WO2006002446A1 - Procede et equipement de mesure de courant continue - Google Patents

Procede et equipement de mesure de courant continue Download PDF

Info

Publication number
WO2006002446A1
WO2006002446A1 PCT/AT2005/000232 AT2005000232W WO2006002446A1 WO 2006002446 A1 WO2006002446 A1 WO 2006002446A1 AT 2005000232 W AT2005000232 W AT 2005000232W WO 2006002446 A1 WO2006002446 A1 WO 2006002446A1
Authority
WO
WIPO (PCT)
Prior art keywords
ref
current
reference current
measuring
measured
Prior art date
Application number
PCT/AT2005/000232
Other languages
German (de)
English (en)
Inventor
Ronald Steuer
Original Assignee
Lem Norma Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lem Norma Gmbh filed Critical Lem Norma Gmbh
Publication of WO2006002446A1 publication Critical patent/WO2006002446A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts

Definitions

  • the invention relates to a method for uninterruptible current measurement, in particular to conductors, busbars, fuses or the like. As well as a device for uninterrupted current measurement, in particular to conductors, busbars, fuses or the like. With a current source for generating a reference current, a device for measuring a voltage drop and a device for evaluating the measured values.
  • the current flowing through a conductor can be detected by separating the conductor in which the current to be measured flows and connecting an ammeter. Often, however, it is not possible or expedient to separate the line, since this would interrupt the operation of that device in which the current flows would be connected. To remedy this, current clamps are used, with the help of which an uninterrupted current measurement is possible. Is However, it is necessary in the current probes that the conductors are substantially completely from the current probe '.umgriffen' what in stacked ladders often is possible, for example at very closely not. This is not possible in many cases. In addition, current tongs are disadvantageous in terms of external field sensitivity, accuracy and expense.
  • the current can be calculated according to the law of ohms by measuring the voltage drop on this conductor section.
  • the resistance is not known and depends on various parameters, e.g. the temperature off. An accurate measurement of the current via the measurement of the voltage drop is therefore not possible in these cases.
  • the object of the present invention is to provide a method and a device for uninterrupted Current measurement during operation on any conductors whose resistance value is unknown and can change over time.
  • the method should be able to be used wherever a contacting of the measuring point is possible.
  • the process should be as simple and quick as possible.
  • the device for uninterrupted current measurement should be as simple and inexpensive as possible.
  • the object of the invention is achieved in terms of the method in that the measured current I n , a known reference current I ref is superimposed that the reference current I ref for distinguishing the measured current I m is characterized in that by the reference current I re f caused voltage drop U ref is measured and that the current I n to be measured, from the voltage drop U caused by the current I m to be measured and the resistance R er calculated from the reference current I ref and the voltage drop U ref caused by the reference current I ref is averaged.
  • the inventive method it is thus possible to make an uninterrupted and accurate current measurement on any conductors that can also change in time in resistance.
  • the intrinsically unknown and variable resistance of the conductor piece is determined via the reference current I ref which is superimposed on the current I m to be measured and by measuring the voltage drop U ref at the conductor piece caused by the reference current I ref .
  • the identification of the reference current I ref according to the invention permits a differentiation of the current I n to be measured, and thus also a measurement of the voltage drop U ref caused by the reference current I ref alone, and thus a determination of the resistance of the conductor or the like.
  • the current I m to be measured can be determined in a manner known per se via the voltage drop U caused by the current I m to be measured.
  • the reference current I ref can be characterized by modulation with a known frequency f ref and the voltage drop U reE caused by the reference current I ref alone can be measured by appropriate filtering.
  • the reference current are preferably used frequencies f ref , which are not commonly used and which can be easily separated by corresponding filter from the current to be measured I m .
  • the reference current I ref also by correlation with a signature are identified and caused by the current I ref rence Refe ⁇ voltage drop U ref by entspre ⁇ sponding correlation method can be measured.
  • Different correlative methods can be applied to the sum signal of the current I n , + I ref in order to be able to filter out the voltage drop U ref generated only by the reference current I ref .
  • the reference current I ref can be characterized by correlation with a stochastic signal.
  • stochastic signal forms can be generated, for example, by feedback shift registers.
  • the filtering of the only caused by the reference current I ref voltage drop U ref from the measured total voltage U ges is possible by applying methods of probability calculation.
  • the use of a pseudo-stochastic signal waveform as a signature for the reference current I ref results in a lower probability of matching the reference and measuring signal and increases the suppression in the case of the harmonics of reference and measuring signal.
  • the reference current I ref through its Signal ⁇ form to identify and caused by the reference current I refcab ⁇ voltage drop U ref to be measured by appropriate filtering.
  • the reference current I ref can have a rectangular signal shape, for example, and the filtering of the voltage U ref can be effected by synchronous rectification.
  • the reference current I ref can be formed by a sequence of single pulses which follow one another periodically or not peri ⁇ odisch.
  • the supply current for the current source can be reduced while simultaneously having a high peak current of the pulses of the reference current I ref .
  • the magnitude of the reference current I ref is substantially of the same order of magnitude as the current I m to be measured. As a result, the greatest possible accuracy of the current measurement is achieved.
  • the reference current I ref is impressed separately from the measuring points for measuring the measuring voltage U, measuring errors which arise due to the contact resistances can be compensated.
  • the reference current I ref is impressed over two poles and the voltage U ref , U is tapped off via two other poles.
  • the contact resistance can be compensated. This is particularly important in applications where the contact resistance is greater than the resistance of the line or the like to be measured.
  • the four-pole measuring method is to be preferred.
  • a reference current I ref Since the generation of a reference current I ref is complicated with high accuracy, it can also be generated by applying a known reference voltage U ref to a known reference resistor R ref . The evaluation of the measurement result is then carried out essentially via evaluation of the ratios of the resistances R ref and the resistance of the line R to be measured.
  • the superimposition of the reference current I ref and the measurement of the reference voltage U ref and the determination of the current I m to be measured are automated.
  • a microprocessor or microcontroller can contain the corresponding program steps.
  • the object according to the invention is also achieved by a device for uninterrupted current measurement, in particular on conductors, busbars, fuses or the like, having a current source for generating a known reference current I ref , a device for measuring a voltage drop u ref , U and one Device for evaluating the measured values, wherein a device for identifying the reference current I ref for distinguishing from to be measured current I m and means for filtering the caused by the reference current I ref voltage drop U ref is provided.
  • the measuring device according to the invention thus makes it possible to determine a current I m in conductors, busbars, fuses or the like without interruption of the conductor, current rails, fuse or the like with high accuracy, the resistance R of the DUT not known.
  • the measuring device according to the invention is particularly simple and can thus be constructed inexpensively and relatively small.
  • the device for identifying the reference current I ref can be formed by a frequency modulator.
  • the reference current I re f receives a predetermined frequency f ref , which is ideally outside the usual technical frequencies.
  • the filter device can be formed by a quadrature modulator when using a sinusoidal reference signal for multiplication with the current I m to be measured.
  • the device for identifying the reference current I ref can also be formed by a correlator, by means of which the reference current I ref is correlated with a specific signature and the filtering of the reference voltage U ref produced by the reference current I r ⁇ f is achieved by appropriate filtering ⁇ th will.
  • the device for identifying the reference current I ref can also be formed by a signal generator, in particular by a square-wave generator, and the filter device by a synchronous rectifier. This represents a simple realization possibility of the present invention.
  • the contact points for impressing the reference current I ref are advantageously of the Measuring points for measuring the voltage drops U r ef / U different. This four-pole measuring method increases the accuracy of the current measurement.
  • the current source for generating the reference current I ref can also be formed by a voltage source U ref in combination with a known resistor R ref .
  • a display for displaying the measured values is provided.
  • a memory for storing the measured values may be provided in order to be able to record measurement results in chronological order.
  • the measuring device can have any desired data interface for transmitting the measured values in analog or digital form, for example to a computer or the like.
  • This interface can have a fieldbus structure and can be formed, for example, by an RS-485, RS-232 or a computer-based Ethernet or CAN (Controller Area Network) interface.
  • CAN interfaces are common in the automotive industry in particular. Wireless interfaces such as Bluetooth or wireless LAN are also possible. With very low power consumption of the measuring device and the interface, such as the so-called wireless interface ZigBee according to the standard IEEE 802.15.4 supply could also er ⁇ due to the voltage drop at the head.
  • an automation device in particular in the form of a microprocessor, can be provided.
  • FIG. 1 is a schematic diagram of a current measurement
  • FIG. 2 shows a block diagram of the measuring device according to the invention
  • FIG. 3 shows a schematic circuit diagram of an embodiment of the measuring device according to the invention.
  • FIG. 4 is a schematic circuit diagram of another embodiment of the invention.
  • FIG. 1 shows the block diagram for illustrating the uninterruptible measurement of a current I m on a conductor 1, a fuse or the like with a resistor R according to the present method.
  • the current I n generated at the resistor R, a voltage U, which can be detected with a corresponding meter.
  • the current I m after the ohm 1 see law
  • the method according to the invention is therefore based on the method of embossing a known reference current I ref , which is superimposed on the current I m to be measured.
  • the reference current I ref generated in a current source 2 is impressed on the conductor 1 or the like to be measured via two contacts 3, 4.
  • the measuring method according to the invention can be applied to any conductors 1 in which the resistance R is unknown and possibly also changes over time.
  • the method according to the invention is also suitable for current measurement on fuses, in particular in the automotive sector.
  • a known reference current I ref is impressed continuously and superimposed on the current I n to be measured.
  • the aid of a device 5 for measuring the voltage drop U across the resistor R of the conductor 1 the total voltage U across the resistor R can be determined.
  • the reference current I ref it is necessary for the reference current I ref to be specially marked in order to enable a distinction from the measuring current I m . This marking or signature of the Referenz ⁇ current I ref can be made different.
  • the accuracy of measurement is increased by using separate terminals 3, 4 for impressing the reference current I ref and terminals 6, 7 for measuring the voltages U, U ref , since the transition resistances do not influence the measurement result in this case.
  • the distance between the terminals 3, 4 and the terminals 6, 7 is irrelevant. From the difference between the total voltage U across the resistor R and the reference current I ref generatedposs ⁇ drop U ref and of the reference current I ref and by the reference current I voltage drop generated ref U ref determinable resistance R, the current flowing through the conductor portion current I m is determined as an absolute value according to the following formula:
  • FIG. 2 shows a block diagram of the device according to the invention for uninterruptible current measurement on a conductor 1 or the like.
  • the conductor 1, the fuse or the like has an unknown resistance R, which is possibly in time is changeable.
  • the current I n to be measured flows,.
  • a reference current I ref is generated in a current source 5 and impressed via contacts 3, 4 to the conductor 1 and superimposed on the current I m to be measured.
  • Via two contacts 6, 7, which are preferably different from the contacts 3, 4 for impressing the reference current I ref the voltage U, U ref is determined with the aid of a voltage measuring device 5.
  • the measured values are evaluated and finally fed to a display 9 or a data interface 10.
  • the reference current I re f is specially marked, for which purpose a device 11 for identifying the reference current I ref is provided.
  • This marking device 11 gives the reference current I ref a unique signature, by means of which it can be distinguished from the current I m to be measured.
  • the device 12 filters the voltage U ref caused by the reference current I ref across the resistor R of the conductor 1 or the like. As a result, a determination of the resistance R of the conductor 1 and finally the above-mentioned formula, a determination of the current to be measured I m done.
  • the determined measured values or intermediate results can be stored via a memory 13.
  • a device 14, in particular a microprocessor or the like, can be used to automate the measurement process.
  • FIG. 3 shows an embodiment of the measuring device according to the invention, in which the identification of the reference current I ref is effected by the special signal characteristic of the reference current I ref in the form of a square-wave signal.
  • the device 12 for filtering the voltage drop U ref produced by the reference current I ref across the resistor R is formed by a synchronous rectifier.
  • the filtering of the voltage drop U ref caused by the reference current I ref can be performed by the synchronous rectifier symbolically represented by the switch.
  • the current I n to be measured thus results from symmetrical square-wave signal and averaging from U according to the following formula:
  • FIG. 4 shows a further embodiment of the invention.
  • inventive measuring device in which the reference current I ref by using a defined reference resistor 15 and a voltage source 16 is generated.
  • the generation of a precise reference current I re f is omitted and limited to the un ⁇ critical voltage source 16 together with the defined reference resistor 15.
  • the exact value of the reference current I ref can be determined .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

L'invention concerne un procédé de mesure de courant continue et un équipement de mesure de courant continue, notamment au niveau de conducteurs (1), de barres conductrices, de dispositifs de sécurité ou équivalent. Ce dispositif comprend une source de courant (2) permettant de produire un courant de référence Iref connu, un dispositif (5) permettant de mesurer une chute de tension Uref, U et un dispositif (8) permettant d'évaluer les valeurs de mesure. L'invention vise à effectuer une mesure de courant précise au niveau des conducteurs (1), des barres de courant, des dispositifs de sécurité ou équivalent dont la résistance R est inconnue et toutefois modifiable temporellement. Selon l'invention, un dispositif (11) destiné à l'identification du courant de référence Iref permet de différencier le courant Im à mesurer et un dispositif (12) permet la filtration de la chute de tension Uref provoquée par le courant de référence Iref. L'identification du courant de référence Iref peut être effectuée par modulation de fréquence, sélection d'une forme de signal spéciale etc.
PCT/AT2005/000232 2004-07-06 2005-06-24 Procede et equipement de mesure de courant continue WO2006002446A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1140/2004 2004-07-06
AT0114004A AT414048B (de) 2004-07-06 2004-07-06 Verfahren und einrichtung zur strommessung

Publications (1)

Publication Number Publication Date
WO2006002446A1 true WO2006002446A1 (fr) 2006-01-12

Family

ID=34970646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2005/000232 WO2006002446A1 (fr) 2004-07-06 2005-06-24 Procede et equipement de mesure de courant continue

Country Status (2)

Country Link
AT (1) AT414048B (fr)
WO (1) WO2006002446A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038176A3 (fr) * 2011-09-12 2013-06-13 Metroic Limited Mesure du courant
EP2752672A1 (fr) * 2013-01-04 2014-07-09 Linear Technology Corporation Procédé et système permettant de mesurer la résistance d'une structure résistive
WO2014191776A1 (fr) * 2013-06-01 2014-12-04 Metroic Limited Mesure de signal électrique
EP2615472A3 (fr) * 2012-01-16 2015-09-02 Micronas GmbH Dispositif et procédé de surveillance d'un courant d'un segment conducteur
US9151818B2 (en) 2011-11-08 2015-10-06 Analog Devices Global Voltage measurement
US9411003B2 (en) 2011-11-23 2016-08-09 Analog Devices Global Current measurement
WO2016202535A1 (fr) * 2015-06-15 2016-12-22 Robert Bosch Gmbh Système de mesure pour la mesure du courant d'équilibrage
CN106526286A (zh) * 2016-11-11 2017-03-22 广州极飞科技有限公司 电流检测电路、方法及电池系统
EP3199960A1 (fr) * 2016-01-28 2017-08-02 Siemens Aktiengesellschaft Circuit, composant de saisie analogique et procede de verification de rupteur de fil
WO2017140589A1 (fr) * 2016-02-18 2017-08-24 Continental Automotive Gmbh Procédé pour déterminer une impulsion de courant d'étalonnage
US10180447B2 (en) 2015-07-20 2019-01-15 Eaton Intelligent Power Limited Electric fuse current sensing systems and monitoring methods
WO2021013318A1 (fr) * 2019-07-19 2021-01-28 Siemens Energy Global GmbH & Co. KG Installation de détermination d'un courant traversant une barre omnibus
US11016126B2 (en) 2013-06-01 2021-05-25 Analog Devices International Unlimited Company Current measurement
US11143718B2 (en) 2018-05-31 2021-10-12 Eaton Intelligent Power Limited Monitoring systems and methods for estimating thermal-mechanical fatigue in an electrical fuse
US11289298B2 (en) 2018-05-31 2022-03-29 Eaton Intelligent Power Limited Monitoring systems and methods for estimating thermal-mechanical fatigue in an electrical fuse

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016125884A1 (de) * 2016-12-29 2018-07-05 Harting Electric Gmbh & Co. Kg Vorrichtung und Verfahren zur Bestimmung eines zu bestimmenden Stroms
RU174357U1 (ru) * 2017-04-12 2017-10-11 Общество с ограниченной ответственностью Научно-производственное объединение "Цифровые измерительные трансформаторы" Цифровой трансформатор тока и напряжения
DE102017211105A1 (de) * 2017-06-29 2019-01-03 Schmidhauser Ag Stromrichter zur Ansteuerung eines Elektromotors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2224853A (en) * 1988-11-12 1990-05-16 David Mawdsley Measuring current
US5386188A (en) * 1993-01-15 1995-01-31 Keithley Instruments, Inc. In-circuit current measurement
EP0878717A2 (fr) * 1997-05-13 1998-11-18 Fluke Corporation Circuit de mesure en circuit de la résistance et du courant
EP1083658A1 (fr) * 1999-09-08 2001-03-14 Rolf Dr.-Ing. Melcher Montage servant à la surveillance d'un commutateur électronique destiné à la commande d'une charge
US6522123B2 (en) * 1999-12-09 2003-02-18 Sagem Sa Apparatus for measuring current flowing in a conductor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH650595A5 (en) * 1980-09-26 1985-07-31 Landis & Gyr Ag Stochastic current-pulse converter
DE3941553A1 (de) * 1988-12-15 1990-06-21 Papst Motoren Gmbh & Co Kg Verfahren und anordnung zur ansteuerung elektromechanischer wandler
DE4020196A1 (de) * 1990-06-25 1992-01-09 Weidmueller C A Gmbh Co Messeinrichtung und verfahren zu ihrer betriebseinstellung
DE4207442A1 (de) * 1992-03-09 1993-09-16 Siemens Ag Strommesszange und verfahren zum kalibrieren derselben
JP2921270B2 (ja) * 1992-07-16 1999-07-19 三菱電機株式会社 経時絶縁膜破壊評価方法および経時絶縁膜破壊評価装置
GB2272300B (en) * 1992-11-05 1995-12-13 Smiths Industries Plc Current measurement circuits
JP2003254923A (ja) * 2002-02-28 2003-09-10 Espec Corp マイグレーション測定方法および測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2224853A (en) * 1988-11-12 1990-05-16 David Mawdsley Measuring current
US5386188A (en) * 1993-01-15 1995-01-31 Keithley Instruments, Inc. In-circuit current measurement
EP0878717A2 (fr) * 1997-05-13 1998-11-18 Fluke Corporation Circuit de mesure en circuit de la résistance et du courant
EP1083658A1 (fr) * 1999-09-08 2001-03-14 Rolf Dr.-Ing. Melcher Montage servant à la surveillance d'un commutateur électronique destiné à la commande d'une charge
US6522123B2 (en) * 1999-12-09 2003-02-18 Sagem Sa Apparatus for measuring current flowing in a conductor

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038176A3 (fr) * 2011-09-12 2013-06-13 Metroic Limited Mesure du courant
EP3736578A3 (fr) * 2011-09-12 2021-04-28 Analog Devices International Unlimited Company Mesure de courant
US10527651B2 (en) 2011-09-12 2020-01-07 Analog Devices Global Current measurement
EP3441775A3 (fr) * 2011-09-12 2019-06-12 Analog Devices Global Unlimited Company Mesure de courant
US9939464B2 (en) 2011-09-12 2018-04-10 Analog Devices Global Current measurement
US9322850B2 (en) 2011-09-12 2016-04-26 Analog Devices Global Current measurement
US9151818B2 (en) 2011-11-08 2015-10-06 Analog Devices Global Voltage measurement
US9933463B2 (en) 2011-11-23 2018-04-03 Analog Devices Global Current measurement
US9411003B2 (en) 2011-11-23 2016-08-09 Analog Devices Global Current measurement
US11009558B2 (en) 2011-11-23 2021-05-18 Analog Devices International Unlimited Company Current measurement
US9714962B2 (en) 2012-01-16 2017-07-25 Tdk-Micronas Gmbh Monitoring device and method for monitoring a line section using a monitoring device
EP2615472A3 (fr) * 2012-01-16 2015-09-02 Micronas GmbH Dispositif et procédé de surveillance d'un courant d'un segment conducteur
EP2752672A1 (fr) * 2013-01-04 2014-07-09 Linear Technology Corporation Procédé et système permettant de mesurer la résistance d'une structure résistive
US8947101B2 (en) 2013-01-04 2015-02-03 Linear Technology Corporation Method and system for measuring the resistance of a resistive structure
US9823275B2 (en) 2013-06-01 2017-11-21 Analog Devices Global Electrical signal measurement
WO2014191776A1 (fr) * 2013-06-01 2014-12-04 Metroic Limited Mesure de signal électrique
US11016126B2 (en) 2013-06-01 2021-05-25 Analog Devices International Unlimited Company Current measurement
WO2016202535A1 (fr) * 2015-06-15 2016-12-22 Robert Bosch Gmbh Système de mesure pour la mesure du courant d'équilibrage
US10180447B2 (en) 2015-07-20 2019-01-15 Eaton Intelligent Power Limited Electric fuse current sensing systems and monitoring methods
US10598703B2 (en) 2015-07-20 2020-03-24 Eaton Intelligent Power Limited Electric fuse current sensing systems and monitoring methods
EP3199960A1 (fr) * 2016-01-28 2017-08-02 Siemens Aktiengesellschaft Circuit, composant de saisie analogique et procede de verification de rupteur de fil
WO2017140589A1 (fr) * 2016-02-18 2017-08-24 Continental Automotive Gmbh Procédé pour déterminer une impulsion de courant d'étalonnage
CN106526286B (zh) * 2016-11-11 2019-07-26 广州极飞科技有限公司 电流检测电路、方法及电池系统
CN106526286A (zh) * 2016-11-11 2017-03-22 广州极飞科技有限公司 电流检测电路、方法及电池系统
US11143718B2 (en) 2018-05-31 2021-10-12 Eaton Intelligent Power Limited Monitoring systems and methods for estimating thermal-mechanical fatigue in an electrical fuse
US11289298B2 (en) 2018-05-31 2022-03-29 Eaton Intelligent Power Limited Monitoring systems and methods for estimating thermal-mechanical fatigue in an electrical fuse
WO2021013318A1 (fr) * 2019-07-19 2021-01-28 Siemens Energy Global GmbH & Co. KG Installation de détermination d'un courant traversant une barre omnibus
CN114127565A (zh) * 2019-07-19 2022-03-01 西门子能源全球有限公司 用于确定流过母线的电流的装置
CN114127565B (zh) * 2019-07-19 2023-12-15 西门子能源全球有限公司 用于确定流过母线的电流的装置
US11988695B2 (en) 2019-07-19 2024-05-21 Siemens Energy Global GmbH & Co. KG Arrangement for determining a current flowing through a busbar

Also Published As

Publication number Publication date
AT414048B (de) 2006-08-15
ATA11402004A (de) 2005-11-15

Similar Documents

Publication Publication Date Title
WO2006002446A1 (fr) Procede et equipement de mesure de courant continue
EP2245430B1 (fr) Procédé d'entretien prévisionnel et/ou procédé de détermination de la conductivité électrique d'un débitmètre à induction magnétique
EP0447514B1 (fr) Circuit de mesure de temperature
DE10106200C1 (de) Verfahren und Einrichtung zur Isolationsüberwachung ungeerdeter elektrischer Netze
DE102013005939A1 (de) Messwiderstand und entsprechendes Messverfahren
DE102017219016A1 (de) Verfahren zum Betrieb eines Batteriesensors und Batteriesensor
EP0141050A1 (fr) Dispositif d'essai pour un instrument combiné d'un véhicule
EP3449264B1 (fr) Procédé pour déterminer un courant de charge et capteur de batterie
DE102016202498A1 (de) Messwiderstandskalibriervorrichtung, Verfahren zum Kalibrieren eines Messwiderstands und Batteriesensor
DE10002537A1 (de) Verfahren zur Detektion einer fehlerhaften Masseverbindung in einer elektrischen Einrichtung insbesondere eines Kraftfahrzeugs
EP1849223B1 (fr) Dispositif de detection inductif d'un courant continu et compensation thermique de la permeabilite du convertisseur par l'adaptation de la frequence du courant alternatif impose
DE102011004073A1 (de) Verfahren und Vorrichtung zur Diagnose der elektrischen Kontaktierung eines Abgassensors
EP2510373B1 (fr) Procédé et dispositif d'étalonnage de la mesure d'une tension sur un circuit de commande pour une machine électrique
EP1431768A1 (fr) Procédé et dispositif de mesure de la résistivité d'un élément de résistance sensible à la température
DE102018122565B4 (de) Verfahren und Messanordnung zum Ermitteln einer Alterung von Sicherungen
DE10229895B3 (de) Verfahren und Anordnung zur Ermittlung des Ladezustands einer Batterie
EP0612412B1 (fr) Procede et dispositif pour les tests de polarite de condensateurs electrolytiques
DE102009023354B3 (de) Schaltungsanordnung und Verfahren zur Temperaturmessung
WO2016042109A1 (fr) Procédé d'étalonnage continu de systèmes de mesure du courant dans des véhicules automobiles
DE102016202501B4 (de) Verfahren zum Bestimmen eines Kalibrierstrompulses
EP2149979B1 (fr) Procédé de détermination de la valeur de mesure dans un système commandé de manière cadencée
DE102009027243A1 (de) Vorrichtung zur Aufbereitung eines Sensorsignals eines Fahrzeugsensors, Sensorvorrichtung und Verfahren zum Bestimmen einer Temperatur eines Getriebeöls eines Fahrzeuggetriebes
DE102007007339A1 (de) Verfahren und Vorrichtung zum Lokalisieren von Fehlern auf elektronischen Leiterplatten
EP3640652B1 (fr) Procédé de fonctionnement d'un capteur de batterie et capteur de batterie
DE102008040927B4 (de) Verfahren zur Messwertermittlung in einem getaktet angesteuerten System

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase