどのプラスチック類が挙げられる。中でもガラスが特に好まし!/、。
[0027] 基板の厚さは 0. l〜20mm程度が好ましく l〜2mm程度がより好ましい。金属薄 膜からの反射像を評価する目的を達成するために、 SPR共鳴角はできるだけ小さい 方が撮影される画像がひしゃげる恐れがなく解析がしゃすい。したがって、透明基板 あるいは透明基板とそれに接触するプリズムの屈折率 nDは 1. 5以上であることが好 ましい。
[0028] 金属薄膜を構成する金属としては、金、銀、銅、アルミニウム、白金等が挙げられ、 これらを単独であるいは組み合わせて用いてもょ 、が、なかでも金を用いるのが特に 好ましい。金属薄膜の形成方法は特に限定されるものではないが、公知の手法とし て例えば蒸着法、スパッタ法、イオンコーティング法などが挙げられる。なかでも蒸着 による方法が好ましい。また、金属薄膜の厚みは 10〜3000A程度が好ましぐ 100 〜600 A程度がより好ま U、。
[0029] 本発明の 1つの特に好ましい具体例は、金属を蒸着した基板上にプロテインキナー ゼの基質となるペプチドが少なくとも 1種、好ましくは複数種のペプチドが固定ィ匕され てなるアレイを用い、且つ該アレイに細胞破砕液等のキナーゼを含有する溶液を作 用させ、さらにキレートイ匕合物を作用させてそれらの相互作用の様子を特に SPRな 、しは SPRイメージング法により検出することを特徴とする。本発明にお 、てプロティ ンキナーゼの基質となるペプチドとは、該プロテインキナーゼによりリン酸ィ匕反応を受 ける性質を有するペプチドを 、うものである。
[0030] ペプチドの長さは特に限定されないが、一般的には 100アミノ酸残基以下のものが 用いられる。好ましくは 5〜60アミノ酸残基、より好ましくは 10〜25アミノ酸残基程度 力 なるものが用いられる。ペプチドは公知の手法に基づく化学的な合成により得ら れたペプチドであってもよ!/、し、ある 、は遺伝子工学的な手法により生産されたぺプ チドを用いてもよい。また基板への脱着を容易にするために、上記ペプチドの片末端 において、ピオチンや、チオール基を有するシスティン残基を付加させたものや、あ るいはオリゴヒスチジン(His— tag)、グルタチオン S トランスフェラーゼ(GST)の ような一般的によく用いられるタグを付加させたものを用いるのも有用である。
[0031] 上記ペプチドの金属薄膜への固定化の方法は、特に限定されるものではないが、 金属薄膜表面に固定ィ匕しゃすいような官能基を予め導入しておいて基質ペプチドを 固定ィ匕処理するのがより好ましい。該官能基としては、アミノ基、メルカプト基、カルボ キシル基、アルデヒド基などが挙げられる。これらの官能基を金属薄膜表面に導入す るには、一般的に用いられて 、るアルカンチオールの誘導体を用いるのが好まし!/、。
[0032] その際に、 J. M. Brockmanらにより J. Am. Chem. Soc.第 121卷、第 8044〜8 051頁(1999年)において報告されているような方法に基づいて、アルカンチオール 層を介して固定ィ匕し、 PEG (ポリエチレングリコール)によりバックグラウンドを修飾す る方法を用いてもよい。また、非特異的な影響をより抑えるために、 PEGの末端に上 述のような官能基が導入された誘導体をアルカンチオールに結合させた後に、ぺプ チドを固定ィ匕することも、スぺーサー効果を奏する点で有用である。
[0033] 具体的には、例えば金属薄膜にカルボキシメチルデキストランある 、はカルボキシ ル基で末端が修飾された PEGのような水溶性高分子を結合させて表面にカルボキ シル基を導入して、 EDC (1 ェチル 3, 4 ジメチルァミノプロピルカルボジイミド) のような水溶性カルボジイミドを用いて NHS (N—ヒドロキシスクシンイミド)のエステル として、活性ィ匕されたカルボキシル基にペプチドもしくは蛋白質のアミノ基を反応させ る方法が挙げられる。あるいは表面をマレイミドにより修飾した後、システィンのような チオール基を含むアミノ酸残基を介して固定ィ匕してもょ ヽ。この場合のシスティン残 基はペプチドの一方の末端に付加されてなるのが好ま 、。非特異的な影響を低減 させるためには、後者のチオール基を介した固定ィ匕方法がより好ましいが、特に限定 されるものではない。
[0034] 上述した His— tagや GSTのようなタグを付カ卩したペプチドを固定化する方法も非 常に簡便で有用である。この場合には、上述のように金属表面にアルカンチオール を介してアミノ基ゃカルボキシル基を導入した後に、それぞれ NTA (二トリ口三酢酸) 、ダルタチオンを金属薄膜上に導入させておくのがよい。 His— tagの場合は、 NTA を導入したアレイを塩ィ匕ニッケルにより処理した後で基質を固定ィ匕する。
[0035] 本発明においては、アレイ上における基質のリン酸ィ匕を特異的に感度よくモニター するためにキレートイ匕合物を用いる。キレートイ匕合物とは一般に多座配位子な 、しキ レート試薬が、亜鈴、鉄、コバルト、パラジウムのような金属イオンに配位して生じた錯 体をいうものを指すが、特にリン酸に選択的かつ可逆的に結合する性質を有するィ匕 合物が好ましぐポリアミン亜鉛錯体を用いることがより好ましい。ポリアミンィ匕合物を 配位子として有する二核亜鉛錯体を用いることが更に好ましい。更に、二核亜鉛 (II) 錯体を基本構造にもつへキサァミン二核亜鉛 (II)錯体を用いることがより好ま U、。
[0036] このような化合物の典型としては、式 (I)に示されるような 1, 3—ビス [ビス(2—ピリ ジルメチル)ァミノ]— 2—ハイドロキシプロパノラート(IUPAC名: 1, 3 -bis [bis (2- pyriayimethyl) ammo]— 2— propanolatodizmc (II) complexノ 本' 裕とす るポリアミンィ匕合物を配位子として有する二核亜鉛錯体 (ただし、プロノ V—ル骨格の 水酸基はアルコラートとして二つの亜鉛 2価イオンの架橋配位子になっている)が挙 げられる力 本発明は特にこの化合物に限定されるものではない。
[0037] [化 5]
Figure imgf000015_0001
[0038] 本発明で用いられる錯体は、一般的な化学合成技術を利用して合成することが可 能であるが、市販の化合物を原料としても合成することができる。例えば、上記式 (I) で示される化合物(Zn L)は、市販の 1, 3 ビス [ビス (2-ピリジルメチル)ァミノ] - 2
2
ハイドロキシプロパンと酢酸亜鈴を原料として次の方法により合成することができる 。 1, 3 ビス [ビス(2 ピリジルメチル)ァミノ]— 2—ハイドロキシプロパン 4. 4mmol のエタノール溶液(100ml)に 10M水酸化ナトリウム水溶液(0. 44ml)を加え、次い で酢酸亜鉛二水和物(9. 7mmol)を加える。溶媒を減圧留去することにより褐色の オイルを得ることができる。この残渣に水 10mlをカ卩えて溶解後、 1M過塩素酸ナトリウ ム水溶液(3当量)を 70°Cに加温しながら滴下して加え、析出する無色の結晶を濾取 し、加熱乾燥することにより式 (I)の構造式で表される酢酸イオン付加体の二過塩素 酸塩 (Zn L-CH COO- 2C10 "·Η Ο)を高収率で得ることができる。この結晶は
2 3 4 2
一分子の結晶水を含んで 、る。
[0039] 本発明に用いられるリガンドとレセプターは、お互いを特異的に認識し結合できる 関係にあるものが選択されるのがよい。リガンドとレセプターの例としては、ピオチンと アビジン、ビォチンとストレプトアビジン、ステロイドホルモンとステロイドホルモンレセ プター、核酸と転写因子、一本鎖核酸配列とその一本鎖核酸配列に相補的な配列 を有する一本鎖核酸配列などがあげられる。なかでも、リガンドとしてピオチン、レセ プターとしてアビジンもしくはストレプトアビジンを用いるのが好ましいが、これに限定 されるものではない。
[0040] 本発明にお 、ては、上述のようなポリアミン亜 10錯体が例えばピオチンのようなリガ ンドにより修飾されたものを用いることを特徴とする。なお、リガンドとはピオチンに限 定されるものではなぐステロイドホルモンや核酸などであってもよい。直鎖状のリンカ 一構造を介してピオチン修飾されていることが好ましい。そして、その分子量としては 500〜1000の範囲であり、より好まし <は 600〜900、更に好まし <は 700〜900で ある。具体的には、式 (Π)に示されるような構造のものが例示される力 特に限定され るものではな!/ヽ。ピオチン修飾されたポリアミン亜鉛錯体の分子量が 1000を超えると
、安定性も悪くなり、リン酸への結合効率の点からも好ましくない。
[0041] [化 6]
Figure imgf000017_0001
[0042] なお、本発明にお ヽて作用されるピオチン修飾ポリアミン亜鉛錯体の溶液濃度は 特に限定されないが、通常は 1 μ Μ〜10Μ、好ましくは Μ〜1Μ、より好ましく は Μ〜: LOmMの範囲である。またアレイへの作用様式に関しても特に限定され な ヽが、ピオチン修飾ポリアミン亜鉛錯体溶液をアレイ表面全体に広がるのに必要な 液量をドロップしてもよいし、溶液中にアレイを浸漬させてもよい。あるいはポンプを用 いて溶液を送液しながら、アレイ表面上に溶液を接触させることにより作用させてもよ い。作用温度は室温でもよいし、 20〜40°C程度でインキュベートさせてもよい。作用 時間は 10分から 2時間程度が好ましぐ 30分から 1時間程度がより好ましい。
[0043] 本発明にお ヽては、ピオチン修飾ポリアミン亜鉛錯体を作用させるだけでもリン酸 化を検出することは可能な場合もあるが、特にピオチンが修飾されたものを用いること 用させることにより、その検出感度がより高まるという効果を期待することができる。な お、レセプターとは、アビジンもしくはストレプトアビジンに限定されるものではなぐス テロイドホルモンレセプターや転写因子や核酸などであってもよ 、。ストレプトァビジ ンを作用させる方がより好ましい。作用させるアビジンもしくはストレプトアビジンの濃 度は特に限定されないが、通常は 1 μ Μ〜10Μ、好ましくは Μ〜1Μ、より好ま しくは Μ〜: LOmMの範囲である。またアレイへの作用様式に関しても特に限定 されるものではなぐピオチン修飾ポリアミン亜鉛錯体の場合と同様である。
[0044] 更に好ましい態様として、アビジンもしくはストレプトアビジンを作用させた後に、更 にアビジンもしくはストレプトアビジンを認識する抗体を作用させることにより、検出感 度を更に高めることが可能になる。抗体を作用させる際の濃度は特に限定されない 力 好ましくは 0. 01-10 μ g/mUより好ましくは 0. 1から μ gZml程度である。抗 体としてはモノクロナール抗体、ポリクロナール抗体いずれも適用できる力 特異性の 点でモノクロナール抗体の方が好ましい。アレイへの作用様式に関しても特に限定さ れるものではなぐピオチン修飾ポリアミン亜鉛錯体、アビジンもしくはストレプトァビジ ンの場合と同様である。
[0045] また、ピオチン修飾ポリアミン亜鉛錯体、アビジンもしくはストレプトアビジンを j噴次 作用させてもょ ヽが、予めピオチン修飾ポリアミン亜鉛錯体とアビジンもしくはストレブ トァビジンの複合体を形成させたものを直接作用させてもよい。この場合も上述のよう に、さらにアビジンもしくはストレプトアビジンを認識する抗体を作用させてもよい。複 合体の形成に際しては、ピオチン修飾ポリアミン亜鉛錯体とアビジンもしくはストレプト アビジンとのモル比にして 1: 1乃至 4 : 1にして反応させるのがよい。反応物は精製し て未反応物を除去する方が好ましいが、反応物をそのまま適用することも可能である
[0046] こうしたキレート性ィ匕合物の適用は、上述したような方法により非常に安価に合成す ることができる点で有利である。また常温により保存ができる点でも安定で使 、やすく 、流通面においても有利である。またリン酸ィ匕されるアミノ酸残基の種類に関係なく作 用をすることや、リン酸ィ匕されたアミノ酸の近傍におけるアミノ酸配列に対して反応が 依存しな!、点にぉ 、て、特に抗体を用いて検出する方法と比較して大きな優位性を 有している。
[0047] また、上記プロテインキナーゼとしては、種々のチロシンキナーゼあるいはセリン Z スレオニンキナーゼが挙げられる。これらプロテインキナーゼの種類にっ 、ては特に 限定されるものではなぐ基本的にはあらゆる種類のプロテインキナーゼに対して適 用することが可能である。
実施例
[0048] 以下、実施例を挙げることにより、本発明をより具体的に説明するが、本発明は実 施例に特に限定されるものではない。
[0049] [実施例 1]
(ペプチド固定化)
末端官能基がチオール基である 4armPEG (日本油脂製 SUNBRIGHT PTE - 1 OOSH)を ImMの濃度で 7mlのエタノール:水 =6 : 1の混合溶液に溶解させた。 4ar mPEGの分子量は 10000であり、中心からほぼ同等の長さの PEG鎖力 つ存在す る分子であり親水性が非常に高い。また、 PEGの 4つの末端はすべてチオール基で あり、特に金に対する金属結合性を示す。 18mm四方、 2mm厚の SF15ガラススライ ドにクロムを 3nm蒸着し、金を 45nm蒸着した金蒸着スライドを、上記 4armPEGチォ ール溶液に 3時間浸漬させ、金基板全体に 4armPEGチオールを結合させた。
[0050] このスライドの上にフォトマスクを載せ、 500W超高圧水銀ランプ(ゥシォ電機製)で 2時間照射し、 UV照射部の 4armPEGチオールを除去した。フォトマスクは 500 m 四方の正方形の穴が 96個有し(8個 X 12個のパターンからなる。)、穴の中心間のピ ツチは lmmに設計されて!、る。フォトマスクの穴があ!、て!/、る部分は UV光が透過し 、スライドに照射されてパターンィ匕される。照射されな力つた部分は 4armPEGが残り 、チップのバックグラウンド(Background)部分としてレファレンス部として機能する。
[0051] 8 - Amino - 1 - Octanethiol, Hydrochrolide (8 - AOT, 同仁化学研究所製 )の ImMエタノール溶液に 1時間浸漬し、 UV照射部に 8— AOTの自己組織化表面 を形成させた。分子量 3400の末端にスクシンイミド (NHS)基とマレイミド (MAL)基 を有するヘテロ二官能型ポリエチレングリコール(NHS— PEG MAL, Nektar社 製)をリン酸緩衝液(20mMリン酸、 150mM NaCl;pH7. 2)に lOmgZmlで溶解 し、金表面の 8— AOTに 2時間反応させた。 8— AOTのァミノ基と NHS— PEG— M ALの NHS基が反応し、 MAL基は未反応のまま残るため、 PEGを介してマレイミド 基を表面に導入することができた。
[0052] 上記のようにして得られた表面に、 5種類のプロテインキナーゼ基質 (リン酸ィ匕基質 及び非リン酸化基質)を固定化させた。各基質ペプチドのアミノ酸配列並びにその固 定ィ匕に関する配置を図 1下部に示した。 blankはペプチドを固定ィ匕しないブランクス ポットを示す。それぞれの基質ペプチドをリン酸緩衝液(20mMリン酸、 150mM N aCl;pH7. 2)に lmgZmlで溶解して、 MultiSPRinter™スポッター(東洋紡績製) を用いて 10nlずつスポッティングを行った。その後、ウエットな環境下で室温、 16時 間静置させて固定ィ匕反応を行った。チップの表面に形成させたマレイミド基と基質べ プチド末端のシスティン残基が有するチオール基とが反応し、基質ペプチドを共有 結合的に表面に固定ィ匕することができる。
[0053] (未反応マレイミド基のブロッキング)
基質ペプチドを固定ィ匕した表面をリン酸緩衝液で洗浄した後、未反応のマレイミド 基をブロッキングするために、 PEGチオール(日本油脂製 SUNBRIGHT MESH — 50H)を ImM濃度になるようにリン酸緩衝液(20mMリン酸、 150mM NaCl;pH 7. 2)に溶解して、 300 1をチップ上に注出し、室温で 30分反応させた。ここで用い た PEGチオールの分子量は 5, 000である。
[0054] (アレイ上のリン酸基検出)
上記のようにブロッキングを行ったアレイを PBS及び水でアレイの洗浄を行 、、ピオ チン修飾ポリアミン亜鉛錯体を作用させた。ピオチン修飾ポリアミン亜鉛錯体としては 、以下の式 (Π)に示される Phos— tag™BTL— 104 (株式会社ナード研究所より購 入)を用いた。 Phos— tag™BTL— 104は 25 g/ml濃度とし、溶解液には 0. 005 %Tween20, 10% (vZv)エタノール、 0. 2M硝酸ナトリウム、 ImM硝酸亜鉛を含 む 10mM HEPES— NaOH緩衝液(pH7. 4)を用いた。作用は室温で 1時間行つ た。
[0055] [化 7]
Figure imgf000020_0001
上記作用させたアレイを PBS及び水でアレイの洗浄を行 ヽ、 SPR装置 (東洋紡績 製 MultiSPRinter™)にセッティングして解析を行った。ランニングバッファ一として は、上記と同じ 0. 005%Tween20, 10% (vZv)エタノール、 0. 2M硝酸ナトリウム 、 ImM硝酸亜鉛を含む 10mM HEPES—NaOH緩衝液(pH7. 4)を用いた。スト レプトアビジン(MolecularProbes製)を同緩衝液に溶解して、 1, 5, 10, 50 /z gZ ml濃度の溶液を調製し、順次プランンジャーポンプ (フロム製 Model— 021)を用い て送液させながらアレイ表面に作用させた。温度は 30°Cに設定して行った。得られた センサーグラムを図 1上部に示した。リン酸ィ匕基質の種類によりその強度に差異はあ るものの、いずれのリン酸ィ匕基質においても非リン酸ィ匕基質と比べると有意なシグナ ル上昇を確認することができて 、る。
[0057] また、 SPRイメージングを行った結果を図 1中段に示した。これは SPR解析に際し て、 CCDカメラによる画像の取り込みを 5秒ごとに行い、ストレプトアビジン(以下、 SA と示すこともある。)反応後における時点で取り込まれた画像から、反応前の時点での 画像を、画像演算処理ソフトウェア Scion Image (Scion Corp.製)を用いて引き 算処理を行った結果である。リン酸ィ匕基質の固定化された箇所にのみスポットが認め られており、 Phos— tag™BTL— 104が特異的に結合していることが確認されている
[0058] [実施例 2]
実施例 1と同じアレイを用いて未反応マレイミド基のブロッキングまでは同様に行い 、アレイを PBS及び水でアレイの洗浄を行い、 SPR装置(東洋紡績製 MultiSPRint er™)にセッティングして解析を行った。ランニングバッファ一は実施例 1と同じものを 用いた。 Phos— tag™BTL— 104をランニングバッファーに溶解して 1, 5, 10 μ g ml濃度の溶液を調製し、順次プランンジャーポンプ (フロム製 Model— 021)を用い て送液させながらアレイ表面に作用させた。温度は 30°Cに設定して行った。その後ラ ンユングバッファーを送液させながら洗浄を行った後、ストレプトアビジン溶液を 1, 5 , 10 gZml濃度順に送液して作用させた。得られたセンサーグラムを図 2上部に示 した。この場合においてもリン酸ィ匕基質の種類によりその強度に差異はあるものの、 いずれのリン酸化基質においても非リン酸化基質と比べると有意なシグナル上昇を 確認することができて 、る。また実施例 1と同様にして SPRイメージングを行った結果 を図 2中段に示した。これについても同様の傾向が確認される。
[0059] [実施例 3]
(ペプチド固定化)
金基板への 4armPEGチオールの結合は、実施例 1と同様に行った。その後の UV 照射に際しては、フォトマスクとして 500 /z m四方の正方形の穴が 16個(4個 X 4個の パターン力もなる。)有するものを用いた点以外は、実施例 1と同様にしてパターンィ匕 を行った。その後のアレイ表面へのァミノ基の導入、架橋剤を用いたマレイミド基表面 の形成も、実施例 1と同様に行った。基質ペプチドのスポッティングはマニュアル操作 により 0.: 1ずつで行った。基質としては、 PKA (プロテインキナーゼ A)基質(図 1 の PKA(Ser)と同じ)、セリン残基が予めリン酸化されたポジティブコントロール(pPK A)、セリン残基がァラニン残基に置換されて ヽるネガティブコントロール (nPKA)を 用いて、図 3下部に示したような配置で固定ィ匕させた。スポット後の反応も実施例 1と 同様に行った。
[0060] (未反応マレイミド基のブロッキング)
実施例 1と全く同様にして行った。
[0061] (アレイ上のリン酸基検出)
上記のようにブロッキングを行ったアレイを PBS及び水でアレイの洗浄を行 、、 PK Aによるリン酸化を行った。 PKA溶液 400 1をアレイ上にドロップして、 30°C、 30分 間反応を行った。 PKA溶液の組成は、 PKA触媒サブユニット (プロメガ製) 1 1、 50 mMトリス一塩酸緩衝液(pH7. 4) 375 1、 1M塩化マグネシウム溶液 20 1、 10m M ATP (アマシャムバイオサイエンス製) 4 μ 1とした。
[0062] ΡΚΑ反応を行ったアレイを PBS及び水でアレイの洗浄を行い、 Phos— tag™BTL
- 104を実施例 1と同じ条件により作用させた。そのアレイを PBS及び水でアレイの 洗浄を行い、 SPR装置 (東洋紡績製 MultiSPRinter™)にセッティングして解析を行 つた。ランニングバッファ一は実施例 1と同じものを用いた。実施例 1と同様にストレブ トァビジン溶液を 1, 5, 10 gZml濃度の順に送液しながら作用させた。その結果 得られたセンサーグラム及び SPRイメージングを行った結果を図 3に示した。ポジティ ブコントロールにおいては最も強い結合シグナルが確認されており、さらに PKA基質 にお 、てもある程度の割合で結合シグナルが確認できて 、る。ネガティブコントロー ル、ブランクにおいてはほとんどシグナル変化が認められていない。この結果より、ァ レイ上における PKA基質のリン酸ィ匕を検出できていることが示される。
[0063] [実施例 4]
実施例 3と同じ PKA基質及びそのポジティブコントロール、ネガティブコントロール 並びに cSrc基質及びそのポジティブコントロールを 96点に固定化したアレイを実施 例 1と同様にして作製した。基質の配置は図 4下部に示す通りである。ブロッキング、 PKA反応、 Phos— tag™BTL— 104の作用を実施例 3と同様にして行い、アレイを PBS及び水でアレイの洗浄を行い、 SPR装置(東洋紡績製 MultiSPRinter™)にセ ッティングして解析を行った。ランニングバッファ一は実施例 1と同じものを用いた。ス トレブトアビジン溶液(10 gZml)を送液により作用させた。シグナル上昇がプラト 一になるのを確認後、ランニングバッファーの送液により洗浄して、ストレプトアビジン 抗体 (Vector製)を 2. 5 gZml濃度にして送液により作用させた。得られたセンサ 一グラム及び SPRイメージングを行った結果を図 4に示した。 PKA及び cSrc基質の ポジティブコントロールにおいては、いずれも強いシグナル上昇が確認され、 PKA基 質においてもある程度のシグナル上昇が確認できる。ネガティブコントロール、ブラン クにおいて、ほとんどシグナル変化は見られていない。シグナル上昇はストレプトアビ ジン抗体を作用させることより顕著になっており、その特異性の面でも優れていること から、優れた増感効果を奏していることが示される。
[0064] [実施例 5]
図 1に示した PKA基質 (スレオニン型)、 PKC基質 (セリン型)、 cSrc基質 (Yao ;チ 口シン型)についてリン酸化、非リン酸化基質を固定化したアレイを実施例 1と同様に して作製した。その後のブロッキングも実施例 1と同様にして行い、 SPR装置 (東洋紡 績製 MultiSPRinter™)にセッティングした。一方、 Phos— tag™BTL— 104溶液( 50 μ g/ml)とストレプトアビジン溶液 (75 μ g/ml)を等量ずつ混合させて室温で 3 0分反応させて、複合体を形成させた。この複合体溶液を実施例 1と同じランニング ノ ッファーで 10倍、 5倍希釈したものを送液しながら作用させた。更にシグナル上昇 がプラトーになるのを確認後、ランニングバッファーの送液により洗浄して、ストレプト アビジン抗体 (Vector製)を 2. 5 μ gZml濃度にして送液により作用させた。得られ たセンサーグラムを図 5に示した。この場合もリン酸ィ匕基質においてのみ特異的にシ グナル上昇を認めることができる。
産業上の利用可能性
[0065] 本発明の方法により、特殊な技術を要することもなぐまた特に SPRを用いた場合 には、蛍光性物質、放射性物質等の標識を用いる必要もなぐ非常に簡便で迅速に 様々なプロテインキナーゼ動態の解析を行うことが可能となった。キレート化合物を 用いることにより、安価で取り扱いも容易であるうえに、リン酸ィ匕アミノ酸の種類やその 近傍のアミノ酸配列による影響も受けない点でも従来の方法と比べて大きな優位性 がある。本発明を利用することにより、特に多種類のプロテインキナーゼシグナルを 網羅的に解析することができ、機能が未知な遺伝子の導入、あるいは薬物投与に伴 う細胞内のプロテインキナーゼ動態を効果的にプロフアイリングすることができる。こ れにより新規な遺伝子力もの機能解析、新薬探索へのアプローチと 、つたゲノム創 薬への展開が期待され、産業界に寄与することが大である。

Claims

請求の範囲
[I] 基板上に固定化されたペプチドを用いたリン酸ィ匕の判定において、リガンドにより修 飾されて!、るキレートイ匕合物を、該基板上の判定した 、該ペプチドと接触させること を特徴とするプロテインキナーゼ活性の解析方法。
[2] リガンドにより修飾されたキレートイ匕合物を作用させた後、更にレセプターを作用さ せることを特徴とする請求項 1に記載のプロテインキナーゼ活性の解析方法。
[3] レセプターを作用させた後、更にレセプターを認識する抗体を作用させることを特 徴とする請求項 1または 2に記載のプロテインキナーゼ活性の解析方法。
[4] 基板上に固定化されたペプチドを用いたリン酸ィ匕の判定において、リガンドにより修 飾されたキレート化合物とレセプターとの複合体を形成させ、該複合体を該基板上の 判定したい該ペプチドと接触させることを特徴とするプロテインキナーゼ活性の解析 方法。
[5] 複合体を作用させた後、更にレセプターを認識する抗体を作用させることを特徴と する請求項 4に記載のプロテインキナーゼ活性の解析方法。
[6] リガンドにより修飾されたキレートイ匕合物の分子量が 500〜1000である請求項 1〜
5のいずれか〖こ記載のプロテインキナーゼ活性の解析方法。
[7] リガンドにより修飾されたキレートイ匕合物の分子量が 600〜900である請求項 6記載 のプロテインキナーゼ活性の解析方法
[8] リガンドがピオチンであり、リガンドに特異的なレセプターがアビジンもしくはストレプ トァビジンであることを特徴とする請求項 1〜7のいずれかに記載のプロテインキナー ゼ活性の解析方法。
[9] キレートイ匕合物がポリアミン亜鉛錯体であることを特徴とする請求項 1〜8の 、ずれ かに記載のプロテインキナーゼ活性の解析方法。
[10] キレートイ匕合物として、ポリアミンィ匕合物を配位子として有する二核亜鉛錯体を用い る請求項 1〜9のいずれかに記載のプロテインキナーゼ活性の解析方法。
[II] キレートイ匕合物として、式 (I)に記載される化合物を用いる請求項 1〜10のいずれ かに記載のプロテインキナーゼ活性の解析方法。
[化 1]
Figure imgf000026_0001
[12] 前記ペプチドが cGMP依存性プロテインキナーゼファミリー、
cAMP依存性プロテインキナーゼ(PKA)ファミリー、ミオシン軽鎖キナーゼファミリー 、プロテインキナーゼ C (PKC)ファミリー、プロテインキナーゼ D (PKD)ファミリー、プ 口ティンキナーゼ B (PKB)ファミリー、 MAPキナーゼ(MAPK)カスケードに属する プロテインキナーゼファミリー、 Srcチロシンキナーゼファミリー、及び受容体型チロシ ンキナーゼファミリ一力もなる群力も選ばれる少なくとも 1種のプロテインキナーゼの 基質である請求項 1〜11のいずれかに記載のプロテインキナーゼ活性の解析方法。
[13] 各々が別々のプロテインキナーゼの基質である、少なくとも 2種のペプチドが金属 薄膜上に固定ィ匕されてなるアレイを用いる請求項 1〜12のいずれかに記載のプロテ インキナーゼ活性の解析方法。
[14] 少なくとも 1種のプロテインキナーゼの基質となる対応する少なくとも 1種のペプチド が基板の金属薄膜上に固定ィ匕されてなるアレイ上のペプチドにプロテインキナーゼ を含み得る供試材料及びヌクレオシド三リン酸を作用させ、リン酸化された前記ぺプ チドを検出することを特徴とする請求項 1〜13のいずれかに記載のプロテインキナー ゼ活性の解析方法。
[15] リン酸化されたペプチドを、表面プラズモン共鳴 (SPR)を利用して検出することを 特徴とする請求項 1〜14のいずれかに記載のプロテインキナーゼ活性の解析方法。
[16] リン酸化されたペプチドを、表面プラズモン共鳴イメージング法により検出することを 特徴とする請求項 1〜15のいずれかに記載のプロテインキナーゼ活性の解析方法。
[17] 基板が、金属薄膜を有する基板であり、該金属薄膜上にペプチドが固定化されて いることを特徴とする請求項 1または 4に記載のプロテインキナーゼ活性の解析方法
[18] 基板上にペプチドがアレイ状に固定化されていることを特徴とする請求項 1、 4または
17に記載のプロテインキナーゼ活性の解析方法。
[19] 2種類以上のペプチドがアレイ状に固定ィ匕されていることを特徴とする請求項 18に 記載のプロテインキナーゼ活性の解析方法。
[20] ペプチドのリン酸化を受ける部位がセリン、スレオニン、チロシンの 、ずれか 2つ以上 の組み合わせのアミノ酸残基を含む 2種類以上のペプチドがアレイ状に固定ィ匕され ていることを特徴とする請求項 18に記載のプロテインキナーゼ活性の解析方法。
[21] 基板上に固定ィ匕されたペプチドを用いたリン酸ィ匕の検出用キットであって、リガンド により修飾されたキレートイ匕合物と、リガンドに特異的なレセプターと、を含んでなるリ ン酸化検出用キット。
[22] リガンドを認識する抗体を含むことを特徴とする請求項 21記載のリン酸化検出用キ ッ卜。
[23] リガンドがピオチンであり、リガンドに特異的なレセプターがアビジンもしくはストレプ トァビジンであることを特徴とする請求項 21または 22記載のリン酸ィ匕検出用キット。
[24] キレートイ匕合物がポリアミン亜鉛錯体であることを特徴とする請求項 21〜23のいず れかに記載のリン酸ィ匕検出キット。
[25] 基板上に固定ィ匕されたペプチドを用いたリン酸ィ匕の検出用キットであって、リガンド により修飾されたキレートイ匕合物とレセプターとの複合体を含むリン酸ィ匕検出用キット
[26] リガンドを認識する抗体を含むことを特徴とする請求項 25記載のリン酸化検出用キ ッ卜。
[27] リガンドがピオチンであり、リガンドに特異的なレセプターがアビジンもしくはストレプ トァビジンであることを特徴とする請求項 25または 26記載のリン酸ィ匕検出用キット。
[28] キレートイ匕合物がポリアミン亜鉛錯体であることを特徴とする請求項 25〜27の 、ず れかに記載のリン酸化検出キット
[29] キレートイ匕合物として、ポリアミンィ匕合物を配位子として有する二核亜鉛錯体を用い る請求項 21〜28のいずれかに記載のリン酸ィ匕検出用キット。
[30] キレートイ匕合物として、式 (I)に記載される化合物を用いる請求項 21〜29のいずれ かに記載のリン酸ィ匕検出用キット。
[化 2]
Figure imgf000028_0001
表面プラズモン共鳴(SPR)を利用して検出するための請求項 21〜30のいずれか に記載のリン酸ィ匕検出用キット。
SPRイメージング法により検出するための請求項 21〜31のいずれかに記載のリン 酸化検出用キット。
PCT/JP2005/012451 2004-07-13 2005-07-06 亜鉛キレート剤を用いたsprによるリン酸化検出方法 WO2006006456A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602005019750T DE602005019750D1 (de) 2004-07-13 2005-07-06 Verfahren zum nachweis der phosphorylierung durch spr mit zinkchelat
EP05758205A EP1785489B1 (en) 2004-07-13 2005-07-06 Method for detection of phosphorylation by spr with zinc chelate
US11/631,978 US20080064608A1 (en) 2004-07-13 2005-07-06 Method Of Detecting Phosphorylation By Spr Using Zinc Chelating Reagent

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004205562 2004-07-13
JP2004-205562 2004-07-13
JP2004-234635 2004-08-11
JP2004234635A JP2006050949A (ja) 2004-08-11 2004-08-11 プロテインキナーゼ活性の解析方法
JP2004323531A JP3988147B2 (ja) 2004-07-13 2004-11-08 プロテインキナーゼ活性の解析方法
JP2004-323530 2004-11-08
JP2004323530A JP2006133118A (ja) 2004-11-08 2004-11-08 リン酸化検出用キット
JP2004-323531 2004-11-08

Publications (1)

Publication Number Publication Date
WO2006006456A1 true WO2006006456A1 (ja) 2006-01-19

Family

ID=35783800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012451 WO2006006456A1 (ja) 2004-07-13 2005-07-06 亜鉛キレート剤を用いたsprによるリン酸化検出方法

Country Status (4)

Country Link
US (1) US20080064608A1 (ja)
EP (1) EP1785489B1 (ja)
DE (1) DE602005019750D1 (ja)
WO (1) WO2006006456A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007127988A2 (en) * 2006-04-28 2007-11-08 Perkinelmer Las, Inc. Detecting phospho-transfer activity
CN103293293B (zh) * 2013-06-24 2015-01-14 浙江大学 用于无标记癌胚抗原检测的电化学免疫传感器的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053932A1 (fr) * 2001-12-21 2003-07-03 Tohru Koike Complexes de zinc capables de pieger des substances portant des substituants anioniques
WO2004079358A1 (ja) * 2003-03-07 2004-09-16 Kabushiki Kaisha Nard Kenkyusho リン酸モノエステル化合物の分子量を求める方法、およびマススペクトル測定用添加剤
JP2004309303A (ja) * 2003-04-07 2004-11-04 Toyobo Co Ltd プロテインキナーゼ活性の解析方法
JP2004305024A (ja) * 2003-04-02 2004-11-04 Toyobo Co Ltd 酵素活性の調節方法および試薬
WO2005038442A1 (ja) * 2003-10-16 2005-04-28 Kabushiki Kaisha Nard Kenkyusho 表面プラズモン共鳴の測定方法および該方法に使用される貴金属化合物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921638B2 (en) * 1999-06-25 2005-07-26 Amersham Biosciences Ab Hydrogel-based microarray signal amplification methods and devices therefor
US7678539B2 (en) * 2000-08-10 2010-03-16 Corning Incorporated Arrays of biological membranes and methods and use thereof
EP1546118A4 (en) * 2002-05-03 2010-08-04 Molecular Probes Inc COMPOSITIONS AND METHODS FOR DETECTING AND ISOLATING PHOSPHORYLATED MOLECULES
US7202093B2 (en) * 2003-03-03 2007-04-10 Kabushiki Kaisha Nard Kenkyusho Method for labeling phosphorylated peptides, method for selectively adsorbing phosphorylated peptides, complex compounds used in the methods, process for producing the complex compounds, and raw material compounds for the complex compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053932A1 (fr) * 2001-12-21 2003-07-03 Tohru Koike Complexes de zinc capables de pieger des substances portant des substituants anioniques
WO2004079358A1 (ja) * 2003-03-07 2004-09-16 Kabushiki Kaisha Nard Kenkyusho リン酸モノエステル化合物の分子量を求める方法、およびマススペクトル測定用添加剤
JP2004305024A (ja) * 2003-04-02 2004-11-04 Toyobo Co Ltd 酵素活性の調節方法および試薬
JP2004309303A (ja) * 2003-04-07 2004-11-04 Toyobo Co Ltd プロテインキナーゼ活性の解析方法
WO2005038442A1 (ja) * 2003-10-16 2005-04-28 Kabushiki Kaisha Nard Kenkyusho 表面プラズモン共鳴の測定方法および該方法に使用される貴金属化合物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INAMORI K. ET AL: "Hyomen Plasmon Kyomei (SSR) Imaging ni yoru Aen Kagobutsu o Mochiita Chip Jo ni Okeru peptide no Phosphation ni kansuru Kenshutsu to Teiryoka", THE MOLECULAR BIOLOGY SOCIETY OF JAPAN NENKAI PROGRAM KOEN YOSHISHU, vol. 27, 25 November 2004 (2004-11-25), pages 609, XP002997791 *
See also references of EP1785489A4 *
YAMADA A. ET AL: "Page 48, Shinki Aen Ion Koteika Affinity Column o Mochiita Phosphation Peptide no Seisei", CHROMATOGRAPHY, vol. 24, no. 2, 2003, pages 103 - 104, XP002997792 *

Also Published As

Publication number Publication date
DE602005019750D1 (de) 2010-04-15
EP1785489A1 (en) 2007-05-16
EP1785489A4 (en) 2008-04-02
US20080064608A1 (en) 2008-03-13
EP1785489B1 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US11971417B2 (en) Single-molecule protein and peptide sequencing
Bock et al. Photoaptamer arrays applied to multiplexed proteomic analysis
WO2008128352A1 (en) Methods and compositions for signal amplification
WO2006006456A1 (ja) 亜鉛キレート剤を用いたsprによるリン酸化検出方法
JP2009050171A (ja) 表面プラズモン共鳴による基板上におけるリン酸化の検出方法
JP2004309303A (ja) プロテインキナーゼ活性の解析方法
JP3988147B2 (ja) プロテインキナーゼ活性の解析方法
JP4048445B2 (ja) プロテインキナーゼ活性の解析方法
JP2006050949A (ja) プロテインキナーゼ活性の解析方法
JP2004283114A (ja) 表面プラズモン共鳴を用いたプロテインキナーゼ活性の網羅的解析方法
JP2006170617A (ja) バイオチップ
JP4582408B2 (ja) ペプチドアレイ
JP2006053036A (ja) 固定化基質のリン酸化反応率定量方法
JP2006133118A (ja) リン酸化検出用キット
JP4599928B2 (ja) ペプチドの固定化方法
JP4437003B2 (ja) Evh1ドメインまたはevh1ドメインを有するタンパク質とevh1結合ドメインまたはevh1結合ドメインを有するタンパク質との相互作用を調節する化合物をスクリーニングする方法およびその相互作用を検出する方法
JP2006071324A (ja) ペプチドの固定化方法
JP2006223187A (ja) プロテインキナーゼ活性のプロファイリング方法
JP4441867B2 (ja) ペプチドアレイ
JP4508765B2 (ja) ペプチドの固定化方法
JP2006223188A (ja) プロテインキナーゼ活性のプロファイリング方法
JP2007228906A (ja) チップ上におけるリン酸化の検出方法
JP2007228905A (ja) チップ上におけるプロテインフォスファターゼ活性の検出方法
JP2006058183A (ja) ペプチドの固定化方法
JP2009052908A (ja) 表面プラズモン共鳴による基板上におけるカスパーゼ活性の検出方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11631978

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005758205

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005758205

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11631978

Country of ref document: US