WO2005124154A1 - スクリュ式ポンプ及びねじ歯車 - Google Patents

スクリュ式ポンプ及びねじ歯車 Download PDF

Info

Publication number
WO2005124154A1
WO2005124154A1 PCT/JP2005/010853 JP2005010853W WO2005124154A1 WO 2005124154 A1 WO2005124154 A1 WO 2005124154A1 JP 2005010853 W JP2005010853 W JP 2005010853W WO 2005124154 A1 WO2005124154 A1 WO 2005124154A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
screw
change
lead
lead angle
Prior art date
Application number
PCT/JP2005/010853
Other languages
English (en)
French (fr)
Inventor
Shinya Yamamoto
Satoru Kuramoto
Ryosuke Koshizaka
Hideyuki Ito
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to JP2006514739A priority Critical patent/JPWO2005124154A1/ja
Priority to US11/629,642 priority patent/US20090016920A1/en
Priority to EP05751166A priority patent/EP1767785A1/en
Publication of WO2005124154A1 publication Critical patent/WO2005124154A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/1987Rotary bodies

Definitions

  • the present invention relates to a screw pump used in a semiconductor manufacturing process, for example, and a screw gear suitable for being applied to the screw pump.
  • a screw pump is used as a vacuum pump to create a vacuum environment.
  • various processes are performed on a wafer in a vacuum environment, so that a fluid such as F gas is inactive in a container containing the wafer.
  • the gas While supplying the reactive gas, the gas is removed along with impurities (O, CO, etc.) remaining in the container.
  • a pair of screw gears spirally engaging with each other that is, a pair of screw rotors are configured to function as a fluid transfer body (gas transfer body).
  • Each screw gear is connected so as to rotate integrally with a rotation shaft rotated by a drive source.
  • the lead angle (helix angle) of each screw gear changes continuously as it goes through the helical thread (helical line) of the screw gear. Specifically, the lead angle is the low pressure (suction) of the screw gear.
  • the axial end force on the side also monotonically increases toward the axial end on the high pressure (discharge) side. Note that the lead angle is defined as the inclination angle of the spiral streak with respect to the axis of the screw gear.
  • the inert gas When the double-screw gear rotates with the rotation of the rotation shaft, the inert gas is sucked into the pump chamber from the outside, and is transferred to the discharge side while being compressed by the double-screw gear in the pump chamber. Is discharged to the outside.
  • FIG. 4 (a) is a graph showing a variation of the lead angle ⁇ ⁇ ⁇ ⁇ in the screw gear of Patent Document 1.
  • Figure 4 (a) shows the change in the lead angle ⁇ ⁇ ⁇ ⁇ ⁇ from the beginning (suction side end) to the end (discharge side end) of the helical thread (helical wire) of the screw gear. Rotation around The angle x is shown on the horizontal axis.
  • the change of the lead angle ⁇ ⁇ ⁇ ⁇ in the spiral strip from the suction side end to the discharge side end is expressed as a function 0 (X) of the rotation angle X around the axis of the screw gear. Can be represented.
  • the rotation angle X corresponding to the suction-side end of the spiral strip is defined as the winding start angle 0, and the rotation angle X corresponding to the discharge-side end of the spiral strip is defined as 0.
  • the winding end angle is defined as E.
  • the lead angle ⁇ corresponds to the winding end angle E from the winding start lead angle DegS (for example, 50 degrees), which is the lead angle corresponding to the winding start angle 0. It increases monotonically up to the lead angle DegE (for example, 80 degrees), which is the lead angle to be wound. Therefore, in Patent Document 1, as shown in FIG. 4 (b), the total length L in the axial direction of the screw gear is obtained by a monotonically increasing function ⁇ (x) using a winding start lead angle DegS and a winding end lead angle DegE. Uniquely determined.
  • a monotone increasing function ⁇ (X) representing a change in the lead angle ⁇ of a screw gear can be expressed by the following equation (11), and a constant k in the equation (11) is expressed by the following equation (12) be able to.
  • r is the radius of the pitch circle of the screw gear.
  • Equation (13) indicates that the total length L of the screw gear is determined by the winding start lead angle Deg S and the winding end lead angle DegE of the screw gear.
  • the volumes of the plurality of gas working chambers formed in the pump chamber by the screw gear gradually decrease as the suction-side force also moves toward the discharge side. It is compressed as it is transferred towards the working chamber on the discharge side.
  • the winding start lead angle DegS which affects the overall length L of the screw gear
  • the winding end lead angle DegE is changed.
  • the screw gear since the screw gear is housed in the pump chamber of the vacuum pump, the total length L of the screw gear is Needs to be set to a value that can accommodate the screw gear.
  • Patent document 1 JP-A-932766
  • An object of the present invention is to provide a screw pump and a screw gear having excellent flexibility in changing the fluid compression characteristics.
  • the present invention relates to a screw gear having a portion in which a lead angle continuously changes from the beginning to the end of a spiral strip, wherein the axis of the screw gear is Regarding the rotation angle around, the change in the lead angle from the winding start angle, which is the rotation angle corresponding to the start end of the spiral strip, to the winding end angle, which is the rotation angle corresponding to the end of the spiral strip.
  • the lead angle change function a lead gear provided with a combination of a plurality of change functions having different change modes is provided.
  • the present invention also includes a pair of screw gears meshing with each other and a pump chamber accommodating both screw gears, and the two screw gears rotate while meshing with each other to be sucked into the pump chamber.
  • a screw pump device in which a fluid is transferred in the axial direction of a screw gear while being compressed in the pump chamber.
  • Each screw gear is constituted by the screw gear configured as described above, and a working chamber for compressing fluid is formed between adjacent screw threads in the axial direction of each screw gear.
  • FIG. 1 is a cross-sectional plan view of a screw vacuum pump according to one embodiment of the present invention.
  • FIG. 2 (a) is a graph showing the variation of the lead angle of the screw rotor
  • FIG. 7 is a graph illustrating one axial length.
  • FIG. 3 (a) is a graph showing the variation of the lead angle of the screw rotor
  • FIG. 3 (b) is a graph illustrating the axial length of the screw rotor.
  • FIG. 4 (a) is a graph showing a variation of a lead angle of a screw rotor in a conventional technique
  • FIG. 4 (b) is a graph illustrating an axial length of the screw rotor in a conventional technique.
  • a screw type vacuum pump 11 has a cylindrical housing housing member 12 and a lid shape which is joined to a front end (left end in FIG. 1) of the rotor housing member 12.
  • a front housing member 13 and a plate-shaped rear housing member 14 joined to the rear end (right end in FIG. 1) of the rotor housing member 12 are provided.
  • a mounting hole 14a with a step is formed in the rear housing member 14, and the bearing 15 is fixed to the rear housing member 14 by bolts in a state of being fitted in the mounting hole 14a.
  • a pair of screw rotors (screw gears) 16 functioning as a fluid transfer body are housed.
  • a pump chamber 17 is formed between the outer peripheral surface of the screw rotor 16 and the inner peripheral surface of the rotor housing member 12. The specific configuration of the screw rotor 16 will be described later.
  • a pair of support holes 18 are formed through the bearing body 15, and a rotation shaft 19 is inserted and supported in each of the support holes 18.
  • One end of each rotating shaft 19 protrudes from the corresponding support hole 18 into the pump chamber 17, and one of the two screw rotors 16 is fixed to the end of each rotating shaft 19 by a bolt.
  • each screw rotor 16 is connected to the corresponding rotation shaft 19 so as to rotate integrally with the rotation shaft 19.
  • a gear housing member 20 in the form of a cylinder having one end closed is fixed to the rear end of the rear housing member 14.
  • the ends (the right ends in FIG. 1) 19a of the two rotating shafts 19 project into the gear housing member 20, and the gears 21 are fixed to the projecting ends 19a in a state where the gears 21 are engaged with each other.
  • An electric motor 22 serving as a drive source is mounted on the outer surface of the gear housing member 20.
  • Gear housing member 20 An end 19a of one of the two rotating shafts 19 (the lower rotating shaft in FIG. 1) 19 is connected to an output shaft 22a of an electric motor 22 extending therein through a shaft coupling 23. ing.
  • a suction port 24 allowing the introduction of the active gas is formed so as to communicate with the pump chamber 17.
  • a discharge port (not shown) for allowing the discharge of the inert gas is provided on the peripheral wall of the rotor housing member 12. It is formed so as to communicate with the chamber 17.
  • the discharge outlet is located at a lower portion substantially at the center in the width direction (vertical direction in FIG. 1) of the rotor housing member 12.
  • each of the screw rotors 16 is in the form of a single-thread screw gear, and has a helical thread, that is, a thread 16a and a thread groove 16b on its outer peripheral surface.
  • the two screw rotors 16 extend parallel to each other in the pump chamber 17 so that the thread 16a on one of the screw rotors 16 and the thread groove 16b on the other are engaged with each other.
  • a working chamber 25 for inert gas is formed between the screw threads 16a adjacent to each other in the axial direction of each screw rotor 16.
  • the working chambers 25 transfer the inert gas while compressing the inert gas from the suction port 24 to the discharge port, in other words, from the low pressure side to the high pressure side.
  • Each of the screw rotors 16 has a lead angle (also referred to as a torsion angle) that changes continuously as the spiral streak of the screw rotor 16 passes.
  • the lead angle ⁇ is defined as the inclination angle of the spiral strip (the thread 16a and the thread groove 16b) with respect to the axis of the screw rotor 16.
  • the screw rotor 16 has a maximum lead P1 at the portion closest to the suction port 24 so that the volume of the working chamber 25 gradually decreases from the suction port 24 (suction side) to the discharge port (discharge side).
  • the lead P4 in the portion closest to the outlet is minimized.
  • the lead angle ⁇ changes so that the lead gradually decreases from the largest lead P1 to a smaller lead P2.
  • the lead angle is set so that the lead becomes shorter from the lead P3 to the smaller lead P4. ⁇ changes in a change mode different from the change mode in the first range.
  • the screw rotor 16 is in the form of a single-thread screw gear, when the screw rotor 16 makes a round around the axis of the screw rotor 16 along the lead of the screw rotor 16, that is, a helical strip (helical wire). The distance traveled in the direction is equal to the pitch of thread 16a
  • FIG. 2 (a) is a graph showing a variation of the lead angle ⁇ ⁇ of the screw rotor 16 in the present embodiment.
  • Fig. 2 (a) shows the change in the lead angle ⁇ ⁇ ⁇ ⁇ from the beginning (inlet end) to the end (outlet end) of the helical thread (helix) of the screw rotor 16.
  • the rotation angle X about the axis of 6 is shown on the horizontal axis.
  • the change of the lead angle ⁇ ⁇ ⁇ ⁇ in the spiral strip from the suction side end to the discharge side end is a function of the rotation angle X about the axis of the screw rotor 16 0 (X).
  • this function ⁇ (X) is referred to as a lead angle change function 0 (X).
  • the rotation angle X corresponding to the suction side end of the spiral is defined as the winding start angle 0, and the rotation angle X corresponding to the midway point m is switched.
  • the rotation angle X corresponding to the discharge end of the spiral strip is defined as the winding end angle E, defined as the angle M. That is, in the case where the spiral streak extends from the suction side end to the discharge side end while rotating around the axis of the screw rotor 16, the rotation angle X corresponding to the suction side end of the spiral streak is set to 0.
  • the rotation angle X when reaching the halfway point m is defined as the switching angle M
  • the rotation angle X when reaching the discharge side end of the spiral strip is defined as the winding end angle E.
  • the lead angle change function ⁇ changes in a plurality of different ways (from the start angle 0 to the end angle E) of the rotation angle X during the rotation angle X. It consists of a combination of two change functions 0 1 (X) and ⁇ 2 (X) in Fig. 2 (a). In other words, when the rotation angle X reaches the winding start angle 0 to the winding end angle E, the lead angle
  • the change in ⁇ is represented by a combination of a plurality of change functions 01 (X) and ⁇ 2 (X) having different change modes.
  • the change function ⁇ 1 (X) is a first change function (suction side change function) corresponding to an angle range from the winding start angle 0 to the switching angle ⁇ , and the first range (suction side range). ) Indicates the change in the lead angle ⁇ ⁇ ⁇ ⁇ .
  • the change function ⁇ 2 ( ⁇ ) is a second change function (suction side change function) corresponding to an angle range up to the switching angle ⁇ force and the winding end angle ⁇ , and the lead angle in the second range (discharge side range).
  • ⁇ ⁇ represents the change.
  • the second change function ⁇ 2 ( ⁇ ) expresses the change of the lead angle ⁇ with a gentle change degree as compared with the first change function ⁇ 1 (X).
  • Both the first change function 0 l (x) and the second change function 0 2 ( ⁇ ) are monotonically increasing functions that gradually increase the lead angle ⁇ ⁇ ⁇ ⁇ as the rotation angle X goes from the winding start angle 0 to the winding end angle ⁇ . It is.
  • “DegS” is a lead angle at the suction side end of the spiral strip corresponding to the winding start angle 0, that is, a winding start lead angle
  • “DegM” Is the lead angle at the halfway point m corresponding to the switching angle M, that is, the switching lead angle
  • “DegE” is the lead angle at the discharge side end of the spiral strip corresponding to the winding end angle E, that is, the winding end. It is the lead angle.
  • the winding start lead angle DegS is set to 50 degrees
  • the switching lead angle DegM is set to 70 degrees
  • the winding end lead angle DegE is set to 80 degrees.
  • the lead angle monotonically increases relatively steeply by 20 degrees from the winding start angle 0 to the switching angle M.
  • the switching angle M also reaches the winding end angle E
  • the lead angle increases relatively slowly and monotonically by 10 degrees.
  • the total lead obtained when the coil rotates around the axis of the screw rotor 16 from the winding start angle 0 to the winding end angle E is a combination of the first change function ⁇ 1) and the second change function ⁇ 2).
  • the total length L of the screw rotor 16 in the axial direction can be obtained based on the combined lead angle change function ⁇ (X). That is, as shown in FIG. 2B, the axial length of the screw rotor 16 in the first range, that is, the first axial length (length on the suction side) L1 is cut from the winding start angle 0. It is obtained based on the first change function ⁇ 1 (X) corresponding to the angle range up to the switching angle M.
  • the axial length of the screw rotor 16 in the second range is an angle from the switching angle M to the winding end angle E. It is obtained based on the second change function ⁇ 2 (x) corresponding to the degree range. Then, the sum of the lengths LI and L2 in both axial directions is obtained as the total axial length L of the screw rotor 16.
  • Equation (1) the first change function 0 l (x) corresponding to the angle range (0 ⁇ x ⁇ M) from the winding start angle 0 to the switching angle M can be expressed by the following equation (1).
  • the constant kl in the equation (1) can be expressed by the following equation (2).
  • r in Equation (2) is the radius of the pitch circle of the screw rotor 16.
  • ⁇ l (x) DegS + kl -x
  • the winding start lead angle DegS is changed to a large value.
  • the degree of change of the lead angle ⁇ ⁇ from the winding start angle 0 to the switching angle M becomes gentler than that of the first change function ⁇ 1 (X) shown by the solid line.
  • the degree of change in the volume of the working chamber 25 from the suction side to the discharge side that determines the gas compression characteristics of the pump 11 is the first change function 0 l ( The force is gentler than that in the case of x).
  • the second change function ⁇ 2 (X) corresponding to the angle range (M ⁇ x ⁇ E) up to the switching angle M force and the winding end angle E can be expressed by the following equation (3).
  • the constant k2 in the equation (3) can be expressed by the following equation (4).
  • the first axial length L1 in the first range corresponding to the angle range (0 ⁇ x ⁇ M) from the winding start angle 0 to the switching angle M can be expressed by the following equation (5).
  • the second axial length L2 in the second range corresponding to the angle range (M ⁇ x ⁇ E) up to the switching angle M force winding end angle E can be represented by the following equation (6).
  • both the rotating shafts 19 are rotated by the electric motor 22, both the screw rotors 16 meshing with each other are rotated together with the both rotating shafts 19, and the external force is also inert gas through the suction port 24 through the pump chamber. It is sucked into 17.
  • the inert gas sucked into the pump chamber 17 is transported toward the discharge port while being compressed in each working chamber 25 as the two screw rotors 16 rotate. Then, the gas is discharged from the inside of the pump chamber 17 to the outside through the discharge port. Therefore, in the semiconductor manufacturing process, when the pump 11 is operated while the suction port 24 is connected to a work room or a work container for performing various processes on a wafer (not shown), the work room is divided into the work room and the work container. A clean vacuum environment is created inside.
  • the screw rotor 16 performs a compression action as follows. That is, when the inert gas sucked into the pump chamber 17 from the suction port 24 is transferred through the working chamber 25 in the first range of the screw rotor 16, the volume change degree of the working chamber 25 is relatively sharp. Therefore, it is compressed rapidly. After that, when the inert gas is transferred through the working chamber 25 in the second range of the screw rotor 16, the inert gas is gently compressed because the volume change degree of the working chamber 25 is relatively gradual. Therefore, a situation in which a rapid pressure rise occurs near the outlet is avoided, and a local temperature rise near the outlet is suppressed.
  • the overall axial length L of the screw rotor 16 is determined based on the above equations (1) to (6). Under such a premise, if the suction-side force that determines the gas compression characteristic of the pump 11 without changing the axial total length L is also changed in the manner in which the volume of the working chamber 25 changes to the discharge side, for example, FIG.
  • the lead angle DegM is changed as shown in FIG. In the example of FIG. 2A, the winding start angle 0, the switching angle M, and the winding end angle E are not changed, and the winding start lead angle DegS and the winding end lead angle DegE are not changed.
  • the switching lead angle DegM is changed to, for example, a value DegM ′ smaller than the value of the lead angle change function ⁇ (x) shown by the solid line in FIG.
  • the first change function 0 1 (X) represents the degree of change of the lead angle ⁇ , which is gentler
  • the second change function ⁇ 2 (X) becomes the steeper lead angle ⁇ .
  • the lead angle change function ⁇ (X) is configured by combining a plurality of change functions 0 1 (X) and ⁇ 2 (X) having different change modes, the overall axial length L of the screw rotor 16 can be changed. Even in circumstances where it is not possible, the compression characteristics of the pump 11 can be changed by changing the manner in which the lead angle ⁇ changes from the winding start angle 0 to the winding end angle E.
  • FIG. 7 when the overall axial length L of the screw rotor 16 is changed without changing the first change function ⁇ l (x) and the second change function ⁇ 2), for example, FIG.
  • the switching angle M is changed as shown in Fig. 7.
  • the winding start angle 0 and the winding end angle E are not changed, and the winding start lead angle DegS is not changed. That is, when the switching angle M is changed to, for example, a small value M ′ as shown by a dashed line in FIG. 3A, the first and second change functions 0 1 (X) and 2 (X)
  • the switching lead angle DegM and the winding end lead angle DegE are reduced in a state where the degree of change!
  • the overall axial length L of the screw rotor 16 is changed to a large value L ', as shown by the dashed line in FIG. 3B.
  • the switching angle M is changed to a large value M "as shown by a two-dot chain line in FIG. 3 (a)
  • the switching lead angle DegM and the winding end lead angle DegE increase with the degree of change in the lead angle ⁇ ⁇ ⁇ ⁇ , which is respectively represented by ⁇ ⁇ ⁇ ⁇ , and as a result, in this case, the two-dot chain line in FIG.
  • the axial total length L of the screw rotor 16 is changed to a smaller value L ".
  • the switching angle ⁇ without changing the plurality of change functions 0 1 ( ⁇ ) and ⁇ 2 ( ⁇ ⁇ ) that constitute the lead angle change function ⁇ (X), the screw rotor It is also possible to arbitrarily change the 16 overall lengths L in the axial direction.
  • the change of the lead angle ⁇ ⁇ ⁇ ⁇ in the screw rotor 16 during the period from the winding start angle 0 to the winding end angle ⁇ is a plurality of change functions 0 1 (X), ⁇ 2 (X) is represented by the lead angle change function ⁇ (X). Therefore, the manner of change of the lead angle ⁇ can be arbitrarily set depending on the combination of the plurality of change functions 0 1 (X) and ⁇ 2 (X).
  • the compression characteristic (variation in the volume of the working chamber 25) guided by the variation in the lead angle ⁇ can be arbitrarily set in relation to the axial total length L of the screw rotor 16, and the inert gas (fluid) to be compressed can be set.
  • the compression efficiency can be set to be optimal according to the type of ()).
  • the degree of change in the lead angle ⁇ is gentler in the second range of the screw rotor 16 than in the first range.
  • the degree of volume change of the working chamber 25 that determines the compression characteristic of the pump 11 is gentler in the second range of the screw rotor 16 than in the first range. Therefore, when the pump 11 operates, the degree of volume change of the working chamber 25 becomes gentle near the discharge port of the pump 11. Therefore, it is possible to satisfactorily avoid a rapid pressure rise near the outlet and a local temperature rise caused by the pressure rise.
  • Each of the first and second change functions ⁇ 1 ( ⁇ ) and ⁇ 2 ( ⁇ ) constituting the lead angle change function ⁇ (X) has a rotation angle X from the winding start angle 0 to the winding end. It is a monotonic change function that gradually increases the lead angle ⁇ ⁇ ⁇ ⁇ with the heading angle ⁇ . Therefore, the lead of the screw rotor 16 monotonously decreases from the winding start angle 0 to the winding end angle ⁇ . Therefore, when the pair of screw rotors 16 rotate while engaging with each other in the pump chamber 17, the rotational load of the two screw rotors 16 is reduced, and a good compression operation of the pump 11 can be realized. Monkey
  • the compression characteristics of the pump 11 can be changed easily without changing the total axial length L of the screw rotor 16 housed in the pump chamber 17 where space is limited, and various inert gases can be optimized. Compression and transfer can be performed with high compression efficiency.
  • the overall axial length L of the screw rotor 16 must be changed without changing the compression characteristics of the pump 11 (the manner in which the volume of the working chamber 25 changes). May be required.
  • the rotation angle x at which the two change functions ⁇ 1 ( ⁇ ) and ⁇ 2 (X) switch, that is, the switch angle M is changed. It is.
  • the switching lead angle DegM is also changed according to the change of the switching angle M.
  • the overall axial length L of the screw rotor 16 can be easily changed without changing the compression characteristics of the pump itself.
  • the fluid transferred while being compressed in the pump chamber 17 with the rotation of the screw rotor 16 may be a gas other than an inert gas or gas), for example, a refrigerant gas, or a liquid such as hydraulic oil.
  • screw pump according to the present invention can be applied to pumps other than the vacuum pump.
  • the plurality of change functions ⁇ 1 (X) and ⁇ 2 (x) combined to form the lead angle change function ⁇ (X) are not limited to a monotonically increasing function, but may be a quadratic function, an n-order function, It is an exponential function.
  • the number of change functions 0 1 (X) and ⁇ 2 (X) combined to form the lead angle change function ⁇ (X) is not limited to two as long as it is plural, and may be three or more.
  • the change functions ⁇ 1 ( ⁇ ) and ⁇ 2 ( ⁇ ) combined to form the lead angle change function ⁇ (X) are different from those shown by the solid line in FIG. ( ⁇ ) may represent the change of the lead angle ⁇ with a gentler degree of change than the second change function 0 2 (X)
  • the lead angle change function ⁇ (X) When a plurality of functions combined to form the lead angle change function ⁇ (X) are, for example, a combination of two functions, one of the functions represents a state in which the lead angle ⁇ continuously changes.
  • the change function may be used, and the other function may be a function representing a state where the lead angle ⁇ ⁇ ⁇ does not continuously change. That is, the screw rotor 16 has at least a portion where the lead angle ⁇ continuously changes from the start end (suction side end) to the end end (discharge side end) of the spiral strip (helix wire). I have some.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

 スクリュ式ポンプは、流体移送体として機能する一対のスクリュロータを備えている。各スクリュロータの軸線周りでの回転角度xに関して、螺旋条の始端に対応する回転角度xである巻き始め角0から、螺旋条の終端に対応する回転角度xである巻き終わり角Eに至るまでの間におけるリード角θの変化は、リード角変化関数θ(x)として表すことができる。このリード角変化関数θ(x)は、変化態様の異なる複数の変化関数θ1(x),θ2(x)の組み合わせにより構成される。複数の変化関数θ1(x),θ2(x)の組み合わせ方次第で、リード角θの変化態様を任意に設定できる。そのため、ポンプの流体圧縮特性を、スクリュロータの軸方向長さLとの関係において任意に設定することが可能となる。

Description

明 細 書
スクリュ式ポンプ及びねじ歯車
技術分野
[0001] 本発明は、例えば半導体製造プロセスにおいて使用されるスクリュ式ポンプ及び当 該スクリュ式ポンプに適用するのに好適なねじ歯車に関する。
背景技術
[0002] 一般に、半導体製造プロセスでは、真空環境を作り出すために、スクリュ式ポンプが 真空ポンプとして用いられる。即ち、半導体製造プロセスでは、真空環境下でウェハ に各種の処理を行うため、ウェハが収納された容器内に流体である Fガス等の不活
2
性ガスを供給する一方、当該ガスを容器内に残留する不純物 (O , CO等)と共に真
2 2 空ポンプで吸引し、容器内に清浄な真空環境を作り出すようにしている。このような真 空ポンプとして、従来から、例えば特許文献 1に記載されるようなスクリュ式ポンプが 知られている。
[0003] この特許文献 1のスクリュ式ポンプでは、螺旋状に嚙み合う一対のねじ歯車、即ち 一対のスクリュロータが、流体移送体 (ガス移送体)として機能するように構成されて いる。各ねじ歯車は、駆動源によって回転させられる回転軸に対して一体回転するよ うに連結されている。各ねじ歯車のリード角(ねじれ角)は、当該ねじ歯車の螺旋条( つるまき線)を迪るのに従い連続的に変化する、具体的には、リード角は、ねじ歯車 における低圧(吸入)側の軸方向端部力も高圧 (排出)側の軸方向端部へ向力つて 単調に増加する。なお、リード角は、ねじ歯車の軸線に対する螺旋条の傾き角として 定義される。前記回転軸の回転に伴い両ねじ歯車が回転した場合には、不活性ガス が外部からポンプ室内に吸引され、当該ポンプ室内において両ねじ歯車により圧縮 されながら排出側へ移送された後、ポンプ室内から外部へ排出されるようになってい る。
[0004] 図 4 (a)は、特許文献 1のねじ歯車におけるリード角 Θの変化態様を示すグラフであ る。図 4 (a)は、ねじ歯車の螺旋条 (つるまき線)の始端 (吸入側端部)から終端 (排出 側端部)に至るまでの間におけるリード角 Θの変化を、ねじ歯車の軸線周りでの回転 角度 xを横軸として示している。図 4 (a)に示すように、吸入側端部から排出側端部に 至るまでの螺旋条におけるリード角 Θの変化は、ねじ歯車の軸線周りでの回転角度 X の関数 0 (X)として表すことができる。なお、図 4 (a)のグラフの横軸に関して、螺旋条 の吸入側端部に対応する回転角度 Xが巻き始め角 0として定義され、螺旋条の排出 側端部に対応する回転角度 Xが巻き終わり角 Eとして定義されている。
[0005] この図 4 (a)のグラフから判るように、リード角 Θは、巻き始め角 0に対応するリード角 である巻き始めリード角 DegS (例えば 50度)から、巻き終わり角 Eに対応するリード角 である巻き終わりリード角 DegE (例えば 80度)に至るまで、単調増加する。そのため 、特許文献 1では、図 4 (b)に示すように、ねじ歯車の軸方向における全長 Lは、巻き 始めリード角 DegSと巻き終わりリード角 DegEとを用いた単調増加関数 θ (x)により 一義的に定まる。
[0006] すなわち、ねじ歯車のリード角 Θの変化を表す単調増加関数 θ (X)は下記式(11) で表すことができ、同式(11)における定数 kは下記式(12)で表すことができる。なお 、 rはねじ歯車のピッチ円の半径である。
[0007] Θ (x) =DegS + k-x - " (11)
k= (DegE— DegS)Z(27u r'E) - -- (12)
上記式(11) , (12)から、ねじ歯車の全長 Lは、下記式(13)により一義的に求めら れる。
[0008] L=l/k · log(sin(DegS+k · 2 π r · E)/Sin(DegS)) - -- (13)
上記式(13)は、ねじ歯車の全長 Lが当該ねじ歯車における巻き始めリード角 Deg Sと巻き終わりリード角 DegEとにより決定されることを示している。
[0009] また、上記特許文献 1のスクリュ式ポンプでは、ねじ歯車によってポンプ室内に形成 される複数のガス作動室の容積が、吸入側力も排出側に向力つて次第に小さくなつ ており、ガスは排出側の作動室に向かって移送されるのに従い圧縮される。吸入側 力 排出側への作動室の容積の変化態様、言 、換えればスクリュ式ポンプのガス圧 縮特性を変更する場合には、ねじ歯車の全長 Lに影響を与える前記巻き始めリード 角 DegSや前記巻き終わりリード角 DegEが変更される。一方、ねじ歯車は真空ボン プにおけるポンプ室に収納されるものであるため、ねじ歯車の全長 Lは、ポンプ室内 にねじ歯車を収納可能とする値に設定される必要がある。しかし、スクリュ式ポンプの ガス圧縮特性を変更するために巻き始めリード角 DegSや巻き終わりリード角 DegE を変更した場合には、ねじ歯車の全長 Lがポンプ室内にねじ歯車を収納不能とする 値となることもあり得る。そのため、特許文献 1のスクリュ式ポンプは、ガス圧縮特性の 変更の自由度に劣る。
特許文献 1:特開平 9 32766号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的は、流体圧縮特性の変更の自由度に優れるスクリュ式ポンプ及びね じ歯車を提供することにある。
課題を解決するための手段
[0011] 上記目的を達成するため、本発明は、螺旋条の始端から終端に至るまでの間にお いてリード角が連続的に変化する部分を有するねじ歯車であって、前記ねじ歯車の 軸線周りでの回転角度に関して、前記螺旋条の始端に対応する回転角度である巻き 始め角から、前記螺旋条の終端に対応する回転角度である巻き終わり角に至るまで の間における前記リード角の変化を、リード角変化関数として表した場合、当該リード 角変化関数が変化態様の異なる複数の変化関数の組み合わせにより構成されるね じ歯車を提供する。
[0012] 本発明はまた、互いに嚙み合う一対のねじ歯車と両ねじ歯車を収納するポンプ室と を備え、両ねじ歯車が互いに嚙み合いながら回転することによって、ポンプ室内に吸 入された流体が当該ポンプ室内で圧縮されながらねじ歯車の軸方向に移送されるス クリュ式ポンプ装置を提供する。各ねじ歯車は上述のように構成されたねじ歯車にて 構成され、各ねじ歯車の軸方向において隣り合うねじ山の部分の間には、流体を圧 縮するための作動室が形成される。
図面の簡単な説明
[0013] [図 1]本発明の一実施形態に係るスクリュ式真空ポンプの平断面図。
[図 2]図 2 (a)はスクリュロータのリード角の変化態様を示すグラフ、図 2 (b)はスクリュロ 一タの軸方向長さを説明するグラフ。
[図 3]図 3 (a)はスクリュロータのリード角の変化態様を示すグラフ、図 3 (b)はスクリュロ 一タの軸方向長さを説明するグラフ。
[図 4]図 4 (a)は従来技術におけるスクリュロータのリード角の変化態様を示すグラフ、 図 4 (b)は従来技術におけるスクリュロータの軸方向長さを説明するグラフ。
発明を実施するための最良の形態
[0014] 以下、本発明を具体ィ匕した一実施形態を図 1〜図 3 (b)に従って説明する。
図 1に示すように、本実施形態におけるスクリュ式真空ポンプ 11は、筒状をなす口 ータハウジング部材 12と、そのロータハウジング部材 12の前端(図 1では左端)に接 合される蓋状をなすフロントハウジング部材 13と、ロータハウジング部材 12の後端( 図 1では右端)に接合される板状をなすリャハウジング部材 14とを備えている。リャハ ウジング部材 14には段差付き取付孔 14aが形成されており、軸受体 15が当該取付 孔 14aに嵌合された状態でリャハウジング部材 14にボルトによって固定されている。 前記ロータハウジング部材 12内には、流体移送体として機能する一対のスクリュロー タ(ねじ歯車) 16が収納されている。これらスクリュロータ 16の外周面とロータハウジン グ部材 12の内周面との間には、ポンプ室 17が形成される。なお、前記スクリュロータ 16の具体的構成については、後述する。
[0015] 前記軸受体 15には、一対の支持孔 18が貫通形成されており、各支持孔 18には回 転軸 19がそれぞれ挿入されて支持されて 、る。各回転軸 19の端部(図 1では左端) は対応する支持孔 18からポンプ室 17内に突出しており、各回転軸 19の端部に対し て前記両スクリュロータ 16の一方がボルトにより固定されている。即ち、各スクリュロー タ 16は対応する回転軸 19に対して当該回転軸 19と一体回転するように連結されて いる。
[0016] 前記リャハウジング部材 14の後端には、一端が閉塞された筒の形態をなすギヤハ ウジング部材 20が固定されている。ギヤハウジング部材 20内には前記両回転軸 19 の端部(図 1では右端) 19aがそれぞれ突出しており、それらの突出端部 19aにはギ ャ 21が互いに嚙み合った状態で止着されている。前記ギヤハウジング部材 20の外 面には、駆動源となる電動モータ 22が取り付けられている。ギヤハウジング部材 20 内に延びる電動モータ 22の出力軸 22aに対して、前記両回転軸 19のうち一方の回 転軸(図 1では下側の回転軸) 19の端部 19aが軸継手 23を介して連結されている。
[0017] 前記フロントハウジング部材 13の略中央部には、流体、具体的には Fガス等の不
2
活性ガスの導入を許容する吸入口 24が、前記ポンプ室 17に連通するように形成さ れて 、る。前記吸入口 24とは反対側に位置するロータハウジング部材 12の端部の 付近において、当該ロータハウジング部材 12の周壁には、前記不活性ガスの排出を 許容する排出口(図示略)が、ポンプ室 17に連通するように形成されている。この排 出口は、ロータハウジング部材 12の幅方向(図 1では上下方向)略中央の下部に位 置する。前記電動モータ 22が駆動されると、前記両回転軸 19の回転に伴い両スタリ ュロータ 16が互いに逆向きに回転する。それにより、吸入口 24を介してポンプ室 17 内に吸入された不活性ガス力 スクリュロータ 16の軸方向に、ポンプ室 17内を排出 口に向力つて圧縮されながら移送された後、当該排出ロカ 外部へ排出される。
[0018] 次に、前記スクリュロータ 16について説明する。
図 1に示すように、前記各スクリュロータ 16は一条ねじ歯車の形態をなしており、そ の外周面上に螺旋条、すなわちねじ山 16aとねじ溝 16bとを有している。両スクリュロ ータ 16の一方におけるねじ山 16aと、他方におけるねじ溝 16bとが互いに嚙み合わ さるようにして、両スクリュロータ 16がポンプ室 17内にお!ヽて互 ヽに平行に延びて!/ヽ る。ポンプ室 17内において、各スクリュロータ 16の軸方向において隣り合うねじ山 16 aの部分の間には、不活性ガスのための作動室 25が形成される。これらの作動室 25 は、吸入口 24から排出口に向力つて、言い換えれば低圧側から高圧側に向力つて、 不活性ガスを圧縮しながら移送する。
[0019] 前記各スクリュロータ 16は、当該スクリュロータ 16の螺旋条(つるまき線)を迪るのに 従い連続的に変化するリード角(ねじれ角ともいう) Θを有している。なお、リード角 Θ は、スクリュロータ 16の軸線に対する螺旋条(ねじ山 16a及びねじ溝 16b)の傾き角と して定義される。スクリュロータ 16は、吸入口 24 (吸入側)から排出口(排出側)へ向 力つて次第に前記作動室 25の容積が減少するよう、最も吸入口 24寄りの部分にお けるリード P1が最大となるように形成される一方、最も排出口寄りの部分におけるリー ド P4が最小となるように形成される。具体的には、スクリュロータ 16の最も吸入口 24 寄りの部分力 軸方向における中途地点 mまでの第 1範囲(吸入側範囲)では、リー ドが最大のリード P1からそれよりも小さいリード P2へと次第に小さくなるように、リード 角 Θが変化する。スクリュロータ 16の前記中途地点 m力も最も排出口寄りの部分まで の第 2範囲 (排出側範囲)では、リードがリード P3からそれよりも小さいリード P4へと次 第に短くなるように、リード角 Θが前記第 1範囲での変化態様とは異なる変化態様で 変化する。なお、本実施形態ではスクリュロータ 16が一条ねじ歯車の形態をなしてい るので、スクリュロータ 16のリード、すなわち螺旋条(つるまき線)に沿ってスクリュロー タ 16の軸線周りを一周したときに軸方向に進む距離は、ねじ山 16aのピッチに等しい
[0020] 図 2 (a)は、本実施形態におけるスクリュロータ 16のリード角 Θの変化態様を示すグ ラフである。図 2 (a)は、スクリュロータ 16の螺旋条 (つるまき線)の始端 (吸入側端部) 力 終端 (排出側端部)に至るまでの間におけるリード角 Θの変化を、スクリュロータ 1 6の軸線周りでの回転角度 Xを横軸として示している。図 2 (a)に示すように、吸入側 端部から排出側端部に至るまでの螺旋条におけるリード角 Θの変化は、スクリュロー タ 16の軸線周りでの回転角度 Xの関数 0 (X)として表すことができる。以下、この関数 θ (X)をリード角変化関数 0 (X)と称する。なお、図 2 (a)のグラフの横軸に関して、螺 旋条の吸入側端部に対応する回転角度 Xが巻き始め角 0として定義され、前記中途 地点 mに対応する回転角度 Xが切り換わり角 Mとして定義され、螺旋条の排出側端 部に対応する回転角度 Xが巻き終わり角 Eとして定義されている。すなわち、スクリュ ロータ 16の軸線周りを周回しながら螺旋条をその吸入側端部から排出側端部まで迪 つた場合において、螺旋条の吸入側端部に対応する回転角度 Xが巻き始め角 0とし て定義され、前記中途地点 mに至ったときの回転角度 Xが切り換わり角 Mとして定義 され、螺旋条の排出側端部に至ったときの回転角度 Xが巻き終わり角 Eとして定義さ れる。
[0021] 図 2 (a)に示すように、前記回転角度 Xが巻き始め角 0から巻き終わり角 Eに至るま での間において、前記リード角変化関数 θ )は、変化態様の異なる複数 (図 2 (a) では 2つ)の変化関数 0 1 (X) , Θ 2 (X)の組み合わせにより構成される。言 、換えれ ば、回転角度 Xが巻き始め角 0から巻き終わり角 Eに至るまでの間において、リード角 Θの変化は、変化態様の異なる複数の変化関数 0 1 (X) , Θ 2 (X)の組み合わせによ つて表される。
[0022] 前記変化関数 θ 1 (X)は、巻き始め角 0から切り換わり角 Μまでの角度範囲に対応 する第 1変化関数 (吸入側変化関数)であり、前記第 1範囲 (吸入側範囲)におけるリ ード角 Θの変化を表している。変化関数 θ 2 (χ)は、切り換わり角 Μ力も巻き終わり角 Εまでの角度範囲に対応する第 2変化関数 (吸入側変化関数)であり、前記第 2範囲 (排出側範囲)におけるリード角 Θの変化を表している。この第 2変化関数 θ 2 (χ)は 、第 1変化関数 θ 1 (X)と比較して、リード角 Θの変化を緩や力な変化度合いで表し ている。第 1変化関数 0 l (x)及び第 2変化関数 0 2 (χ)の何れも、回転角度 Xが巻き 始め角 0から巻き終わり角 Εに向かうにつれてリード角 Θを次第に増加させる単調増 加関数である。
[0023] 図 2 (a)のグラフの縦軸に関して、 "DegS"は巻き始め角 0に対応する螺旋条の吸 入側端部でのリード角、すなわち巻き始めリード角であり、 "DegM"は切り換わり角 M に対応する中途地点 mでのリード角、すなわち切り換わりリード角であり、 "DegE"は 巻き終わり角 Eに対応する螺旋条の排出側端部でのリード角、すなわち巻き終わりリ ード角である。例えば、巻き始めリード角 DegSを 50度、切り換わりリード角 DegMを 7 0度、巻き終わりリード角 DegEを 80度に設定したとする。この場合、巻き始め角 0から 切り換わり角 Mに至るまでの間に、リード角は 20度分だけ比較的急峻に単調増加す る。一方、切り換わり角 M力も巻き終わり角 Eに至るまでの間においては、リード角は 10度分だけ比較的緩やかに単調増加する。
[0024] スクリュロータ 16の軸線周りを巻き始め角 0から巻き終わり角 Eまで周回した際に得 られるリード合計は、前記第 1変化関数 Θ 1 )と前記第 2変化関数 Θ 2 )とを組み 合わせてなるリード角変化関数 θ (X)に基づき、スクリュロータ 16の軸方向全長 Lとし て求めることができる。即ち、図 2 (b)に示すように、スクリュロータ 16の前記第 1範囲 における軸方向長さ、すなわち第 1軸方向長さ(吸入側軸方向長さ) L1は、巻き始め 角 0から切り換わり角 Mまでの角度範囲に対応する第 1変化関数 Θ 1 (X)に基づき求 められる。また、スクリュロータ 16の前記第 2範囲における軸方向長さ、すなわち第 2 軸方向長さ(排出側軸方向長さ) L2は、切り換わり角 Mから巻き終わり角 Eまでの角 度範囲に対応する第 2変化関数 θ 2 (x)に基づき求められる。そして、前記両軸方向 長さ LI, L2の合計がスクリュロータ 16の軸方向全長 Lとして求められる。
[0025] 前記第 1変化関数 Θ 1 )、前記第 2変化関数 Θ 2 )、及び、それら変化関数 θ 1
(X) , θ 2 (x)に基づき求められるスクリュロータ 16の軸方向全長 L (=L1 +L2)は、 以下のような式により表すことができる。
[0026] まず、巻き始め角 0から切り換わり角 Mまでの角度範囲(0<xく M)に対応する第 1 変化関数 0 l (x)は下記式(1)で表すことができ、同式(1)における定数 klは下記 式(2)で表すことができる。なお、式(2)における rは、スクリュロータ 16のピッチ円の 半径である。
[0027] Θ l (x) =DegS + kl -x
kl = (DegM - DegS) / (2 π r · Μ) · '· (2)
いま仮に、図 2 (a)に実線で示す第 1変化関数 0 l (x)について、切り換わり角 M及 び切り換わりリード角 DegMを変更せずに、巻き始めリード角 DegSを大きな値に変 更したとする。この場合には、巻き始め角 0から切り換わり角 Mに至るまでの間におけ るリード角 Θの変化度合いが、実線で示す第 1変化関数 Θ 1 (X)におけるそれよりも 緩やかとなる。換言すると、ポンプ 11のガス圧縮特性を決定する吸入側カゝら排出側 への作動室 25の容積の変化度合いが、スクリュロータ 16の第 1範囲において、実線 で示す第 1変化関数 0 l (x)の場合のそれよりも緩や力となる。その逆に、図 2 (a)に 実線で示す第 1変化関数 Θ 1 (X)について、巻き始めリード角 DegSを小さな値に変 更したとする。この場合には、巻き始め角 0から切り換わり角 Mに至るまでの間におけ るリード角 Θの変化度合いが、実線で示す第 1変化関数 Θ 1 (X)におけるそれよりも 急なものとなる。換言すると、吸入側力 排出側への作動室 25の容積の変化度合い 力 スクリュロータ 16の第 1範囲において、実線で示す第 1変化関数 0 l (x)の場合 のそれよりも急なものとなる。
[0028] 一方、切り換わり角 M力 巻き終わり角 Eまでの角度範囲(M<x<E)に対応する 第 2変化関数 Θ 2 (X)は下記式(3)で表すことができ、同式(3)における定数 k2は下 記式 (4)で表すことができる。
[0029] Θ 2 (x) =DegM + k2- (χ-Μ) · '· (3) k2 = (DegE - DegM) / ( 2 π r · E) "- (4)
いま仮に、図 2 (a)に実線で示す第 2変化関数 θ 2 (x)について、切り換わりリード角 DegMを変更せずに、巻き終わりリード角 DegEを大きな値に変更したとする。この場 合には、切り換わり角 M力も巻き終わり角 Eに至るまでの間におけるリード角 Θの変 化度合いが、実線で示す第 2変化関数 θ 2 (x)におけるそれよりも急なものとなる。換 言すると、吸入側から排出側への作動室 25の容積の変化度合いが、スクリュロータ 1 6の第 2範囲において、実線で示す第 2変化関数 0 2 (X)の場合のそれよりも急なも のとなる。その逆に、図 2 (a)に実線で示す第 2変化関数 θ 2 (x)について、巻き終わ りリード角 DegEを小さな値に変更したとする。この場合には、切り換わり角 Mから巻き 終わり角 Eに至るまでの間におけるリード角 Θの変化度合いが、実線で示す第 2変化 関数 θ 2 (x)におけるそれよりも緩や力となる。換言すると、吸入側から排出側への作 動室 25の容積の変化度合いが、スクリュロータ 16の第 2範囲において、実線で示す 第 2変化関数 Θ 2 (X)の場合のそれよりも緩や力となる。
[0030] 次に、上記リード角変化関数( θ 1 (χ) , Θ 2 (X) )から導かれる前記スクリュロータ 16 の軸方向全長 L (=L1 +L2)について説明する。
まず、巻き始め角 0から切り換わり角 Mまでの角度範囲(0<xく M)に対応する第 1 範囲における第 1軸方向長さ L1は、下記式(5)で表すことができる。
[0031] Ll=l/kl · log(sin(DegS+kl · 2 π r · M)/Sin(DegS)) - -- (5)
また、切り換わり角 M力 巻き終わり角 Eまでの角度範囲(M<x<E)に対応する第 2範囲における第 2軸方向長さ L2は、下記式 (6)で表すことができる。
[0032] L2=l/k2 · log(sin(DegM+k2 · 2 π r · E)/Sin(DegM》 · · ·(6)
従って、上記式(5) , (6)に基づき、スクリュロータ 16の軸方向全長 L (=L1 +L2) を求めることができる。
[0033] 次に、上記のように構成されたポンプ 11の動作について説明する。
さて、前記電動モータ 22によって両回転軸 19が回転させられると、両回転軸 19と 共に、互いに嚙み合う両スクリュロータ 16が回転し、外部力も不活性ガスが吸入口 24 を介してポンプ室 17内に吸引される。ポンプ室 17内に吸引された不活性ガスは、両 スクリュロータ 16の回転に伴い各作動室 25内で圧縮されながら排出口に向けて移送 され、当該排出口を介してポンプ室 17内から外部へ排出される。そのため、半導体 製造プロセスにおいて、ウェハ(図示略)に対する各種処理を行う作業ルーム又は作 業容器に吸入口 24を接続した状態でポンプ 11を作動させた場合には、当該作業ル ームゃ作業容器内に清浄な真空環境が作り出される。
[0034] 一方、スクリュロータ 16は、次のようにして圧縮作用を行う。即ち、吸入口 24からポ ンプ室 17内に吸引された不活性ガスは、スクリュロータ 16の第 1範囲における作動 室 25を移送される際に、当該作動室 25の容積変化度合いが比較的急であるため急 激に圧縮される。その後、不活性ガスは、スクリュロータ 16の第 2範囲における作動 室 25を移送される際には、当該作動室 25の容積変化度合いが比較的緩やかである ため緩やかに圧縮される。そのため、排出口の近傍において急激な圧力上昇が起こ るような事態が回避され、排出口の近傍での局部的な温度上昇が抑制される。
[0035] スクリュロータ 16の軸方向全長 Lは、前記式(1)〜(6)に基づき定められる。このよう な前提において、当該軸方向全長 Lを変更することなぐポンプ 11のガス圧縮特性を 決定する吸入側力も排出側への作動室 25の容積変化態様を変更する場合には、例 えば図 2 (a)に示すように切り換わりリード角 DegMが変更される。なお、図 2 (a)の例 では、巻き始め角 0、切り換わり角 M及び巻き終わり角 Eは変更されず、また巻き始め リード角 DegS及び巻き終わりリード角 DegEも変更されない。即ち、切り換わりリード 角 DegMを、例えば、図 2 (a)に実線で示すリード角変化関数 θ (x)における値よりも 小さな値 DegM'に変更した場合には、図 2 (a)に一点鎖線で示すように、第 1変化関 数 0 1 (X)がより緩や力なリード角 Θの変化度合いを表すようになり、第 2変化関数 Θ 2 (X)がより急激なリード角 Θの変化度合いを表すようになる。この場合、図 2 (b)に一 点鎖線で示すように、スクリュロータ 16の軸方向全長 L ( = L1, +L2' )は、切り換わり リード角 DegMを変更する前の軸方向全長 L ( = L1 +L2)と同じになる。また、切り換 わりリード角 DegMを、例えば、図 2 (a)に実線で示すリード角変化関数 0 (x)におけ る値よりも大きな値 DegM"に変更した場合には、図 2 (a)に二点鎖線で示すように、 第 1変化関数 Θ 1 (X)がより急激なリード角 Θの変化度合いを表すようになり、第 2変 化関数 0 2 (X)がより緩やかなリード角 Θの変化度合いを表すようになる。この場合に おいても、図 2 (b)に二点鎖線で示すように、スクリュロータ 16の軸方向全長 L ( = L1 " + L2")は、切り換わりリード角 DegMを変更する前の軸方向全長 L ( = L1 +L2)と 同じになる。このように、変化態様の異なる複数の変化関数 0 1 (X) , Θ 2 (X)の組み 合わせでリード角変化関数 θ (X)を構成すれば、スクリュロータ 16の軸方向全長 Lを 変更できない事情がある場合でも、巻き始め角 0から巻き終わり角 Eに至るまでの間 におけるリード角 Θの変化態様を変更することにより、ポンプ 11の圧縮特性を変更可 能となる。
[0036] 一方、第 1変化関数 θ l (x)と第 2変化関数 Θ 2 )とを変更することなぐ前記スクリ ュロータ 16の軸方向全長 Lを変更する場合には、例えば図 3 (a)に示すように切り換 わり角 Mが変更される。なお、図 3 (a)の例では、巻き始め角 0及び巻き終わり角 Eは 変更されず、また巻き始めリード角 DegSも変更されない。即ち、切り換わり角 Mを、 例えば図 3 (a)に一点鎖線で示すように小さな値 M'に変更した場合は、第 1及び第 2 変化関数 0 1 (X) , Θ 2 (X)によってそれぞれ表されるリード角 Θの変化度合!、が変 わらない状態で、切り換わりリード角 DegM及び巻き終わりリード角 DegEが小さくな る。その結果、この場合には、図 3 (b)に一点鎖線で示すように、スクリュロータ 16の 軸方向全長 Lが大きな値 L'に変更される。また、切り換わり角 Mを、例えば図 3 (a)に 二点鎖線で示すように大きな値 M"に変更した場合は、第 1及び第 2変化関数 θ l (x ) , Θ 2 (X)によってそれぞれ表されるリード角 Θの変化度合いが変わらない状態で、 切り換わりリード角 DegM及び巻き終わりリード角 DegEが大きくなる。その結果、この 場合には、図 3 (b)に二点鎖線で示すように、スクリュロータ 16の軸方向全長 Lが小さ な値 L"に変更される。このように、リード角変化関数 θ (X)を構成する複数の変化関 数 0 1 (χ) , Θ 2 (χ)自体を変更せずに、切り換わり角 Μを変更することにより、スクリュ ロータ 16の軸方向全長 Lを任意に変更することも可能となる。
[0037] 上記実施形態は、以下の利点を有する。
(1)本実施形態では、巻き始め角 0から巻き終わり角 Εに至るまでの間において、ス クリュロータ 16におけるリード角 Θの変化が、変化態様の異なる複数の変化関数 0 1 (X) , Θ 2 (X)を組み合わせてなるリード角変化関数 θ (X)で表される。そのため、複 数の変化関数 0 1 (X) , Θ 2 (X)の組み合わせ方次第で、リード角 Θの変化態様を任 意に設定できる。従って、組み合わされる複数の変化関数 0 1 (X) , Θ 2 (X)に基づく リード角 Θの変化態様によって導かれる圧縮特性 (作動室 25の容積の変化態様)を 、スクリュロータ 16の軸方向全長 Lとの関係において任意に設定でき、圧縮対象とな る不活性ガス (流体)の種類に応じて、圧縮効率が最適となるように設定できる。
[0038] (2)リード角 Θの変化度合いは、スクリュロータ 16における第 2範囲の方が第 1範囲 よりも緩や力となっている。言い換えれば、ポンプ 11の圧縮特性を決定する作動室 2 5の容積変化度合いは、スクリュロータ 16における第 2範囲の方が第 1範囲よりも緩や 力となっている。そのため、ポンプ 11の作動時において、作動室 25の容積変化度合 いがポンプ 11の排出口の近傍では緩やかになる。従って、排出口の近傍での急激 な圧力上昇及び当該圧力上昇に起因した局部的な温度上昇を良好に回避すること ができる。
[0039] (3)リード角変化関数 θ (X)を構成する第 1及び第 2変化関数 θ 1 (χ) , θ 2 (χ)の 各々は、回転角度 Xが巻き始め角 0から巻き終わり角 Εに向力 につれてリード角 Θを 次第に増加させる単調変化関数である。そのため、スクリュロータ 16におけるリードは 、巻き始め角 0から巻き終わり角 Εへと向力つて単調に減少する。従って、ポンプ室 1 7内で一対のスクリュロータ 16が互いに嚙み合いながら回転する際において、両スク リュロータ 16の回転負荷が少ないものとなり、ポンプ 11の良好な圧縮動作を実現す ることがでさる。
[0040] (4)ポンプ 11での圧縮対象となる不活性ガスの種類に応じて、ポンプ 11の圧縮特 性 (作動室 25の容積変化態様)を変更することが要求される場合がある。そのような 場合、本実施形態では、スクリュロータ 16の軸方向中途地点 mに対応する切り換わり 角 Mでの切り換わりリード角 DegMが変更される。その結果、スペース的に制約のあ るポンプ室 17内に収納されるスクリュロータ 16の軸方向全長 Lを変更することなぐ容 易にポンプ 11の圧縮特性を変更でき、各種の不活性ガスを最適な圧縮効率で圧縮 且つ移送できる。
[0041] (5)ポンプ室 17の容積を変更する場合等において、ポンプ 11の圧縮特性 (作動室 25の容積変化態様)を変更することなぐスクリュロータ 16の軸方向全長 Lを変更す ることが要求される場合がある。そのような場合、本実施形態では、 2つの変化関数 θ 1 (χ) , Θ 2 (X)が切り換わる境界となる回転角度 x、即ち、切り換わり角 Mが変更さ れる。なお、このとき、切り換わり角 Mの変更に伴い切り換わりリード角 DegMも変更さ れる。その結果、ポンプの圧縮特性自体を変更することなぐスクリュロータ 16の軸方 向全長 Lを容易に変更することができる。
[0042] なお、上記実施形態は以下のように変更してもよい。
スクリュロータ 16の回転に伴いポンプ室 17内を圧縮されながら移送される流体は 不活性ガスおガス等)以外のガス、例えば冷媒ガスでもよぐまた、作動油等の液体
2
であってもよい。また、本発明のスクリュ式ポンプは、真空ポンプ以外のポンプにも適 用できる。
[0043] リード角変化関数 θ (X)を構成するために組み合わされる複数の変化関数 Θ 1 (X) , θ 2 (x)は、単調増加関数に限らず、 2次関数や n次関数又は指数関数等であって ちょい。
[0044] リード角変化関数 θ (X)を構成するために組み合わされる変化関数 0 1 (X) , Θ 2 ( X)の数は、複数であれば 2つに限らず 3つ以上でもよい。
リード角変化関数 θ (X)を構成するために組み合わされる変化関数 Θ 1 (χ) , Θ 2 ( χ)について、図 2 (a)に実線で示すものとは異なり、第 1変化関数 0 1 (χ)の方が第 2 変化関数 0 2 (X)よりもリード角 Θの変化を緩やかな変化度合で表すようにしてもよい
[0045] リード角変化関数 θ (X)を構成するために組み合わされる複数の関数について、例 えば 2つの関数の組み合わせとする場合、一方の関数をリード角 Θが連続的に変化 する状態を表す変化関数とし、他方の関数をリード角 Θが連続的に変化しない状態 を表す関数としてもよい。即ち、スクリュロータ 16は、螺旋条(つるまき線)の始端(吸 入側端部)から終端 (排出側端部)に至るまでの間において、リード角 Θが連続的に 変化する部分を少なくとも一部有して 、ればよ 、。

Claims

請求の範囲
[1] 螺旋条の始端力 終端に至るまでの間においてリード角が連続的に変化する部分 を有するねじ歯車であって、
前記ねじ歯車の軸線周りでの回転角度に関して、前記螺旋条の始端に対応する回 転角度である巻き始め角から、前記螺旋条の終端に対応する回転角度である巻き終 わり角に至るまでの間における前記リード角の変化を、リード角変化関数として表した 場合、当該リード角変化関数が変化態様の異なる複数の変化関数の組み合わせに より構成されることを特徴とするねじ歯車。
[2] 前記巻き始め角と前記巻き終わり角との間における所定の回転角度が切り換わり角 として設定され、前記リード角変化関数は、前記巻き始め角から前記切り換わり角ま での角度範囲に対応する第 1変化関数と、前記切り換わり角から前記巻き終わり角ま での角度範囲に対応する第 2変化関数とを含み、前記第 2変化関数の方が前記第 1 変化関数よりも、リード角の変化を緩や力な変化度合いで表すことを特徴とする請求 項 1に記載のねじ歯車。
[3] 前記リード角変化関数を構成する複数の変化関数の各々は、前記回転角度が前 記巻き始め角力 前記巻き終わり角に向かうにつれてリード角を次第に増加させる単 調変化関数であることを特徴とする請求項 1又は請求項 2に記載のねじ歯車。
[4] X:回転角度、 0 :巻き始め角、 E :巻き終わり角、 M :巻き始め角 0と巻き終わり角 Eと の間に設定される回転角度 Xである切り換わり角、 DegS :巻き始め角 0でのリード角 である巻き始めリード角、 DegE :巻き終わり角 Eでのリード角である巻き終わりリード 角、 DegM :切り換わり角 Mでのリード角である切り換わりリード角、 0 l (x):卷き始め 角 0から切り換わり角 Mまでの角度範囲(0<xく M)におけるリード角の変化を表す 変化関数、 θ 2 (x):切り換わり角 M力 巻き終わり角 Eまでの角度範囲(M<x<E) におけるリード角の変化を表す変化関数、 kl, k2 :定数、 r:ねじ歯車のピッチ円の半 径、 L:ねじ歯車の軸方向全長、 Ll : 0<x< Mの角度範囲に対応するねじ歯車の軸 方向長さ、 L2 : M<x<Eの角度範囲に対応するねじ歯車の軸方向長さ、とした場合 、以下の式が成立することを特徴とする請求項 1に記載のねじ歯車。
Θ l (x) =DegS + kl - x (但し、 0く Xく M) kl = (DegM DegS) Z (2 π r · M)
Θ 2 (x) =DegM + k2- (χ-M) (但し、 M<x<E)
k2 = (DegE— DegM) Z ( 2 π r · E)
Ll=l/kl · log(sin(DegS+kl · 2 π r · M)/Sin(DegS))
L2=l/k2 · log(sin(DegM+k2 · 2 π r · E)/Sin(DegM》
L = L1 +L2
互いに嚙み合う一対のねじ歯車と両ねじ歯車を収納するポンプ室とを備え、両ねじ 歯車が互いに嚙み合いながら回転することによって、ポンプ室内に吸入された流体 が当該ポンプ室内で圧縮されながらねじ歯車の軸方向に移送されるスクリュ式ポンプ 装置において、前記各ねじ歯車は請求項 1〜請求項 4の何れか一項に記載のねじ 歯車にて構成され、各ねじ歯車の軸方向において隣り合うねじ山の部分の間には、 流体を圧縮するための作動室が形成されることを特徴とするスクリュ式ポンプ装置。
PCT/JP2005/010853 2004-06-15 2005-06-14 スクリュ式ポンプ及びねじ歯車 WO2005124154A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006514739A JPWO2005124154A1 (ja) 2004-06-15 2005-06-14 スクリュ式ポンプ及びねじ歯車
US11/629,642 US20090016920A1 (en) 2004-06-15 2005-06-14 Screw pump and screw gear
EP05751166A EP1767785A1 (en) 2004-06-15 2005-06-14 Screw pump and screw gear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004177278 2004-06-15
JP2004-177278 2004-06-15

Publications (1)

Publication Number Publication Date
WO2005124154A1 true WO2005124154A1 (ja) 2005-12-29

Family

ID=35509749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010853 WO2005124154A1 (ja) 2004-06-15 2005-06-14 スクリュ式ポンプ及びねじ歯車

Country Status (6)

Country Link
US (1) US20090016920A1 (ja)
EP (1) EP1767785A1 (ja)
JP (1) JPWO2005124154A1 (ja)
CN (1) CN1969126A (ja)
TW (1) TWI281531B (ja)
WO (1) WO2005124154A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507576A (ja) * 2009-10-22 2013-03-04 コディヴァック リミテッド スクリューロータ型真空ポンプ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103701A1 (ja) * 2009-03-09 2010-09-16 古河産機システムズ株式会社 一軸偏心ねじポンプ
CN106438370B (zh) * 2016-12-07 2018-07-06 中国石油大学(华东) 一种自平衡的变螺距锥形螺杆转子
DE202018000178U1 (de) * 2018-01-12 2019-04-15 Leybold Gmbh Kompressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932766A (ja) * 1995-07-13 1997-02-04 Dia Shinku Kk スクリュ−流体機械及びねじ歯車
JPH11270485A (ja) * 1998-03-23 1999-10-05 Teijin Seiki Co Ltd 真空ポンプ
JP2000136787A (ja) * 1998-10-30 2000-05-16 Teijin Seiki Co Ltd 真空ポンプ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807911A (en) * 1971-08-02 1974-04-30 Davey Compressor Co Multiple lead screw compressor
EP0166851B1 (en) * 1984-04-11 1989-09-20 Hitachi, Ltd. Screw type vacuum pump
US4792294A (en) * 1986-04-11 1988-12-20 Mowli John C Two-stage screw auger pumping apparatus
DK1070848T3 (da) * 1999-07-19 2004-08-09 Sterling Fluid Sys Gmbh Fortrængningsmaskine til kompressible medier
US6508639B2 (en) * 2000-05-26 2003-01-21 Industrial Technology Research Institute Combination double screw rotor assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932766A (ja) * 1995-07-13 1997-02-04 Dia Shinku Kk スクリュ−流体機械及びねじ歯車
JPH11270485A (ja) * 1998-03-23 1999-10-05 Teijin Seiki Co Ltd 真空ポンプ
JP2000136787A (ja) * 1998-10-30 2000-05-16 Teijin Seiki Co Ltd 真空ポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507576A (ja) * 2009-10-22 2013-03-04 コディヴァック リミテッド スクリューロータ型真空ポンプ

Also Published As

Publication number Publication date
JPWO2005124154A1 (ja) 2008-04-10
EP1767785A1 (en) 2007-03-28
TWI281531B (en) 2007-05-21
TW200607927A (en) 2006-03-01
CN1969126A (zh) 2007-05-23
US20090016920A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
US7491041B2 (en) Multistage roots-type vacuum pump
US7497672B2 (en) Screw pump with increased volume of fluid to be transferred
US7452194B2 (en) Screw pump
US20080193301A1 (en) Composite fluid machine
US7484943B2 (en) Screw pump with improved efficiency of drawing fluid
WO2005124154A1 (ja) スクリュ式ポンプ及びねじ歯車
JP4404115B2 (ja) スクリュー圧縮機
JP4884904B2 (ja) 流体機械
US7234925B2 (en) Screw pump
KR20060047511A (ko) 스크루식 유체 기계
JP2008280982A (ja) シングルスクリュー圧縮機
KR20070023781A (ko) 나사 펌프 및 나사 기어
WO2015193974A1 (ja) 二段スクリュー圧縮機
KR101142113B1 (ko) 모터 및 로터 회전축 일체형 스크루 로터 진공펌프
JP5871578B2 (ja) スクリュー圧縮機
CN210127943U9 (zh) 螺旋式压缩机
WO2011040389A1 (ja) スクリュー圧縮機
KR200343568Y1 (ko) 트로코이드 기어펌프
JPH09166091A (ja) オイルポンプロータ
GB2401401A (en) Three rotor screw pump with smaller central rotor
GB2401400A (en) Pump with screw pitch less than 1.6 times the diameter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514739

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580019848.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005751166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067027441

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067027441

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005751166

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2005751166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11629642

Country of ref document: US