WO2005115957A1 - 高純度テレフタル酸の製造方法 - Google Patents

高純度テレフタル酸の製造方法 Download PDF

Info

Publication number
WO2005115957A1
WO2005115957A1 PCT/JP2005/009462 JP2005009462W WO2005115957A1 WO 2005115957 A1 WO2005115957 A1 WO 2005115957A1 JP 2005009462 W JP2005009462 W JP 2005009462W WO 2005115957 A1 WO2005115957 A1 WO 2005115957A1
Authority
WO
WIPO (PCT)
Prior art keywords
terephthalic acid
washing
producing high
purity
solid
Prior art date
Application number
PCT/JP2005/009462
Other languages
English (en)
French (fr)
Inventor
Motoki Numata
Takayuki Isogai
Tomohiko Ogata
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to CN2005800174106A priority Critical patent/CN1960961B/zh
Publication of WO2005115957A1 publication Critical patent/WO2005115957A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation

Definitions

  • the present invention relates to a method for producing high-purity terephthalic acid.
  • a crude terephthalic acid crystal obtained by oxidizing para-xylene is converted to an intermediate mainly composed of 4 carboxybenzaldehyde, which is by-produced during oxidizing. It is necessary to remove as much of the substance as possible (it is an active ingredient that can be converted to terephthalic acid, but it is an impurity when mixed with terephthalic acid in products). Therefore, a purification step of reducing the 4-force ruboxybenzaldehyde to paratoluic acid, which is more water-soluble than terephthalic acid, and then crystallizing terephthalic acid to obtain high-purity terephthalic acid crystals is performed.
  • the procedure has the following process power, as shown in FIG. 2, for example.
  • crude terephthalic acid a is slurried in water b in a slurrying tank 1, and the starting slurry c is heated and pressurized by a pump la and a heater lb to be dissolved in water. And a crude terephthalic acid aqueous solution c ′.
  • the crude terephthalic acid aqueous solution c ′ is introduced into the hydrogenation reactor 2 and brought into contact with hydrogen d in the presence of a catalyst to reduce 4 carboxybenzaldehyde to paratoluic acid.
  • a crystallization step of introducing the reduction reaction solution e containing paratoluic acid and terephthalic acid into the crystallization tanks 3 arranged in series and performing crystallization by depressurizing cooling is performed.
  • terephthalic acid has a lower water solubility than paratoluic acid, so that by adjusting the crystallization conditions, high-purity terephthalic acid crystals can be formed.
  • the slurry f containing the thus-purified terephthalic acid high-purity crystals is introduced into the solid-liquid separator 4 by adjusting the pressure with a pump 3a in some cases, and the reduction reaction mother liquor g is separated.
  • the solid-liquid separation for recovering the high purity terephthalic acid cake h is performed.
  • This high-purity terephthalic acid cake h is subjected to a washing operation with a washing liquid i in a washing device 5 as a washing step, and a solid-liquid separation operation in a solid-liquid separator 6 to obtain a washing cake k. Further, as a drying step, the obtained washed cake k is dried by the drying device 8 to obtain high-purity terephthalic acid crystals m.
  • terephthalic acid and paratoluene Since active ingredients such as silic acid are still contained, recover as much of these active ingredients as possible. Further, the washing drainage j discharged in the above washing operation is reused as a solvent in the dissolving step.
  • the final crystallization tank in the above crystallization step is generally operated at an operating temperature of 120 to 180 ° C in order to prevent paratoluic acid from co-crystallizing with terephthalic acid. Therefore, the slurry f obtained by crystallization is conventionally subjected to solid-liquid separation at high temperature and high pressure using a solid bowl type centrifuge to separate the mother liquor g for reduction reaction, and the resulting high-purity terephthalic acid is obtained. The cake h was subjected to suspension washing under pressure, and after the pressure was released, solid-liquid separation was performed again at normal pressure, and the washing drainage j was discharged.
  • Patent Documents 1 and 2 disclose a method for producing terephthalic acid in which the liquid separation and washing steps are performed integrally and the purification step is simplified. In this case, the discharged washing liquid j is in a high temperature and high pressure state.
  • a part of the solid to be recovered as the high-purity terephthalic acid cake h accompanies the cleaning drainage j due to leakage from the cleaning screen and the like. If the washing effluent j accompanying the above solids is reused as a solvent in the slurrying tank 1 as it is, the solids to be treated in the purification process system increases, but the slurry concentration in the system must be kept constant. Therefore, each device will be enlarged. Furthermore, when the solid-liquid separation and the washing operation are performed in an integrated apparatus at a high temperature and a high pressure, the amount of terephthalic acid dissolved in the washing liquid increases, which also reduces the solid content in the system. This increases the size of the device.
  • Patent document 1 W092Z18454
  • Patent Document 2 WO93Z24440
  • an object of the present invention is to provide a method for producing high-purity terephthalic acid that can reuse cleaning wastewater with a compact-sized apparatus when producing high-purity terephthalic acid.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the above-mentioned problems can be solved by previously removing solid components accompanying washing wastewater.
  • the inventor has found that the product can be reused without affecting the quality of the product by recycling to a process before the separation process, and the present invention has been completed. That is, the gist of the present invention resides in the following (1) to (10).
  • the above-mentioned washing step (f) A collecting step of collecting solids contained in the washing wastewater discharged from the capillar and sending the obtained solids to the above-mentioned crystallization step (d) or the above-mentioned separation step (e) ( h),
  • a method for producing high-purity terephthalic acid having:
  • washing step (f) The solid content contained in the washing effluent discharged from the cap is 1-10% by weight of the terephthalic acid crystals in the separating step (e). Certain of the above (1) to (8)
  • the crystallization step (d) also has the power of a multi-stage crystallization tank, and the solid content recovered in the collection step (h) is converted into the final crystallization of the multi-stage crystallization tank.
  • the method for producing high-purity terephthalic acid according to any one of (1) to (8), which is sent to a tank.
  • the present invention it is possible to provide a method for producing high-purity terephthalic acid that can reuse washing wastewater with a compact-sized apparatus when producing high-purity terephthalic acid.
  • FIG. 1 is a flow chart showing an example of a method for producing high-purity terephthalic acid which is useful in the present invention.
  • FIG. 2 is a flowchart showing an example of a conventional method for producing high-purity terephthalic acid.
  • the method for producing high-purity terephthalic acid comprises the steps of: producing a crude terephthalic acid by oxidizing noraxylene to produce crude terephthalic acid containing 4-carboxybenzaldehyde; a) dissolving the crude terephthalic acid obtained in a) in an aqueous solvent under high temperature and pressure to obtain a crude terephthalic acid aqueous solution;
  • the above-mentioned washing step (f) A collecting step of collecting solids contained in the washing wastewater discharged from the capillar and sending the obtained solids to the above-mentioned crystallization step (d) or the above-mentioned separation step (e) ( h),
  • active ingredient refers to terephthalic acid and other compounds that can be converted to terephthalic acid by acidification, etc. And both are included.
  • solid content indicates a precipitated component among the active components.
  • crude terephthalic acid is produced by subjecting para-xylene to liquid-phase oxidation with molecular oxygen in an acetic acid solvent in the presence of a catalyst.
  • a catalyst which is conventionally known to be usable in this reaction is used.
  • Specific examples include cobalt compounds, manganese compounds, iron compounds, heavy metal compounds such as chromium compounds, and bromine compounds. These are present in the reaction system in a dissolved state. Of these, a combination of a cobalt compound or a manganese compound and a bromine compound is preferred. In this case, these compounds usually contain, based on the solvent, Konolt Nuclear Power SlO to 5000 ppm, manganese atoms to 10 to 5000 ppm, and bromine atoms to 1 ppm.
  • the molecular oxygen a mixed gas of an inert gas and oxygen is usually used, and for example, air or oxygen-enriched air is used.
  • the molar ratio of molecular oxygen to paraxylene supplied to the reactor is usually 3 to 20 times, preferably 2 to 4 times.
  • the ratio of para-xylene to acetic acid supplied to the reactor is usually 1 to 50% by weight.
  • the water concentration in the reaction system is usually 5 to 20% by weight, preferably 5 to 15% by weight.
  • the temperature of the oxidation reaction is usually from 160 to 260 ° C, preferably from 170 to 210, and the pressure is usually from 0.5 to higher as long as the reaction system can maintain a liquid phase at the reaction temperature or higher. 5 MPa, preferably 1-2 MPa, and the residence time is usually 10-200 minutes.
  • terephthalic acid generated in the oxidation reaction step usually precipitates as crystals to form a slurry.
  • terephthalic acid may be dissolved.
  • a crystallization step of cooling the reaction solution or the like is provided to precipitate terephthalic acid to form a slurry.
  • the slurry is subjected to solid-liquid separation to obtain crude terephthalic acid crystals.
  • the terephthalic acid slurry obtained in the oxidation reaction step is in a pressurized state
  • the terephthalic acid slurry may be subjected to solid-liquid separation as it is, or may be subjected to depressurized cooling or the like, followed by solid-liquid separation.
  • solid-liquid separation if it is possible to separate the crystal and the mother liquor, filtration, centrifugation and the like can be mentioned. Washing and drying are performed as necessary to obtain crude terephthalic acid crystals.
  • the "crude terephthalic acid” in the present invention means terephthalic acid containing 1000 to 1 OOOOppm of 4 carboxybenzaldehyde.
  • crude terephthalic acid A (crude terephthalic acid containing 4-carboxybenzaldehyde obtained by oxidizing para-xylene) is sent to a slurrying tank 11, and the high-temperature high-temperature Dissolve in water B under pressure environment.
  • the crude terephthalic acid A is obtained by oxidizing noraxylene in an aliphatic carboxylic acid solvent such as acetic acid, and the oxidation of one of the alkyl groups is completely advanced as a by-product.
  • 4 Contains intermediates such as carboxybenzaldehyde. In order to produce the above high-purity terephthalic acid, it is necessary to remove these impurities from crude terephthalic acid A as much as possible.
  • the terephthalic acid has low solubility in water
  • the terephthalic acid is dissolved in water by slurrying with water B in the slurrying tank 11, and the starting slurry C is dissolved in water by a pump 11a and a heater lib.
  • It needs to be high temperature and high pressure.
  • the temperature under the conditions of high temperature and high pressure needs to be not less than 200 ° C depending on the slurry concentration and not more than the temperature that the apparatus can withstand, and preferably not less than 230 ° C and not more than 320 ° C.
  • the pressure under the high-temperature and high-pressure conditions needs to be a pressure that can maintain the liquid phase in the above-mentioned temperature range, and is preferably 2.8 MPa or more and 11.3 MPa or less.
  • the concentration of the slurry obtained in the dissolving step (b) is usually 20 to 40% by weight, and preferably 25 to 35% by weight. If the slurry concentration is too high, clogging in the apparatus will occur, and if the slurry concentration is too low, the amount of mother liquor will increase, and the equipment corresponding to the production volume will increase in size. From the viewpoint of preventing clogging, it is preferable that the slurry concentration is kept constant.
  • the reduction step (c) the crude terephthalic acid aqueous solution C obtained in the dissolution step (b) is used.
  • the condition of the catalyst and the conditions in the hydrogenation reactor 12 must be such that the above-mentioned 4-carboxybenzaldehyde is reduced and the above-mentioned terephthalic acid is not reduced! This is because the 4-carboxybenzaldehyde contained in the crude terephthalic acid aqueous solution C ′ is reduced to paratoluic acid, which is more water-soluble than the above terephthalic acid. This reduction should be performed at the highest possible rate.
  • This hydrogenation is also well known, and as the hydrogenation catalyst, a metal catalyst of group 8 to 10 (according to the revised IUPAC inorganic chemical nomenclature (1998)) such as ruthenium, rhodium, palladium, platinum and osmium is used. Usually, it is used as a fixed bed by supporting it on a carrier such as activated carbon. Of these, palladium supported on activated carbon is preferred.
  • the hydrogenation temperature is usually 260-320. C, preferably 270-300. C, hydrogen partial pressure is usually 0.5 ⁇ 20kg / cm 2 G.
  • the reduction reaction solution E obtained in the reduction step (c) is introduced into the crystallization tank 13, and the temperature and pressure are set so that the paratoluic acid remains dissolved. And the above terephthalic acid is crystallized into slurry F.
  • a plurality of crystallization tanks 13 are provided in series, preferably 3 to 6 stages, and the pressure is reduced stepwise and cooled (decompression evaporative cooling) to crystallize the above terephthalic acid. desirable.
  • the force provided with the two crystallization tanks 13 may be three or more.
  • the temperature of the final crystallization tank should be controlled to a temperature condition in which paratoluic acid does not co-crystallize with terephthalic acid.
  • the temperature be 120 ° C or higher and 200 ° C or lower. It is more preferable that the temperature be 130 ° C or higher and 180 ° C or lower.
  • the pressure at this time is desirably 0.220 MPa or more and 1.56 MPa or less, and more desirably 0.27 MPa or more and 1.00 MPa or less.
  • the slurry F is introduced into a solid-liquid separator at a pressure higher than the pressure of the slurry obtained in the crystallization step (d), and the reduction reaction mother liquor G is separated. Then, a high-purity terephthalic acid cake containing the high-purity terephthalic acid crystals described above is obtained, and further, a washing step (f) of washing the high-purity terephthalic acid cake under pressure is performed.
  • a solid-liquid separation and washing device 17 capable of simultaneously performing the separation step (e) and the washing step (f).
  • the separation step (e) and the washing step are performed only by the solid-liquid separation and washing apparatus 17 described above.
  • the work for performing (f) is as follows.
  • the slurry F and the washing liquid I are introduced into the solid-liquid separation and washing device 17.
  • As the washing liquid I water having a temperature equal to or higher than the operating temperature of the solid-liquid separation and washing apparatus 17 is usually used.
  • the washing liquid I water having a temperature equal to or higher than the operating temperature of the solid-liquid separation and washing apparatus 17 is usually used.
  • the slurry F is subjected to solid-liquid separation, it is washed with the washing liquid I in the same apparatus to separate and take out the washed high-purity terephthalic acid cake K, and the reduction reaction mother liquor G and mainly the components of the washing liquid I Drain the clean mouth and mouth.
  • the operating temperature of the solid-liquid separation and washing device 17 is the same as that of the final crystallization tank in the crystallization step (d), and it is preferable that the operating temperature be 120 ° C or more and 200 ° C or less. It is more desirable that the temperature be 130 ° C or higher and 180 ° C or lower.
  • the pressure must be higher than the pressure of the final crystallization tank in the crystallization step (d). Specifically, it is desirable that the pressure be higher by 0 to 1 MPa than the pressure of the final crystallization tank in the crystallization step (d).
  • the separation step (e) may be hindered.
  • the equipment must be increased to withstand the pressure.
  • the solid-liquid separation and washing apparatus 17 that can carry out solid-liquid separation and washing as described above include, for example, a screen bowl type centrifuge, a rotary vacuum filter, a horizontal belt filter, etc., and are particularly preferable. Is a screen bowl type centrifuge.
  • the high-purity terephthalic acid cake K obtained by drying the high-purity terephthalic acid cake K in the drying device 18 as a drying step (g) to remove the remaining adhering liquid is obtained.
  • the drying device 18 include a steam tube dryer and a fluid phase dryer. Further, by depressurizing the high-purity terephthalic acid cake K at high temperature and high pressure, at least a part of the solvent component adhering to the cake may be evaporated.
  • the drying device 18 is, for example, a rotary drier or a fluidized bed drier, and is operated at a drying outlet operation temperature of 70 ° C to 180 ° C using a heat source such as steam in the presence of aeration gas.
  • the above-mentioned reduction reaction mother liquor G also contains the above-mentioned active ingredients such as the above-mentioned terephthalic acid and the above-mentioned paratoluic acid, and it is necessary to recover as much of these as possible.
  • the active ingredient contained in the reduction reaction mother liquor G is precipitated by being introduced into one or a plurality of pressure-reducing cooling tanks to form a slurry. After being divided into secondary crystals, the secondary crystals are introduced into an oxidation step of oxidizing the dialkyl aromatic compound to generate the crude aromatic carboxylic acid, and directly or indirectly treating the secondary mother liquor.
  • the water B is used instead of the water B in the slurrying tank 11 or used as the cleaning liquid in the above-mentioned cleaning step (f), the following method can be used.
  • the above-mentioned pressure relief cooling tank is a tank in which the pressure of the liquid to be introduced is lower than that of the liquid to be introduced, and the boiling point of the main component of the liquid at the pressure in the tank is equal to or lower than the temperature of the liquid before introduction. It means something that is When liquid is introduced into this pressure relief cooling tank, part of the liquid evaporates The remainder of the liquid is cooled to the boiling point under the changed pressure. At this time, if the liquid is a solution, the solute that exceeds the solubility after cooling is crystallized.
  • a washing mouth (the “washing waste liquid” in the present invention refers to a liquid discharged after washing a terephthalic acid cake obtained by solid-liquid separation with a washing liquid). Is included.
  • the undissolved solid components are mixed into the washing mouth. It will be easier.
  • the amount of this solid content is desirably 1% by weight or more and 10% by weight or less of the terephthalic acid crystals in the slurry F supplied to the solid-liquid separation and washing device 17 3% by weight and 8% by weight % Is more desirable.
  • the operation of the solid-liquid separation and washing device 17 may not be stable.
  • it exceeds 10% by weight it is necessary to increase the size of the solid-liquid separation and washing device 17 for obtaining a predetermined amount of the high-purity terephthalic acid crystals M.
  • the above-mentioned active ingredient is collected as much as possible as the above-mentioned solid content.
  • the washing mouthpiece is at a high temperature (usually exceeding 100 ° C.)
  • the cleaning mouthpiece is at a high temperature (usually exceeding 100 ° C.)
  • the cleaning mouthpiece is at a high temperature (usually exceeding 100 ° C.)
  • the cleaning mouthpiece is at a high temperature (usually exceeding 100 ° C.)
  • the washing mouthpiece is at a high temperature (usually exceeding 100 ° C.)
  • it must be higher than the freezing point of the cleaning mouth.
  • it is 60 ° C or higher and 100 ° C or lower. If the cooling temperature is too high, terephthalic acid dissolved in the washing wastewater cannot be sufficiently recovered.
  • the cooler 19 for performing the above-described cooling may be performed using a depressurized cooling tank, or the above-described cooling may be performed by heat exchange. From the viewpoint of equipment simplicity, it is preferable to use a pressure relief cooling tank. In order to cool it to less than 100 ° C, it is necessary to use an ejector or the like and operate under reduced pressure.
  • the recovered solids O thus recovered are introduced into the crystallization step (d) (for example, the crystallization tank 13) or the separation step (e) (for example, the solid-liquid separation and washing apparatus 17) (It may be introduced in both the precipitation step (d) and the separation step (e)).
  • the above-mentioned crystallization tank 13 has a plurality of crystallization tank powers in the crystallization step (d)
  • the crystallization tank 13 and the solid-liquid separation and washing device 17 are under the temperature and pressure conditions at which the paratoluic acid is dissolved and the terephthalic acid is crystallized. With the above terephthalic acid precipitated, the above-mentioned paratoluic acid can be dissolved and discharged together with the reduction reaction mother liquor G or the washing mouth. Thereby, most of the terephthalic acid contained in the solid content can be made into high-purity terephthalic acid crystals M.
  • An acetic acid solution containing para-xylene and a catalyst an acetic acid solution of cobalt acetate and manganese acetate and hydrogen bromide
  • a separated mother liquor recycled from a subsequent solid-liquid separation step and air are continuously supplied to the stirring tank.
  • an oxidizing reaction was performed at an operating temperature of 190 ° C. and an operating pressure of 1.23 MPa (absolute pressure) while adjusting the liquid level so that the residence time was 1 hour.
  • the distillate steam was finally cooled down to 40 ° C by a multi-stage condenser, and the operation was carried out with the oxygen concentration in the exhaust gas adjusted to 2.5 vol%.
  • the condensate obtained from each condenser was integrated and refluxed to the oxidation reactor, and a part of the condensate was withdrawn so that the concentration of water in the mother liquor of the slurry withdrawn was 10% by weight.
  • the slurry concentration of the slurry from which the reactor power was also extracted was 35% by weight, and the concentration of cobalt Z manganese Z bromine in the reaction mother liquor was 300Z300Z1000ppm by weight.
  • the slurry from which the power of the Siridani reactor was also withdrawn was continuously supplied to a stirring tank together with air, and at an operating temperature of 181 ° C, an operating pressure of 1.15 MPa (absolute pressure), and a residence time of 15 minutes.
  • the low-temperature re-oxidation reaction was performed while adjusting the liquid level so as to be as follows.
  • the distillate steam was finally cooled to 40 ° C by a multi-stage condenser, and the operation was performed with the oxygen concentration in the exhaust gas adjusted to 6 vol%.
  • the condensed liquid obtained from each condenser was integrated and refluxed to the low-temperature re-oxidation reactor.
  • the slurry from which the power of the low-temperature refining reactor was extracted was crystallized to 90 ° C, and the slurry obtained by the crystallization was supplied to a rotary vacuum filter to perform solid-liquid separation and washing. I got it.
  • the operating pressure was atmospheric pressure.
  • the separated crude terephthalic acid cake was dried with a steam rotary dryer to obtain crude terephthalic acid crystals.
  • the crude terephthalic acid was provided to the process for producing high-purity phthalic acid shown in Fig. 1.
  • a starting slurry C containing 30% by weight of crude terephthalic acid was obtained in the step shown in FIG. 1 above.
  • this is sent to the hydrogenation reactor 12 in the reduction step (c) as a crude terephthalic acid aqueous solution C ′ having a high temperature and a high pressure of 8.54 MPa at 290 ° C. by a pump 11a and a heater lib.
  • the hydrogenation reactor 12 the above crude terephthalic acid aqueous solution C was subjected to a reduction treatment with hydrogen D at 290 ° C. and 8.54 MPa in the presence of a palladium catalyst.
  • the crystallization tank 13 in which five crystallization tanks are connected in series is gradually released under reduced pressure to evaporate to a final pressure of 0.63 MPa.
  • the temperature was cooled to 161 ° C to crystallize terephthalic acid.
  • the slurry F obtained by the crystallization was separated into a terephthalic acid cake and a reduction mother liquor G in a separation step (e) using a screen bowl centrifuge as a solid-liquid separation and washing device 17.
  • the terephthalic acid cake separated in the washing step (f) was subjected to a washing treatment using water as a washing liquid I, and a high-purity terephthalic acid cake K was recovered.
  • the operating conditions of the solid-liquid separation and washing apparatus 17 were a pressure of 0.73 MPa, a temperature of 161 ° C, and a supply temperature of the washing liquid I, water, of 161 ° C.
  • the amount of the washing liquid used was 0.8 parts by weight based on 1 part by weight of the terephthalic acid cake which had been subjected to solid-liquid separation.
  • the washing mouth which is discharged from the washing section, contains, as a leak, an amount equivalent to 5% by weight of the solid content in the slurry F supplied to the solid-liquid separation and washing device 17. Also, 0.3% by weight of terephthalic acid was dissolved in the washing mouth. Therefore, as a recovery step (h), the washing mouth was released to atmospheric pressure by a cooler 19 and cooled to 100 ° C to precipitate dissolved terephthalic acid, and then a thickener (sedimentation separator) 20 was removed. The terephthalic acid crystals contained in the cleaning mouthpiece were recovered as recovered solids O.
  • the recovered solid O composed of high-purity terephthalic acid crystals is returned to the final crystallization tank in the crystallization step (d), and the recovered effluent P after collecting the solid is dissolved as a solvent in the dissolving step. It was sent to the slurrying tank 11 in the step (b). The amount of recovered solids O sent in this way is Was 5% by weight based on the amount of crude terephthalic acid supplied to the reactor.
  • the amount of terephthalic acid supplied to the slurrying tank 11 is reduced by 5% by weight by previously collecting the solid content contained in the washing mouth and returning it to the slurrying tank 11. I was able to. As a result, it was possible to suppress an increase in the size of plant equipment in maintaining a predetermined slurry concentration in the manufacturing process.
  • the present invention it is possible to provide a method for producing high-purity terephthalic acid that can reuse cleaning wastewater with a compact apparatus when producing high-purity terephthalic acid.
  • the industrial value of the present invention is significant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明により、高純度テレフタル酸を製造するにあたり、コンパクトなサイズの装置で洗浄排液を再利用することができる高純度テレフタル酸の製造方法を提供することができる。  本発明は、粗テレフタル酸生成工程(a)、粗テレフタル酸を水溶媒に溶解させる溶解工程(b)、還元工程(c)、晶析工程(d)、分離工程(e)、洗浄工程(f)、乾燥工程(g)、を有する高純度テレフタル酸の製造方法において、上記洗浄工程(f)から排出された洗浄排液に含まれる固形分を回収して、得られた固形分を上記晶析工程(d)又は上記分離工程(e)に送る回収工程(h)、上記回収工程(h)で固形分を回収した洗浄排液を、上記溶解工程(b)の溶媒として使用する再使用工程(i)、を有する高純度テレフタル酸の製造方法に係わる。

Description

高純度テレフタル酸の製造方法
技術分野
[0001] 本発明は高純度テレフタル酸の製造方法に関する。
背景技術
[0002] 高純度テレフタル酸の結晶を得るには、パラキシレンを酸ィ匕することにより得られた 粗テレフタル酸結晶から、酸ィ匕の際に副生成する 4 カルボキシベンズアルデヒドを 主成分とする中間体 (テレフタル酸に変換可能な有効成分ではあるが、製品テレフタ ル酸に混入すると不純物である。)を出来る限り取り除く必要がある。そこでこの 4—力 ルボキシベンズアルデヒドを、テレフタル酸よりも水溶性の高 、パラトルィル酸に還元 した上で、テレフタル酸を晶析させて高純度テレフタル酸結晶を得る精製工程を行う 。その手順は、例えば図 2に示す、以下のような工程力もなる。
[0003] まず溶解工程として、スラリー化槽 1にお 、て、粗テレフタル酸 aを水 bでスラリー化 し、この開始スラリー cをポンプ la及びヒーター lbにより高温高圧として、水に溶解さ せて、粗テレフタル酸水溶液 c 'とする。次に還元工程として、この粗テレフタル酸水 溶液 c 'を、水添反応器 2に導入し、触媒存在下で水素 dと接触させることによって、 4 カルボキシベンズアルデヒドをパラトルィル酸に還元する。こうしてパラトルィル酸と テレフタル酸が含有された還元反応液 eを、直列に複数配置した晶析槽 3に導入して 放圧冷却により晶析させる晶析工程を行う。ここで、テレフタル酸はパラトルィル酸よ り水溶性が低いので、晶析条件を調整することで、テレフタル酸の高純度の結晶を晶 祈させることができる。その次に分離工程として、こうして析出したテレフタル酸の高 純度結晶を含んだスラリー fを、場合によりポンプ 3aで圧力を調整して固液分離機 4 に導入し、還元反応母液 gを分離して、高純度テレフタル酸ケーキ hを回収する固液 分離を行う。この高純度テレフタル酸ケーキ hに対して、洗浄工程として洗浄装置 5で 洗浄液 iにより洗浄操作を行い、固液分離機 6で固液分離操作を行って、洗浄ケーキ kを得る。さらに乾燥工程として、得られた洗浄ケーキ kを乾燥装置 8で乾燥させて高 純度テレフタル酸結晶 mを得る。一方、還元反応母液 gにはテレフタル酸やパラトル ィル酸などの有効成分がなお含まれているため、これら有効成分を出来るだけ多く回 収する。また、上記洗浄操作で排出される洗浄排液 jは溶解工程で溶媒として再利用 する。
[0004] 上記の晶析工程の最終晶析槽は、パラトルィル酸がテレフタル酸と共晶することを 防ぐために、操作温度を 120〜180°Cで行うことが一般的である。そのため、晶析に より得られたスラリー fを従来はソリッドボウル型遠心分離機を用いて、高温高圧の状 態で固液分離して還元反応母液 gを分離し、得られた高純度テレフタル酸ケーキ hを 加圧下で懸濁洗浄し、放圧後に常圧下で再度固液分離して、洗浄排液 jを排出して いた。
[0005] また近年、加圧条件下において、上記固液分離操作とともに上記洗浄操作を行うこ とが出来る固液分離及び洗浄装置 7 (図中、破線囲み内に相当する。)を用いて固液 分離及び洗浄工程を一体に行!ヽ、上記精製工程を簡略化したテレフタル酸の製造 方法が、特許文献 1及び 2に記載されている。この場合、排出される洗浄排液 jは高 温高圧状態となる。
[0006] 洗浄排液 jには、洗浄スクリーンから目洩れ等が原因で、高純度テレフタル酸ケーキ hとして回収すべき固形分の一部が同伴する。上記固形分が同伴した洗浄排液 jをそ のままスラリー化槽 1で溶媒として再利用すると、精製工程系内で処理する固形分が 増大するものの、系内スラリー濃度を一定に保つ必要があるために、各々の装置を 大型化させることになる。更に、高温高圧下で固液分離と洗浄操作とを一体化した装 置で行う場合には、洗浄液に溶解するテレフタル酸の量が多くなるので、これによつ ても系内の固形分が増大し、装置を大型化させる必要が生じてしまう。
特許文献 1: W092Z18454号公報
特許文献 2: WO93Z24440号公報
発明の開示
発明が解決しょうとする課題
[0007] そこで本発明は、高純度テレフタル酸を製造するにあたり、コンパクトなサイズの装 置で洗浄排液を再利用することができる高純度テレフタル酸の製造方法を提供する ことを目的とする。 課題を解決するための手段
[0008] 本発明者等は上記課題を解決すべく鋭意検討した結果、洗浄排液に同伴する固 形分を事前に除去することにより上記課題を解決できることを見出し、また、除去した 固形分は分離工程より前の工程にリサイクルすることにより製品の品質に影響を与え ることなく再利用できることを見出し、本発明を完成するに至った。即ち、本発明の要 旨は下記(1)〜(10)に存する。
[0009] (1) パラキシレンを酸化して、 4 カルボキシベンズアルデヒドを含む粗テレフタル 酸を生成する粗テレフタル酸生成工程 (a)、
粗テレフタル酸生成工程 (a)で得られた粗テレフタル酸を、高温高圧下で水溶媒に 溶解させて粗テレフタル酸水溶液とする溶解工程 (b)、
上記粗テレフタル酸水溶液中の上記 4 カルボキシベンズアルデヒドを、触媒の存 在下で水素により還元してパラトルィル酸とした還元反応液を得る還元工程 (c)、 上記の還元反応液を 120〜200°Cに冷却して、上記テレフタル酸の結晶を晶析さ せて、スラリーとする晶析工程 (d)、
上記スラリーから、上記テレフタル酸結晶を主成分とするテレフタル酸ケーキと還元 反応母液とを固液分離する分離工程 (e)、
上記テレフタル酸ケーキを洗浄液で洗浄する洗浄工程 (f)、
上記洗浄工程 (f)で洗浄したケーキを乾燥させて高純度テレフタル酸の結晶を得る 乾燥工程 (g)、
を有する高純度テレフタル酸の製造方法にぉ 、て、
上記洗浄工程 (f)カゝら排出された洗浄排液に含まれる固形分を回収して、得られた 固形分を上記晶析工程 (d)又は上記分離工程 (e)に送る回収工程 (h)、
上記回収工程 (h)で固形分を回収した洗浄排液を、上記溶解工程 (b)の溶媒とし て使用する再使用工程 (i)、
を有する高純度テレフタル酸の製造方法。
[0010] (2) 回収工程 (h)にお ヽて、洗浄工程 (f)カゝら排出された洗浄排液を冷却した後
、固形分を回収する上記(1)に記載の高純度テレフタル酸の製造方法。
[0011] (3) 洗浄工程 (f)力も排出された洗浄排液力 SlOO°Cを超えており、その洗浄排液 を 0〜100°Cに冷却した後、固形分を回収する上記(2)に記載の高純度テレフタル 酸の製造方法。
[0012] (4) 洗浄排液を、放圧蒸発により冷却する上記(2)又は(3)に記載の高純度テレ フタル酸の製造方法。
[0013] (5) 回収工程 (h)における固形分の回収を、サイクロン又はシックナーを用いて行 う上記(1)乃至 (4)の 、ずれかに記載の高純度テレフタル酸の製造方法。
[0014] (6) 分離工程 (e)が、晶析工程 (d)の最終晶析槽の圧力より高い圧力で行われる 上記(1)乃至(5)の 、ずれかに記載の高純度テレフタル酸の製造方法。
[0015] (7) 分離工程 (e)と洗浄工程 (f)とを、一体ィ匕した装置を用いて行う上記(1)乃至 (
6)の 、ずれかに記載の高純度テレフタル酸の製造方法。
[0016] (8) 分離工程 (e)及び洗浄工程 (f)を行う一体ィ匕した装置が、スクリーンボウル型 遠心分離機、ロータリープレッシャーフィルター、又は水平ベルトフィルターのいずれ かで行う上記(7)に記載の高純度テレフタル酸の製造方法。
[0017] (9) 洗浄工程 (f)カゝら排出される洗浄排液に含まれる固形分が、分離工程 (e)〖こ 供給されるスラリー中のテレフタル酸結晶の 1〜10重量%である上記(1)乃至(8)の
V、ずれかに記載の高純度テレフタル酸の製造方法。
[0018] (10) 晶析工程 (d)が複数段の晶析槽力もなるものであり、回収工程 (h)で回収さ れる固形分を、複数段の晶析槽のうちの最終晶析槽に送る上記(1)乃至 (8)の 、ず れかに記載の高純度テレフタル酸の製造方法。
発明の効果
[0019] 本発明により、高純度テレフタル酸を製造するにあたり、コンパクトなサイズの装置 で洗浄排液を再利用することができる高純度テレフタル酸の製造方法を提供すること ができる。
図面の簡単な説明
[0020] [図 1]本発明に力かる高純度テレフタル酸の製造方法の例を示すフロー図である。
[図 2]従来の高純度テレフタル酸の製造方法の例を示すフロー図である。
符号の説明
[0021] 1, 11 スラリー化槽 la, 11a ポンプ
lb, l ib ヒーター
2, 12 水添反応器
3, 13 晶析槽
3a, 13a ポンプ
4, 6 固液分離機
5 洗浄装置
7, 17 固液分離及び洗浄装置 8, 18 乾燥装置
19 冷却器
20 分離器
a, A 粗テレフタル酸 b, B 水
c, C 開始スラリー
c' , C' 粗テレフタル酸水溶液 d, D 水素
e, E 還元反応液
f, F スラリー
g, G 還元反応母液
h 高純度テレフタル酸ケーキ i, I 洗浄液
j' J 洗浄排液
k 洗浄ケーキ
K 高純度テレフタル酸ケーキ m, M 高純度テレフタル酸結晶 N 回収スラリー
O 回収固形分
P 回収排液 発明を実施するための最良の形態
[0022] 以下、本発明について詳細に説明する。
[0023] 本発明の高純度テレフタル酸の製造方法は、ノラキシレンを酸ィ匕して、 4—カルボ キシベンズアルデヒドを含む粗テレフタル酸を生成する粗テレフタル酸生成工程 (a) 粗テレフタル酸生成工程 (a)で得られた粗テレフタル酸を、高温高圧下で水溶媒に 溶解させて粗テレフタル酸水溶液とする溶解工程 (b)、
上記粗テレフタル酸水溶液中の上記 4 カルボキシベンズアルデヒドを、触媒の存 在下で水素により還元してパラトルィル酸とした還元反応液を得る還元工程 (c)、 上記の還元反応液を 120〜200°Cに冷却して、上記テレフタル酸の結晶を晶析さ せて、スラリーとする晶析工程 (d)、
上記スラリーから、上記テレフタル酸結晶を主成分とするテレフタル酸ケーキと還元 反応母液とを固液分離する分離工程 (e)、
上記テレフタル酸ケーキを洗浄液で洗浄する洗浄工程 (f)、
上記洗浄工程 (f)で洗浄したケーキを乾燥させて高純度テレフタル酸の結晶を得る 乾燥工程 (g)、
を有する高純度テレフタル酸の製造方法にぉ 、て、
上記洗浄工程 (f)カゝら排出された洗浄排液に含まれる固形分を回収して、得られた 固形分を上記晶析工程 (d)又は上記分離工程 (e)に送る回収工程 (h)、
上記回収工程 (h)で固形分を回収した洗浄排液を、上記溶解工程 (b)の溶媒とし て使用する再使用工程 (i)、
を有することを特徴とする。本発明の製造方法を、図 1を用いて説明する。
[0024] なお、以下「有効成分」とは、テレフタル酸と、酸ィ匕等によりテレフタル酸にすること ができるその他の化合物とを 、 、、溶解して 、る成分と析出して 、る成分とをどちらも 含む。また、「固形分」とは、有効成分のうち、析出している成分を示す。
[0025] まず、粗テレフタル酸生成工程 (a)では、触媒の存在下、酢酸溶媒中で分子状酸 素によりパラキシレンを液相酸ィ匕することにより粗テレフタル酸を生成させる。このェ 程は周知であり、触媒としては、従来よりこの反応に用い得ることが知られている触媒 が用いられ、具体的には、コバルト化合物、マンガン化合物、鉄化合物、クロム化合 物などの重金属化合物及び臭素化合物等が挙げられる。これらは溶解した状態で反 応系に存在している。なかでも好ましいのは、コバルト化合物又はマンガンィ匕合物と 臭素化合物との組み合わせである。この場合、これらの化合物は、通常、溶媒に対し て、コノルト原子力 SlO〜5000ppm、マンガン原子が 10〜5000ppm、臭素原子が 1
0〜: LOOOOppmとなるように用 ヽられる。
[0026] 分子状酸素としては、通常は不活性ガスと酸素との混合ガスが用いられ、例えば、 空気や酸素富化空気が用いられる。反応器に供給するパラキシレンに対する分子状 酸素のモル比は、通常 3〜20モル倍、好ましくは 2〜4モル倍である。
[0027] 反応器に供給する酢酸に対するパラキシレンの比率は、通常 1〜50重量%である
。反応系内の水分濃度は、通常 5〜20重量%であり、好ましくは 5〜 15重量%である
[0028] 酸化反応の温度は、通常 160〜260°C、好ましくは170〜210で、圧力は、反応温 度において反応系が液相を保持できる圧力以上であればよぐ通常 0. 5〜5MPa、 好ましくは 1〜 2MPa、滞留時間は通常 10〜 200分である。
[0029] テレフタル酸は溶媒である酢酸に溶け難 、ため、通常、酸化反応工程で生成した テレフタル酸は結晶として析出し、スラリーを形成する。し力しながら、溶媒の量、反 応温度、圧力によっては、テレフタル酸が溶解している場合がある。この場合には、 反応液を冷却等する晶析工程を設けてテレフタル酸を析出させ、スラリーを形成させ る。このスラリーを固液分離して、粗テレフタル酸結晶を取得する。酸化反応工程で 得られたテレフタル酸スラリーは加圧状態にあるが、そのまま固液分離しても、放圧 冷却等してから固液分離してもよい。固液分離の方法としては、結晶と母液とが分離 できるものであればよぐ濾過、遠心分離などが挙げられる。必要に応じて洗浄、乾 燥を行 ヽ粗テレフタル酸結晶を得る。
[0030] なお、本発明における「粗テレフタル酸」は、 4 カルボキシベンズアルデヒドを 100 0〜 1 OOOOppm含有するテレフタル酸を意味する。
[0031] 溶解工程 (b)においては、粗テレフタル酸 A (パラキシレンを酸ィ匕して得られる 4— カルボキシベンズアルデヒドを含む粗テレフタル酸)をスラリー化槽 11に送り、高温高 圧環境下で水 Bに溶解させる。上記粗テレフタル酸 Aは、ノ ラキシレンを、酢酸など の脂肪族カルボン酸溶媒下で酸ィ匕させたものであり、副生成物として片方のアルキ ル基の酸化が完全に進行して 、な 、4 カルボキシベンズアルデヒドなどの中間体 を含んでいる。上記高純度テレフタル酸を製造するためには、粗テレフタル酸 Aから これらの不純物を出来る限り取り除く必要がある。
[0032] 上記テレフタル酸は水への溶解度が低 、が、スラリー化槽 11にお 、て水 Bでスラリ 一化し、この開始スラリー Cをポンプ 11a及びヒーター l ibにより上記テレフタル酸が 水に溶解することができる高温高圧にする必要がある。この高温高圧条件の温度は 、スラリー濃度による力 200°C以上であって、かつ装置が耐えうる温度以下であるこ とが必要であり、 230°C以上、 320°C以下が望ましい。また、上記高温高圧条件の圧 力は、上記の温度範囲で液相を維持できるだけの圧力である必要があり、 2. 8MPa 以上、 11. 3MPa以下であることが望ましい。
[0033] なお、溶解工程 (b)において得られるスラリーの濃度は、通常 20〜40wt%であり、 好ましくは 25〜35wt%である。スラリー濃度が高すぎると装置内における閉塞を引 き起こし、低すぎると母液量が増え、生産量見合いの設備が大型化してしまう。閉塞 防止の観点から、スラリー濃度は一定に保持されることが好ま 、。
[0034] 次に還元工程 (c)として、上記溶解工程 (b)により得られた粗テレフタル酸水溶液 C
'は、水添反応器 12へ送り、触媒存在下において、導入した水素 Dにより接触還元さ せて、還元反応液 Eを得る。この触媒と水添反応器 12内の条件とは、上記 4 カルボ キシベンズアルデヒドを還元し、上記テレフタル酸は還元しな!、ものである必要があ る。粗テレフタル酸水溶液 C'に含まれる上記 4—カルボキシベンズアルデヒドを、上 記テレフタル酸より水溶性の高 、パラトルィル酸に還元するためである。この還元は、 出来るだけ高 、率で行うことが望まし
い。この水素添加も周知であり、水素添加触媒としては、ルテニウム、ロジウム、パラ ジゥム、白金、オスミウムなどの 8〜 10族 (IUPAC無機化学命名法改訂版(1998)に よる)金属触媒が用いられ、通常、活性炭などに担体に担持して固定床として用いる 。これらのなかでも活性炭に担持させたパラジウムが好ましい。水素添加の温度は、 通常 260〜320。C、好ましくは 270〜300。C、水素の分圧は通常 0. 5~20kg/cm2 Gである。
[0035] さらに晶析工程 (d)として、上記還元工程 (c)で得られた還元反応液 Eを晶析槽 13 に導入し、上記パラトルィル酸を溶解させたままとなる範囲で温度と圧力とを下げ、上 記テレフタル酸を晶析させてスラリー Fにする。ここで、晶析槽 13を直列に複数段、好 ましくは 3〜6段設けて、段階的に圧力を下げて冷却 (放圧蒸発冷却)し、上記テレフ タル酸を晶析させるとより望ましい。図 1中では 2つの晶析槽 13を設けている力 3つ 以上であってもよい。最後の晶析槽 13である最終晶析槽の温度はパラトルィル酸が テレフタル酸と共晶しない温度条件にコントロールすればよぐ具体的には 120°C以 上、 200°C以下が望ましぐ 130°C以上、 180°C以下であるとより望ましい。この際の 圧力は 0. 20MPa以上、 1. 56MPa以下であると望ましく、 0. 27MPa以上、 1. 00 MPa以下であるとより望ましい。
[0036] その次に分離工程 (e)として、上記スラリー Fを、晶析工程 (d)で得られたスラリーの 圧力より高い圧力で固液分離機に導入し、還元反応母液 Gを分離して、高純度の上 記テレフタル酸の結晶を含んだ高純度テレフタル酸ケーキを得、さらに、加圧のまま この高純度テレフタル酸ケーキを洗浄する洗浄工程 (f)を行う。この際に、上記の固 液分離機として、分離工程 (e)と洗浄工程 (f)とを同時に行うことができる固液分離及 び洗浄装置 17を用いるのが好ましい。これにより、一連の工程を簡略ィ匕することがで きる。
[0037] 上記の固液分離及び洗浄装置 17のみにより上記分離工程 (e)及び上記洗浄工程
(f)を行う際の作業は以下のようになる。固液分離及び洗浄装置 17にスラリー Fと洗 浄液 Iとを導入する。洗浄液 Iとしては、通常、固液分離及び洗浄装置 17の操作温度 と同じか、それよりも高い温度の水を用いる。スラリー Fを固液分離した直後、同一装 置内で洗浄液 Iにより洗浄することで、洗浄を済ませた高純度テレフタル酸ケーキ Kを 分離して取り出し、還元反応母液 Gと、主に洗浄液 Iの成分カゝらなる洗浄排銜とを排 出する。
[0038] 上記の固液分離及び洗浄装置 17の操作温度は、上記晶析工程 (d)の最終晶析槽 と同等であり、 120°C以上、 200°C以下であることが望ましぐ 130°C以上、 180°C以 下であるとより望ましぐまた圧力については、放圧による温度低下を抑えるために、 晶析工程 (d)の最終晶析槽の圧力よりも高い圧力であることが必要である。具体的に は、晶析工程 (d)の最終晶析槽の圧力よりも 0〜lMPa高い圧力であることが望まし い。上記最終晶析槽での晶析の後でさらに圧力を下げると、放圧蒸発による冷却が 起こり、母液中に溶解している成分の析出が生じて、固液分離及び洗浄装置 17にお ける分離工程 (e)に支障をきたすおそれがある。一方で、必要以上の圧力にすること は、それに耐え得るように機器の増強が必要になってしまう。このように固液分離と洗 浄とをまとめて行うことのできる固液分離及び洗浄装置 17としては、例えばスクリーン ボウル型遠心分離機やロータリーバキュームフィルター、水平ベルトフィルタ一等が 挙げられ、特に好ましくはスクリーンボウル型遠心分離器である。
[0039] このようにして得られた高純度テレフタル酸ケーキ Kを、乾燥工程 (g)として乾燥装 置 18で乾燥させることにより、残留する付着液を除去することで、高純度テレフタル 酸結晶 Mを得ることができる。乾燥装置 18としては、スチームチューブドライヤー、流 動相乾燥機等が挙げられる。また、高温高圧である高純度テレフタル酸ケーキ Kを放 圧することによって、このケーキに付着する溶媒成分の少なくとも一部を蒸発させても よい。上記乾燥装置 18は回転式乾燥機や流動床式乾燥機等が挙げられ、通気ガス の存在下、水蒸気等の熱源に用いて乾燥出口操作温度が 70°C〜180°Cで実施さ れる。
[0040] 一方で、上記の還元反応母液 Gにも、上記テレフタル酸や上記パラトルィル酸など の上記有効成分が含まれており、これらを出来るだけ多く回収する必要がある。その 方法としては、例えば、単数又は複数の放圧冷却槽に導入して冷却し、還元反応母 液 Gが含有する上記有効成分を析出させてスラリーとして、これを濾過して二次母液 と二次結晶とに分けた上で、二次結晶を、上記ジアルキル芳香族化合物を酸化して 上記粗芳香族カルボン酸を生成させる酸ィ匕工程に導入し、二次母液を、直接又は間 接的にスラリー化槽 11で上記水 Bの代わりに用いたり、上記の洗浄工程 (f)の洗浄 液として用いたりすると 、つた方法があげられる。
[0041] なお、上記放圧冷却槽とは、導入する液体の圧力よりも低圧にした槽であり、その 槽内の圧力における上記液体の主成分の沸点が、導入前の上記液体の温度以下で あるようにしたものをいう。この放圧冷却槽に液体を導入すると、液体の一部は蒸発し 、液体の残りは変化後の圧力下における沸点まで冷却される。このとき、液体が溶液 である場合には、冷却後の溶解度を超えた分の溶質を晶析させる。
[0042] さらに洗浄排銜 (本発明における「洗浄排液」とは、固液分離して得られたテレフタ ル酸ケーキを洗浄液で洗浄した後に排出される液を指す)〖こも、上記有効成分が含 まれる。特に、上記の固液分離及び洗浄装置 17において固液分離と洗浄とをまとめ て行うことにより、これを安定的に行うために、洗浄排銜には溶解していない上記固 形分が混入されやすくなる。この固形分の量は、固液分離及び洗浄装置 17に供給さ れる上記スラリー F中のテレフタル酸結晶の 1重量%以上、 10重量%以下であること が望ましぐ 3重量%以上、 8重量%以下であるとより望ましい。 1重量%未満まで含 有量を減らそうとすると、固液分離及び洗浄装置 17の操作が安定しなくなるおそれ がある。一方、 10重量%を超えると、所定量の上記高純度テレフタル酸結晶 Mを得 るための固液分離及び洗浄装置 17を大型化する必要が生じる。
[0043] 上記の洗浄排銜から、回収工程 (h)として、上記の有効成分を出来るだけ多く上 記固形分として回収する。また、この洗浄排銜は高温 (通常は 100°Cを超えている) であるため、上記固形分としてだけではなぐ溶解している上記有効成分も多い。そ こで上記の溶解して ヽる有効成分を析出させるために、洗浄排銜を冷却することが 望ましぐ 100°C以下に冷却するとより望ましい。ただし、洗浄排銜の凝固点以上で ある必要がある。好ましくは 60°C以上、 100°C以下である。冷却温度が高すぎると洗 浄排液中に溶解しているテレフタル酸を充分回収することができない。また、低すぎ ると溶解工程 (b)に洗浄排液を再利用する際の予熱にエネルギーを要したり、装置 の大型化が必要になったりする。上記の冷却を行う冷却器 19は放圧冷却槽を用いて 行ってもよいし、熱交換により上記冷却を行ってもよい。設備の簡略ィ匕の観点から、 放圧冷却槽を用いるのが好ましい。 100°C未満に冷却するためには、ェジェクタ一等 を用 、て減圧下に操作すればよ 、。
[0044] 上記の冷却により上記有効成分が晶析した回収スラリー Nから、上記固形分をサイ クロン (遠心沈降器)又はシックナー (沈殿濃縮槽)などの分離器 20を用いて回収す ると望ましい。これにより回収された回収固形分 Oは、上記晶析工程 (d) (例えば晶析 槽 13)又は上記分離工程 (e) (例えば固液分離及び洗浄装置 17)に導入される(晶 析工程 (d)と分離工程 (e)の両方に導入してもよい)。特に、上記晶析工程 (d)の上 記晶析槽 13が複数の晶析槽力もなつている場合、上記最終晶析槽に導入するとより 望ましい。
[0045] 上記の晶析槽 13と固液分離及び洗浄装置 17とは、上記パラトルィル酸が溶解し、 上記テレフタル酸が晶析する温度と圧力条件下であるので、得られた上記固形分か ら上記テレフタル酸を析出させたまま、上記パラトルィル酸を溶解させて還元反応母 液 Gや洗浄排銜に同伴させて排出することができる。これにより上記固形分中に含 まれる上記テレフタル酸の大部分を高純度テレフタル酸結晶 Mとすることができる。
[0046] 再使用工程 (i)では回収工程 (h)で固形分を回収除去した洗浄排液を、溶解工程
(b)のスラリー化槽 11に水 Bの一部として供給する。
[0047] 以下、実施例により本発明を具体的に説明する。
実施例
[0048] パラキシレン、触媒 (酢酸コバルト、酢酸マンガンの酢酸溶液および臭化水素)を含 む酢酸溶液、後段の固液分離工程からリサイクルされる分離母液及び、空気を撹拌 槽に連続的に供給し、操作温度 190°C、操作圧力 1. 23MPa (絶対圧)で、滞留時 間 1時間になるように液面を調整しながら酸ィ匕反応を行った。また、留出蒸気は多段 の凝縮器により最終的に 40°Cまで冷却させ、排ガス中の酸素濃度が 2. 5vol%に調 整して運転を実施した。また各凝縮器カゝら得られる凝縮液は統合して酸ィ匕反応器に 還流し、その一部は反応抜き出しスラリーの母液中水分濃度が 10重量%となるように 抜き出した。酸ィ匕反応器力も抜き出されるスラリーのスラリー濃度は 35重量%、反応 母液中のコバルト Zマンガン Z臭素濃度が 300Z300Z1000重量 ppmであった。
[0049] 酸ィ匕反応器力も抜き出されたスラリーは、空気と共に撹拌槽に連続的に供給し、操 作温度 181°C、操作圧力 1. 15MPa (絶対圧)で、滞留時間 15分になるように液面 調整しながら低温追酸化反応を行った。また、留出蒸気は多段の凝縮器により最終 的に 40°Cまで冷却させ、排ガス中の酸素濃度が 6vol%に調整して運転を実施した。 また各凝縮器カゝら得られる凝縮液は統合して低温追酸ィ匕反応器に還流した。
[0050] 低温追酸ィ匕反応器力も抜き出されたスラリーは、 90°Cまで晶析した後に、この晶析 で得られたスラリーをロータリーバキュームフィルターに供給して固液分離と洗浄を行 つた。ここで操作圧力は大気圧であった。分離された粗テレフタル酸ケーキはスチー ムロータリードライヤーで乾燥させて粗テレフタル酸結晶を得た。
[0051] この粗テレフタル酸を、図 1に示す高純度フタル酸の製造工程に供与した。まず、 溶解工程 (b)のスラリー化槽 11において、溶媒として水 Bを使用して、粗テレフタル 酸を 30重量%含む、開始スラリー Cを得た。これを上記図 1に示す工程において、ポ ンプ 11aとヒーター l ibにより 290°C、 8. 54MPaの高温高圧である粗テレフタル酸 水溶液 C'として還元工程 (c)の水添反応器 12に送った。水添反応器 12では、上記 粗テレフタル酸水溶液 C,を 290°C、 8. 54MPaにおいて、パラジウム触媒存在下で 、水素 Dを用いて還元処理を行った。
[0052] これに続く晶析工程 (d)では、 5つの晶析槽を直列に接続した晶析槽 13を用いて、 段階的に放圧蒸発させて、最終的に圧力 0. 63MPaとし、温度を 161°Cまで冷却し て、テレフタル酸を晶析させた。晶析により得られたスラリー Fは、固液分離及び洗浄 装置 17としてスクリーンボウル型遠心分離機を用いて、まず分離工程 (e)としてテレ フタル酸ケーキと還元反応母液 Gとに固液分離し、次いで、洗浄工程 (f)として分離 された上記テレフタル酸ケーキを洗浄液 Iとして水を用いて洗浄処理を行 ヽ、高純度 テレフタル酸ケーキ Kを回収した。この固液分離及び洗浄装置 17の操作条件は、圧 力が 0. 73MPa、温度が 161°Cであり、洗浄液 Iである水の供給温度は 161°Cであつ た。また、洗浄液の量は固液分離された上記テレフタル酸ケーキ 1重量部に対して、 0. 8重量部を使用した。
[0053] ここで、洗浄部から排出される洗浄排銜には、固液分離及び洗浄装置 17に供給さ れるスラリー F中の固形分量の 5重量%相当量が目洩れとして含有されており、また、 洗浄排銜には、 0. 3重量%相当のテレフタル酸が溶解していた。そこで回収工程( h)として上記洗浄排銜を冷却器 19で大気圧に放圧して 100°Cまで冷却することに より溶解しているテレフタル酸を析出させた後にシックナー(沈降分離器) 20を用いて 上記洗浄排銜が含有するテレフタル酸結晶を回収固形分 Oとして回収した。
[0054] 高純度テレフタル酸結晶からなる回収固形分 Oは、晶析工程 (d)の最終晶析槽に 戻し、固形分を回収した後の回収排液 Pは、溶解工程の溶媒として、溶解工程 (b)の スラリー化槽 11に送った。このように送られた回収固形分 Oの量は、スラリー化槽 11 に供給される粗テレフタル酸量に対して 5重量%相当であった。
比較例
[0055] 洗浄排銜を回収工程 (h)に送らずに、溶解工程 (b)のスラリー化槽 11に直接送つ た以外は実施例と同様に行った。
(結果)
本発明にかかる方法により、洗浄排銜が含有する固形分をあらかじめ回収してか らスラリー化槽 11に戻すことにより、スラリー化槽 11に供給されるテレフタル酸の量を 5重量%相当削減することができた。これにより、製造工程内において所定のスラリー 濃度を維持する上で、プラント装置の大型化を抑制することができた。
[0056] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
[0057] 本出願は、 2004年 5月 28日出願の日本特許出願 (特願 2004— 159897)に基づ くものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0058] 本発明により、高純度テレフタル酸を製造するにあたり、コンパクトなサイズの装置 で洗浄排液を再利用することができる高純度テレフタル酸の製造方法を提供すること ができる。本発明の工業的価値は顕著である。

Claims

請求の範囲
[1] パラキシレンを酸化して、 4 カルボキシベンズアルデヒドを含む粗テレフタル酸を 生成する粗テレフタル酸生成工程 (a)、
粗テレフタル酸生成工程 (a)で得られた粗テレフタル酸を、高温高圧下で水溶媒に 溶解させて粗テレフタル酸水溶液とする溶解工程 (b)、
上記粗テレフタル酸水溶液中の上記 4 カルボキシベンズアルデヒドを、触媒の存 在下で水素により還元してパラトルィル酸とした還元反応液を得る還元工程 (c)、 上記の還元反応液を 120〜200°Cに冷却して、上記テレフタル酸の結晶を晶析さ せて、スラリーとする晶析工程 (d)、
上記スラリーから、上記テレフタル酸結晶を主成分とするテレフタル酸ケーキと還元 反応母液とを固液分離する分離工程 (e)、
上記テレフタル酸ケーキを洗浄液で洗浄する洗浄工程 (f)、
上記洗浄工程 (f)で洗浄したケーキを乾燥させて高純度テレフタル酸の結晶を得る 乾燥工程 (g)、
を有する高純度テレフタル酸の製造方法にぉ 、て、
上記洗浄工程 (f)カゝら排出された洗浄排液に含まれる固形分を回収して、得られた 固形分を上記晶析工程 (d)又は上記分離工程 (e)に送る回収工程 (h)、
上記回収工程 (h)で固形分を回収した洗浄排液を、上記溶解工程 (b)の溶媒とし て使用する再使用工程 (i)、
を有する高純度テレフタル酸の製造方法。
[2] 回収工程 (h)にお ヽて、洗浄工程 (f)カゝら排出された洗浄排液を冷却した後、固形 分を回収する請求項 1に記載の高純度テレフタル酸の製造方法。
[3] 洗浄工程 (f)力も排出された洗浄排液が 100°Cを超えており、その洗浄排液を 0〜
100°Cに冷却した後、固形分を回収する請求項 2に記載の高純度テレフタル酸の製 造方法。
[4] 洗浄排液を、放圧蒸発により冷却する請求項 2に記載の高純度テレフタル酸の製 造方法。
[5] 回収工程 (h)における固形分の回収を、サイクロン又はシックナーを用いて行う請 求項 1に記載の高純度テレフタル酸の製造方法。
[6] 分離工程 (e)が、晶析工程 (d)の最終晶析槽の圧力より高い圧力で行われる請求 項 1に記載の高純度テレフタル酸の製造方法。
[7] 分離工程 (e)と洗浄工程 (f)とを、一体化した装置を用いて行う請求項 1に記載の 高純度テレフタル酸の製造方法。
[8] 分離工程 (e)及び洗浄工程 (f)を行う一体ィ匕した装置が、スクリーンボウル型遠心 分離機、ロータリープレッシャーフィルター、又は水平ベルトフィルターのいずれかで 行う請求項 7に記載の高純度テレフタル酸の製造方法。
[9] 洗浄工程 (f)カゝら排出される洗浄排液に含まれる固形分が、分離工程 (e)に供給さ れるスラリー中のテレフタル酸結晶の 1〜10重量%である請求項 1に記載の高純度 テレフタル酸の製造方法。
[10] 晶析工程 (d)が複数段の晶析槽力もなるものであり、回収工程 (h)で回収される固 形分を、複数段の晶析槽のうちの最終晶析槽に送る請求項 1に記載の高純度テレフ タル酸の製造方法。
PCT/JP2005/009462 2004-05-28 2005-05-24 高純度テレフタル酸の製造方法 WO2005115957A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005800174106A CN1960961B (zh) 2004-05-28 2005-05-24 高纯度对苯二甲酸的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004159897 2004-05-28
JP2004-159897 2004-05-28

Publications (1)

Publication Number Publication Date
WO2005115957A1 true WO2005115957A1 (ja) 2005-12-08

Family

ID=35450800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009462 WO2005115957A1 (ja) 2004-05-28 2005-05-24 高純度テレフタル酸の製造方法

Country Status (2)

Country Link
CN (1) CN1960961B (ja)
WO (1) WO2005115957A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529226A (ja) * 2014-07-25 2017-10-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド 減少した圧力変動を有するロータリープレッシャーフィルター装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558948A (ja) * 1991-02-05 1993-03-09 Imperial Chem Ind Plc <Ici> テレフタル酸の製造方法
JPH11335321A (ja) * 1998-05-22 1999-12-07 Mitsui Chem Inc 芳香族カルボン酸の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558948A (ja) * 1991-02-05 1993-03-09 Imperial Chem Ind Plc <Ici> テレフタル酸の製造方法
JPH11335321A (ja) * 1998-05-22 1999-12-07 Mitsui Chem Inc 芳香族カルボン酸の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529226A (ja) * 2014-07-25 2017-10-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド 減少した圧力変動を有するロータリープレッシャーフィルター装置

Also Published As

Publication number Publication date
CN1960961A (zh) 2007-05-09
CN1960961B (zh) 2011-06-22

Similar Documents

Publication Publication Date Title
CN105001073B (zh) 低能耗物耗、少废物排放的pta生产方法和系统
JP3729284B2 (ja) 高純度テレフタル酸の製造方法
EP2292581B1 (en) Extraction process for removal of impurities from mother liquor in the synthesis of terephthalic acid
JP2004359691A (ja) 水性混合物から不純物を除去する抽出方法
JP2003509484A (ja) 前駆物質、溶媒および酢酸メチルの回収を改良した純粋なテレフタル酸を生成するための方法
JP2001288139A (ja) 高純度テレフタル酸の製造方法
US6150553A (en) Method for recovering methyl acetate and residual acetic acid in the production acid of pure terephthalic acid
WO2005075403A1 (ja) 芳香族カルボン酸の製造方法
WO2005115956A1 (ja) 高純度テレフタル酸の製造方法
KR101943115B1 (ko) 필터 공급 슬러리중 물의 백분율을 제어함으로써 테레프탈산 퍼지 여과 속도를 개선하는 방법
JP2017095391A (ja) 芳香族ジカルボン酸の製造方法
TW201209031A (en) Process and system
TWI742248B (zh) 氧化生產芳族二羧酸之能量及環境整合方法
WO2004074231A1 (ja) 芳香族カルボン酸の製造方法
KR101943116B1 (ko) 필터 공급 슬러리중 물의 백분율을 제어함으로써 테레프탈산 퍼지 여과 속도를 개선하는 방법
JP5802115B2 (ja) 粗製テレフタル酸の精製方法
KR101946657B1 (ko) 필터 공급 슬러리중 물의 백분율을 제어함으로써 테레프탈산 퍼지 여과 속도를 개선하는 방법
WO2005115957A1 (ja) 高純度テレフタル酸の製造方法
EP1104396A1 (en) Method for recovering methyl acetate and residual acetic acid in the production of pure terephthalic acid
JP2006008673A (ja) 高純度テレフタル酸の製造方法
JP2006045201A (ja) 高純度テレフタル酸の製造方法
JP2005247839A (ja) 芳香族カルボン酸の製造方法
JP2006008671A (ja) 高純度テレフタル酸の製造方法
JP2004175797A (ja) テレフタル酸の製造方法
JP2004231644A (ja) 高純度テレフタル酸の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580017410.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 7224/DELNP/2006

Country of ref document: IN

122 Ep: pct application non-entry in european phase