WO2005120484A1 - グレリンの生理学的機能のレギュレーター - Google Patents

グレリンの生理学的機能のレギュレーター Download PDF

Info

Publication number
WO2005120484A1
WO2005120484A1 PCT/JP2004/015413 JP2004015413W WO2005120484A1 WO 2005120484 A1 WO2005120484 A1 WO 2005120484A1 JP 2004015413 W JP2004015413 W JP 2004015413W WO 2005120484 A1 WO2005120484 A1 WO 2005120484A1
Authority
WO
WIPO (PCT)
Prior art keywords
darelin
ghrelin
glyceryl
acid
acyl
Prior art date
Application number
PCT/JP2004/015413
Other languages
English (en)
French (fr)
Inventor
Masayasu Kojima
Yoshihiro Nishi
Kenji Kangawa
Original Assignee
Kurume University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurume University filed Critical Kurume University
Publication of WO2005120484A1 publication Critical patent/WO2005120484A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/06Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/06Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
    • A61P5/08Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH for decreasing, blocking or antagonising the activity of the anterior pituitary hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/10Drugs for disorders of the endocrine system of the posterior pituitary hormones, e.g. oxytocin, ADH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to regulators of the physiological function of darelin and their use in connection with the manufacture of pharmaceutical compositions or foods.
  • Darrelin is an endogenous ligand (peptide) of a receptor (GHS-R) that binds to growth hormone secretagogue (GHS), a synthetic non-natural substance that promotes growth hormone secretion. Hormone), which was the first substance discovered by the group of the present inventors [(1) and WO01 / 007475]. Initially, darelin was purified from the stomach of rats, but it has been demonstrated that it is also expressed in brain, lung, kidney, spleen, small and large intestine (2-7).
  • Ghrelin has also been isolated from cDNA from vertebrates other than rats, such as humans, mice, pigs, chickens, eel, sea lions, pomas, higgies, potatoes, -jimas or dogs, or has been estimated to have cDNA power ( JP-A-2004-2378).
  • Darrelin has an activity to increase intracellular calcium ion concentration and a potent growth hormone secretion-promoting activity (1, 8-10), and stimulates appetite, induces obesity (11--14), and improves cardiac function (15-17), has various activities such as promoting gastric acid secretion (18).
  • a potent growth hormone secretion-promoting activity (1, 8-10)
  • stimulates appetite induces obesity (11--14), and improves cardiac function (15-17)
  • has various activities such as promoting gastric acid secretion (18).
  • modulation of that function is important not only for subjects suffering from diseases related to Darrelin but also for healthy subjects.
  • Darrelin which has been identified so far, is a group of peptides having about 30 or less amino acid residues, and has a structural feature that the amino acid at position 3 is substituted with an acyl group.
  • human darelin consists of 28 amino acids, and the serine side chain at position 3 is acylated with a fatty acid (n-octanoic acid).
  • the amino acid 3 at the 3-position is essential for the expression of physiological activities such as the increase in intracellular calcium ion concentration of dallelin and the promotion of growth factor secretion (1).
  • the amino acid at position 3 of the darelin molecule is usually serine (hereinafter, referred to as “Ser 3 ” or “ser (3)”). No.
  • the acyl group used for modification of the amino acid at position 3, which is essential for the biological activity of darelin, is mainly a medium-chain / long-chain fatty acid residue.
  • Humans, pigs, sea lions, sheep, dogs, rats, mice, etc., mammals,-birds, such as birds, eel,-fish, such as jimas, terravia, catfish, etc., and amphibians, such as power frogs, are n-otatanyl. [1), (19), and
  • acyl modification examples include an n-decanoyl (C10: 0) modification (e.g., Shiga frog, Patent Document 2) and an n-decenoyl (C10: l) modification (20-22).
  • n-butanoyl (C4) e.g, Puma
  • hexanoyl (C6) e.g., hexanoyl (C6)
  • dodecanoyl (C12) are also known (Japanese Patent Application Laid-Open No. 2004-2378).
  • Ghrelin-acyl modification is the first example of lipid modification of peptide hormones, and serylhydrido-xyl-group acylation has never been reported as a modification of mammalian proteins.
  • the power of the presence of asilyi darelin and non-asiyi darelin in the living body The putative enzyme that catalyzes the transfer of the acyl group to the amino acid residue at position 3 of darelin is probably a novel acyltransferase, which regulates darelin production. Seems important. However, such enzymes have not yet been discovered.
  • a substance that modulates rouge at the 3-position amino acid in vivo in a living body functions as a "regulator” or “modulator” of the physiological function (activity) of darrellin) and various physiological physiological functions of ghrelin. It is expected to be useful for enhancing or suppressing the activity.
  • Such regulators can be used in the manufacture of a pharmaceutical composition for treating or preventing various physiological disorders related to the physiological activity of dallelin. Specific examples include pharmaceutical compositions for treating diseases caused by deficiency, decrease, or excess of growth hormone. In addition, it can be used for animals with anorexia and malnutrition, and animals exhibiting symptoms related to treatment such as health disorders related to excessive appetite and obesity. Or fattening of livestock is also useful for promoting growth and reducing fat
  • infusions or liquid diets used during treatment usually contain only minimal nutrients and are not necessarily effective in positively improving physical functioning. Therefore, in order to improve body functions quickly and effectively, there is a demand for the development of infusions and liquid foods with higher functions. Therefore, modulators of the physiological activity of dallelin are considered to be extremely useful for various uses, such as the functional foods described above, infusions, liquid foods, and livestock feeds.
  • Another object of the present invention is to provide a method for increasing or decreasing the concentration of modified darelin.
  • the present inventors have studied various synthetic-type acyl-modified darelin peptides, and as a result, have found that the effect of the biological activity of darelin can be modified by changing the acyl molecule ( twenty three).
  • the present inventors have found that ingested (exogenous) fatty acids are directly used in vivo for acylation of glycerin 3-position amino acids (e.g., Ser (3)).
  • the present inventors have found that such compounds are useful for controlling the physiological function of darelin, and have completed the present invention.
  • the present invention provides
  • 2.Darelin's physiological functions are an increase in intracellular calcium ion concentration, a promotion of growth hormone secretion, a promotion of feeding, a regulation related to fat accumulation, a cardiac function improvement or a gastric acid secretion stimulation.
  • the regulator described in 1 The regulator described in 1,
  • a method comprising administering to a subject in need of treatment for a disorder related to the physiological function of dallelin, the regulator according to 1 or the pharmaceutical composition according to 3 in a therapeutically effective amount. How to treat disorders related to the physiological function of
  • the regulator of the present invention affects the acylation of the amino acid at position 3 of endogenous darelin, and increases or decreases the ratio of modified darelin to various physiological disorders related to the physiological activity of darelin. Is effective in treating or preventing illness, in particular, treating diseases caused by growth hormone deficiency, reduction, or excess, anorexia, and malnutrition. Further, the regulator of the present invention is also useful, for example, for improving the growth of livestock. Furthermore, it may contribute to elucidation of the mechanism of the modification of the peptide hormone darelin to acil, particularly to the characterization of the putative darelin ser Q-acyl transferase.
  • N-RIA is very specific for acyl-modified darrelin and the main form of acylated ghrelin is n-otatanyl ghrelin
  • concentration of acyl-modified darellin measured by N-RIA is mainly n-otalinyl.
  • C represents the ratio of acyl-modified darelin Z total darelin.
  • the data represent the mean SD of darelin concentration in gastric extracts (from lmg wet weight). Statistical significance is indicated by an asterisk. *, p ⁇ 0.01; **, p ⁇ 0.001 vs. control.
  • FIG. 2 Standard stomach of mice fed a diet mixed with glyceryl trihexanoate (C6), glyceryl trioctanoate (C8), glyceryl tridecanoate (C10) or glyceryl tripalmitate (C16).
  • A represents the concentration of acyl-modified darelin measured by darelin N-RIA.
  • B represents total darelin concentration measured by ghrelin C-RIA.
  • arrows indicate the elution positions of desyl-type darelin (I) and n-otatanyl darrelin (II).
  • peaks a, d, h, and k correspond to the peaks of desacyl ghrelin
  • peaks b, f, i, and 1 correspond to the peaks of n-otatanyl dallelin.
  • Peaks g, j, and m corresponded to the peak of n-decenoyl (C10: l) ghrelin
  • peak n corresponded to the peak of n-decanoyl (C10: 0) dalelin.
  • FIG. 4 shows the time-dependent change in the stomach darrellin concentration of mice fed glyceryl trioctanoate.
  • A represents the content of the acyl-modified darelin measured by darelin N-RIA.
  • FIG. 5 shows Northern blot analysis for testing gastric darelin mRNA expression after ingestion of a glyceryl trioctanoate-containing diet. Each lane contains 2 ⁇ g of total RNA. The lower panel shows 28S and 18S ribosomal RNA internal controls.
  • FIG. 6 shows an HPLC profile of a gastric extract derived from a mouse fed with glyceryl triheptanoate.
  • Gastric extracts of mice treated with glyceryl triheptanoate were fractionated by HPLC (upper panel).
  • Darrelin concentration in each fraction (0.2 mg equivalent of gastric tissue) was monitored by C-RIA (middle panel) and N-RIA (lower panel).
  • C-RIA methicillin-associated ANC
  • N-RIA lower panel
  • darelin immunoreactivity was separated by C-RIA into three major peaks (middle panel, peaks a, b and c) and by N-RIA two major peaks (peaks d and e). ). Peaks b and d were only observed after ingestion of glyceryl triheptanoate.
  • FIG. 7 shows the final purification of n-heptanoyldarellin.
  • Stomach strength of mice receiving glyceryl triheptanoate also purified the darelin peptide.
  • the sample from which the anti-rat ghrelin immobility column was also eluted was subjected to HPLC. Peak a was only observed in samples from mice treated with glyceryl triheptanoate. HPLC retention time and
  • peak b was! /, Corresponding to n-otatanyldarellin. Arrows indicate elution positions of n-hexanoyl (1), n-otatanyl ( ⁇ ) and n-decanoyl (III) ghrelin, respectively.
  • FIG. 8 A is a matrix-assisted laser of dallelin-like peptide purified from peak a in Figure 7 4 shows the results of desorption ionization time-of-flight mass spectrometry. Mass ranges from 3131.0 to 3477.0 (m / z). From the average 100 mass spectra obtained in the positive ion mode (average [M + H] +: 3301.9), the molecular weight of peak a peptide was calculated to be 3300.9.
  • B Structure of n-heptanoyl (C 7: 0) ghrelin. The calculated molecular weight of n-heptanoyldarellin is 3300.86.
  • FIG. 9 shows the molecular form of plasma darelin peptide derived from mice fed a glyceryl triheptanoate mixed diet.
  • Plasma samples from control mice (A) and daliseryl triheptanoate-treated mice (B) fed a standard diet were fractionated by HPLC and ghrelin immunoreactivity was measured by C-RIA.
  • Arrows indicate elution positions of desacyl-type darelin (I) and n-otatanyl darrelin ( ⁇ ).
  • the plasma dalelin immunoreactivity was represented by a bar graph.
  • peaks b and e correspond to deotathanildarellin
  • peaks c and g correspond to n-otatanildarellin.
  • the newly appearing peak f showed the same retention time as n-heptanoyldarellin observed in mouse stomach after glyceryl tryptanoate treatment.
  • “Darelin” is a peptide hormone of about 30 amino acid residues that binds to the endogenous growth hormone secretagogue (GHS) receptor GHS-R and has the activity of increasing intracellular calcium ion concentration and stimulating growth hormone secretion. It is. Darrelin is widely distributed in vertebrates and has been identified in mammals, birds, fish, and amphibians. Thus, the present invention encompasses darellin from any source.
  • GHS growth hormone secretagogue
  • Preferred sources of ghrelin include humans, pigs, sea lions, horses, wedges, egrets, rats, mice, dogs, -birds, puppies, -jimas, edible powers, and other livestock, poultry, pet fish, etc. is there.
  • Several darelins from these animals have already been isolated and their amino acid sequences are known. For example, see JP-A-2004-2378. .
  • (acyl) -modified darelin refers to the amino acid residue at position 3 (eg, serine) of a darelin molecule having a specific amino acid sequence exemplified in SEQ ID NOS: 13 to 13. Modified with a group Peptide, also referred to simply as “acyl ghrelin”.
  • acylation means that the side chain hydroxyl group of the amino acid at position 3 is replaced with an acyl group, preferably a fatty acid residue.
  • unmodified darelin means a peptide in which the 3-position amino acid is not acylated, and is also simply referred to as “deacyldarelin”.
  • the term "regulator" of the physiological function of ghrelin means a substance that enhances or weakens the physiological function of darellin when administered to a living body expressing RHS-R using ghrelin as a ligand.
  • Examples of the substance that enhances the physiological function of darrellin include a fatty acid having an activating effect and having an acyl group at which dallin is physiologically active when the amino acid at the 3-position of darrellin is acylated.
  • a substance that weakens the physiological activity of dallelin it does not affect or rather reduces the physiological activity of dallelin. Can be exemplified.
  • mice In the case of mice as described in Examples below, the intake of medium chain fatty acid (MCFA) or medium chain triacylglycerol (MCT) is determined by the total ghrelin (acyl ghrelin and deacil ghrelin) concentration. The production of acyl-modified ghrelin was increased without altering ghrelin.
  • MCFA medium chain fatty acid
  • MCT medium chain triacylglycerol
  • dalelin peptides modified with n-butyryl or n-palmitoyl groups were undetectable after ingestion of the corresponding short (SCFA) or long (LCFA) chains.
  • n-heptanoyl ghrelin (a non-natural form of darelin) was produced in the stomach of mice after ingestion of glyceryl n-heptanoate or triheptanoate.
  • mice in which darelin is acylated by medium-chain fatty acids medium-chain fatty acids (n-hexanoic acid, n-octanoic acid and n-decanoic acid) or medium-chain triglycerides (glyceryl trihexanoate) are used.
  • Glyceryl trioctanoate and glyceryl tridecanoate are taken up by darellin modified by an acyl group having a carbon chain of the corresponding length (i.e., n-hexanoyldarellin, n-otatanyldarellin). And n-decanoyldarellin) in the stomach.
  • the ingested fatty acids and triglycerides are used as a lipid source for the modification of darelin to acyl, and affect the concentration of the acyl-modified darelin, and thus function as a regulator of the physiological function of darelin.
  • fatty acids that increase the physiological function of darrellin when bound to the amino acid at position 3 of darrellin are ⁇ positive regulators, '' while fatty acids that do not affect or inhibit the physiological function of darrellin are: It can function as a "negative regulator".
  • the present invention will be mainly described with reference to Darrelin in which the 3-position amino acid is serine as an example.
  • the present invention is also applied to a Darrelin homologue in which the 3-position amino acid is threonine, and the same effect is obtained. What can be obtained can be easily understood by those skilled in the art.
  • a "regulator of the physiological function of darrellin” at least one of darrellin by having a fatty acid moiety capable of forming an ester with the hydroxyl group of the 3-position amino acid (e.g., Ser (3)) of the darrellin molecule. Substances that regulate one function.
  • Fatty acids that can be used as the active ingredient of the regulator of the present invention include saturated or unsaturated fatty acids having 2 to 35 carbon atoms. Specific examples include butanoic acid (C4), hexanoic acid (C6), octanoic acid (C8), decanoic acid (C10), dodecanoic acid (C12), tetradecanoic acid (C14), and hexadecanoic acid having an even number of carbon atoms.
  • C16 octadecanoic acid
  • C18 pentanoic acid with an odd number of carbon atoms
  • C5 heptanoic acid
  • C9 nonanoic acid
  • C17 heptadecanoic acid
  • their monoenes or Polyene fatty acids and the like C16, octadecanoic acid (C18), pentanoic acid with an odd number of carbon atoms (C5), heptanoic acid (C7), nonanoic acid (C9)
  • pentadecanoic acid C15
  • heptadecanoic acid C17
  • fatty acid having 418 carbon atoms More preferably, it is a fatty acid having 418 carbon atoms, more preferably a fatty acid having 6-16 carbon atoms. Power is not limited to these.
  • the fatty acids that can be used vary depending on the target animal, but usually have a carbon number of 412, preferably 8—. 10, most preferably between 6-10.
  • octanoic acid preferably, power prillic acid
  • decanoic acid preferably, power pric acid
  • dodecanoic acid preferably, lauric acid
  • the fatty acids that can be used are those that differ depending on the target animal. Usually, they are other than the fatty acids exemplified as the positive regulators described above. . That is, those having carbon atoms other than 411, more preferably other than 6-10 can be exemplified.
  • Derivatives of fatty acids are mentioned. Such derivatives may also be converted into salts or esters as appropriate for the purpose of improving solubility, gastrointestinal absorption, taste and odor.
  • a method for producing such a derivative is well known in the field of manufacturing industry for pharmaceuticals, foods, feeds, and the like, and those skilled in the art can produce an appropriate derivative according to the purpose.
  • esters with mono- or polyalcohols which are usually used for similar purposes.
  • glycerin is a preferred alcohol.
  • glycosides they may be mono-, di- or triglycerides or mixtures thereof, with triglycerides being most preferred.
  • the fatty acid or a derivative thereof as an active ingredient of the regulator of the present invention can be obtained according to a method known to those skilled in the field of organic chemistry or a commercially available power source.
  • Physiological functions of darelin that can be controlled by the regulator of the present invention include all physiological functions of isildarin, for example, the effect of increasing intracellular calcium ion concentration.
  • a growth hormone secretion promoting action a feeding promoting action, a regulation action related to fat accumulation, a cardiac function improving action or a gastric acid secretion stimulating action.
  • it is involved in, but not limited to, growth hormone release, appetite stimulation, obesity induction, cardiac function improvement, and gastric acid secretion.
  • the regulator of the present invention enhances the physiological function of darellin, the effect of the regulator is similar to that of darellin or an analog thereof. That is, the regulator may have effects such as promotion of growth hormone secretion, stimulation of appetite, induction of obesity, improvement of cardiac function, stimulation of secretion of gastric acid, and the like.
  • Such a regulator is given to mammals, birds, fish, amphibians, and the like, for example, humans, pigs, pacific horses, magpies, sheep, egrets, rats, mice, dogs, chicks, penguins, rainbow trouts, and the like. The above effects are exhibited.
  • drugs for eating disorders drugs for promoting growth hormone secretion, drugs for heart disease, drugs for gastric functional diseases, drugs for protecting intestinal mucosa or agents for preventing small intestinal mucosal damage during parenteral nutrition, drugs for treating osteoporosis, It is useful as an agent for reducing cachexia due to chronic diseases and as a therapeutic agent for pulmonary dysfunction. In particular, it is useful for preventing or treating osteoporosis, anorexia, heart disease, rheumatism and inflammatory bowel disease in humans, and promoting recovery after surgery.
  • a pharmaceutical composition comprising a regulator of darellin physiological function.
