WO2006003745A1 - 高周波用誘電体磁器組成物、及び誘電体素子 - Google Patents

高周波用誘電体磁器組成物、及び誘電体素子 Download PDF

Info

Publication number
WO2006003745A1
WO2006003745A1 PCT/JP2005/007010 JP2005007010W WO2006003745A1 WO 2006003745 A1 WO2006003745 A1 WO 2006003745A1 JP 2005007010 W JP2005007010 W JP 2005007010W WO 2006003745 A1 WO2006003745 A1 WO 2006003745A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
zro
value
main component
added
Prior art date
Application number
PCT/JP2005/007010
Other languages
English (en)
French (fr)
Inventor
Tatsuya Ishikawa
Original Assignee
Murata Manufacturing Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd filed Critical Murata Manufacturing Co., Ltd
Publication of WO2006003745A1 publication Critical patent/WO2006003745A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof

Definitions

  • the present invention relates to a dielectric ceramic composition for high frequency and a dielectric element such as a dielectric resonator, a dielectric filter, and a dielectric substrate using the same.
  • Dielectric elements formed of high frequency dielectric ceramic compositions are widely used in dielectric resonators, dielectric filters, dielectric substrates, etc. used in high frequency regions such as microwave bands and millimeter wave bands. Has been.
  • This type of high frequency dielectric ceramic composition has dielectric properties.
  • Q value high electrical quality factor
  • Patent Document 2 High-frequency dielectric porcelain compositions (Patent Document 2) already proposed have already been proposed. It is.
  • Patent Documents 1 and 2 have the above-described component yarns and thus have a high relative dielectric constant of 40 to 60 and a high Q value of 30000 or more, and the force also has a temperature coefficient of resonance frequency ⁇ l3 ⁇ 4S0.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-163665
  • Patent Document 2 JP 2001-192265 A
  • the dielectric ceramic composition for high frequency of Patent Documents 1 and 2 has a high relative dielectric constant ⁇ r and Q value, and the temperature coefficient of the resonance frequency is 0 ⁇ 30ppmZ ° C. Therefore, it is desirable to realize a dielectric porcelain composition having a higher performance material composition as the communication equipment business has been developed in recent years.
  • the present invention has been made in view of such circumstances, and by further improving the Q value, a high-frequency dielectric ceramic composition having better dielectric properties than conventional ones, and An object of the present invention is to provide a dielectric element used.
  • the present inventor conducted intensive research and found that the general formula [(1—y) ⁇ xCaTi O ⁇ (l ⁇ y) ⁇ (l ⁇ x) Ca ⁇ (Ml) ( M2) ⁇ O vLnAl 2 O] with a (l + 2a) 1/3 2/3 b (l + 2b) c (3 + 3c) / 2
  • the Q value can be improved without causing a large variation in the relative dielectric constant ⁇ r and the temperature characteristics of the resonance frequency f. It was found that a high frequency dielectric ceramic composition having characteristics can be obtained.
  • dielectric ceramic composition t ⁇ ⁇
  • dielectric ceramic composition t ⁇ ⁇
  • Ml is at least one of Zn and Mg, and M2 is a small amount of Nb and Ta.
  • the zirconium compound is 0.2 parts by weight or more in terms of ZrO with respect to 100 parts by weight of the main component.
  • the addition effect will be caused by the addition.
  • the content of zirconium compound exceeds 100 parts by weight of the main component and exceeds 1.0 part by weight in terms of ZrO, the Q value is low.
  • the zirconium compound is contained in an amount of 0.2 to 1.0 parts by weight in terms of ZrO with respect to 100 parts by weight of the main component.
  • Ln is Nd, Y, La, Sm
  • the medium force of Pr is preferably at least one selected.
  • the dielectric element according to the present invention is characterized by comprising an element body formed of the dielectric ceramic composition! /
  • the dielectric element is formed of the dielectric ceramic composition, a dielectric element such as a highly reliable dielectric resonator having various characteristics is obtained. be able to.
  • FIG. 1 is an internal structure diagram showing an embodiment of a dielectric resonator device equipped with a dielectric resonator as a dielectric element according to the present invention.
  • the dielectric ceramic composition according to the present invention contains a zirconium compound as a subcomponent in a main component represented by the following general formula ( ⁇ ).
  • Ml represents at least one of Zn and Mg
  • M2 represents at least one of Nb and Ta
  • Ln represents a rare earth element
  • the dielectric ceramic composition of the present invention has the above x, y, (1-y) ⁇ ⁇ (hereinafter referred to as “a”), a, b, and the following formulas (1) to ( Prepared to satisfy 6).
  • the present dielectric ceramic composition contains the zirconium compound as a subcomponent in the main component represented by the general formula ( ⁇ ), so that the relative permittivity ⁇ r and the temperature coefficient of the resonance frequency are obtained.
  • the Q value can be improved without causing large fluctuations in f. That is, by adjusting the principal component composition so that each of the mole ratios x, y, a, b, and c satisfies the following formulas (1) to (6), the relative dielectric constant ⁇ r is 40 or more.
  • the temperature coefficient of the resonance frequency is suppressed to i3 ⁇ 4 0 ⁇ 3 OppmZ ° C, and the force is further improved compared with the conventional one, and a dielectric ceramic composition having excellent dielectric characteristics with a further improved Q value can be obtained. it can.
  • the content of the zirconium compound is preferably controlled to 0.2 to 1 part by weight in terms of zirconium oxide (ZrO) with respect to 100 parts by weight of the main component.
  • the zirconium compound is 0.2 wt in terms of ZrO with respect to 100 parts by weight of the main component. More than part
  • the Q value may decrease.
  • the content of the zirconium compound is 0.2 to 1 part by weight (more preferably, 0.25 to: L 0 part by weight) in terms of ZrO with respect to 100 parts by weight of the main component.
  • the X force SO. 56 ⁇ x ⁇ 0.80 is set.
  • is set to ⁇ ⁇ 0.65.
  • the temperature coefficient of resonance frequency T 3 ⁇ 4 0 ⁇ 15 ppm Z ° C can be suppressed, which is preferable from the viewpoint of improving temperature stability.
  • a is ⁇ 0.6! /.
  • the Q value will be less than 30000 even if zirconium compound is added, and the dielectric loss will increase.
  • a is prepared so as to satisfy 0.985 ⁇ a ⁇ 05.
  • c is adjusted to be 0.9 ⁇ b ⁇ 1.05.
  • Ln in the general formula (A) is not particularly limited as long as it is a rare earth element, but neodymium (Nd), yttrium (Y), lanthanum (La), samarium (Sm), praseodymium. (Pr) is preferably used.
  • Al 2 O aluminum oxide
  • ZnO zinc oxide
  • magnesium oxide At least one of hum (MgO), niobium oxide (Nb 2 O 3) and tantalum oxide (Ta 2 O 3)
  • these ceramic raw materials are prepared so as to satisfy the above formulas (1) to (6), put into a ball mill, wet-mixed for a predetermined time, dehydrated and dried, and then calcined. To obtain a calcined powder having a main component composition.
  • a binder is added and wet pulverized for a predetermined time, whereby a raw material of the dielectric ceramic composition is produced.
  • FIG. 1 shows a dielectric resonator device including a dielectric resonator as a dielectric element according to the present invention.
  • the dielectric resonator device includes a columnar dielectric resonator 1 via a support base 2. Is placed in the metal case 3. The input terminal 4 and the output terminal 5 are held by the metal case 3.
  • the dielectric resonator 1 is obtained by subjecting the raw material of the dielectric ceramic composition to press molding under a predetermined pressure and firing at a temperature of 1400 ° C to 1650 ° C for a predetermined time.
  • the dielectric resonator 1 is electromagnetically coupled to the input terminal 4 and the output terminal 5 to generate TE.
  • the dielectric resonator operates in the ⁇ mode! /, But other ⁇ mode, ⁇ mode, ⁇ mode
  • the present invention can be similarly applied to dielectric elements other than the dielectric resonator, such as a dielectric filter and a dielectric substrate.
  • Example 1 Example 1
  • this weighed material is put into a ball mill containing PSZ together with pure water, wet-mixed for 16 hours, dehydrated and dried, and then calcined at 1000 to 1300 ° C for 3 hours.
  • the calcined powder which consists of a main component composition was produced.
  • the mixture was added and wet pulverized again in a ball mill for 16 hours to obtain a raw material for the dielectric ceramic composition.
  • the raw material of the dielectric porcelain composition was subjected to press molding under a pressure of 9.8 X 10 7 to 1.96 X 10 8 Pa to form a disk shape, and then the temperature was increased in the atmosphere.
  • a firing process was performed at 1400 to 1650 ° C. for 4 hours to obtain a dielectric resonator made of a sintered body (dielectric ceramic composition) having a diameter of 10 mm and a thickness of 5 mm (even numbered samples in Table 1).
  • the ZrO content of the dielectric resonator after the measurement was quantified using ICP (Inductively Coupled Plasma) analysis.
  • Table 1 shows the component compositions of sample numbers 1 to 32 and the measurement results, that is, the relative dielectric constant ⁇ r, the Q value, and the temperature coefficient ⁇ 13 ⁇ 4 of the resonance frequency.
  • the Q value shows the value converted to 1GHz.
  • the content of 2 2 was 0.23-0.26 parts by weight with respect to 100 parts by weight of the main component. Even in the case of odd-numbered samples without ZrO as an accessory component, 0.1% is added to 100 parts by weight of the main component.
  • this kind of dielectric ceramic composition contained about 0.16-0.19 parts by weight of ZrO with respect to 100 parts by weight of the main component.
  • sample number 2 has a small X force SO.500 and a large y force 200. Therefore, even if ZrO is added to the main component, the Q value is low at 29300 and the temperature coefficient of the resonance frequency. Also for ⁇ f
  • Sample number 4 also has a high y force of 200. Therefore, even if ZrO is added to the main component, the Q value is 29800.
  • Sample No. 6 had a Q value of 31500 and no ZrO was added (sample
  • the improved force X compared to No. 5 is as high as 0.875, the temperature coefficient of resonance frequency ⁇ f force becomes 6ppmZ ° C, and it lacks temperature stability.
  • Sample No. 16 also had a Q value of 31600, and ZrO was not added (sample
  • sample No. 26 has a small X force of .550, the Q value is 289 even if ZrO is added to the main component.
  • a low value of 00 was a factor.
  • Sample No. 30 has a small X force of .550 and y is also low of 0.050, so ZrO is added to the main component.
  • Sample No. 32 has a small y force of .050, so the Q value is 264 even if ZrO is added to the main component.
  • a low value of 00 was a factor.
  • sample numbers 7 to 14, 17 to 22, 27, and 28 have x, y, and a within the scope of the present invention (0.56 ⁇ x ⁇ 0.8, 0.008 ⁇ y). ⁇ 0.18, a ⁇ 0.65), so the relative permittivity ⁇ r is a temperature coefficient r l3 ⁇ 40 ⁇ 30ppmZ ° C where the relative dielectric constant ⁇ r is greater than 4 6.6, and the Q value is 30300 As a result, it was possible to obtain excellent dielectric properties that were as high as those described above. In particular, secondary ingredients Even numbered samples to which ZrO is added are odd numbers that are not intentionally added with ZrO.
  • Example 2 That is, the same ceramic raw material as in Example 1 is used as a starting material, and X is 0 in general formula (A).
  • Table 2 shows the component compositions of Sample Nos. 41 to 64, the relative permittivity ⁇ r, the Q value (1 GHz), and the temperature coefficient ⁇ of the resonance frequency as measurement results.
  • Example 1 As is apparent from Table 2, as in Example 1, 0.16 to 0.19 parts by weight of ZrO was added to 100 parts by weight of the main component without adding ZrO as a subcomponent to the main component. It was found that it was contained.
  • sample number 42 has a force of .980, which is small, so ZrO was added to the main component.
  • Sample number 48 has a value of 1.100, so even if ZrO is added to the main component, the Q value is 7600.
  • Sample No. 50 has a small b force SO. 850, so the Q value is 265 even if ZrO is added to the main component.
  • Sample No. 56 has a b of 1.050, so the Q value is 24700 even if ZrO is added to the main component.
  • sample number 58 has a small c force of .850, the Q value is 236 even if ZrO is added to the main component.
  • Sample No. 64 has a high c value of 1.100, so even if ZrO is added to the main component, the Q value is 8600.
  • sample numbers 43 to 46, 51 to 54, and 59 to 62 are such that a, b, and c are within the scope of the present invention (0.985 ⁇ a ⁇ l. 05, 0.9 ⁇ b ⁇ l. 02, 0.9 ⁇ c ⁇ l. 05), the relative permittivity ⁇ r is in the range of 3 ⁇ 40 ⁇ 30ppmZ ° C as the temperature coefficient of the resonance frequency, which is larger than 54.2, and It was possible to obtain good dielectric properties with a high Q value of 30000 or more. In particular, even-numbered samples to which ZrO is added as an accessory component are not intentionally added with ZrO.
  • Ta 2 O tantalum oxide
  • Al 2 O 3 aluminum halide
  • Example Nos. 72 and 74 and a dielectric resonator without addition of ZrO (Sample Nos. 71 and 7 in Table 2) 3) and the relative permittivity ⁇ r, Q value, and temperature coefficient ⁇ of the resonance frequency were measured.
  • Table 3 shows the component compositions of sample numbers 71 to 74, the relative permittivity ⁇ r, the Q value (1 GHz), and the temperature coefficient ⁇ of the resonance frequency, which are measurement results.
  • Table 4 shows the component composition of sample numbers 75 to 78, and the relative dielectric constant ⁇ r, Q value (1 GHz)
  • TiO zinc oxide
  • ZnO zinc oxide
  • niobium oxide Nb 2 O 3
  • aluminum oxide Al 2 O 3
  • the relative dielectric constant ⁇ r, the Q value, and the temperature coefficient ⁇ of the resonance frequency were measured.
  • Table 5 shows the component compositions of sample numbers 81 to 96, the relative dielectric constant ⁇ r, the Q value (1 GHz), and the temperature coefficient ⁇ of the resonance frequency as measurement results.
  • the numbered samples each had a Q value compared to the odd numbered samples to which ZrO was not intentionally added.
  • ZrO is obtained by variously changing the molar ratio z of Zn and Mg, which are Ml components in the general formula (A).
  • Nos. 101, 103, and 105) were manufactured and measured as relative permittivity ⁇ r, Q value, and temperature coefficient of resonance frequency.
  • Table 6 shows the component compositions of sample numbers 101 to 106, the relative permittivity ⁇ r, the Q value (1 GHz), and the temperature coefficient ⁇ of the resonance frequency, which are measurement results.
  • Numbers 102, 104, and 106 are sample numbers 101, 103 that did not intentionally add ZrO.
  • Table 7 shows the component compositions of sample numbers 107 to 112, the relative permittivity ⁇ r, the Q value (1 GHz), and the temperature coefficient ⁇ of the resonance frequency as measurement results.
  • Sample numbers 108, 110 and 112 added are sample numbers 107 without ZrO added intentionally.
  • Example 2 the same ceramic raw material as in Example 1 is used as the starting material ⁇ , and X is 0 in the general formula (A).
  • this calcined powder (main component) was added with acid hydylcohol (ZrO) so as to have a content as shown in Table 8, and then wet pulverization, press molding, and firing were performed.
  • 126 dielectric resonators were fabricated, and f was measured as a relative dielectric constant ⁇ r, Q value, and temperature coefficient of resonance frequency.
  • Table 8 shows the component compositions of sample numbers 121 to 126, the relative permittivity ⁇ r, the Q value (1 GHz), and the temperature coefficient ⁇ of the resonance frequency as measurement results.
  • Sample Nos. 121 to 124 have a ZrO content of 0.20 to 1.00 wt. With respect to 100 wt. Since 126 had a ZrO content of 1.51 and 2.03 parts by weight per 100 parts by weight of the main component, the Q value tended to decrease. That is, it was found that the ZrO content is preferably 0.20 to L00 parts by weight with respect to 100 parts by weight of the main component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

 本発明の高周波用誘電体磁器組成物は、主成分が、一般式〔(1-y)・xCaTiaO(1+2a)-(1-y)・(1-x)Ca{(M1)1/3(M2)2/3}bO(1+2b)-yLnAlcO(3+3c)/2〕(ただし、M1はZn及びMgのうちの少なくとも1種、M2はNb及びTaのうちの少なくとも1種、Lnは希土類元素を示す)で表されると共に、上記x、y、a、b、及びcが、0.56≦x≦0.8、0.08≦y≦0.18、(1-y)・x≦0.65、0.985≦a≦1.05、0.9≦b≦1.02、及び0.9≦c≦1.05を充足し、かつ、副成分として主成分100重量に対しZrO2に換算して0.2~1重量部のジルコニウム化合物が含有されている。そしてこれにより、Q値を更に向上させることができ、従来に比べ、より一層良好な誘電特性を有する誘電体素子を得ることができる。

Description

明 細 書
高周波用誘電体磁器組成物、及び誘電体素子
技術分野
[0001] 本発明は、高周波用誘電体磁器組成物、及びそれを用いた誘電体共振器、誘電 体フィルタ、誘電体基板等の誘電体素子に関する。
背景技術
[0002] 高周波用誘電体磁器組成物で形成された誘電体素子は、マイクロ波帯やミリ波帯 等の高周波領域で使用される誘電体共振器、誘電体フィルタ、誘電体基板等に広く 利用されている。
[0003] この種の高周波用誘電体磁器組成物は、誘電特性として
( 1)誘電体中では電磁波の波長が 1Z ε r1/2に短縮されることから、小型化要求への 対応として比誘電率 ε rが大きいこと、
(2)誘電体損失が小さいこと、すなわち電気的品質係数 Qe (以下、「Q値」という)が 高いこと、
(3)共振周波数の温度安定性が優れて!/、ること、すなわち共振周波数の温度係数 τ l¾SOppm/°C付近であること
等が要求される。
[0004] そして従来より、一般式〔(1 y) 'xCaTi O —(1 y) · (1— x) Ca{Mg (M) a (l+2a) 1/3
} O -yLnAl O 〕(ただし、 Mは Nb及び Z又は Ta、 Lnは希土類元素)で
2/3 b (l+2b) c (3+3c) /2
表されると共に、上記 x、 y、 a、 b、及び c力 それぞれ 0. 550≤x≤0. 800、 0. 080 ≤y≤0. 180、 (1 -y) ·χ≤0. 650、 0. 910≤a≤l. 100、 0. 900≤b≤l . 100、 0. 900≤c≤l. 100の範囲に調製された高周波用誘電体磁器組成物(特許文献 1 )や、一般式〔(1 y) 'xCaTi O —(1 y) · (1— x) Ca{Zn (M) } 0 yL a (l+2a) 1/3 2/3 b (l+2b) nAl O 〕(ただし、 Mは Nb及び
(3+3c)/2 Z又は Ta、 Lnは希土類元素)で表されると共に c
、上記 x、 y、 a、 b、及び c力 それぞれ 0. 560≤x≤0. 800、 0. 080≤y≤0. 180、 (1 -y) ·χ≤0. 650、 0. 985≤a≤l. 050、 0. 900≤b≤l. 020、 0. 900≤c≤l . 050の範囲に調製された高周波用誘電体磁器組成物 (特許文献 2)が既に提案さ れている。
[0005] 特許文献 1、 2は上述のような成分糸且成を有することにより、 40〜60の高比誘電率 と 30000以上の高い Q値を有し、し力も共振周波数の温度係数 τ l¾S0± 30ppmZ °Cの温度安定性に優れた高周波用誘電体磁器組成物を得ている。
[0006] 特許文献 1 :特開 2001— 163665号公報
特許文献 2:特開 2001— 192265号公報
発明の開示
発明が解決しょうとする課題
[0007] 上記特許文献 1、 2の高周波用誘電体磁器組成物は、上述したように比誘電率 ε r 及び Q値が高ぐまた、共振周波数の温度係数も 0± 30ppmZ°Cであることから、共 振周波数の温度安定性に優れているが、近年の通信機事業の発展に伴い、より高 性能な材料組成を有する誘電体磁器組成物の実現が望まれている。
[0008] 本発明はこのような事情に鑑みなされたものであって、 Q値をさらに向上させること により、従来に比べより一層良好な誘電特性を有する高周波用誘電体磁器組成物、 及びそれを用いた誘電体素子を提供することを目的とする。
課題を解決するための手段
[0009] 上記目的を達成するために本発明者が鋭意研究を行ったところ、一般式〔(1— y) · xCaTi O - (l -y) - (l -x) Ca{ (Ml) (M2) } O vLnAl O 〕で a (l+2a) 1/3 2/3 b (l+2b) c (3+3c) /2 表される所定モル組成比を有する主成分に対し、ジルコニウム化合物を副成分とし て含有させることにより、比誘電率 ε rや共振周波数の温度特性て fに大きな変動を 生じさせることなぐ Q値を向上させることができ、これにより従来に比べより一層良好 な誘電特性を有する高周波用誘電体磁器組成物を得ることができるという知見を得 た。
[0010] 本発明はこのような知見に基づきなされたものであって、本発明に係る高周波用誘 電体磁器組成物(以下、単に「誘電体磁器組成物」 t ヽぅ)は、主成分が、一般式〔(1 -y) - xCaTi O 一 (1一 y) · (1— x) Ca{ (Ml) (M2) } O -yLnAl O
a (l+2a) 1/3 2/3 b (l+2b) c (3+3c) /
〕(ただし、 Mlは Zn及び Mgのうちの少なくとも 1種、 M2は Nb及び Taのうちの少な
2
くとも 1種、 Lnは希土類元素を示す)で表されると共に、上記各モル比 x、 y、 a、 b、及 び c力 0. 56≤x≤0. 8、 0. 08≤y≤0. 18、 (1 -y) ·χ≤0. 65、 0. 985≤a≤l . 05、 0. 9≤b≤l . 02、及び 0. 9≤c≤l . 05を充足し、力つ、畐 ij成分としてジノレコニ ゥム化合物が含有されて 、ることを特徴として 、る。
[0011] ジルコニウム化合物は、主成分 100重量部に対し、 ZrOに換算して 0. 2重量部以
2
上含有させることにより添加効果が生じることとなる。一方、ジルコニウム化合物の含 有量力 主成分 100重量部に対し、 ZrOに換算して 1. 0重量部を超えると Q値が低
2
下する傾向がある。
[0012] したがって、本発明の誘電体磁器組成物においては、前記ジルコニウム化合物が 、前記主成分 100重量部に対し、 ZrOに換算して 0. 2〜1. 0重量部含有されてい
2
ることが好ましい。
[0013] また、共振周波数の温度安定性をより良好なものとするためには(l—y) ·χ≤0. 6 となるように x、 yを調製するのが好ましい。
[0014] すなわち、本発明の誘電体磁器組成物においては、(l—y) ·χ≤0. 6であることが 好ましい。
[0015] さらに、 Ln (希土類元素)としては、 Nd、 Y、 La、 Sm、 Pr等を選択的に使用すること により、上述した所期の目的を容易に達成することができる。
[0016] すなわち、本発明の誘電体磁器組成物においては、前記 Lnは、 Nd、 Y、 La、 Sm
、及び Prの中力も選択された少なくとも 1種であることが好ましい。
[0017] また、本発明に係る誘電体素子は、前記誘電体磁器組成物で形成された素体を備 えて 、ることを特徴として!/、る。
発明の効果
[0018] 上記誘電体磁器組成物によれば、一般式〔(l—y) -xCaTi O 一(1一 y) · (1— a (l+2a)
x) Ca{ (Ml) (M2) } O -yLnAl O 〕(ただし、 Mlは Zn及び Mgのうち
1/3 2/3 b (l+2b) c (3+3c)/2
の少なくとも 1種、 M2は Nb及び Taのうちの少なくとも 1種、 Lnは希土類元素を示す) で表される所定モル組成比を有する主成分に副成分としてジルコニウム化合物を含 有させているので、比誘電率 ε rや共振周波数の温度特性て fに大きな変動を生じさ せることなく Q値を向上させることが可能となり、これにより、より一層良好な誘電特性 を有する誘電体磁器組成物を得ることができる。 [0019] また、前記ジルコニウム化合物を、前記主成分 100重量部に対し、 ZrOに換算し
2 て 0. 2〜1.0重量部含有させることにより、上述した Q値向上の効果を容易に奏する ことができる。
[0020] また、 (1-y) ·χ≤0. 6とすることにより、共振周波数の温度安定性がより一層向上 し、より良好な誘電特性を有する誘電体磁器組成物を得ることができる。
[0021] また、上記誘電体素子は、前記誘電体磁器組成物で形成されて!ヽるので、より良 好な各種特性を有する信頼性の優れた誘電体共振器等の誘電体素子を得ることが できる。
図面の簡単な説明
[0022] [図 1]本発明に係る誘電体素子としての誘電体共振器が搭載された誘電体共振装置 の一実施の形態を示す内部構造図である。
符号の説明
[0023] 1 誘電体共振器 (誘電体素子)
発明を実施するための最良の形態
[0024] 次に、本発明の実施の形態を詳説する。
[0025] 本発明に係る誘電体磁器組成物は、下記一般式 (Α)で表される主成分に 副成分 としてジルコニウム化合物が含有されて 、る。
[0026] (1-y) -xCaTi O 一 (1一 y) · (1— x)Ca{(Ml) (M2) } O 一 yLnAl O a (l+2a) 1/3 2/3 b (l+2b) c
〕 -(A)
(3+3c)/2
[0027] ただし、 Mlは Zn及び Mgのうちの少なくとも 1種、 M2は Nb及び Taのうちの少なく とも 1種、 Lnは希土類元素を示している。
[0028] また、本誘電体磁器組成物は、上記 x、 y、 (1-y) ·χ (以下、「 a」と記す。) a、 b、及 びじが、下記数式( 1)〜(6)を充足するように調製されて 、る。
0. 56≤χ≤0.8···(1)
0.08≤y≤0. 18···(2)
a≤0.65···(3)
0. 985≤a≤l.05··· (4)
0. 9≤b≤l.02···(5) 0. 9≤c≤l. 05· ·· (6)
[0029] このように本誘電体磁器組成物は、一般式 (Α)で示される主成分にジルコニウム化 合物を副成分として含有させることにより、比誘電率 ε rや共振周波数の温度係数て f の大きな変動を生じることもなぐ Q値を向上させることができる。すなわち、上記各モ ル比 x、 y、 a、 b、及び cが、下記数式(1)〜(6)を充足するように主成分組成を調製 することにより、比誘電率 ε rが 40以上であって、共振周波数の温度係数て i¾ 0± 3 OppmZ°Cに抑制され、し力も従来に比べ、 Q値をより一層向上させた誘電特性の優 れた誘電体磁器組成物を得ることができる。
[0030] また、ジルコニウム化合物の含有量としては、主成分 100重量部に対し、酸化ジル コ -ゥム (ZrO )に換算して 0. 2〜1重量部に制御するのが望ましい。
2
[0031] 主成分に意図的にジルコニウム化合物を添カ卩して Q値を向上させるためには、ジル コ -ゥム化合物は、主成分 100重量部に対し ZrOに換算して 0. 2重量部以上含有
2
させる必要がある。一方、ジルコニウム化合物の含有量力 主成分 100重量部に対し ZrOに換算して 1重量部を超えると、比誘電率 ε rや温度係数 τ fは良好に維持する
2
ことができるものの、 Q値が却って低下してしまう場合がある。
[0032] したがって、上述したようにジルコニウム化合物の含有量は、主成分 100重量部に 対し、 ZrOに換算し 0. 2〜1重量部(さらには、 0. 25〜: L 0重量部)の範囲とするの
2
が好ましい。
[0033] 次に、一般式 (A)で、各モル比 x、 y、 Q;、 a、 b、及び cが、下記数式(1)〜(6)を充 足するようにした理由を述べる。
[0034] (l) x
Xが 0. 56未満の場合は、主成分にジルコニウム化合物を副成分として添カ卩しても Q値が 30000以下となり、誘電体損失が大きくなる。一方、 Xが 0. 80を超えた場合は 、ジルコニウム化合物を添加することにより Q値は 30000以上を確保することが可能 であるが、温度係数て !^ + 30ppmZ°C以上となり、共振周波数の温度安定性が低 下する。
[0035] そこで、本実施の形態では、 X力 SO. 56≤x≤0. 80となるよう〖こしている。
[0036] (2)y yが 0. 08未満の場合、又は 0. 18を超えた場合は、 Xの場合と同様、ジルコニウム 化合物を添加しても Q値が 30000以下となり、誘電体損失が大きくなる。
[0037] そこで、本実施の形態では、 y力 . 08≤y≤0. 18となるようにしている。
[0038] (3) a ( = (l -y) -x)
aが 0. 65を超えると、 CaTi O の含有モル量が過剰となって温度係数 τ +
a (l+2a)
30ppmZ°Cより大きくなり、共振周波数の温度安定性が劣化する。
[0039] そこで、本実施の形態では、 αが α≤0. 65となるようにしている。特に、
ひを 0. 6以下にした場合は、共振周波数の温度係数 T ¾0± 15ppmZ°Cに抑制す ることができ、温度安定性を向上させる観点から好ましい。すなわち、 aは α≤0. 6と なるようにするのがより好まし!/、。
[0040] (4) a
aが 0. 985未満の場合、又は 1. 05を超えた場合は、ジルコニウム化合物を添カロし ても Q値が 30000以下となり、誘電体損失が大きくなる。
[0041] そこで、本実施の形態では、 aが 0. 985≤a≤l . 05となるように調製している。
[0042] (5) b
b力 SO. 9未満の場合、又は 1. 02を超えた場合も、上記 aの場合と同様、ジルコユウ ム化合物を添加しても Q値が 30000以下となり、誘電体損失が大きくなる。
[0043] そこで、本実施の形態では、 b力 . 9≤b≤ 1. 02となるように調製している。
[0044] (6) c
cが 0. 9未満の場合、又は 1. 05を超えた場合も、上記 a、 bの場合と同様、ジルコ- ゥム化合物を添加しても Q値が 30000以下となり、誘電体損失が大きくなる。
[0045] そこで、本実施の形態では、 cが 0. 9≤b≤ 1. 05となるように調製している。
[0046] 尚、一般式 (A)中の Lnは希土類元素であれば特に限定されるものではないが、ネ オジム(Nd)、イットリウム (Y)、ランタン(La)、サマリウム(Sm)、プラセオジム(Pr)が 好適に使用される。
[0047] 次に、上記誘電体磁器組成物の製造方法について詳述する。
[0048] まず、セラミック素原料として、高純度の炭酸カルシウム(CaCO )、酸化チタン (Ti
3
O )、酸ィ匕アルミニウム (Al O )を準備し、さらに酸化亜鉛 (ZnO)及び酸化マグネシ ゥム(MgO)のうちの少なくとも 1種、酸化ニオブ (Nb O )及び酸化タンタル (Ta O )
2 5 2 5 のうちの少なくとも 1種、希土類酸ィ匕物として酸ィ匕ネオジム(Nd O )、酸化イットリウム
2 3
(Y O )、酸化ランタン(La O )、酸化サマリウム(Sm O )、酸化プラセオジム(Pr O
2 3 2 3 2 3 6
)の中から選択された少なくとも 1種を準備する。
11
[0049] 次に、これらセラミック素原料が上記数式(1)〜(6)を充足するように調合し、ボー ルミルに投入して所定時間湿式混合し、脱水'乾燥した後、仮焼処理を行ない、主成 分組成からなる仮焼粉末を得る。
[0050] 次いで、この仮焼粉末 (主成分) 100重量部に対し、副成分としてのジルコニウム化 合物を酸化ジルコニウム(ZrO )に換算して 0. 2〜1. 0重量部添加し、さらに適量の
2
バインダを添加して所定時間湿式粉砕し、これにより上記誘電体磁器組成物の素原 料が作製される。
[0051] 次に、この誘電体磁器組成物を使用した誘電体素子について詳説する。
[0052] 図 1は本発明に係る誘電体素子としての誘電体共振器を備えた誘電体共振装置で あって、該誘電体共振装置は、柱状の誘電体共振器 1が支持台 2を介して金属ケー ス 3内に配設されている。また、入力端子 4及び出力端子 5は、該金属ケース 3に保 持されている。
[0053] 上記誘電体共振器 1は、上記誘電体磁器組成物の素原料に所定圧力下、プレス 成形を施し、温度 1400°C〜1650°Cで所定時間焼成処理を施すことにより得られる
[0054] そして、上記誘電体共振器 1は、入力端子 4及び出力端子 5に電磁界結合して TE
0 モードで動作し、入力端子 4に入力された所定周波数の信号のみが出力端子 5か
1 δ
ら出力される。
[0055] 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では誘 電体共振器は ΤΕ モードで動作して!/、るが、他の ΤΕモードや ΤΜモード、 ΤΕΜモ
01 δ
ードなどの動作モードを有する場合も同様であり、誘電体共振器以外の誘電体素子 、例えば誘電体フィルタや誘電体基板等についても同様に適用できるのはいうまでも ない。
[0056] 次に、本発明の実施例を具体的に説明する。 実施例 1
[0057] 上記一般式 (A)中の x、 yを種々変えて ZrOの添加効果を確認した。
2
[0058] すなわち、まず、セラミック素原料として、高純度の炭酸カルシウム (CaCO )、酸ィ匕
3 チタン (TiO )、酸化亜鉛 (ZnO)、酸化ニオブ (Nb O )、酸化ネオジム(Nd O
2 2 5 2 3 及び酸ィ匕アルミニウム (Al O )を準備し、一般式 (A)で a、 b、及び cが 1となるように
2 3
秤量し、 x、 yについては表 1の組成を有するように秤量した。
[0059] 次いで、この秤量物を PSZが内有されたボールミルに純水と共に投入し、 16時間 湿式混合した後、脱水'乾燥処理を施し、その後温度 1000〜1300°Cで 3時間仮焼 処理を施し、主成分組成からなる仮焼粉末を作製した。
[0060] 次 、で、この仮焼粉末 (主成分)に酸ィ匕ジルコニウム (ZrO )及び適量のバインダを
2
添加し、ボールミル内で再度 16時間湿式粉砕し、誘電体磁器組成物の素原料を得 た。
[0061] 次に、誘電体磁器組成物の素原料を 9. 8 X 107〜1. 96 X 108Paの圧力下、プレ ス成形を施して円板状とした後、大気中、温度 1400〜1650°Cで 4時間焼成処理を 施し、直径 10mm、厚み 5mmの焼結体 (誘電体磁器組成物)からなる誘電体共振器 を得た (表 1中、偶数番号の試料)。
[0062] また、上述した主成分組成力 なる仮焼粉末に対し、 ZrOを添加することなく上記
2
プレス成形を施し、次いで、焼成処理を施し、上述と同様、直径 10mm、厚み 5mm の焼結体力ゝらなる誘電体共振器を得た (表 1中、奇数番号の試料)。
[0063] 次に、各試料 (試料番号 1〜32)について、周波数 6〜8GHzにおける比誘電率 ε r及び Q値を両端短絡型誘電体共振器法で測定した。また、 TE モードの共振周
01 δ
波数から、共振周波数の温度係数て f(25^55°C)を測定した。
[0064] また、測定後の誘電体共振器について、 ICP (Inductively Coupled Plasma;誘導結 合プラズマ発光分光)分析法を使用して ZrOの含有量を定量した。
2
[0065] 表 1は試料番号 1〜32の成分組成と、測定結果、すなわち比誘電率 ε r、 Q値、共 振周波数の温度係数 τ 1¾示している。尚、 Q値は 1GHzに換算した値を示している
[表 1]
Figure imgf000010_0001
*は本発明範囲外 この表 1から明らかなように副成分として ZrOを添加した偶数番号の試料は、 ZrO
2 2 の含有量が、主成分 100重量部に対し 0. 23-0. 26重量部であった。また、副成分 としての ZrOを添カ卩しなカゝつた奇数番号の試料でも、主成分 100重量部に対し 0. 1
2
6 0. 19重量部の ZrOが含有されていた。これは、混合粉砕処理で使用した PSZ が主成分中に混入した結果であり、したがって ZrOを主成分に意図的に添加しなく
2
とも、この種の誘電体磁器組成物は、主成分 100重量部に対し 0. 16-0. 19重量 部程度の ZrOが含有されることが分力つた。
2
[0067] そして、試料番号 1〜32から明らかなように主成分組成が同一の場合は、 ZrOを
2 副成分として添加させることにより、 Q値が向上している。
[0068] しかしながら、試料番号 2は、 X力 SO. 500と少なく、 y力 . 200と多いため、主成分 に ZrOを添カ卩しても Q値が 29300と低ぐまた共振周波数の温度係数 τ fについても
2
-42. 5ppmZ°Cとなって温度安定性に欠けることが分力つた。
[0069] 試料番号 4も、 y力 . 200と多いため、主成分に ZrOを添カ卩しても Q値が 29800と
2
低くなることが分力つた。
[0070] 試料番号 6は、 Q値については 31500となって ZrOを添カ卩しなかった場合(試料
2
番号 5)に比べ向上している力 Xが 0. 875と多いため、共振周波数の温度係数 τ f 力 6ppmZ°Cとなって温度安定性に欠けることが分力つた。
[0071] 試料番号 16も、 Q値については 31600となって ZrOを添カ卩しなかった場合(試料
2
番号 15)に比べ向上している力 X力 SO. 825と多いため、共振周波数の温度係数 τ f 力 5ppmZ°Cとなって温度安定性に欠けることが分力つた。
[0072] 試料番号 24は、 aが 0. 702と多いため、共振周波数の温度係数 τ ί¾¾5. 9ppm Z°Cとなって温度安定性に欠けることが分力つた。
[0073] 試料番号 26は、 X力 . 550と少ないため、主成分に ZrOを添カ卩しても Q値が 289
2
00と低いことが分力つた。
[0074] 試料番号 30は、 X力 . 550と少なく、 yも 0. 050と少ないため、主成分に ZrOを添
2 加しても Q値は 28600と低 、ことが分力つた。
[0075] 試料番号 32は、 y力 . 050と少ないため、主成分に ZrOを添カ卩しても Q値は 264
2
00と低いことが分力つた。
[0076] これに対して試料番号 7〜 14、 17〜22、 27、及び 28は、 x、 y、 aが本発明の範囲 内(0. 56≤x≤0. 8、0. 08≤y≤0. 18、 a≤0. 65)であるので、比誘電率 ε rは 4 6. 6以上と大きぐ共振周波数の温度係数 r l¾0± 30ppmZ°Cの範囲であり、また Q値は 30300以上と高ぐ良好な誘電特性が得られることが分力つた。特に、副成分 として ZrOが添加された偶数番号の試料は、 ZrOを意図的に添加しなカゝつた奇数
2 2
番号の試料に比べていずれも Q値が向上しており、より良好な誘電特性の得られるこ とが確認された。
実施例 2
[0077] 上記一般式 (A)中の a、 b、及び cを種々変えて ZrOの添加効果を確認した。
2
[0078] すなわち、実施例 1と同様のセラミック素原料を出発素材とし、一般式 (A)で Xが 0.
670、 y力^). 100となるように样量し(α =0. 603)、 a、 b、及び cにつ!/、ては表 2の糸且 成を有するように秤量した。
[0079] その後は実施例 1と同様の方法 ·手順で、 ZrOを添加した誘電体共振器 (表 2中、
2
偶数番号の試料)と、 ZrOを添加しなカゝつた誘電体共振器 (表 2中、奇数番号の試
2
料)とを作製し、比誘電率 ε r、 Q値及び共振周波数の温度係数て 測定した。
[0080] 表 2は試料番号 41〜64の成分組成と、測定結果である比誘電率 ε r、 Q値(1GHz )、共振周波数の温度係数 τ 示している。
[表 2]
Figure imgf000013_0001
[0081] この表 2から明らかなように、実施例 1と同様、副成分として ZrOを主成分に添加し なくとも、主成分 100重量部に対し 0. 16〜0. 19重量部の ZrOが含有されることが 分かった。
[0082] また、主成分組成が同一の場合は、 ZrOを副成分として添加させることにより、 Q値 が向上することも分力 た。 [0083] しかしながら、試料番号 42は、 a力 . 980と少ないため、主成分に ZrOを添加して
2 も Q値が 25600と低くなることが分力つた。
[0084] 試料番号 48は、 aが 1. 100と多いため、主成分に ZrOを添加しても Q値力 7600
2
と低いことが分力つた。
[0085] 試料番号 50は、 b力 SO. 850と少ないため、主成分に ZrOを添カ卩しても Q値が 265
2
00と低くなることが分力つた。
[0086] 試料番号 56は、 bが 1. 050と多いため、主成分に ZrOを添カ卩しても Q値が 24700
2
と低いことが分力つた。
[0087] 試料番号 58は、 c力 . 850と少ないため、主成分に ZrOを添カ卩しても Q値が 236
2
00と低くなることが分力つた。
[0088] 試料番号 64は、 cが 1. 100と多いため、主成分に ZrOを添加しても Q値力 8600
2
と低いことが分力つた。
[0089] これに対して試料番号 43〜46、 51〜54、及び 59〜62は、 a、 b、 cが本発明の範 囲内(0. 985≤a≤l. 05、 0. 9≤b≤l. 02、 0. 9≤c≤l . 05)であるので、比誘電 率 ε rは 54. 2以上と大きぐ共振周波数の温度係数て !¾0± 30ppmZ°Cの範囲で あり、また Q値が 30000以上と高ぐ良好な誘電特性が得られることが分力つた。特に 、副成分として ZrOが添加された偶数番号の試料は、 ZrOが意図的に添加されな
2 2
力つた奇数番号の試料に比べていずれも Q値が向上しており、より良好な誘電特性 の得られることが確認された。
実施例 3
[0090] 上記一般式 (A)中の M2成分の成分種を変えて ZrOの添加効果を確認した。
2
[0091] すなわち、セラミック素原料として、高純度の炭酸カルシウム (CaCO )、酸化チタン
3
(TiO )、酸ィ匕亜鉛 (ZnO)、酸ィ匕ニオブ (Nb O )、酸ィ匕ネオジム (Nd O )、及び酸
2 2 5 2 3 化アルミニウム (Al O )の他、酸化タンタル (Ta O )を準備し、一般式 (A)で a、 b、
2 3 2 5
及び c力 Siとなるように样量し、 x力 SO. 670、 y力 SO. 100となるように样量し( α =0. 60 3)、かつ Μ2成分が表 3の組成比を有するように秤量した。
[0092] その後は実施例 1と同様の方法 ·手順で、 ZrOを添加した誘電体共振器 (表 3中、
2
試料番号 72、 74)と、 ZrOを添加しなカゝつた誘電体共振器 (表 2中、試料番号 71、 7 3)とを作製し、比誘電率 ε r、 Q値及び共振周波数の温度係数 τ 測定した。
表 3は試料番号 71〜74の成分組成と、測定結果である比誘電率 ε r、 Q値(1GHz )、共振周波数の温度係数 τ 示している。
[表 3]
Figure imgf000015_0001
*は本発明範囲外
[0094] この表 3から明らかなように、副成分として意図的に ZrOを主成分に添カ卩した試料 番号 72、 74は、 ZrOを意図的に添カ卩しなかった試料番号 71、 73に比べて Q値が 向上することが分力つた。
[0095] また、 が 0. 650、 yが 0. 150とした場合についても同様にして試料を作製し、比誘 電率 ε r、 Q値及び共振周波数の温度係数 τ 1¾測定した (試料番号 75〜78)。
[0096] 表 4は試料番号 75〜78の成分組成と、測定結果である比誘電率 ε r、 Q値(1GHz
)、共振周波数の温度係数 τ 示している。
[表 4]
Figure imgf000015_0002
*は本発明範囲外
[0097] この表 4から明らかなように、表 3と同様、副成分として意図的に ZrOを主成分に添 加した試料番号 76、 78は、 ZrOを意図的に添カ卩しなかった試料番号 75、 77に比
2
ベて Q値が向上することが分力つた。
実施例 4
[0098] 上記一般式 (A)中の Ln (希土類元素)を種々変えて ZrOの添加効果を確認した。
2
[0099] すなわち、セラミック素原料として、高純度の炭酸カルシウム (CaCO )、酸化チタン
3
(TiO )、酸化亜鉛 (ZnO)、酸化ニオブ (Nb O )、酸化アルミニウム(Al O )、酸ィ匕
2 2 5 2 3 ネオジム(Nd O )の他、酸化イットリウム (Y O )、酸化ランタン (La O )、酸化サマリ
2 3 2 3 2 3
ゥム(Sm O )、及び酸ィ匕プラセオジム (Pr O )を準備し、一般式 (A)で a、 b、及び c
2 3 6 11
力 1となるように样量し、 X力 SO. 650、 y力 SO. 150となるように样量し( α =0. 553)、 かつ Ln成分が表 5の組成比を有するように秤量した。
[0100] その後は実施例 1と同様の方法 ·手順で、 ZrOを添加した誘電体共振器 (表 5中、
2
偶数番号の試料)と、 ZrOを添加しなカゝつた誘電体共振器 (表 2中、奇数番号の試
2
料)とを作製し、比誘電率 ε r、 Q値及び共振周波数の温度係数 τ 測定した。
[0101] 表 5は試料番号 81〜96の成分組成と、測定結果である比誘電率 ε r、 Q値(1GHz )、共振周波数の温度係数 τ 示している。
[表 5]
0.553CaTiO3-0.297Ca(Zn1/3Nb2/3)03— 0. 150LnAIO3 試料
No. Zr02
p し n 比誘電率 ε r 温度係数て f
Q値
(重量部) (一) (ppm/°C)
81 < Y 42.3 30500 1.5
p
82 Y 0.24 32600 1.6
z
83 (0. 18) 47.9 34300 一 2.2
84 0. 1Y 0.9Nd 0.25 48. 1 36300 一 1.9
6 O d d
p
85 し a (0. 17) 30100 2.4
寸D卜 I
O
86 し a 33000 2.6
87 0.1La 0.9Nd (0. 16) 50. 1 34100 一 2. 1
寸寸寸寸
88 0.1La 0.9Nd 0.23 ai000 00 0 0 0 36800 -2.0
p p ο o p
寸卜
89 Sm (0. 16) 47. D 8 ω C 34400 一 1.3
90 Sm 47.9 36600 -1. 1
91 0.1Sm 0.9Nd (0. 18) 33600
92
Figure imgf000017_0001
0.25 35100 一 2.4
93 Pr (0. 19) 30200 7.4
94 Pr 33300 7.5
95 0. 1Pr 0.9Nd (0. 18) 34200 一 1.6
96 0. 1Pr 0.9Nd 36000 一 1.3
*は本発明範囲外
[0102] この表 5から明らかなように、副成分として意図的に ZrOを主成分に添カ卩した偶数
2
番号試料は、 ZrOを意図的に添加しなかった奇数番号試料に比べてそれぞれ Q値
2
が向上することが確認された。
実施例 5
[0103] 上記一般式 (A)中の Ml成分である Znと Mgとの配合モル比 zを種々変えて ZrO
2 の添加効果を確認した。
[0104] すなわち、セラミック素原料として、高純度の炭酸カルシウム (CaCO )、酸化チタン
3
(TiO )、酸ィ匕亜鉛 (ZnO)、酸ィ匕ニオブ (Nb O )、酸ィ匕ネオジム (Nd O )、及び酸
2 2 5 2 3 化アルミニウム (AI O )の他、酸ィ匕マグネシウム(MgO)を準備し、一般式 (A)で a、 b 、及び c力 S iとなるように样量し、 x力 SO. 670、 y力 SO. 100となるように样量し( α =0. 6 03)、かつ ζが表 6の組成比を有するように秤量した。
[0105] その後は実施例 1と同様の方法 ·手順で、 ZrOを添加した誘電体共振器 (表 6中、
2
試料番号 102、 104、 106)と、 ZrOを添カ卩しなかった誘電体共振器(表 6中、試料
2
番号 101、 103、 105)とを作製し、比誘電率 ε r、 Q値及び共振周波数の温度係数 て 測定した。
[0106] 表 6は試料番号 101〜106の成分組成と、測定結果である比誘電率 ε r、 Q値(1G Hz)、共振周波数の温度係数 τ 示している。
[表 6]
Figure imgf000018_0001
[0107] この表 6から明らかなように、副成分として意図的に ZrOを主成分に添カ卩した試料
2
番号 102、 104、及び 106は、 ZrOを意図的に添カ卩しなかった試料番号 101、 103
2
、及び 105に比べてそれぞれ Q値が向上することが分力つた。
[0108] また、 X力 0. 650、 y力 O. 150 ( α =0. 553)とした場合につ!ヽても同様にして試料 を作製し、比誘電率 ε r、 Q値及び共振周波数の温度係数 τ 測定した (試料番号 107〜112)。
[0109] 表 7は試料番号 107〜 112の成分組成と、測定結果である比誘電率 ε r、 Q値(1G Hz)、共振周波数の温度係数 τ 示している。
[表 7] 0.553CaTiO3-0.297Ca { (Zn(1z)Mgz) 1/3Nb2/3}03— 0. 150NdAIO3
No. ZrOz
z 比誘電率 ε r f
Q値 温度係数て
(重量部) (一) (PPmZ。C)
107 0. 1 (0. 17) 35000 -2.5
108 0. 1 0.24 36700 -2.3
109 0.5 (0. 18) 47.8 35200 -2. 1
110 0.5
d d 37000 —1.9
111 1.0 (0. 18) 36800 -3.4
112 1.0 38200 寸寸
[0110] この表 7から明らかなように、表 6と同様 rO
〇、副成分として意図的に Z を主成分に添
加した試料番号 108、 110、 112は、 ZrOを意図的に添カ卩しなかった試料番号 107
、 109、 111に比べて Q値が向上することが分かった。
実施例 6
[0111] 副成分としての ZrOの含有量が異なる試料を作製し、誘電特性を評価した。
すなわち、実施例 1と同様のセラミック素原料を出発素材とし ω、一般式 (A)で Xが 0.
ω
650、 y力 S0. 150となるょぅに样量し(0; =0. 553)、 a、 b、及び c力 1となるように样量 し、実施例 1と同様の方法'手順で仮焼粉末を作製した。
[0112] 次いで、この仮焼粉末 (主成分)に表 8に示すような含有量となるように酸ィヒジルコ -ゥム (ZrO )の添カ卩し、湿式粉砕処、プレス成形、焼成処理を経て試料番号 121〜
126の誘電体共振器を作製し、比誘電率 ε r、 Q値及び共振周波数の温度係数て f を測定した。
[0113] 表 8は試料番号 121〜126の成分組成と、測定結果である比誘電率 ε r、 Q値(1G Hz)、共振周波数の温度係数 τ 示している。
[表 8] 0.553CaTiO3-0.297 (Zn1/3Nb2/3)O3_0.150NdAIO3
試料
No. ZrOz 比誘電率 温度係数 τ
Q値
(重量部) (-) (ppm/°C)
121 36300 -2.5
122 0.41 36400 一 2.2
ο
123 0.53 36200 -2.0
124 1.00 35800 一 1.8
125 1.51 50.0 29800 一 0.5
126 2.03 寸寸寸n i 26500 一 0. 1
この表 8から明らかなように試料番号 121〜124は、 ZrOの含有量が主成分 100 重量咅に対し 0.20-1.00重量咅であり、 Q値力 35800〜36400と良好である力 試料番号 125、 126は ZrOの含有量が主成分 100重量部に対し 1.51、 2.03重量 部と多いため、 Q値は却って低下傾向となった。すなわち、 ZrOの含有量は、主成 分 100重量部に対し 0.20〜: L 00重量部が好ましいことが分力つた。

Claims

請求の範囲
[1] 主成分力 一般式〔(1 y) 'xCaTi O —
a (l+2a) (1 y) · (1— x) Ca{(Ml) (M2) }
1/3 2/3
O -yLnAl O 〕(ただし、 Mlは Zn及び Mgのうちの少なくとも 1種、 M2は b (l+2b) c (3+3c)/2
Nb及び Taのうちの少なくとも 1種、 Lnは希土類元素を示す)で表されると共に、上記 各モノレ比 x、 y、 a、 b、及び cが、
0. 56≤x≤0. 8、
0. 08≤y≤0. 18、
(1 -y) ·χ≤0. 65、
0. 985≤a≤l. 05、
0. 9≤b≤l. 02、
及び
0. 9≤c≤l. 05
を充足し、
かつ、副成分としてジルコニウム化合物が含有されて 、ることを特徴とする高周波 用誘電体磁器組成物。
[2] 前記ジルコニウム化合物は、前記主成分 100重量部に対し、 ZrOに換算して 0. 2
2
〜1重量部含有されていることを特徴とする請求項 1記載の高周波用誘電体磁器組 成物。
[3] (l -y) -x≤0. 6であることを特徴とする請求項 1又は請求項 2記載の高周波用誘 電体磁器組成物。
[4] 前記 Lnは、 Nd、 Y、 La、 Sm、及び Prの中力も選択された少なくとも 1種であること を特徴とする請求項 1乃至請求項 3のいずれかに記載の高周波用誘電体磁器組成 物。
[5] 請求項 1乃至請求項 4の ヽずれかに記載の高周波用誘電体磁器組成物で形成さ れた磁器素体を備えることを特徴とする誘電体素子。
PCT/JP2005/007010 2004-07-05 2005-04-11 高周波用誘電体磁器組成物、及び誘電体素子 WO2006003745A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004197747 2004-07-05
JP2004-197747 2004-07-05

Publications (1)

Publication Number Publication Date
WO2006003745A1 true WO2006003745A1 (ja) 2006-01-12

Family

ID=35782560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007010 WO2006003745A1 (ja) 2004-07-05 2005-04-11 高周波用誘電体磁器組成物、及び誘電体素子

Country Status (1)

Country Link
WO (1) WO2006003745A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557784A (zh) * 2022-07-20 2023-01-03 中国科学院上海硅酸盐研究所 一种mzta陶瓷材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163665A (ja) * 1999-12-13 2001-06-19 Murata Mfg Co Ltd 高周波用誘電体磁器組成物、誘電体共振器、誘電体フィルタ、誘電体デュプレクサ及び通信機装置
JP2001192265A (ja) * 1999-10-25 2001-07-17 Murata Mfg Co Ltd 高周波用誘電体磁器組成物、誘電体共振器、誘電体フィルタ、誘電体デュプレクサおよび通信機装置
JP2004182534A (ja) * 2002-12-03 2004-07-02 Ngk Spark Plug Co Ltd マイクロ波誘電体磁器組成物及び誘電体共振器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192265A (ja) * 1999-10-25 2001-07-17 Murata Mfg Co Ltd 高周波用誘電体磁器組成物、誘電体共振器、誘電体フィルタ、誘電体デュプレクサおよび通信機装置
JP2001163665A (ja) * 1999-12-13 2001-06-19 Murata Mfg Co Ltd 高周波用誘電体磁器組成物、誘電体共振器、誘電体フィルタ、誘電体デュプレクサ及び通信機装置
JP2004182534A (ja) * 2002-12-03 2004-07-02 Ngk Spark Plug Co Ltd マイクロ波誘電体磁器組成物及び誘電体共振器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557784A (zh) * 2022-07-20 2023-01-03 中国科学院上海硅酸盐研究所 一种mzta陶瓷材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN101479212B (zh) 电介质瓷质体及电容器
JP6455343B2 (ja) 誘電体組成物および電子部品
CN107836030B (zh) 介电组成、介电元件、电子部件和多层电子部件
JP2001316182A (ja) 圧電磁器および圧電共振子
JP5142700B2 (ja) 誘電体磁器組成物および誘電体共振器
JP2017017090A (ja) 誘電体組成物および電子部品
KR20010109472A (ko) 유전체 자기, 유전체 자기조성물 및 제조방법과, 이것을사용한 유전체 공진기
JPH11278927A (ja) 誘電体磁器組成物、誘電体磁器の製造方法並びに誘電体共振器
WO2006003745A1 (ja) 高周波用誘電体磁器組成物、及び誘電体素子
JP2012046374A (ja) 誘電体セラミックスおよび共振器
JP2003238242A (ja) 誘電体磁器及びこれを用いた誘電体共振器
KR100842855B1 (ko) 마이크로파 유전체 세라믹스 및 그 제조방법
US6613707B2 (en) Dielectric ceramic compositions
EP3766856A1 (en) Piezoelectric ceramic, ceramic electronic component, and production method for piezoelectric ceramic
KR0173185B1 (ko) 고주파용 유전체 자기 조성물
WO2012147769A1 (ja) 誘電体セラミックスおよびこれを備える誘電体フィルタ
JP2003146752A (ja) 誘電体磁器組成物
JP4548876B2 (ja) 高周波用誘電体磁器組成物およびこれを用いた誘電体共振器
JP4765367B2 (ja) 誘電体磁器組成物
JP5197559B2 (ja) 高周波用誘電体磁器組成物およびこれを用いた誘電体共振器
JP3830342B2 (ja) 誘電体磁器及びこれを用いた誘電体共振器
KR960012729B1 (ko) 마이크로파용 유전체 조성물
JP4678569B2 (ja) 電子デバイス用誘電体磁器組成物
JP2006273616A (ja) 誘電体磁器組成物
JP2002087881A (ja) 誘電体磁器及びこれを用いた誘電体共振器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP