WO2006003735A1 - 被覆微粒子、cvd装置及びcvd成膜方法、マイクロカプセル及びその製造方法 - Google Patents

被覆微粒子、cvd装置及びcvd成膜方法、マイクロカプセル及びその製造方法 Download PDF

Info

Publication number
WO2006003735A1
WO2006003735A1 PCT/JP2005/001750 JP2005001750W WO2006003735A1 WO 2006003735 A1 WO2006003735 A1 WO 2006003735A1 JP 2005001750 W JP2005001750 W JP 2005001750W WO 2006003735 A1 WO2006003735 A1 WO 2006003735A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
container
thin film
rotating
particles
Prior art date
Application number
PCT/JP2005/001750
Other languages
English (en)
French (fr)
Inventor
Takayuki Abe
Yuuji Honda
Original Assignee
Youtec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co., Ltd. filed Critical Youtec Co., Ltd.
Publication of WO2006003735A1 publication Critical patent/WO2006003735A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder

Definitions

  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide coated fine particles in which the surface of fine particles or powder is uniformly coated with a thin film or ultra fine particles. is there. Another object of the present invention is to provide a CVD apparatus and a CVD film forming method capable of coating the surface of fine particles or powder with a thin film or ultra fine particles with good uniformity. Another object of the present invention is to provide a micropower cell comprising ultrafine particles or a thin film coated on the surface of fine particles and a method for producing the same.
  • the coated fine particles according to the present invention are characterized in that the surface of the fine particles is coated with ultrafine particles or a thin film having a smaller particle diameter than the fine particles by the CVD method.
  • the coated fine particles according to the present invention are prepared by rotating a container having a substantially circular internal cross-sectional shape about a direction perpendicular to the cross section as a rotation axis, thereby stirring the fine particles in the container. By using the CVD method while rotating, the surface of the fine particles is coated with ultrafine particles or a thin film having a smaller particle diameter than the fine particles.
  • the internal shape of the container is substantially circular, the powder itself can be rotated and stirred by rotating the container itself. Therefore, the particle size is very small, the particle size is even smaller than the fine particle, and it becomes possible to coat the ultrafine particle or thin film with good uniformity.
  • ultrafine particles or thin films having a particle diameter smaller than the fine particles are formed on the surface of the fine particles. It is characterized by covering.
  • a rotation mechanism for rotating the container about a direction substantially perpendicular to the cross section, an electrode disposed in the container,
  • the powder itself can be rotated and stirred by rotating the container itself.
  • the stirring efficiency can be drastically improved compared to the case where the internal shape of the container is substantially circular, and aggregation of powder due to moisture and electrostatic force, which is often a problem when handling powder, can be prevented.
  • stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Accordingly, it is possible to coat fine particles having a very small particle size with ultrafine particles or a thin film having a smaller particle size than the fine particles with good uniformity.
  • the gas introduction mechanism may include a mechanism for introducing a shower-like gas into the container from the electrode. is there.
  • the microcapsule according to the present invention is a microcapsule formed of ultrafine particles or a thin film made of DLC having excellent biocompatibility
  • the first ultrafine particles or the first thin film is made of DLC having excellent biocompatibility
  • the microcapsule according to the present invention rotates a container having a substantially circular cross-sectional shape around a rotation axis in a direction substantially perpendicular to the cross section, thereby stirring or rotating the fine particles in the container.
  • the surface of the fine particles is coated with the first ultrafine particles or the first thin film having a smaller particle diameter than the fine particles, and by using the CVD method, the first ultrafine particles are coated.
  • the surface of the first thin film is coated with the second ultrafine particles or the second thin film having a particle diameter smaller than that of the fine particles, and the coated first and second ultrafine particles, or the first and second thin films. It is characterized in that the above-mentioned fine particles which are the base of the above are removed.
  • the G peak baseline intensity is B
  • the intensity after G peak correction Where A is A is A
  • the value of BZA is preferably less than 1.9.
  • the DLC is 0.28 WZcm 2 or more. It is preferred that the film be deposited using a power density of.
  • the fine particles in the container are agitated by rotating the container about a direction substantially perpendicular to the cross section as a rotational axis.
  • the fine particles on the surface of the fine particles are formed on the surface of the fine particles. Cover with ultrafine particles or thin film with small diameter,
  • fine particles are accommodated in a container having a substantially circular internal shape in a cross section substantially parallel to the direction of gravity.
  • the fine particles in the container are agitated by rotating the container about a direction substantially perpendicular to the cross section as a rotational axis.
  • the fine particles on the surface of the fine particles are formed on the surface of the fine particles.
  • a first ultrafine particle or the first thin film having a small diameter is coated in a container having a substantially circular internal shape in a cross section substantially parallel to the direction of gravity. Containing the fine particles coated with, The first ultrafine particles or the first fine particles can be obtained by using the CVD method while rotating fine particles in the container by rotating the container about a direction substantially perpendicular to the cross section as a rotation axis. Coating the surface of the thin film with the second ultrafine particles or the second thin film having a particle diameter smaller than that of the fine particles,
  • the coated first and second ultrafine particles or the fine particles serving as a base of the first and second thin films are removed.
  • the fine particles in the container are agitated by rotating the container about a direction substantially perpendicular to the cross section as a rotational axis.
  • the fine particles on the surface of the fine particles are formed on the surface of the fine particles.
  • the first ultrafine particles or the first thin film having a small diameter and coated with the first ultrafine particles or the first thin film, and having a polygonal cross-sectional shape substantially parallel to the direction of gravity. Containing the fine particles coated with,
  • the first ultrafine particles or the first fine particles can be obtained by using the CVD method while rotating fine particles in the container by rotating the container about a direction substantially perpendicular to the cross section as a rotation axis. Coating the surface of the thin film with the second ultrafine particles or the second thin film having a particle diameter smaller than that of the fine particles,
  • the coated first and second ultrafine particles or the fine particles serving as a base of the first and second thin films are removed.
  • the second ultrafine particles or the second thin film has a DLC force having excellent biocompatibility
  • a hydrocarbon-based gas containing at least carbon and hydrogen is introduced into the container under a pressure of 0.5 mTorr or more and 500 mTorr or less and connected to a high frequency power source. It is also possible to dispose the electrode in the container and apply a high frequency power having a power density of 0.28 WZcm 2 or more to the electrode to coat the electrode by plasma CVD.
  • a heater 4 as a heating mechanism for heating the powder 1 is arranged at the bottom of the container 2.
  • the container 2 and the heater 4 are disposed in the chamber 1.
  • the thermal CVD apparatus includes a gas introduction mechanism for introducing gas into the chamber 13.
  • the gas introduction mechanism includes the first gas introduction mechanism that introduces O gas and the SiH gas.
  • the base end of the pipe 5 is connected to one side of the first valve 12, and the other side of the first valve 12 is connected to one end of the pipe 6.
  • the other end of the pipe 6 is connected to one end of the mass flow controller 14, and the other end of the mass flow controller 14 is connected to one end of the pipe 7.
  • the other end of pipe 7 is connected to the O gas supply source.
  • the tip of the pipe 8 is connected to the chamber 13, and the tip force of the pipe 8 is charged with SiH gas. Squirting into chamber 3!
  • the base end of the pipe 8 is connected to one side of the second valve 13, and the other side of the second valve 13 is connected to one end of the pipe 9.
  • the other end of the pipe 9 is connected to one end of the mass flow controller 15, and the other end of the mass flow controller 15 is connected to one end of the pipe 10. Connect the other end of pipe 10 to the SiH gas supply source
  • the fine particles 1 may be composed of a mixture of a plurality of substances without necessarily having a single material force.
  • Various shapes can be used as the shape of the fine particles 1, and for example, it is preferable to use a sphere or a shape close to a sphere.
  • Each fine particle surface can be coated with ultrafine particles or thin film having SiO force.
  • FIG. 2 is a cross-sectional view showing an example of coated fine particles obtained by coating fine particles with a thin film using the thermal CVD apparatus shown in FIG.
  • the coated fine particles 18 are obtained by coating the surface of the fine particles 1 with a thin film 17 with good uniformity.
  • the thermal CVD apparatus since the thin film 1 is formed by the thermal CVD method with the fine particles 1 contained in the container 2 stationary, the bottom of the fine particles 1 (the part on the side in contact with the container 2) is formed. The thickness of the thin film to be coated is reduced.
  • the surface of fine particles or powder can be coated with a thin film or ultrafine particles with higher uniformity than in a conventional sputtering apparatus.
  • FIG. 3 (A) is a sectional view schematically showing the thermal CVD apparatus according to the second embodiment of the present invention
  • FIG. 3 (B) is taken along the line 3B-3B shown in FIG. 3 (A). It is sectional drawing.
  • This thermal CVD apparatus is an apparatus for coating the surface of fine particles (or powder) with ultrafine particles or thin films having a smaller particle diameter than the fine particles.
  • the thermal CVD apparatus has a cylindrical chamber 13. Both ends of the chamber 13 are closed by a chamber lid 20.
  • a container 19 is disposed inside the chamber 13.
  • the container 19 has a cylindrical portion (round barrel), and the powder (fine particles) 1 is accommodated inside the round barrel.
  • the cross section shown in Fig. 3 (B) is a cross section substantially parallel to the direction of gravity.
  • the container 19 having a substantially circular cross section is used.
  • the present invention is not limited to this, and a container having a substantially elliptical cross section may be used.
  • the container 19 is provided with a rotation mechanism (not shown). By rotating the container 19 as shown by the arrow by this rotation mechanism, the powder (fine particles) 1 in the container 19 is stirred or rotated. However, the coating process is performed.
  • a rotation axis when the container 19 is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the gravity direction). Also container A heater 21 as a heating mechanism for heating the powder 1 is disposed on the outer surface of 19.
  • the thermal CVD apparatus is provided with a gas introduction mechanism for introducing gas into the container 19.
  • the gas introduction mechanism includes the first gas introduction mechanism that introduces O gas and the SiH gas introduction.
  • the thermal CVD apparatus includes a vacuum pump (not shown) that evacuates the inside of the chamber 13.
  • the inside of the chamber 13 is maintained at a predetermined pressure (for example, the vacuum pump 16). to about 2 X 10- 3 Torr) to reduced pressure.
  • a predetermined pressure for example, the vacuum pump 16
  • the oxygen gas whose flow rate is controlled by the first gas introduction mechanism is introduced into the container 19
  • the Si H gas whose flow rate is controlled by the second gas introduction mechanism is introduced into the container 19.
  • the container 19 is rotated by a predetermined rotation mechanism.
  • the powder itself can be rotated and stirred by rotating the container 19 itself of the round barrel, the powder due to moisture or electrostatic force often becomes a problem when handling the powder. Aggregation can be prevented. Therefore, it is possible to coat fine particles having a very small particle size with ultrafine particles or a thin film having a smaller particle size than the fine particles with good uniformity.
  • FIG. 4 (A) is a cross-sectional view schematically showing the thermal CVD apparatus according to Embodiment 3 of the present invention
  • FIG. 4 (B) is taken along line 4B-4B shown in FIG. 4 (A). It is sectional drawing.
  • Figure 4 The same parts as those in FIG. 3 are denoted by the same reference numerals, and the description of the same parts is omitted.
  • the container 22 is provided with a rotation mechanism (not shown) as in the second embodiment. By rotating the container 22 as indicated by the arrow by this rotating mechanism, the coating treatment is performed while stirring or rotating the powder (fine particles) 1 in the container 22.
  • a rotation axis when the container 22 is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the direction of gravity).
  • a heating mechanism is disposed on the outer surface of the container 22 as in the second embodiment.
  • the thermal CVD apparatus includes a gas introduction mechanism and a vacuum pump as in the second embodiment.
  • a powder 1 in which many fine particles are collected is stored in a container 19. It should be noted that various materials can be used as the powder 1. In this embodiment, for example, Ti powder or Al 2 O powder is used as in the first embodiment.
  • the inside of the chamber 13 is depressurized to a predetermined pressure using a vacuum pump. Then, oxygen gas whose flow rate is controlled by the first gas introduction mechanism is introduced into the container 22, and SiH gas whose flow rate is controlled by the second gas introduction mechanism is introduced into the container 22. And rotation
  • FIG. 5 is a coated fine particle in which a thin film is coated on a fine particle by the thermal CVD apparatus shown in FIG. It is sectional drawing which shows an example of a child.
  • the powder itself can be rotated and stirred by rotating the hexagonal barrel-shaped container 22 itself, and further, the powder can be periodically removed by gravity by making the barrel hexagonal. Can be dropped. For this reason, it is possible to dramatically improve the stirring efficiency as compared with Embodiment 2, and to prevent aggregation of the powder due to moisture and electrostatic force, which is often a problem when handling the powder. That is, stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Therefore, it is possible to coat fine particles having a very small particle size with ultrafine particles or a thin film having a smaller particle size than the fine particles with good uniformity. Specifically, ultrafine particles or thin films can be coated on fine particles having a particle size of 50 m or less.
  • FIG. 6 is a configuration diagram showing an outline of the plasma CVD apparatus according to the fourth embodiment of the present invention.
  • This plasma CVD apparatus is an apparatus for coating the surface of fine particles (or powder) with ultra fine particles or a thin film having a smaller particle diameter than the fine particles.
  • the plasma CVD apparatus has a chamber 13.
  • a container 2 for storing powder (fine particles) 1 to be coated is disposed in the chamber 1.
  • the container 2 is connected to a plasma power source 31 or a ground potential, and both can be switched by a switch 32.
  • the plasma CVD apparatus is a raw material gas introducing machine for introducing a raw material gas into the chamber 13. Speak with a structure.
  • This source gas introduction mechanism has a cylindrical gas shower electrode 24, and this gas shower electrode 24 is arranged in the chamber 13. On one side of the gas shower electrode 24, a plurality of gas outlets for blowing out one or more source gases in a shower shape are formed. The gas outlet is arranged so as to face the powder 1 contained in the container.
  • the other side of the gas shower electrode 24 is connected to one side of a mass flow controller (MFC) 27 via a vacuum valve 26.
  • the other side of the mass flow controller 27 is connected to the source gas generation source 28 via a vacuum valve and a filter (not shown).
  • This source gas generation source 28 is different in the type of source gas generated depending on the thin film coated on the powder. For example, when a SiO film is formed, SiH gas or the like may be generated.
  • the plasma CVD apparatus includes a plasma power supply mechanism, and this plasma power supply mechanism has a plasma power source 25 connected to the gas shower electrode 24 via a switch 33.
  • the plasma power supplies 25 and 31 are either a high-frequency power supply that supplies high-frequency power (RF output), a microwave power supply, a DC discharge power supply, and a pulse-modulated high-frequency power supply, microwave power supply, or DC discharge power supply. If it is.
  • the plasma power supply supplies high-frequency power, it is preferable to dispose an impedance matching device (matching box) (not shown) between the high-frequency power supply and the gas shower electrode 24.
  • the gas shower electrode 24 is connected to the matching box, and the matching box is connected to a high frequency power source (RF power source) via a coaxial cable.
  • a plasma power supply may be connected to one of the gas shower electrode 24 and the container 2 and a ground potential may be connected to the other, or a plasma power supply may be connected to both the gas shower electrode 24 and the container 2. It ’s okay!
  • powder 1 composed of a plurality of fine particles is stored in a container 2.
  • Powder to be stored in container 2 The amount of the body 1 and the material of the powder are the same as in the first embodiment.
  • a predetermined pressure for example, about 2 X 10- 3 Torr
  • the flow rate of this source gas is controlled by the mass flow controller 27, and the source gas whose flow rate is controlled is introduced into the gas shower electrode 24.
  • the gas blower of the gas shutter electrode also blows out the raw material gas.
  • an RF output of 13.56 MHz, for example, is supplied to the gas shower electrode 24 from a high frequency power source (RF power source) which is an example of the plasma power source 25 via, for example, a matching box.
  • RF power source radio frequency power source
  • the container 2 is connected to the ground potential.
  • plasma is ignited between the gas shower electrode 24 and the container 2.
  • the matching box matches the impedance of the container 2 and the gas shear electrode 24 by the inductance and the capacitance C.
  • plasma is generated in the chamber 13 and the ultrafine particles or SiO force is generated.
  • a thin film is coated on the surface of the fine particles 1.
  • the surface of fine particles or powder can be coated with a thin film or ultrafine particles with higher uniformity than in a conventional sputtering apparatus.
  • the container 29 also functions as an electrode and is connected to a plasma power source 31 or a ground potential, and both can be switched by a switch 32.
  • the cross section shown in FIG. 7B is a cross section substantially parallel to the direction of gravity.
  • the container 29 having a substantially circular cross section is used.
  • the present invention is not limited to this, and a container having a substantially elliptical cross section may be used.
  • the plasma CVD apparatus includes a source gas introduction mechanism that introduces a source gas into the chamber 13.
  • This raw material gas introduction mechanism has a cylindrical gas shower electrode 24, and this gas shower electrode 24 is arranged in a container 29. That is, an opening is formed on one side of the container 29, and the gas shower electrode 24 is also inserted into this opening force.
  • the gas shower electrode 24 is formed with a plurality of gas outlets through which one or more source gases are blown out in a shower shape. This gas outlet is arranged to face the powder 1 accommodated in the container. As shown in FIG. 7 (B), the gas outlet is arranged in the direction of about 1 ° to 90 ° in the rotation direction of the container 29 with respect to the gravity direction 30.
  • the container 29 is rotated by the rotation mechanism, so that the powder (fine particles) 1 contained in the container moves while rotating between the gravitational direction 30 and 90 ° in the rotational direction on the inner surface of the container.
  • a predetermined pressure for example, about 2 X 10- 3 Torr
  • the raw material gas is flow controlled by a mass flow controller, and the raw material gas whose flow rate is controlled is introduced inside the gas shower electrode 24.
  • the gas blowing force of the gas shower electrode also blows out the source gas.
  • the source gas is sprayed onto the fine particles 1 that are moving while rolling in the container 29, and the pressure suitable for film formation by the CVD method is maintained by the balance between the controlled gas flow rate and the exhaust capability.
  • the film is coated on the surface of the fine particles 1. That is, since the fine particles 1 are rolled by rotating the container 29, it is easy to uniformly coat the entire surface of the fine particles 1 with a thin film.
  • the same effect as in the fourth embodiment can be obtained.
  • the powder itself can be rotated and stirred by rotating the container 29 itself of the round barrel, the powder of the powder due to moisture or electrostatic force often becomes a problem when handling the powder. Aggregation can be prevented. Therefore, it is possible to coat fine particles having a very small particle size with ultrafine particles or a thin film having a smaller particle size than the fine particles with good uniformity.
  • FIG. 8 (A) is a sectional view schematically showing the plasma CVD apparatus according to Embodiment 6 of the present invention
  • FIG. 8 (B) is taken along the line 8B-8B shown in FIG. 8 (A). It is sectional drawing.
  • the same parts as those in FIG. 7 are denoted by the same reference numerals, and the description of the same parts is omitted.
  • a container 30 is disposed inside the chamber 3.
  • This container 30 has a hexagonal barrel shape (hexagonal barrel shape) as shown in FIG. 8B.
  • the container 30 accommodates powder (fine particles) 1 that is an object to be coated.
  • the container 30 also functions as an electrode and is connected to a plasma power source 31 or a ground potential, and both can be switched by a switch 32.
  • the cross section shown in Fig. 8 (B) is a cross section substantially parallel to the direction of gravity.
  • the force using the hexagonal barrel-shaped container 30 is not limited to this, and a polygonal barrel-shaped container other than the hexagon can also be used.
  • the container 30 is provided with a rotation mechanism (not shown) as in the fifth embodiment.
  • a rotation mechanism By rotating the container 30 as indicated by the arrow by this rotating mechanism, the coating treatment is performed while stirring or rotating the powder (fine particles) 1 in the container 30.
  • a rotation axis when the container 30 is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the direction of gravity).
  • the plasma CVD apparatus includes a source gas introduction mechanism and a vacuum exhaust mechanism as in the fifth embodiment.
  • This raw material gas introduction mechanism has a cylindrical gas discharge electrode 24 as in the fifth embodiment.
  • the plasma CVD apparatus includes a plasma no. Supply mechanism as in the fifth embodiment.
  • the powder 1 having a plurality of fine particle forces is accommodated in the container 30.
  • various materials can be used as the powder 1.
  • Ti powder or Al 2 O powder is used as in the first embodiment.
  • a predetermined pressure for example, about 2 X 10- 3 Torr.
  • the container 30 is rotated by the rotation mechanism, whereby the powder (fine particles) 1 contained therein is stirred or rotated on the inner surface of the container.
  • a source gas for example, SiH gas
  • SiH gas a source gas (for example, SiH gas) is generated in the source gas generation source, and the source gas is generated.
  • the raw material gas is flow controlled by a mass flow controller, and the raw material gas whose flow rate is controlled is introduced inside the gas shower electrode 24.
  • the gas blowing force of the gas shower electrode also blows out the source gas.
  • the raw material gas is sprayed on the fine particles 1 that move while stirring or rotating in the container 30, and the pressure suitable for film formation by the CVD method is maintained by controlling the balance between the gas flow rate and the exhaust capacity. It is.
  • an RF output of 13.56 MHz, for example, is supplied to the gas shower electrode 24 from a high frequency power source (RF power source) which is an example of the plasma power source 25 via, for example, a matching box.
  • RF power source radio frequency power source
  • the container 30 is connected to the ground potential.
  • plasma is ignited between the gas shower electrode 24 and the container 30.
  • the matching box is matched with the impedance of the container 2 and the gas shutter electrode 24 by the inductance and the capacitance C. As a result, ultrafine particles or thin particles that generate plasma in the container 30 and also have SiO force.
  • the film is coated on the surface of the fine particles 1. That is, since the fine particles 1 are stirred and rotated by rotating the container 30, it is possible to easily coat the entire surface of the fine particles 1 with a thin film.
  • the powder itself can be rotated and stirred by rotating the hexagonal barrel-shaped container 30 itself, and the powder can be periodically removed by gravity by making the barrel hexagonal. Can be dropped.
  • the stirring efficiency can be dramatically improved as compared with the fifth embodiment, and the aggregation of the powder due to moisture and electrostatic force, which is often a problem when handling the powder, can be prevented. That is, stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Therefore, the fine particles having a very small particle size Since the particle size is smaller than that of the fine particles, it is possible to coat the ultra fine particles or the thin film. Specifically, ultrafine particles or thin films can be coated on fine particles having a particle size of 50 m or less.
  • the first microcapsule is obtained by coating ultrafine particles or a thin film made of DLC having excellent biocompatibility on the surface of the fine particles, and removing the coated fine particles or the fine particles that are the base of the thin film. is there.
  • Another example is the second microcapsule, in which the first ultrafine particle or the first thin film is coated on the surface of the fine particle, and the surface of the first ultrafine particle or the first thin film is excellent in biocompatibility.
  • the second ultrafine particles or the second thin film having a DLC force having the above are coated, and the coated first and second ultrafine particles or the fine particles forming the base of the first and second thin films are removed. It is a thing.
  • Such a microcapsule is applied to drug delivery as a medicine.
  • the DLC (Diamond Like Carbon) film is an amorphous carbon mainly composed of SP 3 bonds between carbons. It is a hard carbon film that has a very hard insulation, a high refractive index, and a very smooth morphology. is there.
  • the ultrafine particles or thin film that also has DLC force here is an amorphous carbon-based thin film containing carbon as a main component, and synthesized two or more curves having a mountain shape. A thing with a romance vector curve is included.
  • This Raman spectrum is as shown in FIG. However, the Raman spectrum shown in Fig. 9 is just an example.
  • the Raman spectrum curve 110 has two peaks called G band and D band, and the wave shape (wavenumber) has a peak shape with a peak around 1500 (G Band) 111 and a mountain-shaped curve (D band) 112 having a peak near 1300 in wave number.
  • Non-immunity does not induce an immune response that protects the body from stimuli (harmful foreign matter) from outside the body when the DLC membrane is introduced into or contacted with the body! / That thing ⁇ ⁇ .
  • Blood compatibility means that when a DLC membrane is used at a site that comes into contact with blood, it does not cause unnecessary blood clots (thrombosis) or destruction (hemolysis). Blood coagulation has several factors, one of which is platelet adsorption. Since the surface of the material on which albumin in the blood is adsorbed hardly adsorbs platelets, thrombus formation is suppressed.
  • a polystyrene dish for culturing cells is prepared.
  • This dish has a square shape on the flat surface, and is provided with a total of 96 holes (dents) in 8 rows and 12 rows, and the culture medium and cells are placed in these holes to culture the cells. Is.
  • the bottom (bottom) of these holes is treated as follows. That is, CH gas used, gas flow of 20sccm
  • TCD tissue Culture Polystyrene Dish
  • Deposition conditions A 300W RF output, 30 seconds deposition time
  • Deposition condition B 300W RF output, 60 second deposition time
  • Deposition condition E RF output of 500W, deposition time of 60 seconds
  • Deposition conditions F 500W RF output, 90 seconds deposition time
  • Deposition conditions G 900W RF output, 30 seconds deposition time
  • the cells were prepared in a medium, and the cell suspension was placed in each hole of the dish. After 24 hours of incubation, cell adhesion evaluation and cytotoxicity evaluation were performed on the bottom surface of the hole. It was.
  • rat calvarial-derived osteoblasts (cells from the bone at the top of the mouse) are used as the cells, and the medium is a medium such as DMEM medium, 10% FBS (serum), antibiotics, or non-essential amino acids. Use one containing the necessary nutrients.
  • rat calvaria-derived osteoblasts are adjusted to 8 ⁇ 10 4 cells / ml in DMEM medium, and this cell suspension 1001 is placed in each hole of the dish. After 24 hours of incubation, the number of cells adhering to the bottom of the hole was calculated by MTT assay.
  • MTT is changed to formazan by enzymes in mitochondria. Mitochondrial activity can be assessed by dissolving Formazan and colorimetrically determining it. Since the amount of formazan produced is proportional to the number of living cells, the absorbance value (O. D. 595 nm) of the MTT assay is used as the number of adherent cells. In other words, since there is one mitochondria per cell, the number of adherent cells can be measured by the number of mitochondria measured from the absorbance value of the MTT assay. This result is shown in FIG.
  • FIG. 10 shows the results of cell adhesion evaluation, and is a bar graph showing the relationship between the absorbance (OD 595 nm) of PS (polystyrene), AI and TCD coated with DLC in a dish. .
  • PS polystyrene
  • AI polystyrene
  • TCD TCD coated with DLC in a dish.
  • cytotoxicity test for evaluating cytotoxicity will be described. First, rat calvaria-derived osteoblasts are adjusted to 8 ⁇ 10 4 cells / ml in DMEM medium, and this cell suspension 1001 is placed in each hole of the dish. After 24 hours of incubation, cytotoxicity was quantitatively measured by the LDH leakage measurement method, which is a cell membrane damage test.
  • LDH a lysosomal enzyme
  • Iatrozyme LDH— L Kit absorbance
  • Fig. 11 shows the results of cytotoxicity evaluation, and is a bar graph showing the relationship between the elution rate of LDH and PS (polystyrene), DLC-coated AI and TCD in the dish. .
  • the ELISA method is an abbreviation of enzyme-like immunosorbent assay, which is a method of tracking the antigen-antibody reaction by labeling the enzyme activity and quantifying the amount of the antigen or antibody, and is a nanogram having a very high detection sensitivity. It is possible to detect proteins of the order.
  • A—I has a very high protein adsorption rate of 90-100%, indicating a very high adsorption rate compared to TCD. From these results, it was confirmed that the DLC membrane had excellent blood compatibility.
  • a sample was prepared by fixing a substrate on an electrode connected to a high-frequency power source, applying high-frequency power to this electrode, and forming a DLC film on the substrate surface by plasma CVD.
  • the gas used was CH
  • the gas flow rate was 15 sccm
  • the pressure was set to 5 mTorr, and the RF output was varied from 100 W to 900 W.
  • Each sample prepared in this manner was subjected to Raman spectrum analysis. In the Raman spectrum curve of each sample obtained as a result, the G peak baseline intensity B and the G peak corrected intensity A were measured, and the value of BZA was calculated for each sample. The results are shown in Fig. 13.
  • the BZA value is the value of BZA when the G peak baseline intensity is B and the G peak corrected intensity is A, as shown in FIG. Figure 14 is a Raman spectrum curve for explaining the definition of the BZA value.
  • FIG. 13 is a graph showing the relationship between the RF output and the BZA value when each sample is manufactured.
  • Fig. 15 is a graph showing the relationship between the RF output and the density of the DLC film when each sample was fabricated.
  • the flow rate of C H gas for each sample is 15 sccm.
  • the pressure is 5mTorr.
  • a sample was prepared by fixing a Si substrate on an electrode connected to a high-frequency power source, applying high-frequency power to this electrode, and forming a DLC film on the surface of the Si substrate by plasma CVD.
  • C H was used as the gas used, and the RF output was set to 100W-500.
  • FIG. 16 is a graph showing the relationship between the potential and the current density, showing the anodic polarization measurement result of the sample in which the DLC film is formed with the RF output of 100 W.
  • FIG. 17 is a graph showing the relationship between the potential and the current density, showing the anodic polarization measurement result of a sample in which a DLC film is formed with an RF output of 200 W.
  • FIG. 18 is a graph showing the relationship between the potential and the current density, showing the anodic polarization measurement result of the Si substrate on which no DLC film was formed.
  • the sample DLC film formed with an RF output of 100 W showed a small active state regardless of the gas flow rate and the gas pressure, and some of the Si substrate Dissolution was observed.
  • the DLC film of the sample formed with an RF output of 200 W or more had a natural electrode potential shifted to the noble side, and was active without generating an active state.
  • the critical passivation current density Icrit the film formed by the above RF power of 200W is, calculation of defect area compared to 3-5 orders of magnitude smaller instrument DLC film in the case of shows to Si substrate 18 10- 2 it was confirmed that the quality of the low defect in one 10-5 order.
  • ultrafine particles or a thin film having a particle diameter smaller than that of the fine particles is coated on the surface of the fine particles by the method described in Embodiment 6.
  • materials suitable for use as microcapsules are used as ultrafine particles or thin film materials.
  • NaCl is used as the fine particles
  • DLC is used as the material of the ultrafine particles or thin film.
  • a plurality of NaCl fine particles 1 are accommodated in the container 30.
  • the inside of the chamber 13 is depressurized to a predetermined pressure by operating a vacuum pump.
  • the container 30 is rotated by a rotating mechanism, whereby the powder (NaCl fine particles) 1 contained therein is stirred or rotated on the inner surface of the container.
  • an RF output of 13.56 MHz, for example, is supplied to the gas shower electrode 24 from a high frequency power source (RF power source) which is an example of the plasma power source 25 via, for example, a matching box.
  • RF power source which is an example of the plasma power source 25
  • the RF output is 30 W or more
  • the container 30 is connected to the ground potential.
  • plasma is ignited between the gas shower electrode 24 and the container 30.
  • plasma is generated in the container 30, and the surface of the NaCl fine particle 1 is coated with ultrafine particles or thin film having DLC force. That is, since the fine particles 1 are stirred and rotated by rotating the container 30, it is easy to uniformly coat a thin film or the like on the entire surface of the fine particles 1.
  • the coated ultrafine particles or the NaCl fine particles serving as the base of the thin film are removed by dissolution, vaporization or the like. Specifically, for example, water is put into a beaker, and NaCl fine particles coated with DLC are put into this water. At this time, the NaCl fine particles coated with DLC sink to the bottom of the water.
  • the surface of the fine particles is coated with the first ultrafine particles or the first thin film having a smaller particle diameter than the fine particles by the method described in the sixth embodiment.
  • the material of the first ultrafine particles or the first thin film may be a metal or an insulator as long as it is suitable for use as a microcapsule.
  • the plastic shown in FIG. Using the Zuma CVD apparatus, the surface of the first ultrafine particles or the first thin film is coated with the second ultrafine particles or the second thin film having a smaller particle diameter than the fine particles by the method described in Embodiment 6.
  • the material of the second ultrafine particles or the second thin film may be any material suitable for use as a microcapsule. For example, NaCl is used as the fine particles, and DLC is used as the material of the second ultrafine particles or the second thin film.
  • the coated first and second ultrafine particles or the NaCl fine particles serving as the base of the first and second thin films are removed by dissolution, vaporization, or the like. Details are the same as for the first micropower cell.
  • a hydrocarbon-based gas is used as the gas used, but various hydrocarbon-based gases can be used as long as they contain at least carbon and hydrogen. It is also possible to use a compound gas containing only carbon and hydrogen, a gas containing carbon, hydrogen and oxygen, a gas containing carbon, hydrogen, oxygen, silicon, nitrogen, copper, silver, benzene, toluene, acetylene, etc. is there.
  • a hydrocarbon-based gas pressure of 0.5 mTorr or more and 500 mTorr or less is preferably used in the film formation conditions, and the gas pressure is more preferably lOmTorr or more and 100 m or less.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the film formation conditions for forming a thin film on the fine particles can be changed as appropriate.
  • FIG. 1 is a configuration diagram showing an outline of a thermal CVD apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of coated fine particles in which fine particles are coated with a thin film by the thermal CVD apparatus shown in FIG.
  • FIG. 3 (A) is a cross-sectional view schematically showing a thermal CVD apparatus according to Embodiment 2 of the present invention, and (B) is a cross-sectional view taken along line 3B-3B shown in (A). It is.
  • FIG. 4 (A) is a sectional view schematically showing a thermal CVD apparatus according to Embodiment 3 of the present invention, and (B) is a sectional view taken along line 4B-4B shown in (A). It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Medicinal Preparation (AREA)

Abstract

【課題】 微粒子又は粉体の表面に薄膜又は超微粒子を均一性よく被覆できるCVD装置及びCVD成膜方法を提供する。 【解決手段】 本発明に係るCVD装置は、微粒子1を載置する容器2と、前記容器2を収容するチャンバー3と、前記容器2に載置された微粒子1を加熱するヒーター4と、前記チャンバー3内に原料ガスを導入するガス導入機構と、を具備し、サーマルCVD法を用いることにより、前記微粒子1の表面に該微粒子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする。

Description

明 細 書
被覆微粒子、 CVD装置及び CVD成膜方法、マイクロカプセル及びその 製造方法
技術分野
[0001] 本発明は、被覆微粒子、 CVD(chemical vapor deposition)装置及び CVD成膜方法 、マイクロカプセル及びその製造方法に関する。特には、微粒子の表面に該微粒子 より粒径の小さ ヽ超微粒子又は薄膜を被覆する被覆微粒子、 CVD装置及び CVD 成膜方法に関する。また、微粒子の表面に被覆した超微粒子又は薄膜からなるマイ クロカプセル及びその製造方法に関する
背景技術
[0002] 従来のスパッタリング装置について説明する。
真空室内に基板とスパッタリングターゲットを対向させて配置する。スパッタリングタ 一ゲットは力ソードに取り付けられている。そして、真空室内を高真空に排気し、真空 室内にアルゴンガスを導入する。この状態で力ソードに電力を供給するとスパッタリン グターゲットの近傍でグロ一放電が発生し、これにより生成したイオンがスパッタリング ターゲットに衝突してターゲット原子をはじき出し、ターゲット材が基板に堆積する。こ のようにして基板上にターゲット材を成膜する (特許文献 1参照)。
[0003] 特許文献 1 :特開平 5 - 171431号公報 (第 8段落一第 10段落、図 3)
発明の開示
発明が解決しょうとする課題
[0004] 上記従来のスパッタリング装置を用いて微粒子の表面にターゲット材を成膜するこ とも考えられる。この場合、基板の代わりに微粒子をスパッタリングターゲットと対向さ せて配置することになる。
[0005] し力しながら、上記のスパッタリング装置では、ターゲット側の微粒子表面にターゲ ット材が偏って成膜されてしま 、、ターゲットとは反対側の微粒子表面にはターゲット 材がほとんど成膜されない。スパッタリング現象によってスパッタリングターゲットから はじき出された原子の飛来には方向性があり、ターゲット側の微粒子表面に原子が 降りそそぐようにして成膜される力 である。
[0006] また、上記スパッタリング装置では、凹凸のある微粒子の窪み部分にターゲット材を 成膜することも困難である。この理由もターゲット原子には方向性があるからである。 このように上記従来のスパッタリング装置では、微粒子の全表面を均一性高くコー ティング又は被覆することは非常に困難である。そこで、微粒子の表面に均一性よく 被覆できる成膜装置の開発が求められている。
また、スパッタリング装置は CVD装置に比べて成膜速度が遅いという欠点がある。同 一の薄膜をスパッタリング装置で成膜する場合と CVD装置で成膜する場合を成膜速 度の観点力 比較すると、スパッタリング装置は CVD装置に比べて成膜速度が 10倍 程度遅い。
[0007] 本発明は上記のような事情を考慮してなされたものであり、その目的は、微粒子又 は粉体の表面に薄膜又は超微粒子を均一性よく被覆した被覆微粒子を提供すること にある。また、本発明の他の目的は、微粒子又は粉体の表面に薄膜又は超微粒子を 均一性よく被覆できる CVD装置及び CVD成膜方法を提供することにある。また、本 発明の他の目的は、微粒子の表面に被覆した超微粒子又は薄膜からなるマイクロ力 プセル及びその製造方法を提供することにある。
課題を解決するための手段
[0008] 上記課題を解決するため、化学気相成長法 (chemical vapor deposition)を用いた C VD装置に注目した。 CVD装置の場合、スパッタリング装置に比べて微粒子表面に 薄膜又は超微粒子を偏りの少ない状態で被覆することが可能である。尚、超微粒子 とは、微粒子より粒径の小さい微粒子をいう。微粒子表面に超微粒子が被覆された 状態としては、微粒子表面に超微粒子が連続的又は不連続に被覆された状態、微 粒子表面に超微粒子の集合体が連続的又は不連続に被覆された状態、超微粒子と 超微粒子の集合体が混在し且つ連続的又は不連続に被覆された状態を含むもので ある。
[0009] 以下、具体的に説明する。
本発明に係る被覆微粒子は、 CVD法によって微粒子の表面に該微粒子より粒径 の小さい超微粒子又は薄膜が被覆されたことを特徴とする。 [0010] 本発明に係る被覆微粒子は、内部の断面形状が略円形を有する容器を、前記断 面に対して略垂直方向を回転軸として回転させることにより、該容器内の微粒子を攪 拌あるいは回転させながら CVD法を用いることで、該微粒子の表面に該微粒子より 粒径の小さい超微粒子又は薄膜が被覆されたことを特徴とする。
[0011] 本発明に係る被覆微粒子は、内部の断面形状が多角形を有する容器を、前記断 面に対して略垂直方向を回転軸として回転させることにより、該容器内の微粒子を攪 拌あるいは回転させながら CVD法を用いることで、該微粒子の表面に該微粒子より 粒径の小さい超微粒子又は薄膜が被覆されたことを特徴とする。
[0012] 本発明に係る CVD成膜方法は、容器内に微粒子を収容し、
サーマル CVD法又はプラズマ CVD法を用いることで、該微粒子の表面に該微粒 子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする。
本発明に係る CVD成膜方法は、重力方向に対して略平行な断面の内部形状が略 円形である容器内に微粒子を収容し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする。
[0013] 本発明に係る CVD成膜方法は、重力方向に対して略平行な断面の内部形状が多 角形である容器内に微粒子を収容し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする。
[0014] 本発明に係る CVD装置は、微粒子を載置する容器と、
前記容器を収容するチャンバ一と、
前記容器に載置された微粒子を加熱する加熱機構と、
前記チャンバ一内に原料ガスを導入するガス導入機構と、
を具備し、
サーマル CVD法を用いることにより、前記微粒子の表面に該微粒子より粒径の小 さ ヽ超微粒子又は薄膜を被覆することを特徴とする。 [0015] 上記 CVD装置によれば、サーマル CVD法を用いることにより、微粒子又は粉体の 表面に薄膜又は超微粒子を従来のスパッタリング装置に比べて均一性よく被覆する ことができる。
[0016] また、前記本発明に係る CVD装置において、前記容器はチャンバ一と一体的に形 成されて!/ヽることも可能である。
[0017] 本発明に係る CVD装置は、微粒子を収容する容器であって、重力方向に対して略 平行な断面の内部形状が略円形である容器と、
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に収容された微粒子を加熱する加熱機構と、
前記容器内に原料ガスを導入するガス導入機構と、
を具備し、
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらサーマル CVD法を用いることで、該微粒子の表面に該微粒 子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする。
[0018] 上記 CVD装置によれば、容器の内部形状が略円形であるため、容器自体を回転 させることで粉体自体を回転させ攪拌させることができる。したがって、粒径の非常に 小さ 、微粒子に該微粒子より粒径が更に小さ!、超微粒子又は薄膜を均一性よく被覆 することが可能となる。
[0019] 本発明に係る CVD装置は、微粒子を収容する容器であって、重力方向に対して略 平行な断面の内部形状が多角形である容器と、
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に収容された微粒子を加熱する加熱機構と、
前記容器内に原料ガスを導入するガス導入機構と、
を具備し、
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらサーマル CVD法を用いることで、該微粒子の表面に該微粒 子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする。
[0020] 上記 CVD装置によれば、容器の内部形状が多角形であるため、容器自体を回転 させることで粉体自体を回転させ攪拌させることができる。容器の内部形状を多角形 とすることにより、粉体を重力により定期的に落下させることができる。このため、容器 の内部形状が略円形の場合に比べて攪拌効率を飛躍的に向上させることができ、粉 体を扱う時にしばしば問題となる水分や静電気力による粉体の凝集を防ぐことができ る。つまり回転により攪拌と、凝集した粉体の粉砕を同時かつ効果的に行うことができ る。したがって、粒径の非常に小さい微粒子に該微粒子より粒径が更に小さい超微 粒子又は薄膜を均一性よく被覆することが可能となる。
[0021] 本発明に係る CVD装置は、微粒子を載置する容器と、
前記容器を収容するチャンバ一と、
前記チャンバ一内に原料ガスを導入するガス導入機構と、
前記チャンバ一内に配置され、前記容器に対向するように配置された電極と、 を具備し、
プラズマ CVD法を用いることにより、前記微粒子の表面に該微粒子より粒径の小さ Vヽ超微粒子又は薄膜を被覆することを特徴とする。
[0022] 上記 CVD装置によれば、プラズマ CVD法を用いることにより、微粒子又は粉体の 表面に薄膜又は超微粒子を従来のスパッタリング装置に比べて均一性よく被覆する ことができる。
[0023] また、前記本発明に係る CVD装置にぉ 、て、前記容器は前記チャンバ一と一体的 に形成されて ヽることも可會である。
[0024] 本発明に係る CVD装置は、微粒子を収容する容器であって、重力方向に対して略 平行な断面の内部形状が略円形である容器と、
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に配置された電極と、
前記容器内に原料ガスを導入するガス導入機構と、
を具備し、
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらプラズマ CVD法を用いることで、該微粒子の表面に該微粒 子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする。 [0025] 上記 CVD装置によれば、容器の内部形状が略円形であるため、容器自体を回転 させることで粉体自体を回転させ攪拌させることができる。したがって、粒径の非常に 小さ 、微粒子に該微粒子より粒径が更に小さ!、超微粒子又は薄膜を均一性よく被覆 することが可能となる。
[0026] 本発明に係る CVD装置は、微粒子を収容する容器であって、重力方向に対して略 平行な断面の内部形状が多角形である容器と、
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に配置された電極と、
前記容器内に原料ガスを導入するガス導入機構と、
を具備し、
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらプラズマ CVD法を用いることで、該微粒子の表面に該微粒 子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする。
[0027] 上記 CVD装置によれば、容器の内部形状が多角形であるため、容器自体を回転 させることで粉体自体を回転させ攪拌させることができる。容器の内部形状を多角形 とすることにより、粉体を重力により定期的に落下させることができる。このため、容器 の内部形状が略円形の場合に比べて攪拌効率を飛躍的に向上させることができ、粉 体を扱う時にしばしば問題となる水分や静電気力による粉体の凝集を防ぐことができ る。つまり回転により攪拌と、凝集した粉体の粉砕を同時かつ効果的に行うことができ る。したがって、粒径の非常に小さい微粒子に該微粒子より粒径が更に小さい超微 粒子又は薄膜を均一性よく被覆することが可能となる。
[0028] また、前述した本発明に係る CVD装置それぞれにおいて、前記電極及び前記容器 のいずれか一方又は両方に接続されたプラズマ電源をさらに具備することが好まし い。このプラズマ電源は、高周波電源、マイクロ波用電源、 DC放電用電源及びそれ ぞれパルス変調された高周波電源、マイクロ波用電源、 DC放電用電源のいずれか であってもよい。
[0029] また、前述した本発明に係る CVD装置それぞれにお ヽて、前記ガス導入機構は、 前記電極からシャワー状のガスを前記容器内に導入する機構を有することも可能で ある。
[0030] また、前述した本発明に係る CVD装置それぞれにお ヽて、前記容器を収容するチ ヤンバーと、該チャンバ一内を真空排気する真空排気機構とをさらに具備してもよい 。尚、前記容器はチャンバ一と一体的に形成されていても良いし、この場合は、回転 機構によって容器とともにチャンバ一も回転する構成となる。
[0031] 本発明に係るマイクロカプセルは、優れた生体適合性を有する DLCからなる超微 粒子又は薄膜により形成されたマイクロカプセルであって、
生体内部に導入した際、又は、生体に接触させた際、生体あるいは生体構成要素の 持つ本来の機能を損なわない性質を有することを特徴とする。
[0032] 本発明に係るマイクロカプセルは、外表面を構成する第 1の超微粒子又は第 1の薄 膜と、
前記第 1の超微粒子又は第 1の薄膜の内側に形成された第 2の超微粒子又は第 2 の薄膜とを具備するマイクロカプセルであって、
前記第 1の超微粒子又は前記第 1の薄膜は優れた生体適合性を有する DLCから なり、
生体内部に導入した際、又は、生体に接触させた際、生体あるいは生体構成要素の 持つ本来の機能を損なわない性質を有することを特徴とする。
[0033] 本発明に係るマイクロカプセルは、内部の断面形状が略円形である容器を、前記 断面に対して略垂直方向を回転軸として回転させることにより、該容器内の微粒子を 攪拌あるいは回転させながら CVD法を用いることで、該微粒子の表面に該微粒子よ り粒径の小さ ヽ超微粒子又は薄膜が被覆され、この被覆された超微粒子又は薄膜の 母体となっている前記微粒子が取り除かれたものであることを特徴とする。
[0034] 本発明に係るマイクロカプセルは、内部の断面形状が多角形である容器を、前記 断面に対して略垂直方向を回転軸として回転させることにより、該容器内の微粒子を 攪拌あるいは回転させながら CVD法を用いることで、該微粒子の表面に該微粒子よ り粒径の小さ ヽ超微粒子又は薄膜が被覆され、この被覆された超微粒子又は薄膜の 母体となっている前記微粒子が取り除かれたものであることを特徴とする。
[0035] 前述したそれぞれの本発明に係るマイクロカプセルにお 、ては、前記超微粒子又 は前記薄膜が優れた生体適合性を有する DLC力 なり、
生体内部に導入した際、又は、生体に接触させた際、生体あるいは生体構成要素 の持つ本来の機能を損なわな 、性質を有することが好まし 、。
[0036] 本発明に係るマイクロカプセルは、内部の断面形状が略円形である容器を、前記 断面に対して略垂直方向を回転軸として回転させることにより、該容器内の微粒子を 攪拌あるいは回転させながら CVD法を用いることで、該微粒子の表面に該微粒子よ り粒径の小さい第 1の超微粒子又は第 1の薄膜が被覆され、前記 CVD法を用いるこ とで、該第 1の超微粒子又は該第 1の薄膜の表面に前記微粒子より粒径の小さい第 2の超微粒子又は第 2の薄膜が被覆され、この被覆された第 1及び第 2の超微粒子 又は第 1及び第 2の薄膜の母体となっている前記微粒子が取り除かれたものであるこ とを特徴とする。
[0037] 本発明に係るマイクロカプセルは、内部の断面形状が多角形である容器を、前記 断面に対して略垂直方向を回転軸として回転させることにより、該容器内の微粒子を 攪拌あるいは回転させながら CVD法を用いることで、該微粒子の表面に該微粒子よ り粒径の小さい第 1の超微粒子又は第 1の薄膜が被覆され、前記 CVD法を用いるこ とで、該第 1の超微粒子又は該第 1の薄膜の表面に前記微粒子より粒径の小さい第 2の超微粒子又は第 2の薄膜が被覆され、この被覆された第 1及び第 2の超微粒子 又は第 1及び第 2の薄膜の母体となっている前記微粒子が取り除かれたものであるこ とを特徴とする。
[0038] また、前述した本発明に係るマイクロカプセルそれぞれは、前記第 2の超微粒子又 は前記第 2の薄膜が優れた生体適合性を有する DLC力 なり、
生体内部に導入した際、又は、生体に接触させた際、生体あるいは生体構成要素 の持つ本来の機能を損なわな 、性質を有することが好まし 、。
[0039] また、前述した本発明に係るマイクロカプセルそれぞれは、前記 DLCにつ 、てラマ ンスペクトル分析を行った結果のラマンスペクトル曲線において、 Gピークベースライ ン強度を Bとし、 Gピーク補正後強度を Aとした場合、 BZAの値が 1. 9未満であるこ とが好ましい。
[0040] また、本発明に係るマイクロカプセルにおいて、前記 DLCは、 0. 28WZcm2以上 の電力密度を用いて成膜されたものであることが好ま 、。
[0041] 本発明に係るマイクロカプセルの製造方法は、重力方向に対して略平行な断面の 内部形状が略円形である容器内に微粒子を収容し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい超微粒子又は薄膜を被覆させ、
前記被覆した超微粒子又は薄膜の母体となっている前記微粒子を取り除くことを特 徴とする。
[0042] 本発明に係るマイクロカプセルの製造方法は、重力方向に対して略平行な断面の 内部形状が多角形である容器内に微粒子を収容し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい超微粒子又は薄膜を被覆させ、
前記被覆した超微粒子又は薄膜の母体となっている前記微粒子を取り除くことを特 徴とする。
[0043] また、前述した本発明に係るマイクロカプセルの製造方法それぞれにお 、て、前記 超微粒子又は薄膜は、優れた生体適合性を有する DLC力 なり、
前記超微粒子又は薄膜を被覆させる際、前記容器内に、少なくとも炭素と水素を含 む炭化水素系ガスを 0. 5mTorr以上 500mTorr以下の圧力下で導入し、高周波電 源に接続された電極を前記容器内に配置し、前記電極に電力密度が 0. 28W/cm 2以上の高周波電力を印加してプラズマ CVD法により被覆することも可能である。
[0044] 本発明に係るマイクロカプセルの製造方法は、重力方向に対して略平行な断面の 内部形状が略円形である容器内に微粒子を収容し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい第 1の超微粒子又は第 1の薄膜を被覆させ、 重力方向に対して略平行な断面の内部形状が略円形である容器内に、前記第 1の 超微粒子又は前記第 1の薄膜が被覆された前記微粒子を収容し、 前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、前記第 1の超 微粒子又は前記第 1の薄膜の表面に前記微粒子より粒径の小さい第 2の超微粒子 又は第 2の薄膜を被覆させ、
前記被覆した第 1及び第 2の超微粒子又は第 1及び第 2の薄膜の母体となっている 前記微粒子を取り除くことを特徴とする。
[0045] 本発明に係るマイクロカプセルの製造方法は、重力方向に対して略平行な断面の 内部形状が多角形である容器内に微粒子を収容し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい第 1の超微粒子又は第 1の薄膜を被覆させ、 重力方向に対して略平行な断面の内部形状が多角形である容器内に、前記第 1の 超微粒子又は前記第 1の薄膜が被覆された前記微粒子を収容し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、前記第 1の超 微粒子又は前記第 1の薄膜の表面に前記微粒子より粒径の小さい第 2の超微粒子 又は第 2の薄膜を被覆させ、
前記被覆した第 1及び第 2の超微粒子又は第 1及び第 2の薄膜の母体となっている 前記微粒子を取り除くことを特徴とする。
[0046] また、前述した本発明に係るマイクロカプセルの製造方法それぞれにお 、て、前記 第 2の超微粒子又は前記第 2の薄膜は、優れた生体適合性を有する DLC力 なり、 前記第 2の超微粒子又は前記第 2の薄膜を被覆させる際、前記容器内に、少なくと も炭素と水素を含む炭化水素系ガスを 0. 5mTorr以上 500mTorr以下の圧力下で 導入し、高周波電源に接続された電極を前記容器内に配置し、前記電極に電力密 度が 0. 28WZcm2以上の高周波電力を印加してプラズマ CVD法により被覆するこ とも可能である。
発明の効果
[0047] 以上説明したように本発明によれば、微粒子又は粉体の表面に薄膜又は超微粒子 を均一性よく被覆した被覆微粒子を提供することができる。また、他の本発明によれ ば、微粒子又は粉体の表面に薄膜又は超微粒子を均一性よく被覆できる CVD装置 及び CVD成膜方法を提供することができる。また、他の本発明によれば、微粒子の 表面に被覆した超微粒子又は薄膜からなるマイクロカプセル及びその製造方法を提 供することができる。
発明を実施するための形態
[0048] 以下、図面を参照して本発明の実施の形態について説明する。
(実施の形態 1)
図 1は、本発明に係る実施の形態 1によるサーマル CVD装置の概略を示す構成図 である。このサーマル CVD装置は、微粒子 (又は粉体)の表面に、該微粒子より粒径 の小さ ヽ超微粒子 (ここでの超微粒子とは微粒子より粒径の小さ ヽ微粒子を ヽぅ)又 は薄膜を被覆させるための装置である。
[0049] サーマル CVD装置は、粉体 (微粒子) 1を載置又は収容する容器 2を有して 、る。
この容器 2の下部には、粉体 1を加熱する加熱機構としてのヒーター 4が配置されて V、る。容器 2及びヒーター 4はチャンバ一 3内に配置されて 、る。
[0050] また、サーマル CVD装置は、チャンバ一 3の内部にガスを導入するガス導入機構 を備えている。ガス導入機構は、 Oガスを導入する第 1ガス導入機構と、 SiHガスを
2 4 導入する第 2ガス導入機構とを有している。第 1ガス導入機構は、配管 5— 7、第 1バ ルブ 12、第 1マスフローコントローラ(MFC) 14及び Oガス供給源を有している。第 2
2
ガス導入機構は、配管 8— 10、第 2バルブ 13、第 1マスフローコントローラ(MFC) 15 及び SiHガス供給源を有している。
4
[0051] 配管 5の先端はチャンバ一 3に接続されており、配管 5の先端から Oガスをチャン
2
バー 3内に噴き出すようになつている。配管 5の基端は第 1バルブ 12の一方側に接続 されており、第 1バルブ 12の他方側は配管 6の一端に接続されている。配管 6の他端 はマスフローコントローラ 14の一端に接続されており、マスフローコントローラ 14の他 端は配管 7の一端に接続されている。配管 7の他端は Oガス供給源に接続されてい
2
る。
[0052] 配管 8の先端はチャンバ一 3に接続されており、配管 8の先端力 SiHガスをチヤ ンバー 3内に噴き出すようになって!/、る。配管 8の基端は第 2バルブ 13の一方側に接 続されており、第 2バルブ 13の他方側は配管 9の一端に接続されている。配管 9の他 端はマスフローコントローラ 15の一端に接続されており、マスフローコントローラ 15の 他端は配管 10の一端に接続されている。配管 10の他端は SiHガス供給源に接続
4
されている。
[0053] また、サーマル CVD装置は、チャンバ一 3の内部を真空引きする真空ポンプ 16を 備えて 、る。この真空ポンプ 16は配管 11によってチャンバ一 3に接続されて 、る。
[0054] 次に、上記サーマル CVD装置を用いて粉体 (微粒子) 1に超微粒子又は薄膜を被 覆する CVD成膜方法にっ ヽて説明する。
まず、容器 2内に多くの微粒子が集まった粉体 1を収容する。容器 2内に収容する 粉体 1の量は、微粒子力もなる層を 2— 3層積層させる程度が好ましい。微粒子から なる層の積層数を多くすると、下層の方の微粒子には C VD成膜のための原料ガスが 到達しにくいため、下層の微粒子表面への薄膜の付きまわりが悪くなる力もである。 尚、微粒子 1を構成する母材は、榭脂でも金属でもセラミックでも良ぐ種々の材質を 用いることが可能であるが、本実施の形態では例えば Ti粉体又は Al O粉体を用い
2 3
る。また、微粒子 1は、単一の物質力も構成されている必要は必ずしも無ぐ複数の物 質を混合したものから構成されていることも可能である。また、微粒子 1の形状は、種 々の形状を用いることが可能であり、例えば球又は球に近い形状とすることが好まし い。
[0055] 次 、で、ヒーター 4で容器 2を介して粉体 1を所定の温度 (例えば 200°C程度)まで 加熱しながら、真空ポンプ 16を用いてチャンバ一 3内を所定の圧力(例えば 2 X 10— 3 Torr程度)まで減圧する。そして、第 1バルブ 12を開けてマスフローコントローラ 14に よって流量制御された酸素ガスを、配管 5— 7を通してチャンバ一 3の内部に導入す ると共に、第 2バルブ 13を開けてマスフローコントローラ 15によって流量制御された S ΪΗガスを、配管 8— 10を通してチャンバ一 3の内部に導入する。これにより、粉体 1
4
の各々の微粒子表面に SiO力 なる超微粒子又は薄膜を被覆することができる。
2
[0056] 図 2は、図 1に示すサーマル CVD装置によって微粒子に薄膜を被覆した被覆微粒 子の一例を示す断面図である。 被覆微粒子 18は、微粒子 1の表面に薄膜 17が均一性よく被覆されたものである。た だし、前記サーマル CVD装置では、容器 2に収容された微粒子 1を静止させた状態 でサーマル CVD法により薄膜を成膜しているため、微粒子 1の底部 (容器 2と接する 側の部分)に被覆される薄膜の厚さは薄くなる。これに対し、従来のスパッタリング装 置によって微粒子に薄膜を被覆した場合、 CVD装置に比べて付きまわりが悪いため に、微粒子の上部 (スパッタリングターゲット側の部分)に主に薄膜が覆され、微粒子 の側部及び底部には十分に薄膜が被覆されない。
[0057] 上記実施の形態 1によれば、サーマル CVD装置を用いることにより、微粒子又は粉 体の表面に薄膜又は超微粒子を従来のスパッタリング装置に比べて均一性よく被覆 することができる。
また、本実施の形態では、 CVD法を用いるため、スパッタリング法に比べて結晶性 力 く緻密な薄膜を微粒子に被覆することができる。
[0058] (実施の形態 2)
図 3 (A)は、本発明に係る実施の形態 2によるサーマル CVD装置の概略を示す断 面図であり、図 3 (B)は、図 3 (A)に示す 3B— 3B線に沿った断面図である。このサー マル CVD装置は、微粒子 (又は粉体)の表面に、該微粒子より粒径の小さい超微粒 子又は薄膜を被覆させるための装置である。
[0059] サーマル CVD装置は円筒形状のチャンバ一 3を有している。このチャンバ一 3の両 端はチャンバ一蓋 20によって閉じられている。チャンバ一 3の内部には容器 19が配 置されている。この容器 19は円筒形状の部分 (丸型バレル)を有しており、この丸型 バレルの内部に粉体 (微粒子) 1が収容されるようになっている。図 3 (B)で示す断面 は、重力方向に対して略平行な断面である。なお、本実施の形態では、断面形状が 略円形の容器 19を用いているが、これに限定されるものではなぐ断面形状が略楕 円形の容器を用いることも可能である。
[0060] 容器 19には回転機構(図示せず)が設けられており、この回転機構により容器 19を 矢印のように回転させることで該容器 19内の粉体 (微粒子) 1を攪拌あるいは回転さ せながら被覆処理を行うものである。前記回転機構により容器 19を回転させる際の 回転軸は、略水平方向(重力方向に対して垂直方向)に平行な軸である。また、容器 19の外面には、粉体 1を加熱する加熱機構としてのヒーター 21が配置されている。
[0061] また、サーマル CVD装置は、容器 19の内部にガスを導入するガス導入機構を備え ている。ガス導入機構は、 Oガスを導入する第 1ガス導入機構と、 SiHガスを導入す
2 4
る第 2ガス導入機構とを有して ヽる。第 1ガス導入機構及び第 2ガス導入機構それぞ れの構造は実施の形態 1と略同様である。また、サーマル CVD装置は、チャンバ一 3 の内部を真空引きする真空ポンプ(図示せず)を備えて 、る。
[0062] 次に、上記サーマル CVD装置を用いて粉体 (微粒子) 1に超微粒子又は薄膜を被 覆する CVD成膜方法にっ ヽて説明する。
まず、容器 19内に多くの微粒子が集まった粉体 1を収容する。尚、粉体 1としては 種々の材質を用いることが可能である力 本実施の形態では実施の形態 1と同様に 例えば Ti粉体又は Al O粉体を用いる。
2 3
[0063] 次 、で、ヒーター 4で容器 19を介して粉体 1を所定の温度 (例えば 200°C程度)まで 加熱しながら、真空ポンプ 16を用いてチャンバ一 3内を所定の圧力(例えば 2 X 10— 3 Torr程度)まで減圧する。そして、第 1ガス導入機構によって流量制御された酸素ガ スを容器 19の内部に導入すると共に、第 2ガス導入機構によって流量制御された Si Hガスを容器 19の内部に導入する。そして、回転機構により容器 19を所定の回転
4
速度 (例えば 15rpm)で所定時間(例えば 120分)回転させることで、容器 19内の粉 体 1を回転させ、攪拌させる。これにより、粉体 1の各々の微粒子表面に SiO膜から
2 なる超微粒子又は薄膜を均一性よく被覆することができる。
[0064] 上記実施の形態 2においても実施の形態 1と同様の効果を得ることができる。
また、本実施の形態によれば、丸型バレルの容器 19自体を回転させることで粉体自 体を回転させ攪拌できるため、粉体を扱う時にしばしば問題となる水分や静電気力 による粉体の凝集を防ぐことができる。したがって、粒径の非常に小さい微粒子に該 微粒子より粒径が更に小さい超微粒子又は薄膜を均一性よく被覆することが可能と なる。
[0065] (実施の形態 3)
図 4 (A)は、本発明に係る実施の形態 3によるサーマル CVD装置の概略を示す断 面図であり、図 4 (B)は、図 4 (A)に示す 4B— 4B線に沿った断面図である。図 4にお いて図 3と同一部分には同一符号を付し、同一部分の説明は省略する。
[0066] チャンバ一 3の内部には容器 22が配置されている。この容器 22は、図 4 (B)に示す ようにその断面が六角形のバレル形状 (六角型バレル形状)を有している。そして、容 器 22の内部に粉体 (微粒子) 1が収容されるようになっている。図 4 (B)で示す断面は 、重力方向に対して略平行な断面である。なお、本実施の形態では、六角型バレル 形状の容器 22を用いているが、これに限定されるものではなぐ六角形以外の多角 形のバレル形状の容器を用いることも可能である。
[0067] 容器 22には実施の形態 2と同様に回転機構(図示せず)が設けられている。この回 転機構により容器 22を矢印のように回転させることで該容器 22内の粉体 (微粒子) 1 を攪拌あるいは回転させながら被覆処理を行うものである。前記回転機構により容器 22を回転させる際の回転軸は、略水平方向(重力方向に対して垂直方向)に平行な 軸である。
[0068] また、容器 22の外面には実施の形態 2と同様に加熱機構が配置されている。また、 本サーマル CVD装置は実施の形態 2と同様にガス導入機構及び真空ポンプを備え ている。
[0069] 次に、上記サーマル CVD装置を用いて粉体 (微粒子) 1に超微粒子又は薄膜を被 覆する CVD成膜方法にっ ヽて説明する。
まず、容器 19内に多くの微粒子が集まった粉体 1を収容する。尚、粉体 1としては 種々の材質を用いることが可能である力 本実施の形態では実施の形態 1と同様に 例えば Ti粉体又は Al O粉体を用いる。
2 3
[0070] 次 、で、ヒーター 4で容器 22を介して粉体 1を所定の温度まで加熱しながら、真空 ポンプを用いてチャンバ一 3内を所定の圧力まで減圧する。そして、第 1ガス導入機 構によって流量制御された酸素ガスを容器 22の内部に導入すると共に、第 2ガス導 入機構によって流量制御された SiHガスを容器 22の内部に導入する。そして、回転
4
機構により容器を所定の回転速度で所定時間回転させることで、容器 22内の粉体 1 を回転させ、攪拌させる。これにより、粉体 1の各々の微粒子表面に SiO膜からなる
2 超微粒子又は薄膜を均一性よく被覆することができる。
[0071] 図 5は、図 4に示すサーマル CVD装置によって微粒子に薄膜を被覆した被覆微粒 子の一例を示す断面図である。
被覆微粒子 23は、微粒子 1の表面に薄膜 17が均一性よく被覆されたものである。前 記サーマル CVD装置では、容器 22を回転させることで微粒子 1を回転させ攪拌しな 力 Sらサーマル CVD法により薄膜を成膜しているため、微粒子丄の表面全体に薄膜を 非常に均一性よく被覆することができる。また、微粒子 1の表面に凹凸又は窪みがあ る場合でも、膜の付きまわりが良いという CVD装置の特性上、凹凸又は窪みにカバ レージよく薄膜を被覆することができる。これに対し、従来のスパッタリング装置によつ て凹凸又は窪みがある微粒子に薄膜を被覆した場合、 CVD装置に比べて付きまわ りが悪いために、凹凸又は窪みには薄膜が十分に被覆されない。
[0072] 上記実施の形態 3においても実施の形態 1と同様の効果を得ることができる。
また、本実施の形態によれば、六角型バレル形状の容器 22自体を回転させることで 粉体自体を回転させ攪拌でき、更にバレルを六角型とすることにより、粉体を重力に より定期的に落下させることができる。このため、実施の形態 2に比べて攪拌効率を 飛躍的に向上させることができ、粉体を扱う時にしばしば問題となる水分や静電気力 による粉体の凝集を防ぐことができる。つまり回転により攪拌と、凝集した粉体の粉砕 を同時かつ効果的に行うことができる。したがって、粒径の非常に小さい微粒子に該 微粒子より粒径が更に小さい超微粒子又は薄膜を均一性よく被覆することが可能と なる。具体的には、粒径が 50 m以下の微粒子に超微粒子又は薄膜を被覆するこ とが可能となる。
[0073] (実施の形態 4)
図 6は、本発明に係る実施の形態 4によるプラズマ CVD装置の概略を示す構成図 である。このプラズマ CVD装置は、微粒子 (又は粉体)の表面に、該微粒子より粒径 の小さい超微粒子又は薄膜を被覆させるための装置である。
[0074] プラズマ CVD装置はチャンバ一 3を有している。チャンバ一 3内には、コーティング 対象の粉体 (微粒子) 1を収容する容器 2が配置されている。この容器 2はプラズマ電 源 31又は接地電位に接続されるようになっており、両者はスィッチ 32により切り替え 可能に構成されている。
[0075] また、プラズマ CVD装置は、チャンバ一 3内に原料ガスを導入する原料ガス導入機 構を備えて ヽる。この原料ガス導入機構は筒状のガスシャワー電極 24を有しており、 このガスシャワー電極 24はチャンバ一 3内に配置されている。ガスシャワー電極 24の 一方側には、単数又は複数の原料ガスをシャワー状に吹き出すガス吹き出し口が複 数形成されている。このガス吹き出し口は容器に収容された粉体 1と対向するよう〖こ 配置されて 、る。ガスシャワー電極 24の他方側は真空バルブ 26を介してマスフロー コントローラ(MFC) 27の一方側に接続されている。マスフローコントローラ 27の他方 側は図示せぬ真空バルブ及びフィルターなどを介して原料ガス発生源 28に接続さ れている。この原料ガス発生源 28は、粉体に被覆する薄膜によって発生させる原料 ガスの種類が異なるが、例えば SiO膜を成膜する場合は SiHガス等を発生させるも
2 4
のとする。
[0076] また、プラズマ CVD装置はプラズマパワー供給機構を備えており、このプラズマパ ヮー供給機構はガスシャワー電極 24にスィッチ 33を介して接続されたプラズマ電源 25を有している。プラズマ電源 25, 31は、高周波電力(RF出力)を供給する高周波 電源、マイクロ波用電源、 DC放電用電源、及びそれぞれパルス変調された高周波 電源、マイクロ波用電源、 DC放電用電源のいずれかであればよい。例えばプラズマ 電源が高周波電力を供給するものである場合、図示せぬインピーダンス整合器 (マツ チングボックス)を高周波電源とガスシャワー電極 24との間に配置することが好ましい 。つまり、この場合、ガスシャワー電極 24はマッチングボックスに接続されており、マツ チングボックスは同軸ケーブルを介して高周波電源 (RF電源)に接続されて!、る。 尚、ガスシャワー電極 24及び容器 2の 、ずれか一方にプラズマ電源が接続され、 他方に接地電位が接続されていても良いし、ガスシャワー電極 24及び容器 2の両方 にプラズマ電源が接続されて ヽても良!、。
[0077] また、プラズマ CVD装置は、チャンバ一 3内を真空排気する真空排気機構を備え ている。例えば、ガスシャワー電極 12にはチャンバ一 3内を排気する排気口(図示せ ず)が複数設けられており、排気口は真空ポンプ(図示せず)に接続されている。
[0078] 次に、上記プラズマ CVD装置を用いて粉体 1に超微粒子又は薄膜を被覆する方 法について説明する。
まず、複数の微粒子からなる粉体 1を容器 2内に収容する。容器 2内に収容する粉 体 1の量及び粉体の材質は実施の形態 1と同様である。この後、真空ポンプを作動さ せることによりチャンバ一 3内を所定の圧力(例えば 2 X 10— 3Torr程度)まで減圧する
[0079] 次 、で、真空ノ レブ 26を開き、原料ガス発生源 28にお 、て原料ガス(例えば SiH
4 ガス)を発生させ、この原料ガスをマスフローコントローラ 27によって流量制御し、この 流量制御された原料ガスをガスシャワー電極 24の内側に導入する。そして、ガスシャ ヮー電極のガス吹き出しロカも原料ガスを吹き出させる。
[0080] この後、ガスシャワー電極 24に例えばマッチングボックスを介してプラズマ電源 25 の一例である高周波電源 (RF電源)から例えば 13. 56MHzの RF出力が供給される 。この際、容器 2は接地電位に接続されている。これにより、ガスシャワー電極 24と容 器 2との間にプラズマを着火する。このとき、マッチングボックスは、容器 2とガスシャヮ 一電極 24のインピーダンスに、インダクタンス 、キャパシタンス Cによって合わせて いる。これによつて、チャンバ一 3内にプラズマが発生し、 SiO力もなる超微粒子又は
2
薄膜が微粒子 1の表面に被覆される。
[0081] 上記実施の形態 4によれば、プラズマ CVD装置を用いることにより、微粒子又は粉 体の表面に薄膜又は超微粒子を従来のスパッタリング装置に比べて均一性よく被覆 することができる。
[0082] また本実施の形態では、プラズマ CVD法を用いるため、 100°C以下の低温でも微 粒子表面に薄膜等を被覆することが可能である。従って、 100°C以上の高温で分解 しゃす ヽ微粒子や相変化を起こしやす ヽ微粒子、或いは表面変質しやす 、微粒子 に薄膜等を被覆することが可能となる。
また、本実施の形態では、プラズマ CVD装置を用いるため、スパッタリング装置を 用いる場合に比べてターゲット交換が不要であり、メンテナンス性が良い。
[0083] (実施の形態 5)
図 7 (A)は、本発明に係る実施の形態 5によるプラズマ CVD装置の概略を示す断 面図であり、図 7 (B)は、図 7 (A)に示す 7B— 7B線に沿った断面図である。このプラ ズマ CVD装置は、微粒子 (又は粉体)の表面に、該微粒子より粒径の小さい超微粒 子又は薄膜を被覆させるための装置である。 [0084] プラズマ CVD装置は円筒形状のチャンバ一 3を有している。このチャンバ一 3の両 端はチャンバ一蓋 20によって閉じられている。チャンバ一 3の内部には容器 29が配 置されている。この容器 29は円筒形状の部分 (丸型バレル)を有しており、この丸型 バレルの内部にコーティング対象物としての粉体 (微粒子) 1が収容されるようになつ ている。また、容器 29は、電極としても機能し、プラズマ電源 31又は接地電位に接続 されるようになっており、両者はスィッチ 32により切り替え可能に構成されている。図 7 (B)で示す断面は、重力方向に対して略平行な断面である。なお、本実施の形態で は、断面形状が略円形の容器 29を用いているが、これに限定されるものではなぐ断 面形状が略楕円形の容器を用いることも可能である。
[0085] 容器 29には回転機構(図示せず)が設けられており、この回転機構によりガスシャヮ 一電極 24を回転中心として容器 29を矢印のように回転させることで該容器 29内の 粉体 (微粒子) 1を攪拌あるいは回転させながら被覆処理を行うものである。前記回転 機構により容器 29を回転させる際の回転軸は、略水平方向(重力方向に対して垂直 方向)に平行な軸である。また、チャンバ一 3内の気密性は、容器 29の回転時におい ても保持されている。
[0086] また、プラズマ CVD装置は、チャンバ一 3内に原料ガスを導入する原料ガス導入機 構を備えて 、る。この原料ガス導入機構は筒状のガスシャワー電極 24を有しており、 このガスシャワー電極 24は容器 29内に配置されている。即ち、容器 29の一方側に は開口部が形成されており、この開口部力もガスシャワー電極 24が挿入されている。 ガスシャワー電極 24には、単数又は複数の原料ガスをシャワー状に吹き出すガス吹 き出し口が複数形成されている。このガス吹き出し口は容器に収容された粉体 1と対 向するように配置されている。ガス吹き出し口は、図 7 (B)に示すように重力方向 30 に対して容器 29の回転方向に 1° 一 90° 程度の方向に配置されている。
[0087] ガスシャワー電極 24は、実施の形態 4と同様に真空バルブ、マスフローコントローラ
(MFC)、真空バルブ、フィルター、原料ガス発生源に接続されている(図示せず)。 この原料ガス発生源は、粉体に被覆する薄膜によって発生させる原料ガスの種類が 異なるが、例えば SiO膜を成膜する場合は SiHガス等を発生させるものとする。
2 4
[0088] また、プラズマ CVD装置はプラズマパワー供給機構を備えており、このプラズマパ ヮー供給機構は実施の形態 4と同様の構造を有している。また、プラズマ CVD装置 は、チャンバ一 3内を真空排気する真空排気機構を備えており、真空排気機構の構 造は実施の形態 4と略同様である。
[0089] 次に、上記プラズマ CVD装置を用いて粉体 1に超微粒子又は薄膜を被覆する方 法について説明する。
まず、複数の微粒子からなる粉体 1を容器 2内に収容する。尚、粉体 1としては種々 の材質を用いることが可能である力 本実施の形態では実施の形態 1と同様に例え ば Ti粉体又は Al O粉体を用いる。この後、真空ポンプを作動させることによりチャン
2 3
バー 3内を所定の圧力(例えば 2 X 10— 3Torr程度)まで減圧する。これと共に、回転 機構により容器 29を回転させることで、その内部に収容された粉末 (微粒子) 1が容 器内面において重力方向 30とそれに対して回転方向に 90° の間を転がりながら動
<o
[0090] 次 、で、原料ガス発生源にぉ 、て原料ガス (例えば SiHガス)を発生させ、この原
4
料ガスをマスフローコントローラによって流量制御し、この流量制御された原料ガスを ガスシャワー電極 24の内側に導入する。そして、ガスシャワー電極のガス吹き出し口 力も原料ガスを吹き出させる。これにより、容器 29内を転がりながら動いている微粒 子 1に原料ガスが吹き付けられ、制御されたガス流量と排気能力のバランスによって 、 CVD法による成膜に適した圧力に保たれる。
[0091] この後、ガスシャワー電極 24に例えばマッチングボックスを介してプラズマ電源 25 の一例である高周波電源 (RF電源)から例えば 13. 56MHzの RF出力が供給される 。この際、容器 29は接地電位に接続されている。これにより、ガスシャワー電極 24と 容器 29との間にプラズマを着火する。このとき、マッチングボックスは、容器 2とガスシ ャヮー電極 24のインピーダンスに、インダクタンス 、キヤノ シタンス Cによって合わせ ている。これによつて、容器 29内にプラズマが発生し、 SiO力もなる超微粒子又は薄
2
膜が微粒子 1の表面に被覆される。つまり、容器 29を回転させることによって微粒子 1を転がしているため、微粒子 1の表面全体に薄膜を均一に被覆することが容易にで きる。
[0092] 上記実施の形態 5においても実施の形態 4と同様の効果を得ることができる。 また、本実施の形態によれば、丸型バレルの容器 29自体を回転させることで粉体自 体を回転させ攪拌できるため、粉体を扱う時にしばしば問題となる水分や静電気力 による粉体の凝集を防ぐことができる。したがって、粒径の非常に小さい微粒子に該 微粒子より粒径が更に小さい超微粒子又は薄膜を均一性よく被覆することが可能と なる。
[0093] (実施の形態 6)
図 8 (A)は、本発明に係る実施の形態 6によるプラズマ CVD装置の概略を示す断 面図であり、図 8 (B)は、図 8 (A)に示す 8B— 8B線に沿った断面図である。図 8にお いて図 7と同一部分には同一符号を付し、同一部分の説明は省略する。
[0094] チャンバ一 3の内部には容器 30が配置されている。この容器 30は、図 8 (B)に示す ようにその断面が六角形のバレル形状 (六角型バレル形状)を有している。そして、容 器 30の内部にはコーティング対象物である粉体 (微粒子) 1が収容されるようになって いる。また、容器 30は、電極としても機能し、プラズマ電源 31又は接地電位に接続さ れるようになっており、両者はスィッチ 32により切り替え可能に構成されている。図 8 ( B)で示す断面は、重力方向に対して略平行な断面である。なお、本実施の形態で は、六角型バレル形状の容器 30を用いている力 これに限定されるものではなぐ六 角形以外の多角形のバレル形状の容器を用いることも可能である。
[0095] 容器 30には実施の形態 5と同様に回転機構(図示せず)が設けられている。この回 転機構により容器 30を矢印のように回転させることで該容器 30内の粉体 (微粒子) 1 を攪拌あるいは回転させながら被覆処理を行うものである。前記回転機構により容器 30を回転させる際の回転軸は、略水平方向(重力方向に対して垂直方向)に平行な 軸である。
[0096] また、プラズマ CVD装置は実施の形態 5と同様に原料ガス導入機構及び真空排気 機構を備えて!/、る。この原料ガス導入機構は実施の形態 5と同様に筒状のガスシャヮ 一電極 24を有している。また、プラズマ CVD装置は実施の形態 5と同様にプラズマ ノ ヮ一供給機構を備えて 、る。
[0097] 次に、上記プラズマ CVD装置を用いて粉体 (微粒子) 1に超微粒子又は薄膜を被 覆する CVD成膜方法にっ ヽて説明する。 まず、複数の微粒子力もなる粉体 1を容器 30内に収容する。尚、粉体 1としては種 々の材質を用いることが可能である力 本実施の形態では実施の形態 1と同様に例 えば Ti粉体又は Al O粉体を用いる。この後、真空ポンプを作動させることによりチヤ
2 3
ンバー 3内を所定の圧力(例えば 2 X 10— 3Torr程度)まで減圧する。これと共に、回 転機構により容器 30を回転させることで、その内部に収容された粉末 (微粒子) 1が 容器内面において攪拌又は回転される。
[0098] 次 、で、原料ガス発生源にぉ 、て原料ガス (例えば SiHガス)を発生させ、この原
4
料ガスをマスフローコントローラによって流量制御し、この流量制御された原料ガスを ガスシャワー電極 24の内側に導入する。そして、ガスシャワー電極のガス吹き出し口 力も原料ガスを吹き出させる。これにより、容器 30内を攪拌又は回転しながら動いて Vヽる微粒子 1に原料ガスが吹き付けられ、制御されたガス流量と排気能力のバランス によって、 CVD法による成膜に適した圧力に保たれる。
[0099] この後、ガスシャワー電極 24に例えばマッチングボックスを介してプラズマ電源 25 の一例である高周波電源 (RF電源)から例えば 13. 56MHzの RF出力が供給される 。この際、容器 30は接地電位に接続されている。これにより、ガスシャワー電極 24と 容器 30との間にプラズマを着火する。このとき、マッチングボックスは、容器 2とガスシ ャヮー電極 24のインピーダンスに、インダクタンス 、キヤノ シタンス Cによって合わせ ている。これによつて、容器 30内にプラズマが発生し、 SiO力もなる超微粒子又は薄
2
膜が微粒子 1の表面に被覆される。つまり、容器 30を回転させることによって微粒子 1を攪拌し、回転させているため、微粒子 1の表面全体に薄膜を均一に被覆すること が容易にできる。
[0100] 上記実施の形態 6においても実施の形態 4と同様の効果を得ることができる。
また、本実施の形態によれば、六角型バレル形状の容器 30自体を回転させることで 粉体自体を回転させ攪拌でき、更にバレルを六角型とすることにより、粉体を重力に より定期的に落下させることができる。このため、実施の形態 5に比べて攪拌効率を 飛躍的に向上させることができ、粉体を扱う時にしばしば問題となる水分や静電気力 による粉体の凝集を防ぐことができる。つまり回転により攪拌と、凝集した粉体の粉砕 を同時かつ効果的に行うことができる。したがって、粒径の非常に小さい微粒子に該 微粒子より粒径が更に小さ 、超微粒子又は薄膜を被覆することが可能となる。具体 的には、粒径が 50 m以下の微粒子に超微粒子又は薄膜を被覆することが可能と なる。
[0101] (実施の形態 7)
本発明の実施の形態 7によるマイクロカプセルについて説明する。
第 1のマイクロカプセルは、微粒子の表面に優れた生体適合性を有する DLCから なる超微粒子又は薄膜を被覆し、この被覆された超微粒子又は薄膜の母体となって いる前記微粒子を取り除いたものである。また、他の例である第 2のマイクロカプセル は、微粒子の表面に第 1の超微粒子又は第 1の薄膜を被覆し、第 1の超微粒子又は 第 1の薄膜の表面に優れた生体適合性を有する DLC力 なる第 2の超微粒子又は 第 2の薄膜を被覆し、この被覆された第 1及び第 2の超微粒子又は第 1及び第 2の薄 膜の母体となっている前記微粒子を取り除いたものである。このようなマイクロカプセ ルは、医薬としてのドラッグデリバリーなどに適用するものである。尚、 DLC(Diamond Like Carbon)膜は、炭素間の SP3結合を主体としたアモルファスな炭素で、非常に硬 ぐ絶縁性に優れ、高屈折率で非常に滑らかなモルフォロジを有する硬質炭素膜で ある。
[0102] ここでの DLC力もなる超微粒子又は薄膜 (以下、 DLC膜と呼ぶ)は、炭素を主成分 とする非晶質炭素系薄膜であって、山形状を有する曲線を 2つ以上合成したラマンス ベクトル曲線を持つものを 、 、、比較的軟らカ 、もの力 非常に硬 、ものまで含まれ る。このラマンスペクトルは図 9に示すようなものである。但し、図 9に示すラマンスぺク トルは単なる一例である。
[0103] 図 9に示すように、ラマンスペクトル曲線 110は、 Gバンドと Dバンドと呼ばれる 2つの 山を有するものであって、波数 (wavenumber)が 1500付近にピークを有する山形状 の曲線 (Gバンド) 111と波数が 1300付近にピークを有する山形状の曲線 (Dバンド) 112とを合成したものである。
[0104] 上記優れた生体適合性を有する DLC膜は、その DLC膜を生体内部に導入した際 、又は、生体に接触させた際、生体あるいは生体構成要素の持つ本来の機能を損な わな 、性質を有するものであり、細胞毒性がほとんど無 ヽと 、う性質を有するもので ある。
[0105] ここで、生体適合性に優れて!/ヽることは、組織適合性に優れ、非免疫性に優れ、血 液適合性にも優れて 、ることを 、う。
[0106] 組織適合性とは、 DLC膜を生体内部に導入した際、又は、生体に接触させた際、 生体の組織を構成する細胞にダメージを発現させないことをいう。言い換えると、細 胞毒性を発現させな 、ことである。
細胞毒性とは、本来、増殖 *分ィ匕していく細胞が、ある物質と直接又は間接的に接 触し、破壊されることをいう。
[0107] 非免疫性とは、 DLC膜を生体内部に導入した際、又は、生体に接触させた際、生 体外部からの刺激 (有害な異物)から生体を守る免疫反応を誘発させな!/ヽことを ヽぅ。 血液適合性とは、 DLC膜を血液と接触する部位で使用する際、不必要な血液の凝 固(血栓形成)や破壊 (溶血)を起こさな 、ことを 、う。血液凝固には 、くつかの要因 があるが、その一つに血小板の吸着が挙げられる。血液中のアルブミンが吸着した 材料表面は血小板の吸着が起こりにくいため、血栓形成を抑制することになる。
[0108] 次に、上記 DLC膜が生体適合性を有することを確認するための細胞実験を行った ので、それについて説明する。
[0109] 実験方法について説明する。
まず、細胞を培養するポリスチレン製ディッシュを準備する。このディッシュは、平面 が四角形状を有しており、縦 8列、横 12列の合計 96個の穴 (窪み)が設けられ、この 穴の中に培養液と細胞を入れて細胞を培養するものである。これらの穴の底 (底面) には次のような処理が施されている。すなわち、 C Hの使用ガス、 20sccmのガス流
7 8
量、 5mmTorrのガス圧、下記 A— Iの RF出力と成膜時間で穴底に DLC膜をコーテ イングしたもの、ポリスチレン(PS)のままのもの、 TCD (ティッシュカルチャーポリスチ レンディッシュ)処理を施したものが各々 8個ずつ設けられて 、る。 TCDは組織培養 用ディッシュである。
[0110] 成膜条件 A: 300Wの RF出力、 30秒の成膜時間
成膜条件 B: 300Wの RF出力、 60秒の成膜時間
成膜条件 C : 300Wの RF出力、 90秒の成膜時間 成膜条件 D: 500Wの RF出力、 30秒の成膜時間
成膜条件 E : 500Wの RF出力、 60秒の成膜時間
成膜条件 F: 500Wの RF出力、 90秒の成膜時間
成膜条件 G : 900Wの RF出力、 30秒の成膜時間
成膜条件 H : 900Wの RF出力、 60秒の成膜時間
成膜条件 I : 900Wの RF出力、 90秒の成膜時間
[0111] 次に、細胞を培地にて調整し、この細胞懸濁液を上記ディッシュの各々の穴に入れ 、 24時間のインキュベート後、穴の底面部における細胞接着性評価、細胞毒性評価 を行った。なお、細胞としてはラット頭蓋冠由来骨芽細胞 (マウスの頭頂部の骨の細 胞)を用い、培地としては DMEM培地と 10%FBS (血清)と抗生物質、非必須アミノ 酸などの培地に必要な栄養分を含むものを用いる。
[0112] 細胞接着性を評価するための細胞接着試験について説明する。
まず、ラット頭蓋冠由来骨芽細胞を DMEM培地にて 8 X 104cells/mlに調整し、こ の細胞懸濁液 100 1を上記ディッシュの各々の穴に入れる。そして、 24時間のイン キュベート後、穴の底面部に接着している細胞数を MTT assayにて算出した。
[0113] MTTはミトコンドリア中の酵素により formazanに変化する。 Formazanを溶解し、比色 定量することにより、ミトコンドリアの活性を評価できる。生成した formazan量は生細胞 数に比例するため、 MTT assayの吸光度(O. D. 595nm)の値を接着細胞数とす る。つまり、ミトコンドリアは 1細胞につき 1個あるから、 MTT assayの吸光度の値から 測定したミトコンドリアの数によって接着細胞数を測定できる。この結果は図 10に示さ れている。
[0114] 図 10は、細胞接着評価の結果を示すものであり、ディッシュにおける PS (ポリスチレ ン)、 DLCをコーティングした A— I及び TCDそれぞれと吸光度(O. D. 595nm)との 関係を示す棒グラフである。図 10によれば、縦軸の値が高い程、接着した細胞数が 多、ことを示して 、るが、 A— Iは DLCをコーティングして!/ヽな 、PSと比較して細胞接 着性が明らかに良好であった。また、細胞接着性は対象比較として用いた TCDよりも 若干良好であった。
[0115] 細胞毒性を評価するための細胞毒性試験について説明する。 まず、ラット頭蓋冠由来骨芽細胞を DMEM培地にて 8 X 104cells/mlに調整し、こ の細胞懸濁液 100 1を上記ディッシュの各々の穴に入れる。そして、 24時間のイン キュペート後、細胞膜障害性試験である LDH漏出測定法にて細胞毒性を定量的に 測定した。
[0116] ライソソーム酵素である LDHは、細胞膜が障害を受けた場合に細胞内から培地中 に放出される。この放出された LDHを、 Iatrozyme LDH— L Kitを用い吸光度(
Q
O. D. 595nm)を比色定量した。 LDHの溶出率が高いほど、細胞膜に与えるダメー ジが大きいので、細胞毒性が強いと言える。この試験結果は図 11に示されている。
[0117] 図 11は、細胞毒性評価の結果を示すものであり、ディッシュにおける PS (ポリスチレ ン)、 DLCをコーティングした A— I及び TCDそれぞれと LDHの溶出率との関係を示 す棒グラフである。
[0118] 図 11にお 、て、縦軸の LDHの溶出率の値が高 、程、細胞膜に対する障害性が高 V、こと (即ち細胞膜に与えるダメージが大き 、こと)を示して 、る。 DLCをコーティング していない未処理の PSでは、 LDHの溶出率が 20%と高い値を示しており、細胞膜 の障害性が高いといえる。しかし、 DLCをコーティングした A— Iでは、 LDHの溶出率 が低い値を示しているので、細胞膜の障害性が低いと言える。従って、 DLCをコーテ イングすることにより、細胞膜の障害性を抑えることができる。 A— Iは DLCをコーティ ングしていない PSと比較して明らかに低い毒性であった。また、細胞毒性は対象比 較として用いた TCDとほぼ同等であった。
[0119] 細胞接着評価及び細胞毒性評価を行った結果、ディッシュにおいて DLCをコーテ イングしたものは、 DLC膜の膜厚によらず、 TCDと同程度又はそれ以上の細胞接着 性を有し、低細胞毒性であることが判明した。従って、 DLC膜は生体適合性が非常 に優れていると言える。また、膜厚依存性が見られないので、 PS表面に DLC膜を若 干でもコーティングしておけば、骨芽細胞にとって良好な増殖の場となり得るのである
[0120] 次に、上記 DLC膜が血液適合性を有することを確認するための実験を行ったので
、それについて説明する。
[0121] 実験方法方について説明する。 まず、ポリスチレン製ディッシュを準備する。このディッシュは前述した細胞実験に用 いたものと同様である。
次に、タンパク溶液をディッシュの各々の穴に入れ、酵素免疫測定法 (ELISA法) を用いて、穴の底面部に吸着したタンパク質を検出する。なお、 ELISA法は、 enzyme-liked immunosorbentassayの略で酵素活性を標識して抗原抗体応を追跡し 、抗原又は抗体の量を定量するという方法であって、検出感度が非常に高ぐナノグ ラム'オーダーのタンパク質を検出することが可能である。
[0122] 具体的な実験方法について説明する。各種ディッシュに 500ngZmlに調整した人 血清アルブミン溶液を入れ、 37°Cで 1時間インキュベートを行い、アルブミンをデイツ シュに吸着させる。 1時間後、上澄みを除去し、 1次抗体溶液を加え、 37°Cで 2時間 インキュベートを行い、吸着したタンパク質に 1次抗体を結合させる。その後、ディッシ ュを洗浄して余剰な 1次抗体を除去する。
[0123] 次に、ディッシュに 2次抗体溶液を入れ、 37°Cで 2時間インキュベートを行 、、タン パク質に結合した 1次抗体に 2次抗体を結合させる。そして、 1次抗体の場合と同様 に余剰な 2次抗体を洗浄除去した後、 p—二トロフエ-ルリン酸 2ナトリウム 6水和物に よって、 2次抗体に結合しているアルカリフォスファターゼに酵素反応させた後、水酸 化ナトリウム水溶液で反応を停止させ吸光度を測定する。この測定結果から、各種デ イツシュにおけるタンパク質の吸着率を算出し、その結果を図 12に示している。
[0124] 図 12は、ディッシュにおける穴の底面部(PS (ポリスチレン)、 DLCをコーティングし た A— I及び TCD)のタンパク質の吸着率を示す棒グラフである。ここでのタンパク質 の吸着率は、穴に入れられたタンパク溶液に含まれているタンパク質力 穴の底面部 に吸着した割合(%)である。
[0125] 図 12によれば、 A— Iはタンパク質の吸着率が 90— 100%と非常に良好であり、 T CDに比較して非常に高い吸着率を示している。このような結果から、上記 DLC膜が 非常に優れた血液適合性を有することを確認することができた。
[0126] 次に、 DLC膜についてラマンスペクトル分析を行った結果について説明する。
高周波電源に接続された電極上に基板を固定し、この電極に高周波電力を印加し 、プラズマ CVD法により基板表面に DLC膜を成膜することによりサンプルを作製した 。この際の成膜条件として、使用ガスに C Hを用い、ガス流量を 15sccmとし、ガス
7 8
圧を 5mTorrとし、 RF出力を 100W— 900Wで変化させた。このようにして作製した 各々のサンプルにラマンスペクトル分析を行った。その結果得られた各々のサンプル のラマンスペクトル曲線において、 Gピークベースライン強度 Bと Gピーク補正後強度 Aを測定し、各々のサンプルにおいて BZAの値を計算した。その結果を図 13に示 す。
[0127] ここで、 BZA値とは、図 14に示すように、 Gピークベースライン強度を Bとし、 Gピー ク補正後強度を Aとした場合、 BZAの値のことである。図 14は、 BZA値の定義を説 明するためのラマンスペクトル曲線である。
[0128] 図 13は、各々のサンプルを作製した際の RF出力と BZA値の関係を示すグラフで ある。図 15は、各々のサンプルを作製した際の RF出力と DLC膜の密度の関係を示 すグラフである。各々のサンプルを作製する際の C Hガスの流量は 15sccmで、ガ
7 8
ス圧は 5mTorrである。
図 13に示すように、 100W以上の RF出力で成膜したサンプルの BZA値は 1. 9程 度となっているが、 200Wの RF出力力 急激に BZA値が下がり、 300W以上の RF 出力での BZA値はほぼ 1. 6以下となっている。また、図 15に示すように、 RF出力が 高いほど DLC膜の膜密度が高くなつている。図 13及び図 15の結果から、 BZA値が 低いほど DLC膜の密度が高くなり緻密な膜が形成されているので、 BZA値がより低 いほど生体適合性に優れた DLC膜となる。したがって、 DLC膜が生体適合性に優 れているためには、 BZA値が 1. 9未満であることがこのましい。
[0129] 次に、 DLC膜についてアノード分極測定を行った結果について説明する。
高周波電源に接続された電極上に Si基体を固定し、この電極に高周波電力を印 加し、プラズマ CVD法により Si基体表面に DLC膜を成膜することによりサンプルを作 製した。この際の成膜条件として、使用ガスに C Hを用い、 RF出力を 100W— 500
7 8
Wで変化させた。このようにして作製した各々のサンプルを 10%KOH溶液に浸漬し 、アノード分極測定を行った。その結果を図 16及び図 17に示している。
[0130] 図 16は、 100Wの RF出力で DLC膜を成膜したサンプルのアノード分極測定結果 を示すものであって、電位と電流密度の関係を示すグラフである。 図 17は、 200Wの RF出力で DLC膜を成膜したサンプルのアノード分極測定結果 を示すものであって、電位と電流密度の関係を示すグラフである。
図 18は、 DLC膜を成膜していない Si基体のアノード分極測定結果を示すものであ つて、電位と電流密度の関係を示すグラフである。
[0131] アノード分極測定の結果、図 16に示すように、 100Wの RF出力で成膜したサンプ ルの DLC膜はガス流量、ガス圧に拘わらず、小さい活性態を示し、 Si基体のいくらか の溶解が観察された。これに対して、図 17に示すように、 200W以上の RF出力で成 膜したサンプルの DLC膜は自然電極電位が貴側にシフトし、活性態を生じな力つた 。 200W以上の RF出力で成膜した膜の臨界不動態化電流密度 Icritは、図 18に示 す Si基体の場合に比べて 3— 5桁小さぐ DLC膜の欠陥面積を算出したところ 10— 2 一 10— 5オーダーで低欠陥の膜質であることが確認できた。したがって、 200W以上の RF出力で成膜した DLC膜は非常に低欠陥であるので、このような DLC膜を下地金 属に被覆したものを生体内に埋め込んでも、下地金属を腐食から保護することが可 能となる。よって、このような 200W以上の RF出力、言い換えると 0. 28WZcm2以上 の電力密度で成膜した DLC膜は医療器具、人口臓器などに用いることが好ましい。 なお、 RF出力の電極面積が 708cm2 ( Φ 300mm)であるので 200Wの電力密度は 0. 28WZcm2となる。
[0132] 次に、前述した第 1のマイクロカプセルの製造方法について説明する。
図 8に示すプラズマ CVD装置を用いて、実施の形態 6で説明した方法により微粒 子の表面に該微粒子より粒径の小さい超微粒子又は薄膜を被覆させる。この際、超 微粒子又は薄膜の材料はマイクロカプセルとして使用する場合に適したものを用い る。微粒子としては例えば NaClを用い、超微粒子又は薄膜の材料としては例えば D LCを用 ヽる。
[0133] 詳細には、複数の NaCl微粒子 1を容器 30内に収容する。次いで、真空ポンプを作 動させることによりチャンバ一 3内を所定の圧力まで減圧する。これと共に、回転機構 により容器 30を回転させることで、その内部に収容された粉末 (NaCl微粒子) 1が容 器内面において攪拌又は回転される。
[0134] 次いで、原料ガス発生源において原料ガス (例えば、炭素と水素を含む炭化水素 系ガス)を発生させ、この原料ガスをマスフローコントローラによって流量制御し、この 流量制御された原料ガスをガスシャワー電極 24の内側に導入する。そして、ガスシャ ヮー電極のガス吹き出しロカも原料ガスを吹き出させる。この際のガス圧は 0. 5mTo rr以上 500mTorr以下である。これにより、容器 30内を攪拌又は回転しながら動い て 、る微粒子 1に原料ガスが吹き付けられ、制御されたガス流量と排気能力のバラン スによって、 CVD法による成膜に適した圧力に保たれる。
[0135] この後、ガスシャワー電極 24に例えばマッチングボックスを介してプラズマ電源 25 の一例である高周波電源 (RF電源)から例えば 13. 56MHzの RF出力が供給される 。この際、 RF出力は 30W以上であり、容器 30は接地電位に接続されている。これに より、ガスシャワー電極 24と容器 30との間にプラズマを着火する。これによつて、容器 30内にプラズマが発生し、 DLC力 なる超微粒子又は薄膜が NaCl微粒子 1の表面 に被覆される。つまり、容器 30を回転させることによって微粒子 1を攪拌し、回転させ ているため、微粒子 1の表面全体に薄膜等を均一に被覆することが容易にできる。
[0136] この後、前記被覆した超微粒子又は薄膜の母体となっている NaCl微粒子を溶解、 気化等を利用して取り除く。詳細には、例えば、ビーカーに水を入れ、この水の中に DLCを被覆した NaCl微粒子を入れる。この際、 DLCを被覆した NaCl微粒子は水 の底に沈む。
[0137] 次いで、時間が経過するにしたがい、 DLCを被覆した微粒子が徐々に水面に浮か んでくる。これは、母体である NaCl微粒子が水に溶解して被覆した DLCの内部から 除去されるためである。
[0138] 次いで、一定の時間が経過すると、 DLCを被覆した微粒子の全てが水面に浮かぶ 。このようにして DLCを被覆した全ての微粒子の内部の NaClが除去され、マイクロ力 プセルが作製される。
[0139] 次に、前述した第 2のマイクロカプセルの製造方法について説明する。
図 8に示すプラズマ CVD装置を用いて、実施の形態 6で説明した方法により微粒 子の表面に該微粒子より粒径の小さい第 1の超微粒子又は第 1の薄膜を被覆させる 。この際、第 1の超微粒子又は第 1の薄膜の材料はマイクロカプセルとして使用する 場合に適したものであれば金属でも良いし絶縁物でも良い。次いで、図 8に示すプラ ズマ CVD装置を用いて、実施の形態 6で説明した方法により第 1の超微粒子又は第 1の薄膜の表面に該微粒子より粒径の小さい第 2の超微粒子又は第 2の薄膜を被覆 させる。この際、第 2の超微粒子又は第 2の薄膜の材料はマイクロカプセルとして使用 する場合に適したものであれば良い。微粒子としては例えば NaClを用い、第 2の超 微粒子又は第 2の薄膜の材料としては例えば DLCを用いる。
[0140] DLC力 なる第 2の超微粒子又は第 2の薄膜を被覆する方法の詳細は、第 1のマイ クロカプセルの場合の超微粒子又は薄膜を被覆する方法と同様である。
[0141] この後、前記被覆した第 1及び第 2の超微粒子又は第 1及び第 2の薄膜の母体とな つている NaCl微粒子を溶解、気化等を利用して取り除く。詳細は、第 1のマイクロ力 プセルと同様である。
[0142] 尚、本実施の形態では、使用ガスとして炭化水素系ガスを用いているが、少なくとも 炭素と水素を含むものであれば種々の炭化水素系ガスを用いることが可能であり、例 えば、炭素と水素のみを含む化合物ガス、炭素と水素と酸素を含むガス、炭素、水素 、酸素、珪素、窒素、銅、銀などを含むガス、ベンゼン、トルエン、アセチレンなどを用 いることも可能である。
[0143] また、本実施の形態では、成膜条件において 0. 5mTorr以上 500mTorr以下の 炭化水素系ガス圧を用 、て 、る力 さらに好まし 、ガス圧として lOmTorr以上 100m
Torr以下が挙げられる。
[0144] また、本実施の形態では、成膜条件において RF出力が 0. 28WZcm2以上の電 力密度を用いることが好まし 、。
[0145] また、炭化水素系ガスの流量としては、上記圧力を実現できるガス流量であれば、 種々のガス流量を用いることが可能である。
[0146] 尚、本発明は上記実施の形態に限定されず、本発明の主旨を逸脱しない範囲内 で種々変更して実施することが可能である。例えば、微粒子に薄膜を成膜する成膜 条件を適宜変更することも可能である。
[0147] また、実施の形態 7では、図 8に示すプラズマ CVD装置を用いたマイクロカプセル の製造方法について説明している力 これに限定されるものではなぐ他の CVD装 置を用いたマイクロカプセルの製造方法に本発明を適用することも可能である。例え ば、図 3の CVD装置、図 4の CVD装置、又は図 7の CVD装置を用いてマイクロカプ セルを製造することも可能である。
図面の簡単な説明
[図 1]本発明に係る実施の形態 1によるサーマル CVD装置の概略を示す構成図であ る。
[図 2]図 1に示すサーマル CVD装置によって微粒子に薄膜を被覆した被覆微粒子の 一例を示す断面図である。
[図 3] (A)は、本発明に係る実施の形態 2によるサーマル CVD装置の概略を示す断 面図であり、(B)は、(A)に示す 3B— 3B線に沿った断面図である。
[図 4] (A)は、本発明に係る実施の形態 3によるサーマル CVD装置の概略を示す断 面図であり、(B)は、(A)に示す 4B— 4B線に沿った断面図である。
[図 5]図 4に示すサーマル CVD装置によって微粒子に薄膜を被覆した被覆微粒子の 一例を示す断面図である。
[図 6]本発明に係る実施の形態 4によるプラズマ CVD装置の概略を示す構成図であ る。
[図 7] (A)は、本発明に係る実施の形態 5によるプラズマ CVD装置の概略を示す断 面図であり、(B)は、(A)に示す 7B— 7B線に沿った断面図である。
[図 8] (A)は、本発明に係る実施の形態 6によるプラズマ CVD装置の概略を示す断 面図であり、(B)は、(A)に示す 8B— 8B線に沿った断面図である。
[図 9]DLC膜のラマンスペクトルの一例を示す図である。
[図 10]細胞接着評価の結果を示すものであって、ディッシュにおける PS、 DLCをコ 一ティングした A— I及び TCDそれぞれと吸光度(O. D. 595nm)との関係を示す棒 グラフである。
[図 11]細胞毒性評価の結果を示すものであり、ディッシュにおける PS、 DLCをコーテ イングした A— I及び TCDそれぞれと LDHの溶出率との関係を示す棒グラフである。
[図 12]ディッシュにおける穴の底面部(PS、 DLCをコーティングした A— I及び TCD) のタンパク質の吸着率を示す棒グラフである。
[図 13]ラマンスペクトル分析を行うサンプルを作製した際の RF出力と BZA値の関係 を示すグラフである。
[図 14]BZA値の定義を説明するためのラマンスペクトル曲線である。
[図 15]各々のサンプルを作製した際の RF出力と DLC膜の密度の関係を示すグラフ である。
[図 16]100Wの RF出力で DLC膜を成膜したサンプルのアノード分極測定結果を示 すものであって、電位と電流密度の関係を示すグラフである。
[図 17]200Wの RF出力で DLC膜を成膜したサンプルのアノード分極測定結果を示 すものであって、電位と電流密度の関係を示すグラフである。
[図 18]DLC膜を成膜して ヽな 、Si基体のアノード分極測定結果を示すものであって 、電位と電流密度の関係を示すグラフである。
符号の説明
1···粉体(微粒子)、 2···容器、 3···チャンバ一、 4···ヒーター、 5— 11···配管、 12··· 第 1バルブ、 13···第 2ノ レブ、 14, 15…マスフローコントローラ(MFC)、 16…アル ゴンガス導入機構、 17···薄膜、 18···被覆微粒子、 19…容器、 20···チャンバ一蓋、 21…ヒーター、 22···容器、 23···被覆微粒子、 24···ガスシャワー電極、 25···プラズ マ電源、 26···真空ノ レブ、 27…マスフローコントローラ(MFC)、 28…原料ガス発生 源、 29, 30···容器、 31···プラズマ電源、 32, 33···スィッチ、 110···ラマンスペクトル 曲線、 111…山形状の曲線 (Gバンド)、 112…山形状の曲線 (Dバンド)

Claims

請求の範囲
[1] CVD法によって微粒子の表面に該微粒子より粒径の小さい超微粒子又は薄膜が被 覆されたことを特徴とする被覆微粒子。
[2] 内部の断面形状が略円形を有する容器を、前記断面に対して略垂直方向を回転軸 として回転させることにより、該容器内の微粒子を攪拌あるいは回転させながら CVD 法を用いることで、該微粒子の表面に該微粒子より粒径の小さ 、超微粒子又は薄膜 が被覆されたことを特徴とする被覆微粒子。
[3] 内部の断面形状が多角形を有する容器を、前記断面に対して略垂直方向を回転軸 として回転させることにより、該容器内の微粒子を攪拌あるいは回転させながら CVD 法を用いることで、該微粒子の表面に該微粒子より粒径の小さ 、超微粒子又は薄膜 が被覆されたことを特徴とする被覆微粒子。
[4] 容器内に微粒子を収容し、
サーマル CVD法又はプラズマ CVD法を用いることで、該微粒子の表面に該微粒 子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする CVD成膜方法。
[5] 重力方向に対して略平行な断面の内部形状が略円形である容器内に微粒子を収容 し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする CVD 成膜方法。
[6] 重力方向に対して略平行な断面の内部形状が多角形である容器内に微粒子を収容 し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする CVD 成膜方法。
[7] 微粒子を載置する容器と、
前記容器を収容するチャンバ一と、 前記容器に載置された微粒子を加熱する加熱機構と、
前記チャンバ一内に原料ガスを導入するガス導入機構と、
を具備し、
サーマル CVD法を用いることにより、前記微粒子の表面に該微粒子より粒径の小 さい超微粒子又は薄膜を被覆することを特徴とする CVD装置。
[8] 微粒子を収容する容器であって、重力方向に対して略平行な断面の内部形状が略 円形である容器と、
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に収容された微粒子を加熱する加熱機構と、
前記容器内に原料ガスを導入するガス導入機構と、
を具備し、
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらサーマル CVD法を用いることで、該微粒子の表面に該微粒 子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする CVD装置。
[9] 微粒子を収容する容器であって、重力方向に対して略平行な断面の内部形状が多 角形である容器と、
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に収容された微粒子を加熱する加熱機構と、
前記容器内に原料ガスを導入するガス導入機構と、
を具備し、
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらサーマル CVD法を用いることで、該微粒子の表面に該微粒 子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする CVD装置。
[10] 微粒子を載置する容器と、
前記容器を収容するチャンバ一と、
前記チャンバ一内に原料ガスを導入するガス導入機構と、
前記チャンバ一内に配置され、前記容器に対向するように配置された電極と、 を具備し、 プラズマ CVD法を用いることにより、前記微粒子の表面に該微粒子より粒径の小さ い超微粒子又は薄膜を被覆することを特徴とする CVD装置。
[11] 微粒子を収容する容器であって、重力方向に対して略平行な断面の内部形状が略 円形である容器と、
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に配置された電極と、
前記容器内に原料ガスを導入するガス導入機構と、
を具備し、
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらプラズマ CVD法を用いることで、該微粒子の表面に該微粒 子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする CVD装置。
[12] 微粒子を収容する容器であって、重力方向に対して略平行な断面の内部形状が多 角形である容器と、
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に配置された電極と、
前記容器内に原料ガスを導入するガス導入機構と、
を具備し、
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらプラズマ CVD法を用いることで、該微粒子の表面に該微粒 子より粒径の小さい超微粒子又は薄膜を被覆することを特徴とする CVD装置。
[13] 前記ガス導入機構は、前記電極カゝらシャワー状のガスを前記容器内に導入する機構 を有することを特徴とする請求項 10乃至 12のいずれか一項に記載の CVD装置。
[14] 前記容器を収容するチャンバ一と、該チャンバ一内を真空排気する真空排気機構と 、をさらに具備することを特徴とする請求項 10乃至 12のいずれか一項に記載の CV D装置。
[15] 優れた生体適合性を有する DLCからなる超微粒子又は薄膜により形成されたマイク ロカプセノレであって、
生体内部に導入した際、又は、生体に接触させた際、生体あるいは生体構成要素 の持つ本来の機能を損なわない性質を有することを特徴とするマイクロカプセル。
[16] 外表面を構成する第 1の超微粒子又は第 1の薄膜と、
前記第 1の超微粒子又は第 1の薄膜の内側に形成された第 2の超微粒子又は第 2 の薄膜とを具備するマイクロカプセルであって、
前記第 1の超微粒子又は前記第 1の薄膜は優れた生体適合性を有する DLCから なり、
生体内部に導入した際、又は、生体に接触させた際、生体あるいは生体構成要素 の持つ本来の機能を損なわない性質を有することを特徴とするマイクロカプセル。
[17] 内部の断面形状が略円形である容器を、前記断面に対して略垂直方向を回転軸と して回転させることにより、該容器内の微粒子を攪拌あるいは回転させながら CVD法 を用いることで、該微粒子の表面に該微粒子より粒径の小さい超微粒子又は薄膜が 被覆され、この被覆された超微粒子又は薄膜の母体となって ヽる前記微粒子が取り 除かれたものであることを特徴とするマイクロカプセル。
[18] 内部の断面形状が多角形である容器を、前記断面に対して略垂直方向を回転軸と して回転させることにより、該容器内の微粒子を攪拌あるいは回転させながら CVD法 を用いることで、該微粒子の表面に該微粒子より粒径の小さい超微粒子又は薄膜が 被覆され、この被覆された超微粒子又は薄膜の母体となって ヽる前記微粒子が取り 除かれたものであることを特徴とするマイクロカプセル。
[19] 請求項 17又は 18において、前記超微粒子又は前記薄膜が優れた生体適合性を有 する DLC力 なり、
生体内部に導入した際、又は、生体に接触させた際、生体あるいは生体構成要素 の持つ本来の機能を損なわない性質を有することを特徴とするマイクロカプセル。
[20] 内部の断面形状が略円形である容器を、前記断面に対して略垂直方向を回転軸と して回転させることにより、該容器内の微粒子を攪拌あるいは回転させながら CVD法 を用いることで、該微粒子の表面に該微粒子より粒径の小さ 、第 1の超微粒子又は 第 1の薄膜が被覆され、前記 CVD法を用いることで、該第 1の超微粒子又は該第 1 の薄膜の表面に前記微粒子より粒径の小さい第 2の超微粒子又は第 2の薄膜が被 覆され、この被覆された第 1及び第 2の超微粒子又は第 1及び第 2の薄膜の母体とな つている前記微粒子が取り除かれたものであることを特徴とするマイクロカプセル。
[21] 内部の断面形状が多角形である容器を、前記断面に対して略垂直方向を回転軸と して回転させることにより、該容器内の微粒子を攪拌あるいは回転させながら CVD法 を用いることで、該微粒子の表面に該微粒子より粒径の小さ 、第 1の超微粒子又は 第 1の薄膜が被覆され、前記 CVD法を用いることで、該第 1の超微粒子又は該第 1 の薄膜の表面に前記微粒子より粒径の小さい第 2の超微粒子又は第 2の薄膜が被 覆され、この被覆された第 1及び第 2の超微粒子又は第 1及び第 2の薄膜の母体とな つている前記微粒子が取り除かれたものであることを特徴とするマイクロカプセル。
[22] 請求項 20又は 21において、前記第 2の超微粒子又は前記第 2の薄膜が優れた生体 適合性を有する DLC力 なり、
生体内部に導入した際、又は、生体に接触させた際、生体あるいは生体構成要素の 持つ本来の機能を損なわない性質を有することを特徴とするマイクロカプセル。
[23] 重力方向に対して略平行な断面の内部形状が略円形である容器内に微粒子を収容 し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい超微粒子又は薄膜を被覆させ、
前記被覆した超微粒子又は薄膜の母体となっている前記微粒子を取り除くことを特 徴とするマイクロカプセルの製造方法。
[24] 重力方向に対して略平行な断面の内部形状が多角形である容器内に微粒子を収容 し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい超微粒子又は薄膜を被覆させ、
前記被覆した超微粒子又は薄膜の母体となっている前記微粒子を取り除くことを特 徴とするマイクロカプセルの製造方法。
[25] 請求項 23又は 24にお 、て、前記超微粒子又は薄膜は、優れた生体適合性を有す る DLCからなり、 前記超微粒子又は薄膜を被覆させる際、前記容器内に、少なくとも炭素と水素を含 む炭化水素系ガスを 0. 5mTorr以上 500mTorr以下の圧力下で導入し、高周波電 源に接続された電極を前記容器内に配置し、前記電極に電力密度が 0. 28W/cm 2以上の高周波電力を印加してプラズマ CVD法により被覆することを特徴とするマイ クロカプセルの製造方法。
[26] 重力方向に対して略平行な断面の内部形状が略円形である容器内に微粒子を収容 し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい第 1の超微粒子又は第 1の薄膜を被覆させ、 重力方向に対して略平行な断面の内部形状が略円形である容器内に、前記第 1の 超微粒子又は前記第 1の薄膜が被覆された前記微粒子を収容し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、前記第 1の超 微粒子又は前記第 1の薄膜の表面に前記微粒子より粒径の小さい第 2の超微粒子 又は第 2の薄膜を被覆させ、
前記被覆した第 1及び第 2の超微粒子又は第 1及び第 2の薄膜の母体となっている 前記微粒子を取り除くことを特徴とするマイクロカプセルの製造方法。
[27] 重力方向に対して略平行な断面の内部形状が多角形である容器内に微粒子を収容 し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、該微粒子の表 面に該微粒子より粒径の小さい第 1の超微粒子又は第 1の薄膜を被覆させ、 重力方向に対して略平行な断面の内部形状が多角形である容器内に、前記第 1の 超微粒子又は前記第 1の薄膜が被覆された前記微粒子を収容し、
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌ある 、は回転させながら CVD法を用いることで、前記第 1の超 微粒子又は前記第 1の薄膜の表面に前記微粒子より粒径の小さい第 2の超微粒子 又は第 2の薄膜を被覆させ、
前記被覆した第 1及び第 2の超微粒子又は第 1及び第 2の薄膜の母体となっている 前記微粒子を取り除くことを特徴とするマイクロカプセルの製造方法。
請求項 26又は 27において、前記第 2の超微粒子又は前記第 2の薄膜は、優れた生 体適合性を有する DLCからなり、
前記第 2の超微粒子又は前記第 2の薄膜を被覆させる際、前記容器内に、少なくと も炭素と水素を含む炭化水素系ガスを 0. 5mTorr以上 500mTorr以下の圧力下で 導入し、高周波電源に接続された電極を前記容器内に配置し、前記電極に電力密 度が 0. 28WZcm2以上の高周波電力を印加してプラズマ CVD法により被覆するこ とを特徴とするマイクロカプセルの製造方法。
PCT/JP2005/001750 2004-07-01 2005-02-07 被覆微粒子、cvd装置及びcvd成膜方法、マイクロカプセル及びその製造方法 WO2006003735A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-195314 2004-07-01
JP2004195314A JP2006016661A (ja) 2004-07-01 2004-07-01 被覆微粒子、cvd装置及びcvd成膜方法、マイクロカプセル及びその製造方法

Publications (1)

Publication Number Publication Date
WO2006003735A1 true WO2006003735A1 (ja) 2006-01-12

Family

ID=35782550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001750 WO2006003735A1 (ja) 2004-07-01 2005-02-07 被覆微粒子、cvd装置及びcvd成膜方法、マイクロカプセル及びその製造方法

Country Status (2)

Country Link
JP (1) JP2006016661A (ja)
WO (1) WO2006003735A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668119A (zh) * 2013-10-31 2014-03-26 无锡迈纳德微纳技术有限公司 一种硅酸盐类荧光粉及其表面包覆氧化物隔膜薄膜的装置和工艺
WO2017195449A1 (ja) * 2016-05-12 2017-11-16 株式会社ユーテック 潤滑剤及びその製造方法、潤滑剤用品、潤滑剤エアゾール、潤滑剤付き部材及び潤滑剤付き可動部材の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5147101B2 (ja) * 2006-12-28 2013-02-20 株式会社エルブ 遠赤外線放射用複合セラミックス材料、その製造方法及び調理器具用部材並びに炊飯器
US10125421B2 (en) 2008-02-06 2018-11-13 Advanced Material Technologies, Inc. Plasma CVD apparatus, plasma CVD method, and agitating device
KR101637980B1 (ko) * 2014-09-24 2016-07-08 울산과학기술원 열 화학기상증착 장치 및 열 화학기상증착 방법
TWI660174B (zh) * 2017-03-14 2019-05-21 希華晶體科技股份有限公司 檢測套組的製備方法及加速有機分子附著至載體的方法
TW202229622A (zh) 2019-04-24 2022-08-01 美商應用材料股份有限公司 用於在具有旋轉槳的固定的腔室中塗覆顆粒的反應器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753272A (ja) * 1993-08-12 1995-02-28 Agency Of Ind Science & Technol 被覆セラミックス準微粒子、セラミックス基焼結体及びその製造法
JP2001187115A (ja) * 1999-12-28 2001-07-10 Freunt Ind Co Ltd 粉粒体処理方法および装置
JP2002204825A (ja) * 2000-11-13 2002-07-23 Utec:Kk Dlc膜、医療器具、人工臓器及びdlc膜の成膜方法
JP2003013229A (ja) * 2001-06-27 2003-01-15 Utec:Kk Cvd成膜装置及びcvd成膜方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753272A (ja) * 1993-08-12 1995-02-28 Agency Of Ind Science & Technol 被覆セラミックス準微粒子、セラミックス基焼結体及びその製造法
JP2001187115A (ja) * 1999-12-28 2001-07-10 Freunt Ind Co Ltd 粉粒体処理方法および装置
JP2002204825A (ja) * 2000-11-13 2002-07-23 Utec:Kk Dlc膜、医療器具、人工臓器及びdlc膜の成膜方法
JP2003013229A (ja) * 2001-06-27 2003-01-15 Utec:Kk Cvd成膜装置及びcvd成膜方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668119A (zh) * 2013-10-31 2014-03-26 无锡迈纳德微纳技术有限公司 一种硅酸盐类荧光粉及其表面包覆氧化物隔膜薄膜的装置和工艺
CN103668119B (zh) * 2013-10-31 2016-06-22 无锡迈纳德微纳技术有限公司 一种硅酸盐类荧光粉及其表面包覆氧化物隔膜薄膜的装置和工艺
WO2017195449A1 (ja) * 2016-05-12 2017-11-16 株式会社ユーテック 潤滑剤及びその製造方法、潤滑剤用品、潤滑剤エアゾール、潤滑剤付き部材及び潤滑剤付き可動部材の製造方法

Also Published As

Publication number Publication date
JP2006016661A (ja) 2006-01-19

Similar Documents

Publication Publication Date Title
WO2006003735A1 (ja) 被覆微粒子、cvd装置及びcvd成膜方法、マイクロカプセル及びその製造方法
Chenglong et al. Corrosion resistance and hemocompatibility of multilayered Ti/TiN-coated surgical AISI 316L stainless steel
Zheng et al. Review of vertical graphene and its applications
JP4163617B2 (ja) 高分子材基板上に細胞成長表面を形成するための方法
TW484188B (en) Plasma CVD film forming device
Ahmed et al. Comparison between FTIR and XPS characterization of amino acid glycine adsorption onto diamond-like carbon (DLC) and silicon doped DLC
JP5795266B2 (ja) 成形された物体の内側表面上に、保護被膜としてダイヤモンド状炭素を堆積する方法
JP6069098B2 (ja) 表面フッ化微粒子、表面フッ化装置及び表面フッ化微粒子の製造方法
JP2000064047A (ja) ダイヤモンド様炭素(dlc)又は他の真空蒸着被膜を基体に被覆する装置及び方法
EP1034320A1 (en) Method and apparatus for coating diamond-like carbon onto particles
Ahmed et al. Evaluation of glycine adsorption on diamond like carbon (DLC) and fluorinated DLC deposited by plasma-enhanced chemical vapour deposition (PECVD)
Lin et al. Surface characteristics of a dental implant modified by low energy oxygen ion implantation
Hasebe et al. Hydrophobicity and non-thrombogenicity of nanoscale dual rough surface coated with fluorine-incorporated diamond-like carbon films: Biomimetic surface for blood-contacting medical devices
Hang et al. Corrosion behavior of DLC-coated NiTi alloy in the presence of serum proteins
Mello et al. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering
JP2002204825A (ja) Dlc膜、医療器具、人工臓器及びdlc膜の成膜方法
EP3041891A1 (en) Materials and methods
JP5237999B2 (ja) マイクロカプセル及びその製造方法
McColl et al. Low temperature plasma-assisted chemical vapour deposition of amorphous carbon films for biomedical-polymeric substrates
Gandhiraman et al. Interaction of plasma deposited HMDSO‐based coatings with fibrinogen and human blood plasma: the correlation between bulk plasma, surface characteristics and biomolecule interaction
Van De Keere et al. Interaction of human plasma fibrinogen with commercially pure titanium as studied with atomic force microscopy and X-ray photoelectron spectroscopy
JP4388717B2 (ja) Cvd成膜装置及びcvd成膜方法
Wang et al. Sputter deposition of nanostructured antibacterial silver on polypropylene non-wovens
Ni et al. Fabrication of thin film TiO2 nanotube arrays on Co–28Cr–6Mo alloy by anodization
Grinevich et al. Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast‐like and endothelial cells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase