WO2006001374A1 - 放射線治療増感剤 - Google Patents

放射線治療増感剤 Download PDF

Info

Publication number
WO2006001374A1
WO2006001374A1 PCT/JP2005/011630 JP2005011630W WO2006001374A1 WO 2006001374 A1 WO2006001374 A1 WO 2006001374A1 JP 2005011630 W JP2005011630 W JP 2005011630W WO 2006001374 A1 WO2006001374 A1 WO 2006001374A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
irradiation
sqmg
general formula
radiotherapy
Prior art date
Application number
PCT/JP2005/011630
Other languages
English (en)
French (fr)
Inventor
Ippei Sakimoto
Masahiko Miura
Keiko Kataoka
Kengo Sakaguchi
Fumio Sugawara
Keisuke Ohta
Takayuki Yamazaki
Original Assignee
Toyo Suisan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT05765113T priority Critical patent/ATE479695T1/de
Application filed by Toyo Suisan Kaisha, Ltd. filed Critical Toyo Suisan Kaisha, Ltd.
Priority to DE602005023288T priority patent/DE602005023288D1/de
Priority to EP05765113A priority patent/EP1734046B1/en
Priority to US10/593,538 priority patent/US20070219145A1/en
Priority to JP2006528625A priority patent/JP3927993B2/ja
Priority to CA2567306A priority patent/CA2567306C/en
Priority to CN2005800205000A priority patent/CN1972955B/zh
Priority to EA200602065A priority patent/EA010292B1/ru
Priority to BRPI0511824-7A priority patent/BRPI0511824A/pt
Priority to AU2005257359A priority patent/AU2005257359B2/en
Publication of WO2006001374A1 publication Critical patent/WO2006001374A1/ja
Priority to NO20070421A priority patent/NO20070421L/no
Priority to US12/455,859 priority patent/US20090253644A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7032Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a polyol, i.e. compounds having two or more free or esterified hydroxy groups, including the hydroxy group involved in the glycosidic linkage, e.g. monoglucosyldiacylglycerides, lactobionic acid, gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0038Radiosensitizing, i.e. administration of pharmaceutical agents that enhance the effect of radiotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a novel radiotherapy sensitizer. More specifically, the present invention relates to a radiotherapy sensitizer containing, as an active ingredient, sulfopyranosylacylglycerol represented by the general formula (1) or a pharmaceutically acceptable salt thereof.
  • a sensitizer that can be clinically put into practical use as a chemical or pharmaceutical substance, that is, a radiosensitizer, that enhances its therapeutic effect when administered simultaneously with radiation in radiation therapy
  • a halogen-pyrimidine that enhances its therapeutic effect when administered simultaneously with radiation in radiation therapy
  • hypoxic cell sensitizers are known (for example, see Non-Patent Document 1).
  • a halogenated pyrimidine 5-yod 'deoxy' uridine and the like are known.
  • Misonidazole and the like are known as hypoxic cell sensitizers.
  • these known radiotherapeutic sensitizers have problems to be solved such as gastrointestinal disorders, peripheral neurotoxicity, and other side effects, and have hardly been put into practical use.
  • Non-Patent Document 1 Radiobiology for the Radiologist (Fourth Edition), Eric J. Hall, etc., J.B. Lippincott Company ("Radiology Biology for Radiologists”, Translated by Sono Urano, Shinohara Publishing Co., Ltd.)
  • a first object of the present invention is to provide a usable radiotherapy sensitizer.
  • a second object of the present invention is to provide an antitumor radiotherapy method using the radiotherapy sensitizer.
  • the present inventors have found that the sulfopyranosylacylglycerol derivative represented by the general formula (1) has an excellent radiotherapy sensitization effect.
  • the invention has been completed. That is, the present invention provides the following radiotherapy sensitizer.
  • R represents an acyl residue of a higher fatty acid
  • R represents a hydrogen atom or a higher fat
  • a radiotherapy sensitizer comprising, as an active ingredient, at least one compound selected from the group consisting of a compound represented by) and a pharmaceutically acceptable salt thereof.
  • R represents an acyl residue of a higher fatty acid, and R represents a hydrogen atom or a higher fat.
  • the radiotherapy sensitizer according to the above [1] which is at least one compound selected from the group consisting of a compound represented by (II) and a pharmaceutically acceptable salt thereof.
  • R is R—CO— (R is an alkyl group having 13 to 25 carbon atoms) is there. And R is a hydrogen atom or R—CO— (R is an alkyl group having 13 to 25 carbon atoms)
  • R force — CO— (R is an odd number of carbons between 13 and 25.
  • R is R—CO— (R is an alkyl group having 13 to 25 carbon atoms.
  • R is R—CO— (R is an alkyl group having 13 to 25 carbon atoms,
  • the present invention also provides an antitumor radiotherapy method using the above radiotherapy sensitizer and radiation irradiation in combination.
  • the radiotherapy sensitizer of the present invention can achieve a synergistic antitumor therapeutic effect that exceeds predictions by using in combination with irradiation.
  • FIG. 1 is a graph showing the relationship between the number of test days and tumor volume.
  • FIG. 2 is a graph showing the relationship between the number of test days and tumor volume.
  • FIG. 3 is a graph showing the relationship between the number of days of the test and the tumor volume.
  • FIG. 4 is a graph showing the relationship between the number of test days and tumor volume.
  • FIG. 5 is a graph showing the relationship between the number of test days and tumor volume.
  • FIG. 6 is a graph showing the relationship between the number of test days and tumor volume.
  • FIG. 7 is a graph showing the relationship between the number of test days and the tumor volume.
  • FIG. 8 is a graph showing the results of colony assembly.
  • FIG. 9 is a graph showing the results of colony assembly.
  • FIG. 10 is a graph showing the results of colony assembly.
  • FIG. 11 is a graph showing the result of one-out assembly.
  • FIG. 12 is a graph showing the results of colony assembly performed by changing the irradiation dose and the concentration of the radiotherapy sensitizer of the present invention.
  • FIG. 13 is a graph showing a result of one mouth-at-a-time.
  • FIG. 14 is a graph showing the results of the test.
  • FIG. 15 is a graph showing the result of one-out assembly.
  • FIG. 16 is a graph showing the results of colony assembly.
  • FIG. 17 is a graph showing a result of one-out assembly.
  • FIG. 18 is a graph showing the results of colony assembly.
  • FIG. 19 is a graph showing a result of one-out assembly.
  • FIG. 20 is a graph showing the results of using the angiogenesis kit.
  • the radiotherapy sensitizer includes those that can enhance the antitumor effect as compared with the case of radiation irradiation alone.
  • Anti-tumor effects include cases where the tumor shrinks or disappears.
  • the antitumor effect may include a case in which the growth of the tumor is delayed or a case in which the same antitumor effect can be achieved with a smaller dose or number of irradiations. It is not intended to limit the mechanism of action.
  • R represents an acyl residue of a higher fatty acid
  • R 1 represents a hydrogen atom or a higher fat
  • Vilanose which is a sugar skeleton that constitutes A, includes a-D glucose, 13-D glucose, a-D galactose, ⁇ -D galactose, a-D mannose, ⁇ -D mannose and the like.
  • the sugar skeletons of these viranosides can take a boat-shaped, scallop-shaped or misaligned configuration.
  • the chair type is preferable from the viewpoint of stability.
  • the absolute configuration at the 2-position carbon (asymmetric carbon) of the glycerol moiety is either S or R.
  • R 1 represents an acyl residue of a higher fatty acid. Represented by R
  • Fatty acids that provide acyl residues of higher fatty acids include linear or branched, saturated or unsaturated higher fatty acids.
  • the linear or branched, higher fatty acid acyl residues represented by R include R—C (
  • R represents an alkyl group or alkenyl group having 13 or more carbon atoms).
  • R represents a hydrogen atom or an acyl residue of a higher fatty acid.
  • the acyl residue of the higher fatty acid represented by R is the above-mentioned higher fatty acid key of R.
  • acyl residues may be the same or different from each other, but are preferably the same from the viewpoint of ease of production.
  • bilanose which is a sugar skeleton constituting viranoside, is (—D glucose, 13-D glucose, (X—D galatose, j8—D —Galactose, a—D mannose, j8—D mannose; R
  • R represents a hydrogen atom or the same as R above.
  • the sulfopyranosyl acyl glycerol derivative represented by the general formula (1) is a known one.
  • the compound can be produced, for example, according to the method described in the applicant's application (Japanese Patent Laid-Open No. 2000-143516, International Publication Nos. WO00Z52020, WO00Z52021 and WO00Z51622).
  • the pharmaceutically acceptable salt of the sulfopyranosylacylglycerol derivative represented by the general formula (1) includes, for example, monovalent cation salts such as sodium and potassium. It is not limited to.
  • the radiotherapeutic sensitizer of the present invention is a group strength consisting of the above-described sulfopyranosyllacylglycerol derivative represented by the general formula (1) of the present invention and a pharmaceutically acceptable salt thereof. One or more selected from these are contained as active ingredients.
  • the sulfopyranosylacylglycerol derivative represented by the general formula (1) includes stereoisomers of the bilanosyl moiety, isomers at the C2 carbon (asymmetric carbon) of the glyceridyl moiety, and the like.
  • the radiotherapy sensitizer of the present invention can contain these isomers alone or a mixture of two or more isomers as long as the activity is not adversely affected.
  • the radiotherapy sensitizer of the present invention may contain a plurality of types of compounds having different substituents R 101 and Z or R 102 in the general formula (1).
  • the radiotherapy sensitizer of the present invention can be used in combination with other radiotherapy sensitizers, anticancer agents, and other compounds having pharmacological activity as long as the activity is not adversely affected.
  • the compound of the group consisting of the sulfopyranosyl acyl glycerol derivative represented by the general formula (1) of the present invention and a pharmaceutically acceptable salt thereof is also referred to as "radiotherapy sensitizer of the present invention.
  • the radiotherapy sensitizer of the present invention can be administered, for example, orally or parenterally.
  • the radiotherapy sensitizer of the present invention can be made into a pharmaceutical preparation by combining with an appropriate pharmaceutically acceptable excipient or diluent according to these administration routes.
  • Dosage forms suitable for oral administration include solid, semi-solid, liquid or gas, and specifically, tablets, capsules, powders, granules, solutions, suspensions.
  • the radiotherapy sensitizer of the present invention is applied to tablets, capsules, powders, granules, solutions, suspensions.
  • the radiotherapy sensitizer of the present invention is mixed with a binder, a tablet disintegrant, a lubricant, etc. using a method known per se, and further, if necessary, It can be carried out by mixing with diluents, buffers, wetting agents, preservatives, flavoring agents and the like.
  • crystalline cellulose, cellulose derivatives, corn starch, gelatin, etc. are used as the binder, corn starch, potato starch, sodium carboxymethyl cellulose, etc. are used as tablet disintegrating agents, and talc, magnesium stearate, etc. are used as lubricants.
  • conventionally used additives such as ratatoose and mannitol can be used.
  • the radiotherapy sensitizer of the present invention may be in the form of a liquid or fine powder, a known auxiliary agent such as a gas or liquid propellant or, if necessary, an infiltrating agent.
  • a gas or liquid propellant such as a gas or liquid propellant or, if necessary, an infiltrating agent.
  • it can be filled in a non-pressurized container such as an aerosol container or a nebulizer and administered in the form of an aerosol or inhalant.
  • a pressurized gas such as dichlorofluoromethane, propan, or nitrogen can be used.
  • the radiotherapy sensitizer of the present invention when administered parenterally, it can be administered, for example, by injection, transdermal administration, rectal administration, intraocular administration, or the like.
  • Administration by injection can be performed subcutaneously, intradermally, intravenously, intramuscularly, or the like.
  • injectable preparations are prepared in a manner known per se from the radiation therapy sensitizers of the present invention, which are aqueous or non-aqueous such as vegetable oils, synthetic fatty acid glycerides, esters of higher fatty acids, propylene glycol. It can be dissolved, suspended or emulsified in a solvent, and optionally formulated with conventionally used additives such as solubilizers, osmotic pressure regulators, emulsifiers, stabilizers and preservatives.
  • aqueous or non-aqueous such as vegetable oils, synthetic fatty acid glycerides, esters of higher fatty acids, propylene glycol. It can be dissolved, suspended or emulsified in a solvent, and optionally formulated with conventionally used additives such as solubilizers, osmotic pressure regulators, emulsifiers, stabilizers and preservatives.
  • a pharmaceutically acceptable solvent such as sterile water for injection or normal physiological saline is used. You can!
  • Transdermal administration can be carried out as an ointment, emulsifier, pasta agent, haptic agent, liniment agent, lotion agent, suspension agent, etc. depending on the condition of the target skin.
  • the ointment is prepared by a per se known method using the radiotherapy sensitizer of the present invention as a hydrophobic substrate such as sericin or paraffin or a parent such as hydrophilic petrolatum, macrogol or the like. It can be formulated by kneading with an aqueous base material. Emulsifiers and other transdermal agents can also be formulated by commonly used methods.
  • the radiotherapy sensitizer of the present invention is mixed with excipients such as cocoa butter, carbon wax, and polyethylene glycol that melt at body temperature but solidify at room temperature by a method known per se. It can be formulated by molding.
  • Intraocular administration can be performed as ophthalmic preparations such as eye drops, eye ointments and the like.
  • the eye drop is prepared by dissolving or suspending the radiotherapy sensitizer of the present invention in an aqueous solvent such as sterilized purified water by a method known per se, and adding a preservative, buffer, surfactant or the like as necessary. It can be formulated by adding.
  • the administration conditions of the radiotherapy sensitizer of the present invention are the administration form, administration route, and the condition of the target tumor (for example, tumor type, location, Progress stage), radiation therapy conditions (e.g., type, amount, number of irradiations), combination with radiation therapy (e.g., the timing of radiation therapy and the order in which the radiotherapy sensitizer of the present invention is administered) ) And the like can be set and adjusted as appropriate.
  • 0.001 to 100 mg / kg body weight / day as a radiotherapy sensitizer when administered orally 0.001 to 50 mg / kg body weight as a radiotherapy sensitizer when administered as an injection
  • 0.001 to 100 mg / kg body weight / day as a radiotherapy sensitizer 0.001 to 50 mg / kg body weight / day as a radiotherapy sensitizer when administered rectally, eye
  • the ability to set a solution of about 0.001 to 3% as a radiotherapy sensitizer instilled into several times a day is not limited to these.
  • the type, amount, and number of radiation to be irradiated can be set to the same conditions as in conventional radiation therapy.
  • Specific examples of conventional human irradiation include medical radiation such as X-rays, ⁇ -rays, electron beams, j8 rays, and ⁇ —particles such as mesons, neutrons, and other heavy particles Examples include irradiation of a line over a period of about one week to six months so that the total irradiation amount is about 10 to 500 Gy at a dose of about 0.1 to: LOOGy per time.
  • X-rays can be irradiated 2Gy once a week 5 times a week for a total of 60Gy over about 6 weeks. It is not limited to that.
  • the amount of irradiation and the number of irradiations can be reduced.
  • the irradiation method can be performed by conformal irradiation, stereotactic irradiation aiming at a cancer lesion pinpoint, or intensity-modulated radiation irradiation. It can also be carried out by irradiation with a sealed braid source, remote gamma irradiation, or irradiation with a particle beam.
  • the internal irradiation can increase the irradiation amount per one time and shorten the irradiation period.
  • the radiotherapeutic sensitizer of the present invention can be performed at the same time, either one preceding the other.
  • the radiotherapy sensitizer of the present invention is expected to serve as an antitumor agent used in combination with irradiation or as an angiogenesis inhibitor used in combination with irradiation.
  • the irradiation conditions of the radiation and the administration conditions of the radiotherapy sensitizer of the present invention are, as is well known in the field of radiation therapy, the type of radiation source, irradiation method, irradiation site and irradiation period; sensitizer Depending on the age, weight, health status, medical history, etc. of the subject to be irradiated, appropriate selections by medical professionals and other specialists can do.
  • Nude mice in 4 groups (control group; radiotherapy sensitizer alone administration group of the present invention; irradiation alone group; combined irradiation and radiotherapy sensitizer administration group; each group consists of 4 animals) to divide each of the right leg subcutaneous human tongue squamous carcinoma cells (SAS cells) 1.
  • SAS cells right leg subcutaneous human tongue squamous carcinoma cells
  • a- SQMG C1 8 3-O- (6-Deoxy-6-sulfo-a-D-Dalcoviranosyl) -l-0-stearoyl-glycerol'sodium salt
  • a- SQMG C1 8 3-O- (6-Deoxy-6-sulfo-a-D-Dalcoviranosyl) -l-0-stearoyl-glycerol'sodium salt
  • Tumor volume (mm 3 ) (minor axis) 2 X (major axis) X 0.5
  • Figure 1 shows the results obtained.
  • the horizontal axis represents the number of days after the start of treatment, and the vertical axis represents the tumor volume.
  • the white arrow represents the day when X-rays were irradiated, and the black arrow represents the day when ⁇ -SQMG C18: 0 was administered (the same applies to FIGS. 2 to 7 below).
  • Fig. 2 shows the obtained results. From the results shown in Fig. 2, anti-tumor effects far exceeding the anti-tumor effects achieved by irradiation were obtained by using ⁇ -SQMG C18: 0 in combination with irradiation.
  • ER enhanced ratio
  • TGD tumor growth delay
  • TGD (number of days required for tumor volume to reach 500 mm 3 in the test area)-(number of days required for tumor volume to reach 500 mm 3 in the control area)
  • NGD normalized growth delay
  • NGD (TGD with combination)-(TGD with drug alone)
  • the sensitization rate (ER) in the animal experiment of Experimental Example 12 was 2.0, indicating that the synergy was very high.
  • irradiation was performed at a dose of 2 Gy per day from the start of the test (day 0) to day 4 and a- SQMG C18: 0 was administered daily until day 0 force day 4.
  • the experiment was performed in the same manner as in the above experimental example except that the test was performed. The details are described below.
  • Nude mice at 8 weeks of age were randomly divided into 4 groups of 4 mice, and human tongue squamous cell carcinoma cells (SAS cells) were subcutaneously placed in each of the right lower limbs into 1.
  • OX 10 6 PBS (—). After 10 days in suspension, treatment was started for each group when the tumor volume reached approximately 50 mm 3 .
  • ⁇ -SQMG C18: 0 was used as in the above experimental example. In the irradiation group alone, X-ray irradiation was performed once a day from the start of the test (day 0) to the 4th day with a dose of 2 Gy.
  • the ⁇ -SQMG C18: 0 single administration group was administered intraperitoneally at a concentration of lmg / kg once a day from the start of the study (Day 0) to Day 4. In the combination group, both were treated. In the control group, neither irradiation nor SQM G C18: 0 administration was performed. Thereafter, tumor with calipers for 30 days The short diameter and long diameter of each were measured, the tumor volume was calculated by the following formula, and the tumor growth delay effect was compared.
  • Tumor volume (mm 3 ) (minor axis) 2 X (major axis) X 0.5
  • Nude mice aged 8 weeks were randomly divided into 4 groups of 5 each, and human esophageal cancer cells (TE-8 cells) were transplanted into each group in the same manner as in Experimental Example 1-1.
  • A-SQMG C18: 0 administration and irradiation treatment were performed with the tumor volume reaching 50 mm 3 as a guide.
  • the group exposed alone received X-rays twice at day 0 and day 4 at a dose of 8 Gy.
  • the ⁇ -SQMG C18: 0 single administration group was administered intraperitoneally at a concentration of lmg / kg once a day from day 0 to day 4.
  • the combination group was treated with both.
  • neither irradiation nor a-SQMG C18: 0 administration was performed. Thereafter, the tumor volume was measured over 51 days in the same manner as in Experimental Example 1-1.
  • Human cancer-transplanted mice were prepared in the same manner as in Experimental Example 15 except that human eclampsia cancer cells (HeLa cells) were transplanted into nude mice.
  • A-SQMG C18: 0 administration and irradiation treatment were performed with the tumor volume becoming 100 mm 3 as a guide.
  • the radiation alone group received X-rays twice at day 0 and day 4 at a dose of 8 Gy.
  • a— SQMG C18: 0 alone was administered at a concentration of 1 mg / kg 5 times, once daily from day 0 to day 4 and once daily from day 12 to day 16. Divided into 2 courses and administered a total of 10 times intraperitoneally.
  • the combination group was treated with both.
  • both irradiation and a-SQMG C18: 0 administration were powerful. Thereafter, the tumor volume was measured over 35 days in the same manner as in Experimental Example 1-1.
  • Nude mice at 8 weeks of age were randomly divided into 4 groups of 4 mice, and human lung cancer cells (A549 cells) were suspended in 2.OX 10 6 PBS (—) subcutaneously in each of the right lower limbs. After transplantation, treatment was started in each group 45 days after the tumor volume reached about 50 mm 3 .
  • As the radiation therapy sensitizer ⁇ -SQMG C18: 0 was used as in the above experimental example. In the single irradiation group, X-rays were irradiated twice at a dose of 4 Gy at the start of the study (day 0) and on the third day.
  • ⁇ -SQMG C18 0 single administration group
  • intraperitoneal administration was performed once a day until the fourth day at the start of the test (day 0) at a concentration of lmg / kg.
  • both were treated.
  • neither irradiation nor a-SQMG C18: 0 administration was performed.
  • measure the minor axis and major axis of the tumor with calipers for 20 days.
  • the tumor volume was calculated by the following formula, and the tumor growth delay effect was compared.
  • the radiotherapy sensitizer represented by the general formula (1) of the present invention showing such a highly synergistic antitumor effect is the radiotherapy sensitizer of the present invention alone or irradiation alone. Shows that the same level of anti-tumor effects as can be achieved with lower doses or lower total radiation doses. As a result, by using the radiotherapy sensitizer of the present invention, it can be expected that side effects that can usually be caused by chemotherapeutic agents or irradiation are unlikely to occur.
  • a-SQMG C18 0 (3-0- (6-deoxy-6-sulfo-1-a-D-darcobilanosyl) -1- 1-O -Steer mouth-glycerol-sodium salt) was used.
  • other compounds represented by the general formula (1) for example, instead of the stearoyl group of ⁇ -SQMG C18: 0, myristoyl group is saturated with palmitoyl group or other saturated acyl group
  • the dose, frequency, radiation type and dose, frequency, and irradiation order of the radiotherapy sensitizer of the present invention are other than the above conditions. Even in this case, it can be expected that the same effect or more can be obtained by appropriately changing.
  • condition setting can be performed in accordance with a method usually performed by a doctor or other medical personnel.
  • Ushi vascular endothelial cells (BAEC) are seeded in petri dishes as appropriate, and cell adhesion is confirmed after 2 to 3 hours.
  • ⁇ -SQMG C18 10 / z M
  • ⁇ -SQMG C18 Processed with 0. After 24 hours, the medium was changed in all the test sections, and 6 ° Co ⁇ -rays were irradiated with 4 Gy in the irradiation group alone and the combination group. 10-12 days in a 37 ° C CO incubator
  • SF (cell viability) number of colonies Z number of seeded cells X (PE / 100)
  • PE plating efficiency
  • SF values of ⁇ -SQMG C18: 0 alone administration group and radiation alone 6 Gy irradiation group were 0.616 and 0.0820, respectively.
  • Fig. 9 shows the theoretical addition points calculated from these SF values (SF-value in the 6 Xy irradiation group with ⁇ -SQMG C18: 0 alone) and the measured SF values in the combination group. Shown in
  • Example 2 Instead of at SQMG C18: 0 used in 2-2, 3 O (6-deoxy 6-sulfo-mono-at-D-darcobilanosyl) l—O myristoyl mono-glycerol 'sodium salt (hereinafter “Hi SQMG C14: 0”) The same experiment was conducted except that was used. The results are shown in Fig. 13.
  • Vascular endothelial cells are cells that form new blood vessels that newly reach a tumor mass generated in a living body. The neovascularization grows the tumor by supplying nutrients and oxygen to the tumor cells via this. Therefore, the growth inhibitory action of vascular endothelial cells is closely related to the antitumor effect. Therefore, the result of the above colony assembly significantly supports the antitumor effect of the radiotherapy sensitizer of the present invention.
  • an angiogenesis inhibitor having an action of inhibiting angiogenesis is said to have advantages such as little acquired resistance, uniform effect regardless of tumor type, and mild side effects.
  • a drug called Suramin is a known substance that suppresses angiogenesis, and its action is known to inhibit growth factor receptors on vascular endothelial cells.
  • suramin was used as a positive control at 50 ⁇ .
  • the measured value of the lumen formation rate when radiation and suramin were used together was slightly higher than the theoretical value, but the measured value of the lumen formation rate when radiation and (X-SQMG were used together was theoretically combined. This is well below the additive point for use, indicating that the angiogenesis inhibitory effect is higher than the theoretical value.
  • Example 3 significantly support the antitumor effect of the radiotherapy sensitizer of the present invention.

Abstract

 次の一般式(1):  [化1] (式中、R101は、高級脂肪酸のアシル残基を表し、R102は、水素原子または高級脂肪酸のアシル残基を表す。)により表される化合物及びその薬学的に許容される塩からなる群から選択される少なくとも1種の化合物を有効成分として含有する放射線治療増感剤。

Description

明 細 書
放射線治療増感剤
技術分野
[0001] 本発明は、新規な放射線治療増感剤に関する。より詳細には、本発明は、一般式( 1)で表されるスルホピラノシルァシルグリセロール又はその薬学的に許容され得る塩 を有効成分として含有する放射線治療増感剤に関する。
背景技術
[0002] 現在、我が国においては、悪性腫瘍、心疾患及び脳血管疾患が死因の約 6割を占 めている。このうち、悪性腫瘍は死因のトップに位置するとともに、増加の傾向にある 。悪性腫瘍に対する治療法には、手術療法、化学療法及び放射線療法が三大治療 法として知られている。近年、患者の生活の質 (QOL)が重視されており、放射線療 法が注目されてきている。
[0003] 現在、放射線療法において放射線と同時に投与されたとき、その治療効果を強め る化学的又は薬学的物質、すなわち放射線増感剤として臨床的に実用化し得る増 感剤としては、ハロゲンィ匕ピリミジンと低酸素細胞増感剤の 2種類が知られている(例 えば、非特許文献 1参照)。ハロゲンィ匕ピリミジンとしては、 5—ョード 'デォキシ'ゥリジ ン等が知られている。また、低酸素細胞増感剤としては、ミソニダゾール等が知られて いる。し力しながら、これらの既知の放射線治療増感剤には、胃腸障害'末梢神経毒 性、その他の副作用の問題等解決すべき問題があり、ほとんど実用化には至ってい ない。
非特許文献 1 : Radiobiology for the Radiologist (Fourth Edition), Eric J. Hall他、 J.B. Lippincott Company (「放射線科医のための放射線生物学」、浦野 宗保訳、(株)篠 原出版新社)
発明の開示
[0004] [発明が解決しょうとする課題]
本発明は、上記問題点に鑑みてなされたものであり、本発明の第一の目的は、実 用可能な放射線治療増感剤を提供することである。 [0005] 本発明の第二の目的は、上記放射線治療増感剤を使用する、抗腫瘍放射線治療 方法を提供することである。
[0006] [課題を解決するための手段]
本発明者らは、上記課題を解決するために鋭意研究した結果、一般式(1)で表さ れるスルホピラノシルァシルグリセロール誘導体に優れた放射線治療増感効果があ ることを見出し、本発明を完成するに至った。すなわち、本発明は、次の放射線治療 増感剤を提供する。
[0007] [1]次の一般式 (1) :
[化 1]
Figure imgf000003_0001
[0008] (式中、 R は、高級脂肪酸のァシル残基を表し、 R は、水素原子または高級脂肪
101 102
酸のァシル残基を表す。 )により表される化合物及びその薬学的に許容される塩から なる群から選択される少なくとも 1種の化合物を有効成分として含有する放射線治療 増感剤。
[0009] [2]前記有効成分が、次の一般式 (2):
[化 2]
Figure imgf000003_0002
( 2 )
[0010] (式中、 R は、高級脂肪酸のァシル残基を表し、 R は、水素原子または高級脂肪
102
酸のァシル残基を表す。 )により表される化合物及びその薬学的に許容される塩から なる群力 選択される少なくとも 1種の化合物である上記 [ 1 ]に記載の放射線治療増 感剤。
[0011] [3]—般式(2)において、 R が R— CO— (Rは、炭素数 13〜25のアルキル基で ある。)であり、 R が水素原子または R— CO— (Rは、炭素数 13〜25のアルキル基
102
である。)である、上記 [2]に記載の放射線治療増感剤。
[0012] [4]一般式(2)において、 R 力 — CO— (Rは、 13〜25の間の奇数の炭素数を
101
有する直鎖アルキル基である。)である、上記 [3]に記載の放射線治療増感剤。
[0013] [5]—般式(2)において、 R が水素原子である、上記 [3]に記載の放射線治療増
102
感剤。
[0014] [6]—般式 (2)において、 R が水素原子である、上記 [4]に記載の放射線治療増
102
感剤。
[0015] [7]—般式(2)において、 R が R— CO—(Rは、炭素数 13〜25のアルキル基で
102
ある。)である、上記 [3]に記載の放射線治療増感剤。
[0016] [8]—般式(2)において、 R が R— CO—(Rは、炭素数 13〜25のアルキル基で
102
ある。)である、上記 [4]に記載の放射線治療増感剤。
[0017] また、本発明は、上記放射線治療増感剤と放射線照射とを併用する抗腫瘍放射線 治療方法も提供する。
[発明の効果]
[0018] 本発明の放射線治療増感剤は、放射線照射と併用することにより、予測を超える程 の相乗的な抗腫瘍治療効果を達成することができる。
図面の簡単な説明
[0019] [図 1]図 1は、試験の日数と腫瘍体積との関係を示すグラフである。
[図 2]図 2は、試験の日数と腫瘍体積との関係を示すグラフである。
[図 3]図 3は、試験の日数と腫瘍体積との関係を示すグラフである。
[図 4]図 4は、試験の日数と腫瘍体積との関係を示すグラフである。
[図 5]図 5は、試験の日数と腫瘍体積との関係を示すグラフである。
[図 6]図 6は、試験の日数と腫瘍体積との関係を示すグラフである。
[図 7]図 7は、試験の日数と腫瘍体積との関係を示すグラフである。
[図 8]図 8は、コロニーアツセィ結果を示すグラフである。
[図 9]図 9は、コロニーアツセィ結果を示すグラフである。
[図 10]図 10は、コロニーアツセィ結果を示すグラフである。 [図 11]図 11は、コ口-一アツセィ結果を示すグラフである。
[図 12]図 12は、放射線照射量と本発明の放射線治療増感剤の濃度を変えて行った コロニーアツセィの結果を示すグラフである。
[図 13]図 13は、コ口-一アツセィ結果を示すグラフである。
[図 14]図 14は、コ口-一アツセィ結果を示すグラフである。
[図 15]図 15は、コ口-一アツセィ結果を示すグラフである。
[図 16]図 16は、コロニーアツセィ結果を示すグラフである。
[図 17]図 17は、コ口-一アツセィ結果を示すグラフである。
[図 18]図 18は、コロニーアツセィ結果を示すグラフである。
[図 19]図 19は、コ口-一アツセィ結果を示すグラフである。
[図 20]図 20は、血管新生キットを用いたアツセィ結果を示すグラフである。
発明を実施するための最良の形態
[0020] 本明細書において、放射線治療増感剤には、これを使用することによって放射線 単独照射の場合よりも抗腫瘍効果を高めることができるものが含まれる。抗腫瘍効果 には、腫瘍を縮小あるいは消滅させる場合が含まれる。この他、抗腫瘍効果には、腫 瘍の成長を遅延する場合や、より少ない放射線量や照射回数によって同じ抗腫瘍効 果を達成できる場合が含まれ得るが、本発明の放射線治療増感剤の作用機序を限 定することを意図するものではな 、。
[0021] まず、本発明の放射線治療増感剤の有効成分である一般式(1):
[化 3]
Figure imgf000005_0001
[0022] (式中、 R は、高級脂肪酸のァシル残基を表し、 R は、水素原子または高級脂肪
101 102
酸のァシル残基を表す。 )により表されるスルホピラノシルァシルグリセロール誘導体 について詳細に説明する。
[0023] 上記一般式(1)のスルホピラノシルァシルグリセロール誘導体にお!、て、ビラノシド を構成する糖骨格であるビラノースには、 a—D グルコース、 13—D グルコース、 a—D ガラクトース、 β—D ガラクトース、 a—D マンノース、 β— D マンノー ス等が含まれる。
[0024] これらビラノシドの糖骨格は、舟形、 、す型の 、ずれの配置をもとり得る。し力しなが ら、いす型のもののほうが、安定性の観点力 好ましい。
[0025] グリセロール部分の 2位の炭素(不斉炭素)における絶対配置は、 S又は Rの何れで ちょい。
[0026] 上記一般式(1)において、 R は、高級脂肪酸のァシル残基を表す。 R により表さ
101 101 れる高級脂肪酸のァシル残基を提供する脂肪酸には、直鎖状又は分岐状の、飽和 又は不飽和高級脂肪酸が含まれる。
[0027] R により表される直鎖状又は分岐状の、高級脂肪酸のァシル残基には、 R— C (
101
= 0) - (式中、 Rは、炭素数 13以上のアルキル基又はアルケニル基を表す。)で表 される基が含まれる。このァシル残基: R— C ( = 0)—の Rにより表されるアルキル基 及びアルケニル基の炭素数は、製造コスト、放射線治療増感活性等を考慮すると、 1 3以上 25以下が好ましぐ 13〜25の奇数が更に好ましい。
[0028] 上記一般式(1)において、 R は、水素原子または高級脂肪酸のァシル残基を表
102
す。 R により表される高級脂肪酸のァシル残基は、上述した R の高級脂肪酸のァ
102 101
シル残基と同義である。
[0029] 一般式(1)において、 R と R が共に高級脂肪酸のァシル残基である場合、これ
101 102
らのァシル残基は互いに同じであっても異なって 、てもよ 、が、製造の容易性の観 点から同じであることが好ましい。
[0030] 一般式(1)のスルホピラノシルァシルグリセロール誘導体として、ビラノシドを構成す る糖骨格であるビラノースが、 ( —D グルコース、 13—D グルコース、 (X— D ガ ラタトース、 j8— D—ガラクトース、 a— D マンノース、 j8— D マンノースであり; R
1 力 R - C ( = 0) (式中、 Rは、 13〜25の間の奇数の炭素数を有するアルキル基
01
又はアルケニル基を表す)で表される基であり; R 力 水素原子または上記 R と同
102 101 義の高級脂肪酸のァシル残基である、化合物が挙げられる。
[0031] 上記一般式(1)で表されるスルホピラノシルァシルグリセロール誘導体は、既知の 化合物であり、例えば、本出願人の出願 (特開 2000— 143516号公報、国際公開 第 WO00Z52020号、第 WO00Z52021号及び WO00Z51622号)等に記載の 方法に従 ヽ製造することができる。
[0032] 一般式(1)で表されるスルホピラノシルァシルグリセロール誘導体の薬学的に許容 される塩には、例えば、ナトリウム及びカリウムのような一価の陽イオンの塩が含まれる 力 これらに限定されるものではない。
[0033] 本発明の放射線治療増感剤は、上述した本発明の一般式(1)で表されるスルホピ ラノシルァシルグリセロール誘導体及びその薬学的に許容される塩カゝらなる群力ゝら選 択される 1種またはそれ以上を有効成分として含有する。上述したように、一般式(1) で表されるスルホピラノシルァシルグリセロール誘導体には、ビラノシル部分の立体 異性体ゃグリセリジル部分の C2炭素 (不斉炭素)における異性体等が含まれる。本 発明の放射線治療増感剤は、その活性に悪影響を及ぼさない限り、これらの異性体 を単独で含有することも、 2種以上の異性体の混合物を含有することもできる。また、 本発明の放射線治療増感剤は、一般式(1)において、置換基 R 101及び Z又は R 102が 異なる複数種類の化合物を含有することも可能である。さらに、本発明の放射線治療 増感剤は、その活性に悪影響を及ぼさない限り、他の放射線治療増感剤や、抗癌剤 、その他の薬学的活性を有する化合物と併用することもできる。
[0034] 以下、本発明の一般式(1)で表されるスルホピラノシルァシルグリセロール誘導体 及びその薬学的に許容される塩からなる群の化合物を「本発明の放射線治療増感 物質」ともいう。
[0035] 本発明の放射線治療増感物質は、例えば、経口投与、非経口投与することができ る。本発明の放射線治療増感物質は、これらの投与経路に応じて、適切な薬学的に 許容される賦形剤又は希釈剤等と組み合わせることにより薬学的製剤にすることがで きる。
[0036] 経口投与に適した剤型としては、固体、半固体、液体又は気体等の状態のものが 含まれ、具体的には、錠剤、カプセル剤、粉末剤、顆粒剤、溶液剤、懸濁剤、シロッ プ剤、エリキシル剤等を挙げることができる力 これらに限定されるものではない。
[0037] 本発明の放射線治療増感物質を錠剤、カプセル剤、粉末剤、顆粒剤、溶液剤、懸 濁剤等に製剤化するためには、それ自体は既知の方法を用いて、本発明の放射線 治療増感物質をバインダー、錠剤崩壊剤、潤滑剤等と混合し、さらに、必要に応じて 、希釈剤、緩衝剤、浸潤剤、保存剤、フレーバー剤等と混合することにより行うことが できる。一例を挙げると、上記バインダーには、結晶セルロース、セルロース誘導体、 コーンスターチ、ゼラチン等が、錠剤崩壊剤には、コーンスターチ、馬鈴薯デンプン、 カルボキシメチルセルロースナトリウム等力 潤滑剤には、タルク、ステアリン酸マグネ シゥム等が含まれ、さらには、ラタトース、マン-トール等のような従来用いられている 添加剤等を用いることができる。
[0038] また、本発明の放射線治療増感物質は、液体、微細粉末の形態のものを、気体又 は液体の噴霧剤と共に、又は必要に応じて浸潤性付与剤のような既知の助剤と共に 、エアロゾル容器、ネブライザ一のような非加圧容器に充填し、エアロゾル剤又は吸 入剤の形態で投与することもできる。噴霧剤としては、ジクロロフルォロメタン、プロパ ン、窒素等の加圧ガスを用いることができる。
[0039] 本発明の放射線治療増感物質を非経口投与する場合、例えば、注射、経皮投与、 直腸投与、および眼内投与等により投与することができる。
[0040] 注射による投与としては、皮下、皮内、静脈内、筋肉内等に投与することができる。
これらの注射用製剤は、それ自体は既知の方法により、本発明の放射線治療増感物 質を、植物性油、合成脂肪酸グリセリド、高級脂肪酸のエステル、プロピレングリコー ルのような水性又は非水性の溶媒中に溶解、懸濁又は乳化し、さらに、所望により、 可溶化剤、浸透圧調節剤、乳化剤、安定剤及び保存料のような従来用いられている 添加剤と共に製剤化することができる。
[0041] 本発明の放射線治療増感物質を溶液、懸濁液、シロップ、エリキシル等の形態に するためには、注射用滅菌水や規定生理食塩水のような薬学的に許容される溶媒を 用!/、ることができる。
[0042] 経皮投与は、対象となる皮膚の状態等に応じて軟膏剤、乳化剤、パスタ剤、ハツプ 剤、リニメント剤、ローション剤、懸濁剤等として投与することができる。
[0043] 軟膏剤は、それ自体は既知の方法により、本発明の放射線治療増感物質をヮセリ ン、パラフィン等のような疎水性基材または親水ワセリン、マクロゴール等のような親 水性基材と練合することにより製剤化することができる。乳化剤その他の経皮投与剤 も、通常用いられる方法により製剤化することができる。
[0044] 直腸投与には、例えば、坐薬として投与することができる。坐薬は、それ自体は既 知の方法により、本発明の放射線治療増感物質を、体温で融解するが室温では固 化しているカカオバター、カーボンワックス、ポリエチレングリコールのような賦形剤と 混合し、成形することにより製剤化することができる。
[0045] 眼内投与は、点眼剤、眼軟膏等のような眼用製剤等として投与することができる。
点眼剤は、それ自体は既知の方法により、滅菌精製水のような水性溶剤に本発明の 放射線治療増感物質を溶解または懸濁し、必要に応じて保存剤、緩衝剤、界面活性 剤等を添加することにより製剤化することができる。
[0046] 本発明の放射線治療増感物質の投与条件 (例えば、投与量、投与回数、投与間隔 )は、投与形態、投与経路、対象とする腫瘍の条件 (例えば、腫瘍の種類、存在位置 、進行段階)、放射線治療の条件 (例えば、照射線の種類、量、回数)、放射線治療 との併用の仕方 (例えば、放射線治療を行う時期と本発明の放射線治療増感剤を投 与する順序)等に応じて適宜設定、調節することができる。一例を挙げると、経口投 与する場合は、放射線治療増感物質として、 0.001〜100mg/kg体重/日、注射剤とし て投与する場合は、放射線治療増感物質として、 0.001〜50mg/kg体重/日、経皮投 与する場合は、放射線治療増感物質として、 0.001〜100mg/kg体重/日、直腸投与 する場合は、放射線治療増感物質として、 0.001〜50mg/kg体重/日、眼内投与の場 合は、放射線治療増感物質として、 0.001〜3%程度の溶液を 1日数回に分けて点眼 するなどに設定することができる力 これらに限定されるものではない。
[0047] 一方、放射線治療では、照射する放射線の種類、量、回数は、従来行われて 、る 放射線治療と同様の条件とすることができる。従来行われているヒトへの放射線照射 の例として、具体的には、医療用放射線、たとえば X線、 γ線、電子線、 j8線のほか π —中間子、中性子やその他の重粒子などの粒子線を、 1回あたり約 0. 1〜: LOOGy の照射量で、合計照射量が約 10〜500Gyとなるように、 1週間〜 6ヶ月の期間にわ たって照射するものが挙げられる。代表的なヒトへの照射例としては、 X線を、 1回 2G yを週 5回照射し、約 6週間かけて合計 60Gyを照射するものを挙げることができるが 、それに限定されるものではない。例えば、照射量や照射回数を減らすことができる。 また、照射方法も原体照射、癌病巣をピンポイントでねらいうちする定位照射、さらに は強度変調放射線照射等により行うことができる。カロえて、密封小線源による照射、 遠隔 γ線照射、粒子線を用いた照射により行うこともできる。なお、内照射により、 1 回あたりの照射量の増大、および照射期間の短縮ィ匕が可能である。
[0048] 放射線照射と本発明の放射線治療増感剤の投与とは、同時期であっても、いずれ かを他方に先行させて行うこともできる。この場合、本発明の放射線治療増感剤は、 放射線照射と併用される抗腫瘍剤として、または放射線照射と併用される血管新生 抑制剤としてはたらくことが期待される。
[0049] 上述の放射線の照射条件と本発明の放射線治療増感剤の投与条件は、放射線治 療の分野で周知のとおり、放射線源の種類、照射方法、照射部位および照射期間; 増感剤の種類、投与ルートおよび投与時期;治療すべき疾患および疾患の重症度; 照射される被検体の年齢、体重、健康状態、病歴などに依存して、医療従事者その 他の専門家により適宜選択することができる。
実施例
[0050] 以下、本発明の実施例を説明するが、本発明はこれに限定されるものではない。
[0051] <実施例 1 (動物実験) >
(実験例 1 1)
ヌードマウスを 4つの群 (コントロール群;本発明の放射線治療増感剤単独投与群; 放射線照射単独群;放射線照射と本発明の放射線治療増感剤投与の併用群;各群 は、 4頭)に分け、それぞれの右下肢皮下にヒト舌扁平上皮癌細胞(SAS細胞)を 1. O X 106個 PBS (―)に懸濁して移植し、 10〜14日後、腫瘍体積が約 50mm3〜約 10 Omm3の範囲の所望の値になった時点でそれぞれの群に処理を開始した。なお、放 射線治療増感剤としては、 3— O— (6—デォキシ— 6—スルホー a—D—ダルコビラ ノシル )—l— 0—ステアロイルーグリセロール'ナトリウム塩(以下、「a— SQMG C1 8:0」ともいう)を使用した。放射線照射単独群については、 8Gyの線量で 2回 (試験 開始時 (第 0日)と第 6日) X線照射し、 α - SQMG C18:0単独投与群については、 lmgZkgの濃度で 2回 (第 0日と第 6日)腹腔内投与し、併用群に関しては、その両 方で処理をした。コントロール群には、放射線照射及び a—SQMG C18:0投与の 両者とも行わなかった。その後、 16〜23日間にわたってノギスにて腫瘍の短径及び 長径を測り、腫瘍体積を以下の式により計算し、腫瘍成長遅延効果を比較した。
[0052] 体積計算式 腫瘍体積 (mm3) = (短径) 2 X (長径) X 0. 5
得られた結果を図 1に示す。図 1において、横軸は、処理開始後の日数を表し、縦 軸は、腫瘍体積を表す。また、白抜き矢印は、 X線を照射した日を表し、黒ぬり矢印 は、 α -SQMG C18:0を投与した日を表す(以下の図 2〜図 7においても同じ)。
[0053] 図 1に示す結果から、 α—SQMG C18:0投与を放射線照射と併用することにより 、放射線照射により達成される抗腫瘍効果をはるかに超える抗腫瘍効果が得られた
[0054] (実験例 1 2)
放射線照射を試験開始時 (第 0日)と第 4日に行い、 α -SQMG C18:0の投与を 第 0日のみに行い、 26日間に亘つて試験したこと以外は、実験例 1 1と同様の実験 を行った。
[0055] 得られた結果を図 2に示す。図 2に示す結果から、 α— SQMG C18:0投与を放射 線照射と併用することにより、放射線照射により達成される抗腫瘍効果をはるかに超 える抗腫瘍効果が得られた。
[0056] この相乗効果を数値化するために、以下の式により ER (enhancement ratio:増感率 )を算出した。 ERは、文献(Int. J. Radiation Oncology Bio. Phys. Vol.55, No.3, pp.7 13-723 (2003))により規定される値であり、その規定に基づいて以下に ERを説明す る。
[0057] ER = NGD ÷ X線単独での TGD
式中、「TGD (tumor growth delay)」は、各試験区において腫瘍体積が一定の大き さに達するまでに要する日数がコントロール区と比較してどれだけ遅れたかを表す。 すなわち下記の式で表される。なお腫瘍体積の一定の大きさとは、特別な断りのない 限り本発明の実施例においては 500mm3とする。
TGD= (試験区において腫瘍体積が 500mm3になるまでに要する日数)―(コント ロール区において腫瘍体積が 500mm3になるまでに要する日数) 「NGD (normalized growth delay)」は、次の式で表される。
NGD= (併用での TGD) - (薬剤単独での TGD)
上記文献によれば、上記式により求めた増感率 (ER)が 1. 0を超える場合、抗腫瘍 効果が相乗的であるといえる。
[0058] その結果、実験例 1 2の動物実験での増感率 (ER)は 2. 0であり、相乗性が非常 に高いことを示している。
[0059] (実験例 1 3)
放射線照射を試験開始時 (第 0日)と第 3日に行い、 α -SQMG C18:0の投与を 第 0日力 第 4日まで 1日 1回投与し、 35日間に亘つて試験したこと以外は、実験例 1 1と同様の実験を行った。
[0060] 得られた結果を図 3に示す。図 3に示す結果から、 α— SQMG C18:0投与を放射 線照射と併用することにより、放射線照射により達成される抗腫瘍効果をはるかに超 える抗腫瘍効果が得られた。
[0061] 実験例 1 2に記載の式により求めた、実験例 1 3の動物実験での増感率 (ER) は 3. 0であり、相乗性が極めて高いことを示している。
[0062] (実験例 1 4)
本実験例では、放射線照射を 1回あたり 2Gyの線量で、試験開始時 (第 0日)から 第 4日まで毎日行い、 a— SQMG C18:0の投与を第 0日力 第 4日まで毎日行った 以外は、上記実験例と同様にして実験を行った。以下、その詳細を記す。
[0063] 8週齢のヌードマウスをランダムに 4匹ずつ 4グループに分け、そのそれぞれの右下 肢皮下にヒト舌扁平上皮癌細胞(SAS細胞)を 1. O X 106個 PBS (—)に懸濁して移 植し、 10日後、腫瘍体積が約 50mm3になった時点でそれぞれの群に処理を開始し た。放射線治療増感剤は、上記実験例と同様 α— SQMG C18:0を使用した。放射 線照射単独群にっ 、ては、 2Gyの線量で試験開始時 (第 0日)から第 4日まで 1日 1 回の計 5回 X線照射した。 α -SQMG C18:0単独投与群については、 lmg/kgの濃 度で試験開始時 (第 0日)から第 4日まで 1日 1回の計 5回腹腔内投与した。併用群に 関しては、その両方で処理をした。コントロール群には、放射線照射及びひ—SQM G C18:0投与の両者とも行わなかった。その後、 30日間にわたってノギスにて腫瘍 の短径および長径を測り、腫瘍体積を以下の式により計算し、腫瘍成長遅延効果を 比較した。
[0064] 体積計算式 腫瘍体積 (mm3) = (短径) 2 X (長径) X 0. 5
得られた結果を図 4に示す。図 4に示す結果から、通常臨床現場で用いられている のと同じ線量(1回当たり 2Gy)を 5回照射し合計照射量を lOGyとした場合にも、放 射線照射単独により達成される抗腫瘍効果を上回る抗腫瘍効果があることが分かつ た。
[0065] この相乗効果を数値化するために、実験例 1 2に記載の方法と同様に増感率 (E R)を計算した。その結果、 ERは 1. 8となり相乗性が高いことが示された。
[0066] 本実験例を、上記実験例 1 3 (1回当たりの照射量 8Gyを 2回照射し、合計照射量 を 16Gyとした実験例)と比較すると、本実験例は、実験例 1—3より 1回の照射量が 少なぐかつ合計照射量も少ないが、実験例 1 3と同様に相乗的な抗腫瘍効果が 確認された。
[0067] (実験例 1 5)
8週齢のヌードマウスをランダムに 5匹ずつ 4グループに分け、そのそれぞれにヒト 食道癌細胞 (TE— 8細胞)を実験例 1— 1と同様に移植した。腫瘍体積が 50mm3にな るのを目安に a - SQMG C18:0投与および放射線照射処理を行った。放射線照 射単独群は 8Gyの線量で第 0日と第 4日の 2回 X線照射した。 α—SQMG C18:0単 独投与群は lmg/kgの濃度で第 0日から第 4日まで 1日 1回の計 5回腹腔内投与した。 併用群については、その両方で処理した。コントロール群については、放射線照射、 a - SQMG C18:0投与の両者とも行わなかった。その後、 51日間に亘つて実験例 1 - 1と同様に腫瘍体積を測定した。
[0068] 得られた結果を図 5に示す。図 5に示す結果から、ヒト食道癌に対しても a SQM G C18:0を放射線照射と併用することにより、放射線照射により達成される抗腫瘍効 果をはるかに超える抗腫瘍効果が得られた。また、実験例 1 2に記載の方法と同様 に増感率 (ER)を求めた。ただし、本実験例では、抗腫瘍効果が高ぐ試験終了まで に併用群での腫瘍体積が 500mm3に達しなカゝつたため、腫瘍体積 400mm3に達する までの日数力 増感率を計算した。その結果、 ERは 3. 25であり、相乗性が極めて高 いことが示された。
[0069] (実験例 1 6)
ヌードマウスにヒト子宫頸部癌細胞 (HeLa細胞)を移植したこと以外は実験例 1 5 と同様の方法で人癌移植マウスを作成した。腫瘍体積が 100mm3になるのを目安に a - SQMG C18:0投与および放射線照射処理を行った。放射線照射単独群は 8 Gyの線量で第 0日と第 4日の 2回 X線照射した。 a— SQMG C18:0単独投与群は 1 mg/kgの濃度で第 0日から第 4日まで 1日 1回の計 5回と、第 12日から第 16日まで 1 日 1回の計 5回、 2クールに分けて合計 10回を腹腔内投与した。併用群については、 その両方で処理した。コントロール群については、放射線照射、 a— SQMG C18:0 投与の両者とも行わな力つた。その後、 35日間に亘つて実験例 1—1と同様に腫瘍 体積を測定した。
[0070] 得られた結果を図 6に示す。図 6に示す結果から、ヒト子宫頸部癌に対しても a S QMG C18:0を放射線照射と併用することにより、放射線照射により達成される抗腫 瘍効果をはるかに超える抗腫瘍効果が得られた。また、実験例 1 2に記載の方法と 同様に増感率 (ER)を求めた。その結果、 ERは 2. 71であり、相乗性が極めて高いこ とが示された。
[0071] (実験例 1 7)
本実験例では、ヌードマウスにヒト肺癌細胞 (A549細胞)を移植したこと以外は、上 記実験例と同様にして実験を行った。以下、その詳細を記す。
[0072] 8週齢のヌードマウスをランダムに 4匹ずつ 4グループに分け、そのそれぞれの右下 肢皮下にヒト肺癌細胞 (A549細胞)を 2. O X 106個 PBS (—)に懸濁して移植し、 45 日後、腫瘍体積が約 50mm3になった時点でそれぞれの群に処理を開始した。放射 線治療増感剤は、上記実験例と同様 α— SQMG C18:0を使用した。放射線照射 単独群については、 4Gyの線量で試験開始時 (第 0日)と第 3日に計 2回 X線照射し た。 α—SQMG C18:0単独投与群については、 lmg/kgの濃度で試験開始時 (第 0 日)力 第 4日まで 1日 1回の計 5回腹腔内投与した。併用群に関しては、その両方で 処理をした。コントロール群には、放射線照射及び a—SQMG C18:0投与の両者 とも行わなかった。その後、 20日間にわたってノギスにて腫瘍の短径および長径を測 り、腫瘍体積を以下の式により計算し、腫瘍成長遅延効果を比較した。
[0073] 体積計算式 腫瘍体積 (mm3) = (短径) 2 X (長径) X 0. 5
得られた結果を図 7に示す。図 7に示す結果から、腺癌である肺癌に対しても、 a - SQMG C18:0投与と放射線照射を併用することで、放射線照射単独により達成 される抗腫瘍効果を上回る抗腫瘍効果があることが分力ゝつた。
[0074] 本実験例では、併用群において腫瘍の成長が抑制され、腫瘍体積の増大がほとん どみられな力つたため、この相乗効果を数値ィ匕するための増感率 (ER)の値を算出 することができない。すなわち、本実験例の結果は、 ER値の算出が不可能なほど、 a - SQMG C18:0投与と放射線照射との相乗効果が高いことを示す。
[0075] このように高 、相乗性のある抗腫瘍効果を示す本発明の一般式(1)で表される放 射線治療増感剤は、本発明の放射線治療増感物質単独又は放射線照射単独により 期待できる抗腫瘍効果と同程度の効果が、より少ない投与量又はより低い総放射線 量で達成できることを示している。この結果、本発明の放射線治療増感剤を使用する ことにより、通常化学療法剤や放射線照射により引き起こされ得るような副作用が出 にくいことが期待できる。
[0076] また、上記実験を通じて、ヌードマウスの体重に変化はな力つた。さらに、本発明の 放射線治療増感剤をマウスの皮膚に塗布した場合にも、炎症その他の問題はなかつ た。さらに、放射線照射による皮膚の炎症も認められな力つた。これらのことからも、本 発明の放射線治療増感剤は、副作用が少ないことが推測される。
[0077] なお、上記実施例では、本発明の放射線治療増感剤として、 a— SQMG C18:0 ( 3 -0 - (6—デォキシ一 6—スルホ一 a— D—ダルコビラノシル )一 1— O—ステア口 ィル—グリセロール ·ナトリウム塩)を使用した。し力しながら、他の一般式(1)で表さ れる化合物を使用した場合 (例えば、 α—SQMG C18:0のステアロイル基の代わり にミリストイル基ゃパルミトイル基やその他の飽和ァシル基を有する飽和モノァシルグ リセリドや、 CH - (CH ) - (CH=CH- CH ) - (CH ) - CO-、 CH - (CH ) - (CH=CH- CH ) -
3 2 3 2 1 2 6 3 2 5 2 1
(CH ) -CO-, CH - (CH ) - (CH=CH- CH ) - (CH ) -CO-やその他の不飽和ァシル基
2 6 3 2 7 2 1 2 6
を有する、不飽和モノァシルグリセリド、これら 6種類のァシル基やその他のァシル基 のいずれか 1種又は 2種を有する飽和 Z不飽和ジァシルグリセリドを使用した場合) においても同様又はそれ以上の効果を奏することが期待できる。下記実験例 2— 6乃 至 2—12において、 α—SQMG C18:0のステアロイル基の代わりにミリストイル基、 パルミトイル基またはォレオイル基を有する場合、ビラノースとグリセロールの結合が a結合の代わりに β結合の場合、モノァシル誘導体の代わりにジァシル誘導体であ る場合、並びにグルコース以外の糖骨格である場合の一般式(1)の化合物において も放射線治療増感剤としての効果が確認されて 、ることから、他の一般式(1)で表さ れる化合物を使用した場合の効果が期待される。
[0078] また、上記実施例において、舌扁平上皮癌、食道癌、子宫頸部癌、肺癌に対する 効果を明確にしたが、他の癌 (例えば、前立腺癌、大腸癌、胃癌、乳腺癌、膝癌、肝 癌、神経膠癌、頸部腺癌などの腺癌、移行上皮癌、肉腫、黒色腫のような固形癌や、 リンパ腫のような液性癌)においても同様又はそれ以上の効果を奏することが期待で きる。
[0079] さらに、本発明の放射線治療増感剤の投与量、回数、放射線の種類や照射量、回 数、放射線照射と本発明の放射線治療増感剤の投与順についても、上記条件以外 の場合においても、適宜変更することにより、同様またはそれ以上の効果を奏するこ とが期待できる。そのような条件設定は、医師その他の医療関係者によって通常行わ れて 、る手法に従 、行うことができる。
[0080] <実施例 2 (コロニーアツセィ) >
(実験例 2— 1)
ゥシ血管内皮細胞 (BAEC)を適宜シャーレにまき、 2〜3時間後細胞の接着を確 認し、 α - SQMG C18:0単独投与区及び併用区では 10 /z Mの α—SQMG C18 :0で処理した。 24時間後、試験区全ての培地交換を行い、放射線単独照射区及び 併用区では 6°Coの γ線を 4Gy照射した。 37°Cの COインキュベータ内で 10〜 12日
2
間培養後、形成されたコロニーをホルマリン固定し、クリスタルバイオレット染色液に て染色した。それぞれのプレート上で約 50個以上の細胞力もなるコロニー数を計測 し、以下の式により細胞生存率(Surviving fraction;SF)を求めた。
[0081] SF (細胞生存率) =コロニー数 Z 播種細胞数 X (PE/100)
ここで、 PE(plating efficiency)は、コントロールのプレートにおけるコロニー形成率( %)を表す。
[0082] なお、実験は、 3回行い、それらの平均値を算出した。
[0083] 試験の結果、 α— SQMG C18:0単独投与区及び放射線単独 4Gy照射区の SF 値は、それぞれ 0. 616及び 0. 158であった。これらの SF値から算出される理論的 な併用の相加点(α— SQMG C18:0単独投与区の SF X 放射線単独 4Gy照射 区の SF値)及び実測された併用区の SF値を図 8に示す。
[0084] 理論的な併用の相加点は 0. 0974であったのに対し、併用区の SF値は 0. 0640と なり、理論的な相加点を大きく下回った。
[0085] (実験例 2— 2)
実験例 2— 1で用いた放射線量 4Gyの代わりに 6Gyを照射した以外は、同様の実 験を行った。
[0086] 試験の結果、 α— SQMG C18:0単独投与区及び放射線単独 6Gy照射区の SF 値は、それぞれ 0. 616及び 0. 0820であった。これらの SF値から算出される理論的 な併用の相加点(α— SQMG C18:0単独投与区の SF X 放射線単独 6Gy照射 区の SF値)及び実測された併用区の SF値を図 9に示す。
[0087] 理論的な併用の相加点は 0. 0505であったのに対し、併用区の SF値は 0. 0180と なり、理論的な相加点を大きく下回った。
[0088] なお、上記実験例 2— 1及び 2— 2と並行して BAECに対して行ったコロニーアツセ ィと同じものを SAS細胞についても実施したが、 α—SQMG C18:0による SAS細 胞増殖抑制効果は認められな力つた。
[0089] 上記実験例 2— 1及び 2— 2の結果から、血管内皮細胞の増殖抑制に対する α— S
QMG C18:0と放射線の併用による相乗効果が非常に大き!/、ことが示された。
[0090] (実験例 2— 3)
実験例 2— 1で用いた放射線量 4Gyの代わりに 2Gyを照射した以外は、同様の実 験を行った。結果を図 10に示す。
[0091] 試験の結果、 Mの α— SQMG C18:0単独投与区及び放射線単独 2Gy照 射区の SF値は、それぞれ 0. 9433及び 0. 5957であった。これらの SF値から算出さ れる理論的な併用の相加点は 0. 5620であったのに対し、 α -SQMG C18:0と放 射線照射を併用した場合の SF値は 0. 0644となり、理論的な相加点を大きく下回つ た。
[0092] (実験例 2— 4)
実験例 2— 3で用いた 10 /z Mの a—SQMG C18:0処理の代わりに 5 Μの α— SQMG C18:0で処理した以外は実験例 2— 3と同様の実験を行った。結果を図 1 1 に示す。
[0093] 試験の結果、 5 Mの α - SQMG C18:0単独投与区及び放射線単独 2Gy照射 区の SF値は、それぞれ 1. 0094及び 0. 5957であった。これらの SF値から算出され る理論的な併用の相加点は 0. 6012であったのに対し、 5 μ Μの α - SQMG C18: 0と放射線照射を併用した場合の SF値は 0. 1370となり、理論的な相加点を大きく下 回った。
[0094] (実験例 2— 5)
本実験例では、上記実験例 2— 1〜実験例 2— 4と同様の手法に従って、種々のコ 口-一アツセィを実施した。すなわち、 a—SQMG C18:0の投与濃度および 6°Coの γ線の照射量をそれぞれ、 0〜25 μ Μの範囲および 0〜8Gyの範囲で種々に変更 してコロニーアツセィを実施した。
[0095] 結果をまとめて図 12に示す。図 12において「0Gy」、「2Gy」、「4Gy」、「6Gy」およ び「8Gy」により示される各データは、表示される照射量で 6QCoの γ線を照射し、 a SQMG C18:0の投与濃度を 0〜25 /ζ Mの範囲で変更した各実験の結果を示す。 これら結果より、 α— SQMG C18:0単独による処理では、細胞増殖抑制効果は得 られないが、 α— SQMG C18:0の投与を放射線照射と併用すると、放射線照射の 細胞増殖抑制効果を増大させることが分力る。
[0096] (実験例 2— 6)
実験例 2— 2で用いた at SQMG C18:0の代わりに 3 O (6 デォキシ 6— スルホ一 at—D—ダルコビラノシル) l— O ミリストイル一グリセロール'ナトリウム 塩 (以下、「ひ SQMG C14:0」)を用いたこと以外は同様の実験を行った。結果を 図 13に示す。
[0097] 試験の結果、 α— SQMG C14:0単独投与区及び放射線単独 6Gy照射区の SF 値は、それぞれ 1. 0605及び 0. 0674であった。これらの SF値から算出される理論 的な併用の相加点は 0. 0715であったのに対し、 α - SQMG C 14:0と放射線照射 を併用した場合の SF値は 0. 0109となり、理論的な相加点を大きく下回った。
[0098] (実験例 2— 7)
実験例 2— 2で用いた at SQMG C18:0の代わりに 3— O—(6 デォキシ 6— スルホー a—D—ダルコピラノシル)—l— O—パルミトイルーグリセロール'ナトリウム 塩(以下、「ひ SQMG C16:0」)を用いたこと以外は同様の実験を行った。結果を 図 14に示す。
[0099] 試験の結果、 α— SQMG C16:0単独投与区及び放射線単独 6Gy照射区の SF 値は、それぞれ 0. 9553及び 0. 0674であった。これらの SF値から算出される理論 的な併用の相加点は 0. 0644であったのに対し、 α - SQMG C 16:0と放射線照射 を併用した場合の SF値は 0. 0233となり、理論的な相加点を大きく下回った。
[0100] 実験例 2— 6の結果から、血管内皮細胞の増殖抑制に対する a - SQMG C14:0 と放射線の併用による相乗効果が非常に大きいことが示され、実験例 2— 7の結果か ら、血管内皮細胞の増殖抑制に対する ex - SQMG C16:0と放射線の併用による相 乗効果が非常に大きいことが示された。
[0101] (実験例 2— 8)
実験例 2— 1で用いた at SQMG C18:0の代わりに 3— O—(6 デォキシ 6— スルホー a—D—ダルコピラノシル) l— O—ォレオイル一グリセロール'ナトリウム 塩 (以下、「ひ—SQMG C18: l」)を用いたこと以外は実験例 2—1と同様の実験を 行った。結果を図 15に示す。
[0102] 試験の結果、 α— SQMG C18: l単独投与区及び放射線単独 4Gy照射区の SF 値は、それぞれ 1. 0392及び 0. 1915であった。これらの SF値から算出される理論 的な併用の相加点は 0. 1990であったのに対し、 α - SQMG C 18: lと放射線照射 を併用した場合の SF値は 0. 0843となり、理論的な相加点を大きく下回った。
[0103] (実験例 2— 9)
実験例 2— 1で用いた at SQMG C18:0の代わりに 3— O—(6 デォキシ 6— スルホ一 β—D—ダルコビラノシル) l— O—ステアロイル一グリセロール'ナトリウ ム塩 (以下、「j8— SQMG C18:0」)を用いたこと以外は実験例 2— 1と同様の実験 を行った。結果を図 16に示す。
[0104] 試験の結果、 β - SQMG C18:0単独投与区及び放射線単独 4Gy照射区の SF 値は、それぞれ 0. 8562及び 0. 1915であった。これらの SF値から算出される理論 的な併用の相加点は 0. 1640であったのに対し、 β - SQMG C18:0と放射線照射 を併用した場合の SF値は 0. 0922となり、理論的な相加点を大きく下回った。
[0105] (実験例 2— 10)
実験例 2— 1で用いた at SQMG C18:0の代わりに 3— O—(6 デォキシ 6— スルホ一 13—D—ダルコビラノシル) 1 , 2—ジ一 O—ステアロイル一グリセロール' ナトリウム塩 (以下、「j8— SQDG C18:0」)を用いたこと以外は実験例 2—1と同様の 実験を行った。結果を図 17に示す。
[0106] 試験の結果、 β - SQDG C18:0単独投与区及び放射線単独 4Gy照射区の SF値 は、それぞれ 0. 7190及び 0. 1915であった。これらの SF値から算出される理論的 な併用の相加点は 0. 1377であったのに対し、 β - SQDG C18:0と放射線照射を 併用した場合の SF値は 0. 0908となり、理論的な相加点を大きく下回った。
[0107] (実験例 2— 11)
実験例 2— 1で用いた at SQMG C18:0の代わりに 3— O—(6 デォキシ 6— スルホ一 a—D—ダルコピラノシル) 1 , 2—ジ一 Ο—ステアロイル一グリセロール' ナトリウム塩 (以下、「α— SQDG C18:0」)を用いたこと以外は実験例 2—1と同様の 実験を行った。結果を図 18に示す。
[0108] 試験の結果、 α— SQDG C18:0単独投与区及び放射線単独 4Gy照射区の SF値 は、それぞれ 0. 9216及び 0. 1915であった。これらの SF値から算出される理論的 な併用の相加点は 0. 1765であったのに対し、 α - SQDG C18:0と放射線照射を 併用した場合の SF値は 0. 0882となり、理論的な相加点を大きく下回った。
[0109] (実験例 2— 12)
実験例 2— 1で用いた at SQMG C18:0の代わりに 3— O—(6 デォキシ 6— スルホ一 at—D—マンノピラノシル) l— O—ステアロイル一グリセロール'ナトリウム 塩 (以下、「a—SRMG C18:0」)を用いたこと以外は実験例 2—1と同様の実験を 行った。結果を図 19に示す。
[0110] 試験の結果、 α— SRMG C18:0単独投与区及び放射線単独 4Gy照射区の SF 値は、それぞれ 0. 8758及び 0. 1915であった。これらの SF値から算出される理論 的な併用の相加点は 0. 1677であったのに対し、 α -SRMG C18:0と放射線照射 を併用した場合の SF値は 0. 0784となり、理論的な相加点を大きく下回った。
[0111] 血管内皮細胞は、生体内に発生した腫瘍塊に新たに到達する新生血管を形成す る細胞である。新生血管は、これを経由して腫瘍細胞へ栄養と酸素を補給することに より、腫瘍を増殖させていく。したがって、血管内皮細胞の増殖抑制作用は、抗腫瘍 効果と密接に結びつくものである。よって、上記コロニーアツセィの結果は、本発明の 放射線治療増感剤の抗腫瘍効果を有意に裏付けるものである。
[0112] なお、血管新生を阻害する作用を有する血管新生阻害剤は、耐性獲得が少ない、 腫瘍の種類に拘らず均一な効果を持つ、副作用が軽度などの利点があるといわれて いる。
[0113] く実施例 3 (血管新生キットによるアツセィ) >
血管新生キット(クラボウの「血管新生キット KZ- 1000」)を用いて、 Mの α—S QMG C18:0投与と 4Gyの 6°Coの γ線照射との併用による血管新生抑制効果を調 ベた。
[0114] 血管新生キットにより得られた結果を画像ソフトにて数値ィ匕し、図 20に示す。
[0115] スラミン (Suramin)という薬剤は血管新生を抑える薬品として既知の物質で、その作 用は血管内皮細胞の増殖因子受容体の阻害であることが知られている。本実施例で はスラミンをポジティブコントロールとして 50 μ Μで用いた。
[0116] α -SQMG C18:0単独(管腔形成率 0.7229)では Suramin単独(管腔形成率 0.33
86)に比べ血管新生を阻害する効果はかなり低いが、放射線と併用したとき Suramin 以上に効果が発揮され、相乗的に血管新生を抑制していることが分力つた。
[0117] 上述の通り「理論的な併用の相加点」を掛け算によって算出し、この理論値を実測 値と比較する。
[0118] 4Gy+ Suramin 4Gy+ α -SQMG
理論値 0. 219 0. 467 実測値 0. 232 0. 0762
放射線と Suraminを併用した場合の管腔形成率の実測値は、理論値より若干高かつ たが、放射線と (X—SQMGを併用した場合の管腔形成率の実測値は、理論的な併 用の相加点を大きく下回り、これは、血管新生阻害効果が理論値よりも高いことを示 す。
生体内に発生した腫瘍の増殖には、腫瘍細胞へ栄養と酸素を補給するための血 管の新生を伴う。したがって、血管新生抑制効果は、抗腫瘍剤効果と密接に結びつ くものである。よって、上記実施例 3の結果は、本発明の放射線治療増感剤の抗腫瘍 効果を有意に裏付けるものである。

Claims

請求の範囲
[1] 次の一般式(1)
[化 4]
Figure imgf000023_0001
(式中、 R は、高級脂肪酸のァシル残基を表し、 R は、水素原子または高級脂肪
101 102
酸のァシル残基を表す。 )により表される化合物及びその薬学的に許容される塩から なる群から選択される少なくとも 1種の化合物を有効成分として含有する放射線治療 増感剤。
[2] 前記有効成分が、次の一般式 (2):
[化 5]
Figure imgf000023_0002
(式中、 R は、高級脂肪酸のァシル残基を表し、 R は、水素原子または高級脂肪
101 102
酸のァシル残基を表す。 )により表される化合物及びその薬学的に許容される塩から なる群力 選択される少なくとも 1種の化合物である請求項 1に記載の放射線治療増 感剤。
[3] 一般式(2)において、 R が R— CO— (Rは、炭素数 13〜25のアルキル基である。
101
)であり、 R が水素原子または R— CO— (Rは、炭素数 13〜25のアルキル基である
102
。)である、請求項 2に記載の放射線治療増感剤。
[4] 一般式(2)において、 R が R— CO— (Rは、 13〜25の間の奇数の炭素数を有す
101
る直鎖アルキル基である。)である、請求項 3に記載の放射線治療増感剤。
[5] 一般式(2)において、 R が水素原子である、請求項 3に記載の放射線治療増感 剤。
[6] 一般式 (2)において、 R が水素原子である、請求項 4に記載の放射線治療増感
102
剤。
[7] 一般式(2)において、 R 力 — CO— (Rは、炭素数 13〜25のアルキル基である。
102
)である、請求項 3に記載の放射線治療増感剤。
[8] 一般式(2)において、 R 力 — CO— (Rは、炭素数 13〜25のアルキル基である。
102
)である、請求項 4に記載の放射線治療増感剤。
PCT/JP2005/011630 2004-06-24 2005-06-24 放射線治療増感剤 WO2006001374A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CA2567306A CA2567306C (en) 2004-06-24 2005-06-24 Radiosensitizer
DE602005023288T DE602005023288D1 (de) 2004-06-24 2005-06-24 Sulfopyranosylacylglycerol-Derivate zur Anwendung in Kombination mit Bestrahlung in einer Tumor-Radiotherapie
EP05765113A EP1734046B1 (en) 2004-06-24 2005-06-24 Sulfopyranosylacylglycerol derivatives for use in combination with irradiation in an anti-tumor radiation treatment
US10/593,538 US20070219145A1 (en) 2004-06-24 2005-06-24 Radiosensitizer
JP2006528625A JP3927993B2 (ja) 2004-06-24 2005-06-24 放射線治療増感剤
AT05765113T ATE479695T1 (de) 2004-06-24 2005-06-24 Sulfopyranosylacylglycerol-derivate zur anwendung in kombination mit bestrahlung in einer tumor- radiotherapie
CN2005800205000A CN1972955B (zh) 2004-06-24 2005-06-24 放射增敏剂
AU2005257359A AU2005257359B2 (en) 2004-06-24 2005-06-24 Radiosensitizer
BRPI0511824-7A BRPI0511824A (pt) 2004-06-24 2005-06-24 radiossensibilizador
EA200602065A EA010292B1 (ru) 2004-06-24 2005-06-24 Радиосенсибилизатор
NO20070421A NO20070421L (no) 2004-06-24 2007-01-23 Radiosensitiviserende middel
US12/455,859 US20090253644A1 (en) 2004-06-24 2009-06-08 Radiosensitizer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004186480 2004-06-24
JP2004-186480 2004-06-24
JP2004-374445 2004-12-24
JP2004374445 2004-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/455,859 Division US20090253644A1 (en) 2004-06-24 2009-06-08 Radiosensitizer

Publications (1)

Publication Number Publication Date
WO2006001374A1 true WO2006001374A1 (ja) 2006-01-05

Family

ID=35781821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011630 WO2006001374A1 (ja) 2004-06-24 2005-06-24 放射線治療増感剤

Country Status (13)

Country Link
US (2) US20070219145A1 (ja)
EP (1) EP1734046B1 (ja)
JP (1) JP3927993B2 (ja)
KR (1) KR100832167B1 (ja)
CN (1) CN1972955B (ja)
AT (1) ATE479695T1 (ja)
AU (1) AU2005257359B2 (ja)
BR (1) BRPI0511824A (ja)
CA (1) CA2567306C (ja)
DE (1) DE602005023288D1 (ja)
EA (1) EA010292B1 (ja)
NO (1) NO20070421L (ja)
WO (1) WO2006001374A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014101A1 (ja) * 2007-07-20 2009-01-29 Toyo Suisan Kaisha, Ltd. 新規なスルホン酸化糖誘導体およびその医薬としての使用
WO2020179125A1 (ja) * 2019-03-05 2020-09-10 株式会社エム・ティー・スリー 放射線増感剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110101200A (ko) * 2009-01-16 2011-09-15 토요 수이산 가부시키가이샤 종양 체류성을 갖는 화합물
JP6903273B1 (ja) 2020-09-25 2021-07-14 株式会社エム・ティー・スリー 化合物又はその塩、及び放射性増感剤

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735516A (en) 1980-08-11 1982-02-26 Yamasa Shoyu Co Ltd Agent for increasing radiosensitivity or agent for increasing effect of substance having activity similar to radiation
JPS5767518A (en) 1980-09-17 1982-04-24 Yamasa Shoyu Co Ltd Radiosensitizing agent or agent for increasing effect of radiomimetic substance
WO1996034872A1 (fr) 1995-05-02 1996-11-07 Cis Bio International Derives iodes de monosaccharides utilisables comme produits radiopharmaceutiques
JP2000143516A (ja) * 1998-09-04 2000-05-23 Toyo Suisan Kaisha Ltd 制癌剤、新規なスルホキノボシルアシルグリセロ―ル、それを製造するための新規な中間体およびそれらの製造方法
JP2000212087A (ja) 1999-01-20 2000-08-02 Fujimoto Brothers:Kk ニトロ―5―デアザフラビン誘導体を有効成分とする放射線増感剤。
WO2000052020A1 (fr) * 1999-02-26 2000-09-08 Toyo Suisan Kaisha, Ltd. Nouveaux derives du et leur utilisation comme medicaments
WO2000051622A1 (fr) 1999-02-26 2000-09-08 Toyo Suisan Kaisha, Ltd. Medicaments contenant des derives du sulfopyranosylacylglycerol
WO2000052021A1 (fr) 1999-02-26 2000-09-08 Toyo Suisan Kaisha, Ltd. Nouveaux derives du sulfofucosylacylglycerol et leur utilisation comme medicaments

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8401337A (nl) * 1984-04-26 1985-11-18 Hoogovens Groep Bv Werkwijze voor het vervaardigen van cao-bevattende vuurvaste stenen.
DE3417230A1 (de) * 1984-05-10 1985-11-14 Metallgesellschaft Ag, 6000 Frankfurt Verfahren und vorrichtung zum entgasen von schwefelwasserstoffhaltigem fluessigem schwefel
US4808700A (en) * 1984-07-09 1989-02-28 Praxis Biologics, Inc. Immunogenic conjugates of non-toxic E. coli LT-B enterotoxin subunit and capsular polymers
KR927003539A (ko) * 1990-01-26 1992-12-18 스즈끼 쯔네시 2-니트로 이미다졸 유도체, 그의 제조방법 및 이를 유효성분으로 하는 방사선 증감제
US6645464B1 (en) * 1998-07-30 2003-11-11 James F. Hainfeld Loading metal particles into cell membrane vesicles and metal particular use for imaging and therapy
US6518410B2 (en) * 1999-02-26 2003-02-11 Toyo Suisan Kaisha, Ltd. Sulfoquinovosylacylglycerol derivative, and use thereof as medicaments
KR20030071029A (ko) * 2002-02-27 2003-09-03 주식회사 팜제니아 항암제 및 방사선 치료 증진제로서 유용한 조성물

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735516A (en) 1980-08-11 1982-02-26 Yamasa Shoyu Co Ltd Agent for increasing radiosensitivity or agent for increasing effect of substance having activity similar to radiation
JPS5767518A (en) 1980-09-17 1982-04-24 Yamasa Shoyu Co Ltd Radiosensitizing agent or agent for increasing effect of radiomimetic substance
WO1996034872A1 (fr) 1995-05-02 1996-11-07 Cis Bio International Derives iodes de monosaccharides utilisables comme produits radiopharmaceutiques
JP2000143516A (ja) * 1998-09-04 2000-05-23 Toyo Suisan Kaisha Ltd 制癌剤、新規なスルホキノボシルアシルグリセロ―ル、それを製造するための新規な中間体およびそれらの製造方法
JP2000212087A (ja) 1999-01-20 2000-08-02 Fujimoto Brothers:Kk ニトロ―5―デアザフラビン誘導体を有効成分とする放射線増感剤。
WO2000052020A1 (fr) * 1999-02-26 2000-09-08 Toyo Suisan Kaisha, Ltd. Nouveaux derives du et leur utilisation comme medicaments
WO2000051622A1 (fr) 1999-02-26 2000-09-08 Toyo Suisan Kaisha, Ltd. Medicaments contenant des derives du sulfopyranosylacylglycerol
WO2000052021A1 (fr) 1999-02-26 2000-09-08 Toyo Suisan Kaisha, Ltd. Nouveaux derives du sulfofucosylacylglycerol et leur utilisation comme medicaments

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MUNEYASU URANO: "Radiobiology for the Radiologist", SHINOHARA SHINSHA INC
OHTA ET AL., BIOL. PHARM. BULL., vol. 22, no. 2, 1999, pages 111 - 116
OHTA K. ET AL: "Action of a New Mammalian DNA Polymerase Inhibitor, Sulfoquinovosyl diacylglycerol", BIOLOGICAL & PHARMACEUTICAL BULLETIN, vol. 22, no. 2, 1999, pages 111 - 116, XP002926007 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014101A1 (ja) * 2007-07-20 2009-01-29 Toyo Suisan Kaisha, Ltd. 新規なスルホン酸化糖誘導体およびその医薬としての使用
JPWO2009014101A1 (ja) * 2007-07-20 2010-10-07 東洋水産株式会社 新規なスルホン酸化糖誘導体およびその医薬としての使用
US7973145B2 (en) 2007-07-20 2011-07-05 Toyo Suisan Kaisha, Ltd. Sulfonated sugar compounds, pharmaceutical compositions which contain the same, and methods of treating tumors with the same
AU2008278337B2 (en) * 2007-07-20 2011-09-29 Toyo Suisan Kaisha, Ltd. Novel sulfonated sugar compound and use thereof as medicine
EA016931B1 (ru) * 2007-07-20 2012-08-30 Тойо Суйсан Кайся, Лтд. Новое сульфированное соединение сахара и его применение в качестве лекарственного средства
WO2020179125A1 (ja) * 2019-03-05 2020-09-10 株式会社エム・ティー・スリー 放射線増感剤

Also Published As

Publication number Publication date
JPWO2006001374A1 (ja) 2008-04-17
AU2005257359A1 (en) 2006-01-05
CN1972955A (zh) 2007-05-30
KR100832167B1 (ko) 2008-05-23
EP1734046A4 (en) 2009-01-07
KR20070020270A (ko) 2007-02-20
ATE479695T1 (de) 2010-09-15
US20090253644A1 (en) 2009-10-08
CA2567306C (en) 2011-06-07
EA200602065A1 (ru) 2007-04-27
EP1734046B1 (en) 2010-09-01
CN1972955B (zh) 2010-08-25
CA2567306A1 (en) 2006-01-05
EP1734046A1 (en) 2006-12-20
BRPI0511824A (pt) 2007-12-26
NO20070421L (no) 2007-01-23
EA010292B1 (ru) 2008-08-29
US20070219145A1 (en) 2007-09-20
JP3927993B2 (ja) 2007-06-13
DE602005023288D1 (de) 2010-10-14
AU2005257359B2 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP5087052B2 (ja) 改良された治療剤
JP5890043B2 (ja) 抗癌活性を有する2−デオキシ単糖の新規なアセテート
MXPA02009604A (es) Politerapia con actividad de dano vascular.
JP3927993B2 (ja) 放射線治療増感剤
Yang et al. Polymeric micellar delivery of novel microtubule destabilizer and hedgehog signaling inhibitor for treating chemoresistant prostate cancer
RU2415670C2 (ru) Усиливающий агент для радиационной терапии, включающий производное пиридина в качестве активного ингредиента
Cao et al. Stilbene derivatives that are colchicine site microtubule inhibitors have antileukemic activity and minimal systemic toxicity
WO1992011247A1 (en) Anticancer composition and compound
JP6621158B1 (ja) 放射線増感剤
CN107412736B (zh) 一种抗肿瘤联合用药物及其在制备抗癌药物中的用途
CN113181184A (zh) 双氢麦角胺在制备抗肿瘤药物中的应用
JP2024056658A (ja) 医薬組成物
CN107674051A (zh) 4‑羟基他莫昔酚环状衍生物乏氧活化前药及其药物用途
RU2487883C2 (ru) Аналоги азацитидина и их применение
CN107158397A (zh) 卡巴他塞‑生物素偶联复合物在制备抗肿瘤药物中的应用
JPH02184625A (ja) 抗癌活性を有する薬剤組成物および抗癌活性増強剤
JP2001151700A (ja) リンパ系腫瘍性疾患治療剤
JPS5925325A (ja) 癌治療剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528625

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10593538

Country of ref document: US

Ref document number: 2007219145

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005765113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2567306

Country of ref document: CA

Ref document number: 2005257359

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067025452

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200602065

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2005257359

Country of ref document: AU

Date of ref document: 20050624

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005257359

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005765113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580020500.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067025452

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10593538

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0511824

Country of ref document: BR