WO2005124315A1 - Method of comprehensively evaluating creep life expectancy or life span - Google Patents

Method of comprehensively evaluating creep life expectancy or life span Download PDF

Info

Publication number
WO2005124315A1
WO2005124315A1 PCT/JP2005/011268 JP2005011268W WO2005124315A1 WO 2005124315 A1 WO2005124315 A1 WO 2005124315A1 JP 2005011268 W JP2005011268 W JP 2005011268W WO 2005124315 A1 WO2005124315 A1 WO 2005124315A1
Authority
WO
WIPO (PCT)
Prior art keywords
creep
void
life
grain boundary
voids
Prior art date
Application number
PCT/JP2005/011268
Other languages
French (fr)
Japanese (ja)
Inventor
Hidetaka Nishida
Original Assignee
The Chugoku Electric Power Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Chugoku Electric Power Co., Inc. filed Critical The Chugoku Electric Power Co., Inc.
Priority to JP2006514819A priority Critical patent/JP4054834B2/en
Publication of WO2005124315A1 publication Critical patent/WO2005124315A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0071Creep

Definitions

  • the present invention relates to a technology for evaluating a remaining life of a device member subjected to creep damage.
  • Non-Patent Document 1 At present, more than 80% of commercial thermal power generation units in Japan have accumulated operation hours exceeding 100,000 hours, and the remaining 20% The situation is over 200,000 hours. For this reason, at the time of periodic inspection, for the boiler of the thermal power generation unit, the location under the harshest conditions is selected from the past life-span diagnosis history, structure, stress, temperature, weighting, etc., and the creep deterioration progresses. It is important to understand the situation accurately and repair appropriately.
  • Non-Patent Document 2 As a conventional method for evaluating the remaining creep life, which focuses on voids generated in actual machine members, the surfaces of the members are polished and corroded, and a film made of acetyl cellulose is attached. An evaluation method using a copy of the surface of the member (hereinafter referred to as “replica”) is described. Methods for evaluating the remaining life or creep damage using this replica include A-meter, microstructure comparison, void area ratio (Non-Patent Document 3), void area density, grain boundary damage (non- An evaluation method using various parameters such as Patent Document 4) is known.
  • a parameter indicating the state of creep deterioration of a real machine member is obtained, and the "creep life consumption rate" is expressed as a ratio of the actual use time to the total time (life) from the time of new material to creep rupture.
  • the remaining life of the members of the actual machine is estimated.
  • a creep test is performed to create a master curve representing the relationship between the parameters of each method and the creep life consumption rate.
  • a replica of the surface force of the target actual machine member is sampled, and the parameter obtained on the replica is compared with the master curve, whereby the creep life consumption rate of the actual machine member can be estimated.
  • Non-Patent Document 5 describes a method for estimating the remaining creep life by a non-destructive inspection such as an ultrasonic noise energy method or an ultrasonic statroscopy method.
  • Non-Patent Documents 6 and 7 below describe the physical meaning of the “void occupancy on the grain boundary line” (Non-Patent Document 8) used as an index focusing on voids at grain boundaries as a creep damage parameter. It is stated that it is clear.
  • the "A-parameter method” draws a straight line parallel to the stress axis within a predetermined region, and determines the number of intersections between the straight line and the grain boundary line.
  • the ratio is a parameter, and is generally called the "A parameter for measurement”.
  • the A parameter is based on the idea that if at least one void exists at the grain boundary, the grain interface is considered to be severely damaged and the entire grain boundary is regarded as a small crack.
  • the physical meaning of the commonly used measurement A parameter is considered to be sparse.
  • the "void area ratio method” uses the ratio of the void area per unit area in a predetermined region as a parameter, and the "void area density method” uses the unit area (usually lmm 2 ).
  • This evaluation method uses the number of voids per hit as a parameter. Since this void area density method only needs to find the number of voids, measurement is easy.
  • This parameter (void area density) is proportional to the radius and number of voids, and inversely proportional to the crystal grain size. There is a problem that it does not directly represent the number of voids actually existing inside.
  • “Void occupancy on grain boundary line method” is a method for each grain boundary line within a predetermined range appearing on a cut surface or a surface of a member, for each void on the grain boundary line with respect to the length of the grain boundary line. This is an evaluation method that calculates the ratio of the total length and uses the average value as a parameter. This parameter has a one-to-one correspondence with the effective area used in conventional damage mechanics, which is equivalent to the area ratio of voids at the grain interface, which is the path of creep rupture. There is a problem that the force is difficult to measure compared to other methods.
  • Patent Document 1 describes a creep (remaining) life evaluation method capable of easily and accurately estimating the "creep life consumption rate" of a creep-degraded device member.
  • the ratio of the total length of voids on a grain boundary to the length of one grain boundary of a member is determined for each grain boundary, and the maximum value is determined as a parameter (“M parameter” t).
  • M parameter a parameter that is determined for each grain boundary.
  • This method is referred to as the “M-parameter method”.
  • M-parameter method it is possible to obtain an evaluation that the creep life consumption rate is high and the remaining life is short, that is, the risk of creep fracture is high, as the M-parameter force is closer to 1 ".
  • Patent Document 1 International Publication WO02Z014835
  • Non-patent Document 1 Keiichi Iwamoto, Thermal and Nuclear Power, 48-8 (1997), 14
  • Non-Patent Document 2 Japan Iron and Steel Association, Creep and Creep-Fatigue Damage Manual by Replica Method "Structural Material Reliability Evaluation Technology Subcommittee High-Temperature Strength WG Research Results Report (separate volume manual), (1991), 1
  • Non-Patent Document 3 Isamu Nonaka, Keiji Sonoya, Masashi Nakashiro, Hiroshi Yoneyama, Masaaki Kitagawa, Harima Ishikawajima Harima Technical Report, 32-5 (1992), 313
  • Non-patent Document 4 Kenji Kikuchi, Yoshiyuki Kaji, Materials, 44-505 (1995), 1244
  • Non-Patent Document 5 Japan Society of Mechanical Engineers, Power Plant 'Remaining Life Evaluation Technology for Structures, (1992)
  • Non-Patent Document 6 Naoya Tada, Tetsushi Fukuda, Takayuki Kitamura, Ryuichi Otani, Materials 46-1, (1997), 39
  • Non-patent document 7 Naoya Tada, Takayuki Kitamura, Ryuichi Otani, Materials 45-1, 1, (1996), 110
  • Non-patent document 8 Tsuneyuki Ejima, Zhou, Ryuichi Otani, Takayuki Kitamura, Naoya Tada, The 32nd high temperature strength system Preprints of Non-Podium, (1994), 94
  • the metal structures of the weld metal portion and the heat affected zone of the weld in particular, have a particle size of about 100 micrometers (m) in order from the weld metal side (200 ⁇ m). m) and a fine-grained part consisting of crystals with a grain size of about 1 ⁇ m to 10 ⁇ m. Considering that recent experiments have shown that the grain grows to almost the same size as one crystal grain boundary in the above, when the ⁇ fine grain part '' is evaluated by the above M-parameter method, the creep life There is a possibility that the M-parameter force reaches 1 "in the early stage, that is, the risk of creep rupture is high.
  • creep rupture is mainly attributable to the fact that voids generated on grain boundaries grow, connect, and coalesce to form microcracks.
  • intensive cracks occur in the second half of the creep life, even if one void has the same size as one grain boundary in the fine grain part, there is a high risk of creep rupture immediately. Therefore, it is difficult for the M-parameter method to accurately evaluate the creep life of “fine-grained parts”.
  • the portions that lead to creep rupture in the coarse-grained portion and the fine-grained portion are determined by various conditions such as differences in welding methods such as longitudinal welding or girth welding and the degree of application of stress. It is important to accurately evaluate the creep life of fine-grained parts in view of the fact that they differ from each other and that the actual parts are subjected to various types of welding and are placed in a multiaxial stress field.
  • the present invention has been made in view of the above circumstances, and provides a method capable of accurately evaluating the remaining life of a device member subjected to creep damage irrespective of a fine grain portion and a coarse grain portion.
  • the purpose is.
  • the present invention relates to a time or a time until a creep-damaged device member undergoes creep rupture.
  • the number of specific voids existing over a plurality of crystal grain boundaries within a predetermined range on the surface of the above-mentioned component is determined.
  • the ratio of the number of the specific voids to the area of the predetermined range is defined as a specific void density
  • the length of one crystal grain boundary within the predetermined range on the surface of the device member is defined by the total voids on the grain boundaries.
  • the ratio of the total length is determined as void grain boundary occupancy for each crystal grain boundary, and the maximum value is defined as the maximum void grain boundary occupancy, based on the specific void density and the maximum void grain boundary occupancy! / Evaluate the remaining life of each of the device members, and use the result of the shorter evaluation of V ⁇ as the remaining life of the device members.
  • the specific void is an extended void existing over at least 1/2 of each length of at least two grain boundaries, or generated on a plurality of grain boundaries. It is a connecting void formed by merging the voids.
  • the maximum void grain boundary occupancy is calculated by the following equation.
  • n is the number of voids present on each grain boundary
  • ⁇ ⁇ is the length of the i-th void on the ⁇ -th grain boundary in the direction of the grain boundary, and L is the length of the ⁇ -th grain boundary where the void exists.
  • the evaluation of the remaining life is based on the evaluation criteria obtained from the creep test on the relationship between the specific void density and the remaining life and on the relationship between the maximum void grain boundary occupancy and the remaining life. Estimating said time by reference.
  • the evaluation of the remaining life is the ratio of the number of all voids within the predetermined range to the area of the predetermined range in addition to the above evaluation criteria for the specific void density and the maximum void grain boundary occupancy. With reference to the evaluation criteria for the void number density and other parameters, the shortest time estimated by the evaluation criteria for each parameter is defined as the remaining life.
  • a more specific embodiment is directed to a void present on the surface of a fine grain portion formed of a crystal having a grain size of 10 ⁇ m or less of an equipment member. Further, the surface of the device member is imaged, and the number of voids is obtained on the image. In this case, the surface of the device member is polished and corroded, and then a film made of acetyl cellulose or the like is attached to the device member. In addition, it is possible to image the surface of the device member.
  • the number of specific voids existing over a plurality of crystal grain boundaries within a predetermined range on the surface of an equipment member is determined, and is represented by the ratio of the number of specific voids to the area of the range.
  • the specific void density By determining the specific void density, the remaining life of equipment components that have undergone creep damage can be evaluated. In this evaluation method, it is necessary to detect only a specific void among all voids within a predetermined range, and therefore, the evaluation can be performed more quickly and easily than the conventional void number density method.
  • the specific void existing over a plurality of crystal grain boundaries is a void that has grown from one grain boundary to two or more grain boundaries. It is an index that indicates the degree of progress of creep deterioration.
  • the state of creep deterioration specifically, the remaining life can be accurately grasped, and even in the “fine grain part” where the crystal grain boundary is small, two or more
  • voids extending across the grain boundaries it is possible to accurately evaluate the remaining life of fine-grained parts, which is difficult with conventional evaluation methods such as the A-parameter method.
  • the specific void an extended void existing over at least 1/2 of each length of at least two crystal grain boundaries, or a void generated on a plurality of crystal grain boundaries.
  • an evaluation criterion for example, a master curve described later
  • a creep test based on the relationship between the specific void density and the remaining life as described above
  • the evaluation criterion for the "specific void density” is also referred to, and the time estimated by the evaluation criterion of each parameter is referred to.
  • the shortest of these is the remaining life of the equipment members, it is possible to make evaluations from a safer side.
  • These evaluation criteria include parameters and creep life as described below. A master curve indicating the relationship with the consumption rate, a function or data indicating the relationship between the two, and the like can be used.
  • the surface of the fine-grain portion formed of a crystal having a grain size of 10 ⁇ m or less is selected as a portion for determining the number of voids within a predetermined range. Can be.
  • the image of the surface of the device member may be obtained by polishing and corroding the surface of the device member and then attaching a film made of acetyl cellulose or the like, or photographing the surface of the device member using imaging means. Obtained by imaging the surface of.
  • FIG. 1 is a main flowchart of a creep remaining life evaluation method of an embodiment.
  • FIG. 2 is a diagram showing a specimen and a void observation position used in a creep test.
  • FIG. 3 is a diagram showing a specimen and a void observation position used in a creep test.
  • FIG. 4 is a diagram showing a specimen and a void observation position used in a creep test.
  • FIG. 5 is a diagram showing a position where a test piece is collected from actual waste wood of a thermal power plant.
  • FIG. 6 is an electron micrograph showing the occurrence of voids at each interruption in the creep rupture test for pipe internal pressure.
  • FIG. 7 is a diagram showing a state of void generation at an observation position at each interruption during an internal pressure creep rupture test (actual machine acceleration test).
  • FIG. 8 is a view showing a basic concept of an L parameter.
  • FIG. 9 is a diagram showing a basic concept of M parameters.
  • FIG. 11 is a master curve showing a relationship between an M parameter and a talyp life consumption rate.
  • FIG. 12 is a diagram showing a basic concept of a void number density which is a parameter of the void number density method.
  • FIG. 1 is a main flowchart of the remaining creep life evaluation method of the present invention.
  • FIGS. 2 to 4 show specimens used for the creep test and the void observation position in each specimen.
  • the test piece shown in Fig. 2 is a test piece 1 taken from a welded part that has been subjected to creep damage by a high-temperature reheated steam pipe in operation, and the test piece 1 is used while appropriately stopping the test piece. Conduct a creep rupture test. The test conditions are shown below.
  • test stress (tensile) is 68.6MPa.
  • the metallographic structure near the welded portion 2 of the test piece 1 includes, from the weld metal side, a coarse-grained portion 3 formed of crystals having a grain size of about 100 ⁇ m or less, It is composed of fine-grained parts 4 formed of crystals of about ⁇ m to 10 ⁇ m.
  • the M parameter is obtained based on the void observation result in the coarse-grained part 3
  • the L parameter is obtained based on the void observation result in the fine-grained part 4.
  • the test specimen shown in Fig. 3 is a test in which girth welding is performed on a solid round bar ( ⁇ 40Xt8XL430) made of 2.25Cr-lMo steel, and the pipe force of the weld joint penetrating the center is also obtained.
  • Piece 5 The girth weld 6 of the test piece 5 is preferably prepared by 1 to 4 layers of covered arc welding so as to be as close as possible to the weld of the actual machine member, and is preferably heat-treated at 993KX for 1.3 hours. 5 specimens In addition, an internal pressure creep rupture test is performed.
  • test piece 5 while heating the test piece 5 in an electric furnace, pressurized water is injected into the test piece 5, and high pressure steam is applied to apply internal pressure.
  • interruption is performed appropriately, voids in the coarse-grained part and fine-grained part are observed at each interruption, and each parameter is obtained by the method described later.
  • the test conditions are shown below.
  • Circumferential stress is 61.3MPa (according to the formula of average diameter).
  • the specimen 7 in Fig. 4 is, for example, a waste material of a high-temperature reheated steam pipe elbow made of 2.25Cr-lMo steel, and a welded portion 8 of the specimen 7 has a pair of bent pieces having the same curvature.
  • an internal pressure creep rupture test (acceleration test on actual equipment) is performed with appropriate interruption. Specifically, after heating the specimen 7 by surrounding it with a plate-shaped heater, water under pressure is injected into the specimen 7, and high-pressure steam is applied to apply internal pressure.
  • FIG. 5 shows a position where a test piece was taken from a waste material of an actual thermal power plant to perform another creep test.
  • T piece pipe near the SH pipe in (a) and the RHY piece pipe in (b) voids were observed on the surfaces near the circumferential welds 10 and 11, and the diameter was 10 mm from the cross section near the part where the presence of voids was recognized.
  • the RH stub-side stub of (c) a 2mm diameter miniature creep round bar specimen is taken from the cross section near the stub welded part 12 where the presence of voids has been recognized.
  • Parameter Ask for data The usage conditions for each waste material are shown in the table below.
  • Fig. 6 shows the state of void generation at each interruption in the pipe internal pressure creep rupture test using test piece 5 (Fig. 3).
  • the surface of the test piece 5 may be directly imaged using a scanning electron microscope (hereinafter, “SEM” t) as shown in the figure, and the surface of the test piece 5 may be It can also be polished and corroded, and a replica obtained by attaching a predetermined film (for example, an acetyl cellulose film) and copying the surface of the member can be observed with a SEM.
  • SEM scanning electron microscope
  • the surface of the test piece 5 is polished by, for example, rough polishing with a grinder, successively polishing with a grindstone of No. 120-No. It is better to sequentially perform puff polishing with diamond particles and perform mirror finishing.
  • the corrosive liquid is impregnated into absorbent cotton and applied to the polished surface to form a bond in the metal structure. Grain boundaries can be made identifiable.
  • the following two types of corrosive liquids can be used for corrosion.
  • Picric acid Saturated picric acid (dissolved in methanol) + surfactant
  • sodium dodecylbenzenesulfonate is preferably used and mixed at a ratio of 1 g to 100 ml of saturated picric acid.
  • a replica softening material for example, methyl acetate
  • an acetyl cellulose film is stuck thereon, so that the replica softening material is sufficient. If the acetyl cellulose film is peeled off after drying, the surface of the test piece 5 can be copied. As a result, voids generated on the surface of the test piece 5 appear as protrusions on the replica.
  • void observation In void observation, a predetermined range (for example, 30 mm 2 Observing the void generation status in (), confirming the location where damage is most aggressive (voids are generated and connection is concentrated), and then observing that location by SEM (e.g., observation at 1000x) ), It is possible to perform a void observation without missing a spot where damage has progressed.
  • a predetermined range for example, 30 mm 2 Observing the void generation status in (), confirming the location where damage is most aggressive (voids are generated and connection is concentrated), and then observing that location by SEM (e.g., observation at 1000x) ), It is possible to perform a void observation without missing a spot where damage has progressed.
  • the number of voids increases on the surface of the test piece 5 with the elapse of time in the pipe internal pressure creep rupture test. For example, as shown in the figure, the state of void generation at each stop
  • the above interruptions are represented by the creep life consumption rate (tZtr), which is obtained as a result of a pipe internal pressure creep rupture test until the test piece 5 reaches creep rupture. Value.
  • FIG. 7 shows the state of void formation at observation positions 9a and 9b at the time of each interruption in the internal pressure creep rupture test (actual machine acceleration test) using specimen 7 (FIG. 4).
  • voids began to form randomly on multiple grain boundaries, then increased intensively at specific locations, and eventually joined to form microcracks. You.
  • FIG. 8 shows the basic concept of the L parameter for evaluating the remaining life of the equipment member by the creep remaining life evaluation method of the embodiment.
  • the L parameter is represented by a ratio of the number of voids present over a plurality of crystal grain boundaries within a predetermined range on the surface of the void observation position to a predetermined range.
  • a void hereinafter, referred to as “half the length of at least two crystal grain boundaries” within a predetermined range (for example, 1 mm 2 ) on the surface of the observation position is used.
  • center void 16b exists on the three grain boundaries 15 and the two voids 1b
  • the voids 16c are present on the three grain boundaries 15 and do not completely cover the grain boundaries 15. However, the voids 16c are more than 1/2 of each length of the two grain boundaries 15. Because it exists throughout
  • the number of connected voids within a predetermined range (for example, 1 mm 2 ) on the surface of the observation position is determined, and this number is used as an evaluation target.
  • the L parameter expressed as the value divided by the area of the range (for example, 1 mm 2 ). Therefore, the L parameter is defined by the following equation.
  • A is the area of the evaluation range (for example, 1 mm 2 )
  • m is the number of connected voids within the evaluation target range
  • FIG. 9 shows the basic concept of another parameter, the M parameter.
  • the M parameter is a ratio of the total length of all voids on the grain boundary to the length of one crystal grain boundary within a predetermined range (for example, lmm 2 ) on the surface of the void observation position. It is obtained for each grain boundary as the field occupancy, and is expressed by the maximum value. That is, the M parameter can be obtained by the following equation.
  • n is the number of grain boundaries where voids exist
  • n is the number of voids present on each grain boundary
  • L is the length of the ⁇ -th grain boundary where the void exists
  • the percentage can be obtained by the following equation.
  • the maximum value can be obtained as the ⁇ parameter.
  • each master curve was created as an evaluation standard of the remaining creep life. (ST2, ST3).
  • FIG. 10 is a master curve showing the relationship between the L parameter and the creep life consumption rate.
  • the creep life consumption rate is represented by the ratio of the total time “t” to the total time “tr” to the time to the creep rupture of the new material and the total time “t” of the time subjected to the creep test and the actual use time. . Therefore
  • the L parameter is substantially “0” in the first half of the life of the device member, and increases in the second half of the life.
  • the master curve based on this L parameter is
  • Creep rupture is mainly due to the fact that voids generated on grain boundaries grow, coalesce and join to form micro cracks.
  • Connected voids exist over at least 1/2 of each length of at least two grain boundaries, that is, are formed by connecting a plurality of voids.
  • FIG. 11 is a master curve representing the relationship between the M parameter and the creep life consumption rate.
  • the M parameter increases in a smooth downwardly convex curve over the entire creep life, and the L-parameter master curve (Fig. 10) and other conventional master curves Sudden increase in late life (e.g., Figure 13) It is not allowed.
  • the M parameter evaluates the creep life by focusing only on the localized damaged part, that is, only the maximum damaged part, it can be seen that the M parameter shows a certain value even at the beginning of the life.
  • the master curve based on this M parameter shows that the growth and connection of voids proceed intensively on a specific grain boundary on the crystal grain boundary in the weld heat affected zone coarse grain region, and the crack It can be seen that this directly reflects the mechanism of cleaved fracture, which leads to growth and destruction.
  • various parameters are also obtained for the actual machine member to be evaluated (ST4).
  • the evaluation results based on the above-described L parameter and M parameter and the estimation based on the conventional remaining life evaluation method are used. Compare the result. For example, a void number density method can be adopted as a conventional remaining life evaluation method.
  • the actual method of obtaining the various member parameters is as follows. Among the welded parts of the member, a comprehensive consideration is given to the conditions of the past remaining life diagnosis history, structure, stress, temperature, load, etc. Select a location under severe conditions and collect a surface force replica of the location. By enlarging and displaying the surface of the member copied on this replica by SEM, various parameters in a predetermined range can be obtained.
  • the method for obtaining the L parameter and the M parameter is as described in ST1 of the main flowchart.
  • a method of obtaining the void number density which is a parameter of the void number density method, will be described.
  • FIG. 12 shows the basic concept of the void number density, which is a parameter of the void number density method.
  • the void number density is a ratio of the number of all the voids 20 existing in a predetermined range to the area (for example, 1 mm 2 ) of the range, and is specifically defined by the following equation.
  • A is the area of the evaluation enclosure (for example, 1 mm 2 )
  • n is the number of alll within the evaluation range
  • FIG. 13 is a master curve of the void number density method. This master curve can be created by the various creep tests described in ST1 of the main flowchart (Fig. 1), and the master curve based on the void number density method and other conventional methods for evaluating the remaining life is publicly available. It is also possible to use this.
  • the time corresponding to "6% of the total life” can be obtained by the following equation, assuming that the actual use time of the actual machine member to be evaluated at the time of the evaluation is "t ⁇ 7000hr".
  • the creep life consumption rate can be estimated to be "tZtr ⁇ 0.97". it can. That is, according to the master curve, the remaining life of the member is a time corresponding to 3% of the total life, and can be obtained by the following equation.
  • the creep life consumption rate can be estimated as "tZtr ⁇ 0.92". Therefore, according to the master curve of the void number density method, the remaining life of the member is a time corresponding to 8% of the total life, and can be obtained by the following equation.
  • the shortest time obtained as a result of the remaining life estimation by each method is estimated as the time until the actual machine member to be evaluated reaches creep rupture (ST7). That is,
  • the remaining life of the member can be estimated to be “216 hours” obtained based on the M parameter.
  • the L parameter method suitable for evaluating the remaining life of fine grains and the M parameter method (M Combined with the parameter method, the residual creep life can be evaluated at any point on the actual machine member, regardless of whether the evaluation target site on the actual machine member is a misalignment of the fine grained part or the coarse grained part. can do. Furthermore, by comparing the result of estimation with a conventional remaining life evaluation method such as the above-mentioned void number density method, more reliable remaining life evaluation can be performed.
  • the method of evaluating the remaining life of the actual machine member using the method for evaluating the remaining creep life of the embodiment has been described above.
  • the reliability of the creep life evaluation means how close the evaluation result (remaining life or creep life consumption rate) based on the parameters adopted is to the result of the creep test. Therefore, not all conceivable parameters can be used as they are for the evaluation of the remaining life of actual components, but it is necessary to confirm in advance the reliability of the parameters to be adopted for the evaluation of the remaining life. .
  • the following shows an example of the accuracy confirmation test results for confirming the reliability of the L parameter.
  • the rupture time was 147 hours in a simulated fracture test (15 mm square X L50 mm specimen) of a real machine scale high-temperature reheated steam pipe, and the rupture time was 147 hours.
  • expanded voids existing over at least 1/2 of each length of at least two grain boundaries are formed by uniting voids generated on a plurality of grain boundaries. If the expanded voids can be clearly distinguished from those that have grown larger due to the growth of one void and those that have combined multiple voids, the expanded voids are considered to be connected. Well, you can count them separately.
  • the various types of ST1 test force of ST1 were calculated based on the data representing the relationship between each parameter obtained and the creep life consumption rate.
  • the creep life consumption rate and the remaining life can be immediately obtained based on the above formulas simply by inputting various parameters for the actual machine member force. .
  • the method of evaluating the remaining life of the actual machine member using the creep remaining life evaluation method of the embodiment has been described.
  • the present invention is not limited to this.
  • the estimation based on the conventional void number density method is performed.
  • the results were also compared, the results of estimation based on other parameter-based evaluation methods can also be compared.
  • an A-parameter method, a tissue contrast method, a void area ratio method, or a void area density method can be employed.
  • the L parameter or the M parameter Each master curve was used to represent the relationship between the data and the life consumption rate of talyp.However, a database was created to show the relationship between the two, and the remaining life was evaluated by comparing this with the parameters obtained for the actual machine components. You can also. In either method, it is possible to automatically calculate the remaining life by inputting the obtained L parameters using the computer.
  • the actual machine member when obtaining the L parameter, also obtains a replica of the member surface, enlarges the replica by SEM or the like, and visually observes the voids. After connecting the images, the connected voids can be automatically recognized by a machine such as a computer, and the number thereof can be quickly and easily obtained on the image.

Abstract

A method of accurately evaluating the life expectancy or the life span of a creep-damaged device member irrespective of whether the grained part is fine grained or coarse grained. The life expectancy or the life span is represented by the time until the creep-damaged device member creep-ruptures. The number of linked voids present over a half or more of each length of two or more grain boundaries in areas of up to 1 mm2 of the surface of the device member is determined. The ratio of the number of the specific linked voids to the area of 1 mm2 is used as L parameter. As the void grain boundary occupancy ratio, the ratio of the total of the lengths of all the voids present at the grain boundaries in the surface of the device member to the length of one grain boundary within the area of 1 mm2 is determined for each grain boundary, and the maximum value is used as M parameter The life expectancies or life spans of the device member based on the L and M parameters are evaluated, and the shorter one is determined as the life expectancy or life span of the device member.

Description

タリープ余寿命の総合評価方法  Comprehensive evaluation method of remaining life of tallies
技術分野  Technical field
[0001] 本発明は、クリープ損傷を受けている機器部材の余寿命を評価する技術に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a technology for evaluating a remaining life of a device member subjected to creep damage.
[0002] 例えば、火力発電ボイラゃ蒸気タービンに使用される高温部材のように、高温-高 圧下で長時間使用される機器部材においては、特に溶接部付近 (溶接金属部、溶 接熱影響部、及び母材)で、時間の経過と共にクリープ損傷による劣化が進展し、金 属組織にボイド又はキヤビティと呼ばれる微小な空孔若しくは空隙 (これらを総称して 「ボイド」という)が発生する。ボイドは成長しながら、連結し、合体し、やがて 1 (結晶) 粒界長さ程度の微視き裂を形成し、微視き裂が更に伝播と連結とを繰り返すことによ つて、部材全体を破壊 (クリープ破壊)に至らせる。従って、火力発電ユニットを長時 間に亘つて安定的に運転するためには、機器部材がクリープ破壊するまでの時間又 は後述の「クリープ寿命消費率」で表される余寿命を、的確に把握することが必要で ある。  [0002] For example, in the case of equipment members that are used for a long time under high temperature and high pressure, such as high temperature members used in thermal power generation boilers and steam turbines, especially in the vicinity of welded parts (welded metal parts, welding heat affected parts). And the base material), the deterioration due to creep damage progresses over time, and minute voids or voids called voids or cavities (collectively referred to as “voids”) are generated in the metal structure. The voids grow, connect, coalesce, and eventually form microcracks of the length of 1 (crystal) grain boundary, and the microcracks further repeat propagation and connection, resulting in the entire member. To destruction (creep destruction). Therefore, in order to operate the thermal power generation unit stably for a long period of time, the time required for the equipment members to undergo creep rupture or the remaining life represented by the “creep life consumption rate” described below must be accurately determined. It is necessary to understand.
[0003] 下記の非特許文献 1によれば、現在、日本国内の 80%以上の事業用火力発電ュニ ットは、累積運転時間が 10万時間を超えており、その他の 20%についても 20万時間を 超えているという状況である。このため、定期検査時には、火力発電ユニットのボイラ 等について、過去の余寿命診断経歴、構造、応力、温度、加重等の条件から、最も 過酷な条件下にある箇所を選定し、クリープ劣化の進展状況を的確に把握し、適切 に補修することが重要である。  [0003] According to Non-Patent Document 1 below, at present, more than 80% of commercial thermal power generation units in Japan have accumulated operation hours exceeding 100,000 hours, and the remaining 20% The situation is over 200,000 hours. For this reason, at the time of periodic inspection, for the boiler of the thermal power generation unit, the location under the harshest conditions is selected from the past life-span diagnosis history, structure, stress, temperature, weighting, etc., and the creep deterioration progresses. It is important to understand the situation accurately and repair appropriately.
[0004] 下記の非特許文献 2には、実機部材に発生したボイドに注目した従来のクリープ余 寿命評価方法として、部材表面を研磨し、腐食させ、ァセチルセルロース製等の膜を 貼り付けて部材表面を写しとつたもの(以下「レプリカ」 、う)を用いた評価方法が記 載されている。このレプリカを用いた余寿命或いはクリープ損傷評価方法としては、 A ノ メータ、組織対比、ボイド面積率 (非特許文献 3)、ボイド面積密度、粒界損傷 (非 特許文献 4)等の各種パラメータによる評価方法が知られている。 In Non-Patent Document 2 below, as a conventional method for evaluating the remaining creep life, which focuses on voids generated in actual machine members, the surfaces of the members are polished and corroded, and a film made of acetyl cellulose is attached. An evaluation method using a copy of the surface of the member (hereinafter referred to as “replica”) is described. Methods for evaluating the remaining life or creep damage using this replica include A-meter, microstructure comparison, void area ratio (Non-Patent Document 3), void area density, grain boundary damage (non- An evaluation method using various parameters such as Patent Document 4) is known.
[0005] これらの方法では、実機部材のクリープ劣化の状態を表すパラメータを求め、新材 の時からクリープ破壊までの総時間(寿命)に対する実使用時間の割合で表される「 クリープ寿命消費率」を求めることによって、実機部材の余寿命を推定する。具体的 には、上記いずれの方法においても、まず、クリープ試験を行い、各方法のパラメ一 タとクリープ寿命消費率との関係を表すマスターカーブを作成する。そして、対象とす る実機部材の表面力もレプリカを採取し、このレプリカ上で求めたパラメータを上記マ スターカーブと照合することにより、当該実機部材のクリープ寿命消費率を推定する ことができる。更に、実機部材の余寿命評価時における実使用時間とクリープ寿命消 費率とに基づいて、実機部材の余寿命を表す時間を推定することができる。具体的 には、評価時におけるクリープ寿命消費率を" A"、実使用時間を" B"とすると、余寿 命 tは、 "t=B X { (1— A) ZA}"の式により求めることができる。 [0005] In these methods, a parameter indicating the state of creep deterioration of a real machine member is obtained, and the "creep life consumption rate" is expressed as a ratio of the actual use time to the total time (life) from the time of new material to creep rupture. To estimate the remaining life of the members of the actual machine. Specifically, in any of the above methods, first, a creep test is performed to create a master curve representing the relationship between the parameters of each method and the creep life consumption rate. Then, a replica of the surface force of the target actual machine member is sampled, and the parameter obtained on the replica is compared with the master curve, whereby the creep life consumption rate of the actual machine member can be estimated. Further, the time indicating the remaining life of the actual machine member can be estimated based on the actual use time and the creep life consumption rate at the time of evaluating the remaining life of the actual machine member. Specifically, assuming that the creep life consumption rate at the time of evaluation is "A" and the actual usage time is "B", the remaining life t is obtained by the formula "t = BX {(1—A) ZA}". be able to.
[0006] このほかにも、下記の非特許文献 5には、超音波ノイズエネルギー法や超音波スぺ タトロスコピー法等の非破壊検査にてクリープ余寿命を推定する方法が記載されてい る。また、下記の非特許文献 6、 7には、粒界のボイドに着目した指標として用いられ る「粒界線上ボイド占有率」(非特許文献 8)について、クリープ損傷パラメータとして の物理的意味が明確であることが記載されている。 [0006] In addition, Non-Patent Document 5 below describes a method for estimating the remaining creep life by a non-destructive inspection such as an ultrasonic noise energy method or an ultrasonic statroscopy method. Non-Patent Documents 6 and 7 below describe the physical meaning of the “void occupancy on the grain boundary line” (Non-Patent Document 8) used as an index focusing on voids at grain boundaries as a creep damage parameter. It is stated that it is clear.
[0007] 上記の各評価法のうち「Aパラメータ法」は、決められた領域内で応力軸に平行な 直線を引き、この直線と粒界線との交点数に占めるボイドの発生した粒界線の割合を ノ ラメータとするものであり、一般に「測定用 Aパラメータ」と呼ばれている。し力しなが ら、 Aパラメータは、粒界に 1つでもボイドが存在すれば、その粒界面は大きな損傷を 受けたとして、その粒界全体を微小き裂とみなす、という考え方に基づくため、一般的 に用いられる測定用 Aパラメータの物理的意味は希薄とされて 、る。  [0007] Among the above evaluation methods, the "A-parameter method" draws a straight line parallel to the stress axis within a predetermined region, and determines the number of intersections between the straight line and the grain boundary line. The ratio is a parameter, and is generally called the "A parameter for measurement". However, the A parameter is based on the idea that if at least one void exists at the grain boundary, the grain interface is considered to be severely damaged and the entire grain boundary is regarded as a small crack. However, the physical meaning of the commonly used measurement A parameter is considered to be sparse.
[0008] 「ボイド面積率法」は、決められた領域内で単位面積当たりのボイドの面積の割合を ノ ラメータとするものであり、「ボイド面積密度法」は、単位面積 (通常 lmm2)当たりに 存在するボイドの個数をパラメータとする評価方法である。このボイド面積密度法は、 ボイドの個数を求めるだけでよいため、測定は容易である力 このパラメータ (ボイド 面積密度)は、ボイドの半径及び個数に比例し、結晶粒径に反比例するため、部材 内部に実際に存在するボイドの個数を直接表すものではないという問題点がある。 [0008] The "void area ratio method" uses the ratio of the void area per unit area in a predetermined region as a parameter, and the "void area density method" uses the unit area (usually lmm 2 ). This evaluation method uses the number of voids per hit as a parameter. Since this void area density method only needs to find the number of voids, measurement is easy. This parameter (void area density) is proportional to the radius and number of voids, and inversely proportional to the crystal grain size. There is a problem that it does not directly represent the number of voids actually existing inside.
[0009] 「粒界線上ボイド占有率法」は、部材の切断面又は表面に現れた所定の範囲内に ある各粒界線について、粒界線の長さに対する、該粒界線上にある各ボイドの長さの 合計の割合を求め、その平均値をパラメータとする評価方法である。このパラメータ は、クリープ破壊の経路となる粒界面上でのボイドの面積率と等しぐ従来の損傷力 学で用いられてきた有効断面積と一対一の対応関係があるため、物理的な意味が明 確であるとされている力 他の方法と比べて測定が困難であるという問題点がある。  [0009] "Void occupancy on grain boundary line method" is a method for each grain boundary line within a predetermined range appearing on a cut surface or a surface of a member, for each void on the grain boundary line with respect to the length of the grain boundary line. This is an evaluation method that calculates the ratio of the total length and uses the average value as a parameter. This parameter has a one-to-one correspondence with the effective area used in conventional damage mechanics, which is equivalent to the area ratio of voids at the grain interface, which is the path of creep rupture. There is a problem that the force is difficult to measure compared to other methods.
[0010] 下記の特許文献 1には、クリープ劣化した機器部材の「クリープ寿命消費率」を簡単 に精度よく推定することができるクリープ (余)寿命評価方法が記載されて 、る。この 方法は、部材の 1つの結晶粒界の長さに対する該粒界上にあるボイドの長さの合計 の割合を各粒界にっ 、て求め、その最大値をパラメータ(「Mパラメータ」 t 、う)とす る評価方法であることから、「Mパラメータ法」と呼ばれている。この Mパラメータ法で は、 Mパラメータ力 1 "に近いほど、クリープ寿命消費率が高く余寿命が短い、即ちク リーブ破壊の危険性が高 、と 、う評価を得ることができる。  [0010] Patent Document 1 below describes a creep (remaining) life evaluation method capable of easily and accurately estimating the "creep life consumption rate" of a creep-degraded device member. In this method, the ratio of the total length of voids on a grain boundary to the length of one grain boundary of a member is determined for each grain boundary, and the maximum value is determined as a parameter (“M parameter” t). This method is referred to as the “M-parameter method”. According to the M-parameter method, it is possible to obtain an evaluation that the creep life consumption rate is high and the remaining life is short, that is, the risk of creep fracture is high, as the M-parameter force is closer to 1 ".
[0011] 特許文献 1:国際公開 WO02Z014835号公報 Patent Document 1: International Publication WO02Z014835
非特許文献 1 :岩本啓一,火力原子力発電, 48-8 (1997) , 14  Non-patent Document 1: Keiichi Iwamoto, Thermal and Nuclear Power, 48-8 (1997), 14
非特許文献 2 :社団法人日本鉄鋼協会,レプリカ法によるクリープ及びクリープ疲労 損傷マニュアル"構造材料の信頼性評価技術部会高温強度 WG研究成果報告書( 別冊マニュアル), (1991) , 1  Non-Patent Document 2: Japan Iron and Steel Association, Creep and Creep-Fatigue Damage Manual by Replica Method "Structural Material Reliability Evaluation Technology Subcommittee High-Temperature Strength WG Research Results Report (separate volume manual), (1991), 1
非特許文献 3 :野中勇,園家啓嗣,中代雅士,米山弘志,北川正榭,石川島播磨技 報, 32- 5 (1992) , 313  Non-Patent Document 3: Isamu Nonaka, Keiji Sonoya, Masashi Nakashiro, Hiroshi Yoneyama, Masaaki Kitagawa, Harima Ishikawajima Harima Technical Report, 32-5 (1992), 313
非特許文献 4:菊地賢司,加治芳行,材料, 44- 505 (1995) , 1244  Non-patent Document 4: Kenji Kikuchi, Yoshiyuki Kaji, Materials, 44-505 (1995), 1244
非特許文献 5 :日本機械学会編,動力プラント '構造物の余寿命評価技術, (1992) Non-Patent Document 5: Japan Society of Mechanical Engineers, Power Plant 'Remaining Life Evaluation Technology for Structures, (1992)
, 89,技報堂出版 , 89, Gihodo Publishing
非特許文献 6 :多田直哉,福田哲史,北村隆行,大谷隆一,材料 46— 1, (1997) , 3 9  Non-Patent Document 6: Naoya Tada, Tetsushi Fukuda, Takayuki Kitamura, Ryuichi Otani, Materials 46-1, (1997), 39
非特許文献 7 :多田直哉,北村隆行,大谷隆一,材料 45— 1, (1996) , 110 非特許文献 8 :江嶋恒行,周,大谷隆一,北村隆行,多田直哉,第 32回高温強度シ ンポジゥム前刷集, (1994) , 94 Non-patent document 7: Naoya Tada, Takayuki Kitamura, Ryuichi Otani, Materials 45-1, 1, (1996), 110 Non-patent document 8: Tsuneyuki Ejima, Zhou, Ryuichi Otani, Takayuki Kitamura, Naoya Tada, The 32nd high temperature strength system Preprints of Non-Podium, (1994), 94
発明の開示  Disclosure of the invention
[0012] し力しながら、上記のような機器部材において、特に溶接金属部及び溶接熱影響 部の金属組織は、溶接金属側から順に、主に粒径約 100マイクロメートル m)程度 (200 μ m以上のものもある)の結晶力 成る粗粒部と、粒径 1 μ m〜10 μ m程度の結 晶から成る細粒部とで構成される点、及び、 1つのボイドが細粒部における 1つの結 晶粒界とほぼ同じ大きさに成長することが最近の実験で判明した点を踏まえると、上 記の Mパラメータ法で「細粒部」を評価する場合には、クリープ寿命の初期において Mパラメータ力 1 "に達する、即ちクリープ破壊の危険性が高いという評価に至るお それがある。  [0012] In the above-mentioned device members, the metal structures of the weld metal portion and the heat affected zone of the weld, in particular, have a particle size of about 100 micrometers (m) in order from the weld metal side (200 μm). m) and a fine-grained part consisting of crystals with a grain size of about 1 μm to 10 μm. Considering that recent experiments have shown that the grain grows to almost the same size as one crystal grain boundary in the above, when the `` fine grain part '' is evaluated by the above M-parameter method, the creep life There is a possibility that the M-parameter force reaches 1 "in the early stage, that is, the risk of creep rupture is high.
[0013] また、前述のように、クリープ破壊は粒界上で発生したボイドが成長、連結、合体し て微視き裂を形成することが主要因である点、及び、微視き裂は特にクリープ寿命の 後半において集中的に発生する点を踏まえると、 1つのボイドが細粒部における 1つ の結晶粒界と同じ大きさになっても、直ちにクリープ破壊の危険性が高いとはいえな いため、 Mパラメータ法は、「細粒部」に対してはクリープ寿命を精度よく評価すること が困難である。  [0013] As described above, creep rupture is mainly attributable to the fact that voids generated on grain boundaries grow, connect, and coalesce to form microcracks. In particular, considering that intensive cracks occur in the second half of the creep life, even if one void has the same size as one grain boundary in the fine grain part, there is a high risk of creep rupture immediately. Therefore, it is difficult for the M-parameter method to accurately evaluate the creep life of “fine-grained parts”.
[0014] 一方、種々のクリープ試験の結果によれば、粗粒部と細粒部においてクリープ破壊 に至る部分は、長手溶接又は周溶接等の溶接方法の違いや応力の掛かり具合等の 各種条件によって異なる点、及び、実機部材は各種の溶接が施され、かつ多軸応力 場に置かれている点を考慮すると、細粒部におけるクリープ寿命を精度よく評価する ことも重要である。  [0014] On the other hand, according to the results of various creep tests, the portions that lead to creep rupture in the coarse-grained portion and the fine-grained portion are determined by various conditions such as differences in welding methods such as longitudinal welding or girth welding and the degree of application of stress. It is important to accurately evaluate the creep life of fine-grained parts in view of the fact that they differ from each other and that the actual parts are subjected to various types of welding and are placed in a multiaxial stress field.
[0015] また、細粒部を評価する場合、例えば、従来の Aパラメータ法では、測定対象となる 損傷を受けている粒界が不明確であること、及び粒界数が非常に多くなることから、 細粒部を評価するのは実際上困難である。  [0015] In the case of evaluating a fine grain portion, for example, in the conventional A-parameter method, the damaged grain boundary to be measured is unclear and the number of grain boundaries becomes extremely large. Therefore, it is practically difficult to evaluate fine-grained parts.
[0016] 本発明は、以上の状況に鑑み、クリープ損傷を受けている機器部材の余寿命を、 細粒部と粗粒部とに拘わらず精度よく評価することができる方法を提供することを目 的とする。 The present invention has been made in view of the above circumstances, and provides a method capable of accurately evaluating the remaining life of a device member subjected to creep damage irrespective of a fine grain portion and a coarse grain portion. The purpose is.
[0017] 本発明は、クリープ損傷を受けている機器部材がクリープ破壊するまでの時間又は クリープ寿命消費率で表される余寿命を評価するための方法にぉ ヽて、前記機器部 材の表面において、所定の範囲内で複数の結晶粒界に亘つて存在する特定ボイド の個数を求め、前記所定の範囲の面積に対する当該特定ボイドの個数の比を特定 ボイド密度とし、前記機器部材の表面において、所定の範囲内で 1結晶粒界の長さ に対する該粒界上にある全ボイドの長さの合計の比をボイド粒界占有率として各結 晶粒界について求め、その最大値を最大ボイド粒界占有率とし、前記特定ボイド密 度と前記最大ボイド粒界占有率に基づ!/ヽて前記機器部材の余寿命をそれぞれ評価 し、 Vヽずれか短く評価された方の結果を前記機器部材の余寿命とすることを特徴とす る。 [0017] The present invention relates to a time or a time until a creep-damaged device member undergoes creep rupture. In a method for evaluating the remaining life represented by the creep life consumption rate, the number of specific voids existing over a plurality of crystal grain boundaries within a predetermined range on the surface of the above-mentioned component is determined. The ratio of the number of the specific voids to the area of the predetermined range is defined as a specific void density, and the length of one crystal grain boundary within the predetermined range on the surface of the device member is defined by the total voids on the grain boundaries. The ratio of the total length is determined as void grain boundary occupancy for each crystal grain boundary, and the maximum value is defined as the maximum void grain boundary occupancy, based on the specific void density and the maximum void grain boundary occupancy! / Evaluate the remaining life of each of the device members, and use the result of the shorter evaluation of V ヽ as the remaining life of the device members.
[0018] 発明の実施態様では、上記特定ボイドは、少なくとも 2つの結晶粒界の各長さの 1/2 以上に亘つて存在する拡張ボイドであり、或いは、複数の結晶粒界上で発生したボイ ドが合体することによって形成された連結ボイドである。  [0018] In the embodiment of the invention, the specific void is an extended void existing over at least 1/2 of each length of at least two grain boundaries, or generated on a plurality of grain boundaries. It is a connecting void formed by merging the voids.
[0019] また、上記最大ボイド粒界占有率は、以下の式で求められる。  The maximum void grain boundary occupancy is calculated by the following equation.
[0020] [数 1] 最大ボイ ド粒界占有率 (M P ) = [0020] [Equation 1] Maximum void grain boundary occupancy (MP) =
Figure imgf000007_0001
Figure imgf000007_0001
[0021] ここで、 mはボイドが存在する粒界の数、 nは各粒界上に存在するボイドの個数、 1  Here, m is the number of grain boundaries where voids exist, n is the number of voids present on each grain boundary, 1
α ι は α番目の粒界上に存在する i番目のボイドの粒界方向の長さ、 L はボイドが存在 する α番目の粒界の長さである。  α ι is the length of the i-th void on the α-th grain boundary in the direction of the grain boundary, and L is the length of the α-th grain boundary where the void exists.
[0022] 更に、余寿命の評価は、上記特定ボイド密度と余寿命との関係について及び上記 最大ボイド粒界占有率と余寿命との関係にっ ヽてクリープ試験から得られた各評価 基準を参照することにより、前記時間を推定することである。或いは、余寿命の評価 は、上記特定ボイド密度及び最大ボイド粒界占有率につ!、ての各評価基準に加えて 、所定の範囲の面積に対する当該範囲内の全ボイドの個数の比であるボイド個数密 度その他のパラメータにつ 、ての評価基準も参照し、各パラメータの評価基準で推 定される時間のうち最短のものを前記余寿命とすることである。  [0022] Further, the evaluation of the remaining life is based on the evaluation criteria obtained from the creep test on the relationship between the specific void density and the remaining life and on the relationship between the maximum void grain boundary occupancy and the remaining life. Estimating said time by reference. Alternatively, the evaluation of the remaining life is the ratio of the number of all voids within the predetermined range to the area of the predetermined range in addition to the above evaluation criteria for the specific void density and the maximum void grain boundary occupancy. With reference to the evaluation criteria for the void number density and other parameters, the shortest time estimated by the evaluation criteria for each parameter is defined as the remaining life.
[0023] より具体的な態様では、機器部材の粒径 10 μ m以下の結晶で形成される細粒部の 表面に存在するボイドを対象とする。 [0024] また、機器部材の表面を画像ィ匕して、該画像上でボイドの個数を求める。この場合 、機器部材の表面を研磨して腐食させた後にァセチルセルロース製等の膜を貼り付 けて該表面を写しとる力、又は撮像手段を用いて機器部材の表面を撮像することに よって、機器部材の表面を画像ィ匕することが可能である。 [0023] A more specific embodiment is directed to a void present on the surface of a fine grain portion formed of a crystal having a grain size of 10 µm or less of an equipment member. Further, the surface of the device member is imaged, and the number of voids is obtained on the image. In this case, the surface of the device member is polished and corroded, and then a film made of acetyl cellulose or the like is attached to the device member. In addition, it is possible to image the surface of the device member.
[0025] 本発明によれば、機器部材の表面において所定の範囲内で複数の結晶粒界に亘 つて存在する特定ボイドの個数を求め、その範囲の面積に対する特定ボイドの個数 の比で表される特定ボイド密度を求めることにより、クリープ損傷を受けている機器部 材の余寿命を評価することができる。この評価法は、所定の範囲内にあるボイドの全 てではなぐそのうちの特定ボイドのみを検出すればよいので、従来のボイド個数密 度法よりも迅速且つ容易に評価できる。また、複数の結晶粒界に亘つて存在する特 定ボイドは、 1つの粒界を越えて 2以上の粒界に跨るまでに成長したボイドであるので 、その個数は、当該機器部材の表面のクリープ劣化の進行の度合いを示す指標とな る。従って、上記の「特定ボイド密度」というパラメータを用いることで、クリープ劣化の 状況、具体的には余寿命を正しく把握できると共に、結晶粒界が小さい「細粒部」に おいても 2以上の粒界に跨るボイドに着目することで、従来の Aパラメータ法等の評 価方法では困難な細粒部における余寿命の評価を精度よく行うことができる。  According to the present invention, the number of specific voids existing over a plurality of crystal grain boundaries within a predetermined range on the surface of an equipment member is determined, and is represented by the ratio of the number of specific voids to the area of the range. By determining the specific void density, the remaining life of equipment components that have undergone creep damage can be evaluated. In this evaluation method, it is necessary to detect only a specific void among all voids within a predetermined range, and therefore, the evaluation can be performed more quickly and easily than the conventional void number density method. In addition, the specific void existing over a plurality of crystal grain boundaries is a void that has grown from one grain boundary to two or more grain boundaries. It is an index that indicates the degree of progress of creep deterioration. Therefore, by using the above-mentioned parameter of “specific void density”, the state of creep deterioration, specifically, the remaining life can be accurately grasped, and even in the “fine grain part” where the crystal grain boundary is small, two or more By paying attention to voids extending across the grain boundaries, it is possible to accurately evaluate the remaining life of fine-grained parts, which is difficult with conventional evaluation methods such as the A-parameter method.
[0026] 具体的態様によれば、特定ボイドとして、少なくとも 2つの結晶粒界の各長さの 1/2 以上に亘つて存在する拡張ボイド、或いは、複数の結晶粒界上で発生したボイドが 合体することによって形成された連結ボイドを検出することにより、クリープ劣化の進 行の度合いをより正確に把握できる。  [0026] According to a specific mode, as the specific void, an extended void existing over at least 1/2 of each length of at least two crystal grain boundaries, or a void generated on a plurality of crystal grain boundaries. By detecting the connection voids formed by merging, the degree of progress of creep deterioration can be grasped more accurately.
[0027] また、具体的な余寿命の評価法として、上記のような特定ボイド密度と余寿命との 関係につ 1ヽてクリープ試験で得られた評価基準 (例えば、後述のマスターカーブ)を 参照ないし照合することにより、機器部材がクリープ破壊するまでの時間(或いはタリ ープ寿命消費率)を推定することができる。  As a specific method for evaluating the remaining life, an evaluation criterion (for example, a master curve described later) obtained by a creep test based on the relationship between the specific void density and the remaining life as described above is used. By referring or collating, it is possible to estimate the time (or tallip life consumption rate) until the equipment member undergoes creep rupture.
[0028] 更に、上記「特定ボイド密度」についての評価基準のほかに、「ボイド個数密度」そ の他のパラメータにつ 、ての評価基準も参照し、各パラメータの評価基準で推定され る時間のうち最短のものを機器部材の余寿命とすることで、より安全側に立った評価 が可能である。これらの評価基準としては、後述のとおり各パラメータとクリープ寿命 消費率との関係を表すマスターカーブその他、両者の関係を表す関数やデータなど を用いることができる。 [0028] Further, in addition to the evaluation criterion for the "specific void density", the evaluation criterion for the "void number density" and other parameters is also referred to, and the time estimated by the evaluation criterion of each parameter is referred to. By setting the shortest of these as the remaining life of the equipment members, it is possible to make evaluations from a safer side. These evaluation criteria include parameters and creep life as described below. A master curve indicating the relationship with the consumption rate, a function or data indicating the relationship between the two, and the like can be used.
[0029] また、本発明によれば、所定の範囲内にあるボイドの個数を求める箇所として、前 述のように粒径 10 μ m以下の結晶で形成される細粒部の表面を選ぶことができる。  Further, according to the present invention, as described above, the surface of the fine-grain portion formed of a crystal having a grain size of 10 μm or less is selected as a portion for determining the number of voids within a predetermined range. Can be.
[0030] 更に、本発明方法の実施に際しては、機器部材表面に存在するボイドを測定する 手段として、機器部材の表面を画像化すれば、コンピュータ等の機械によって特定ボ イドを自動認識し、画像上でそれらの個数を迅速且つ容易に求めることができる。こ の場合、機器部材の表面の画像は、機器部材の表面を研磨して腐食させた後にァ セチルセルロース製等の膜を貼り付けて該表面を写しとること、又は撮像手段を用い て機器部材の表面を撮像することによって得られる。  Further, when implementing the method of the present invention, as a means for measuring the voids present on the surface of the equipment member, if the surface of the equipment member is imaged, the specific void is automatically recognized by a machine such as a computer, and the image is obtained. Above, their number can be determined quickly and easily. In this case, the image of the surface of the device member may be obtained by polishing and corroding the surface of the device member and then attaching a film made of acetyl cellulose or the like, or photographing the surface of the device member using imaging means. Obtained by imaging the surface of.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]実施例のクリープ余寿命評価方法のメインフローチャート。  FIG. 1 is a main flowchart of a creep remaining life evaluation method of an embodiment.
[図 2]クリープ試験に用いた供試体及びボイド観察位置を示す図。  FIG. 2 is a diagram showing a specimen and a void observation position used in a creep test.
[図 3]クリープ試験に用いた供試体及びボイド観察位置を示す図。  FIG. 3 is a diagram showing a specimen and a void observation position used in a creep test.
[図 4]クリープ試験に用いた供試体及びボイド観察位置を示す図。  FIG. 4 is a diagram showing a specimen and a void observation position used in a creep test.
[図 5]火力発電所の実機廃材において試験片を採取した位置を示す図。  FIG. 5 is a diagram showing a position where a test piece is collected from actual waste wood of a thermal power plant.
[図 6]配管内圧クリープ破壊試験の各中途止め時におけるボイドの発生状況を示す 電子顕微鏡写真。  FIG. 6 is an electron micrograph showing the occurrence of voids at each interruption in the creep rupture test for pipe internal pressure.
[図 7]内圧クリープ破壊試験 (実機加速試験)の各中途止め時における観察位置のボ イド発生状況を示す図。  FIG. 7 is a diagram showing a state of void generation at an observation position at each interruption during an internal pressure creep rupture test (actual machine acceleration test).
[図 8]Lパラメータの基本的な考え方を示す図。  FIG. 8 is a view showing a basic concept of an L parameter.
[図 9]Mパラメータの基本的な考え方を示す図。  FIG. 9 is a diagram showing a basic concept of M parameters.
[図 10]Lパラメータとクリープ寿命消費率との関係を表すマスターカーブ。  [Figure 10] Master curve showing the relationship between L parameter and creep life consumption rate.
[図 11]Mパラメータとタリープ寿命消費率との関係を表すマスターカーブ。  FIG. 11 is a master curve showing a relationship between an M parameter and a talyp life consumption rate.
[図 12]ボイド個数密度法のパラメータであるボイド個数密度の基本的な考え方を示す 図。  FIG. 12 is a diagram showing a basic concept of a void number density which is a parameter of the void number density method.
[図 13]ボイド個数密度法のマスターカーブ。  [Figure 13] Master curve of void number density method.
発明を実施するための最良の形態 [0032] 図 1は、本発明のクリープ余寿命評価方法のメインフローチャートである。 BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 is a main flowchart of the remaining creep life evaluation method of the present invention.
[0033] 実施例では、発電プラントのボイラにおいて高温'高圧下で使用されてクリープ損 傷して 、る部材が、クリープ破壊に至るまでの時間又はクリープ寿命消費率で表され る余寿命を評価する方法にっ ヽて説明する。  [0033] In the embodiment, the remaining life of a member that is used under high temperature and high pressure in a boiler of a power plant and undergoes creep damage and evaluates the time until creep fracture or the creep life consumption rate is evaluated. I will explain how to do it.
[0034] このクリープ余寿命評価方法では、実機部材の表面に存在するボイドと呼ばれる微 小な空孔に基づく所定のパラメータを求め、これを、予め作成したパラメータ及び余 寿命の関係を表す評価基準に照らし合わせることによって、当該部材の余寿命を評 価する。そこで、上記評価基準を作成するため、各種供試体を用いてクリープ試験を 行い、適宜中途止めを行いながら上記パラメータとしての後述のボイド連結密度 (Voi ds Linking Density Parameter [以下、 Lパラメータという])及び最大ボイド粒界占有率 (Maximum Fraction of Voids on the Grain boundary Line Parameter [以下、 Mノヽフメ ータという])を求める (ステップ [以下、 STと表記する] 1)。  [0034] In this creep remaining life evaluation method, predetermined parameters based on minute holes called voids existing on the surface of the actual machine member are obtained, and the obtained parameters are evaluated based on an evaluation criterion representing the relationship between parameters created in advance and remaining life. To evaluate the remaining life of the member. Therefore, in order to create the above evaluation criteria, a creep test is performed using various test specimens, and a void linking density parameter (hereinafter referred to as an L parameter) is used as the above parameter while appropriately stopping the test. And the maximum void fraction on the grain boundary line parameter [hereinafter referred to as M-noise meter] is determined (step [hereinafter referred to as ST] 1).
[0035] 図 2〜図 4は、クリープ試験に用いる供試体及び各供試体におけるボイド観察位置 を示す。  FIGS. 2 to 4 show specimens used for the creep test and the void observation position in each specimen.
[0036] 図 2に示す供試体は、実働中の高温再熱蒸気管にてクリープ損傷を受けている溶 接部から採取した試験片 1であり、これを用いて、適宜中途止めを行いながらクリープ 破断試験を行う。試験条件を以下に示す。  [0036] The test piece shown in Fig. 2 is a test piece 1 taken from a welded part that has been subjected to creep damage by a high-temperature reheated steam pipe in operation, and the test piece 1 is used while appropriately stopping the test piece. Conduct a creep rupture test. The test conditions are shown below.
[0037] (1)試験温度は、 883.15K  [0037] (1) The test temperature was 883.15K
(2)試験応力(引っ張り)は、 68.6MPa。  (2) The test stress (tensile) is 68.6MPa.
[0038] また、図のように、試験片 1の溶接部 2付近の金属組織は、溶接金属側から、粒径 約 100 μ m以下の結晶で形成される粗粒部 3と、粒径 1 μ m〜10 μ m程度の結晶で形 成される細粒部 4とで構成されている。実施例のクリープ余寿命評価方法では、粗粒 部 3におけるボイド観察結果に基づいて Mパラメータを求め、細粒部 4におけるボイド 観察結果に基づ 、て Lパラメータを求める。  [0038] As shown in the figure, the metallographic structure near the welded portion 2 of the test piece 1 includes, from the weld metal side, a coarse-grained portion 3 formed of crystals having a grain size of about 100 µm or less, It is composed of fine-grained parts 4 formed of crystals of about μm to 10 μm. In the creep remaining life evaluation method of the embodiment, the M parameter is obtained based on the void observation result in the coarse-grained part 3, and the L parameter is obtained based on the void observation result in the fine-grained part 4.
[0039] 図 3の供試体は、例えば、 2.25Cr-lMo鋼で作られた中実丸棒( φ 40 X t8 X L430) に周溶接を行い、中心をくり貫いた溶接継手管力も成る試験片 5である。この試験片 5の周溶接部 6は、 1〜4層の被覆アーク溶接にてできる限り実機部材の溶接部に近 い状態となるように作成し、 993KX 1.3hrにて熱処理するのがよい。この試験片 5につ いては、配管内圧クリープ破壊試験を行う。具体的には、試験片 5を電気炉内で加熱 しながら、試験片 5に加圧した水を注入し、高圧蒸気にして内圧を負荷すればよい。 この試験においても、適宜中途止めを行い、各中途止め時において粗粒部及び細 粒部におけるボイドを観察し、後述の方法により各パラメータを求める。試験条件を 以下に示す。 [0039] For example, the test specimen shown in Fig. 3 is a test in which girth welding is performed on a solid round bar (φ40Xt8XL430) made of 2.25Cr-lMo steel, and the pipe force of the weld joint penetrating the center is also obtained. Piece 5 The girth weld 6 of the test piece 5 is preferably prepared by 1 to 4 layers of covered arc welding so as to be as close as possible to the weld of the actual machine member, and is preferably heat-treated at 993KX for 1.3 hours. 5 specimens In addition, an internal pressure creep rupture test is performed. Specifically, while heating the test piece 5 in an electric furnace, pressurized water is injected into the test piece 5, and high pressure steam is applied to apply internal pressure. In this test as well, interruption is performed appropriately, voids in the coarse-grained part and fine-grained part are observed at each interruption, and each parameter is obtained by the method described later. The test conditions are shown below.
[0040] (1)試験温度は、 903K  [0040] (1) The test temperature was 903K
(2)周方向応力は、 61.3MPa (平均径の式による)。  (2) Circumferential stress is 61.3MPa (according to the formula of average diameter).
[0041] 図 4の供試体 7は、例えば、 2.25Cr-lMo鋼で作られた高温再熱蒸気管エルボの廃 材であり、この供試体 7の溶接部 8は、同じ曲率で曲げた一対の板を管状に組み合 わせた後、長手方向に施したサブマージアーク溶接で形成される。この供試体 7につ いては、適宜中途止めを行いながら内圧クリープ破壊試験 (実機加速試験)を行う。 具体的には、供試体 7の周囲を板型ヒーターで囲んで加熱した後、供試体 7内にカロ 圧した水を注入し、高圧蒸気にして内圧を負荷する。この試験においては、例えば、 溶接部 8付近の表面上に定めた 2つの観察位置 9a、 9bにおいて、各中途止め時に おける粗粒部及び細粒部のボイドを観察し、各パラメータを求める。試験条件を以下 に示す。  [0041] The specimen 7 in Fig. 4 is, for example, a waste material of a high-temperature reheated steam pipe elbow made of 2.25Cr-lMo steel, and a welded portion 8 of the specimen 7 has a pair of bent pieces having the same curvature. After assembling the plates into a tube, they are formed by submerged arc welding performed in the longitudinal direction. For this specimen 7, an internal pressure creep rupture test (acceleration test on actual equipment) is performed with appropriate interruption. Specifically, after heating the specimen 7 by surrounding it with a plate-shaped heater, water under pressure is injected into the specimen 7, and high-pressure steam is applied to apply internal pressure. In this test, for example, at two observation positions 9a and 9b defined on the surface in the vicinity of the welded portion 8, voids in the coarse-grained portion and the fine-grained portion at each interruption are observed, and each parameter is obtained. The test conditions are shown below.
[0042] (1)試験温度は、 923K  [0042] (1) The test temperature was 923K
(2)試験応力は、内庄 3.0MPa  (2) Test stress is 3.0MPa
(3)エルボ腹部中央の最大主応力は、 39.2MPa  (3) The maximum principal stress at the center of the elbow abdomen is 39.2MPa
(4)供試体 7の廃却時までの実使用時間は、約 1475hr。  (4) Approximately 1475 hours of actual use time until disposal of specimen 7
[0043] 図 5は、更に別のクリープ試験を行うため、火力発電所の実機廃材から試験片を採 取した位置を示す。 (a)の SH管寄 Tピースパイプ及び (b)の RHYピースパイプでは 、周溶接部 10、 11付近の表面においてボイドを観察し、ボイドの存在が認められた 部位近傍の断面から、直径 10mmで標点間距離 50mmの丸棒試験片を採取する。 (c) の RH管寄スタブでは、ボイドの存在が認められた管寄スタブ溶接部 12近傍の断面 から、直径 2mmのミニチュアクリープ丸棒試験片を採取する。これらの試験片につい ては、適宜中途止めを行いながら、不活性ガス雰囲気中での単軸クリープ破断試験 を行い、各中途止め時において粗粒部及び細粒部にてボイドを観察し、各パラメ一 タを求める。各廃材の使用条件を以下の表に示す。 FIG. 5 shows a position where a test piece was taken from a waste material of an actual thermal power plant to perform another creep test. In the T piece pipe near the SH pipe in (a) and the RHY piece pipe in (b), voids were observed on the surfaces near the circumferential welds 10 and 11, and the diameter was 10 mm from the cross section near the part where the presence of voids was recognized. Collect a round bar specimen with a gauge length of 50 mm with. In the RH stub-side stub of (c), a 2mm diameter miniature creep round bar specimen is taken from the cross section near the stub welded part 12 where the presence of voids has been recognized. For these test pieces, a uniaxial creep rupture test was performed in an inert gas atmosphere while appropriately stopping them. Parameter Ask for data. The usage conditions for each waste material are shown in the table below.
[0044] [表 1]  [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0045] 図 6は、試験片 5 (図 3)を用いた配管内圧クリープ破壊試験の各中途止め時におけ るボイドの発生状況を示す。ボイド観察においては、例えば、図のように走査型電子 顕微鏡 (以下「SEM」 t 、う)を用いて試験片 5の表面を直接画像ィ匕してもょ 、し、試験 片 5の表面を研磨し、腐食させ、所定の膜 (例えば、ァセチルセルロースフィルム)を 貼り付けて部材表面を写しとつたレプリカを SEMで画像ィ匕して観察することもできる。  [0045] Fig. 6 shows the state of void generation at each interruption in the pipe internal pressure creep rupture test using test piece 5 (Fig. 3). In the void observation, for example, the surface of the test piece 5 may be directly imaged using a scanning electron microscope (hereinafter, “SEM” t) as shown in the figure, and the surface of the test piece 5 may be It can also be polished and corroded, and a replica obtained by attaching a predetermined film (for example, an acetyl cellulose film) and copying the surface of the member can be observed with a SEM.
[0046] レプリカ採取において、試験片 5の表面を研磨するには、例えば、グラインダにて粗 研磨し、 120番〜 1000番の研ぎ目の砥石にて順次研磨した後、 3 m〜l m程度の ダイヤモンド粒子によるパフ研磨を順次行 、、鏡面仕上げを行うのがよ 、。  In replica sampling, the surface of the test piece 5 is polished by, for example, rough polishing with a grinder, successively polishing with a grindstone of No. 120-No. It is better to sequentially perform puff polishing with diamond particles and perform mirror finishing.
[0047] 更に、試験片 5の表面を腐食させるには、例えば、上記のように表面を研磨した後 に、腐食液を脱脂綿に染み込ませて研磨面に塗布することにより、金属組織中の結 晶粒界を識別可能にすることができる。腐食には、以下の 2種類の腐食液を用いるこ とがでさる。  [0047] Further, in order to corrode the surface of the test piece 5, for example, after polishing the surface as described above, the corrosive liquid is impregnated into absorbent cotton and applied to the polished surface to form a bond in the metal structure. Grain boundaries can be made identifiable. The following two types of corrosive liquids can be used for corrosion.
[0048] (1)ピクリン酸:飽和ピクリン酸 (メタノールに溶解) +界面活性剤  [0048] (1) Picric acid: Saturated picric acid (dissolved in methanol) + surfactant
(2)硝酸(5ml) +メタノール(95ml)。  (2) Nitric acid (5 ml) + methanol (95 ml).
[0049] 上記界面活性剤には、例えば、ドデシルベンゼンスルホン酸ナトリウムを用い、飽和 ピクリン酸 100mlに対して 1 gの割合で混ぜ合わせるのがよい。  [0049] As the above surfactant, for example, sodium dodecylbenzenesulfonate is preferably used and mixed at a ratio of 1 g to 100 ml of saturated picric acid.
[0050] そして、レプリカを採取するには、腐食した試験片 5の表面にレプリカ軟ィ匕材 (例え ば、酢酸メチル)を塗布し、ァセチルセルロースフィルムを貼り付けて、レプリカ軟化材 が十分乾燥した後、このァセチルセルロースフィルムを剥がせば、試験片 5の表面を 写しとることができる。これにより、試験片 5の表面に生じているボイドは、当該レプリカ 上で突起となって現れる。  [0050] Then, in order to collect a replica, a replica softening material (for example, methyl acetate) is applied to the surface of the corroded test piece 5 and an acetyl cellulose film is stuck thereon, so that the replica softening material is sufficient. If the acetyl cellulose film is peeled off after drying, the surface of the test piece 5 can be copied. As a result, voids generated on the surface of the test piece 5 appear as protrusions on the replica.
[0051] また、ボイド観察においては、予め光学顕微鏡等により所定の範囲(例えば、 30mm2 )におけるボイド発生状況を観察して、最も損傷が進行している (ボイドの発生 '連結 が集中している)箇所を確認した後、その箇所を SEMにて観察 (例えば、 1000倍で観 察)すれば、損傷が進行して 、る箇所を見逃すことなくボイド観察を行うことができる。 In void observation, a predetermined range (for example, 30 mm 2 Observing the void generation status in (), confirming the location where damage is most aggressive (voids are generated and connection is concentrated), and then observing that location by SEM (e.g., observation at 1000x) ), It is possible to perform a void observation without missing a spot where damage has progressed.
[0052] 再び図 6に戻り、試験片 5の表面では、配管内圧クリープ破壊試験における時間の 経過とともに、ボイドの数が増加しているのがわかる。例えば、各中途止め時における ボイド発生状況は、図に示すように、 Referring back to FIG. 6, it can be seen that the number of voids increases on the surface of the test piece 5 with the elapse of time in the pipe internal pressure creep rupture test. For example, as shown in the figure, the state of void generation at each stop
(1)クリープ寿命消費率 (tZtr) =0.49では、 1 μ m程度のボイドが発生し、 (1) When the creep life consumption rate (tZtr) = 0.49, a void of about 1 μm is generated,
(2) tZtr=0.73では、同一粒界に複数のボイドが発生し、 (2) At tZtr = 0.73, multiple voids occur at the same grain boundary,
(3) t/tr = 0.97では、ボイドの連結が認められ、  (3) At t / tr = 0.97, void connection is observed,
(4) tZtr= 1.0では、微視き裂を形成して!/、た。  (4) At tZtr = 1.0, microcracks were formed!
[0053] ここで、上記各中途止め時をクリープ寿命消費率 (tZtr)で表したが、これは、試験 片 5がクリープ破壊に至るまで配管内圧クリープ破壊試験を行った結果カゝら得られた 値である。  [0053] Here, the above interruptions are represented by the creep life consumption rate (tZtr), which is obtained as a result of a pipe internal pressure creep rupture test until the test piece 5 reaches creep rupture. Value.
[0054] このように、ボイドは、初め複数の粒界上にランダムに発生する力 その後は特定の 位置で集中的に発生し、やがてこれらが連結して微視き裂を形成することがわかる。  [0054] Thus, it can be seen that voids are initially generated randomly on a plurality of grain boundaries, and then concentrated at specific positions, and eventually connect to form microscopic cracks. .
[0055] 図 7は、供試体 7 (図 4)を用いた内圧クリープ破壊試験 (実機加速試験)の各中途 止め時における観察位置 9a、 9bのボイド発生状況を示す。この試験においても、ボ イドは、複数の粒界上にランダムに発生し始めた後、特定の位置で集中的に増加し、 やがてこれらが連結して微視き裂を形成することがわ力る。  FIG. 7 shows the state of void formation at observation positions 9a and 9b at the time of each interruption in the internal pressure creep rupture test (actual machine acceleration test) using specimen 7 (FIG. 4). In this test as well, voids began to form randomly on multiple grain boundaries, then increased intensively at specific locations, and eventually joined to form microcracks. You.
[0056] 図 8は、実施例のクリープ余寿命評価方法にて機器部材の余寿命を評価するため の Lパラメータの基本的な考え方を示す。  FIG. 8 shows the basic concept of the L parameter for evaluating the remaining life of the equipment member by the creep remaining life evaluation method of the embodiment.
[0057] Lパラメータは、ボイド観察位置表面の所定の範囲の面積に対する該範囲内で複 数の結晶粒界に亘つて存在するボイドの個数の比で表される。具体的な求め方は、 まず、観察位置の表面における所定の範囲(例えば、 1mm2)内で、少なくとも 2つの 結晶粒界の各長さの 1/2以上に亘つて存在するボイド (以下「連結ボイド」 t 、う)の個 数を求める。 [0057] The L parameter is represented by a ratio of the number of voids present over a plurality of crystal grain boundaries within a predetermined range on the surface of the void observation position to a predetermined range. First, a void (hereinafter, referred to as “half the length of at least two crystal grain boundaries” within a predetermined range (for example, 1 mm 2 ) on the surface of the observation position is used. Find the number of connected voids “t”.
[0058] 例えば、図のように、ある範囲において結晶粒界 15上に 3つのボイド 16a、 16b、 1 6cが存在する場合、最も上にあるボイド 16aは、 1つの結晶粒界上にのみ存在するも のであるため、連結ボイドとして数えず、無視することができる。 [0058] For example, as shown in the figure, when there are three voids 16a, 16b, and 16c on a grain boundary 15 in a certain range, the uppermost void 16a exists only on one grain boundary. Also Therefore, it is not counted as a connection void and can be ignored.
[0059] 次に、中央のボイド 16bは、 3つの結晶粒界 15上に存在し、かつ 2つの結晶粒界 1 Next, the center void 16b exists on the three grain boundaries 15 and the two voids 1b
5を完全に覆っているため、これを連結ボイドとして数える。 Since it completely covers 5, this is counted as a connecting void.
[0060] そして、ボイド 16cは、 3つの結晶粒界 15上に存在し、かつ完全に覆っている結晶 粒界 15はないものの、 2つの結晶粒界 15の各長さの 1/2以上に亘つて存在するので[0060] The voids 16c are present on the three grain boundaries 15 and do not completely cover the grain boundaries 15. However, the voids 16c are more than 1/2 of each length of the two grain boundaries 15. Because it exists throughout
、これも連結ボイドとして数える。 , This is also counted as a connected void.
[0061] 上記の方法によって、各クリープ試験の中途止め時において、観察位置表面にお ける所定の範囲(例えば、 1mm2)内で連結ボイドの個数を求めた後、この個数を、評 価対象範囲の面積 (例えば、 1mm2)で除した値で表される Lパラメータを求める。従つ て、 Lパラメータは、以下の式で定義される。 [0061] By the above method, at the time of stopping each creep test, the number of connected voids within a predetermined range (for example, 1 mm 2 ) on the surface of the observation position is determined, and this number is used as an evaluation target. Find the L parameter expressed as the value divided by the area of the range (for example, 1 mm 2 ). Therefore, the L parameter is defined by the following equation.
[0062] [数 2] [0062] [Equation 2]
Lパラメータ =m/A L parameter = m / A
Aは、 評価対象範囲の面積 (例えば、 1 mm2) A is the area of the evaluation range (for example, 1 mm 2 )
mは、 評価対象範囲内にある連結ボイドの個数  m is the number of connected voids within the evaluation target range
[0063] 図 9は、別のパラメータである Mパラメータの基本的な考え方を示す。 FIG. 9 shows the basic concept of another parameter, the M parameter.
[0064] Mパラメータは、ボイド観察位置表面の所定の範囲(例えば、 lmm2)内において、 1 結晶粒界の長さに対する該粒界上にある全ボイドの長さの合計の比をボイド粒界占 有率として各結晶粒界について求め、その最大値で表される。即ち、 Mパラメータは 、以下の式で求めることができる。 [0064] The M parameter is a ratio of the total length of all voids on the grain boundary to the length of one crystal grain boundary within a predetermined range (for example, lmm 2 ) on the surface of the void observation position. It is obtained for each grain boundary as the field occupancy, and is expressed by the maximum value. That is, the M parameter can be obtained by the following equation.
[0065] [数 3] 最大ボイ ド粒界占有率 ― [Equation 3] Maximum void grain boundary occupancy-
(Μパラメータ) ― (ΜParameter) ―
Figure imgf000014_0001
Figure imgf000014_0001
[0066] ここで、 mはボイドが存在する粒界の数、  Here, m is the number of grain boundaries where voids exist,
nは各粒界上に存在するボイドの個数、  n is the number of voids present on each grain boundary,
1 は α番目の粒界上に存在する i番目のボイドの粒界方向の長さ、  1 is the length of the i-th void on the α-th grain boundary in the direction of the grain boundary,
α ι  α ι
L はボイドが存在する α番目の粒界の長さ  L is the length of the α-th grain boundary where the void exists
である。 [0067] 従って、図のように、ある粒界 17上に 2つのボイド 18が存在し、各ボイド 18の粒界 方向の長さ力 SI、 1で、当該粒界の長さが Lとすると、この粒界におけるボイド粒界占 It is. Therefore, as shown in the figure, if there are two voids 18 on a certain grain boundary 17 and the length force SI, 1 of each void 18 in the direction of the grain boundary, and the length of the grain boundary is L, , Void grain boundary occupation at this grain boundary
1 2  1 2
有率は、以下の式により求めることができる。  The percentage can be obtained by the following equation.
[0068] [数 4] ボイ ド粒界占有率 = τ" 2 [Equation 4] void grain boundary occupancy = τ " 2
[0069] このように、所定の範囲内で各粒界についてボイド粒界占有率を求めることにより、 その最大値を Μパラメータとして得ることができる。 As described above, by obtaining the void grain boundary occupancy for each grain boundary within a predetermined range, the maximum value can be obtained as the Μ parameter.
[0070] 再びメインフローチャート(図 1)に戻り、上記の各種クリープ試験を終えた後、各中 途止め時において求めた Lパラメータに基づいて、クリープ余寿命の評価基準として の各マスターカーブを作成する(ST2、 ST3)。 [0070] Returning again to the main flowchart (Fig. 1), after completing the various creep tests described above, based on the L parameter obtained at the time of each suspension, each master curve was created as an evaluation standard of the remaining creep life. (ST2, ST3).
[0071] 図 10は、 Lパラメータとクリープ寿命消費率との関係を表すマスターカーブである。 FIG. 10 is a master curve showing the relationship between the L parameter and the creep life consumption rate.
[0072] クリープ寿命消費率は、新材の時力 クリープ破壊に至るまでの総時間" tr"に対す るクリープ試験に供した時間及び実使用時間の合計時間" t"の比で表される。従って[0072] The creep life consumption rate is represented by the ratio of the total time "t" to the total time "tr" to the time to the creep rupture of the new material and the total time "t" of the time subjected to the creep test and the actual use time. . Therefore
、供試体力 Sクリープ破壊に至ったときは、 "t/tr= l"であり、この値が小さいほど新材 の状態に近 、、即ち余寿命が長 、と評価することができる。 On the other hand, when the specimen strength S creep rupture is reached, "t / tr = l". The smaller the value, the closer to the state of the new material, that is, the longer the remaining life, it can be evaluated.
[0073] このマスターカーブによれば、 Lパラメータは、機器部材の寿命の前半ではほぼ" 0" であり、寿命の後半において増加することを示す。これにより、この Lパラメータに基づ くマスターカーブは、 According to this master curve, the L parameter is substantially “0” in the first half of the life of the device member, and increases in the second half of the life. Thus, the master curve based on this L parameter is
(1)クリープ破壊は、粒界上で発生したボイドが成長、合体、連結して微視き裂を形 成することが主要因である点、  (1) Creep rupture is mainly due to the fact that voids generated on grain boundaries grow, coalesce and join to form micro cracks.
(2)微視き裂は、特にクリープ寿命の後半において集中的に発生する点、 (2) Microscopic cracks occur intensively, especially in the second half of creep life,
(3)連結ボイドは、少なくとも 2以上の粒界の各長さの 1/2以上に亘つて存在する、即 ち複数のボイドが連結してできたものである点 (3) Connected voids exist over at least 1/2 of each length of at least two grain boundaries, that is, are formed by connecting a plurality of voids.
をよく反映して 、ることがわ力る。  It reflects well and helps you.
[0074] 図 11は、 Mパラメータとクリープ寿命消費率との関係を表すマスターカーブである。 FIG. 11 is a master curve representing the relationship between the M parameter and the creep life consumption rate.
[0075] このマスターカーブによれば、 Mパラメータは、クリープ寿命の全般に亘つて下に凸 の滑らかな曲線を描いて増加し、 Lパラメータによるマスターカーブ(図 10)その他の 従来法によるマスターカーブ (例えば、図 13)のような寿命後期における急激な増加 は認められない。また、 Mパラメータは、局在化した損傷部、即ち最大損傷部のみに 着目してクリープ寿命を評価するものであるため、寿命の初期においてもある程度の 値を示すことがわかる。以上より、この Mパラメータに基づくマスターカーブは、ボイド の成長及び連結が、溶接熱影響部粗粒域の結晶粒界上において、ある特定の粒界 上で集中的に進行することにより、き裂が発生し、これが成長して破壊に至るというク リーブ破壊のメカニズムを直接的に反映していることがわかる。 [0075] According to this master curve, the M parameter increases in a smooth downwardly convex curve over the entire creep life, and the L-parameter master curve (Fig. 10) and other conventional master curves Sudden increase in late life (e.g., Figure 13) It is not allowed. In addition, since the M parameter evaluates the creep life by focusing only on the localized damaged part, that is, only the maximum damaged part, it can be seen that the M parameter shows a certain value even at the beginning of the life. Based on the above, the master curve based on this M parameter shows that the growth and connection of voids proceed intensively on a specific grain boundary on the crystal grain boundary in the weld heat affected zone coarse grain region, and the crack It can be seen that this directly reflects the mechanism of cleaved fracture, which leads to growth and destruction.
[0076] 次に、実際に発電プラントのボイラにおいて使用され、クリープ損傷している部材の 余寿命を評価するため、評価対象の実機部材カも各種のパラメータを求める(ST4) 。ここで、実施例のクリープ余寿命評価方法では、実機部材のクリープ余寿命をより 精度良く評価するため、前述の Lパラメータと Mパラメータに基づく各評価結果と、従 来の余寿命評価方法による推定結果とを比較する。例えば、従来の余寿命評価方 法としては、ボイド個数密度法を採用することができる。  Next, in order to evaluate the remaining life of a member that is actually used in a boiler of a power plant and is creep damaged, various parameters are also obtained for the actual machine member to be evaluated (ST4). Here, in the method for evaluating the remaining creep life of the embodiment, in order to more accurately evaluate the remaining creep life of the actual machine member, the evaluation results based on the above-described L parameter and M parameter and the estimation based on the conventional remaining life evaluation method are used. Compare the result. For example, a void number density method can be adopted as a conventional remaining life evaluation method.
[0077] 実機部材力 各種パラメータを求める具体的な方法は、当該部材の溶接部のうち、 過去の余寿命診断経歴、構造、応力、温度、荷重等の条件を総合的に勘案して、最 も過酷な条件下にある箇所を選び、該箇所の表面力 レプリカを採取する。このレブ リカに写しとつた部材表面を SEMで拡大表示すれば、所定の範囲における各種パラ メータを求めることができる。  [0077] The actual method of obtaining the various member parameters is as follows. Among the welded parts of the member, a comprehensive consideration is given to the conditions of the past remaining life diagnosis history, structure, stress, temperature, load, etc. Select a location under severe conditions and collect a surface force replica of the location. By enlarging and displaying the surface of the member copied on this replica by SEM, various parameters in a predetermined range can be obtained.
[0078] Lパラメータ及び Mパラメータの求め方は、メインフローチャートの ST1で説明したと おりである。以下、ボイド個数密度法のパラメータであるボイド個数密度の求め方を説 明する。  The method for obtaining the L parameter and the M parameter is as described in ST1 of the main flowchart. Hereinafter, a method of obtaining the void number density, which is a parameter of the void number density method, will be described.
[0079] 図 12は、ボイド個数密度法のパラメータであるボイド個数密度の基本的な考え方を 示す。ボイド個数密度は、所定の範囲の面積 (例えば、 1mm2)に対する該範囲内に 存在する全ボイド 20の個数の比であり、具体的には、以下の式で定義される。 FIG. 12 shows the basic concept of the void number density, which is a parameter of the void number density method. The void number density is a ratio of the number of all the voids 20 existing in a predetermined range to the area (for example, 1 mm 2 ) of the range, and is specifically defined by the following equation.
[0080] [数 5]  [0080] [Equation 5]
ボイド個数密度 = nZA  Void number density = nZA
Aは、 評価封象範囲の面積 (例えば、 1 mm2) A is the area of the evaluation enclosure (for example, 1 mm 2 )
nは、 評価対象範囲内にある全ポイドの個数  n is the number of all poids within the evaluation range
[0081] 具体的には、図に示したある範囲において、 6つのボイド 20が存在する場合には、 各ボイド 20の大きさに係わらず、これら全てのボイドの個数を数える。この作業を、所 定の範囲内で行 、、当該範囲の面積で除してボイド個数密度を求める。 [0081] Specifically, when there are six voids 20 in a certain range shown in the figure, Count the number of all these voids, regardless of the size of each void 20. This operation is performed within a predetermined range, and divided by the area of the range to obtain a void number density.
[0082] また、ボイド個数密度を求める場合においても、 ST1で説明したように、光学顕微鏡 等により予め所定の範囲 (例えば、 30mm2)を観察し、損傷の最も進行している箇所を 選び、当該箇所を SEMにて拡大して観察するのがよい。 [0082] Further, even when obtaining the void number density, as described in ST1, previously prescribed range by an optical microscope or the like (e.g., 30 mm 2) were observed to select the location where the most progress of damage, It is advisable to magnify and observe the location with SEM.
[0083] 図 13は、ボイド個数密度法のマスターカーブである。このマスターカーブは、メイン フローチャート(図 1)の ST1で説明した各種クリープ試験によって自ら作成することも できるし、ボイド個数密度法その他の従来の余寿命評価方法によるマスターカーブ は、公開されているため、これを利用することも可能である。 FIG. 13 is a master curve of the void number density method. This master curve can be created by the various creep tests described in ST1 of the main flowchart (Fig. 1), and the master curve based on the void number density method and other conventional methods for evaluating the remaining life is publicly available. It is also possible to use this.
[0084] 再びメインフローチャート(ST1)に戻り、実機部材から求めた各種パラメータを、各 ノ メータに対応するマスターカーブ(図 10、図 11、図 13)と照合し (ST5)、実機部 材がクリープ破壊するまでの時間を推定する(ST6)。 Returning to the main flowchart (ST1) again, the various parameters obtained from the actual machine parts are compared with the master curves (FIGS. 10, 11, and 13) corresponding to the respective meters (ST5), and the actual machine parts are compared. Estimate the time until creep rupture (ST6).
[0085] 具体的には、例えば、実機部材のレプリカから求めた Lパラメータが" 67個/ mm2"と すると、これをマスターカーブ(図 10)と照合することにより、クリープ寿命消費率は" t[0085] Specifically, for example, actual L parameters obtained from replica members "67 pieces / mm 2" and Then, by comparing this with the master curve (FIG. 10), the creep life consumption rate " t
Ztr 0.94"と推定することができる。即ち、このマスターカーブによれば、当該部材 の余寿命は、全寿命の 6%であると推定することができる。 Ztr 0.94 ". That is, according to this master curve, the remaining life of the member can be estimated to be 6% of the total life.
[0086] この"全寿命の 6%"に相当する時間は、評価対象の実機部材の当該評価時におけ る実使用時間が" t^7000hr"とすると、以下の式により求めることができる。 [0086] The time corresponding to "6% of the total life" can be obtained by the following equation, assuming that the actual use time of the actual machine member to be evaluated at the time of the evaluation is "t ^ 7000hr".
[0087] [数 6] [0087] [Equation 6]
7 0 0 0 X ( 0 . 0 6 / 0 . 9 4 ) = 4 4 7 ( h r ) 7 0 0 0 X (0.06 / 0.94) = 4 4 7 (hr)
[0088] また、実機部材のレプリカから求めた Mパラメータが" 0.87"とすると、これをマスター カーブ(図 11)と照合することにより、クリープ寿命消費率は" tZtr^0.97"と推定する ことができる。即ち、このマスターカーブによれば、当該部材の余寿命は、全寿命の 3 %に相当する時間であり、以下の式により求めることができる。  [0088] Further, assuming that the M parameter obtained from the replica of the actual machine member is "0.87", by comparing this with the master curve (Fig. 11), the creep life consumption rate can be estimated to be "tZtr ^ 0.97". it can. That is, according to the master curve, the remaining life of the member is a time corresponding to 3% of the total life, and can be obtained by the following equation.
[0089] [数 7]  [0089] [Equation 7]
7 0 0 0 X ( 0 . 0 3 / 0 . 9 7 ) = 2 1 6 ( h r )  7 0 0 0 X (0.03 / 0.97) = 2 16 (hr)
[0090] 更に、実機部材のレプリカから求めたボイド個数密度が" 650個/ mm2"とすると、これ をマスターカーブ(図 13)と照合することにより、クリープ寿命消費率は" tZtr^0.92" と推定することができる。従って、ボイド個数密度法のマスターカーブによれば、当該 部材の余寿命は、全寿命の 8%に相当する時間であり、以下の式により求めることがで きる。 Further, assuming that the void number density determined from the replica of the actual machine member is “650 / mm 2 ”, Is compared with the master curve (Fig. 13), the creep life consumption rate can be estimated as "tZtr ^ 0.92". Therefore, according to the master curve of the void number density method, the remaining life of the member is a time corresponding to 8% of the total life, and can be obtained by the following equation.
[0091] [数 8] [0091] [Number 8]
7 0 0 0 X ( 0. 0 8 / 0 . 9 2 ) = 6 0 9 h r  7 0 0 0 X (0.08 / 0.92) = 6 0 9 h r
[0092] 最後に、各方法による余寿命推定結果として得た時間のうち最短のものを、評価対 象の実機部材がクリープ破壊に至るまでの時間と推定する(ST7)。即ち、 [0092] Finally, the shortest time obtained as a result of the remaining life estimation by each method is estimated as the time until the actual machine member to be evaluated reaches creep rupture (ST7). That is,
(1) Lパラメータに基づいて求めた余寿命は" 447hr"、  (1) The remaining life calculated based on the L parameter is "447hr",
(2) Mパラメータに基づいて求めた余寿命は" 216hr"、  (2) The remaining life obtained based on the M parameter is "216 hours",
(3)ボイド個数密度法による余寿命は" 609hr"  (3) The remaining life by the void number density method is "609hr"
であるから、当該部材の余寿命は、 Mパラメータに基づいて求められた" 216hr"と推 定することができる。  Therefore, the remaining life of the member can be estimated to be “216 hours” obtained based on the M parameter.
[0093] 以上のように、本発明のクリープ余寿命評価方法によれば、細粒部の余寿命評価 に適した Lパラメータ法と、祖粒部の余寿命評価に適した Mパラメータ法 (Mパラメ一 タ法)とを組み合わせることにより、実機部材における評価対象部位が細粒部又は粗 粒部の 、ずれであるかに拘わらず、実機部材の任意の箇所にぉ 、てクリープ余寿命 を評価することができる。更に、上記のボイド個数密度法など、従来の余寿命評価方 法による推定結果と比較することにより、一層信頼度の高い余寿命評価を行うことが できる。  [0093] As described above, according to the creep remaining life evaluation method of the present invention, the L parameter method suitable for evaluating the remaining life of fine grains and the M parameter method (M Combined with the parameter method, the residual creep life can be evaluated at any point on the actual machine member, regardless of whether the evaluation target site on the actual machine member is a misalignment of the fine grained part or the coarse grained part. can do. Furthermore, by comparing the result of estimation with a conventional remaining life evaluation method such as the above-mentioned void number density method, more reliable remaining life evaluation can be performed.
[0094] 以上、実施例のクリープ余寿命評価方法により実機部材の余寿命を評価する方法 について説明したが、本発明のクリープ寿命評価方法における Lパラメータの信頼性 について触れておく。クリープ寿命評価の信頼性とは、採用したパラメータによる評 価結果 (余寿命又はクリープ寿命消費率)が、クリープ試験の結果にどれだけ近いも のであるかをいう。従って、考えられ得るあらゆるパラメータを、実機部材の余寿命評 価にそのまま用いることができるわけではなぐ余寿命評価に採用しょうとするパラメ ータの信頼性を予め確認しておくことが必要である。以下、 Lパラメータの信頼性を確 認するための精度確認試験結果の一例を示す。 [0095] (1)実機規模高温再熱蒸気管シミュレート破壊試験(15mm角 X L50mmの供試体を 用いたクリープ試験)について破断時間は 147hrであり、クリープ試験力 得られたタリ ープ寿命消費率は、 "tZtr= 0.93"であった。一方、このときの供試体細粒部表面で Lパラメータを適用した結果であるクリープ寿命消費率も、 "tZtr=0.93"であった。 [0094] The method of evaluating the remaining life of the actual machine member using the method for evaluating the remaining creep life of the embodiment has been described above. The reliability of the creep life evaluation means how close the evaluation result (remaining life or creep life consumption rate) based on the parameters adopted is to the result of the creep test. Therefore, not all conceivable parameters can be used as they are for the evaluation of the remaining life of actual components, but it is necessary to confirm in advance the reliability of the parameters to be adopted for the evaluation of the remaining life. . The following shows an example of the accuracy confirmation test results for confirming the reliability of the L parameter. (1) The rupture time was 147 hours in a simulated fracture test (15 mm square X L50 mm specimen) of a real machine scale high-temperature reheated steam pipe, and the rupture time was 147 hours. The rate was "tZtr = 0.93". On the other hand, the creep life consumption rate as a result of applying the L parameter on the surface of the specimen fine grain portion at this time was also "tZtr = 0.93".
[0096] (2)実機廃却材クリープ試験( φ 20mm X L50mmの供試体を用 、たタリープ試験)に ついて破断時間は 85hrであり、クリープ試験力 得られたクリープ寿命消費率は、 "t Ztr= 0.96"であった。一方、このときの供試体細粒部表面で Lパラメータを適用した 結果であるクリープ寿命消費率は、 "tZtr=0.98"であった。  [0096] (2) The creep test of the actual waste material creep test (using a φ20mm X L50mm specimen and a tarp test) was 85 hours, and the creep test force was obtained. Ztr = 0.96 ". On the other hand, the creep life consumption rate as a result of applying the L parameter on the surface of the specimen fine grain at this time was "tZtr = 0.98".
[0097] このように、クリープ試験結果と Lパラメータによる結果 (クリープ寿命消費率)は、ほ ぼ一致 (約 1%程度の誤差)しており、 Lパラメータの信頼性は、非常に高いものである ことを確認することができる。  [0097] As described above, the result of the creep test and the result by the L parameter (creep life consumption rate) are almost the same (error of about 1%), and the reliability of the L parameter is very high. It can be confirmed that there is.
[0098] また、実施例では、少なくとも 2つの結晶粒界の各長さの 1/2以上に亘つて存在する 拡張ボイドを、複数の結晶粒界上で発生したボイドが合体することによって形成され た連結ボイドと捉えている力 拡張ボイドのうち、 1つのボイドが成長して大きくなつた ものと複数のボイドが合体したものとを明確に区別することができる場合には、連結し たものとそうでな 、ものとを区別して数えるようにしてもょ 、。  [0098] Further, in the embodiment, expanded voids existing over at least 1/2 of each length of at least two grain boundaries are formed by uniting voids generated on a plurality of grain boundaries. If the expanded voids can be clearly distinguished from those that have grown larger due to the growth of one void and those that have combined multiple voids, the expanded voids are considered to be connected. Well, you can count them separately.
[0099] また、実施例では、クリープ余寿命としての時間を求める際には、 ST1の各種タリー プ試験力 得られた各パラメータとクリープ寿命消費率との関係を表すデータに基づ いて、コンピュータでマスターカーブを作成することにより、実機部材力 求めた各種 のパラメータを入力するだけで、上記の各計算式に基づ 、てクリープ寿命消費率及 び余寿命を即座に求めることも可能である。  [0099] Further, in the embodiment, when obtaining the time as the remaining creep life, the various types of ST1 test force of ST1 were calculated based on the data representing the relationship between each parameter obtained and the creep life consumption rate. By creating the master curve with, the creep life consumption rate and the remaining life can be immediately obtained based on the above formulas simply by inputting various parameters for the actual machine member force. .
[0100] 以上、実施例のクリープ余寿命評価方法により実機部材の余寿命を評価する方法 について説明したが、本発明はこれに限られず、例えば、実施例では、従来のボイド 個数密度法による推定結果も比較対象としたが、その他のパラメータに基づく評価方 法による推定結果を比較対象とすることもできる。その他の方法としては、例えば、 A パラメータ法、組織対比法、ボイド面積率法、又はボイド面積密度法を採用すること ができる。  [0100] As described above, the method of evaluating the remaining life of the actual machine member using the creep remaining life evaluation method of the embodiment has been described. However, the present invention is not limited to this. For example, in the embodiment, the estimation based on the conventional void number density method is performed. Although the results were also compared, the results of estimation based on other parameter-based evaluation methods can also be compared. As other methods, for example, an A-parameter method, a tissue contrast method, a void area ratio method, or a void area density method can be employed.
[0101] また、実施例では、実機部材の余寿命評価基準として、 Lパラメータ又は Mパラメ一 タとタリープ寿命消費率との関係を表す各マスターカーブを採用したが、両者の関係 を表すデータベースを作成しておき、これを実機部材カも求めた各種パラメータと照 合して余寿命を評価することもできる。いずれの方法においても、コンピュータを用い て、実機部材カも求めた Lパラメータを入力することによって余寿命を自動的に算出 させるよう〖こすることがでさる。 [0101] In the embodiment, the L parameter or the M parameter Each master curve was used to represent the relationship between the data and the life consumption rate of talyp.However, a database was created to show the relationship between the two, and the remaining life was evaluated by comparing this with the parameters obtained for the actual machine components. You can also. In either method, it is possible to automatically calculate the remaining life by inputting the obtained L parameters using the computer.
更に、実施例では、実機部材カも Lパラメータを求める際には、部材表面のレプリカ を採取して、レプリカを SEM等により拡大して目視によりボイドを観察している力 レブ リカ等で部材表面を画像ィ匕した後、コンピュータ等の機械によって連結ボイドを自動 認識し、画像上でそれらの個数を迅速かつ容易に求めることも可能である。  Further, in the embodiment, when obtaining the L parameter, the actual machine member also obtains a replica of the member surface, enlarges the replica by SEM or the like, and visually observes the voids. After connecting the images, the connected voids can be automatically recognized by a machine such as a computer, and the number thereof can be quickly and easily obtained on the image.

Claims

請求の範囲 The scope of the claims
[1] クリープ損傷を受けて 、る機器部材カ sクリープ破壊するまでの時間又はクリープ寿 命消費率で表される余寿命を評価するための方法において、  [1] A method for evaluating the time until creep damage occurs or the remaining life represented by the creep life consumption rate after creep damage occurs.
前記機器部材の表面において、所定の範囲内で複数の結晶粒界に亘つて存在す る特定ボイドの個数を求め、前記所定の範囲の面積に対する当該特定ボイドの個数 の比を特定ボイド密度とし、  On the surface of the device member, the number of specific voids existing over a plurality of crystal grain boundaries within a predetermined range is determined, and the ratio of the number of the specific voids to the area of the predetermined range is defined as a specific void density,
前記機器部材の表面において、所定の範囲内で 1結晶粒界の長さに対する該粒 界上にある全ボイドの長さの合計の比をボイド粒界占有率として各結晶粒界にっ 、 て求め、その最大値を最大ボイド粒界占有率とし、  On the surface of the device member, the ratio of the total length of all the voids on the grain boundary to the length of one grain boundary within a predetermined range is defined as the void grain boundary occupancy, and the ratio of each grain boundary is The maximum value is defined as the maximum void grain boundary occupancy,
前記特定ボイド密度と前記最大ボイド粒界占有率に基づ!/ヽて前記機器部材の余寿 命をそれぞれ評価し、 V、ずれか短く評価された方の結果を前記機器部材の余寿命と することを特徴とするクリープ余寿命評価方法。  Based on the specific void density and the maximum void grain boundary occupancy, the remaining life of the equipment member is evaluated, and the result of V, which is shorter or shorter, is determined as the remaining life of the equipment member. And a creep remaining life evaluation method.
[2] 請求項 1記載のクリープ余寿命評価方法にぉ 、て、前記特定ボイドは、少なくとも 2 つの結晶粒界の各長さの 1/2以上に亘つて存在する拡張ボイドであることを特徴とす るクリープ余寿命評価方法。  [2] The method for evaluating a remaining creep life according to claim 1, wherein the specific void is an extended void existing over at least 1/2 of each length of at least two crystal grain boundaries. Creep remaining life evaluation method.
[3] 請求項 1又は 2記載のクリープ余寿命評価方法にお 、て、前記特定ボイドは、複数 の結晶粒界上で発生したボイドが合体することによって形成された連結ボイドである クリープ余寿命評価方法。 [3] The method for evaluating a remaining creep life according to claim 1 or 2, wherein the specific void is a connected void formed by uniting voids generated on a plurality of crystal grain boundaries. Evaluation method.
[4] 請求項 1乃至 3のいずれか記載のクリープ余寿命評価方法において、前記最大ボ イド粒界占有率は、以下の式で求められることを特徴とするクリープ余寿命評価方法 [4] The method for evaluating a remaining creep life according to any one of claims 1 to 3, wherein the maximum void grain boundary occupancy is determined by the following equation.
[数 1] 最大ボ - ト 界占 —率 ― [Equation 1] Largest boat occupancy —Rate—
(Mパラメータ) 一 M (M parameter) One M
Figure imgf000021_0001
Figure imgf000021_0001
で、 mはボイドが存在する粒界の数、  Where m is the number of grain boundaries where voids exist,
nは各粒界上に存在するボイドの個数、  n is the number of voids present on each grain boundary,
1 は α番目の粒界上に存在する i番目のボイドの粒界方向の長さ、 L はボイドが存在する α番目の粒界の長さ 1 is the length of the i-th void on the α-th grain boundary in the direction of the grain boundary, L is the length of the α-th grain boundary where the void exists
である。  It is.
[5] 請求項 1乃至 4のいずれか記載のクリープ余寿命評価方法において、前記余寿命 の評価は、前記特定ボイド密度と余寿命との関係につ!ヽて及び前記最大ボイド粒界 占有率と余寿命との関係についてクリープ試験力も得られた各評価基準を参照する ことにより、前記時間を推定することであるクリープ余寿命評価方法。  [5] In the creep remaining life evaluation method according to any one of claims 1 to 4, the evaluation of the remaining life is based on the relationship between the specific void density and the remaining life and the maximum void grain boundary occupancy. A creep remaining life evaluation method for estimating the time by referring to each evaluation criterion for which the creep test force was also obtained for the relationship between the creep test life and the remaining life.
[6] 請求項 5記載のクリープ余寿命評価方法にお 、て、前記余寿命の評価は、前記特 定ボイド密度及び最大ボイド粒界占有率につ!、ての各評価基準に加えて、前記所 定の範囲の面積に対する当該範囲内の全ボイドの個数の比であるボイド個数密度そ の他のパラメータにつ 、ての評価基準も参照し、各パラメータの評価基準で推定され る時間のうち最短のものを前記余寿命とすることであるクリープ余寿命評価方法。  [6] In the method for evaluating a remaining creep life according to claim 5, the evaluation of the remaining life is based on the specific void density and the maximum void grain boundary occupancy, For the void number density and other parameters, which are the ratio of the number of all voids in the range to the area of the predetermined range, also refer to the evaluation criteria for all parameters, and estimate the time estimated by the evaluation criteria for each parameter. A creep remaining life evaluation method in which the shortest one is the remaining life.
[7] 請求項 1乃至 6の 、ずれか記載のクリープ余寿命評価方法にぉ 、て、前記機器部 材の表面を画像化し、該画像上で前記特定ボイドの個数及び前記ボイド粒界占有率 を求めることを特徴とするクリープ余寿命評価方法。  [7] According to the method for evaluating a remaining creep life according to any one of claims 1 to 6, an image of a surface of the device member is formed, and the number of the specific voids and the void grain boundary occupancy on the image. And a creep remaining life evaluation method characterized by:
[8] 請求項 7記載のクリープ余寿命評価方法にぉ 、て、前記機器部材の表面の画像は 、前記機器部材の表面を研磨して腐食させた後所定の膜を貼り付けて該表面を写し とること、又は撮像手段を用いて前記機器部材の表面を撮像することによって得られ ることを特徴とするクリープ余寿命評価方法。  [8] According to the remaining creep life evaluation method according to claim 7, the image of the surface of the device member is obtained by polishing and corroding the surface of the device member, and then attaching a predetermined film to the surface. A creep remaining life evaluation method, which is obtained by taking a picture or taking an image of the surface of the device member using an image pickup means.
PCT/JP2005/011268 2004-06-21 2005-06-20 Method of comprehensively evaluating creep life expectancy or life span WO2005124315A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006514819A JP4054834B2 (en) 2004-06-21 2005-06-20 Comprehensive evaluation method of creep remaining life

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004182551 2004-06-21
JP2004-182551 2004-06-21

Publications (1)

Publication Number Publication Date
WO2005124315A1 true WO2005124315A1 (en) 2005-12-29

Family

ID=35509805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011268 WO2005124315A1 (en) 2004-06-21 2005-06-20 Method of comprehensively evaluating creep life expectancy or life span

Country Status (2)

Country Link
JP (1) JP4054834B2 (en)
WO (1) WO2005124315A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145185A (en) * 2007-12-13 2009-07-02 Chugoku Electric Power Co Inc:The Creep lifetime evaluating method
JP2010223823A (en) * 2009-03-24 2010-10-07 Chugoku Electric Power Co Inc:The Method of evaluating creep damage
JP2010236941A (en) * 2009-03-30 2010-10-21 Mitsubishi Heavy Ind Ltd Lifetime evaluation method of pipe weld zone
JP2012108051A (en) * 2010-11-18 2012-06-07 Babcock Hitachi Kk Method of predicting damage in heat-resistant steel weld zone
JP2013117485A (en) * 2011-12-05 2013-06-13 Chugoku Electric Power Co Inc:The Residual life estimation method, estimation system and estimation program for estimating residual life of high chromium steel pipe
JP2013140095A (en) * 2012-01-05 2013-07-18 Chugoku Electric Power Co Inc:The Apparatus and program for diagnosing remaining life of metal subject to creep damage
WO2015111184A1 (en) * 2014-01-24 2015-07-30 中国電力株式会社 Remaining-service-life evaluation method for metal pipe suffering from creep damage
WO2020065711A1 (en) * 2018-09-25 2020-04-02 中国電力株式会社 Remaining lifespan diagnosis curve creation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5859710B2 (en) * 2013-10-25 2016-02-10 中国電力株式会社 Prediction method for creep remaining life of product deteriorated by heating and pressurization, and calibration curve creation method used for this prediction method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230928A (en) * 1998-02-12 1999-08-27 Hitachi Ltd Method and apparatus for diagnosis of stress corrosion crack susceptibility
WO2002014835A1 (en) * 2000-08-16 2002-02-21 The Chugoku Electric Power Co., Inc. Method for evaluating creep lifetime

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230928A (en) * 1998-02-12 1999-08-27 Hitachi Ltd Method and apparatus for diagnosis of stress corrosion crack susceptibility
WO2002014835A1 (en) * 2000-08-16 2002-02-21 The Chugoku Electric Power Co., Inc. Method for evaluating creep lifetime

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIKUCHI K. ET AL: "A Proposal of Grain Boundary Damage Parameter", JOURNAL OF THE SOCIETY OF MATERIALS SCIENCE JAPAN, vol. 44, no. 505, 15 October 1995 (1995-10-15), pages 1244 - 1248, XP002995866 *
KIKUCHI K. ET AL: "Grain Boundary Damage for Pre-strained material", NIPPON KIKAI GAKKAI TSUJO SOKAI KOENKAI KOEN RONBUNSHU, vol. 73, no. 2, 1 April 1996 (1996-04-01), pages 274 - 275, XP002995865 *
NISHIDA H.: "The Development of New Residual Life Assessment Method at the High Temperature Steam Piping Welding Joints", NIPPON KIKAI GAKKAI ZAIRYO RIKIGAKU BUMON KOENKAI KOEN RONBUNSHU, 4 September 2004 (2004-09-04), pages 121 - 122, XP002995867 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145185A (en) * 2007-12-13 2009-07-02 Chugoku Electric Power Co Inc:The Creep lifetime evaluating method
JP2010223823A (en) * 2009-03-24 2010-10-07 Chugoku Electric Power Co Inc:The Method of evaluating creep damage
JP2010236941A (en) * 2009-03-30 2010-10-21 Mitsubishi Heavy Ind Ltd Lifetime evaluation method of pipe weld zone
JP2012108051A (en) * 2010-11-18 2012-06-07 Babcock Hitachi Kk Method of predicting damage in heat-resistant steel weld zone
JP2013117485A (en) * 2011-12-05 2013-06-13 Chugoku Electric Power Co Inc:The Residual life estimation method, estimation system and estimation program for estimating residual life of high chromium steel pipe
JP2013140095A (en) * 2012-01-05 2013-07-18 Chugoku Electric Power Co Inc:The Apparatus and program for diagnosing remaining life of metal subject to creep damage
WO2015111184A1 (en) * 2014-01-24 2015-07-30 中国電力株式会社 Remaining-service-life evaluation method for metal pipe suffering from creep damage
JP5763868B1 (en) * 2014-01-24 2015-08-12 中国電力株式会社 A method for diagnosing the remaining life of a metal pipe subject to creep damage
CN105593664A (en) * 2014-01-24 2016-05-18 中国电力株式会社 Remaining-service-life evaluation method for metal pipe suffering from creep damage
US9880087B2 (en) 2014-01-24 2018-01-30 The Chugoku Electric Power Co., Inc. Remaining service life evaluation method for metal pipe suffering from creep damage
WO2020065711A1 (en) * 2018-09-25 2020-04-02 中国電力株式会社 Remaining lifespan diagnosis curve creation method

Also Published As

Publication number Publication date
JPWO2005124315A1 (en) 2008-04-10
JP4054834B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
WO2005124315A1 (en) Method of comprehensively evaluating creep life expectancy or life span
JP4464043B2 (en) Creep life evaluation method
JP3652943B2 (en) Metal material damage evaluation method and apparatus
Wan et al. Investigation of bond between fiber reinforced polymer and concrete undergoing global mixed mode I/II loading
JP4054833B2 (en) Evaluation method of creep remaining life
JP5086615B2 (en) Life evaluation method by creep elongation of high strength steel weld and life evaluation method of high strength steel weld
JP5783553B2 (en) Piping life determination method
JP2009174859A (en) Remaining lifetime evaluation method of machine part
JP6197391B2 (en) Fatigue life evaluation method for structures
Kibey et al. Full-scale test observations for measurement of tensile strain capacity of welded pipelines
JP3976938B2 (en) Creep life evaluation method
WO2019159940A1 (en) Plant inspection method
JP2000258306A5 (en)
Hioe et al. Fracture toughness variation with flaw depth in various specimen geometries and role of constraint in material fracture resistance
Baumgartner et al. Fatigue of brazed joints made of X5CrNi18-10 and Cu110 and derivation of reliable assessment approaches
Ohtani et al. Nonlinear acoustic evaluation of creep damage in boiler heat exchange tubes
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
JP2004085347A (en) Method for evaluating life of heat-resistant steel
JP2003275890A (en) Treating method for prolonging fatigue life and welded joint having long service life with this method
JP5492057B2 (en) Damage prediction method for heat-resistant steel welds
Kapayeva et al. Ultrasonic and EMAT-important tools to analyze a combined effect of multiple damage mechanisms in boiler tubes
JP2002168853A (en) Method for evaluating life of metal material
JP2540630B2 (en) Method of evaluating remaining life of ferritic heat resistant steel
Łabanowski Evaluation of reformer tubes degradation after long term operation
New 1. General and reviews

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514819

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase