Anmelderin: Carl Freudenberg KG, 69439 Weinheim, DE
Radialwellendichtung
Beschreibung Technisches Gebiet
Die Erfindung betrifft eine Radialwellendichtung für eine durch eine Gehäusewandung geführte Welle, insbesondere bei Kühlmittelpumpen. ! Bei Kühlmittelpumpen werden Dichtungen verwendet, die verhindern, dass Kühlmittel entlang der das Laufrad antreibenden Welle nach außen tritt. Da Kühlmittelpumpen häufig über einen längeren Zeitraum zum Einsatz kommen, werden an solche Dichtungen hohe Anforderungen gestellt. Stand der Technik
Durch die DE 101 41 138 C2 ist beispielsweise ein Radialwellendichtsystem für eine Kühlmittelpumpe bekannt geworden, bei der zwei Dichtlippen zur Anwendung kommen, die entgegen der Druckrichtung schräg gestellt sind und die von Membrankörpern gehalten werden. Zusätzlich sind Stützkörper eingesetzt, welche die Dichtlippen abstützen. Die Dichtlippen selbst gleiten auf einer Hülse, die aus austenitischem Edelstahl besteht und mit Presssitz auf der Welle aufgezogen ist. Dieses Dichtsystem ist in seinem konstruktiven Aufbau sehr aufwendig und ist schwierig zu montieren.
Darstellung der Erfindung
Der Erfindung liegt Aufgabe zugrunde, eine Radialwellendichtung zu schaffen, die eine gute Abdichtung ergibt, einfach hergestellt und montiert werden kann.
Die Lösung der gestellten Aufgabe erfolgt bei einer Radialwellendichtung der eingangs genannten Art erfindungsgemäß dadurch, dass die Dichtung aus einem Versteifungskörper und daran anvulkanisiertem Dichtelement besteht und das Dichtelement zwei zur Welle und zum abzudichtenden Innenraum gerichtete hintereinander liegende Dichtlippen hat, von denen die Überdeckung der innen liegenden primären Dichtlippe größer ist als die Überdeckung der außen liegenden sekundären Dichtlippe hat. Für übliche Radialwellen- dichtungen bei Wellen mit Durchmessern bis zu 100 mm wird für die primäre Dichtlippe eine Überdeckung von 0,2 bis 1 ,0 mm und für die sekundäre Dichtlippe eine Überdeckung von 0,1 bis 0,8 mm als günstig vorgegeben.
Bei Wasserpumpen wurden bisher Gleitringdichtungen verwendet, die konstruktionsbedingt eine geringe Leckage haben, wobei dieses als Nachteil angesehen wird. Bei diesen Gleitringdichtungen stützen sich Gleitring und Gegenring drehbeweglich und unter axialer Vorspannung aufeinander ab und werden durch das abzudichtende Medium geschmiert. In vielen Fällen wird als Kühlmittel eine silikathaltige Flüssigkeit verwendet, die zwischen Gleitring und Gegenring verdampft, wobei die festen Bestandteile ausgefällt werden. Von Nachteil bei Gleitringdichtungen isi ferner der Preis, der große Bauraum in axialer und in radialer Richtung sowie die erschwerte Montage, weil Gleitringdichtungen aus einer Vielzahl von Einzelteilen bestehen.
Die neue Dichtung ergibt eine gute Abdichtung und zwar auch bei höheren Drücken, wobei der Überdruck bis zu 5 bar reichen kann. Auch Unterdrücke werden abgedichtet, die beispielsweise dann entstehen können, wenn Kühlmittel zur Befüllung des Kühlsystems eingesaugt wird.
Bei der erfindungsgemäßen Dichtung wird das Dichtelement aus einem Elastomer gebildet, das am Versteifungskörper anvulkanisiert ist. Einzelne Dichtungsteile liegen nicht vor, Versteifungskörper und Dichtelement bilden vielmehr eine Einheit.
Bevorzugt wird die innen liegende primäre Dichtlippe mit einer größeren Dicke ausgeführt, als die außen liegende sekundäre Dichtlippe. Bei gebräuchlichen Dichtungen wird die Dicke der primären Dichtlippe mit 0,6 bis 1 ,8 mm festgelegt. Die Dicke der sekundären Dichtlippe wird entsprechend angepasst und liegt zwischen 0,4 und 1 ,7 mm.
Auch wird der nach innen liegende Winkel α an den Dichtkanten der Dichtlippen größer gewählt als der nach außen gerichtete Winkel ß. Günstige Winkelabmessungen sind für die innenliegenden Winkel α 30° bis 60° und für die außenliegenden Winkel 20° bis 40°.
Der Dichtlippen-Innendurchmesser wird mit Bezug zum Wellen- Außendurchmesser gewählt uns ist geringfügig größer als der Wellen- Außendurchmesser. Dadurch entsteht eine Dichtlippenüberdeckung, die in Abhängigkeit vom abzudichtenden Medium geringfügig variiert. Bei dem vorliegenden Dichtelement aus zwei Dichtlippen ist darauf zu achten, dass die innen liegende Dichtlippe eine größere Überdeckung als die außen liegende Dichtlippe hat.
Zur Unterstützung der Abdichtung kann der Raum zwischen den beiden Dichtlippen mit Schmierstoff gefüllt sein.
Um die Abnutzung an der Welle so gering wie möglich zu halten, ist die Welle im Dichtungsbereich von einer Laufhülse umgeben, auf der die Dichtlippen anliegen. Dabei ist es günstig, wenn die Laufhülse an ihrem zum abzudichtenden Innenraum gerichteten Innenrand einen radial ausgerichteten Bund hat. Dieser Bund stellt eine Art Schleuderscheibe dar, die Verunreinigungen von der Dichtung weghalten. Bei Bedarf kann die Schleuderscheibe an ihrem Rand mit Drallelementen versehen sein, um die Schleuderwirkung zu unterstützen.
An ihrem zur Umgebung hin gerichteten Innenrand wird die Laufhülse mit einer Bördelung versehen.
Die Laufhülse selbst wird aus einem harten Metall hergestellt, um Verschleißerscheinungen entgegen zu wirken.
Kurzbeschreibung der Zeichnungen
Anhand der in der Zeichnung dargestellten Ausführungsbeispiele wird die Erfindung nachstehend näher erläutert.
Es zeigt Fig. 1 : die Radialwellendichtung vergrößert im Schnitt; Fig. 2 die Radialwellendichtung im Schnitt aufgesetzt auf eine Welle mit Laufhülse; Fig. 3: die Radialwellendichtung mit Welle eingesetzt in eine Gehäuse; Fig. 4a und
Fig. 4b eine Laufhülse im Schnitt und in der Draufsicht mit Drallelementen; Fig. 5a und Fig. 5b eine andere Ausführungsform der Laufhülse mit Drallelementen; Fig. 6: die Dichtung im Schnitt mit an der Primärdichtlippe angebrachten Drallelementen und Fig. 7: eine Radialwellendichtung mit an der Primärdichtlippe angebrachten Auflage auf PTFE.
Ausführung der Erfindung
In der Fig. 1 ist vergrößert eine Radialwellendichtung 1 gezeigt, die aus dem Versteifungskörper 2 und dem daran anvulkanisierten Dichtelement 3 besteht. Das Dichtelement 3 hat zwei zum abzudichtenden Innenraum 4 gerichtete Dichtlippen 5 und 6, von denen die innen liegende primäre Dichtlippe 5 eine größere Überdeckung U hat als die außen liegende sekundäre Dichtlippe 6. Die Überdeckung U I der Primärdichtlippe 5 ergibt sich aus DW - DPL : 2 und die Überdeckung U A der Sekundärdichtlippe 6 ergibt sich aus (DW - DSL) : 2, wobei DW der Wellendurchmesser und DPL und DSL die jeweiligen Innendurchmesser der Dichtlippen nach ihrer Herstellung sind. In der Fig. ist die Welle 7 gestrichelt eingezeichnet. Die innen liegende primäre Dichtlippe 5 hat eine größere Dicke T als die sekundäre Dichtlippe 6 deren Dicke t ist. Um eine einfache Befestigung der Dichtung 1 in einer Öffnung eines Gehäuses zu ermöglichen, ist der Versteifungskörper 2 mit dem Anschlagflansch 8 versehen. Darüber hinaus hat das Dichtelement 3 eine Ringfläche 9, mit der es statisch dichtend am Rand der Gehäuseöffnung anliegt. Der innenrand 10 des Versteifungskörpers 2 liegt etwa mittig zwischen den beiden Dichtlippen 5 und 6.
Die Fig. 2 zeigt die in Fig. 1 beschriebene Dichtung 1 , aufgesetzt auf die Welle 7, wobei die Welle 7 im Dichtungsbereich von der Laufhülse 12 umgeben ist. Im Raum 13 zwischen den Dichtlippen 5 und 6 ist ein Schmierstoff eingefüllt. Die Neigungswinkel α und ß der Dichtlippen 5 und 6 zur Oberfläche 14 der Welle 6 werden in diesem Fall so gewählt, dass ein förderneutrales Anliegen der Dichtlippen 5 und 6 an der Welle 7 entsteht, so dass der Schmierstoff zwischen den Lippen 5 und 6 verbleibt. Die förderneutrale Ausbildung der Dichtlippen erfolgt dadurch, dass die Winkel αP der Primärlippe sowie αs der Sekundärdichtlippe und die Winkel ßP der Primärlippe und ßS der Sekundärlippe gleich ausgebildet sind. Bei einer Nichtbefüllung des Raumes 13 zwischen den Dichtlippen 5 und 6 mit dem Schmiermittel ist es dagegen günstig, wenn, wie in der Fig. dargestellt, die Winkel α größer sind als die Winkel ß.
Die Laufhülse 12 ist auf ihrem zum abzudichtenden Innenraum 4 gerichteten Innrand mit einem radial ausgerichteten Bund 15 versehen. Auf der anderen Seite an dem zur Umgebung 16 hin gerichteten Innenrand ist eine Bördelung 17 vorhanden. Es versteht sich, dass bei der Bemessung des Wellendurchmessers DW für die Überdeckung U das Ausmaß der Laufhülse 12 mit einbezogen wird.
Die Fig. 3 zeigt die Dichtung 1 , eingesetzt in eine Bohrung 18 eines Gehäuses 19. Die Dichtung 1 liegt mit dem Anschlagflansch 8 an der abgesetzten Fläche 20 der Bohrung 18 an. Dadurch ist die Dichtung 1 in vorgegebener Lage gehalten. Die Laufhülse 12 sitzt fest auf der Welle 7 auf, die ihrerseits über ein Kugellager 21 in der Gehäuseöffnung 18 gelagert ist. Zwischen den Lippen 5 und 6 ist der Raum 13 zur Aufnahme von Schmierstoffen vorhanden.
In den Fig. 4a, 4b, 5a und 5b sind im Schnitt und in der Draufsicht zwei verschiedene Laufhülsen 12 gezeigt, die an ihren Bünden 15 jeweils mit den Drallelementen 23 bzw. 24 versehen sind. Die Schnittlinien sind jeweils mit a angegeben.
In der Fig. 6 ist eine Ausführungsform der Dichtung gezeigt, bei der die primäre Dichtlippe 5 in einer an sich bekannten Weise mit Drallelementen 25 versehen ist. Durch diese Drallelemente 25 kann eine Leckage in den abzudichtenden Raum zurückgefördert werden.
Die Fig. 7 zeigt eine Ausführungsform, bei der die primäre Dichtlippe 5 mit einer Auflage 30 aus einem Polytetrafluorethylen (PTFE) versehen ist. Eine solche Ausführungsform empfiehlt sich, wenn hohe Drücke im Innenraum 4 zu erwarten sind.
Bei einer bevorzugten Anwendung der Erfindung bei gebräuchlichen Motorabdeckungen mit Wellendurchmessern von 12 mm wird der Durchmesser DPL der Primärdichtlippe 5 mit 11 ,25 mm und der Durchmesser der DSL der Sekundärdichtlippe 6 mit 11,55 mm vorgegeben. Hieraus resultieren die Überdeckungen für die Primärdichtlippe 5 von U1 = 0,375 und für die Sekundärdichtlippe 6 von UA = 0,225. Die Dicke T der Primärdichtlippe 5 wird mit 1 ,05 mm und die Dicke t der Sekundärdichtlippe 6 mit 0,6 mm gewählt. Der innere Winkel p der Primärdichtlippe 5 beträgt 34° und der innere Winkel αs der Sekundärdichtlippe 27,5°. Der äußere Winkel ßp der Primärdichtlippe 5 wird mit 46° und der äußere Winkel ßs der Sekundärdichtlippe 6 mit 37,5° vorgegeben. Eine solche Radialwellendichtung ergibt sehr gute Ergebnisse bezüglich Abdichtung und Verschleiß.