WO2005119027A1 - Abgasturbolader für eine brennkraftmaschine und verfahren zum betrieb eines abgasturboladers - Google Patents

Abgasturbolader für eine brennkraftmaschine und verfahren zum betrieb eines abgasturboladers Download PDF

Info

Publication number
WO2005119027A1
WO2005119027A1 PCT/EP2005/005716 EP2005005716W WO2005119027A1 WO 2005119027 A1 WO2005119027 A1 WO 2005119027A1 EP 2005005716 W EP2005005716 W EP 2005005716W WO 2005119027 A1 WO2005119027 A1 WO 2005119027A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas turbocharger
flywheel
clutch
speed
Prior art date
Application number
PCT/EP2005/005716
Other languages
English (en)
French (fr)
Inventor
Peter Fledersbacher
Jens Meintschel
Thomas Stolk
Alexander Von Gaisberg-Helfenberg
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2005119027A1 publication Critical patent/WO2005119027A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/14Control of the alternation between or the operation of exhaust drive and other drive of a pump, e.g. dependent on speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/12Drives characterised by use of couplings or clutches therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Exhaust gas turbochargers are used in both spark-ignited and self-igniting internal combustion engines to increase the cylinder charge. Increasing the cylinder charge leads not only to an increase in output to an increase in the combustion air ratio and thus in self-igniting internal combustion engines to reduce soot formation at low and medium load and speed range and, depending -after having combustion temperature to reduce the 'nitrogen oxide emissions result.
  • Exhaust gas turbochargers generally consist of two turbomachines coupled via a fixed shaft, a turbine which is acted upon by the expanding exhaust gas mass flow of the internal combustion engine and a compressor which is driven by the turbine via the fixed shaft and compresses the air drawn in. Since turbomachines have a different operating behavior than internal combustion engines, the exhaust gas turbocharger and / or its periphery should be considered Design that the exhaust gas turbocharger provides sufficient air for the desired operating behavior of the internal combustion engine, both in the low and in the upper load and speed range.
  • the exhaust gas turbocharger Due to its moment of inertia, the exhaust gas turbocharger responds with a delay when the load and / or speed of the internal combustion engine suddenly increases. This delayed response is known under the common name "turbo lag" and is characterized in that the exhaust gas turbocharger of the internal combustion engine provides too little air for the corresponding operating point. In addition to insufficient acceleration, the poor response behavior results in a high fuel consumption in the transient operation of the internal combustion engine, which can be reduced by eliminating the poor response behavior.
  • the exhaust gas turbocharger is designed for the nominal power point of the internal combustion engine, it is usually too large for a quick response in the lower and medium load and speed range and, due to its moment of inertia, delivers unsatisfactory results of the operating behavior of the internal combustion engine with regard to engine torque, agility and consumption , Different approaches attempt to improve the response behavior of the exhaust gas turbocharger in the range mentioned.
  • One of the approaches is the coupling of the exhaust gas turbocharger with an electrical machine.
  • the electrical machine is rigidly connected to the exhaust gas turbocharger and accelerates it if necessary.
  • the power required for a four-cylinder engine, for example, is around 1-2 kW.
  • Current vehicle electrical systems are reaching their performance limits.
  • a large part of the energy fed in serves the self-acceleration of the electrical machine.
  • the rotor of the electrical machine connected to the exhaust gas turbocharger reduces the dynamics of the exhaust gas turbocharger in the unsupported operating range due to its moment of inertia.
  • a drive system for an exhaust gas turbocharger for an internal combustion engine emerges from the generic EP 0 345 991 B1.
  • the exhaust gas turbocharger has an exhaust gas turbine arranged in the exhaust line and a compressor arranged in the intake tract.
  • the turbine and the compressor are connected to each other via a shaft.
  • a rotating electrical machine is integrated into the charger housing, the rotor of which is arranged coaxially with the shaft.
  • the drive system includes a generator that can be operated by the internal combustion engine via a clutch located between the generator and the internal combustion engine. The electrical energy generated is supplied to the rotating electrical machine, which then works as an electric motor and drives the exhaust gas turbocharger.
  • the compressor is operated in a map area in which it provides the internal combustion engine with the operating points adapted and sufficient amounts of air.
  • the generator is connected to the crankshaft of the internal combustion engine via a clutch, so that an increased torque occurs on the crankshaft of the internal combustion engine. The consequence of this is an increase in consumption while the effective mean pressure of the internal combustion engine remains the same.
  • the invention is based on the problem of coupling an exhaust gas turbocharger to an electrical machine or of specifying a method therefor is characterized by a low energy requirement, which is space-optimized, with which the transient response behavior of the exhaust gas turbocharger is improved and excess energy of the exhaust gas turbocharger can be used.
  • the exhaust gas turbocharger can be driven by a flywheel.
  • the power required to accelerate the exhaust gas turbocharger does not have to be applied by an electrical machine, since the energy required to accelerate the exhaust gas turbocharger is transferred to the exhaust gas turbocharger by the rotational energy of the flywheel with a high power density.
  • the flywheel can be coupled to the exhaust gas turbocharger via a clutch. If necessary, the connection between the flywheel and the exhaust gas turbocharger is established or released via the clutch.
  • the flywheel can be driven by an electrical machine.
  • the electrical machine compensates for the friction losses that occur on the flywheel. If necessary, it can accelerate the flywheel or generate energy. The power required to compensate for the frictional losses or to accelerate the flywheel is low, so that the load on the vehicle electrical system is negligible.
  • the flywheel is on the electric machine or on the exhaust gas turbocharger if possible kept at a minimum speed, which corresponds to a nominal speed, in order to ensure sufficient rotational energy of the flywheel when the exhaust gas turbocharger is accelerating.
  • the flywheel is composed of a rotor of the electrical machine and a rotating element of the clutch for weight and space reasons.
  • the rotating element of the clutch and the rotor of the electrical machine are connected to one another in a rotationally fixed manner in order to increase the effective flywheel mass.
  • the clutch is a hysteresis clutch. This offers the advantage that wear-free operation and good electrical controllability can be achieved.
  • the clutch is arranged between the compressor and the turbine of the exhaust gas turbocharger in order to protect the electrical machine from high temperatures and the compressor from oil ingress.
  • a drive motor of the electric machine does not become active for driving the flywheel mass, but instead absorbs the energy of the exhaust gas turbocharger as a generator and feeds the energy obtained, for example, into a vehicle electrical system, whereby the flywheel drive is maintained via the exhaust gas turbocharger.
  • Exhaust gas turbocharger speed is less than the nominal speed of the flywheel, the drive motor for accelerating the flywheel is only used when the speed of the flywheel falls below its nominal speed in order to ensure sufficient rotational energy of the flywheel at a later time.
  • the flywheel mass is accelerated by the exhaust gas turbocharger when the clutch is closed in operating areas in which the exhaust gas turbocharger speed corresponds to at least the nominal speed of the flywheel so that the drive motor can be switched off for energy-saving measures.
  • the exhaust gas turbocharger is driven by the flywheel in operating ranges in which the exhaust gas turbocharger speeds are lower than the flywheel mass speeds.
  • 1 shows a schematically simplified section through an exhaust gas turbocharger according to the invention
  • 2 is an exploded view of the exhaust gas turbocharger according to the invention
  • Fig. 3 shows a detail of an electrical machine and a coupling and the magnetic flux lines and magnetic poles occurring during operation and with a current flowing through the coil.
  • the internal combustion engine which is preferably used in motor vehicle construction, has an intake tract, not shown, with, for example, inlet valves via which air is fed to a combustion chamber of the internal combustion engine, which is not shown in detail.
  • the air is used to burn fuel, which is either added to the air outside the combustion chamber or inside the combustion chamber.
  • the air-fuel mixture in the combustion chamber is then burned.
  • the combustion of the air-fuel mixture produces exhaust gas, which passes from the combustion chamber into an exhaust tract, not shown, for example, through exhaust valves (not shown).
  • Part of the exhaust gas energy can now be used to increase the air supply to the combustion chamber by installing the exhaust gas turbocharger 1 in the air circuit of the internal combustion engine.
  • a turbine of the exhaust gas turbocharger 1 is accommodated downstream of the exhaust valves in the exhaust tract of the internal combustion engine, and a compressor of the exhaust gas turbocharger 1 is accommodated downstream of the intake valves in the intake tract of the internal combustion engine.
  • a turbine wheel 3, which is part of the turbine, is driven by the exhaust gas of the internal combustion engine and drives a compressor wheel 2 via a shaft 4, which is part of the Compressor is so that 2 air can be sucked in and compressed by the compressor wheel.
  • a clutch 5 which has a further shaft 51, is arranged coaxially to the shaft 4 or to a shaft axis 100.
  • the end of the coupling 5 facing away from the compressor is designed as a circular disk 52 which has an outer diameter D outer .
  • a band 40 enclosing the disc 52 with a radial extent H B for example a hysteresis band, is fastened to the circumference of the disc.
  • the band 40 consists of a magnetically semi-hard material.
  • the disk 52 is adjacent to an electrical machine 6 that is rotationally symmetrical to the shaft axis 100.
  • the electrical machine 6 is connected to a motor vehicle electrical system, not shown.
  • the electrical machine 6 is formed by a drive motor 7, a co-rotating element 14, or pole 14, a yoke 22 and a coil 36.
  • the drive motor 7 is composed of a stator 9 and a rotor 13.
  • the rotor 13 is connected in a rotationally fixed manner to the pole 14, which together with the yoke 22, the coil 36, the band 40 and the disk 52 form the clutch 5 with the shaft 51.
  • the cylindrical stator 9 is arranged coaxially to the shaft axis 100 with a rotation axis 10 which coincides with the shaft axis 100.
  • a cylindrical section is formed as a bearing point 8.
  • the bearings 8 each surround an annular bearing 11 or 12, for example in the form of a Radial ball bearing.
  • the rotationally symmetrical rotor 13 (rotor), which is U-shaped in section and which borders the stator 9, is rotatably supported by its ends on the bearings 11, 12. Ends 101 of the rotor 13 near the axis and ends 102 of the stator 9 near the axis form receptacles for the bearings 11 and 12, respectively.
  • the rotor 13 has an axial width B.
  • a hollow cylindrical pole structure 14, L-shaped according to FIG. 1, has a stepped outer contour 20 and a groove 25 with a height H on its larger section facing the compressor wheel 2.
  • the height H corresponds approximately to the radial extent H B of the strip 40.
  • An inner ring wall 33 of the groove 25 directly adjoins the outside diameter D outside or has the same outside diameter as the disk.
  • An outer ring wall 34 of the groove 25 runs at a distance H parallel to the inner ring wall 33, which in turn runs parallel to the shaft axis 100.
  • the ring walls 33 and 34 have a tooth-like contour 42 with tooth heights H z .
  • the ring walls 33 and 34 extend in the axial direction up to approximately the center of the stator 9.
  • the tooth-like contours 42 shown in the ring walls 33, 34 of the groove 25 in FIG. 3 are designed such that the teeth of one ring wall lie opposite the tooth gaps of the other ring wall.
  • the pole 14, or the pole structure 14, consists of a magnetically soft material.
  • the pole structure 14 encloses the rotor 13 over its entire axial width B and is connected to the rotor 13 in a rotationally fixed manner, for example in a form-fitting manner.
  • the rotor 13 and the pole structure 14 rotate together around the stator 9.
  • the pole structure 14 is enclosed by the immovable, hollow cylindrical yoke 22.
  • the yoke 22 has a stepped inner contour 23 which is adapted to the outer contour 20 of the pole structure 14 and has a shoulder 24, a yoke groove 35 being made in the yoke 22 in the shoulder 24.
  • the yoke groove 35 is provided to receive the coil 36.
  • the coil 36 accommodated in the yoke groove 35 serves to generate a magnetic field.
  • the coil 36 is powered by the motor vehicle electrical system, not shown in detail.
  • the inner contour 23 of the yoke 22 differs precisely from the outer contour 20 of the pole structure 14, or the respective diameters of the contours 20 and 23 are selected such that there is a small air gap 45 between the contours 20 and 23. Furthermore, an axial air gap 30 is provided between the coil 36 and a shoulder region 26 of the pole structure 14 in order to enable a smooth rotation of the pole structure in the yoke 22.
  • the disk 52 bears axially against the rotor 13 and the pole 14 in such a way that the band 40 is introduced into the groove 25 and fills it axially, while maintaining a third air gap 44 to the ring walls 33 and 34.
  • FIG. 2 shows an exploded view of the exhaust gas turbocharger 1 according to the invention in order to further clarify the structure of the exhaust gas turbocharger 1.
  • FIG. 3 shows a radial section of the electrical machine 6 with the coupling 5 and the magnetic flux lines and magnetic poles that occur during operation and when the coil 36 flows through the current.
  • the magnetic flux is over introduced the air gap 45 between the yoke 22 and the pole structure 14.
  • Magnetic poles are formed on the ring walls 33 and 34 of the pole structure 14 such that the pole of the inner ring wall 33 is opposite the pole of the outer ring wall 34.
  • the magnetic flux 50 flowing through each pole divides into two parts and partly crosses the band 40 lying in the groove 25 in the tangential direction.
  • the band 40 consisting of the magnetically semi-hard material is magnetized.
  • the directions of the two partial flows originating from one pole are offset by 180 degrees to one another.
  • the band 40 rotates in the direction of rotation 55 by, for example, a tooth length 18, the point in the band 40 which has just been magnetized is exactly flowed through in the other direction by the magnetic flux.
  • the tape 40 is magnetized in the opposite direction.
  • the work done due to the magnetization corresponds to the area of a hysteresis loop and is called magnetization work.
  • the flywheel mass 57 becomes necessary connected to the exhaust gas turbocharger 1 via the clutch 5.
  • the electrical machine 6 and the clutch 5 are arranged on the compressor side next to the exhaust gas turbocharger 1.
  • the electrical machine 6 and the coupling 5 could be arranged on the shaft 4 between the compressor and the turbine. Due to the high temperatures of the exhaust gas flowing through the turbine, it is preferable to position the electrical machine 6 and the coupling 5 in the vicinity of the compressor.
  • the drive motor 7 In order to generate the rotary movement of the flywheel mass 57 with a speed n cont s of, for example, 100,000 rpm, the drive motor 7 has to produce an output of approximately 100 W, which, in contrast to the prior art, significantly reduces the electrical power requirement for acceleration of the exhaust gas turbocharger 1 is achieved.
  • a further reduction in the energy requirement can be achieved by reducing, for example, the friction losses of the bearings 11 and 12 and the air resistance of the flywheel 57, for example by filling the tooth gaps of the pole structure 14 with non-magnetizable material. By filling the tooth gaps with non-magnetizable material, the noise emission can be kept low.
  • rotor 13 and pole structure 14 as flywheel 57 according to the invention, a lower drive power of drive motor 7 is necessary, as a result of which the space requirement of exhaust gas turbocharger 1 according to the invention is significantly reduced compared to previous designs.
  • the clutch 5 is opened and the exhaust gas turbocharger 1 is not coupled to the electric machine. 6 Because of the low friction losses and the high rotational energy stored in the flywheel 57, the flywheel 57 rotates for a long time without energy being supplied by the drive motor 7 at speeds that are greater than the nominal speed n K onts- as soon as the flywheel 57 falls below the nominal speed n K ⁇ nts , the drive motor 7 drives the flywheel 57. The power to be applied by the drive motor 7 must be sufficient to overcome bearing friction losses and air resistance.
  • the flywheel 57 is coupled to the exhaust gas turbocharger 1 via the then closed clutch 5 and is operated at the corresponding speed of the exhaust gas turbocharger 1 n A ⁇ .
  • the drive motor 7 is switched off in this case.
  • the flywheel 57 is coupled to the exhaust gas turbocharger 1 and is operated at the corresponding speed n ATL of the exhaust gas turbocharger 1.
  • the speed n AL des Exhaust gas turbocharger 1 is greater than the continuous nominal speed n cont s of the flywheel 57, such that energy is obtained via the drive motor 7 and is fed, for example, into the motor vehicle electrical system (not shown).
  • the clutch 5 is closed and the flywheel mass 57 accelerates the exhaust gas turbocharger 1.
  • the nominal speed ⁇ onts of the flywheel mass 57 can drop during the acceleration process and the drive motor 7 drives the flywheel mass 57 so that the nominal speed n cont s the flywheel mass 57 is reached again.
  • the flywheel 57 is decoupled from the exhaust gas turbocharger 1.
  • the flywheel 57 rotates freely at first and is driven by the drive motor 7 after a certain time, as soon as its speed n s is below the nominal speed n K ⁇ nts, such that the flywheel 57 has the nominal speed n K ⁇ r ⁇ ts owns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Die Erfindung betrifft einen Abgasturbolader für eine Brennkraftmaschine, mit einem Verdichter mit Verdichterrad und einer Turbine mit Turbinenrad, mit einer Welle, die das Verdichterrad und das Turbinenrad drehfest miteinander verbindet, mit einer elektrischen Maschine, die über eine Kupplung mit dem Abgasturbolader verbindbar ist. Erfindungsgemäß ist der Abgasturbolader (1) von einer Schwungmasse (57) antreibbar. Die Erfindung eignet sich zur Verbesserung des Ansprechverhaltens des Abgasturboladers und wird überwiegend im Kraftfahrzeugbau eingesetzt.

Description

Abgasturbolader für eine Brennkraftmaschine und Verfahren zum Betrieb eines /Abgasturboladers
Die Erfindung betrifft einen Abgasturbolader für eine Brennkraftmaschine und ein Verfahren zum Betrieb eines Abgasturboladers nach dem Oberbegriff des Anspruchs 1 beziehungsweise 9.
Abgasturbolader werden sowohl bei fremdgezündeten als auch bei selbstzündenden Brennkraftmaschinen zur Erhöhung der Zylinderladung eingesetzt. Die Erhöhung der Zylinderladung führt neben einer Leistungssteigerung zu einer Steigerung des Verbrennungsluftverhältnisses und damit bei selbstzündenden Brennkraftmaschinen zu einer Reduzierung der Rußbildung im unteren und mittleren Last- und Drehzahlbereich und kann, je -nach Verbrennungstemperatur, eine Reduzierung der 'Stickoxidemission zur Folge haben.
Abgasturbolader bestehen in der Regel aus zwei über eine -feste Welle gekoppelte Strömungsmaschinen, einer Turbine, die über den expandierenden Abgasmassenstrom der Brennkraftmaschine beaufschlagt wird und einem Verdichter, der über die feste Welle von der Turbine angetrieben wird und angesaugte Luft komprimiert . Da Strömungsmaschinen ein anderes Betriebsverhalten als Brennkraftmaschinen aufweisen, gilt es den Abgasturbolader und/oder seine Peripherie so zu gestalten, dass sowohl im niedrigen als auch im oberen Last- und Drehzahlbereich für das gewünschte Betriebsverhalten der Brennkraftmaschine vom Abgasturbolader ausreichend Luft zur Verfügung gestellt wird.
Der Abgasturbolader reagiert aufgrund seines Massenträgheitsmomentes bei plötzlicher Steigerung der Last und/oder Drehzahl der Brennkraftmaschine verzögert . Dieses verzögerte Ansprechverhalten ist unter dem geläufigen Namen "Turboloch" bekannt und zeichnet sich dadurch aus, dass der Abgasturbolader der Brennkraftmaschine für den entsprechenden Betriebspunkt zu wenig Luft zur Verfügung stellt . Das schlechte Ansprechverhalten bewirkt im Instationarbetrieb der Brennkraftmaschine neben einer ungenügenden Beschleunigung einen hohen Kraftstoffverbrauch, der mit der Beseitigung des schlechten Ansprechverhaltens reduziert werden kann.
Wird der Abgasturbolader für den Nennleistungspunkt der Brennkraftmaschine ausgelegt, so ist er in der Regel für ein schnelles Ansprechen im unteren und mittleren Last- und Drehzahlbereich zu groß ausgelegt und liefert aufgrund seines Massenträgheitsmomentes unbefriedigende Ergebnisse des Betriebsverhaltens der Brennkraftmaschine hinsichtlich Motor- Drehmoment, Agilität und Verbrauch. Unterschiedliche Ansätze versuchen das Ansprechverhalten des Abgasturboladers im genannten Bereich zu verbessern.
Einer der Ansätze ist dabei die Kopplung des Abgasturboladers mit einer elektrischen Maschine. Die elektrische Maschine ist starr mit dem Abgasturbolader verbunden und beschleunigt diesen bei Bedarf. Die erforderlichen Leistungen liegen für beispielsweise einen Vierzylindermotor bei etwa 1-2 kW. Aktuelle Kraftfahrzeug-Bordnetze stoßen dabei an ihre Leistungsgrenze. Ein großer Teil der eingespeisten Energie dient der Eigenbeschleunigung der elektrischen Maschine. Der mit dem Abgasturbolader verbundene Rotor der elektrischen Maschine reduziert aufgrund seines Trägheitsmomentes die Dynamik des Abgasturboladers im nichtunterstützten Betriebsbereich .
Aus der gattungsbildenden EP 0 345 991 Bl geht ein Antriebssystem für einen Abgasturbolader für eine Brennkraftmaschine hervor. Der Abgasturbolader weist eine im Abgasstrang angeordnete Abgasturbine und einen im Ansaugtrakt angeordneten Verdichter auf. Die Turbine und der Verdichter sind über eine Welle miteinander verbunden. Weiterhin ist eine rotierende elektrische Maschine in das Ladergehäuse integriert, deren Rotor koaxial mit der Welle angeordnet ist. Das Antriebssystem schließt einen Generator ein, der durch die Brennkraftmaschine über eine zwischen Generator und Brennkraftmaschine liegende Kupplung betreibbar ist. Die dabei erzeugte elektrische Energie wird an die rotierende elektrische Maschine geliefert, die dann als Elektromotor arbeitet und den Abgasturbolader antreibt. Infolge des Antriebs des Abgasturboladers und der damit einhergehenden Steigerung der Abgasturboladerdrehzahl wird der Verdichter in einem Kennfeldbereich betrieben, in dem er der Brennkraftmaschine den Betriebspunkten angepasste und ausreichende Luftmengen zur Verfügung stellt. Dabei wird der Generator über eine Kupplung mit der Kurbelwelle der Brennkraftmaschine verbunden, so dass an der Kurbelwelle der Brennkraftmaschine ein erhöhtes Moment auftritt . Die Folge davon ist eine Erhöhung des Verbrauches bei gleichbleibendem effektiven Mitteldruck der Brennkraftmaschine.
Der Erfindung liegt das Problem zugrunde, einen Abgasturbolader mit einer elektrischen Maschine zu koppeln beziehungsweise ein Verfahren dafür anzugeben, der beziehungsweise das sich durch einen geringen Energiebedarf auszeichnet, der bauraumoptimiert ist, mit dem das transiente Ansprechverhalten des Abgasturboladers verbessert wird und überschüssige Energie des Abgasturboladers genutzt werden kann.
Diese Aufgabe wird gelöst durch die Erfindung mit den Merkmalen des Patentanspruchs 1 beziehungsweise des Patentanspruchs 9.
Erfindungsgemäß ist der Abgasturbolader von einer Schwungmasse antreibbar. Der zur Beschleunigung des Abgasturboladers anfallende Leistungsbedarf muss nicht von einer elektrische Maschine aufgebracht werden, da die zur Beschleunigung des Abgasturboladers notwendige Energie von der Rotationsenergie der Schwungmasse mit hoher Leistungsdichte auf den Abgasturbolader übertragen wird.
In einer Ausführung nach Anspruch 2 ist die Schwungmasse mit dem Abgasturbolader über eine Kupplung koppelbar. Bei Bedarf wird die Verbindung zwischen Schwungmasse und Abgasturbolader über die Kupplung hergestellt beziehungsweise gelöst.
In einer Ausführung nach Anspruch 3 ist die Schwungmasse von einer elektrischen Maschine antreibbar. Die elektrische Maschine kompensiert die an der Schwungmasse auftretenden Reibungsverluste. Bei Bedarf kann sie die Schwungmasse beschleunigen oder Energie erzeugen. Der auftretende Leistungsbedarf zur Kompensierung der Reibungsverluste, beziehungsweise zur Beschleunigung der Schwungmasse ist gering, so dass die Belastung des Bordnetzes vernachlässigbar ist .
In einer Ausführung nach Anspruch 4 wird die Schwungmasse über die elektrische Maschine oder über den Abgasturbolader möglichst auf einer Mindestdrehzahl, die einer Nenndrehzahl entspricht, gehalten, um bei Beschleunigung des Abgasturboladers ausreichend Rotationsenergie der Schwungmasse sicher zu stellen.
In einer Ausführung nach Anspruch 5 setzt sich aus Gewichtsund Bauraumgründen die Schwungmasse aus einem Läufer der elektrischen Maschine und einem sich mitdrehenden Element der Kupplung zusammen.
In einer weiteren Ausführung nach Anspruch 6 sind zur Erhöhung der wirksamen Schwungmasse das sich mitdrehende Element der Kupplung und der Läufer der elektrischen Maschine drehfest miteinander verbunden.
In einer weiteren Ausführung nach Anspruch 7 ist die Kupplung eine Hysteresekupplung. Dies bietet den Vorteil, dass ein verschleißfreier Betrieb und eine gute elektrische Ansteuerbarkeit erreichbar ist.
In einer weiteren Ausführung nach Anspruch 8 ist die Kupplung zwischen dem Verdichter und der Turbine des Abgasturboladers angeordnet, um die elektrische Maschine vor hohen Temperaturen und den Verdichter vor Öleintritt zu schützen.
In dem erfindungsgemäßen Verfahren zum Betrieb des Abgasturboladers nach Anspruch 9 wird bei einer Abgasturboladerdrehzahl, die größer ist als eine Nenndrehzahl der Schwungmasse, ein Antriebsmotor der elektrischen Maschine nicht zum Antrieb der Schwungmasse aktiv, sondern nimmt die am Abgasturbolader überschüssige Energie in seiner Wirkungsweise als Generator auf und speist die gewonnene Energie beispielsweise in ein Kraftfahrzeug-Bordnetz, wobei der Antrieb der Schwungmasse über den Abgasturbolader aufrecht erhalten wird.
In einer weiteren Ausführung des erfindungsgemäßen Verfahrens nach Anspruch 10 wird zur Beschleunigung des Abgasturboladers in den Betriebsbereichen, in denen die
Abgasturboladerdrehzahl kleiner ist als die Nenndrehzahl der Schwungmasse, der Antriebsmotor zur Beschleunigung der Schwungmasse nur dann eingesetzt, wenn die Drehzahl der Schwungmasse unter ihre Nenndrehzahl fällt, um zu einem späteren Zeitpunkt ausreichend Rotationsenergie der Schwungmasse sicher zu stellen.
In einer Weiterentwicklung des erfindungsgemäßen Verfahrens nach Anspruch 11 wird in Betriebsbereichen, in denen die Abgasturboladerdrehzahl mindestens der Nenndrehzahl der Schwungmasse entspricht, die Schwungmasse vom Abgasturbolader bei geschlossener Kupplung beschleunigt, damit aus energiesparenden Maßnahmen der Antriebsmotor abgeschaltet werden kann.
In einer weiteren Ausführung des erfindungsgemäßen Verfahrens nach Anspruch 12 wird in Betriebsbereichen, in denen die Abgasturboladerdrehzahlen kleiner sind als die Schwungmassendrehzahlen, der Abgasturbolader von der Schwungmasse angetrieben.
Weitere Vorteile und zweckmäßige Ausführungen der Erfindung sind den Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Dabei zeigen:
Fig. 1 einen schematisch vereinfachten Schnitt durch einen erfindungsgemäßen Abgasturbolader, Fig. 2 eine Explosionsdarstellung des erfindungsgemäßen Abgasturboladers ,
Fig. 3 ein Ausschnitt einer elektrischen Maschine und einer Kupplung und die im Betrieb und bei stromdurchflossener Spule auftretenden Magnetflusslinien und Magnetpole.
In Fig. 1 ist ein Abgasturbolader 1 einer nicht näher dargestellten Brennkraftmaschine, beispielsweise ein Ottooder ein Dieselmotor, dargestellt. Die Brennkraftmaschine, sie wird bevorzugt im Kraftfahrzeugbau eingesetzt, besitzt einen nicht näher dargestellten Ansaugtrakt mit beispielsweise Einlassventilen über die Luft einem nicht näher dargestellten Brennraum der Brennkraftmaschine zugeführt wird. Die Luft dient zum Verbrennen von Kraftstoff, der entweder außerhalb des Brennraumes oder innerhalb des Brennraumes der Luft zugemischt wird. Das sich im Brennraum befindende Luft-Kraftstoffgemisch wird anschließend verbrannt. Durch die Verbrennung des Luft-Kraftstoffgemisches entsteht Abgas, welches aus dem Brennraum über beispielsweise nicht näher dargestellte Auslassventile in einen nicht näher dargestellten Abgastrakt gelangt . Ein Teil der Abgasenergie kann nun durch einen Einbau des Abgasturboladers 1 in den Luftkreislauf der Brennkraftmaschine zur Steigerung der Luftzufuhr in den Brennraum genutzt werden. Eine Turbine des Abgasturboladers 1 ist stromab nach den Auslassventilen in den Abgastrakt der Brennkraftmaschine untergebracht und ein Verdichter des Abgasturboladers 1 ist stromab vor den Einlassventilen in den Ansaugtrakt der Brennkraftmaschine untergebracht. Ein Turbinenrad 3, das Teil der Turbine ist, wird von dem Abgas der Brennkraftmaschine angetrieben und treibt über eine Welle 4 ein Verdichterrad 2 an, das Teil des Verdichters ist, so dass vom Verdichterrad 2 Luft angesaugt und verdichtet werden kann.
An einer der Turbine abgewandten Seite des Verdichterrades 2 des Abgasturboladers 1 ist koaxial zur Welle 4, beziehungsweise zu einer Wellenachse 100, eine Kupplung 5 angeordnet, die eine weitere Welle 51 aufweist. Das verdichterabgewandte Ende der Kupplung 5 ist als kreisrunde Scheibe 52 ausgeführt, die einen Außendurchmesser DAußen aufweist. Am Scheibenumfang ist ein die Scheibe 52 umschließendes Band 40 mit einer radialen Ausdehnung HB, beispielsweise ein Hystereseband, befestigt. Das Band 40 besteht aus einem magnetisch halbharten Material.
Die Scheibe 52 grenzt an eine rotationssymmetrisch zur Wellenachse 100 ausgebildete, elektrische Maschine 6 an. Die elektrische Maschine 6 ist an ein nicht näher dargestelltes Kraftfahrzeug-Bordnetz angeschlossen.
Die elektrische Maschine 6 wird gebildet von einem Antriebsmotor 7, einem mitdrehenden Element 14, beziehungsweise Pol 14, einem Joch 22 und einer Spule 36. Der Antriebsmotor 7 setzt sich aus einem Stator 9 und einem Läufer 13 zusammen. Der Läufer 13 ist drehfest mit dem Pol 14 verbunden, der mit dem Joch 22, der Spule 36, dem Band 40 und der Scheibe 52 mit der Welle 51 die Kupplung 5 bilden.
In der Mitte der elektrischen Maschine 6 ist koaxial zur Wellenachse 100 der zylinderförmige Stator 9 mit einer Rotationsachse 10 angeordnet, die mit der Wellenachse 100 übereinstimmt. An Enden des Stators 9 ist je ein zylinderförmiger Abschnitt als Lagerstelle 8 ausgebildet. Die Lagerstellen 8 umgeben je ein ringförmiges Lager 11 beziehungsweise 12, beispielsweise in Form eines Radialkugellagers. Mittels dieser Lager 11 und 12 ist der den Stator 9 umgrenzender rotationssymmetrischer, im Schnitt U- förmiger Läufer 13 (Rotor) mit seinen Enden auf den Lagern 11, 12 drehfähig gelagert. Achsnahe Enden 101 des Läufers 13 und achsnahe Enden 102 des Stators 9 bilden Aufnahmen für die Lager 11 beziehungsweise 12. Der Läufer 13 weist eine axiale Breite B auf .
Eine hohlzylindrische, im Schnitt nach Fig. 1 L-fδrmige Polstruktur 14 weist eine abgestufte Außenkontur 20 auf und an ihrem durchmessergrößeren, dem Verdichterrad 2 zugewandten Abschnitt eine Nut 25 mit einer Höhe H. Die Höhe H entspricht etwa der radialen Ausdehnung HB des Bandes 40. Eine Ringinnenwand 33 der Nut 25 schließt sich unmittelbar an den Außendurchmesser DAußen an beziehungsweise hat denselben Außendurchmesser wie die Scheibe. Eine Ringaußenwand 34 der Nut 25 verläuft mit einem Abstand H parallel zur Ringinnenwand 33, die ihrerseits parallel zur Wellenachse 100 verläuft. Die Ringwände 33 und 34 besitzen eine zahnartige Kontur 42 mit Zahnhöhen Hz. Die Ringwände 33 und 34 erstrecken sich in axialer Richtung bis etwa in die Mitte des Stators 9.
Die in den Ringwänden 33, 34 der Nut 25 in Fig. 3 dargestellten, zahnartigen Konturen 42 sind derart ausgeführt, dass die Zähne der einen Ringwand gegenüber den Zahnlücken der anderen Ringwand liegen. Der Pol 14, beziehungsweise die Polstruktur 14, besteht aus einem magnetisch weichen Werkstoff.
Die Polstruktur 14 umschließt den Läufer 13 über seine gesamte axiale Breite B und ist mit dem Läufer 13 drehfest, zum Beispiel formschlüssig, verbunden. Der Läufer 13 und die Polstruktur 14 drehen gemeinsam um den Stator 9. Die Polstruktur 14 wird von dem unbeweglichen, hohlzylindrisch ausgebildeten Joch 22 umschlossen. Das Joch 22 weist eine der Außenkontur 20 der PolStruktur 14 angepasste, abgestufte Innenkontur 23 mit einem Absatz 24 auf, wobei im Absatz 24 eine Jochnut 35 im Joch 22 eingebracht ist. Die Jochnut 35 ist vorgesehen, um die Spule 36 aufzunehmen. Die in der Jochnut 35 untergebrachte Spule 36 dient zur Erzeugung eines Magnetfeldes. Die Spule 36 wird von dem nidht näher dargestellten Kraftfahrzeug-Bordnetz mit Strom versorgt .
Die Innenkontur 23 des Jochs 22 unterscheidet sich gerade so von der Außenkontur 20 der Polstruktur 14, beziehungsweise die jeweiligen Durchmesser der Konturen 20 und 23 sind so gewählt, dass zwischen den Konturen 20 und 23 ein kleiner Luftspalt 45 vorliegt. Des Weiteren ist ein axialer Luftspalt 30 zwischen der Spule 36 und einem Absatzbereich 26 der Polstruktur 14 vorgesehen, um eine reibungsfreie Drehung der Polstruktur im Joch 22 zu ermöglichen.
Die Scheibe 52 liegt axial an dem Läufer 13 und dem Pol 14 an, derart, dass das Band 40 in die Nut 25 eingebracht ist und diese axial ausfüllt, unter Einhaltung eines dritten Luftspaltes 44 zu den Ringwänden 33 und 34.
Die Fig. 2 zeigt zur weiteren Verdeutlichung des Aufbaus des Abgasturboladers 1 eine Explosionsdarstellung des erfindungsgemäßen Abgasturboladers 1.
In Fig. 3 ist ein radialer Ausschnitt der elektrischen Maschine 6 mit der Kupplung 5 und die im Betrieb und bei stromdurchflossener Spule 36 auftretenden Magnetflusslinien und Magnetpole dargestellt. Der magnetische Fluss wird über den zwischen dem Joch 22 und der Polstruktur 14 liegenden Luftspalt 45 eingebracht. Es bilden sich an den Ringwänden 33 und 34 der Polstruktur 14 magnetische Pole derart, dass der Pol der Ringinnenwand 33 dem Pol der Ringaußenwand 34 entgegengesetzt ist.
Aufgrund der in den Ringwänden 33 und 34 ausgebildeten Zahnstruktur teilt sich der durch jeden Pol fließende magnetische Fluss 50 in zwei Teile und durchquert das in der Nut 25 liegende Band 40 zum Teil in tangentialer Richtung. Dabei wird das aus dem magnetisch halbharten Material bestehende Band 40 aufmagnetisiert . Im Idealfall sind die Richtungen der beiden von einem Pol ausgehenden Teilflüsse um 180 Grad zueinander versetzt.
Dreht sich das Band 40 in Drehrichtung 55 um beispielsweise eine Zahnlänge 18 weiter, wird die gerade aufmagnetisierte Stelle im Band 40 genau in die andere Richtung vom magnetischen Fluss durchströmt. Das Band 40 wird in die entgegengesetzte Richtung magnetisiert . Die aufgrund der Ummagnetisierung verrichtete Arbeit entspricht der Fläche einer Hystereseschleife und wird Ummagnetisierungsarbeit genannt .
Durch die Ummagnetisierungsarbeit wird in dem Band 40 ein Drehmoment erzeugt und es entsteht eine elektromagnetische Verbindung zwischen Polstruktur 14 und Band 40, wodurch schließlich über die Kupplung 5 und die Scheibe 52 mit der Welle 51 die Verbindung des Abgasturboladers 1 mit der elektrischen Maschine 6 hergestellt ist. Die Kupplung 5 ist damit geschlossen.
Ist die Spule 36 nicht Stromdurchflossen, wird kein magnetischer Fluss in der Polstruktur 14 und dem Band 40 erzeugt und es entsteht keine Verbindung zwischen elektrischer Maschine 6 und dem Abgasturbolader 1. Die Kupplung 5 ist damit geöffnet .
Aufgrund der vom Antriebsmotor 7 im Läufer 13 und der mit dem Läufer 13 verbundenen Polstruktur 14 erzeugten permanenten Drehbewegung, stellen die beiden Bauteile, der Läufer 13 und die Polstruktur 14, eine Schwungmasse 57 dar. Zur Drehzahlerhδhung des Abgasturboladers 1 wird die Schwungmasse 57 bei Bedarf über die Kupplung 5 mit dem Abgasturbolader 1 verbunden .
In der beschriebenen Ausführung sind die elektrische Maschine 6 und die Kupplung 5 verdichterseitig neben dem Abgasturbolader 1 angeordnet. Ebenso könnte die elektrische Maschine 6 und die Kupplung 5 auf der Welle 4 zwischen dem Verdichter und der Turbine angeordnet sein. Aufgrund der hohen Temperaturen des durch die Turbine strömenden Abgases ist eine Positionierung der elektrischen Maschine 6 und der Kupplung 5 in der Nähe des Verdichters zu bevorzugen.
Zur Erzeugung der Drehbewegung der Schwungmasse 57 mit einer Drehzahl nKonts von beispielsweise 100000 1/min, ist von dem Antriebsmotor 7 eine Leistung von etwa 100 W aufzubringen, wodurch, im Gegensatz zum Stand der Technik, eine wesentliche Reduzierung des elektrischen Leistungsbedarfs zum Beschleunigen des Abgasturboladers 1 erzielt wird. Eine weitere Reduzierung des Energiebedarfs kann durch die Abnahme von beispielsweise der Reibverluste der Lager 11 und 12 und des Luftwiderstandes der Schwungmasse 57, beispielsweise durch Auffüllen der Zahnlücken der Polstruktur 14 mit nichtmagnetisierbarem Material, erreicht werden. Durch das Auffüllen der Zahnlücken mit nichtmagnetisierbarem Material kann die Geräuschemission niedrig gehalten werden. Durch die erfindungsgemäßen Nutzung von Läufer 13 und Polstruktur 14 als Schwungmasse 57 ist eine geringere Antriebsleistung des Antriebsmotors 7 notwendig, wodurch der Bauraumbedarf des erfindungsgemäßen Abgasturboladers 1 gegenüber bisherigen Ausführungen wesentlich reduziert ist.
Im Betrieb der Brennkraftmaschine im Leerlaufbereich Lιeer oder einem niedrigen Teillastbereich LTeiin oder im Schubbetrieb LSChub bei kleinen Drehzahlen nkiein ist die Kupplung 5 geöffnet und der Abgasturbolader 1 ist nicht an die elektrische Maschine 6 gekoppelt. Wegen der geringen Reibungsverluste und der hohen in der Schwungmasse 57 gespeicherten Rotationsenergie rotiert die Schwungmasse 57 längere Zeit ohne Energieversorgung durch den Antriebsmotor 7 mit Drehzahlen, die größer sind als die Nenndrehzahl nKonts- Sobald die Nenndrehzahl nnts von der Schwungmasse 57 unterschritten wird, treibt der Antriebsmotor 7 die Schwungmasse 57 an. Die von dem Antriebsmotor 7 aufzubringende Leistung muss gerade zur Überwindung von Lagerreibverlusten und Luftwiderstand ausreichend sein.
Im Betrieb der Brennkraftmaschine bei hoher Teillast LTeiih und niedriger Drehzahl nkιein ist die Schwungmasse 57 über die dann geschlossene Kupplung 5 an den Abgasturbolader 1 gekoppelt und wird mit der entsprechenden Drehzahl des Abgasturboladers 1 nAτ betrieben. Der Antriebsmotor 7 ist in diesem Fall ausgeschaltet.
Befindet sich die Brennkraftmaschine in einem Betrieb bei hoher Teillast LTeiih mit großen Drehzahlen ngrθß oder bei Volllast Lvoii; ist die Schwungmasse 57 an den Abgasturbolader 1 gekoppelt und wird mit der entsprechenden Drehzahl nATL des Abgasturboladers 1 betrieben. Die Drehzahl nA L des Abgasturboladers 1 ist größer als die kontinuierliche Nenndrehzahl nKonts der Schwungmasse 57, derart, dass Energie über den Antriebsmotor 7 gewonnen wird und beispielsweise in das nicht näher dargestellte Kraftfahrzeug-Bordnetz eingespeist wird.
Befindet sich die Brennkraftmaschine in einem Lastanforderungszustand, wird die Kupplung 5 geschlossen und die Schwungmasse 57 beschleunigt den Abgasturbolader 1. Dabei kann während des Beschleunigungsvorganges die Nenndrehzahl κonts der Schwungmasse 57 absinken und der Antriebsmotor 7 treibt die Schwungmasse 57 an, damit die Nenndrehzahl nKonts der Schwungmasse 57 wieder erreicht wird. Bei Erreichen der geforderten Abgasturboladerdrehzahl nATTj, wird die Schwungmasse 57 vom Abgasturbolader 1 entkoppelt.
Im Schubbetrieb der Brennkraftmaschine bei hohen Drehzahlen rotiert die Schwungmasse 57 zuerst frei mit und wird nach einer bestimmten Zeit, sobald sich ihre Drehzahl ns unterhalb der Nenndrehzahl nnts befindet, von dem Antriebsmotor 7 angetrieben, derart, dass die Schwungmasse 57 die Nenndrehzahl nrιts besitzt.

Claims

Patentansprüche
1. Abgasturbolader für eine Brennkraftmaschine, mit einem Verdichter mit Verdichterrad und einer Turbine mit Turbinenrad, mit einer Welle, die das Verdichterrad und das Turbinenrad drehfest miteinander verbindet, mit einer elektrischen Maschine, die über eine Kupplung mit dem Abgasturbolader verbindbar ist, dadurch gekennzeichnet, dass der Abgasturbolader (1) von einer Schwungmasse (57) antreibbar ist .•
2. Abgasturbolader nach Anspruch 1, dadurch gekennzeichnet, dass die Schwungmasse (57) mit dem Abgasturbolader (1) über die Kupplung (5) koppelbar ist.
3. Abgasturbolader nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die Schwungmasse (57) von der elektrischen Maschine (6) antreibbar ist.
4. Abgasturbolader nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die Schwungmasse (57) über den Abgasturbolader (1) oder über die elektrische Maschine (6) möglichst auf einer Mindestdrehzahl, die einer Nenndrehzahl (nkonts) entspricht, gehalten ist.
5. Abgasturbolader nach Anspruch 3 oder 4 , dadurch gekennzeichnet, dass die Schwungmasse (57) sich teilweise aus einem Läufer (13) der elektrischen Maschine (6) und einem sich mitdrehenden Element (14) der Kupplung (5) zusammensetzt.
6. Abgasturbolader nach Anspruch 5, dadurch gekennzeichnet, dass das sich mitdrehende Element (14) der Kupplung (5) und der Läufer (13) der elektrischen Maschine (6) drehfest miteinander verbunden sind.
7. Abgasturbolader nach Anspruch 2 bis 6, dadurch gekennzeichnet, dass die Kupplung (5) eine Hysteresekupplung ist.
8. Abgasturbolader nach Anspruch 2 bis 7, dadurch gekennzeichnet, dass die Kupplung (5) zwischen Verdichter (2) und Turbine (3) des Abgasturboladers (1) angeordnet ist.
9. Verfahren zum Betrieb eines Abgasturboladers für eine Brennkraftmaschine, insbesondere für einen Abgasturbolader nach einem der Ansprüche 2 bis 8, mit einem Verdichter mit Verdichterrad und einer Turbine mit Turbinenrad, mit einer Welle, die' das Verdichterrad und das Turbinenrad drehfest miteinander verbindet, mit einer elektrischen Maschine, die über eine Kupplung mit dem Abgasturbolader verbunden werden kann, dadurch gekennzeichnet, dass bei einer Abgasturboladerdrehzahl nATL, die größer ist als eine Nenndrehzahl nkonts der Schwungmasse, ein Antriebsmotor (7) der elektrischen Maschine (6) zum Antrieb der Schwungmasse (57) nicht aktiv ist, sondern am Abgasturbolader (1) vorhandene überschüssige Energie in der Wirkungsweise des Antriebsmotors (7) als Generator aufnimmt und beispielsweise in ein Kraftfahrzeug-Bordnetz einspeist, wobei der Antrieb der Schwungmasse (57) über den Abgasturbolader (1) aufrecht erhalten wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass bei einer Abgasturboladerdrehzahl nATL, die kleiner ist als die Nenndrehzahl nkonts der Antriebsmotor (7) nur dann zur Beschleunigung der Schwungmasse (57) eingesetzt wird, sobald eine Schwungmassendrehzahl ns unter die Nenndrehzahl nkonts fällt.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass bei Abgasturboladerdrehzahlen nATL, die mindestens etwa der Nenndrehzahl nkonts entsprechen, die Schwungmasse (57) vom Abgasturbolader (1) bei geschlossener Kupplung (5) beschleunigt wird.
12. Verfahren nach Anspruch 9 bis 11, dadurch gekennzeichnet, dass bei Abgasturboladerdrehzahlen nATL, die kleiner sind als die Schwungmassendrehzahl ns, der Abgasturbolader (1) von der Schwungmasse (57) angetrieben wird.
PCT/EP2005/005716 2004-06-02 2005-05-27 Abgasturbolader für eine brennkraftmaschine und verfahren zum betrieb eines abgasturboladers WO2005119027A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004026796A DE102004026796A1 (de) 2004-06-02 2004-06-02 Abgasturbolader für eine Brennkraftmaschine und Verfahren zum Betrieb eines Abgasturboladers
DE102004026796.0 2004-06-02

Publications (1)

Publication Number Publication Date
WO2005119027A1 true WO2005119027A1 (de) 2005-12-15

Family

ID=35454853

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2005/003097 WO2005119882A1 (de) 2004-06-02 2005-03-23 Abgasturbolader für eine brennkraftmaschine und verfahren zum betrieb eines abgasturboladers
PCT/EP2005/005716 WO2005119027A1 (de) 2004-06-02 2005-05-27 Abgasturbolader für eine brennkraftmaschine und verfahren zum betrieb eines abgasturboladers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003097 WO2005119882A1 (de) 2004-06-02 2005-03-23 Abgasturbolader für eine brennkraftmaschine und verfahren zum betrieb eines abgasturboladers

Country Status (4)

Country Link
US (1) US20070101714A1 (de)
JP (1) JP2008501882A (de)
DE (2) DE102004026796A1 (de)
WO (2) WO2005119882A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961936A1 (de) * 2007-02-23 2008-08-27 Mitsubishi Heavy Industries, Ltd. Hybrider Turbolader
WO2008141670A1 (de) * 2007-05-24 2008-11-27 Lindenmaier Ag Turbolader ii
WO2011076641A1 (de) * 2009-12-23 2011-06-30 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Abgasturbolader für eine verbrennungskraftmaschine mit einer frischgasversorgungsvorrichtung und eine entsprechende anordnung
EP2690268A3 (de) * 2012-07-24 2014-06-11 Caterpillar Inc. Schwungradanordnung für einen Turbolader
US9228487B2 (en) 2010-06-09 2016-01-05 D. Brown Technik Ag Supercharger for internal combustion engines
GB2579563A (en) * 2018-12-03 2020-07-01 Perkins Engines Co Ltd Multi-purpose drive for internal combustion engine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0723996D0 (en) * 2007-12-07 2008-01-16 Ricardo Uk Ltd A flywheel
WO2009148918A2 (en) * 2008-06-02 2009-12-10 Borgwarner Inc. Inertially-assisted electric supercharger
GB0905345D0 (en) 2009-03-27 2009-05-13 Ricardo Uk Ltd A flywheel
GB0905343D0 (en) 2009-03-27 2009-05-13 Ricardo Uk Ltd A flywheel
GB0905344D0 (en) 2009-03-27 2009-05-13 Ricardo Uk Ltd A flywheel
EP2491606A1 (de) * 2009-10-20 2012-08-29 Ricardo Uk Limited Energiesteuerung
DE102010051359A1 (de) * 2010-11-13 2012-05-16 Daimler Ag Einsatzelement für eine Turbine eines Abgasturboladers, Abgasturbolader sowie Turbine für einen Abgasturbolader
GB201019473D0 (en) 2010-11-17 2010-12-29 Ricardo Uk Ltd An improved coupler
US20120137682A1 (en) * 2010-12-06 2012-06-07 Wartsila Finland Oy Turbocharging arrangement and method for operating an internal combustion engine
IT1404051B1 (it) * 2011-02-08 2013-11-08 Avio Spa Gruppo per la generazione di potenza a bordo di un velivolo.
GB201106768D0 (en) 2011-04-20 2011-06-01 Ricardo Uk Ltd An energy storage system
KR101995887B1 (ko) * 2014-02-28 2019-07-04 한온시스템 주식회사 슈퍼 차져
RU208752U1 (ru) * 2021-01-20 2022-01-11 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный университет" Министерства обороны Российской Федерации Регулируемый турбокомпрессор двигателя образца военной автомобильной техники
US11668230B2 (en) * 2021-01-28 2023-06-06 Caterpillar Inc. Annular disk for turbocharger speed control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2912950A1 (de) * 1979-03-31 1980-10-02 Ulf Prof Dr Ing Essers Verbrennungsmotor mit abgasturbolader
EP0304384A1 (de) * 1987-08-19 1989-02-22 Pierre Le Coq Turbokompressoren zur Aufladung der Verbrennungsmotoren
EP0345991A1 (de) * 1988-06-10 1989-12-13 Isuzu Motors Limited Antriebssystem für Turbolader mit drehender elektrischer Maschine
EP0420666A1 (de) * 1989-09-28 1991-04-03 Isuzu Motors Limited Turbolader mit elektrischer Rotationsmaschine
US6305169B1 (en) * 1999-02-22 2001-10-23 Ralph P. Mallof Motor assisted turbocharger
GB2395231A (en) * 2002-11-16 2004-05-19 Mechadyne Plc Turbocharger with an attached electric motor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2091270A (en) * 1934-09-07 1937-08-31 Howard D Colman Clutch mechanism
US2846598A (en) * 1956-01-13 1958-08-05 Calidyne Company Inc Vibration generator
US2939973A (en) * 1956-10-10 1960-06-07 Bliss E W Co Torque transmitting mechanism
US2956658A (en) * 1958-02-19 1960-10-18 Eaton Mfg Co Magnetic couplings
US3253561A (en) * 1964-01-24 1966-05-31 Warner Electric Brake & Clutch Power transmission system with controlled stop positioning
US3253563A (en) * 1964-02-21 1966-05-31 Warner Electric Brake & Clutch Sewing machine power transmission system
US3404767A (en) * 1965-04-26 1968-10-08 Warner Electric Brake & Clutch Speed and positioning control apparatus for power driven machines
JPS5320515A (en) * 1976-08-09 1978-02-24 Hitachi Ltd Rotor of permanent magnet synchronous motor
JPS5759025A (en) * 1980-09-29 1982-04-09 Honda Motor Co Ltd Turbo-charger device
JPS57143127A (en) * 1981-02-27 1982-09-04 Isuzu Motors Ltd Turbocharger
JPS585426A (ja) * 1981-06-30 1983-01-12 Isuzu Motors Ltd 排気タ−ボ過給装置
US6194803B1 (en) * 1998-02-27 2001-02-27 Warner Electric Technology, Inc. Sound damping armature assembly for an electromagnetic coupling
US6177746B1 (en) * 1999-10-21 2001-01-23 Christopher N. Tupper Low inductance electrical machine
US6175178B1 (en) * 1999-10-21 2001-01-16 Christopher N. Tupper Low inductance electrical machine for flywheel energy storage
JP2004190853A (ja) * 2002-11-28 2004-07-08 Usui Kokusai Sangyo Kaisha Ltd マグネット式クラッチ装置
GB0302235D0 (en) * 2003-01-31 2003-03-05 Holset Engineering Co Electric motor assisted turbocharger
JP2008187758A (ja) * 2007-01-26 2008-08-14 Vsd:Kk フライホイール発電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2912950A1 (de) * 1979-03-31 1980-10-02 Ulf Prof Dr Ing Essers Verbrennungsmotor mit abgasturbolader
EP0304384A1 (de) * 1987-08-19 1989-02-22 Pierre Le Coq Turbokompressoren zur Aufladung der Verbrennungsmotoren
EP0345991A1 (de) * 1988-06-10 1989-12-13 Isuzu Motors Limited Antriebssystem für Turbolader mit drehender elektrischer Maschine
EP0345991B1 (de) 1988-06-10 1993-02-03 Isuzu Motors Limited Antriebssystem für Turbolader mit drehender elektrischer Maschine
EP0420666A1 (de) * 1989-09-28 1991-04-03 Isuzu Motors Limited Turbolader mit elektrischer Rotationsmaschine
US6305169B1 (en) * 1999-02-22 2001-10-23 Ralph P. Mallof Motor assisted turbocharger
GB2395231A (en) * 2002-11-16 2004-05-19 Mechadyne Plc Turbocharger with an attached electric motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961936A1 (de) * 2007-02-23 2008-08-27 Mitsubishi Heavy Industries, Ltd. Hybrider Turbolader
US7692326B2 (en) 2007-02-23 2010-04-06 Mitsubishi Heavy Industries, Ltd. Hybrid turbocharger
WO2008141670A1 (de) * 2007-05-24 2008-11-27 Lindenmaier Ag Turbolader ii
WO2011076641A1 (de) * 2009-12-23 2011-06-30 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Abgasturbolader für eine verbrennungskraftmaschine mit einer frischgasversorgungsvorrichtung und eine entsprechende anordnung
US9238997B2 (en) 2009-12-23 2016-01-19 Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh Exhaust gas turbocharger for an internal combustion engine having a fresh gas supply device and a corresponding arrangement
US9228487B2 (en) 2010-06-09 2016-01-05 D. Brown Technik Ag Supercharger for internal combustion engines
EP2690268A3 (de) * 2012-07-24 2014-06-11 Caterpillar Inc. Schwungradanordnung für einen Turbolader
US9038383B2 (en) 2012-07-24 2015-05-26 Caterpillar Inc. Flywheel assembly for a turbocharger
GB2579563A (en) * 2018-12-03 2020-07-01 Perkins Engines Co Ltd Multi-purpose drive for internal combustion engine
GB2579563B (en) * 2018-12-03 2021-02-03 Perkins Engines Co Ltd Multi-purpose drive for internal combustion engine
US11655754B2 (en) 2018-12-03 2023-05-23 Perkins Engines Comapny Limited Multi-purpose drive for internal combustion engine

Also Published As

Publication number Publication date
WO2005119882A1 (de) 2005-12-15
DE102004026796A1 (de) 2005-12-29
US20070101714A1 (en) 2007-05-10
DE112005001255A5 (de) 2007-07-05
JP2008501882A (ja) 2008-01-24

Similar Documents

Publication Publication Date Title
WO2005119027A1 (de) Abgasturbolader für eine brennkraftmaschine und verfahren zum betrieb eines abgasturboladers
EP2158386B1 (de) Turbolader
DE60122348T2 (de) Rotor-und lageranordnung für einen elektrisch unterstützten turbolader
EP3224467B1 (de) Aufladeeinrichtung für einen verbrennungsmotor und betriebsverfahren für die aufladeeinrichtung
DE112007001954B4 (de) Elektrischer Auflader
EP1182346B1 (de) Abgasturbolader für eine Brennkraftmaschine
EP1095210B1 (de) Ladungssteuervorrichtung für eine sowie verfahren zum steuern des betriebs einer hubkolbenbrennkraftmaschine
DE102008064521A1 (de) Brennkraftmaschine mit Abgasturbolader
WO2006007888A1 (de) Verdichter in einem abgasturbolader für eine brennkraftmaschine
DE102016201464A1 (de) Aufgeladene Brennkraftmaschine mit Abgasturboaufladung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
WO2005124121A1 (de) Abgasturbolader für eine brennkraftmaschine und verfahren zum betrieb eines abgasturboladers
DE102014224474A1 (de) Aufladeeinrichtung für einen Verbrennungsmotor und Betriebsverfahren für die Aufladeeinrichtung
DE102015203171A1 (de) Abgasturboaufgeladene Brennkraftmaschine umfassend einen Radialverdichter mit im Diffusor angeordneter Leiteinrichtung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE112013004991T5 (de) Verfahren zum Verbinden von Lagergehäusesegmenten eines Turboladers, der einen Elektromotor umfasst
DE102015208990A1 (de) Fremdgezündete Brennkraftmaschine mit elektrisch antreibbarem Abgasturbolader und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP1282765B1 (de) Turboverdichter für einen kolben-verbrennungsmotor
DE112014004868T5 (de) Axialkompressor mit magnetischem Schritt- oder Servomotor
EP2058485A1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE202015101916U1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasturbolader
DE202015103035U1 (de) Brennkraftmaschine mit elektrisch antreibbarem Abgasturbolader
EP3404230B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE102012013595A1 (de) Brennkraftmaschine und Verfahren zum Betrieb einer Brennkraftmaschine
DE202015101927U1 (de) Aufgeladene Brennkraftmaschine mit Kompressor und Elektromaschine
DE202015101588U1 (de) Aufgeladene Brennkraftmaschine mit Abgasturbolader und Zusatzverdichter
DE102015205590A1 (de) Aufgeladene Brennkraftmaschine mit mechanischem Lader und Verfahren zum Betreiben einer derartigen Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase