WO2006005774A1 - Sistema de tracción de elevadores, escaleras mecánicas, andenes móviles y aerogeneradores dotado de motor asíncrono y motor asíncrono para dicho sistema de tracción - Google Patents

Sistema de tracción de elevadores, escaleras mecánicas, andenes móviles y aerogeneradores dotado de motor asíncrono y motor asíncrono para dicho sistema de tracción Download PDF

Info

Publication number
WO2006005774A1
WO2006005774A1 PCT/ES2004/000273 ES2004000273W WO2006005774A1 WO 2006005774 A1 WO2006005774 A1 WO 2006005774A1 ES 2004000273 W ES2004000273 W ES 2004000273W WO 2006005774 A1 WO2006005774 A1 WO 2006005774A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
stator
rotor
asynchronous motor
asynchronous
Prior art date
Application number
PCT/ES2004/000273
Other languages
English (en)
French (fr)
Inventor
Juan Jose Azurmendi Inchausti
Javier Lasa Berasategui
Original Assignee
Juan Jose Azurmendi Inchausti
Javier Lasa Berasategui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juan Jose Azurmendi Inchausti, Javier Lasa Berasategui filed Critical Juan Jose Azurmendi Inchausti
Priority to BRPI0418917-5A priority Critical patent/BRPI0418917A/pt
Priority to CA002612141A priority patent/CA2612141A1/en
Priority to PCT/ES2004/000273 priority patent/WO2006005774A1/es
Priority to US10/542,806 priority patent/US20060055273A1/en
Priority to ARP050102418A priority patent/AR049352A1/es
Priority to TW094119608A priority patent/TW200602253A/zh
Priority to UY28962A priority patent/UY28962A1/es
Publication of WO2006005774A1 publication Critical patent/WO2006005774A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/043Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors

Definitions

  • the invention has for its object a traction system for elevators, escalators, moving platforms and wind turbines, equipped with an asynchronous motor with a squirrel cage rotor with low starting current and high performance, as well as said asynchronous motor, whose power and speed are scalable by varying the frequency and the increase voltage to obtain between 2 and 2000 k ' W of power in different motor models depending on their physical size and their connection, the speed being proportional to the programmed frequency.
  • the lifting devices, escalators and mobile platforms powered by electric motors present special problems such as the large number of starts and stops per unit of time and the variation in loads. Until now this problem has been solved using geared motors.
  • the energy generators applied to the wind generators both for starting the equipment and generator, need a revolution multiplier.
  • the invention relates to ⁇ e traction systems powered by low slip, high torque asynchronous motors, an unusual drive to date in this field.
  • the asynchronous motor is so named because the rotating magnetic field generated by the stator is compensated for by the one created by induction in the rotor with a certain delay in the rotation that determines a slippage between the two and that in motors built with the prior art is of the order of magnitude of 16% of the speed of rotation of the magnetic field created by the stator under nominal conditions.
  • the asynchronous motors of the prior art have a
  • SUBSTITUTE SHEET (RULE 26) high starting current of the order of 1.5 to 3 times the nominal current and they use high current densities, normally of the order of 10 A / mm 2 .
  • the asynchronous motor of the present invention has been obtained, which has the following advantages: a) The asynchronous motor starts without a current consumption point. b) It has very low slippage, of the order of 8%. c) High performance. d) Low current density that does not exceed 6 A / mm 2 Io which guarantees a uniform and unsaturated magnetic field. e) Low heating, since in the electrical winding the
  • FIG. 1 represents an expanded perspective view of the stator and rotor without winding or copper bars, respectively;
  • Fig. 2 represents a side view of the rotor where the arrangement of the copper bars and rings of the squirrel cage is illustrated;
  • Fig. 3 represents a side view of the asynchronous motor casing with a separate section to better illustrate its construction;
  • Fig. 4 represents a view of section X-X 'of Fig. 3 where the shape of the stator and the motor casing can be seen;
  • Fig. 5 illustrates the angular torque-speed characteristic curve of the asynchronous motor of the invention
  • Fig. 6 illustrates the angular intensity-speed characteristic curve of the asynchronous motor of the invention
  • Fig. 7 illustrates the current-torque characteristic curve of the asynchronous motor of the invention
  • Fig. 8 represents the starting intensity-angular velocity curves of a standard asynchronous motor or a synchronous motor and an asynchronous motor according to the invention.
  • the asynchronous motor of the invention is described below, which is particularized based on a preferred embodiment thereof for powers from 2 to 20 kW used in elevators.
  • Fig. 1 illustrates an expanded perspective view of stator 1 and rotor 2 of the asynchronous motor, showing only the magnetic plates that make them up with the corresponding grooves for inserting the winding into stator 1, not shown, and of the bars 21 and rings 22 of the squirrel cage in the rotor as can be seen in Fig. 2 which shows a side view of the rotor 2.
  • Rotor 2 in short circuit formed by a squirrel cage of copper bars with a number between preferably 54 and 76 and more preferably 66 in Ia preferred embodiment.
  • the number of bars of rotor 2 is proportional to the number of grooves of stator 1 in an approximate ratio of 90% of the first with respect to the second.
  • the squirrel cage is formed by copper bars 21 of 5 x 16 mm in cross section that are inclined 8 or with respect to the generatrices of the ideal cylinder formed by the outer surface of the drum in the squirrel cage.
  • the squirrel cage is closed by two circular copper rings 22, also with a cross section of 5 x 16 mm, to which the bars 21 are welded on the inside.
  • the diameter of the rotor 2 in the preferred embodiment is 280 mm.
  • the thickness of the magnetic sheet package that forms the rotor 2 in which the copper squirrel cage is inserted is between 80 and 300 mm depending on the power of the motor.
  • the magnetic plates that form the rotor 2 have a circular crown shape with their outer surface grooved in an axial direction for the insertion of the inclined copper bars 21 and with a single notch or recess inside them so that a projection of the motor shaft, not shown, and rotate both elements, rotor 2 and shaft, jointly.
  • Figs. 1, 3 and 4 the shape of the stator 1 is illustrated.
  • the magnetic plates 11 that form it have a square shape with the chamfered corners in an arched shape, so that they can be inserted into a cast iron cylindrical housing 12 that supports both the stator 1 as well as the rotor 2.
  • the width and height of the magnetic plates 11 of the stator are 385 mm ⁇ 20%.
  • the sheets that form the stator 1 are joined forming a package by means of 8 rods that pass through the holes 13 of the sheets existing in their periphery in number of 12 and that also Io
  • stator sheet metal package 1 is as previously indicated A with the limits that indicated.
  • the air gap 15 is 0.4 mm ⁇ 0.1 mm.
  • stator assembly forming a single magnetic core package between two cast iron rings, in order to absorb the reaction at the torque of the motor, it is carried out by means of through bolts in a number of about 8 that pierce the entire assembly from end to end where they are tensioned.
  • the cast iron rings have an external diameter of 452 mm ⁇ 20% in the preferred embodiment.
  • Stator 1 is multipolar with a number of poles such that in the preferred embodiment it is wound for 12 poles.
  • the current density in both stator 1 and rotor 2 is very low and does not exceed 6 A / mm 2 , which guarantees a uniform magnetic field and absence of saturation.
  • the asynchronous motor with the aforementioned characteristics has a very low slip of the order of 8% with respect to the synchronous speed, which significantly improves the figures of the asynchronous motors of the prior art, the figure of which is around 16%.
  • the fact that the air gap is only 0.4 mm ⁇ 1 mm, the low slip and the small current density used and other constructive and power characteristics make the asynchronous motor of the invention have a high performance and Low losses due to heating since it has been verified that the stator winding does not exceed 55 0 C, operating under maximum output torque conditions and with a high connection rate of 180 per hour.
  • Figs. 5, 6 and 7 show various characteristic curves of the operation of the motor, such as the torque-angular speed, intensity-angular speed and intensity-torque.
  • Fig. 8 presents the starting current curves of a conventional asynchronous or synchronous motor currently used, where the high value l a of the starting current can be seen and how the current decreases to reach the nominal current I n for Ia speed of speed and the asynchronous motor of the invention where the starting current I 3 is minimum, almost zero, and then increases until reaching the nominal current I n for that speed of speed, that is to say that the current from starting to Ia speed of speed is an increasing function of the angular speed of the motor, its initial value being zero and always remaining less than or equal to the nominal current I n at said speed.
  • This characteristic represents an important advantage of the asynchronous motor of the invention because it eliminates transients in the power line, but above all it increases the efficiency of the motor and avoids the need for special protection elements for start / stop contactors or circuits. electronic intended for this purpose. This feature is extremely useful in applications such as lifting devices where these maneuvers are continuous.
  • the asynchronous motor of the invention is specifically designed for each application depending on the load and the nominal speed, and with a specific supply in voltage and frequency. With other values applied the motor does not work.
  • the asynchronous motor works or not, going from producing an unacceptable noise, from having a high consumption and not having working torque, to work perfectly and with surprising results since the motor powered by a frequency inverter arrives to achieve the desired speed in the same way as a permanent magnet synchronous motor that is much more expensive, always with a closed-loop speed control by means of an encoder. Any decrease in speed due to asynchronism is electronically compensated with a minimum increase in frequency, thus reaching the speed equivalent to the synchronous speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Escalators And Moving Walkways (AREA)
  • Induction Machinery (AREA)
  • Elevator Control (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Un sistema de tracción de elevadores, escaleras mecánicas, andenes móviles y aerogeneradores, dotado de un motor asíncrono con rotor de jaula de ardilla con baja corriente de arranque y alto rendimiento, así como a dicho motor asíncrono, cuya potencia y velocidad de régimen son escalables variando la frecuencia y la tensión de alimentación para obtener entre 2 y 2000 kW de potencia en distintos modelos de motor en función de su tamaño físico y su conexión siendo la velocidad proporcional a la frecuencia programada.

Description

SISTEMA DE TRACCIÓN DE ELEVADORES, ESCALERAS MECÁNICAS, ANDENES MÓVILES Y AEROGENERADORES DOTADO DE MOTOR ASÍNCRONO Y MOTOR ASÍNCRONO PARA DICHO SISTEMA DE TRACCIÓN
OBJETO DE LA INVENCIÓN
La Invención tiene por objeto un sistema de tracción de elevadores, escaleras mecánicas, andenes móviles y aerogeneradores, dotado de un motor asincrono con rotor de jaula de ardilla con baja corriente de arranque y alto rendimiento, así como a dicho motor asincrono, cuya potencia y velocidad de régimen son escalables variando ¡a frecuencia y ia tensión de aumentación para obtener entre 2 y 2000 k'W de potencia en distintos modelos de motor en función de su tamaño físico y su conexión siendo Ia velocidad proporcional a Ia frecuencia programada.
ANTECEDENTES DE LAINVENCIÓN
Los aparatos elevadores, escaleras mecánicas y andenes móviles accionados por motores eléctricos presentan unos problemas especiales como son Ia gran cantidad de arranques y paradas por unidad de tiempo y Ia variación en las cargas. Hasta ahora este problema se ha resuelto utilizando grupos motorreductóres.
Por otra parte los generadores energéticos aplicados a los generadores eólicos tanto para el arranque del equipo como generador, necesitan un multiplicador de revoluciones.
La invención se refiere a sistemas αe tracción accionados por motores asincronos de bajo deslizamiento y alto par, accionamiento inusual hasta hoy en este ámbito. El motor asincrono se denomina así porque el campo magnético giratorio generado por el estator es compensado por el creado por inducción en el rotor con un cierto retraso en Ia rotación que determina un deslizamiento entre ambos y que en los motores construidos con Ia técnica anterior es del orden de magnitud del 16% de Ia velocidad de giro del campo magnético creado por el estator en condiciones nominales. Además, ios motores asincronos de Ia técnica anterior tienen una
HOJA DE SUSTITUCIÓN (REGLA 26) intensidad de arranque elevada del orden de 1 ,5 a 3 veces Ia intensidad nominal y utilizan altas densidades de corriente, normalmente del orden de 10 A/mm2.
Estos inconvenientes se pueden obviar mediante motores síncronos, pero estos presentan desventajas, como son Ia utilización de grandes imanes permanentes, su elevado coste, los problemas en cuanto a su manipulación y su deterioro debido a los calentamientos.
Para superar estos inconvenientes se ha realizado una investigación proporcional multipolar, es decir que partiendo de un tamaño producido y funcional inicial, se han desarrollado otros tamaños para conseguir potencias mayores siempre de forma proporcional, o sea a escala, al prototipo inicial, de diversos motores alimentados mediante un equipo electrónico con variación de tensión y frecuencia de alimentación y se han creado diagramas de funcionamiento como resultado de Ia variación de diversos parámetros como son los valores de tensión e intensidad, conexionado, frecuencia y número de polos.
Como fruto de esta investigación proporcional multipolar se ha obtenido el motor asincrono de Ia presente invención, que presenta las siguientes ventajas: a) El motor asincrono arranca sin punta de consumo de intensidad. b) Tiene muy bajo deslizamiento, del orden del 8%. c) Alto rendimiento. d) Baja densidad de corriente que no sobrepasa los 6 A/mm2 Io que garantiza un campo magnético uniforme y no saturado. e) Bajo calentamiento, ya que en el bobinado eléctrico apenas se superan los
550C con un elevado ritmo de 180 conexiones/hora y máximo par de salida, f) Como consecuencia de Io anterior, una vida útil muy larga.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La descripción que sigue se entenderá mejor con referencia a los dibujos que se acompañan en los que: Ia Fig. 1 representa una vista en perspectiva expandida del estator y el rotor sin bobinado ni barras de cobre, respectivamente;
Ia Fig. 2 representa una vista lateral del rotor donde se ilustra Ia disposición de las barras de cobre y los anillos de Ia jaula de ardilla; Ia Fig. 3 representa una vista lateral de Ia carcasa del motor asincrono con una sección separada para ilustrar mejor su construcción;
Ia Fig. 4 representa una vista de Ia sección X-X' de Ia Fig. 3 donde se aprecia Ia forma del estator y de Ia carcasa del motor;
Ia Fig. 5 ¡lustra Ia curva característica par-velocidad angular del motor asincrono de Ia invención;
Ia Fig. 6 ilustra Ia curva característica intensidad-velocidad angular del motor asincrono de Ia invención;
Ia Fig. 7 ilustra Ia curva característica intensidad-par del motor asincrono de Ia invención; y Ia Fig. 8 representa las curvas intensidad de arranque-velocidad angular de un motor asincrono estándar o de un motor síncrono y de un motor asincrono según Ia invención.
DESCRIPCIÓN DETALLADA
Se describe a continuación el motor asincrono de Ia invención, que se particulariza en base a una realización preferente del mismo para potencias de 2 a 20 kW utilizadas en ascensores.
La Fig. 1 ¡lustra una vista expandida en perspectiva del estator 1 y del rotor 2 del motor asincrono mostrando únicamente las chapas magnéticas que los componen con las correspondientes ranuras para Ia inserción del bobinado en el estator 1 , no representado, y de las barras 21 y anillos 22 de Ia jaula de ardilla en el rotor como puede verse en Ia Fig. 2 que muestra una vista lateral del rotor 2.
Las principales características del motor asincrono de Ia presente invención referidas a sus parámetros físicos son las siguientes:
Rotor 2 en cortocircuito formado por jaula de ardilla de barras de cobre con un número comprendido entre preferiblemente 54 y 76 y más preferiblemente de 66 en Ia realización preferida. El número de barras del rotor 2 es proporcional al número de ranuras del estator 1 en una proporción aproximada del 90% del primero con respecto al segundo. La jaula de ardilla está formada por barras de cobre 21 de 5 x 16 mm de sección transversal que están inclinadas 8o con respecto a las generatrices del cilindro ideal formado por Ia superficie exterior del tambor en jaula de ardilla. La jaula de ardilla se cierra mediante dos anillos circulares de cobre 22, también con sección transversal de 5 x 16 mm, a los que van soldadas las barras 21 por su parte interior. El diámetro del rotor 2 en Ia realización preferida es de 280 mm. El espesor del paquete de chapa magnética que forma el rotor 2 en el que va inserta Ia jaula de ardilla de cobre, designado por Ia letra A en las Figs. 1 y 2, y que es equivalente al espesor de chapa magnética del estator 1 , también designado por Ia letra A en las Figs. 1 y 3, está comprendido entre 80 y 300 mm dependiendo de Ia potencia del motor. Las chapas magnéticas que forman el rotor 2 tienen forma de corona circular con su superficie exterior ranurada en sentido axial para Ia inserción de las barras de cobre 21 inclinadas y con una única muesca o rebaje en su interior para que en ella se inserte un resalte del eje del motor, no representado, y giren ambos elementos, el rotor 2 y el eje, solidariamente.
En las Figs. 1 , 3 y 4 se ilustra Ia forma del estator 1. Las chapas magnéticas 11 que Io forman, tienen forma cuadrada con las esquinas achaflanadas de forma arqueada, de manera que pueden insertarse en una carcasa cilindrica 12 de hierro fundido que soporta tanto al estator 1 como al rotor 2. La anchura y Ia altura de las chapas magnéticas 11 del estator son de 385 mm ± 20%. Las chapas que forman el estator 1 se unen formando un paquete por medio de 8 varillas que pasan por los taladros 13 de las chapas existentes en su periferia en número de 12 y que además Io
» fijan a los anillos de hierro fundido 12 que envuelven el estator 1. En el centro de las chapas hay un hueco circular que define una superficie interior del estator 1 con ranuras 14 paralelas al eje del hueco circular. En Ia realización preferida el número de ranuras 14 está comprendido preferiblemente entre 60 y 84 y más preferiblemente es de 72, debiendo ser siempre múltiplo de 12. El espesor del paquete de chapas del estator 1 es como se señaló anteriormente A con los límites que se indicaron. El entrehierro 15 es de 0,4 mm ±0,1 mm.
La consecución física del conjunto estator formando un paquete único de núcleo magnético entre dos anillos de hierro fundido, para poder absorber Ia reacción al par de trabajo del motor, se realiza mediante unos tomillos pasantes en un número de alrededor de 8 que perforan todo el conjunto de extremo a extremo donde son tensados. Los anillos de hierro fundido tienen un diámetro exterior de 452 mm ± 20% en Ia realización preferida.
Respecto de las características eléctricas del motor asincrono hay que señalar:
El estator 1 es multipolar con un número de polos tal que en Ia realización preferida se bobina para 12 polos. La densidad de corriente tanto en el estator 1 como en el rotor 2 es muy baja y no sobrepasa los 6 A/mm2, Io que garantiza un campo magnético uniforme y ausencia de saturación.
El motor asincrono de las características mencionadas tiene un deslizamiento muy bajo del orden del 8% respecto a Ia velocidad síncrona, Io que mejora significativamente las cifras de los motores asincronos de Ia técnica anterior cuya cifra está en el entorno del 16%. Por otra parte el hecho de que el entrehierro sea de sólo 0,4 mm ± 1 mm, el bajo deslizamiento y Ia pequeña densidad de corriente empleada y otras características constructivas y de alimentación hacen que el motor asincrono de Ia invención tenga un alto rendimiento y bajas pérdidas por calentamiento ya que se ha comprobado que en el bobinado del estator no se superan los 55 0C funcionando en condiciones de par máximo de salida y con un alto ritmo de conexiones de 180 por hora.
En las Figs. 5, 6 y 7 se presentan diversas curvas características del funcionamiento del motor como son Ia de par-velocidad angular, intensidad-velocidad angular e intensidad-par.
La Fig. 8 presenta las curvas de intensidad de arranque de un motor asincrono convencional o síncrono empleados actualmente, donde se aprecia el elevado valor la de Ia intensidad de arranque y cómo Ia intensidad va disminuyendo para llegar hasta Ia intensidad nominal In para Ia velocidad de régimen y Ia del motor asincrono de Ia invención donde Ia intensidad de arranque I3 es mínima, casi cero, y luego crece hasta alcanzar Ia intensidad nominal In para esa velocidad de régimen, es decir que Ia intensidad desde el arranque hasta Ia velocidad de régimen es una función creciente de la velocidad angular del motor, siendo su valor inicial de cero y manteniéndose siempre menor o igual que Ia intensidad nominal In a dicha velocidad de régimen.
Esta característica representa una importante ventaja del motor asincrono de Ia invención porque elimina los transitorios en Ia línea de alimentación, pero sobre todo aumenta Ia eficiencia del motor y evita Ia necesidad de elementos especiales de protección para los contactores de arranque/parada o para los circuitos electrónicos previstos para este fin. Esta característica es sumamente útil en aplicaciones como los aparatos elevadores donde estas maniobra son continuas.
El motor asincrono de Ia invención se diseña específicamente para cada aplicación en función de Ia carga y de Ia velocidad nominal, y con una alimentación específica en tensión y frecuencia. Con otros valores aplicados el motor no funciona. Según el dimensionamiento y construcción multipolar, el motor asincrono funciona o no, pasando de producir un ruido inaceptable, de tener un consumo elevado y no tener par de trabajo a funcionar perfectamente y con resultados sorprendentes ya que el motor alimentado con un variador de frecuencia llega a alcanzar Ia velocidad deseada del mismo modo que un motor síncrono de imanes permanentes que es mucho más costoso, siempre con un control de velocidad en bucle cerrado mediante un codificador. Cualquier descenso de velocidad por asincronismo se compensa electrónicamente con un aumento mínimo de frecuencia, llegándose así a Ia velocidad equivalente a Ia síncrona.
Además actuando sobre las características constructivas del motor como son el número de ranuras del rotor y del estator, el bobinado de este último, sus dimensiones físicas y alimentando al motor asincrono resultante con Ia tensión y Ia frecuencia adecuadas, con los oportunos desfases entre polos contiguos de acuerdo con el número de polos, se consiguen dos importantes ventajas que son Ia selección tanto de Ia velocidad de giro nominal en un amplio margen, como de Ia potencia de salida del motor, que hacen que estos, motores se puedan aplicar tanto a aparatos elevadores, escaleras mecánicas y andenes móviles con potencias de 2 a 20 kW, como a generadores de energía para aerogeneradores para el arranque del equipo como generador eliminando el elemento multiplicador usual con potencias de hasta 2000 kW, aunque para esta última cifra de potencia se requiere aumentar el diámetro del estator 1 hasta 2000 mm y el espesor A del paquete de chapa magnética del estator 1 y del rotor 2 hasta 1000 mm.

Claims

REIVINDICACIONES
1.- Sistema de tracción de elevadores, escaleras mecánicas, andenes móviles y aerogeneradores, del tipo de los que comprenden un accionamiento mediante motor eléctrico compuesto por un estator y un rotor, caracterizado porque el motor es un motor eléctrico asincrono cuya corriente de alimentación puede variarse en frecuencia y tensión para conseguir que el motor tenga una potencia eléctrica variable de valores comprendidos entre un mínimo de 2,2 kW hasta un máximo de 20 kW para permitir manejar cargas diferentes con un mismo modelo de motor y sin necesidad de motorreductores cuando dicho motor es empleado para el accionamiento de elevadores, escaleras mecánicas y andenes móviles, y entre 20 kW y un máximo de 2000 kW para permitir manejar cargas diferentes con un mismo modelo de motor en el que se aumentan las características constructivas del diámetro del estator y del espesor de los paquetes de chapas magnética del estator y del rotor, respecto al modelo de motor empleado para de tracción de elevadores, escaleras mecánicas y andenes móviles, cuando dicho motor se aplica a aerogeneradores, tanto para el arranque del aerogenerador como del generador de energía, eliminando el elemento multiplicador usual.
2.- Motor eléctrico asincrono para sistemas de tracción de elevadores, escaleras mecánicas y andenes móviles, alimentado por un variador de tensión y frecuencia, compuesto por un estator (1) y un rotor (2) formados por sendos paquetes de chapas magnéticas, siendo idéntico el espesor de dichos paquetes, teniendo el paquete de chapas magnéticas del estator (1), que tienen forma cuadrada con esquinas achaflanadas en arco, un hueco cilindrico central en cuya periferia existe una pluralidad de ranuras en sentido axial (14) para empotrar el bobinado y teniendo el paquete de chapas magnéticas del rotor (2) forma cilindrica con un hueco central también cilindrico para el paso del eje del motor y estando Ia superficie exterior de dicho rotor dotada de una pluralidad de ranuras en sentido axial para empotrar unas barras de cobre (21) que soldadas por los extremos a dos anillos (22) también de cobre forman una jaula de ardilla, caracterizado porque dichas chapas magnéticas en forma de cuadrado con esquinas achaflanadas en arco que componen el estator (1) tienen una anchura y una altura de 385 mm ± 20%; dicha pluralidad de ranuras axiales (14) del estator tiene un número comprendido entre 60 y 84 y preferiblemente de 72, siempre siendo dicho número múltiplo de 12; dicho espesor de dichos paquetes de chapas magnéticas del estator (1 ) y del rotor (2) está comprendido entre 80 y 300 mm en Ia realización preferida, dependiendo de Ia potencia del motor; el entrehierro (15) o distancia entre dicha superficie exterior de dicho rotor (2) y Ia superficie interior de dicho hueco central cilindrico de dicho estator es de 0,4 mm ± 0,1 mm; el diámetro de dicha superficie exterior de dicho rotor (2) es de 280 mm; dicha pluralidad de ranuras axiales de dicho rotor (1) está formada por un número comprendido entre 54 y 76 y preferiblemente es de 66; dicho número de ranuras axiales del rotor (2) es aproximadamente el 90% de dicho número de ranuras axiales (14) del estator (1); dichas ranuras axiales del rotor (2) forman un ángulo de 8o con las generatrices de un cilindro ideal formado por dicha jaula de ardilla; dichas barras (21) y dichos anillos (22) de cobre que forman dicha jaula de ardilla tienen una sección transversal de 5 X 16 mm,
en donde alimentando dicho motor asincrono con Ia tensión y Ia frecuencia necesarias, con los correspondientes desfases entre polos contiguos según el número de dichos polos, se consigue Ia selección tanto de Ia velocidad de giro nominal en un amplio margen, como de Ia potencia de salida del motor desde 2,2 kW hasta 20 kW, para su utilización en el accionamiento de elevadores, escaleras mecánicas y andenes móviles para permitir manejar cargas diferentes con el mismo modelo de motor y sin necesidad de motorreductores.
3,- El motor asincrono de acuerdo con Ia reivindicación 2, caracterizado porque el estator (1) se bobina con 12 polos; en el estator (1) y en el rotor (2) Ia densidad de corriente no sobrepasa los 6 A/mm2; el motor asincrono tiene un deslizamiento aproximadamente del 8% con respecto a Ia velocidad síncrona.
4.- El motor asincrono de acuerdo con Ia reivindicación 2 caracterizado porque su intensidad desde el arranque hasta Ia velocidad de régimen es una función creciente de Ia velocidad angular del motor, siendo su valor inicial de cero y manteniéndose siempre menor o igual que Ia intensidad nominal a dicha velocidad de régimen.
5.- El motor asincrono de acuerdo con Ia reivindicación 2 caracterizado porque mediante el aumento del diámetro del estator (1) hasta 2000 mm y el espesor
A del paquete de chapa magnética del estator (1) y del rotor (2) hasta 1000 mm y actuando sobre las características constructivas del motor y alimentando al motor asincrono resultante con Ia tensión y Ia frecuencia necesarias, con los correspondientes desfases entre polos contiguos según el número de dichos polos, se consigue Ia selección tanto de Ia velocidad de giro nominal en un amplio margen, como de Ia potencia de salida del motor desde 20 kW a 2000 kW, para su utilización en aerogeneradores sin necesidad del elemento multiplicador usual.
PCT/ES2004/000273 2003-01-30 2004-06-14 Sistema de tracción de elevadores, escaleras mecánicas, andenes móviles y aerogeneradores dotado de motor asíncrono y motor asíncrono para dicho sistema de tracción WO2006005774A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0418917-5A BRPI0418917A (pt) 2004-06-14 2004-06-14 sistema de tração para elevadores, escadas rolantes, passarelas mecánicas e aerogeradores do tipo que possui acionamento por meio de motor elétrico constituìdo por um estator e um rotor e, no caso de elevadores, de um sistema de emergência quando ocorrer falta de energia
CA002612141A CA2612141A1 (en) 2004-06-14 2004-06-14 Traction system for lifts, escalators, moving walkways and aerogenerators, which is equipped with an asynchronous motor, and an asynchronous motor for said traction system
PCT/ES2004/000273 WO2006005774A1 (es) 2004-06-14 2004-06-14 Sistema de tracción de elevadores, escaleras mecánicas, andenes móviles y aerogeneradores dotado de motor asíncrono y motor asíncrono para dicho sistema de tracción
US10/542,806 US20060055273A1 (en) 2003-01-30 2004-06-14 Screening assay based on rhe sod-3 promotor for the identification of compounds modulating akt or upstream regulators such as insulin igf-1 receptors
ARP050102418A AR049352A1 (es) 2004-06-14 2005-06-14 Sistema de traccion de elevadores, escaleras mecanicas, andenes moviles y aerogeneradores dotado de motor asincrono, y motor asincrono para dicho sistema de traccion
TW094119608A TW200602253A (en) 2004-06-14 2005-06-14 Tracking system for lifts, escalators, moving walkways and aerogenerators, which is equipped with an synchronous motor, and asynchronous motor for said fraction system
UY28962A UY28962A1 (es) 2003-01-30 2005-06-14 Sistema de traccion de elevadores, escaleras mecanicas, andenes moviles y aerogeneradores dotado de motor asincrono para dicho sistema de traccion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2004/000273 WO2006005774A1 (es) 2004-06-14 2004-06-14 Sistema de tracción de elevadores, escaleras mecánicas, andenes móviles y aerogeneradores dotado de motor asíncrono y motor asíncrono para dicho sistema de tracción

Publications (1)

Publication Number Publication Date
WO2006005774A1 true WO2006005774A1 (es) 2006-01-19

Family

ID=35783537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000273 WO2006005774A1 (es) 2003-01-30 2004-06-14 Sistema de tracción de elevadores, escaleras mecánicas, andenes móviles y aerogeneradores dotado de motor asíncrono y motor asíncrono para dicho sistema de tracción

Country Status (5)

Country Link
AR (1) AR049352A1 (es)
BR (1) BRPI0418917A (es)
CA (1) CA2612141A1 (es)
TW (1) TW200602253A (es)
WO (1) WO2006005774A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2535773C2 (ru) * 2009-03-02 2014-12-20 Дженерал Электрик Компани Приводная система и устройство для подъема

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666460B (zh) * 2018-08-10 2019-07-21 東元電機股份有限公司 馬達層間短路快篩方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2077320T3 (es) * 1991-11-23 1995-11-16 Abus Kransysteme Gmbh & Co Kg Dispositivo de elevacion con velocidad de funcionamiento variable.
ES2102552T3 (es) * 1992-06-23 1997-08-01 Smh Management Services Ag Dispositivo de mando de un motor asincrono.
US6002191A (en) * 1998-06-19 1999-12-14 General Electric Company Paired interlocks for stacking of non-rotated lamination cores
US6223416B1 (en) * 1993-10-20 2001-05-01 General Electric Company Method of manufacturing a dynamoelectric machine
JP2001211617A (ja) * 2000-01-21 2001-08-03 Central Japan Railway Co 誘導電動機の回転子及び誘導電動機
JP2002369470A (ja) * 2001-06-08 2002-12-20 Mitsubishi Electric Corp 単相誘導電動機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2077320T3 (es) * 1991-11-23 1995-11-16 Abus Kransysteme Gmbh & Co Kg Dispositivo de elevacion con velocidad de funcionamiento variable.
ES2102552T3 (es) * 1992-06-23 1997-08-01 Smh Management Services Ag Dispositivo de mando de un motor asincrono.
US6223416B1 (en) * 1993-10-20 2001-05-01 General Electric Company Method of manufacturing a dynamoelectric machine
US6002191A (en) * 1998-06-19 1999-12-14 General Electric Company Paired interlocks for stacking of non-rotated lamination cores
JP2001211617A (ja) * 2000-01-21 2001-08-03 Central Japan Railway Co 誘導電動機の回転子及び誘導電動機
JP2002369470A (ja) * 2001-06-08 2002-12-20 Mitsubishi Electric Corp 単相誘導電動機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2535773C2 (ru) * 2009-03-02 2014-12-20 Дженерал Электрик Компани Приводная система и устройство для подъема
US8985555B2 (en) 2009-03-02 2015-03-24 General Electric Company Drive assembly and apparatus for hoist

Also Published As

Publication number Publication date
TW200602253A (en) 2006-01-16
BRPI0418917A (pt) 2007-11-27
AR049352A1 (es) 2006-07-19
CA2612141A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
KR101941324B1 (ko) 영구 자석 전기 기계
JP5449892B2 (ja) 永久磁石励磁式ラジアル磁気軸受並びにそのラジアル磁気軸受を備えた磁気軸受装置
US10355625B2 (en) DC brushless motor and method for controlling the same
US20160329796A1 (en) Power generation device, armature structure for power generation device, and method for manufacturing armature
ES2712061T3 (es) Rotor de una máquina de reluctancia sincrónica
EP2131478A4 (en) PERMANENT MAGNET GENERATOR AND THIS USING WINDMILL GENERATOR
JP2015033329A (ja) トルクリップルが低減されたスポーク永久磁石機械およびその製造方法
JP2008236890A (ja) 電磁鋼板形成体、電磁鋼板積層体、これを備えた永久磁石形同期回転電機用回転子、永久磁石形同期回転電機、該回転電機を用いた車両、昇降機、流体機械、加工機
AU2016325752B2 (en) Rotating electric machine
EP2647111B1 (en) Electric generator
WO2007048211A2 (en) Permanent magnet rotor
JP2021145544A (ja) 相補的で一方向磁性の回転子/固定子組立体の対
EP3300230A1 (en) Permanent magnet motor
TW201440389A (zh) 高效率之永磁式機械
JP4209885B2 (ja) モーターの固定子構造
JP2018511298A (ja) ロータ及びこのロータを有するモータ
WO2006005774A1 (es) Sistema de tracción de elevadores, escaleras mecánicas, andenes móviles y aerogeneradores dotado de motor asíncrono y motor asíncrono para dicho sistema de tracción
WO2013072531A1 (es) Estátor modular retráctil para un motor/generador eléctrico
EP2713480A1 (en) Rotor of a permanent magnet generator
EP2523308A2 (en) Lamination for stator core, stator core comprising said lamination and method for making said lamination
KR101209631B1 (ko) 길이가 다른 도체바를 갖는 회전자 및 그를 포함하는 lspm 모터
US20200052533A1 (en) Rotating electrical machine with a variable stator notch width
KR101911614B1 (ko) 토크와 역률 향상을 위한 축방향 적층 동기형 릴럭턴스 전동기 및 설계 방법
CN109256879A (zh) 一种内外层永磁体错位的双定子电机
JP6169496B2 (ja) 永久磁石式回転電機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2006055273

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10542806

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 10542806

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004736755

Country of ref document: EP

Ref document number: 2007102129

Country of ref document: RU

WWW Wipo information: withdrawn in national office

Ref document number: 2004736755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 552695

Country of ref document: NZ

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: PI0418917

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2612141

Country of ref document: CA