  • the fatty acid or derivative thereof of the present invention can be used as it is because it functions as a regulator of the physiological function of darellin of the present invention itself.For ease of handling or application, fatty acid or its derivative is used. It is preferred to formulate in a suitable form, including liquid and solid forms according to methods known in the art. Examples include solutions and suspensions in aqueous or non-aqueous media (diluents), powders, granules or tablets with physiologically acceptable or pharmaceutically acceptable carriers. Such a pharmaceutical composition can enhance or suppress the function of darelin in various animal species described in the section “Physiological function of darelin,” for example, and exhibit the therapeutic effects described in the same section. it can.
  • the regulator of the physiological function of darelin of the present invention is formulated into a pharmaceutical composition, it is formulated by a method known per se using excipients, solvents, carriers, preservatives and the like known to those skilled in the art. Is done.
  • the pharmaceutical composition of the present invention can be administered orally or parenterally (for example, intradermal, subcutaneous, intravenous injection, drip, etc.) by a method known in the medical or veterinary field.
  • the dosage of the regulator of the present invention varies depending on various factors (the selected fatty acid or its derivative, the administration route, and the subject to be treated, including the disorder to be treated, age, weight, condition, etc.), and is usually Determined by a physician.
  • Based on fatty acids a force of between O.OOlmg-1000 mg, preferably between O.OOlmg-100 mg, more preferably O.Olmg-10 mg. Such a range is not limiting.
  • the dose is appropriately determined by a veterinarian or the like according to the subject.
  • the regulator of the present invention can be used as a functional food for promoting or suppressing appetite, relieving obesity, improving malnutrition, and the like. In particular, it can be used to control the health of mammals by controlling body weight, etc., and also to promote animal growth and reduce fat in meat. Thus, the regulator of the present invention is also useful in livestock raising, poultry farming, fish farming, and the like.
  • a functional food can be produced according to a method known in the art, for example, food, feed, edible oil, and soft drink. What is necessary is just to make it contain in water, infusion liquid, liquid food, etc. Alternatively, the regulator may be mixed with the normal diet before use.
  • the content of the regulator of the present invention in the functional food can be appropriately determined by those skilled in the art based on the dosage described in the section of the pharmaceutical composition.
  • the treatment of disorders related to the physiological function of dallelin using the regulator of the present invention is well known in the art by giving the regulator itself or a pharmaceutical composition containing the same to humans or non-human animals. Can be carried out according to the method described in
  • GHS Growth hormone secretagogue
  • GHS-R Growth hormone secretagogue receptor
  • MALDI-TOF-MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry
  • N-RIA N-terminal fragment of n-otatanyl ghrelin [1-11]
  • Radioimnoassay C-RIA ghrelin Radioimnoassay of C-terminal fragment of [13-28]
  • MCFA Medium chain fatty acids
  • the darelin-specific RIA was performed according to the method described in the literature (2 above).
  • the two polyclonal antibodies to fragments and C-terminal (Gln 13 -Arg 28) fragment (Glyi-Lys 11 having at the Qn- Otatanoirui spoon Ser 3) Rattogureri emissions of N-terminal was induced in Usagi.
  • the RIA incubation mixture is mixed with standard ghrelin or unknown sample 1001. Diluted with RIA buffer (50 mM sodium phosphate buffer (pH 7.4), 0.5% BSA, 0.5% Triton-X100, 80 mM NaCl, 25 mM EDTA-2Na and 0.05% NaN) containing 0.5% normal heron serum.
  • RIA buffer 50 mM sodium phosphate buffer (pH 7.4), 0.5% BSA, 0.5% Triton-X100, 80 mM NaCl, 25 mM EDTA-2Na and 0.05% NaN
  • Antiserum 200 1 was prepared. The anti-rat ghrelin [G11] antiserum and the anti-Pg-saggrelin [13-28] antiserum were used at final dilutions of 1 / 3,000,000 and 1 / 20,000, respectively. After incubation at 4 ° C. for 12 hours, 125 1-labeled ligand 1001 (20,000 cpm) was added and incubated for another 36 hours. Next, 100 1 of anti-Pseudosiagi antibody was added. After incubation at 4 ° C for 24 hours, free and bound tracers were separated by centrifugation at 3,000 rpm for 30 minutes. The radioactivity of the pellet was quantified using a gamma counter (ARC-600, Aloka, Tokyo). All tests were performed in duplicate at 4 ° C.
  • Both types of antisera showed complete cross-reactivity with human, mouse and rat darelin (2).
  • the anti-rat ghrelin [1-11] antiserum specifically recognizing the Ser 3 n-Ottanoirirido site of dallelin did not recognize deasyl-type darrellin.
  • the cross-reactivity of N-RIA to n-decanoyldarerin and n-hexanoyldarerin is 20% and 0.3%, respectively (2).
  • the anti-rat ghrelin [13-28] antiserum recognized both the deacylated and all-acylated forms of the darelin peptide equally (2).
  • N-RIA N-terminal fragment of rat darelin
  • C-RIA C-terminal fragment
  • CHO-GHSR62 cells which stably express rat GHS-R (ghrelin receptor), were cultured at 4 ⁇ 10 4 cells / well in a flat-bottom 96-well plate (black) (Corning Costar
  • the stomach collected from either the mouse or rat was washed twice with phosphate buffered saline (PH7.4). After measuring the wet weight of each sample, the whole stomach tissue was finely chopped and boiled for 5 minutes in a 10-fold volume of water to inactivate endogenous lipase. After cooling on ice, the boiled sample was adjusted to 1 M acetic acid-20 mM HC1. Peptides were extracted after homogenization using a Polytron Mixer-1 (PT 6100, Kinematica AG., Littan- Luzern, Switzerland). After centrifugation at 15,000 rpm (12,000 X g) for 15 minutes, the supernatant of the isolated extract was lyophilized and stored at -80 ° C. Lyophilized samples were redissolved in RIA buffer or calcium mobilization assay buffer, respectively, prior to Darrelin RIA or potassium mobilization assay.
  • phosphate buffered saline phosphate buffered saline
  • Plasma samples were prepared as previously described (2). Whole blood samples were immediately transferred to cold polypropylene tubes containing EDTA-2Na (1 mg / ml) and aprotune (1,000 kallikrein inactivator units / ml) and centrifuged at 4 ° C. Immediately after the separation of the plasma, the sample was washed with hydrogen chloride at a final concentration of 0.1 N, and then diluted with an equal volume of physiological saline. Samples were loaded onto Sep-Pak C18 cartridges (Waters, Milford, MA) pre-equilibrated with 0.1% trifluoroacetic acid (TFA) and 0.9% NaCl. Wash the cartridge with 0.9% NaCl and 5% acetonitrile (CH CN) /0.1% TFA, then dissolve in 60% CH CN / 0.1% TFA.
  • TFA trifluoroacetic acid
  • Extracted gastric peptides were collected using Sep-Pak Plus C18 cartridges (Waters, Milford, MA) and analyzed by C18 RP-HPLC (Symmetry 300, 3.9 X 150 mm, Waters) (10-60% CH CN / 0.1% TFA linear gradient, flow rate 1.0 ml / min)
  • n-Heptanoyl ghrelin was purified using the same method as described above for Darrelin purification by anti-rat ghrelin [1-1 l] IgG immunoafitik mouth chromatography (22) (22).
  • FLEX station Molecular Devices, Sunnyvale, CA
  • GHS-R ghrelin receptor
  • CHO-GHSR62 ghrelin receptor
  • mice weighing 20-25g were bred under controlled temperature (21-23 ° C) and under light conditions (light on 0700-1900) with free access to food and water.
  • Glyceryl triheptanoate (Fluka Chemie GmbH, Buchs, Switzerland) was mixed with the standard laboratory feed at a concentration of 5% (w / w).
  • the total consumption of glyceryl triheptanoate-containing diet is approximately 13.5 g / mouse, giving each mouse a total of 675 mg of glyceryl triheptanoate.
  • the stomach was chopped and boiled for 5 minutes in quintuple volume of water to inactivate endogenous proteases.
  • the gastric tissue solution was then adjusted to 1 M acetic acid (AcOH) -20 mM HCl and homogenized with a Polytron mixer.
  • the supernatant of these extracts obtained after centrifugation at 20,000 rpm for 30 minutes was previously equilibrated with 0.1% trifluoroacetic acid (TFA) and a Sep-Pak C18 environmental oral cartridge (Waters, Milford, MA).
  • TFA trifluoroacetic acid
  • the cartridge was filled. After washing with 10% acetonitrile (CH CN) /0.1% TFA, the peptide fraction was
  • the n-heptanoyl-modified darelin was purified with a retention time of 18.4 minutes and the molecular weight was determined by mass spectrometry.
  • the amino acid sequence of the purified peptide was analyzed using a protein sequencer (494, Applied Biosystems, Foster City, CA).
  • Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed using a Voyager DE-Pro spectrometer (Applied Biosystems, Foster City, CA) (25). Mass spectra were recorded in reflection mode at an acceleration voltage of 20 kV. 60% acetonitrile (CH
  • n-hexanoic acid C6
  • n-octanoic acid C8
  • n-lauric acid C12
  • n-palmitic acid C16
  • Gastric peptides were extracted from the stomachs of mice fed water and normal control mice (control) fed standard diet and water. After ingestion, acetyl-modified darelin and total (acyl-modified And desacyl) dalelin concentrations were measured. The acyl-modified darelin was measured by N-RIA, and total darelin was measured by C-RIA. The results are shown in Figure 1.
  • N-RIA is very specific for acyl-modified darelin, and the main form of acyl-dallarelin is n-octanoyldarreline, so the concentration of acyl-modified darelin measured by N-RIA is mainly n- It reflects the Ottatanildarellin population.
  • C represents the ratio of acyl-modified darelin Z total darelin. Data represent mean S.D. of darelin concentration in gastric extracts (from lmg wet weight). Statistical significance was indicated by asterisks. *, p * 0.01; **, p * 0.001 vs. control o
  • mice were fed n-hexanoic acid, n-octanoic acid, n-lauric acid or n-palmitic acid for 14 days, and then the gastric concentrations of acyl-modified darelin and total darelin were fed to normal diet and water. The concentration was compared with that obtained in control mice. Gastric concentrations of acyl-modified darelin were significantly increased in mice fed n-octanoic acid (FIG. 1A).
  • n-hexanoic acid n-decanoic acid or n-palmitic acid.
  • exogenous replenishment n-Octanoic acid increased the gastric concentration of n-otatanyl dallerin without increasing the total (acyl-modified and de-acyled) darelin peptides.
  • Ingested triacylglycerol is hydrolyzed in the lumen and is absorbed through the gastrointestinal mucosa as free fatty acids or monoglycerides.
  • ingested triacyldaricerol can function as a source of free fatty acids (26).
  • the mice were given 5% (w / w) glyceryl trihexanoate (C6), glyceryl trioctanoate (C8), and tridecane.
  • the diet was mixed with glyceryl acid (C10) or glyceryl tripalmitate (C16). Two weeks later, gastric peptides were extracted.
  • A represents the concentration of acyl-modified darelin measured by darelin N-RIA.
  • B represents the total darelin concentration measured by darelin C-RIA.
  • C represents the ratio of the concentration of acyl-modified darelin Z total ghrelin.
  • Statistical significance is indicated by an asterisk. *, p ⁇ 0.05; **, p ⁇ 0.01 vs control.
  • Figure 2 shows that glyceryl trioctanoate intake stimulates the production of acyl-modified darelin in gastric tissue (Figure 2A).
  • Figure 2A shows that ingestion of glyceryl trihexanate slightly suppressed the production of acyl-modified dallelin.
  • Mice fed dariseryl trihexanoate with increasing force showed increased levels of n-hexanoyldarellin (FIG. 2A, Table 1).
  • Ingestion of glyceryl tridecanoate and glyceryl tripalmitate had no effect on the production of acyl-modified darellin (FIG. 2A).
  • glyceryl trihexanoate was used to determine the molecular form of the darelin peptide.
  • peaks &, d, h, and k correspond to desacyl darelin
  • peaks b, f, i, and 1 are n-otatanyl (C8: 0) corresponds to ghrelin
  • peaks c, g, j and m correspond to n-decenoyl (C10: l) ghrelin.
  • n-Hexanoyldarellin was extremely low in the stomach of mice fed a normal diet and was not detected by force.
  • glyceryl trihexanoate was given to the mice, the gastric concentration of n-hexanoyldarerin increased dramatically (peak. In these mice, the measured values in control mice (peak b in Figure 3 and Table 1). ), A significant decrease in the concentration of n-otanoyldarellin was also detected (peak 1 in Figure 3 and Table 1). It also increased after ingestion (data not shown).
  • n-decanoyldarellin When glyceryl tridecanoate was given to mice, the gastric concentration of n-decanoyldarellin increased (peak n).
  • the Darrelin peak eluting at the same retention time as synthetic n-butanoyl (C4: 0) ghrelin, n-dodecanoyl (C12: 0) ghrelin and n-palmitoyl (C16: 0) darrelin is glyceryl tributyrate. No power was observed in gastric extracts of mice fed glyceryl trilaurate or glyceryl tripalmitate (data not shown). These data indicate that neither glyceryl tributyrate or glyceryl tripalmitate was converted to dallerin in mice.
  • mice Male C57BL / 6J mice received 5% (w / w) glyceryl trihexanoate (C6: 0-MCT), glyceryl trioctanoate (C8: 0-MCT) or glyceryl tridecanoate (C10: 0-MCT). The mixed diet was given for 14 days.
  • concentrations of l-ghrelin) and n-decanol ghrelin were measured by Darrelin C-RIA after HPLC fractionation. Data represent mean SD from quadruplicate samples.
  • mice fed a 12-hour fasted glyceryl trioctanoate diet 5% w / w.
  • the gastric concentrations of the acyl-modified darelin and total darelin after a certain period of time were measured.
  • Fig. 4 shows the results.
  • A represents the content of an acyl-modified darrellin measured by darrellin N-RIA
  • B represents the total darrellin content measured by darrellin C-RIA.
  • mouse gastric mRNA was quantified by Northern blot analysis 4 days after ingestion of a diet containing glyceryl trioctanoate.
  • Fig. 5 shows the results.
  • Each lane contains 2 ⁇ g of total RNA.
  • the lower panel shows 28S and 18S ribosomal RNA internal controls.
  • FIG. 5 shows that the expression level of gastric darelin mRNA did not change after ingestion of glyceryl trioctanoate.
  • glyceryl trioctanoate increased the gastric content of n-otatanyldalerelin without changing the total darelin concentration, ingestion of glyceryl trioctanoate stimulated only the otatanyl modification step in dalerin peptide synthesis. That is,
  • mice were fed medium-chain triglycerides (MCT), which are not present in natural dietary sources and are not synthesized in mammals. Since n-heptanoic acid (C7: 0), which is a hydrolyzed form of glyceryl triheptanoate, does not naturally exist in mammals, glyceryl triheptanoate was selected as a non-natural free fatty acid source. In addition, it seems that n-heptanoyldarerelin is easily separated from natural darelin by HPLC. Fig. 6 shows the results.
  • peaks a and c corresponding to the retention time of the isolated darelin peptide correspond to de-acyl-type darelin and n-otatanyldarreline, respectively.
  • Fig. 6 Extrapyretic darrellin immunoreactivity was observed only in mice fed dalyseryl triheptanoate, and other free fatty acids or triglycerides tested (n-hexanoic acid, n-octanoic acid, n-lauric acid, n_palmitic acid). Or the corresponding triglyceride form).
  • the retention time of peak b was between n-hexanoyldarerin and n-otatanyldarerin.
  • the stomach tissue parasyl modified darellin of a mouse fed a glyceryl triheptanoate-containing diet for 4 days was purified.
  • the sample from which the anti-rat ghrelin immobility column was also eluted was subjected to HPLC.
  • Fig. 7 shows the results.
  • Peak a was observed only in samples derived from mice treated with glyceryl triheptanoate. Based on HPLC retention time and MALDI-TOF-MS analysis, peak b corresponded to n-otatanyldarellin.
  • the arrows indicate the elution positions of n-hexanoyl (1), n-otatanyl ( ⁇ ) and n-decanoyl (III) dallelin, respectively.
  • peak b in Fig. 7 was identified as n-otatanyl darelin based on the retention time in HPLC.
  • Another peak eluting at a retention time of 18.4 minutes was only observed after glyceryl triheptanoate ingestion.
  • This peak eluted with a retention time between n-hexanoyldarerin and n-otatanyldarerin.
  • the peptide at peak a was purified and subjected to amino acid sequencing analysis and mass spectrometry.
  • the purified peptide obtained from HPLC peak a (Fig. 7) consisted of 28 amino acids and was identical to the amino acid sequence of mouse ghrelin. Matritus-assisted laser desorption ionization time-of-flight mass spectrometry of dallelin-like peptide purified from peak a in Figure 7 was performed today. The results are shown in FIG. 8A.
  • B represents the structure of n-heptanoyl (C7: 0) ghrelin.
  • the estimated molecular weight of the peptide calculated from the m / z value of MALDI-TOF-MS was 3300.9.
  • Modification of the ghrelin n-heptanol group at the Ser 3 residue results in a molecular weight of about 3300.86 in theory (FIG. 8B). This is almost the same as the molecular weight measured by MALDI-TOF-MS. Therefore, it was concluded that the purified peptide at peak a was n-heptanoyldarellin. In the final purification step, No peak is observed. This indicates that the ingested glyceryl triheptanoate can also directly transfer the hydrolyzed n-heptanoyl group to the Ser 3 residue of dallelin.
  • mice fed a diet containing glyceryl triheptanoate for 4 days were tested.
  • the molecular morphology of plasma-derived acyl-modified darelin was determined. That is, plasma samples collected from a control mouse (A) and a glyceryl triheptanoate-treated mouse (B) fed a standard diet were fractionated by HPLC, and ghrelin immunoreactivity was measured by C-RIA. The results are shown in FIG.
  • the arrows indicate the elution positions of desacyl-type darelin (I) and n-otatanyldarrelin ( ⁇ ).
  • the plasma dalelin immunoreactivity was represented by a bar graph.
  • Plasma ghrelin immunoreactivity in control mice was separated into two main peaks (peaks a and b in Fig. 9A) and one small peak (peak c in Fig. 9A).
  • Plasma darellin immunoreactivity in glyceryl triheptanoate-treated mice was separated into two main peaks (peaks d and e in FIG. 9B) and two minor peaks (peaks 1 and g in FIG. 9B).
  • peaks b and e correspond to de-otanoyldarellin
  • peaks c and g correspond to n-otatanyldarerin.
  • the newly appearing peak f showed the same retention time as n-heptanoyldarellin observed in the mouse stomach after glyceryl tryptanoate treatment.
  • Peaks a and d are believed to be the C-terminal portion of the darelin peptide generated by protease digestion, but the exact molecular form has not yet been determined.
  • n-Heptanoyldarellin induces an increase in [Ca2 + ] in GHS-R-expressing cells, and the time course of these [Ca2 + ] i changes is Similar to the changes induced by (Fig. 10).
  • the agonist activity of n-heptanyl ghrelin for GHS-R calculated from the area under the curve (AUC) of the response curve, is about 60% of that of n-otatanyl ghrelin. It is three times higher than that of nildalelin ( Figure 10). Therefore, n-heptanoyldarerin has GHS-R stimulating activity.
  • the present invention opens the way to the molecular mechanism of the modification of darelin to acyl and the identification of the enzyme responsible for the modification.
  • the experimental results suggest that darellin ser Q-acyltransferase, which functions in mice, can catalyze the cascade modification of n-hexanoyl, n-heptanyl, n-otatanyl and n-decanoyl darellin.
  • This type of enzyme did not catalyze the acetyl modification of dallelin after ingestion of glyceryl tripalmitate, long-chain triacylglyceride (LCT) and glyceryl tributyrate, short-chain triacylglyceride (SCT).
  • MCT MCT
  • the present invention provides a method for exogenous or metabolically produced MCFs. Some have been converted to medium-chain acetyl-CoA, suggesting that it may be used for the modification of darellin to acyl.
  • acyltransferases have been identified in mammals.
  • the only enzyme reported to use MCFA as a substrate is cal-tin otatanyl transferase (29, 30), which functions in the j8-oxidation of fatty acids.
  • a member of the serine acyltransferase family has been identified that transfers an acyl group to a serine residue in a target molecule. It includes two serine palmitoyltransferases (31) that function in the biosynthesis of sphingolipids in mammals (31), and one plant serine 0-acetyltransferase gene family in Arabidopsis thaliana (32, 33). included.
  • Protein lipid acyltransferase has also been purified from rat gastric mucosa (34, 35). This enzyme is an endogenous rough microsomal protein that catalyzes the transfer of acyl-CoA to mucosal proteins. Putative darelin ser Q-acyltransferases may have structural similarity to these acyltransferases
  • Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature
  • Matsukura S, Kangawa K, Nakazato M. Ghrelin a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the

Abstract

 炭素数が2~35である脂肪酸またはその誘導体を含み、細胞内カルシウムイオン濃度の上昇作用、成長ホルモン分泌促進作用、摂食促進作用、脂肪蓄積に関連した調節作用、心機能改善作用または胃酸分泌刺激作用等のグレリンの生理学的機能を調節するためのレギュレーター。

Description

明 細 書
グレリンの生理学的機能のレギュレーター
技術分野
[0001] 本発明は、ダレリンの生理学的機能のレギュレーター、および医薬組成物または食 品の製造に関連したそれらの用途に関する。
背景技術
[0002] ダレリン (Ghrelin)は、成長ホルモン分泌促進性の合成非天然物質である、成長ホ ルモン分泌促進物質(growth hormone secretagogue: GHS)と結合するレセプター( GHS-R)の内因性リガンド(ペプチドホルモン)であり、本発明者らのグループが最初 に発見した物質である [(1)および WO01/007475]。当初、ダレリンはラットの胃から精 製されたが、脳、肺、腎臓、脾臓、小腸および大腸にも発現していることが分力つてい る (2— 7)。また、ラット以外の脊椎動物、例えばヒト、マウス、ブタ、ニヮトリ、ゥナギ、ゥ シ、ゥマ、ヒッジ、力エル、 -ジマスまたはィヌからもグレリンが単離、あるいは cDNA 力 推定されている(特開 2004-2378号公報)。ダレリンは細胞内カルシウムイオン濃 度の上昇活性および強力な成長ホルモン分泌促進活性を有する (1、 8— 10)ことにカロ えて、食欲の刺激、肥満の誘導 (11一 14)、心機能の改善 (15— 17)、胃酸分泌促進作 用 (18)等様々な活性を有する。このように、ダレリンは広範な生理学的機能を有する ことから、その機能の調節はダレリンに関連する疾患に罹患した被検体のみならず、 健常な被検体にとっても重要である。
[0003] これまでに同定されたダレリンは、アミノ酸残基が約 30以下の一群のペプチドであり 、 3位アミノ酸がァシル基で置換されているという構造上の特徴を有する。例えばヒト ダレリンはアミノ酸 28個からなり、 3位のセリン側鎖が脂肪酸 (n—オクタン酸)でァシル 化されている。 3位アミノ酸のァシルイ匕は、ダレリンの細胞内カルシウムイオン濃度の 上昇、成長因子分泌促進活性等の生理学的な活性の発現に必須である (1)。なお、 ダレリン分子の 3位アミノ酸は通常セリンである(これを以下、「Ser3」または「ser(3)」と 表す)力 例のアミノ酸の例として、ゥシガエルの場合のスレオニンが挙げられる(特 開 2004-2378号公報)。 [0004] ダレリンの生物活性に必須の、 3位アミノ酸の修飾に利用されるァシル基は主として 中鎖一長鎖脂肪酸残基である。ヒト、ブタ、ゥシ、ヒッジ、ィヌ、ラット、マウス等のほ乳 類、 -ヮトリ等の鳥類、ゥナギ、 -ジマス、テラビア、ナマズ等の魚類、力エル等の両 生類のダレリンは n-オタタノィル基で修飾されている [(1)、(19)、および特開
2004-2378号公報]が、別の型のァシル修飾を有するダレリンペプチドの小集団があ る。そのようなァシル修飾の例としては、 n-デカノィル (C10:0)修飾(例、ゥシガエル、 特許文献 2)、 n-デセノィル (C10:l)修飾が挙げられる (20— 22)。また、 n-ブタノィル( C4) (例、ゥマ)、へキサノィル (C6)、ドデカノィル (C12)修飾も知られている(特開 2004- 2378号公報)。
[0005] グレリンのァシル修飾はペプチドホルモンの脂質修飾の最初の例であり、セリンヒド 口キシル基のァシルイ匕は哺乳動物タンパク質の修飾としては報告されたことがない。 生体内にはァシルイ匕ダレリンと非ァシルイ匕ダレリンが存在する力 ダレリン 3位アミノ酸 残基へのァシル基転移を触媒する推定酵素は、おそらく新規のァシルトランスフェラ ーゼであり、ダレリン産生の調節に重要と思われる。しかしながら、そのような酵素は 未だ発見されていない。
[0006] ダレリンの強力な生理活性に着目して、医療、畜産、食品等広範な分野で応用が 試みられている。具体的には、摂食障害治療薬、成長ホルモン分泌促進薬等として の利用が提案されている [WO01/007475、特開 2004-2378号公報、 WO2002/060472 ]。これらの出願は、いずれも、合成したダレリン誘導体または類似体の使用を前提と している。しかし、非修飾型ダレリンを用いる場合には、生体内でァシルダレリンに変 換される必要があり、また、修飾型ダレリンを用いる場合には、ァシルダレリンの効率 的な製造方法が確立されて 、な 、と 、う問題がある。
[0007] 従って、生理学的活性を医学、獣医学、畜産等の広範な分野での有効利用のため には、ダレリンの生理学的活性を調節するための、確実で効率のよい方法の開発が 待たれている。
[0008] 例えば、生体内でダレリンの 3位アミノ酸のァシルイ匕を調節する物質はダレリンの生 理学的機能 (活性)の「レギュレーター」または「モジュレーター」 )として機能し、グレリ ンの種々の生理学的活性の増強または抑制に有用であることが期待される。そのよう なレギュレーターは、ダレリンの生理学的活性に関連した種々の生理学的障害を治 療または予防するための医薬組成物の製造に用いることができる。具体例として、成 長ホルモンの欠損または減少、あるいは過剰に起因する疾患を治療するための医薬 糸且成物が挙げられる。また、食欲不振、栄養不良状態にある動物や、対照的に過剰 な食欲に関連する健康障害、肥満等の処置に関連する症状を呈する動物に用いる ことができる。または家畜の肥育'成育を促進し、脂身を低減するためにも有用である
[0009] また、機能性食品には通常、ビタミン、ミネラル、タンパク質、ペプチド、アミノ酸、脂 質、炭水化物等の成分の 1種以上が強化されている。しかしながら、特定のタンパク 質、脂質、炭水化物などを除いて多くの成分はその生理学的機能が未解明のまま用 いられており、その評価も一定していない。
さらに、治療の間に用いる点滴または流動食は、通常、最小の栄養成分を含有して いるにすぎず、積極的な身体機能の改善には必ずしも有効ではない。従って、身体 機能の迅速で効果的な改善のためには、より高い機能を有する点滴や流動食等の 開発が望まれている。従って、ダレリンの生理学的活性のモジュレーターは、上記の 機能性食品、点滴、流動食、家畜の飼料など、様々な用途に極めて有用と考えられ る。
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的は、ダレリンの 3位アミノ酸の生体内でのァシルイ匕を調節する物質を 提供し、該物質を用いてダレリンの生理学的機能を制御する方法を提供することであ る。
本発明の別の目的は、修飾型ダレリンの濃度を上昇または減少させる方法を提供 することである。
本発明のさらに別の目的は、ダレリンの生理学的活性の調節を通して治療効果や 健康増進効果を発揮する医薬組成物または食品を提供することである。
本発明の他の目的または効果は、明細書および図面力も容易に理解されるであろ 課題を解決するための手段
[0011] 本発明者らは、種々の合成型ァシル修飾ダレリンペプチドに関して検討した結果、 ダレリンの生物学的活性の効力力 ァシル分子を変更することにより改変されるとの 知見を得ている (23)。今回、本発明者らは、摂取した (外来性の)脂肪酸が生体内でグ レリンの 3位アミノ酸 (例、 Ser(3))のァシルイ匕に直接用いるとの知見を得、外来性脂肪 酸そのものが、ダレリンの生理学的機能のコントロールに有用であることを見出し、本 発明を完成するに至った。
[0012] 従って、本発明は、
1.炭素数が 2— 35である脂肪酸またはその誘導体を含むダレリンの生理学的機能 のレギュレーター、
2.ダレリンの生理学的機能が、細胞内カルシウムイオン濃度の上昇作用、成長ホル モン分泌促進作用、摂食促進作用、脂肪蓄積に関連した調節作用、心機能改善作 用または胃酸分泌刺激作用である、 1記載のレギュレーター、
3.上記 1または 2に記載のレギュレーターを含有する医薬組成物、
4.上記 1または 2のレギュレーターを含む機能性食品、および
5.ダレリンの生理学的機能に関連する障害の処置を必要とする被検体に、上記 1に 記載のレギュレーターまたは 3に記載の医薬組成物を治療上有効な量で投与するこ とを含む、ダレリンの生理学的機能に関連する障害の治療方法、
などに関する。
発明の効果
[0013] 本発明のレギュレーターは、内因性ダレリンの 3位アミノ酸のァシル化に影響を与え 、修飾型ダレリンの比率を増大または減少することにより、ダレリンの生理学的活性に 関連した種々の生理学的障害の治療または予防、特に、成長ホルモンの欠損または 減少、あるいは過剰に起因する疾患の治療、食欲不振、栄養不良などの治療に有効 である。また、本発明のレギュレーターは、例えば家畜の成育を改善するためにも有 用である。さらにはペプチドホルモン、ダレリンのァシル修飾の機構の解明、特に推 定のダレリン ser Q-ァシルトランスフェラーゼの特徴付けにも貢献しうる。
図面の簡単な説明 [図 l]n-へキサン酸 (C6)、 n-オクタン酸 (C8)、 n-ラウリン酸 (C12)または n-パルミチン酸 (C16)と水を与えたマウスおよび標準的な餌と水を与えた正常コントロールマウス (コン トロール)の胃におけるダレリン濃度を示す。 Aはダレリン N-RIA (n=8)により測定した ァシル修飾型ダレリン濃度を表す。 N-RIAはァシル修飾型ダレリンに非常に特異的で あり、ァシル化グレリンの主な形態は n-オタタノィルグレリンなので、 N- RIAにより測定 したァシル修飾型ダレリン濃度は主に n-オタタノィルダレリン集団を反映して 、る。 B はダレリン C-RIA (n=8)により測定した総ダレリン濃度を表す。総ダレリン濃度は、ァシ ル型および脱ァシル型の両グレリンを含む。 Cはァシル修飾型ダレリン Z総ダレリン の比を表す。データは、胃抽出物におけるダレリン濃度の平均値士 S.D.を表す (湿重 量 lmgから)。統計学的有意差はアスタリスクで示した。 *, p< 0.01 ; **, p< 0.001対 コントローノレ。
[図 2]トリへキサン酸グリセリル (C6)、トリオクタン酸グリセリル (C8)、トリデカン酸グリセリ ル (C10)またはトリパルミチン酸グリセリル (C16)と混合した餌を与えたマウスの胃と標 準的な実験用飼料 (コントロール)を与えたマウスの胃におけるダレリン濃度 (n= 8)を 示す。 Aはダレリン N-RIAにより測定したァシル修飾型ダレリン濃度を表す。 Bはグレリ ン C-RIAにより測定した総ダレリン濃度を表す。データは胃抽出物におけるダレリン 濃度の平均値士 S.D.を表す (湿重量 lmg)(n= 5)。 Cはァシル修飾型ダレリン Z総ダレ リン濃度の比を表す。データは計算した比の平均値士 S.D.を表す (n= 5)。統計学的 有意差はアスタリスクにより示した。 *, p< 0.05; **, p< 0.01対コントロール。
[図 3]トリへキサン酸グリセリル (C6:0- MCT)、トリオクタン酸グリセリル (C8:0- MCT)、トリ デカン酸グリセリル (C10:0-MCT)を含有する飼料または標準実験用飼料 (コントロー ル)を与えたマウスの胃力も得たダレリンペプチドの分子形態を示す。マウス胃由来の ペプチド抽出物を HPLCにより分画し、 C-RIAによりダレリン免疫反応性について測 定した。アツセィチューブは胃糸且織 0.2mgからのペプチド抽出物を等量づっ含有して いた。黒棒グラフはダレリン C-RIAにより測定した免疫反応性ダレリン(ir-ダレリン)濃 度を表す。矢印は脱ァシル型ダレリン (I)および n-オタタノィルダレリン (II)の溶出位置 を表す。合成ダレリンの保持時間に基づき、ピーク a、 d、 hおよび kは脱ァシル型グレリ ンのピークに対応し、ピーク b、 f、 iおよび 1は n-オタタノィルダレリンのピークに対応し、 ピーク g、 jおよび mは n-デセノィル (C10:l)グレリンのピークに対応し、ピーク nは n- デカノィル(C10:0)ダレリンのピークに対応していた。
[図 4]トリオクタン酸グリセリンを与えたマウスの胃のダレリン濃度の時間依存性の変化 を示す。 Aはダレリン N-RIAにより測定したァシル修飾型ダレリン含量を表す。 Bはグ レリン C-RIAにより測定した総ダレリン含量を表す。絶食 12時間後、トリオクタン酸ダリ セリル (5%w/w)含有飼料をマウスに与えた。矢印で示す時点 (0時間)で開始する。胃 サンプルを、記載した時点で標準実験用飼料を与えたコントロールマウス(黒丸)およ びトリオクタン酸グリセリルを与えたマウス(白丸)から単離した。各点は平均値士 S.D. で示している (n= 8)。統計学的有意差はアスタリスクで示した。 *、 p< 0.05; **、 p< 0.01および ***、 p< 0.001対コントロール。
[図 5]トリオクタン酸グリセリル含有飼料の摂取後の胃ダレリン mRNA発現を試験するノ ザンブロット分析を示す。各レーンは全 RNAを 2 μ g含む。下方のパネルは 28Sおよび 18Sリボソーム RNA内部コントロールを示す。
[図 6]トリヘプタン酸グリセリルを与えたマウス由来の胃抽出物の HPLCプロフィールを 示す。トリヘプタン酸グリセリルで処置したマウスの胃抽出物を HPLCにより分画した( 上方パネル)。各画分 (胃組織 0.2mg当量)におけるダレリン濃度を C- RIA (中央パネル) および N-RIA (下方パネル)によりモニターした。棒グラフで表すように、ダレリン免疫 反応性は、 C-RIAにより 3つの主なピーク (中央パネル、ピーク a、 bおよび c)に分離し、 N-RIAにより 2つの主なピーク (ピーク dおよび e)に分離した。ピーク bおよび dはトリヘプ タン酸グリセリルの摂取後にのみ観察された。
[図 7]n-ヘプタノィルダレリンの最終精製を示す。トリヘプタン酸グリセリルを摂取した マウスの胃力もダレリンペプチドを精製した。抗ラットグレリンィムノアフィ-ティカラム 力も溶出したサンプルを HPLCに供した。ピーク aはトリヘプタン酸グリセリルで処置し たマウス由来のサンプルにおいてのみ観察された。 HPLCの保持時間および
MALDI-TOF-MS分析に基づくと、ピーク bは n-オタタノィルダレリンに対応して!/、た。 矢印はそれぞれ、 n-へキサノィル (1)、 n -オタタノィル (Π)および n-デカノィル (III)グレリ ンの溶出位置を表す。
[図 8]Aは図 7のピーク aから精製したダレリン様ペプチドのマトリックス支援レーザー 脱離イオン化飛行時間型質量分析の結果を示す。質量は、 3131.0— 3477.0 (m/z)の 範囲に及ぶ。陽イオンモード (平均 [M+H]+ : 3301.9)で得た平均 100質量スペクトルか ら、ピーク aペプチドの分子量は 3300.9であると計算した。 B. n-ヘプタノィル (C 7:0)グ レリンの構造。 n-ヘプタノィルダレリンの分子量計算値は 3300.86である。
[図 9]トリヘプタン酸グリセリル混合飼料を与えたマウス由来の血漿ダレリンペプチドの 分子形態を示す。標準飼料を与えたコントロールマウス (A)およびトリヘプタン酸ダリ セリル処置マウス (B)の血漿サンプルを HPLCにより分画し、 C- RIAによりグレリン免疫 反応性を測定した。矢印は脱ァシル型ダレリン (I)および n-オタタノィルダレリン (Π)の 溶出位置を表す。血漿ダレリンの免疫反応性は棒グラフで表した。図中、ピーク bお よび eは脱オタタノィルダレリンに対応し、ピーク cおよび gは n-オタタノィルダレリンに 対応する。新たに現れたピーク fはトリぺプタン酸グリセリル処置の後にマウス胃で観 察された n—ヘプタノィルダレリンと同一の保持時間を示した。
[図 10]GHS-R-発現細胞での n-オタタノィルダレリン (黒丸)、 n-ヘプタノィルグレリン( 白丸)および n-へキサノィルダレリン (黒三角)により誘導される蛍光のタイムコースを示 す。ペプチド (1 X 10— 8M)は矢印により示される時点でカ卩えた。
発明を実施するための最良の形態
[0015] 本明細書中で用いる用語を以下に説明する。
「ダレリン」とは、内因性成長ホルモン分泌促進因子 (GHS)の受容体 GHS-Rと結合 し細胞内のカルシウムイオン濃度上昇活性および成長ホルモンの分泌刺激活性を 有する約 30アミノ酸残基のペプチドホルモンである。ダレリンは、脊椎動物に広範囲 に分布しており、ほ乳類、鳥類、魚類、両生類などで同定されている。従って、本発 明は、任意の起源に由来するダレリンを包含する。
好ましいグレリンの起源はヒトの他、ブタ、ゥシ、ゥマ、ヒッジ、ゥサギ、ラット、マウス、 ィヌ、 -ヮトリ、ゥナギ、 -ジマス、食用力エル等の、家畜、家禽、ペット魚類等である。 これらの動物を起源とする数種のダレリンは、既に単離され、そのアミノ酸配列が既知 である。例えば、特開平 2004— 2378参照。。
[0016] 本明細書中、「(ァシル)修飾型ダレリン」とは、配列番号 1一 3に例示する特定のァ ミノ酸配列を有するダレリン分子の 3位アミノ酸残基 (例、セリン)がァシル基で修飾さ れたペプチドを意味し、単に「ァシルグレリン」とも称する。ここで、「ァシル化」は、 3位 アミノ酸の側鎖水酸基をァシル基、好ましくは脂肪酸残基で置換することを意味する 。また、「非修飾型ダレリン」とは 3位アミノ酸がァシルイ匕されていないペプチドを意味 し、単に「脱ァシルダレリン」とも称する。
[0017] グレリンの生理学的機能の「レギュレーター」とは、グレリンをリガンドとする RHS— R を発現している生体に投与したとき、ダレリンの生理学的機能を強める、あるいは弱 める物質を意味する。ダレリンの生理学的機能を強める物質としては、ダレリンの 3位 アミノ酸をァシルイ匕したときダレリンが生理学的に活性となるァシル基を有する、活性 化作用を有する脂肪酸が例示できる。一方、ダレリンの生理学的活性を弱める物質と しては、ダレリンの生理学的活性になんら影響しないか、むしろ低下させるであって、 上記活性ィ匕作用を有する脂肪酸と競合してダレリンの 3位アミノ酸をァシルイ匕する脂 肪酸が例示できる。
[0018] 後述の実施例に記載のごとぐマウスの場合、中鎖脂肪酸 (MCFA)または中鎖トリア シルグリセロール (MCT)の!、ずれかの摂取は、総グレリン (ァシルグレリンと脱ァシル グレリン)濃度を変化させずにァシル修飾型グレリンの産生を増大した。マウスに MCFAまたは MCTの ヽずれかを与えた場合、非修飾 (初期)型ダレリン分子に結合し たァシル基の炭素鎖長は摂取した MCFAまたは MCTの炭素鎖長に対応して 、た。対 照的に、 n-プチリル基または n-パルミトイル基により修飾されたダレリンペプチドは、 対応する短鎖 (SCFA)または長鎖 (LCFA)の摂取後には検出されな力つた。さらに、 n- ヘプタン酸またはトリヘプタン酸グリセリル摂取後のマウスの胃で n-ヘプタノィルグレ リン (非天然形態のダレリン)が製造されていた。これらの知見は、ダレリンのァシルイ匕 に利用される脂肪酸は炭素鎖が一定であること、摂取した脂肪酸がダレリンのァシル 修飾に直接利用されること、そしてダレリンのァシル修飾を触媒すると推定される酵 素が、そのような特定の脂肪酸により親和性である可能性を示している。ヒトダレリン やマウスダレリンのように、中鎖脂肪酸でにより優先的にァシル化される場合、そのよ うな酵素は、 SCFAまたは LCFAよりも MCFAに、より親和性である。
[0019] 中鎖脂肪酸によりダレリンがァシルイ匕されるマウスの場合、中鎖脂肪酸 (n-へキサン 酸、 n-オクタン酸および n-デカン酸)または中鎖トリグリセリド (トリへキサン酸グリセリル 、トリオクタン酸グリセリルおよびトリデカン酸グリセリル)の摂取は、対応する長さの炭 素鎖を有するァシル基により修飾されたダレリン (すなわち、 n-へキサノィルダレリン、 n-オタタノィルダレリンおよび n-デカノィルダレリン)の胃中濃度を上昇させた。また、ト リヘプタン酸グリセリル (哺乳動物細胞によっては合成できない)の摂取は、 n-ヘプタノ ィル修飾を有する非天然形態のダレリンの産生をもたらした。しかし、脂肪酸の摂取 によるダレリンの総生産 (ァシル修飾型および脱ァシル型のダレリン)は有意には上昇 しな力つた。これらの知見は、摂取した中鎖脂肪酸および中鎖トリグリセリドがダレリン のァシル修飾のための直接の脂質源であることを示している。
[0020] このように、摂取した脂肪酸およびトリグリセリドがダレリンのァシル修飾に対する脂 質源として利用され、ァシル修飾型ダレリンの濃度に影響を及ぼすことから、ダレリン の生理学的機能のレギュレーターとして機能することになる。より詳細には、ダレリン の 3位アミノ酸に結合した場合にダレリンの生理学的機能を高めるような脂肪酸は「正 のレギュレーター」、ダレリンの生理学的機能に影響しないか、それを阻害する脂肪 酸は、「負のレギュレーター」として機能すると言える。
[0021] 以下、主として、 3位アミノ酸がセリンであるダレリンを例に挙げて本発明を説明する 力 3位アミノ酸がスレオニンであるダレリン同族体についても、本発明を適用し、同 様の効果を得ることができることは、当業者ならば容易に理解しうることである。
[0022] ( 1)グレリンの牛.理学的機能のレギュレーター
上記定義に従い、「ダレリンの生理学的機能のレギュレーター」として、ダレリン分子 の 3位アミノ酸 (例、 Ser(3))のヒドロキシル基とエステルを形成しうる脂肪酸部分を有 することにより、ダレリンの少なくとも 1つの機能を調節する物質を挙げることができる。
[0023] 本発明のレギュレーターの活性成分として使用できる脂肪酸には、炭素数 2— 35 の飽和または不飽和脂肪酸が含まれる。具体例として、炭素数が偶数のブタン酸( C4)、へキサン酸(C6)、オクタン酸(C8)、デカン酸(C10)、ドデカン酸(C12)、テトラデ カン酸(C14)、へキサデカン酸(C16)、ォクタデカン酸(C18)、炭素数が奇数のペンタ ン酸(C5)、ヘプタン酸(C7)、ノナン酸(C9)、ペンタデカン酸(C15)、ヘプタデカン酸( C17)、それらのモノエンまたはポリェン脂肪酸等が挙げられる。
より好ましくは炭素数 4一 18、さらに好ましくは炭素数 6— 16の脂肪酸が挙げられる 力 これらに限定されない。
[0024] レギュレーター力 ダレリンの生理学的機能を高める(上昇させる)「正のレギユレ一 ター」である場合、使用できる脂肪酸は、対象動物により異なるが、通常、炭素数 4一 12、好ましくは 8— 10、最も好ましくは 6— 10の間のものである。中でも、オクタン酸( 好ましくは、力プリル酸)、デカン酸 (好ましくは、力プリン酸)、ドデカン酸 (好ましくは、 ラウリル酸)が好ましい。
[0025] レギュレーター力 ダレリンの生理学的機能を抑制する「負のレギュレーター」である 場合、使用できる脂肪酸は、対象動物により異なる力 通常、上記のポジティブレギ ユレ一ターとして例示した脂肪酸以外のものである。すなわち、炭素原子数が 4一 10 以外、より好ましくは 6— 10以外のものが例示できる。
[0026] 上記の例示は重要なものではなぐ好適な範囲は対象動物により異なることが明ら かであり、上記のものよりも長い、または短い炭素鎖を有する脂肪酸により、ダレリン の生理学的活性を有する、または有さない修飾型ダレリンを生じ得る。そのような脂 肪酸またはその誘導体もまた、本発明の範囲に包含される。
[0027] レギュレーターの活性成分である「脂肪酸の誘導体」の例としては、上記脂肪酸を 遊離するか、または生体内でダレリン分子の 3位アミノ酸の水酸基とエステルを形成し 得る任意の形態の、上記脂肪酸の誘導体が挙げられる。そのような誘導体は、また、 溶解性、消化管力 の吸収性、味や臭いの改善を目的として適宜塩やエステルの形 に変換してもよい。そのような誘導体の製造方法は医薬、食品、飼料等に関する製造 業の分野で周知であり、当業者ならば、 目的に応じて適当な誘導体を製造することが できる。
[0028] 「脂肪酸の誘導体」の好ましい例は、通常、類似の目的のために用いられるモノーま たはポリ アルコールとのエステルである。特に、グリセリンは好ましいアルコールであ る。グリコシドの場合、モノー、ジーまたはトリーグリセリドまたはその混合物であってもよ いが、トリグリセリドが最も好ましい。
[0029] 本発明のレギュレーターの活性成分としての脂肪酸またはその誘導体は、有機化 学の分野の当業者に公知の方法に従って製造することができる力、または市販の供 給源力 入手することができる。 [0030] (2)グレリンの生理学的機能
本発明のレギュレーターにより制御しうるダレリンの生理学的機能には、ァシルダレ リンの全生理学的機能が含まれ、例えば、細胞内カルシウムイオン濃度の上昇作用
、成長ホルモン分泌促進作用、摂食促進作用、脂肪蓄積に関連した調節作用、心機 能改善作用または胃酸分泌刺激作用が挙げられる。特に、成長ホルモンの放出、食 欲の刺激、肥満の誘発、心機能の改善、胃酸分泌などに関与しているが、これらに 限定されない。本発明のレギュレーターがこれらダレリンの生理学的機能を高める場 合、該レギユレ一ターの効果はダレリンまたはその類似体と同様の効果である。即ち 、レギュレーターは成長ホルモンの分泌促進、食欲の刺激、肥満の誘導、心機能の 改善、胃酸の分泌刺激等の効果を示しうる。
[0031] そのようなレギュレーターは、ほ乳類、鳥類、魚類、両生類など、例えば、ヒト、ブタ、 ゥシ、ゥマ、ヒッジ、ゥサギ、ラット、マウス、ィヌ、ニヮトリ、ゥナギ、ニジマス等に与える と、上記の作用を発揮する。
従って、摂食障害治療薬、成長ホルモン分泌促進薬、心疾患治療薬、胃機能性疾 患治療剤、腸管粘膜保護剤もしくは経静脈栄養時の小腸粘膜障害予防剤、骨粗鬆 症治療剤、慢性疾患による悪液質の減少剤、肺機能不全治療剤等として、有用であ る。特に、ヒトにおける骨粗鬆症、食欲不振、心疾患、リウマチおよび炎症性腸疾患 の予防または治療、および外科手術後の回復を促進するために有用である。
[0032] (3)ダレリンの生理学的機能のレギュレーターを含有する医薬組成物。
本発明の脂肪酸またはその誘導体は、それ自体が本発明のダレリンの生理学的機 能のレギュレーターとして機能するのでそのままで用いることができる力 取り扱いま たは適用の簡便さのため、脂肪酸またはその誘導体を適切な形態(当該分野で公知 の方法に従う液体および固体形態を含む)で処方することが好ま 、。例としては、 水性または非水性媒体 (希釈剤)中の液剤および懸濁剤、生理学的に許容可能また は製薬上許容可能なキャリアを有する散剤、顆粒剤または錠剤が挙げられる。そのよ うな医薬組成物は、例えば上記「ダレリンの生理学的機能」の項に記載の様々な動物 種におけるダレリンの機能を昂進または抑制することができ、同項に記載の治療効果 を挙げることができる。 [0033] 本発明のダレリンの生理学的機能のレギュレーターを医薬組成物中に処方する場 合、当業者既知の賦形剤、溶媒、担体、保存剤等を使用し、 自体既知の方法で製剤 化される。
本発明の医薬組成物は、医学または獣医学の分野で既知の方法により、経口また は非経口経路 (例えば、皮内、皮下、静脈内注射、点滴など)で投与することができる [0034] 本発明のレギュレーターの投与量は、種々の因子 (選択した脂肪酸またはその誘導 体、投与経路、および処置する障害、年齢、体重、状態などを含む処置する被検体) に応じて変化し、通常は医師により決定される。脂肪酸に基づいて、 O.OOOlmg-1000 mgの間、好ましくは O.OOlmg- 100 mgの間、より好ましくは O.Olmg- 10mgである力 この ような範囲は限定的なものではない。また、対象が動物である場合は、投与量は対象 に応じて獣医師等により適宜決定される。
[0035] (4)グレリンの牛 ¾学的機能のレギュレーター 含す機能件食品
本発明のレギュレーターは、機能性食品として、食欲の増進または抑制、肥満の解 消、栄養不良の改善などのために用いることができる。特に、体重のコントロールなど を通じて哺乳動物の健康状態をコントロールするため、さらには動物の成長促進、食 肉中の脂身の低減等のためにも使用できる。このように、本発明のレギュレーターは 畜産、養鶏、魚類の養殖等においても有用である。
本発明のダレリンの生理学的機能のレギュレーターを機能性食品に用いる場合、こ のような機能性食品は当該分野で公知の方法に従って製造することができ、例えば 、食物、飼料、食用油、清涼飲料水、点滴液、流動食などに含有させればよい。また はレギュレーターを使用前に通常の食餌に混合してもよい。
機能性食品における本発明のレギュレーターの含量は、上記医薬組成物の項に記 載した投与量に基づき当業者が適宜決定することができる。
[0036] (5)グレリンの牛.理学的機能に斷車する瞳害を '治療する方法
本発明のレギュレーターを用いてダレリンの生理学的機能に関連する障害の治療 は、レギュレーターそのもの、あるいはそれを含有する医薬糸且成物をヒトまたはヒト以 外の動物に与えることにより、当分野で公知の方法に従って実施することができる。
[0037] 実施例 以下に実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は本発明 の範囲を制限するものではな 、。
mm.
GH :成長ホルモン
GHS:成長ホルモン分泌促進物質
GHS-R:成長ホルモン分泌促進物質受容体
Ir:免疫反応性
RIA:ラジオィムノアッセィ
CHO:チャイニーズノヽムスター卵巣
[Ca2+]i:細胞内カルシウム濃度
AcOH :酢酸
HPLC:高速ェキタイクロマトグラフィー
RP:逆相
MALDI-TOF-MS:マトリックス支援レーザー脱離イオンィ匕飛行時間型質量分析 N-RIA:n-オタタノィルグレリンの N-末端フラグメント [1-11]のラジオィムノアッセィ C-RIA:グレリンの C-末端フラグメント [13-28]のラジオィムノアッセィ
MCFA:中鎖脂肪酸
MCT :中鎖トリグリセリド
LCFA:長鎖脂肪酸
LCT:長鎖トリグリセリド
SCT:単鎖トリグリセリド
実施例 1
( 1)材料および方法
1)グレリンのラジ才ィムノアッセィ
ダレリンに特異的な RIAは文献記載の方法に従って行った(上記の 2)。ラットグレリ ンの N末端 (Ser3での Q-n-オタタノィルイ匕を有する Glyi-Lys11)フラグメントおよび C末 端 (Gln13-Arg28)フラグメントに対する 2種類のポリクローナル抗体をゥサギ中で惹起さ せた。 RIAインキュベーション混合物は、標準グレリンまたは未知のサンプル 100 1と 、 0.5%正常ゥサギ血清を含む RIA緩衝液 (50mMリン酸ナトリウム緩衝液 (pH 7.4)、 0.5 %BSA、 0.5%Triton- X100、 80mM NaCl、 25mM EDTA-2Naおよび 0.05% NaN )で希
3 釈した抗血清 200 1とから構成した。抗ラットグレリン [ト11]抗血清および抗ゥサギグ レリン [13-28]抗血清は、それぞれ、最終希釈倍率 1/3,000,000および 1/20,000で用 いた。 4°Cで 12時間インキュベーションした後、 1251-標識したリガンド 100 1(20,000 cpm)をカ卩えてさらに 36時間インキュベーションした。次いで、抗ゥサギヤギ抗体を 100 1加えた。 4°Cで 24時間インキュベーションした後、 3,000rpmで 30分間遠心分離する ことにより遊離トレーサーおよび結合型トレーサーを分離した。ペレットの放射活性を ガンマカウンター (ARC- 600, Aloka, Tokyo)で定量した。アツセィは全て 4°Cで 2連で 行った。
[0039] 両方のタイプの抗血清は、ヒト、マウスおよびラットダレリンと完全な交差反応性を示 した(2)。ダレリンの Ser3 n-オタタノィルイ匕部位を特異的に認識する抗ラットグレリン [1-11]抗血清は脱ァシル型ダレリンを認識しなカゝつた。 N- RIAの n-デカノィルダレリン および n-へキサノィルダレリンに対する交差反応性は、それぞれ、 20%および 0.3% である (2)。抗ラットグレリン [13-28]抗血清は、ダレリンペプチドの脱ァシル型および全 ァシル型の両方を等しく認識した(2)。以下の項では、ラットダレリンの N末端フラグメ ント [1-11]に対する抗血清を用いる RIAシステムを N-RIAと称し、他方、 C末端フラグメ ント [13-28]に対する抗血清を用いる RIAシステムを C-RIAと称する。
[0040] 2)グレリンのカルシウム動員アツセィ
アツセィ前に、ラット GHS- R (グレリンレセプター)を安定に発現する CHO- GHSR62細 胞 (1)を 4 X 104細胞/ゥエルで平底 96ゥヱルプレート (黒色)(Corning Costar
Corporation, Cambridge, MA)に 12— 15時間、プレーティングした。次いで、細胞を、 1 %ゥシ胎仔血清 (FCS)を補充したアツセィ緩衝液 (ノ、ンタスの平衡塩類溶液 (HBSS) 、 10mM HEPES、 2.5mMプロべネシッド)に溶解した 4 M Fluo- 4- AM蛍光指示色素 (Molecular Probes, Inc., Eugene, OR)と共に 1時間プレインキュペートした。アツセィ 緩衝液で 4回洗浄した後、 0.01%ゥシ血清アルブミンを有する塩基性緩衝液 100 1 に溶解した各サンプルを、調製した細胞に加えた。 FLEXステーション (Molecular Devices, Sunnyvale, CA)を用いて細胞内カルシウム濃度の変化を測定した。 [0041] 3)グレリンアツセィのための胃サンプルの調製
マウスおよびラットのいずれかから回収した胃をリン酸緩衝ィ匕生理食塩水 (PH7.4)で 2回洗浄した。各サンプルの湿重量を測定した後、全胃組織を細力べ刻み、内因性プ 口テアーゼを不活ィ匕するために 10倍容量の水中で 5分間煮沸した。氷上で冷却した 後、煮沸したサンプルを 1M酢酸- 20mM HC1に調節した。ペプチドをポリトロンミキサ 一 (PT 6100, Kinematica AG., Littan- Luzern, Switzerland)を用いるホモジネーシヨン の後、抽出した。 15,000rpm(12,000 X g)で 15分間遠心分離した後、単離した抽出物 の上清を凍結乾燥し、 -80°Cで保存した。凍結乾燥サンプルは、ダレリン RIAまたは力 ルシゥム動員アツセィに先立って、それぞれ、 RIA緩衝液またはカルシウム動員アツ セィ緩衝液に再溶解した。
[0042] 4)ダレリンアツセィ用血漿サンプルの調製
血漿サンプルを、既述した通りに調製した (2)。全血サンプルを直ちに EDTA-2Na (1 mg/ml)およびァプロチュン (1,000カリクレイン不活化剤単位 (inactivator unit)/ml) を含む冷ポリプロピレンチューブに移し、 4°Cで遠心分離した。血漿の分離直後に、 塩ィ匕水素をサンプルに終濃度 0.1Nでカ卩え、次いで等量の生理食塩水で希釈した。 サンプルを 0.1%トリフルォロ酢酸(TFA)および 0.9%NaClで予め平衡化した Sep-Pak C18カートリッジ (Waters, Milford, MA)に充填した。カートリッジを 0.9%NaClおよび 5 %ァセトニトリル(CH CN)/0.1%TFAで洗浄し、次いで 60% CH CN/0.1%TFAで溶
3 3
離した。次いで、溶出液を凍結乾燥し、残留物質を 1M AcOHに再溶解し、 1M AcOHで予め平衡化した SP- Sephadex C- 25カラム (H+-形態, Pharmacia, Uppsala, Sweden)に吸着させた。 1M AcOH, 2Mピリジンおよび 2Mピリジン- AcOH (pH 5.0)を 用いて連続的に溶離することにより、 3つの画分、 SP-I、 SP-IIおよび SP-IIIを得た。 SP- III画分をエバポレートし、 1M AcOHに再溶解し、 C18 RP- HPLC (Symmetry 300, 3.9 X 150mm, Waters)により分離した(10— 60% CH CN/0.1%TFAの線形勾配、流
3
速 1.0 ml/分、 40分間)。 500 リットルずつ分画した。各画分中のグレリンペプチド含 量を、上記のダレリン C- RIAにより測定した。
[0043] 5)遊離脂肪酸またはトリァシルグリセロール摂取後のダレリンの濃度およびァシル修 飾 体重 20— 25gの雄性 C57BL/6Jマウス (10— 12週齢)を、制御した温度 (21— 23°C)お よび光条件 (light on 0700-1900)の下で、自由に餌および水を摂取させて飼育した。 中鎖脂肪酸 (MCFAs)、すなわち、 n-へキサン酸、 n-オクタン酸および n-ラウリン酸 (Sigma- Aldrich Japan Co. Ltd., Tokyo)を 5mg/mlで水に溶解した。 n-パルミチン酸( 一般的な長鎖脂肪酸 (LCFA) (Sigma-Aldrich Japan Co. Ltd., Tokyo))を標準的な実 験用飼料 (CLEA Rodent Diet CE- 2, CLEA Japan, Osaka)に濃度 1% (w/w)で混合し て食餌中に含まれるこの脂質と他の中鎖脂肪酸の総取込量を平衡ィ匕した。中鎖およ び長鎖トリグリセリド (MCTおよび LCT)であるトリへキサン酸グリセリル、トリオクタン酸 グリセリル、トリデカン酸グリセリルおよびトリパルミチン酸グリセリル(Wako Pure Chemical, Osaka, Japan)を標準実験用飼料に濃度 5%(w/w)で混合した。遊離脂肪 酸またはトリァシルグリセリドを含有する食品を摂取した後、一定の時点 (0— 14日)で 処置マウス力 全胃組織を回収した。これらのマウス力 の新し 、組織サンプルをさ いの目に切り、 10倍体積の水中で 5分間煮沸した。次いで、冷却後、組織含有溶液 を 1M酢酸に調節した後、 Polytronミキサーでホモジナイズした。 15,000rpmで 15分間 遠心分離した後、得られた上清を凍結乾燥した。凍結乾燥物質を RIA緩衝液に溶解 し、グレリン C- RIAおよび N- RIAにかけた。種々のァシル基により修飾されたグレリン ペプチドの形態を解明するために、抽出した胃ペプチドを Sep-Pak Plus C18カートリ ッジ (Waters, Milford, MA)を用いて回収し、 C18 RP- HPLC (Symmetry 300, 3.9 X 150 mm, Waters)に供した(10— 60% CH CN/0.1% TFAの線形勾配、流速 1.0ml/分
3
、 40分間)。 500 /z lずつ分画した。各画分中のダレリンペプチド含量を、上記のように ダレリン C-RIAおよび N-RIAにより測定した。抽出の間、ダレリンの分解は観察されな かった。
6)ノザンブロット分析
TRIzol試薬 (Invitrogen, Carlsbad CA, USA)を用いて、酸グァ-ジンチオシァネート —フエノールクロ口ホルム抽出法 (24 24.Chomczynski Pら、 Single- step method of RNA isolation by acia guanidinium thiocyanate— phenol— chloroform extraction, Anal Biochem 1987;162(1):156- 9)により雄性 C57BL/6Jマウス (12週齢)の胃力 全 RNAを 抽出した。全 RNA2 gをホルムアルデヒド含有 1%ァガロースゲルで電気泳動し、次 いで Zeta- Probeブロッテイングメンブレン (Bio- Rad Laboratories, Hercules, CA)に移 した。メンブレンを 50%ホルムアミド、 5 X SSPE、 5 Xデンハート溶液、 1%ドデシル硫 酸ナトリウム (SDS)および変性サケ精子 100 μ g/mlを含有するハイブリダィゼーシヨン 緩衝液中で32 P標識ラットダレリン cDNAプローブを用いてハイブリダィズさせた。 37°C でー晚ハイブリダィゼーシヨンした後、メンブレンを洗浄し、 BioMax-MSフィルム (Eastman Kodak, Rochester, NY)に 12時間、 - 80°Cで暴露させた。グレリン mRNAレべ ルを、バイオイメージングアナライザー(Bioimaging analyzer) BAS 2000 (Fujix, ToKyoJapan)を用い飞疋量しに。
[0045] 7) n-ヘプタノィルグレリンの精製
n-ヘプタノィルグレリンを、既述の抗ラットグレリン [1-1 l]IgGィムノアフィ-ティーク口 マトグラフィ一によるダレリン精製 (22)と同じ方法を用いて精製した。精製の間、 FLEXステーション (Molecular Devices, Sunnyvale, CA)を用いて、ラット GHS- R (グレリ ンレセプター)(CHO- GHSR62)を安定に発現する細胞株内の細胞内カルシウム濃度 における変化を測定することによりダレリン活性をアツセィした。また、ダレリン C-RIA システムを用いてサンプル中のダレリン免疫反応性をモニターした。
[0046] 体重 20— 25gの雄性 C57BL/6Jマウスを、制御温度下 (21— 23°C)および光条件下 (light on 0700-1900)で、自由に餌および水を摂取させて飼育した。トリヘプタン酸グ リセリル (Fluka Chemie GmbH, Buchs, Switzerland)を標準実験用飼料に 5%(w/w)の 濃度で混合した。マウスにトリヘプタン酸グリセリル含有飼料を与えた 4日後、マウス 力 胃 (合計 1,000 mg)を回収した (n= 7)。トリヘプタン酸グリセリル含有飼料の総消費 はおよそ 13.5 g/マウスであり、各マウスが摂取したトリヘプタン酸グリセリルは合計 675mgになる。胃を細力べ刻み、内因性のプロテアーゼを不活性ィ匕するために 5倍体 積の水の中で 5分間煮沸した。次いで、胃組織溶液を 1M酢酸 (AcOH)-20 mM HCl に調節し、 Polytronミキサーでホモジナイズした。 20,000rpmで 30分間遠心分離した 後に得た、これらの抽出物の上清を、 0.1%トリフルォロ酢酸 (TFA)で予め平衡ィ匕した Sep-Pak C18エンバイ口メンタル環境カートリッジ (Waters, Milford, MA)のカートリッジ に充填した。 10%ァセトニトリル (CH CN)/0.1%TFAで洗浄した後、ペプチド画分を
3
60% CH CN /0.1% TFAで溶離した。溶出液をエバポレートし、凍結乾燥した。残留物 質を 1M AcOHに再溶解し、 1M AcOHで予め平衡化した SP- Sephadex C- 25カラム 態、 Pharmacia, Uppsala, Sweden)に吸着させた。 1M AcOH, 2Mピリジンおよ び 2Mピリジン- AcOH (pH 5.0)での連続溶離により、 3つの画分、 SP-I、 SP-IIおよび SP- IIIを得た。凍結乾燥した SP- III画分を Sephadex G- 50ファインゲル (fine gel)-ろ過 カラム(1.9 X 145cm) (Pharmacia, Uppsala, Sweden)に力けた後、 5 mLづっ分画した。 各画分の一部を CHO-GHSR62細胞を用いるグレリンカルシウム-動員アツセィにかけ た。 Sep-Pak C18ライトカートリッジを用いて回収した、単離した活性画分 (47— 51番) の半分を凍結乾燥し、 100 mMリン酸緩衝液 (1.0 ml、 pH 7.4)に溶解し、抗ラットグレリ ン [1-11] IgG免疫親和性クロマトグラフィーに供した。吸着した物質を 10%CH CN
3
/0.1%ΤΡΑ(500 /ζ 1)で溶離した。溶出液をエバポレートし、次いで RP- HPLC
(Symmetry 300, 3.9 X 150 mm, Waters, Milford, MA)により分離した。 n-ヘプタノィル 修飾型ダレリンを、保持時間 18.4分で精製し、質量分析法により分子量を決定した。 精製ペプチドのアミノ酸配列をタンパク質配列決定機 (494, Applied Biosystems, Foster City, CA)で解析した。
[0047] 8) n-ヘプタノィルグレリンの質量分光分析
Voyager DE- Pro分光機 (Applied Biosystems, Foster City, CA)を用いて、マトリック ス支援レーザー脱離イオンィ匕飛行時間型質量分析 (MALDI-TOF-MS)を行った (25) 。質量スペクトルは加速電圧 20 kVで反射モードで記録した。 60%ァセトニトリル (CH
3
CN)および 0.1%トリフルォロ酢酸(TFA)中の飽和 α -シァノ -4-ヒドロキシ桂皮酸を作 業マトリックス溶液として用いた。最終精製サンプル約 lpmolをマトリックス溶液と混合 し、サンプルプローブ上に載せ、風乾した後、分析した。全質量スペクトルを、平均 100スペクトルの陽イオンモードで得た。
[0048] (2)実験および結果
1) n-オタタノィルダレリンの胃含量に対する遊離脂肪酸摂取の影響
ダレリンのァシル修飾型に対する遊離脂肪酸摂取の影響を試験するために、 n-へ キサン酸 (C6)、 n-オクタン酸 (C8)、 n-ラウリン酸 (C12)または n-パルミチン酸 (C16)と水 を与えたマウスおよび標準的な餌と水を与えた正常コントロールマウス (コントロール) の胃から胃ペプチドを抽出した。摂取後、ァシル修飾型ダレリンおよび総 (ァシル修飾 型および脱ァシル型)ダレリンの濃度を測定した。ァシル修飾型ダレリンは N-RIAによ り測定し、総ダレリンは C- RIAにより測定した。結果を図 1に示す。
[0049] Aはダレリン N-RIA (n=8)により測定したァシル修飾型ダレリン濃度を表す。 N-RIA はァシル修飾型ダレリンに非常に特異的であり、ァシルイ匕ダレリンの主な形態は n-ォ クタノィルダレリンなので、 N-RIAにより測定したァシル修飾型ダレリン濃度は主に n- オタタノィルダレリン集団を反映している。 Bはダレリン C- RIA (n=8)により測定した総 ダレリン濃度を表す。総ダレリン濃度は、ァシル型および脱ァシル型の両グレリンを含 む。 Cはァシル修飾型ダレリン Z総ダレリンの比を表す。データは、胃抽出物におけ るダレリン濃度の平均値士 S.D.を表す (湿重量 lmgから)。統計学的有意差はァスタリ スクで示した。 *, pく 0.01 ; **, pく 0.001対コン卜ロール o
[0050] 図 1から、 n-デカノィルグレリンおよび n-へキサノィルグレリンの胃含量は n-オタタノ ィルダレリンと比較して低ぐ n-デカノィル修飾型ダレリンおよび n-へキサノィル修飾 型ダレリンに対する N-RNAの交差反応性は、それぞれ、 20%および 0.3%であること が分かる。これは、 N-RIAにより測定したァシル修飾型ダレリンの濃度が主に n-オタタ ノィルダレリンを反映していることを意味する。実験期間の間 (0— 14日)、脂肪酸摂取 群およびコントロール群の間で、マウス体重または合計食餌消費量の 、ずれにも顕 著な差異は観察されなカゝつた。
[0051] マウスに n-へキサン酸、 n-オクタン酸、 n-ラウリン酸または n-パルミチン酸を 14日間 与えた後、ァシル修飾型ダレリンおよび総ダレリンの胃濃度を通常の餌および水を与 えたコントロールマウスにおける濃度と比較した。ァシル修飾型ダレリンの胃濃度は、 n-オクタン酸を与えたマウスにおいて顕著に上昇した (図 1A)。胃中のァシル修飾型 ダレリンの平均濃度は、それぞれ、通常の飼料を与えたコントロールラットでは 1,795 ftnol/湿重量 lmgであり (n=8)、 n-オクタン酸含有飼料を与えたマウスでは 2,455ftnol/ 湿重量 lmgであった(n=8)。 C-RIAにより測定した総ダレリン濃度には顕著な差異は 観察されなかった(図 1B)。すなわち、 n-オタタノィルダレリン/総ダレリンの比は、 n- オクタン酸を与えたマウスで上昇した (図 1C)。 n-へキサン酸、 n-デカン酸または n-パ ルミチン酸を与えたマウスの胃におけるァシル修飾型ダレリンまたは総ダレリンの!/ヽ ずれの含量についても、顕著な変化は検出されな力つた。このように、外来性の補充 n-オクタン酸は、総 (ァシル修飾型および脱ァシル型)ダレリンペプチドを上昇させるこ となく n-オタタノィルダレリンの胃濃度を上昇させた。これらの結果は、摂取した n-オタ タン酸がダレリンのァシル修飾を刺激したことを示唆している。
[0052] 2)ァシル修飾型ダレリンの胃含量に対する中一長鎖トリアシルグリセロール摂取の影 響
経口摂取したトリァシルグリセロールは、管腔内で加水分解され、胃腸粘膜を介し て遊離脂肪酸またはモノグリセリドとして吸収される。従って、摂取したトリァシルダリ セロールは遊離脂肪酸原として機能しうる (26)。摂取したトリァシルグリセロールがグ レリンのァシル修飾に用いられるか否かを試験するために、マウスに 5%(w/w)のトリ へキサン酸グリセリル (C6)、トリオクタン酸グリセリル (C8)、トリデカン酸グリセリル (C10) またはトリパルミチン酸グリセリル (C16)と混合した餌を与えた。 2週間後、胃ペプチド を抽出した。マウスの胃と標準的な実験用飼料 (コントロール)を与えたマウスの胃に おけるダレリン濃度 (n= 8)を示す。ァシル修飾型ダレリンおよび総ダレリンの含量は、 N-および C-RIAにより測定した。結果を図 2に示す。
[0053] Aはダレリン N-RIAにより測定したァシル修飾型ダレリン濃度を表す。 Bはダレリン C-RIAにより測定した総ダレリン濃度を表す。データは胃抽出物におけるダレリン濃 度の平均値士 S.D.を表す (湿重量 lmg)(n= 5)。 Cはァシル修飾型ダレリン Z総グレリ ン濃度の比を表す。データは計算した比の平均値士 S.D.を表す (n= 5)。統計学的有 意差はアスタリスクにより示した。 *, p< 0.05; **, p< 0.01対コントロール。
[0054] 図 2は、トリオクタン酸グリセリル摂取が胃組織内のァシル-修飾型ダレリンの産生を 刺激することを示している (図 2A)。対照的に、トリへキサン酸グリセリルの摂取は、ァ シル修飾型ダレリンの産生をわずかに抑制した。し力しながら、トリへキサン酸ダリセリ ルを与えたマウスは、 n-へキサノィルダレリンの濃度の上昇を示した (図 2A、表 1)。トリ デカン酸グリセリルおよびトリパルミチン酸グリセリルの摂取は、ァシル修飾型ダレリン の産生に影響を及ぼさな力つた(図 2A)。さらに、ダレリン(脱ァシル型ダレリンおよび ァシル修飾型ダレリン)の総胃濃度における顕著な変化は、独立した 5つのマウス群 では観察できな力つた(図 2B)。ァシル修飾型ダレリン Z総ダレリンのモル比はトリへ キサン酸グリセリル処置マウスで顕著に減少し、トリデカン酸グリセリル処置マウスで 増加した (図 2C)。実験期間の間 (0— 2週)、トリァシルグリセロール投与群およびコン トロール群の間では体重または総食餌消費量に顕著な差異は観察されな力つた。
[0055] 3)トリグリセロール摂取後のダレリンペプチドの分子形態
トリァシルグリセロール(トリァシルグリセリン)の摂取後、ダレリンペプチドがどのよう な分子形態で存在するかを明らかにするために、トリへキサン酸グリセリル
(C6:0- MCT)、トリオクタン酸グリセリル (C8:0- MCT)、トリデカン酸グリセリル
(C10:0-MCT)を含有する飼料または標準実験用飼料 (コントロール)を与えたマウスの 胃抽出物を HPLCにより分画し、 C-RIAによりダレリン免疫反応性を測定した。この分 析により、トリへキサン酸グリセリル、トリオクタン酸グリセリルおよびトリデカン酸グリセリ ルを摂取したマウスからの胃抽出物中のダレリンの分子形態が明らかになった(図 3) 。合成ァシル修飾型ダレリンペプチドについて観察された保持時間に基づくと、ピー ク&、 d、 hおよび kは脱ァシル型ダレリンに対応し、ピーク b、 f、 iおよび 1は n-オタタノィル (C8:0)グレリンに対応し、ピーク c、 g、 jおよび mは n-デセノィル (decenoyl) (C10:l)グレ リンに対応する。
[0056] トリオクタン酸グリセリルの摂取は、 n-オタタノィルダレリンの産生を刺激した (図 3の ピーク 0。 n-オタタノィル /総ダレリンのモル比は処置マウスでの 60%を超える (表 1)。こ の高い n-オタタノィルダレリン比は、通常の餌と水を与えたマウスでは観察されなかつ た (表 1)。 n-オタタノィルダレリンの胃含量は、 n-オクタン酸摂取後にも上昇し、トリオク タン酸グリセリルおよび n-オクタン酸は両方とも n-オタタノィルダレリンの産生を刺激 することが分った。
[0057] n-へキサノィルダレリンは、通常の餌を与えたマウスの胃では極めて低濃度し力検 出されなかった。しかし、マウスにトリへキサン酸グリセリルを与えた場合、 n-へキサノ ィルダレリンの胃濃度は劇的に上昇した (ピーク 。これらのマウスでは、コントロール マウスにおける測定値 (図 3のピーク bおよび表 1)と比較して、 n-オタタノィルダレリン 濃度の顕著な減少も検出された(図 3のピーク 1¾よび表 1)。 n-へキサノィルダレリン の量は n-へキサン酸摂取後にも上昇した(データは示さず)。
[0058] また、マウスにトリデカン酸グリセリルを与えた場合、 n-デカノィルダレリンの胃濃度 は上昇した(ピーク n)。 [0059] さらに、合成 n-ブタノィル (C4:0)グレリン、 n-ドデカノィル (C12:0)グレリンおよび n-パ ルミトイル (C16:0)ダレリンと同じ保持時間で溶離するダレリンピークは、トリ酪酸グリセ リル、トリラウリン酸グリセリルまたはトリパルミチン酸グリセリルを与えたマウスの胃抽出 物では観察されな力つた (データは示さず)。これらのデータは、トリ酪酸グリセリルまた はトリパルミチン酸グリセリルはいずれもマウスにおいてダレリンに変換されな力つたこ とを示している。
表 1 :中鎖 (C6:0— C10:0)トリグリセリド摂取後のマウス胃における脱ァシル型ダレリン ペプチドおよびァシル修飾型ダレリンペプチドの濃度
[0060] [表 1]
Figure imgf000024_0001
雄性 C57BL/6Jマウスに、 5%(w/w)トリへキサン酸グリセリル (C6:0- MCT)、トリオクタ ン酸グリセリル (C8:0-MCT)またはトリデカン酸グリセリル(C10:0-MCT)を混合した餌 を 14日間与えた。胃サンプル (湿重量 0.2mg)由来の脱ァシル型ダレリン、 n-へキサノ ィルグレリン (C6:0-グレリン)、 n-オタタノィルグレリン (C8:0-グレリン)、 n-デセノィルグ レリン (C10:l-グレリン)および n-デカノィルグレリン (C10:0-グレリン)の濃度は、 HPLC 分画後にダレリン C-RIAにより測定した。データは、 4連サンプルの平均値士 S.D.を 表す。
a) :p< 0.001、 b) :p< 0.05および c) :p< 0.01対コントロール。
(*:精製後、同じ画分に n-デセノィルダレリンとは別の少なくとも 2つの未確認のダレ リン分子が観察された。 )
[0061] 4)トリオクタン酸グリセリル摂取後のァシル修飾型ダレリン産生の時間経過(タイムコ ース)
トリオクタン酸グリセリル摂取後の n-オタタノィルダレリン産生の時間依存性の変化 を調べるために、 12時間絶食させたマウスにトリオクタン酸グリセリル含有飼料 (5%、 w/w)を与えた。次いで、一定時間後のァシル修飾型ダレリンおよび総ダレリンの胃濃 度を測定した。結果を図 4に示す。
[0062] Aはダレリン N-RIAにより測定したァシル修飾型ダレリン含量、 Bはダレリン C- RIAに より測定した総ダレリン含量を表す。絶食 12時間後、トリオクタン酸グリセリル (5%w/w) 含有飼料をマウスに与えた。矢印は開始時点 (0時間)を示している。胃サンプルを、 記載した時点で標準実験用飼料を与えたコントロールマウス (黒丸)およびトリオクタ ン酸グリセリルを与えたマウス(白丸)から単離した。各点は平均値士 S.D.で示してい る (n=8)。統計学的有意差はアスタリスクで示した。 *、 p< 0.05; **、 p< 0.01および 、 pく 0.001対コン卜ロール o
[0063] 図から明らかに、トリオクタン酸グリセリル摂取 3時間後にァシル修飾型ダレリンの胃 含量が上昇していた。トリオクタン酸グリセリルを連続的に与えると、マウス胃の n-オタ タノィルダレリン濃度は上昇した。濃度は徐々に上昇して摂取開始 24時間後に最大 レベルとなった。摂取 14日後のァシル修飾型ダレリンの胃濃度は、通常の餌を与えた マウスよりも顕著に高いままであった (図 4A)。対照的に、これらの条件下では、 C-RIA により測定した総ダレリンの胃含量に顕著な変化は観察されな力つた (図 4B)。
[0064] 5)トリオクタン酸グリセリル摂取後のグレリン mRNA発現
MCTの摂取がダレリン mRNAの発現に影響を与えるか否かを調べるために、トリオク タン酸グリセリル含有飼料の摂取の 4日後にノザンブロット分析によりマウス胃 mRNA を定量した。結果を図 5に示す。
各レーンは全 RNAを 2 μ g含む。下方のパネルは 28Sおよび 18Sリボソーム RNA内部 コントロールを示す。
図 5は、トリオクタン酸グリセリル摂取後、胃ダレリン mRNAの発現レベルが変化しな いことを示している。また、トリオクタン酸グリセリルは総ダレリン濃度を変化させること なく n-オタタノィルダレリンの胃含量を上昇させたことから、トリオクタン酸グリセリルの 摂取は、ダレリンペプチド合成におけるオタタノィル修飾工程のみを刺激したことにな る。
[0065] 6)トリヘプタン酸グリセリル摂取後のダレリンペプチドの分子形態
摂取した遊離脂肪酸がダレリンのァシル修飾に直接使用される可能性を調べるた めに、マウスに、天然の食餌源には存在せず、哺乳動物体内でも合成されない中鎖 トリグリセリド (MCT)を与えた。トリヘプタン酸グリセリルの加水分解型である n-ヘプタン 酸 (C7:0)が天然では哺乳動物体内に存在しないことから、非天然の遊離脂肪酸原と してトリヘプタン酸グリセリルを選択した。なお、 n-ヘプタノィルダレリンは天然ダレリン 力も HPLCにより簡単に分離されると思われる。結果を図 6に示す。
[0066] トリヘプタン酸グリセリルで処置したマウスの胃抽出物を HPLCにより分画した (上方 パネル)。各画分 (胃組織 0.2mg当量)におけるダレリン濃度を C- RIA (中央パネル)およ び N-RIA (下方パネル)によりモニターした。棒グラフで表すように、ダレリン免疫反応 性は、 C-RIAにより 3つの主なピーク (中央パネル、ピーク a、 bおよび c)に分離し、 N-RIAにより 2つの主なピーク (ピーク dおよび e)に分離した。ピーク bおよび dはトリヘプ タン酸グリセリルの摂取後にのみ観察された。
[0067] 検出された幾つかの免疫反応性ピーク中、単離されたダレリンペプチドの保持時間 に相当するピーク aおよびピーク cは、それぞれ、脱ァシル型ダレリンおよび n-オタタノ ィルダレリンに対応していた (図 6)。ピー外のダレリン免疫反応性はトリヘプタン酸ダリ セリルを与えたマウスでのみ観察され、試験した他の遊離脂肪酸またはトリグリセリド (n-へキサン酸、 n-オクタン酸、 n-ラウリン酸、 n_パルミチン酸または対応するトリグリセ リド形)のいずれを与えたマウスでも観察されな力つた。ピーク bの保持時間は、 n-へ キサノィルダレリンと n-オタタノィルダレリンの間であった。
[0068] グレリン N- RIAにより測定した HPLC画分は、ピーク dおよび eで見 、だされた 2つの ァシル修飾型ダレリンの免疫反応性を示した。 HPLCにおける合成 n-オタタノィルグ レリンの保持時間に基づき、ピーク eは n-オタタノィルダレリンに対応していた。ピーク dの保持時間は、上記の C-RIA分析におけるピー外の保持時間と同一であった。 N- RIAにより測定したピーク dの濃度(74.9 ftnol/チューブ)は、 C-RIAにより測定した ピーク bから推測される濃度 (466.3ftnol/チューブ)よりも低い。これらのデータは、ピー ク d (およびピーク b)の免疫反応性ダレリンが恐らく n-オタタノィル基で修飾されていな いことを示している。上記の知見に基づくと、免疫反応性のピーク bおよび dは、おそ らく n-ヘプタノィルダレリンである。同じダレリン免疫反応性のピーク (ピーク bおよび d) を、 n-ヘプタン酸を与えたマウスの胃抽出物力 も検出した (データは示さず)。 [0069] 7) n—ヘプタノィルグレリンの精製
摂取したトリヘプタン酸グリセリルがダレリンの n-ヘプタノィル修飾に直接用いられる か否かを確認するために、トリヘプタン酸グリセリル含有飼料を 4日間与えたマウスの 胃組織力ゝらァシル修飾型ダレリンを精製した。抗ラットグレリンィムノアフィ-ティカラム 力も溶出したサンプルを HPLCに供した。結果を図 7に示す。
[0070] ピーク aはトリヘプタン酸グリセリルで処置したマウス由来のサンプルにおいてのみ 観察された。 HPLCの保持時間および MALDI- TOF- MS分析に基づくと、ピーク bは n- オタタノィルダレリンに対応していた。矢印はそれぞれ、 n-へキサノィル (1)、 n-オタタノ ィル (Π)および n-デカノィル (III)ダレリンの溶出位置を表す。
[0071] 処置マウスの胃由来のダレリンペプチドの最終精製により、図 7のピーク bを HPLCに おける保持時間から、 n-オタタノィルダレリンと同定した。保持時間 18.4分で溶離する 他のピーク (図 7のピーク a)は、トリヘプタン酸グリセリル摂取後にのみ観察された。こ のピークは、 n-へキサノィルダレリンと n-オタタノィルダレリンの間の保持時間で溶出 した。このピーク aのペプチドを精製し、アミノ酸配列決定分析および質量分析にかけ た。
[0072] HPLCのピーク a (図 7)から得た精製ペプチドは 28アミノ酸からなり、マウスグレリンの アミノ酸配列と同一であった。図 7のピーク aから精製したダレリン様ペプチドのマトリツ タス支援レーザー脱離イオン化飛行時間型質量分析に今日した。結果を図 8Aに示 す。
結果は、質量が、 3131.0— 3477.0 (m/z)の範囲に及ぶことを示している。陽イオンモ ード (平均 [M+H]+ : 3301.9)で得た平均 100質量スペクトルから、ピーク aペプチドの分 子量は 3300.9であると計算した。 B. n-ヘプタノィル (C7:0)グレリンの構造。 n-ヘプタノ ィルグレリンの分子量計算値は 3300.86である。
[0073] Bは n-ヘプタノィル (C7:0)グレリンの構造を示す。 MALDI-TOF- MSの m/z値から計 算したペプチドの推定分子量は 3300.9であった。 Ser3残基でのグレリンの n-ヘプタノ ィル基における修飾は、理論上約 3300.86の分子量を生じる (図 8B)。これは、 MALDI-TOF-MSで測定した分子量とほぼ同じである。従って、ピーク aにおける精製 ペプチドは n-ヘプタノィルダレリンであると結論された。最終精製工程では、さらなる ピークは観察されな力つた力 これは摂取したトリヘプタン酸グリセリル力も加水分解 された n-ヘプタノィル基がダレリンの Ser3残基に直接転移され得ることを示している。
[0074] 8)トリヘプタン酸グリセリル摂取後の循環ダレリンペプチドの分子形態
トリヘプタン酸グリセリル摂取後にマウスの胃で合成された非天然型 n-ヘプタノィル ダレリンが循環中に分泌されて 、る力否かを試験するために、トリヘプタン酸グリセリ ル含有飼料を 4日間与えたマウスの血漿由来のァシル修飾型ダレリンの分子形態を 決定した。即ち、標準飼料を与えたコントロールマウス (A)およびトリヘプタン酸グリセ リル処置マウス (B)から回収した血漿サンプルを HPLCにより分画し、 C- RIAによりグレ リン免疫反応性を測定した。結果を図 9に示す。
矢印は脱ァシル型ダレリン (I)および n-オタタノィルダレリン (Π)の溶出位置を表す。 血漿ダレリンの免疫反応性は棒グラフで表した。
[0075] コントロールマウスにおける血漿グレリン免疫反応性は 2つの主ピーク (図 9Aにおけ るピーク aおよび b)と 1つの小さいピーク (図 9Aのピーク c)に分離した。トリヘプタン酸グ リセリル処置マウスにおける血漿ダレリン免疫反応性は 2つの主ピーク (図 9Bにおける ピーク dおよび e)と 2つの小さいピーク (図 9Bのピーク 1¾よび g)に分離した。
図中、ピーク bおよび eは脱オタタノィルダレリンに対応し、ピーク cおよび gは n-オタ タノィルダレリンに対応する。新たに現れたピーク fはトリぺプタン酸グリセリル処置の 後にマウス胃で観察された n—ヘプタノィルダレリンと同一の保持時間を示した。 ピーク aおよび dは、プロテアーゼ消化により生じたダレリンペプチドの C末端部分で あると考えられるが、正確な分子形態は未だ決定されて 、な 、。
[0076] 18.0— 18.5分に溶出するピーク fは、トリヘプタン酸グリセリル処置マウス由来のサン プルにおいてのみ観察された。この分析により、トリヘプタン酸グリセリルを与えたマウ スの胃力 精製した n-ヘプタノィルダレリンの保持時間と同じ保持時間を有する血漿 ダレリン分子が存在することが明らかになった (図 9Bにおけるピーク £)。これらの結果 は、 n-ヘプタノィルダレリンは、トリヘプタン酸グリセリル摂取によりインビボで人工的 に製造された非天然形ダレリンである力 確かに循環中に放出されることを示してい る。
[0077] 9) n-ヘプタノィルグレリンの活性 グレリンカルシウム動員アツセィを用いて、 n-ヘプタノィルグレリンの GHS-R (グレリ ンレセプター)活性を刺激する活性を試験した。
GHS-R-発現細胞での n-オタタノィルダレリン (黒丸)、 n-ヘプタノィルグレリン(白丸) および n-へキサノィルダレリン (黒三角)〖こより誘導される蛍光のタイムコースを示す。 ペプチド (1 X 10— 8M)は矢印により示される時点でカ卩えた。結果を図 10に示す。
n-ヘプタノィルダレリンは、 GHS-R-発現細胞における [Ca2+]の上昇を誘発し、これ らの [Ca2+]i変化のタイムコースは、 n-オタタノィルダレリンにより誘発される変化と類似 して 、た(図 10)。反応曲線の曲線下面積 (AUC)から計算される n-ヘプタノィルグレリ ンの GHS-Rに対するァゴニスト活性は、およそ n-オタタノィルグレリンの約 60%である 力 値は n-へキサノィルダレリンの値より 3倍高い (図 10)。従って、 n-ヘプタノィルダレ リンは GHS- R刺激活性を有する。
[0078] (3)アシノレイ匕のメカニズム
実験の結果、摂取した中鎖脂肪酸 (MCFA)および中鎖トリアシルグリセリド (MCT)が 、総ダレリン mRNA発現および総ペプチド濃度を上昇させることなくダレリンのァシル 修飾を刺激することが明らかになった。即ち、外来性 MCFAおよび MCTが、ダレリン のァシル修飾に直接用いられると思われる。また、合成 n-ヘプタン酸の摂取により、 生体内で非天然の n-ヘプタノィルダレリンが産生された。この結果は、吸収された MCFAがダレリンのァシルイ匕修飾における脂肪酸の直接的な供給原として働きうるこ とを裏付けるものである。
[0079] 従って、本発明はダレリンのァシル修飾の分子メカニズムおよび該修飾を担う酵素 の同定への道を拓くものと言える。実験結果はマウス内で機能するダレリン ser Q-ァ シルトランスフェラーゼは、 n-へキサノィル、 n-ヘプタノィル、 n-オタタノィルおよび n- デカノィルのダレリンのァシル修飾を触媒しうることを示唆して 、る。この種の酵素は、 トリパルミチン酸グリセリル、長鎖トリアシルグリセリド (LCT)およびトリ酪酸グリセリル、 短鎖トリアシルグリセリド(SCT)摂取後にはダレリンのァシル修飾を触媒しな力つた。こ れは、マウスにおけるダレリンのァシル修飾を触媒する酵素力 ダレリンのァシル修飾 において MCT(MCFA)に対して親和性を有する中鎖 (C6:0— C10:0)ァシルトランスフ エラーゼでありうることを示している。 [0080] 大多数のァシルトランスフェラーゼは、ァシル -CoAをァシル修飾の脂質源として使 用するので (27, 28)、本発明は、外来性の、または代謝的に産生された MCFのうちの 一部が中鎖ァシル -CoAへと変換され、ダレリンのァシル修飾に用いられる可能性を 示唆している。
[0081] 従来、多数のァシルトランスフェラーゼが哺乳動物において同定されている。基質と して MCFAを使用すると報告されている唯一の酵素はカル-チンオタタノィルトランス フェラーゼであり (29, 30)、これは脂肪酸の j8 -酸化において機能する。ァシル基を標 的分子のセリン残基に転移させるセリンァシルトランスフェラーゼファミリーのメンバー が同定されている。それには、哺乳動物でのスフインゴ脂質の生合成において機能 する 2種のセリンパルミトイルトランスフェラーゼ(31)と、シロイヌナズナ (Arabidopsis thaliana)における 1種の植物セリン 0-ァセチルトランスフェラーゼ遺伝子ファミリー (32, 33)が含まれる。タンパク質脂質ァシルトランスフェラーゼもまた、ラットの胃粘膜 から精製されている (34, 35)。この酵素はァシル -CoAの粘膜タンパク質への転移を触 媒する内在性粗面ミクロソームタンパク質である。推定ダレリン ser Q-ァシルトランス フェラーゼはこれらのァシルトランスフェラーゼと構造的な類似性を示す力もしれない
[0082] 文献リスト
丄. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature
1999;402(6762):656-60.
2. Hosoda H, Kojima M, Matsuo H, Kangawa K. Ghrelin and des— acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 2000;279(3):909-13.
3. Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T,
Matsukura S, Kangawa K, Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the
gastrointestinal tracts of rats and humans. Endocrinology 2000;141(11):4255-61.
4. Date Y, Nakazato M, Hashiguchi S, Dezaki K, Mondal MS, Hosoda H, Kojima M, Kangawa K, Arima T, Matsuo H, Yada T, Matsukura S. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 2002;51(l):124-9.
5. Mori K, Yoshimoto A, Takaya K, Hosoda K, Ariyasu H, Yahata K, Mukoyama M, Sugawara A, Hosoda H, Kojima M, Kangawa K, Nakao K. Kidney produces a novel acylated peptide, ghrelin. FEBS Lett 2000;486(3):213— 6.
6. Galas L, Chartrel N, Kojima M, Kangawa K, Vaudry H. Immunohistochemical localization ana biochemical characterization of ghrelin in the brain and stomach of the frog Rana esculenta. J Comp Neurol 2002;450(l):34-44.
7. Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P,
Bhattacharya S, Carpenter R, Grossman AB, Korbonits M. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS— R, in humans. J Clin Endocrinol Metab 2002;87(6):2988.
8. Arvat E, Di Vito L, Broglio F, Papotti M, Muccioli G, Dieguez C, Casanueva FF, Deghenghi R, Camanni F, Ghigo E. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)- receptor ligand, strongly stimulates GH secretion in humans. J Endocrinol Invest 2000;23(8):493— 5.
9. Peino R, Baldelli R, Rodriguez— Garcia J, Rodriguez— Segade S, Kojima M, Kangawa K, Arvat E, Ghigo E, Dieguez C, Casanueva FF. Ghrelin— induced growth hormone secretion in humans. Eur J Endocrinol 2000; 143(6):R11-4.
10. Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yoshimoto A, Harada M, Mori K, Komatsu Y, Usui T, Shimatsu A, Ogawa Y, Hosoda K, Akamizu T, Kojima M, Kangawa K, Nakao K. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab 2000;85(12):4908— 11.
11. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K,
Matsukura S. A role for ghrelin in the central regulation of feeding. Nature
2001;409(6817):194-8.
12. Shintani M, Ogawa Y, Ebihara K, Aizawa— Abe M, Miyanaga F, Takaya K, Hayashi T, Inoue G, Hosoda K, Kojima M, Kangawa K, Nakao K. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Yl receptor pathway. Diabetes 2001;50(2):227-32.
13. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents.
Nature 2000;術 (6806):908- 13.
14. Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri S, Stanley SA, Ghatei MA, Bloom SR. Ghrelin causes hyperphagia and obesity in rats. Diabetes 2001;50(l l):2540-7.
15. Nagaya N, Uematsu M, Kojima M, Ikeda Y, Yoshihara F, Shimizu W, Hosoda H, Hirota Y, Ishida H, Mori H, Kangawa K. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation 2001 ;104(12): 1430-5.
16. Nagaya N, Kangawa K. Ghrelin improves left ventricular dysfunction and cardiac cachexia in heart failure. Curr Opin Pharmacol 2003;3(2): 146-51.
17. Enomoto M, Nagaya N, Uematsu M, Okumura H, Nakagawa E, Ono F, Hosoda H, Oya H, Kojima M, Kanmatsuse K, Kangawa K. Cardiovascular and hormonal effects of subcutaneous administration of ghrelin, a novel growth hormone-releasing peptide, in healthy humans. Clin Sci (Lond) 2003;105(4):431-5.
18. Masuda Y, Tanaka T, Inomata N, Ohnuma N, Tanaka S, Itoh Z, Hosoda H, Kojima M, Kangawa K. Ghrelin stimulates gastric acid secretion and motility in rats.
Biochem Biophys Res Commun 2000;276(3):905— 8.
19. Hosoda H, Kojima M, Matsuo H, Kangawa K. Purification and characterization of rat des-Gln 14-Ghrelin , a second endogenous ligand for the growth hormone secretagogue receptor. J Biol Chem 2000;275(29):21995-2000.
20. Hosoda H, Kojima M, Mizushima T, shimizu S, Kangawa K. Structural divergence or human ghrelin. Identification of multiple ghrelin— derived molecules produced by post— translational processing. J Biol Chem 2003;278(l):64-70. 21. Kaiya H, Kojima M, Hosoda H, Koda A, Yamamoto K, Kitajima Y, Matsumoto M, Minamitake Y, Kikuyama S, Kangawa K. Bullfrog ghrelin is modified by n- octanoic acid at its third threonine residue. J Biol Chem 2001;276(44):40441-8.
22. Kaiya H, Van Der Geyten S, Kojima M, Hosoda H, Kitajima Y, Matsumoto M, Geelissen S, D arras VM, Kangawa K. Chicken ghrelin: purification, cDNA cloning, ana biological activity. Endocrinology 2002;143(9):3454-63.
23. Matsumoto M, Hosoda H, Kitajima Y, Morozumi N, Minamitake Y, Tanaka S, Matsuo H, Kojima M, Hayashi Y, Kangawa K. Structure-activity relationship of ghrelin: pharmacological study of ghrelin peptides. Biochem Biophys Res Commun 2001;287(l):142-6.
24. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate— phenol— chloroform extraction. Anal Biochem
1987;162(l):156-9.
25. Hillenkamp F, Karas M. Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol
1990;193:280-95.
26. Greenberger NJ, Skillman TG. Medium-chain triglycerides. N Engl J Med 1969;280(19):1045-58.
27. Coleman RA, Lewin TM, Muoio DM. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 2000;20:77-103.
28. Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondrial beta-oxidation. Biochem J 1996;320 ( Pt 2):345- 57.
29. Bremer J. Carnitine—― metabolism and functions. Physiol Rev
1983;63(4):1420-80.
30. van der Leij FR, Huijkman NC, Boomsma C, Kuipers JR, Bartelds B. Genomics of the human carnitine acyltransferase genes. Mol Genet Metab
2000;71(l-2):139-53.
31. Hanada K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 2003;1632(1— 3): 16— 30·
32. Howarth JR, Dominguez— Solis JR, Gutierrez— Alcala G, Wray JL, Romero LC, Gotor C. The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Mol Biol 2003;51(4):589-98.
33. Noji M, Inoue K, Kimura N, Gouda A, Saito K. Isoform— dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem
1998;273(49):32739-45.
34. Slomiany A, Liau YH, Takagi A, Laszewicz W, Slomiany BL. Characterization of mucus glycoprotein fatty acyltransferase from gastric mucosa. J Biol Chem 1984;259(21):13304-8.
35. Kasinathan C, Grzelinska E, Okazaki K, Slomiany BL, Slomiany A. Purification of protein fatty acyltransferase and determination of its distribution and topology. J Biol Chem 1990;265(9):5139— 44.

Claims

請求の範囲
[1] 炭素数が 2— 35である脂肪酸またはその誘導体を含むダレリンの生理学的機能の レギュレーター。
[2] ダレリンの生理学的機能力 細胞内カルシウムイオン濃度の上昇作用、成長ホルモ ン分泌促進作用、摂食促進作用、脂肪蓄積に関連した調節作用、心機能改善作用 または胃酸分泌刺激作用である、請求項 1記載のレギュレーター。
[3] 請求項 1または 2に記載のレギュレーターを含有する医薬組成物。
[4] 請求項 1または 2のレギュレーターを含む機能性食品。
[5] ダレリンの生理学的機能に関連する障害の処置を必要とする被検体に、請求項 1 に記載のレギュレーターまたは請求項 3に記載の医薬組成物を治療上有効な量で投 与することを含む、ダレリンの生理学的機能に関連する障害の治療方法。
PCT/JP2004/015413 2004-06-09 2004-10-19 グレリンの生理学的機能のレギュレーター WO2005120484A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004171245 2004-06-09
JP2004-171245 2004-06-09

Publications (1)

Publication Number Publication Date
WO2005120484A1 true WO2005120484A1 (ja) 2005-12-22

Family

ID=35502807

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/015413 WO2005120484A1 (ja) 2004-06-09 2004-10-19 グレリンの生理学的機能のレギュレーター
PCT/JP2005/007465 WO2005120485A1 (ja) 2004-06-09 2005-04-19 グレリンの生理学的機能のレギュレーター及びその利用

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007465 WO2005120485A1 (ja) 2004-06-09 2005-04-19 グレリンの生理学的機能のレギュレーター及びその利用

Country Status (8)

Country Link
US (1) US20080293818A1 (ja)
EP (1) EP1767198A4 (ja)
JP (1) JP5144929B2 (ja)
KR (1) KR101246497B1 (ja)
AU (1) AU2005251576B2 (ja)
CA (1) CA2569678C (ja)
TW (1) TWI368622B (ja)
WO (2) WO2005120484A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759663B2 (ja) * 2007-10-02 2015-08-05 花王株式会社 皮膚バリア機能改善剤等
WO2016050754A1 (en) * 2014-09-30 2016-04-07 Nestec S.A. Nutritional composition with low content of medium-chain fatty acids in specific proportions, and its uses.
US9561206B2 (en) * 2015-01-07 2017-02-07 The United States Of America, As Represented By The Secretary Of The Navy Use of heptadecanoic acid (C17:0) to detect risk of and treat hyperferritinemia and metabolic syndrome
JP2016210720A (ja) * 2015-05-07 2016-12-15 治 江▲崎▼ 運動機能改善剤、呼吸機能改善剤または認知能改善剤
JP6744015B2 (ja) * 2016-02-19 2020-08-19 株式会社ハウス食品分析テクノサービス 異物の混入時期推定方法
EP3612570A4 (en) 2017-04-17 2021-01-13 The University of Chicago POLYMER MATERIALS FOR DELIVERING SHORT CHAIN FATTY ACIDS TO THE INTESTINAL FOR HUMAN HEALTH APPLICATIONS AND DISEASE TREATMENT
KR20200075815A (ko) 2017-10-23 2020-06-26 에피트래커, 인코포레이티드 지방산 유사체 및 대사 증후군 관련 병태 치료에서의 그의 용도
JP2020083852A (ja) * 2018-11-30 2020-06-04 株式会社明治 ストレス性疾患予防組成物
WO2022113693A1 (ja) * 2020-11-30 2022-06-02 国立研究開発法人産業技術総合研究所 筋ジストロフィー治療剤、中心静脈栄養用組成物、筋組織の炎症抑制剤および筋ジストロフィーの抗炎症用食品組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471780B2 (ja) * 1999-07-23 2003-12-02 賢治 寒川 新規ペプチド
JP2004135522A (ja) * 2002-10-16 2004-05-13 Kiyomitsu Kawasaki 魚節フレーバー組成物および該フレーバー組成物を含有する食品類

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623099B2 (ja) * 1984-02-17 1994-03-30 花王株式会社 胆石溶解剤
US4735967A (en) * 1985-05-28 1988-04-05 Neesby Torben E Method for desensitizing the gastrointestinal tract from food allergies
GB8600822D0 (en) * 1986-01-15 1986-02-19 Unilever Plc Treatment of skin disorders
US5000975A (en) * 1988-12-29 1991-03-19 American Home Products Corporation Randomized palm oil fat composition for infant formulas
US5175190A (en) * 1991-02-15 1992-12-29 The University Of British Columbia Medium chain fatty acids of C8-10 for the treatment of skin lesions
WO1994025019A1 (en) * 1993-04-30 1994-11-10 Mars, Incorporated Enhancing performance capacity by sparing muscle glycogen with medium chain fatty acids
DE4435290A1 (de) * 1994-10-01 1996-04-04 Beiersdorf Ag Dermatologische Zubereitungen mit einem Gehalt an Fettsäuren und Fettsäureglyceriden gegen Superinfektionen
JP2977750B2 (ja) * 1994-10-26 1999-11-15 鐘紡株式会社 皮膚老化防止化粧料
JPH10152429A (ja) * 1996-11-21 1998-06-09 Pola Chem Ind Inc 皮膚老化防止剤及び皮膚化粧料
US6287624B1 (en) * 1997-03-12 2001-09-11 Kao Corporation Foods containing fat or oil
HUP0101040A3 (en) * 1999-01-18 2005-11-28 Lg Life Sciences Ltd Lipophilic microparticles containing a protein drug or antigen and formulation comprising same
JP2001286268A (ja) * 2000-04-05 2001-10-16 Kanegafuchi Chem Ind Co Ltd 摂取エネルギーの効率を向上させる方法
JP4995377B2 (ja) * 2001-04-26 2012-08-08 花王株式会社 油脂組成物
CA2452401C (en) * 2001-07-02 2013-02-26 Suntory Limited Process for producing fat comprising triglyceride containing highly unsaturated fatty acid
WO2003007932A1 (fr) * 2001-07-16 2003-01-30 The Nisshin Oillio, Ltd. Substances pour le controle du degre d'adiposite
JP3850840B2 (ja) * 2004-01-14 2006-11-29 花王株式会社 低カロリー食品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471780B2 (ja) * 1999-07-23 2003-12-02 賢治 寒川 新規ペプチド
JP2004135522A (ja) * 2002-10-16 2004-05-13 Kiyomitsu Kawasaki 魚節フレーバー組成物および該フレーバー組成物を含有する食品類

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MASUDA Y. ET AL: "Ghrelin stimulates gastric acid secretion and motility in rats", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 276, no. 3, 2000, pages 905 - 908, XP002996943 *
MATSUMOTO M. ET AL: "Structure-activity relationship of Ghrelin: pharmacological study of Ghrelin peptide", vol. 287, 2001, pages 142 - 146, XP002980897 *
NAGAYA N. ET AL: "Ghrelin improves left ventricular dysfunction and cardiac cachexia in heart failure", CURR. OPIN. IN PHARMACOL., vol. 3, no. 2, April 2003 (2003-04-01), pages 146 - 151, XP002311021 *
NISHI Y.: "Chusa Shibosan ni yoru Ghrelin no Acyl-ka Chosetsu ni Kansuru Kento", FOLIA ENDOCRINOLOGICA JAPONICA, vol. 80, no. 1, 20 April 2004 (2004-04-20), pages 175, XP002996942 *
TSCHOP M. ET AL: "Ghrelin induces adiposity in rodents", NATURE, vol. 407, no. 6806, 19 October 2000 (2000-10-19), pages 908 - 913, XP002951587 *

Also Published As

Publication number Publication date
AU2005251576B2 (en) 2011-01-27
KR20070043710A (ko) 2007-04-25
TW200602354A (en) 2006-01-16
CA2569678C (en) 2014-01-14
JPWO2005120485A1 (ja) 2008-04-03
KR101246497B1 (ko) 2013-03-25
JP5144929B2 (ja) 2013-02-13
AU2005251576A1 (en) 2005-12-22
WO2005120485A1 (ja) 2005-12-22
CA2569678A1 (en) 2005-12-22
US20080293818A1 (en) 2008-11-27
TWI368622B (en) 2012-07-21
EP1767198A1 (en) 2007-03-28
EP1767198A4 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
Nishi et al. Ingested medium-chain fatty acids are directly utilized for the acyl modification of ghrelin
Kojima et al. Ghrelin: structure and function
Chen et al. Taurine supplementation prevents ethanol‐induced decrease in serum adiponectin and reduces hepatic steatosis in rats
Gualillo et al. Ghrelin, a widespread hormone: insights into molecular and cellular regulation of its expression and mechanism of action
JP5144929B2 (ja) グレリンの生理学的機能のレギュレーター及びその利用
Florant et al. The regulation of food intake in mammalian hibernators: a review
Roche et al. Neuroendocrine and physiological regulation of intake with particular reference to domesticated ruminant animals
Stengel et al. Stress-related alterations of acyl and desacyl ghrelin circulating levels: mechanisms and functional implications
Urrutia et al. Effect of conjugated linoleic acid and acetate on milk fat synthesis and adipose lipogenesis in lactating dairy cows
Salmerón et al. Effects of nutritional status on plasma leptin levels and in vitro regulation of adipocyte leptin expression and secretion in rainbow trout
Nishi et al. Developmental changes in the pattern of ghrelin’s acyl modification and the levels of acyl-modified ghrelins in murine stomach
KR20190010543A (ko) 포만 유도 및 포만감 지속을 위한 하피니아 알베이 기반 약제학적 및 식품 조성물
Song et al. Ghrelin serves as a signal of energy utilization and is involved in maintaining energy homeostasis in broilers
EP3810122A1 (en) Compositions and methods for the reduction or treatment of insulin resistance and metabolic conditions
García-Cáceres et al. The opposing effects of ghrelin on hypothalamic and systemic inflammatory processes are modulated by its acylation status and food intake in male rats
Kunz et al. Sericin as treatment of obesity: morphophysiological effects in obese mice fed with high-fat diet
Ranea-Robles et al. The physiology of experimental overfeeding in animals
Roche et al. Long-term infusions of ghrelin and obestatin in early lactation dairy cows
Miller et al. Dietary stimulation of the endogenous somatotropic axis in weaner and grower-finisher pigs using medium chain triglycerides and cysteamine hydrochloride
Sarr et al. Adipose tissue proteomes of intrauterine growth-restricted piglets artificially reared on a high-protein neonatal formula
Malmlöf et al. Growth hormone affects both adiposity and voluntary food intake in old and obese female rats
Polkowska et al. The effect of intracerebroventricular infusions of ghrelin and/or short fasting on the gene expression and immunoreactivity of somatostatin in the hypothalamic neurons and on pituitary growth hormone in prepubertal female lambs. Morphological arguments
Ogata et al. The effects of dietary retinoic acid on body lipid deposition in juvenile red sea bream (Pagrus major); a preliminary study
Liu et al. Effects of glucocorticoids on the gene expression of nutrient transporters in different rabbit intestinal segments
Irwin et al. Comparison of the metabolic effects of sustained CCK 1 receptor activation alone and in combination with upregulated leptin signalling in high-fat-fed mice

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP