WO2005115952A1 - (メタ)アクロレイン又は(メタ)アクリル酸の製造方法 - Google Patents

(メタ)アクロレイン又は(メタ)アクリル酸の製造方法 Download PDF

Info

Publication number
WO2005115952A1
WO2005115952A1 PCT/JP2004/011446 JP2004011446W WO2005115952A1 WO 2005115952 A1 WO2005115952 A1 WO 2005115952A1 JP 2004011446 W JP2004011446 W JP 2004011446W WO 2005115952 A1 WO2005115952 A1 WO 2005115952A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
boiling
meth
acrylic acid
boiling separation
Prior art date
Application number
PCT/JP2004/011446
Other languages
English (en)
French (fr)
Inventor
Shuhei Yada
Yasushi Ogawa
Kenji Takasaki
Yoshiro Suzuki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to US10/974,015 priority Critical patent/US20050267312A1/en
Publication of WO2005115952A1 publication Critical patent/WO2005115952A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation

Definitions

  • the present invention relates to a method for producing (meth) acrolein or (meth) acrylic acid, and more particularly, to a method for producing (meth) acrolein or (meth) acrylic acid due to a defect in an oxidation reaction step.
  • the present invention relates to a method for producing (meth) acrolein or (meth) acrylic acid, which can avoid a shutdown of the whole plant, enables stable continuous operation, and is excellent in economy. Background art
  • a process for producing (meth) acrolein or (meth) acrylic acid uses a molecular oxygen, a gas phase catalytic oxidation of propylene, propane, or isobutylene as a raw material gas, and an oxidation reaction step.
  • (meth) acrylic acid is an easily polymerizable substance
  • a plant for producing (meth) acrylic acid is shut down, it is necessary to construct a plant that is normally used in a chemical production plant. It is extremely difficult to keep the process fluid in the equipment. Therefore, when the plant is stopped, in addition to the economic loss due to the production stoppage, a large amount of time and labor is required to extract and process the process fluid from the plant, and the plant stoppage causes a large economic loss. Therefore, it is extremely important to avoid a shutdown of the whole plant due to a defect in the light boiling separation process and to achieve stable continuous operation.
  • a spare plant having the same scale Z capacity as that of the present plant is provided, and when the present plant is stopped, the plant is switched to the spare plant to start production.
  • Patent Document 1 Japanese Patent Publication No. 50-6449
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2-193944
  • Patent Document 3 Japanese Patent Application Laid-Open No. 7-252477
  • Patent Document 4 JP-A-7-228548
  • Patent Document 5 JP-A-10-175912
  • Patent Document 6 JP-A-8-239341
  • the present invention has been made in view of the above circumstances, and has as its object the production of (meth) acrolein or (meth) acrylic acid, and the entire plant due to a defect in the light boiling separation process.
  • An object of the present invention is to provide a method of (meth) acrolein or (meth) acrylic acid which can avoid stoppage, can perform stable continuous operation, and is excellent in economy.
  • the present invention has been completed based on the above findings, and the gist of the present invention is a method for producing (meth) acrolein or (meth) acrylic acid, which comprises oxidizing a raw material gas by gas phase catalytic oxidation. Reaction process, reaction gas cooling process to cool the obtained reaction gas, light boiling separation process to separate light boiling components from reaction products, and purification process to separate and remove high boiling components from reaction products And a high-boiling component decomposition step for decomposing high-boiling components in the bottoms in the refining step are sequentially arranged to produce (meth) acrolein or (meth) acrylic acid.
  • a method for producing (meth) acrolein or (meth) acrylic acid characterized in that the boiling separation steps are arranged in parallel and operated simultaneously.
  • the method for producing (meth) acrolein or (meth) acrylic acid of the present invention avoids shutting down the entire plant due to a defect in the light boiling separation process because the light boiling separation processes are arranged in parallel and operated simultaneously. It is possible, stable continuous operation is possible, and it is economical.
  • the method for producing (meth) acrolein or (meth) acrylic acid according to the present invention comprises an oxidation reaction step of subjecting a raw material gas to gas-phase catalytic oxidation, a reaction gas cooling step of cooling the obtained reaction gas, and a light reaction reaction product. It comprises a light boiling separation process for separating the boiling components, a purification process for separating and removing the high boiling components from the reaction product, and a high boiling component decomposition process for decomposing the high boiling components in the bottoms in the purification process.
  • Acrolein is usually made of propylene (or isobutylene or t-butanol in the case of methacrolein) as a raw material, and is a Mo—Bi-based composite composed of Mo—Bi—Fe—Co—Ni—B—Na—Si—O. It is produced using an oxide catalyst, and is obtained by separating and purifying formaldehyde, acetoaldehyde, acetone and the like as light boiling components.
  • acrylic acid is usually used as the raw material with the acrolein obtained in the above reaction process (methacrylic acid is passed through methacrylolein) as it is as a raw material, and with Mo-V-Sb-Ni-Cu-Si- ⁇ Mo-V based composite oxide catalyst It is produced by a gas-phase catalytic oxidation method, or by a gas-phase catalytic oxidation method using propane as a raw material and a Mo-Bi-Te-based composite oxidation catalyst, a Mo—Bi-Se-based composite oxidation catalyst, etc. as a catalyst. It is produced and obtained by separating and purifying water, acetic acid and the like as light boiling components.
  • the production method of the present invention can be similarly applied to acrylic acid, methacrylic acid, and methacrylic acid, which are exemplified by acrylic acid.
  • Examples of industrial methods for producing acrolein and acrylic acid include a one-pass method, an unreacted propylene recycling method and a combustion waste gas recycling method described below, and any of them can be employed in the production method of the present invention.
  • propylene, air, and steam are mixed and supplied in the first-stage reaction, mainly converted to acryloline and acrylic acid, and this outlet gas is supplied to the second-stage reaction without being separated from products.
  • a method is generally used in which air and steam necessary for the reaction in the second-stage reaction are supplied in addition to the first-stage outlet gas.
  • An acrylic acid-containing reaction product gas obtained in the subsequent reaction is introduced into an acrylic acid collecting device, and acrylic acid is collected as an aqueous solution.
  • This is a method in which part of the waste gas containing unreacted propylene in the collection device is supplied to the first-stage reaction, and part of the unreacted propylene is recycled.
  • the acrylic acid-containing reaction product gas obtained in the second-stage reaction is led to an acrylic acid collecting device, and acrylic acid is collected as a water solution.
  • Catalytically combusts and oxidizes the entire amount of waste gas in the collector, converts unreacted propylene, etc., contained in the waste gas into mainly carbon dioxide and water, and adds part of the combustion waste gas obtained in the first-stage reaction How to
  • Examples of the reactor used in the oxidation reaction step include, but are not limited to, a fixed-bed multitubular reactor, a fixed-bed plate reactor, a fluidized-bed reactor, and the like. Above all, propylene or isobutylene is produced by gas-phase catalytic oxidation using a molecular oxygen or molecular oxygen-containing gas in the presence of a composite oxide catalyst to produce acrolein or acrylic acid.
  • a widely used fixed bed multitubular reactor is used for this purpose.
  • the fixed-bed multitubular reactor is not particularly limited as long as it is an industrially used one.
  • the reaction gas obtained in the oxidation reaction step is usually at 200 to 300 ° C, and is supplied to the reaction gas cooling tower after heat recovery as required.
  • the reaction gas is cooled and liquefied in the reaction gas cooling tower. After the non-condensed gas is discharged from the top of the column, part of the gas is supplied to the reaction system, and the remainder is supplied to the detoxification facility for release to the atmosphere.
  • the cooling medium for the reaction gas cooling tower include water, organic solvents, and mixtures thereof.
  • a tray or packing is usually installed in the reaction gas cooling tower. There are no particular restrictions on trays and packings, and commonly used trays and packings can be used, and one or more kinds may be used in combination.
  • tray examples include a dual tray without a downcomer, such as a bubble bell tray with a downcomer, a perforated plate tray, a valve tray, a super-flux tray, and a max flat tray.
  • packing examples include structured packing and irregular packing.
  • the regular packing materials include Sulza-I Brother's ⁇ Sulza-Pack '', Sumitomo Heavy Industries, Ltd., ⁇ Sumitomo Sulza-Packing '', Sumitomo Heavy Industries, Ltd., ⁇ Merapack '', Glitch ⁇ Gempack '', "Montpack” manufactured by Mont Co., “Good Roll Packing” manufactured by Tokyo Special Wire Mesh Co., Ltd., "Honeycomb Pack” manufactured by NGK, "Impulse Packing” manufactured by Nagashiki Co., Ltd., “MC Pack” manufactured by Mitsubishi Chemical Engineering, etc. Is exemplified.
  • Irregular packing materials include “Interlock Saddle” manufactured by Norton, “Terralet” manufactured by Nippon Steel Kakoki, “Poll Ring” manufactured by BASF, “Cascade 'Mini' Ring” manufactured by Mass Transfer, and “JGC Flexi-ring ”and the like.
  • Water and acetic acid which are mainly low boiling components, are separated from the reaction product liquefied in the reaction gas cooling step.
  • (meth) acrolein honolemuanolaldehyde, acetone and acetoaldehyde are separated as low boiling components.
  • Light-boiling components are separated in a light-boiling separation column.
  • a distillation column generally used in a chemical plant can be used, and it is composed of one column or two or more columns. When it consists of two or more towers Separates water in the former dehydration tower and separates acetic acid in the latter acetic acid separation tower.
  • a solvent used in the process such as methyl isobutyl ketone, methyl ethyl ketone, toluene, propyl acetate, ethyl acetate, or a mixed solvent of two or more thereof may be separated.
  • the tray or packing described for the reaction gas cooling tower can be installed in the light boiling separation tower.
  • the heat exchanger (reboiler) for heating the bottom liquid attached to the distillation column is generally classified into a case where the heat exchanger is installed inside the column and a case where it is installed outside the column.
  • a vertical fixed tube sheet type a horizontal fixed tube sheet type, a U-shaped tube type, a double tube type, a spiral type, a square block type, a plate type, a thin film evaporator type and the like are exemplified.
  • Materials such as various nozzles of the distillation tower, tower body, reboiler, piping, and collision plate (including top plate) are not particularly limited, in view of easily polymerizable compounds to be handled, temperature conditions, and corrosion resistance. What is necessary is just to select according to each liquid physical property.
  • stainless steels such as S US304, SUS304L, SUS316, SUS316L, SUS317, SUS317L, SUS327, etc., and hastelloys are preferably used.
  • acrylic acid is an easily polymerizable compound, it is preferable to carry out light-boiling separation by adding a polymerization inhibitor.
  • the polymerization inhibitor include copper acrylate, dithio-potassium copper rubinate, phenolic compound, and phenothiazine compound.
  • the copper dithiocarbamate include copper dialkyldithiocarbamate, such as copper dimethyldithiocarbamate, copper dimethyldithiocarbamate, copper dipropyldithiocarbamate, and copper dibutyldithiocarbamate; and ethylenedithiocarbamate.
  • Cyclic such as copper oxyacid, copper tetramethylenedithiol-rubamate, copper pentamethylenedithiocarbamate, and copper such as hexamethylenedithiol-based copper rubinate And oxydialkylenedithio copper rubinate.
  • the phenol compound include hydroquinone, methoquinone, pyrogallol, catechol, resorcin, phenol, and tarezol.
  • phenothiazine compound include phenothiazine, bis- (hydroxymethylbenzyl) phenothiazine, 3,7-dioctylphenothiazine, and bis- (hydroxyphenylbenzyl) phenothiazine.
  • the light boiling separation steps are arranged in parallel and operated simultaneously. As a result, even if a failure occurs in one line with the light boiling separation process and the operation is stopped, operation can be continued by another operable line and the entire plant is prevented from being stopped. I can do it.
  • the operating capacity of each series is usually 20% or more, preferably 30 to 70%, of the operating capacity of the process operated in one series. It is preferable to use equipment with the same operating capacity for each series.
  • the operation capacity of each series is usually 20% or more, preferably 30 to 40%, of the operation capacity of the process operated in one series.
  • a device in which the operating capacity of each series is equal. Further, a combination in which the total operating capacity of a certain two series is equal to the operating capacity of another one series is also preferable. If there is a device with an operating capacity of less than 20%, when it is necessary to continue operation using only this device, the operation rate is too low, and it is possible to respond to the minimum operation rate of equipment operated in one line. May not work.
  • the operation capability of the process in one series is set to 100%, and the system A is approximately 50% and the system B is approximately 50%. It is therefore preferable to drive.
  • the operation rate is reduced by half, but the entire plant can be prevented from being shut down.
  • a combination of devices having different production capacities is also possible. For example, it is possible to operate two systems with a system that has a system IJA power S of about 40% and a system B of about 60%. However, a combination of devices having different driving capabilities may be expensive.
  • the system B with a large operating capacity is shut down, the operation is continued with the system A with a low operating capacity. Be governed.
  • each of lines A, B and C has a similar capacity of about 33-34%. It is preferable to use a method of operating a device having an operation capability, or a method of operating a device in which the systems A and B each have an operation capability of about 25% and a device in which the system C has an operation capability of 50%. By adopting such a method, any one line can be operated. Even if a stoppage occurs, it is possible to continue operation at an operation rate of about 50% or more by continuing operation of other systems.
  • the light-boiling separation step can be performed in one distillation column as described above. However, in order to disperse the load on the distillation column and reduce troubles in generating solids due to polymerization, the light-boiling separation step is performed. It is preferable to divide the process into a first light-boiling separation step and a second light-boiling separation step, and to separate different light-boiling substances. That is, the first light-boiling separation step, which mainly separates water and is located on the reaction gas cooling step side, and the second light-boiling separation step, which mainly separates acetic acid and is located on the purification step side, are divided into light boiling sections. Preferably, separation is performed.
  • first and second light-boiling separation steps it is preferable to arrange the first and second light-boiling separation steps in parallel and operate them at the same time.However, only the first light-boiling separation step, which is more liable to cause solid matter generation due to polymerization, is arranged in parallel. However, relatively stable operation can be achieved. Each process after the second light-boiling separation process can be performed in a single line, and initial equipment investment can be reduced.
  • the minimum operating capacity of the equipment in the second light boiling separation process is designed. For example, if a part of the operation is stopped in the first light boiling separation process and supplied to the second light boiling separation process at 50% operation rate, the second light Use a boiling separation unit (distillation column).
  • the line operating at a high operating rate in the second light-boiling separation process is defective.
  • a method for resupplying the latter product acrylic acid will be specifically described.
  • the operation rate of the first light boiling separation process was 40 due to the shutdown of one series of the first light boiling separation process. / o, and if the minimum operation rate is 50% in one or more of the subsequent second light boiling separation step, purification step, and high boiling point component decomposition step, the minimum operation rate is 50%.
  • the supply to a certain process is 10% short on the operating rate. Therefore, by supplying the product acrylic acid obtained in the refining process to the process where the supply amount is insufficient, the minimum Adjust supply rate to availability.
  • the production capacity of each line and the method of combining them are the same as those described above.
  • the second series in which each series in the first light boiling separation step is directly corresponded As a method of connecting each series of the second light boiling separation step to each series in the first light boiling separation step, the second series in which each series in the first light boiling separation step is directly corresponded.
  • the method of linking to each series of the light boiling separation process, and the collection of each series in the first light boiling separation process before the second light boiling separation process There is a method of dividing into.
  • high-boiling components are separated and removed from the reaction product from which the low-boiling components have been separated to obtain high-purity acrylic acid.
  • High boiling components include maleic anhydride, benzaldehyde and the like.
  • the purification step is usually performed in a distillation column.
  • a polymerization inhibitor is usually used.
  • the polymerization inhibitor the same one as the polymerization inhibitor used in the light boiling separation step can be used.
  • High-purity acrylic acid is distilled off from the top of the distillation column, and high-boiling components remain in the bottoms.
  • the minimum operating capacity of the apparatus is designed in consideration of the case of a partial shutdown in the light boiling separation process. For example, if a part of the operation is stopped in the light boiling separation process and the reaction product is supplied to the purification process at the operation rate of 50%, a purification device (distillation column) that can be operated at the operation rate of 50% is used. The operating rate of the equipment in the purification process is If the minimum operation rate of the oxidation reaction process cannot be met, the acrylic acid product obtained in the purification process can be supplied to the light boiling separation process and / or the purification process to meet the minimum operation rate of the oxidation reaction process. I can do it.
  • high boiling point component decomposition step high boiling point components in the bottoms in the purification step are decomposed.
  • valuable components such as a polymerization inhibitor and acrylic acid are recovered, supplied to a predetermined process, and reused.
  • the high-boiling substance decomposition tower is of a vertical or horizontal tank type, and the tank is provided with a stirrer, a heating facility, a distillation tower, and the like as necessary.
  • the heating equipment for temperature control include a jacket type, an inner coil type, and an externally installed heat exchanger type, and any type can be used.
  • the decomposition reaction temperature is usually 110-250 ° C, preferably 120-230 ° C.
  • the residence time of the decomposition reaction is relatively long, usually 1050 hours when the decomposition reaction temperature is 110 to 150 ° C, and is usually 30 minutes to 10 hours when the decomposition reaction temperature is 150 to 250 ° C. is there.
  • the decomposition reaction pressure may be either a reduced pressure condition or a normal pressure condition. In the tower of the high boiling matter decomposition tower, the tray or the packing described for the reaction gas cooling tower can be installed.
  • the minimum operation capacity of the apparatus is designed in consideration of the case where one part of the operation is stopped in the light boiling separation step. For example, if a part of the operation is stopped in the light boiling separation process and it is supplied to the subsequent processes at an operation rate of 50%, a refiner (high-boiling substance) that can be operated at an operation rate of 50% is used. If the operation rate of the equipment in the high-boiling-point decomposition process cannot correspond to the minimum operation rate of the light-boiling separation process, as described in the light-boiling separation process, there is a problem in the series operating at a high operating rate in the light-boiling separation process.
  • the minimum operating rate of the light-boiling separation process should be taken by taking measures to prevent the occurrence of odor, or by supplying the acrylic acid product obtained in the refining process to the light-boiling separation process, purification process and / or high-boiling-point decomposition process. Can be supported.
  • Example 1 It consists of an oxidation reaction step, a reaction gas cooling step, a light-boiling separation step, a purification step, and a high-boiling-point component decomposition step, wherein the light-boiling separation step is a first light-boiling separation step that mainly separates water and a second step that mainly separates acetic acid.
  • the first light-boiling separation process consists of three series, A, B and C, and uses an acrylic acid production plant with a production capacity of 100,000 tZ. To produce acrylic acid.
  • the production capacity of series A in the first light boiling separation process is 25,000 t / year (25% of the total), the production capacity of series B is 25,000 tZ years (25% of the total), and the series C Has a production capacity of 50,000 tZ (50% of the total).
  • Ten months after the start of operation the differential pressure of the distillation column in the first light-boiling separation step of Series A increased, and operation became impossible, and the operation of Series A was stopped.
  • the operation of series B and series C of the first light-boiling separation process is continued, and the first light-boiling separation is operated in one series so as to correspond to the operating capacity of series B and series C.
  • the operation load of processes other than the process was changed to 75%, and operation was continued until Series A was restored. After series A was restored, the operation load of all processes was returned to 100%, and the shutdown of the entire plant could be avoided.
  • the process consists of an oxidation reaction step, a reaction gas cooling step, a light-boiling separation step, a purification step, and a high-boiling-point component decomposition step.
  • the process consists of two light-boiling separation processes, all of which are in a single-line configuration.
  • Atarilic acid was produced using an acrylic acid production plant with a production capacity of 25,000 t / year. .
  • Ten months after the start of operation the pressure difference in the distillation column in the first light-boiling separation step increased, and the operation became impossible, and the operation in the first light-boiling separation step was stopped.
  • Example 2 In Comparative Example 1, while the operation of the entire plant was stopped, the acrylic acid-containing liquid in the system was retained in the system without being drawn out of the system. Ten days later, when the distillation tower in the first light-boiling separation process was restored, a polymer was found in the liquid stored in the system.
  • Example 2
  • the first light-boiling separation process consists of two series, A and B, and uses an acrylic acid production plant with a production capacity of 75,000 tZ. To produce acrylic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 (メタ)アクロレイン又は(メタ)アクリル酸の製造において、軽沸分離工程の不具合によるプラント全体の停止を回避でき、安定な連続運転が可能であり、経済性に優れている(メタ)アクロレイン又は(メタ)アクリル酸の方法を提供する。  (メタ)アクロレイン又は(メタ)アクリル酸の製造方法であって、原料ガスを気相接触酸化する酸化反応工程と、得られた反応ガスを冷却する反応ガス冷却工程と、反応生成物から軽沸点成分を分離する軽沸分離工程と、反応生成物から高沸点成分を分離除去する精製工程と、精製工程における缶出液中の高沸点成分を分解する高沸点成分分解工程とを順次に配置して成るプロセスにより(メタ)アクロレイン又は(メタ)アクリル酸を製造する方法において、軽沸分離工程を並列に配置して同時に運転する。

Description

明 細 書
(メタ)ァクロレイン又は (メタ)アクリル酸の製造方法
技術分野
[0001] 本発明は、(メタ)ァクロレイン又は (メタ)アクリル酸の製造方法に関し、詳しくは、(メ タ)ァクロレイン又は (メタ)アクリル酸の製造にぉレ、て、酸化反応工程の不具合による プラント全体の停止を回避でき、安定な連続運転が可能であり、経済性に優れている (メタ)ァクロレイン又は (メタ)アクリル酸の製造方法に関する。 背景技術
[0002] (メタ)ァクロレイン又は (メタ)アクリル酸を製造する方法は、分子状酸素を使用し、 原料ガスとしてプロピレン、プロパン又はイソブチレンを気相接触酸化する酸化反応 工程と、得られた (メタ)ァクロレイン又は (メタ)アクリル酸を含有する反応ガスを冷却 する反応ガス冷却工程と、反応生成物から軽沸点成分を分離する軽沸分離工程と、 軽沸点成分が分離された反応生成物から高沸点成分を分離除去し、(メタ)ァクロレ イン又は (メタ)アクリル酸を回収する精製工程と、精製工程における缶出液中の高沸 点成分を分解し、有価成分および残存 (メタ)ァクロレイン又は (メタ)アクリル酸を回収 する高沸点成分分解工程とから成る。
[0003] (メタ)ァクロレイン及び (メタ)アクリル酸が易重合性物質であるため、軽沸分離工程 の蒸留装置内において上記ビュルィヒ合物の重合が起こり易レ、。そのため、安定した 連続運転を行うために、軽沸分離工程におけるビニル化合物の重合を防止する方法 について種々の検討がなされてきた。例えば、ビュル化合物に重合禁止剤を溶解さ せた溶液を蒸留塔の塔頂部から散布する方法 (例えば特許文献 1及び 2参照)が知 られている。し力 ながら、この方法では重合禁止効果が不十分であり、蒸留中にポ ップコーンポリマーや粘性ポリマーが発生する問題がある。
[0004] また、高温部および滞留部を極力減らした装置を使用し、蒸留過程で各種の重合 防止剤(ハイドロキノン、フエノチアジン、力ルバミン酸銅塩、 N-ォキシル化合物、空 気など)を添加するという、装置上および運転上において重合反応を抑制するための 工夫がなされた方法 (例えば非特許文献 1及び特許文献 3— 6参照)があるが、やは り重合反応により固形物が生成し、装置類の閉塞などのトラブルが発生し、未だに安 定な連続運転が達成できてレ、なレ、のが実情である。
[0005] (メタ)アクリル酸が易重合性物質であるため、(メタ)アクリル酸を製造するプラントの 運転を停止した際に、通常の化学品製造プラントで行われる様な、プラントを構成す る機器内にプロセス流体を保持させておくことは極めて難しい。そのため、プラント停 止時において、製造停止による経済損失に加え、プラント内よりプロセス流体を抜出 して処理するための多大な時間と労力も必要となり、プラント停止は大きな経済損失 をもたらす。したがって、軽沸分離工程の不具合によるプラント全体の停止を回避で き、安定な連続運転を達成することは極めて重要である。
[0006] 上記の目的を達成するために、本プラントの他に、本プラントと同程度の規模 Z能 力を有する予備プラントを設け、本プラントが停止した際に予備プラントに切替えて製 造を続ける方法も考えられる。し力、しながら、予備用に同程度の規模のプラントを設 け、本プラントが停止している場合以外は稼働させないことは、必要とするプラントの 設置スペース及び設備コスト並びにそれらに対する生産能力を考慮すると極めて非 経済的である。
[0007] 特許文献 1:特公昭 50— 6449号公報
特許文献 2:特開平 2 - 193944号公報
特許文献 3:特開平 7 - 252477号公報
特許文献 4:特開平 7— 228548号公報
特許文献 5 :特開平 10— 175912号公報
特許文献 6 :特開平 8 - 239341号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、上記の実情に鑑みなされたものであり、その目的は、(メタ)ァクロレイン 又は (メタ)アクリル酸の製造にぉレ、て、軽沸分離工程の不具合によるプラント全体の 停止を回避でき、安定な連続運転が可能であり、経済性に優れている(メタ)ァクロレ イン又は (メタ)アクリル酸の方法を提供することである。
課題を解決するための手段 [0009] 本発明者らは、鋭意検討を重ねた結果、(メタ)ァクロレイン又は (メタ)アクリル酸を 製造する方法において、軽沸分離工程を並列に配置して同時に運転することにより 、軽沸分離工程のある 1系列に不具合が生じて運転停止となっても、他の系列が運 転を継続することによりプラント全体の停止を回避できるとの知見を得た。
[0010] 本発明は、上記の知見に基づき完成されたものであり、その要旨は、(メタ)ァクロレ イン又は (メタ)アクリル酸の製造方法であって、原料ガスを気相接触酸化する酸化反 応工程と、得られた反応ガスを冷却する反応ガス冷却工程と、反応生成物から軽沸 点成分を分離する軽沸分離工程と、反応生成物から高沸点成分を分離除去する精 製工程と、精製工程における缶出液中の高沸点成分を分解する高沸点成分分解ェ 程とを順次に配置して成るプロセスにより(メタ)ァクロレイン又は (メタ)アクリル酸を製 造する方法において、軽沸分離工程を並列に配置して同時に運転することを特徴と する(メタ)ァクロレイン又は (メタ)アクリル酸の製造方法に存する。
発明の効果
[0011] 本発明の(メタ)ァクロレイン又は (メタ)アクリル酸の製造方法は、軽沸分離工程を 並列に配置して同時に運転するために、軽沸分離工程の不具合によるプラント全体 の停止を回避でき、安定な連続運転が可能であり、経済性に優れている。
発明を実施するための最良の形態
[0012] 以下、本発明を詳細に説明する。本発明の(メタ)ァクロレイン又は (メタ)アクリル酸 の製造方法は、原料ガスを気相接触酸化する酸化反応工程と、得られた反応ガスを 冷却する反応ガス冷却工程と、反応生成物から軽沸点成分を分離する軽沸分離ェ 程と、反応生成物から高沸点成分を分離除去する精製工程と、精製工程における缶 出液中の高沸点成分を分解する高沸点成分分解工程とから成る。
[0013] ァクロレインは、通常、プロピレン (メタァクロレインの場合はイソブチレン又は tーブタ ノール)を原料とし、 Mo— Bi-Fe— Co— Ni-B— Na— Si-O等力ら成る Mo— Bi系複合 酸化物触媒を使用して製造され、軽沸点成分としてホルムアルデヒド、ァセトアルデヒ ド、アセトン等を分離し、精製して得られる。一方、アクリル酸は、通常、上記の反応ェ 程で得られたァクロレイン (メタアクリル酸はメタァクロレインを経由して)をそのまま原 料とし、 Mo-V-Sb-Ni-Cu-Si-Ο等力 成る Mo-V系複合酸化物触媒を使用し た気相接触酸化法により製造するか、プロパンを原料とし、触媒として、 Mo-Bi-Te 系複合酸化触媒、 Mo— Bi— Se系複合酸化触媒などを使用した気相接触酸化法によ つて製造され、軽沸点成分として水、酢酸などを分離し、精製して得られる。以下の 説明において、アクリル酸を代表して例示する力 ァクロレイン、メタァクロレイン及び メタアクリル酸についても同様に本発明の製造方法を適用できる。
[0014] 酸化反応工程:
ァクロレイン及びアクリル酸の工業的製造方法としては、以下に説明するワンパス方 式、未反応プロピレンリサイクル方式および燃焼廃ガスリサイクル方式が挙げられ、本 発明の製造方法においては何れも採用できる。
[0015] (1)ワンパス方式:
前段反応に於て、プロピレン、空気およびスチームを混合供給し、主としてァクロレ インとアクリル酸に転化し、この出口ガスを生成物と分離することなく後段反応へ供給 する方法である。後段反応への供給に際し、前段出口ガスに加え、後段反応で反応 させるのに必要な空気およびスチームも合わせて供給する方法が一般的である。
[0016] (2)未反応プロピレンリサイクル方式:
アクリル酸捕集装置に、後段反応で得られるアクリル酸含有反応生成ガスを導入し 、水溶液としてアクリル酸を捕集する。捕集装置における未反応プロピレンを含有す る廃ガスの一部を前段反応に供給し、未反応プロピレンの一部をリサイクルする方法 である。
[0017] (3)燃焼廃ガスリサイクル方式:
後段反応で得られるアクリル酸含有反応生成ガスをアクリル酸捕集装置に導き、水 溶液としてアクリル酸を捕集する。捕集装置における廃ガスの全量を接触的に燃焼 酸化し、廃ガス中に含有される未反応プロピレン等を主として二酸化炭素および水に 変換し、前段反応に得られる燃焼廃ガスの一部を添加する方法である。
[0018] 酸化反応工程で使用される反応器として、固定床多管型反応器、固定床プレート 型反応器、流動床型反応器などが例示されるがこれらに限定されない。中でも、気相 接触酸化反応により、プロピレン又はイソブチレンを複合酸化物触媒の存在下で分 子状酸素または分子状酸素含有ガスを使用してァクロレイン又はアクリル酸を製造す る際に広く使用されているのは固定床多管型反応器である。固定床多管型反応器と しては、工業的に通常使用されているものであれば特に制限はない。
[0019] 反応ガス冷却工程:
酸化反応工程で得られる反応ガスは、通常 200— 300°Cであり、必要に応じて熱の 回収が行われた後に反応ガス冷却塔に供給される。反応ガス冷却塔内で、反応ガス は冷却され、液化される。非凝縮ガスは塔頂より流出させた後に、反応系にその一部 が供給され、残余は大気放出のために無害化処理設備へ供給される。反応ガス冷 却塔の冷却媒体としては、水、有機溶剤、これらの混合物などが例示される。反応ガ ス冷却塔内には、通常トレィ又は充填物が設置される。トレイ及び充填物については 特に制限は無ぐ一般に使用されるトレイ及び充填物を使用することが出来、 1種類 以上を組合せて使用してもよい。
[0020] トレイとしては、ダウンカマーのある泡鐘トレイ、多孔版トレイ、バルブトレイ、スーパ 一フラックトレイ、マックスフラタストレイ等、ダウンカマーの無いデュアルトレイが例示 される。充填物としては、規則充填物および不規則充填物が例示される。規則充填 物としては、スルザ一'ブラザース社製「スルザ一パック」、住友重機械工業社製「住 友スルザ一パッキング」、住友重機械工業社製「メラパック」、グリッチ社製「ジェムパッ ク」、モンッ社製「モンッパック」、東京特殊金網社製「グッドロールパッキング」、 日本 ガイシ社製「ハニカムパック」、ナガ才力社製「インパルスパッキング」、三菱化学ェン ジニアリング社製「MCパック」等が例示される。不規則充填物としては、ノートン社製 「インタロックスサドル」、 日鉄化工機社製「テラレット」、 BASF社製「ポールリング」、 マストランスファー社製「カスケード'ミニ'リング」、 日揮社製「フレキシリング」等が例 示される。
[0021] 軽沸分離工程:
反応ガス冷却工程において液化した反応生成物から、主として軽沸点成分である 水および酢酸を分離する。なお、(メタ)ァクロレインの製造においては、軽沸点成分 としては、ホノレムァノレデヒド、アセトン、ァセトアルデヒドを分離する。軽沸点成分の分 離は軽沸分離塔で行い、軽沸分離塔としては、化学品プラントで一般に使用される 蒸留塔が使用でき、 1塔、もしくは 2塔以上で構成される。 2塔以上で構成される場合 は、前段の脱水塔で水を分離し、後段の酢酸分離塔で酢酸を分離する。また、水や 酢酸以外に、メチルイソブチルケトン、メチルェチルケトン、トルエン、酢酸プロピル、 酢酸ェチル、又はこれらの 2種以上の混合溶剤など、プロセスで使用される溶剤も分 離されることがある。軽沸分離塔の塔内には、反応ガス冷却塔で説明したトレイ又は 充填物を設置することが出来る。
[0022] 蒸留塔に付属する塔底液加熱用熱交換器 (リボイラ)は、一般には塔内に設置され る場合と塔外に設置される場合に大別されるが、リボイラの型式としては特に限定さ れない。具体的には、竪型固定管板型、横型固定管板型、 U字管型、 2重管型、ス パイラル型、角ブロック型、プレート型、薄膜蒸発器型などが例示される。
[0023] 蒸留塔の各種ノズル、塔本体、リボイラ、配管、および衝突板 (含む天板)などの材 質は、特に制限は無ぐ取り扱う易重合性化合物、温度条件、耐食性の観点からそ れぞれの液物性に対応して選定すればよい。 (メタ)アクリル酸の製造においては、 S US304, SUS304L, SUS316, SUS316L, SUS317, SUS317L, SUS327 等のステンレススチール類、ハステロィ類などが好ましく使用される。
[0024] アクリル酸は易重合性化合物であるため、重合禁止剤を添加して軽沸分離を行うこ とが好ましい。重合禁止剤として、アクリル酸銅、ジチォ力ルバミン酸銅、フエノール化 合物、フヱノチアジン化合物などが例示される。ジチォ力ルバミン酸銅としては、ジメ チルジチォカルバミン酸銅、ジェチルジチォカルバミン酸銅、ジプロピルジチォカル バミン酸銅、ジブチルジチォカルバミン酸銅などのジアルキルジチォ力ルバミン酸銅 、エチレンジチォ力ルバミン酸銅、テトラメチレンジチォ力ルバミン酸銅、ペンタメチレ ンジチォカルバミン酸銅、へキサメチレンジチォ力ルバミン酸銅などの環状アルキレ ンジチォカルバミン酸銅、ォキシジエチレンジチォ力ルバミン酸銅などの環状ォキシ ジアルキレンジチォ力ルバミン酸銅などが例示される。フエノール化合物としては、ハ イドロキノン、メトキノン、ピロガロール、カテコール、レゾルシン、フエノール、又はタレ ゾール等が例示される。フヱノチアジン化合物としては、フヱノチアジン、ビス- (ひ -メ チルベンジル)フヱノチアジン、 3, 7-ジォクチルフエノチアジン、ビス- (ひ -ジメチル ベンジル)フヱノチアジン等が例示される。これらは 2種以上組合せて使用してもよい [0025] 本発明の製造方法において、軽沸分離工程を並列に配置して同時に運転する。こ れにより、軽沸分離工程のある 1系列に不具合が生じて運転停止となっても、他の運 転可能な系列により運転を継続することが出来、プラント全体が運転停止になること を回避出来る。 2系列で運転を行う場合の各系列の運転能力は、 1系列で運転する 工程の運転能力の通常 20%以上、好ましくは 30— 70%である。各系列の運転能力 が等しい装置を使用することが好ましい。 3系列以上で運転を行う場合の各系列の運 転能力は、 1系列で運転する工程の運転能力の通常 20%以上、好ましくは 30— 40 %である。各系列の運転能力が等しい装置を使用することが好ましい。また、ある 2系 列の運転能力の合計が他の 1系列の運転能力に等しい様な組合せも好ましい。運転 能力が 20%未満の装置を有する場合、この装置のみを使用して運転継続を行う必 要がある際に、稼働率が低すぎ、また 1系列で運転する装置の最低稼働率に対応で きない場合がある。
[0026] 例えば、 2系列の装置により同時に運転する場合、 1系列で運転する工程の運転能 力を 100%として、系列 Aを約 50%、系列 Bを約 50%の運転能力を有する装置によ つて運転することが好ましい。この場合、系列 Aが運転停止となっても、同程度の能 力を有する系列 Bが運転を継続することにより、稼働率は半減するものの、プラント全 体が運転停止となることを回避できる。一般的に、 2系列同時に運転停止となる可能 性は極めて低い。また、生産能力の異なる装置の組合せも可能である。例えば、系 歹 IJA力 S約 40%、系列 Bが約 60%の運転能力を有する装置で 2系列の運転を行うこと も可能である。し力しながら、運転能力の異なる装置の組合せでは、装置が高価とな る場合がある。また、運転能力の大きい系列 Bが運転停止となった場合、運転能力の 低い系列 Aで運転を継続することとなるため、系列 Bの修理中の稼働率は、運転能 力の低い系列 Aに支配される。
[0027] 軽沸分離工程を 3系列に配置して同時に運転する場合、 1系列で運転する工程の 運転能力を 100%として、系列 A、 B及び Cがそれぞれ約 33— 34%の同程度の運転 能力を有する装置によって運転する方法、あるいは、系列 A及び Bがそれぞれ約 25 %の運転能力を有する装置と、系列 Cが 50%の運転能力を有する装置とを組合せ て運転する方法が好ましい。この様な方法を採用することにより、任意の 1系列が運 転停止となっても、他の系列の運転を継続することにより、約 50%以上の稼働率で運 転を継続することが出来る。
[0028] 軽沸分離工程は、上述の様に蒸留塔 1塔で行うことが出来るが、蒸留塔への負荷 を分散させ、重合による固形物発生トラブルを軽減するために、軽沸分離工程を第 1 の軽沸分離工程と第 2の軽沸分離工程とに分け、それぞれ異なる軽沸物を分離する ことが好ましい。すなわち、主として水を分離し、反応ガス冷却工程側に位置する第 1 の軽沸分離工程と、主として酢酸を分離し、精製工程側に位置する第 2の軽沸分離 工程とに分けて軽沸分離を行うことが好ましい。この場合、第 1及び第 2の軽沸分離 工程を並列に配置して同時運転することが好ましいが、重合による固形物発生トラブ ノレがより生じやすい第 1の軽沸分離工程のみ並列に配置し、比較的安定運転が達成 しゃすい第 2の軽沸分離工程以降の各工程を 1系列で行うことも出来、初期設備投 資を削減することが出来る。
[0029] 第 1の軽沸分離工程のみ並列に配置し、第 2の軽沸分離工程以降の各工程を 1系 列で行う場合、第 1の軽沸分離工程での 1部運転停止の場合を考慮して第 2の軽沸 分離工程の装置の最低稼働能力の設計を行う。例えば、第 1の軽沸分離工程にお いて 1部運転停止し、 50%の稼働率で第 2の軽沸分離工程に供給された場合、 50 %の稼働率で運転可能な第 2の軽沸分離装置 (蒸留塔)を使用する。第 2の軽沸分 離工程における装置の稼働率が、第 1の軽沸分離工程における最低稼働率に対応 できない場合は、第 2の軽沸分離工程において高い稼働率で運転する系列に不具 合が生じない様に対策を施すか、精製工程で得られる製品アクリル酸を第 1及び/ 又は第 2の軽沸分離工程に供給することにより、第 1の軽沸分離工程の最低稼働率 に対応させることが出来る場合がある。
[0030] 後者の製品アクリル酸を再供給する方法について具体的に説明する。第 1の軽沸 分離工程の 1系列が運転停止したために第 1の軽沸分離工程の稼働率が 40。/oとな り、以降の第 2の軽沸分離工程、精製工程および高沸点成分分解工程の何れか 1つ 以上の工程において最低稼働率が 50%である場合、最低稼働率が 50%であるェ 程への供給量が稼働率にして 10%分不足する。そのため、供給量が不足している 工程に、精製工程で得られる製品アクリル酸を供給することにより、各工程の最低稼 働率に供給量を調節する。
[0031] 第 1の軽沸分離工程と第 2の軽沸分離工程とを複数系列とした場合、各系列の生 産能力およびその組合せ方法は、上記で説明したものと同様である。なお、第 1の軽 沸分離工程における各系列に対し、第 2の軽沸分離工程の各系列を連結させる方 法としては、第 1の軽沸分離工程における各系列をそのまま対応する第 2の軽沸分 離工程の各系列に連結させる方法と、第 2の軽沸分離工程前に第 1の軽沸分離工程 における各系列を一旦収集した後、第 2の軽沸分離工程の複数の系列に分割する 方法とが挙げられる。すなわち、系列 Α1、 Α2 · · ·Αηを有する第 1の軽沸分離工程と 系列 Β1、 Β2 · · ·Βηを有する第 2の軽沸分離工程を連結させる場合に、 A1 - Bl、 Α2 -Β2 · · · An— Βηの様に各系列毎にそれぞれ連結させる方法と、系列 Α1、 Α2 · · -An 力、ら得られる反応ガスをー且纏め、次いで系列 Β1、 Β2 · · ·Βπιに分割して第 2の軽 沸分離工程を行う方法とがある。
[0032] 上記前者の方法 (各系列毎それぞれ連結させる方法)では、第 1の軽沸分離工程と 第 2の軽沸分離工程とが連結した複数の独立系列から成るため、制御が行いやすく 、リサイクル原料を含む原料の供給量の調節が容易であるため好ましい。上記後者 の方法では、各工程の各系列の制御が煩雑で難しいため、可能ではあるがあまり現 実的ではない。
[0033] 精製工程:
精製工程においては、軽沸点成分が分離された反応生成物から高沸点成分を分 離除去し、高純度のアクリル酸を得る。高沸点成分としては、無水マレイン酸、ベンズ アルデヒド等が含まれている。精製工程は通常蒸留塔で行われる。蒸留の際には、 通常重合禁止剤を使用する。重合禁止剤としては、軽沸分離工程で使用する重合 禁止剤と同様のものが使用できる。蒸留塔の塔頂より留出するのは高純度のアクリル 酸であり、高沸点成分は缶出液中に残る。
[0034] 精製工程において、軽沸分離工程での 1部運転停止の場合を考慮して装置の最 低稼働能力の設計を行う。例えば、軽沸分離工程において 1部運転停止し、 50%の 稼働率で反応生成物が精製工程に供給された場合、 50%の稼働率で運転可能な 精製装置 (蒸留塔)を使用する。精製工程における装置の稼働率が、酸化反応工程 の最低稼働率に対応できなレ、場合は、精製工程で得られる製品アクリル酸を軽沸分 離工程および/または精製工程に供給することにより、酸化反応工程の最低稼働率 に対応させることが出来る。
[0035] 高沸点成分分解工程:
高沸点成分分解工程においては精製工程における缶出液中の高沸点成分を分解 する。得られた分解反応物において、重合禁止剤、アクリル酸などの有価成分を回 収し、所定の工程に供給して再使用する。
[0036] 高沸物分解塔としては、縦型または横型の槽型であり、必要に応じて槽には攪拌 機、加熱設備、蒸留塔などが付帯される。温度調節用の加熱設備としては、ジャケッ ト型、インナーコイル型、外部設置の熱交換器型などが例示され、何れの型式も使用 できる。分解反応温度は、通常 110— 250°C、好ましくは 120— 230°Cである。分解 反応の滞留時間は、分解反応温度が 110 150°Cの場合、通常 10 50時間と比 較的長時間であり、分解反応温度が 150— 250°Cの場合、通常 30分一 10時間であ る。分解反応圧力は、減圧条件、常圧条件の何れでもよい。高沸物分解塔の塔内に は、反応ガス冷却塔で説明したトレイ又は充填物を設置することが出来る。
[0037] 高沸点成分分解工程においても、軽沸分離工程での 1部運転停止の場合を考慮 して装置の最低稼働能力の設計を行う。例えば、軽沸分離工程において 1部運転停 止し、 50%の稼働率で以降の工程に供給された場合、 50%の稼働率で運転可能な 精製装置 (高沸物)を使用する。高沸点成分分解工程における装置の稼働率が、軽 沸分離工程の最低稼働率に対応できない場合は、軽沸分離工程において説明した 様に、軽沸分離工程において高い稼働率で運転する系列に不具合が生じない様に 対策を施すか、精製工程で得られる製品アクリル酸を軽沸分離工程、精製工程およ び/または高沸点成分分解工程に供給することにより、軽沸分離工程の最低稼働率 に対応させることが出来る。
実施例
[0038] 以下、本発明を実施例により説明するが、本発明は、その要旨を超えない限り、以 下の実施例に限定されるものではない。
[0039] 実施例 1 : 酸化反応工程、反応ガス冷却工程、軽沸分離工程、精製工程および高沸点成分 分解工程とから成り、軽沸分離工程が主として水を分離する第 1の軽沸分離工程と 主として酢酸を分離する第 2の軽沸分離工程とから成り、第 1の軽沸分離工程のみが A、 B及び Cの 3系列から成る構成を有し、 10万 tZ年の生産能力を有するアクリル酸 製造プラントを使用してアクリル酸の製造を行った。第 1の軽沸分離工程における系 列 Aの生産能力は 2万 5千 t/年(全体の 25%)、系列 Bの生産能力は 2万 5千 tZ年 (全体の 25%)、系列 Cの生産能力は 5万 tZ年(全体の 50%)であった。運転開始か ら 10ヶ月後に系列 Aの第 1の軽沸分離工程の蒸留塔の差圧が上昇し、運転が不可 能となり、系列 Aの運転を停止した。この際、第 1の軽沸分離工程の系列 B及び系列 Cの運転を継続させ、更に系列 B及び系列 Cの運転能力に対応する様に、 1系列で 運転している第 1の軽沸分離工程以外の工程の運転負荷を 75%に変更して、系列 Aが復旧するまで運転を継続した。系列 Aが復旧した後、すべての工程の運転負荷 を 100%に戻し、プラント全体の運転停止を回避することが出来た。
[0040] 比較例 1 :
酸化反応工程、反応ガス冷却工程、軽沸分離工程、精製工程および高沸点成分 分解工程とから成り、軽沸分離工程が主として水を分離する第 1の軽沸分離工程と 主として酢酸を分離する第 2の軽沸分離工程とから成り、すべての工程が 1系列の構 成であり、 2万 5千 t/年の生産能力を有するアクリル酸製造プラントを使用してアタリ ル酸の製造を行った。運転開始から 10ヶ月後に第 1の軽沸分離工程の蒸留塔の差 圧が上昇し、運転が不可能となり、第 1の軽沸分離工程の運転を停止した。この際、 第 1の軽沸分離工程以外の全て工程の運転も停止せざるを得なくなり、プラント全体 の運転を停止して、系内のアクリル酸含有液を系外へ抜き出した。第 1の軽沸分離ェ 程の蒸留塔が復旧するのに 10日間を要し、この間プラント全体の運転が停止し、生 産が停止した。
[0041] 比較例 2 :
比較例 1において、プラント全体の運転を停止している間、系内のアクリル酸含有 液を系外に抜き出さず、系内に保液した。 10日後に第 1の軽沸分離工程の蒸留塔 が復旧した際、系内に保管した液に重合物が確認された。 [0042] 実施例 2 :
酸化反応工程、反応ガス冷却工程、軽沸分離工程、精製工程および高沸点成分 分解工程とから成り、軽沸分離工程が主として水を分離する第 1の軽沸分離工程と 主として酢酸を分離する第 2の軽沸分離工程とから成り、第 1の軽沸分離工程のみが A及び Bの 2系列から成る構成を有し、 7万 5千 tZ年の生産能力を有するアクリル酸 製造プラントを使用してアクリル酸の製造を行った。第 1の軽沸分離工程における系 列 Aの生産能力は 2万 5千 t/年(全体の約 33%)、系列 Bの生産能力は 5万 tZ年( 全体の約 67%)であった。運転開始から 10ヶ月後に系列 Aの第 1の軽沸分離工程の 蒸留塔の差圧が上昇し、運転が不可能となり、系歹' JAの運転を停止した。この際、第 1の軽沸分離工程の系列 Bの運転を継続させ、更に系列 Bの運転能力に対応する様 に、 1系列で運転している第 1の軽沸分離工程以外の運転負荷を 67%に変更して、 系列 Aが復旧するまで運転を継続した。系列 Aが復旧した後、すべての工程の運転 負荷を 100%に戻し、プラント全体の運転停止を回避することが出来た。
[0043] 実施例 3 :
実施例 2と同様の装置を使用し、アクリル酸の製造を行った。運転開始から 10ヶ月 後に系列 Bの第 1の軽沸分離工程の蒸留塔の差圧が上昇し、運転が不可能となり、 系列 Bの運転を停止した。この際、酸化反応工程一反応ガス冷却工程の系列 Aの運 転を継続させたが、酸化反応工程一反応ガス冷却工程の運転能力が約 33 %であり、 第 2の軽沸分離工程以降の運転能力範囲が 50— 100%であるため、精製工程にお いて得られる製品アクリル酸の 1部を第 2の軽沸分離工程に供給し、軽沸分離工程 以降の運転負荷を 50%に調節して運転を継続した。系列 Bが復旧した後、すべての 工程の運転負荷を 100%に戻し、プラント全体の運転停止を回避することが出来た。

Claims

請求の範囲
[1] (メタ)ァクロレイン又は (メタ)アクリル酸の製造方法であって、原料ガスを気相接触 酸化する酸化反応工程と、得られた反応ガスを冷却する反応ガス冷却工程と、反応 生成物から軽沸点成分を分離する軽沸分離工程と、反応生成物から高沸点成分を 分離除去する精製工程と、精製工程における缶出液中の高沸点成分を分解する高 沸点成分分解工程とを順次に配置して成るプロセスにより(メタ)ァクロレイン又は (メ タ)アクリル酸を製造する方法において、軽沸分離工程を並列に配置して同時に運 転することを特徴とする(メタ)ァクロレイン又は (メタ)アクリル酸の製造方法。
[2] 軽沸分離工程が、第 1の軽沸分離工程および第 2の軽沸分離工程力 成り、第 1の 軽沸分離工程および第 2の軽沸分離工程はそれぞれ異なる軽沸物を分離し、反応 ガス冷却工程側の第 1の軽沸分離工程を並列に配置して同時に運転する請求項 1 に記載の製造方法。
[3] 軽沸分離工程の各系列の運転能力が、 1系列で運転する工程の運転能力の 20% 以上である請求項 1又は 2に記載の製造方法。
[4] 第 1の軽沸分離工程、第 2の軽沸分離工程または精製工程の何れか 1つ以上のェ 程に、精製工程にぉレ、て得られた (メタ)ァクロレイン又は (メタ)アクリル酸を供給する 請求項 1一 3の何れかに記載の製造方法。
PCT/JP2004/011446 2004-05-25 2004-08-09 (メタ)アクロレイン又は(メタ)アクリル酸の製造方法 WO2005115952A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/974,015 US20050267312A1 (en) 2004-05-25 2004-10-27 Process for producing (meth)acrolein or (meth)acrylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004154106A JP2005336066A (ja) 2004-05-25 2004-05-25 (メタ)アクロレイン又は(メタ)アクリル酸の製造方法
JP2004-154106 2004-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/974,015 Continuation US20050267312A1 (en) 2004-05-25 2004-10-27 Process for producing (meth)acrolein or (meth)acrylic acid

Publications (1)

Publication Number Publication Date
WO2005115952A1 true WO2005115952A1 (ja) 2005-12-08

Family

ID=35350120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011446 WO2005115952A1 (ja) 2004-05-25 2004-08-09 (メタ)アクロレイン又は(メタ)アクリル酸の製造方法

Country Status (4)

Country Link
US (1) US20050267312A1 (ja)
JP (1) JP2005336066A (ja)
CN (1) CN1697800A (ja)
WO (1) WO2005115952A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007120702A2 (en) 2006-04-11 2007-10-25 Arena Pharmaceuticals, Inc. Use of gpr119 receptor agonists for increasing bone mass and for treating osteoporosis, and combination therapy relating thereto

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136611A (en) * 1975-05-23 1976-11-26 Asahi Glass Co Ltd Separation and recovery of unsaturated aldehyde and/or unsaturated car boxylic acid
WO2000051954A1 (fr) * 1999-03-03 2000-09-08 Asahi Kasei Kabushiki Kaisha Procede d'elaboration continue de carbonate dialcoyle et de diol
JP2001170597A (ja) * 1999-12-15 2001-06-26 Nippon Shokubai Co Ltd 固体触媒の廃棄方法
JP2003073327A (ja) * 2001-09-03 2003-03-12 Nippon Shokubai Co Ltd 有機酸の製造方法
WO2003074461A1 (fr) * 2002-03-06 2003-09-12 Mitsubishi Rayon Co., Ltd. Procede de manipulation d'une substance facilement polymerisable et appareil permettant de manipuler une substance facilement polymerisable
JP2004051489A (ja) * 2002-07-16 2004-02-19 Nippon Shokubai Co Ltd アクリル酸の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511076B2 (ja) * 1973-05-19 1980-03-21
JPH02193944A (ja) * 1989-01-20 1990-07-31 Daicel Chem Ind Ltd (メタ)アクリル酸エステルの製造方法
JPH07228548A (ja) * 1993-12-24 1995-08-29 Sumitomo Chem Co Ltd アクリル酸の精製方法
JPH07178301A (ja) * 1993-12-24 1995-07-18 Kao Corp 多成分系混合物の蒸留方法
JP3616853B2 (ja) * 1994-01-25 2005-02-02 住友化学株式会社 ビニル化合物の重合防止方法および重合防止剤
FR2727964B1 (fr) * 1994-12-12 1997-01-24 Atochem Elf Sa Procede de recuperation des produits nobles legers contenus dans les residus de distillation des procedes de fabrication de l'acide acrylique et de ses esters
JP3825518B2 (ja) * 1996-12-16 2006-09-27 三菱化学株式会社 (メタ)アクリル酸及びそのエステルの重合防止方法
DE19838783A1 (de) * 1998-08-26 2000-03-02 Basf Ag Verfahren zur kontinuierlichen Gewinnung von (Meth)acrylsäure
JP4376367B2 (ja) * 1999-09-20 2009-12-02 新日本石油株式会社 炭化水素溶剤およびそれを用いた感圧複写材料
JP4467204B2 (ja) * 2001-04-13 2010-05-26 旭化成ケミカルズ株式会社 ジアルキルカーボネートおよびジオールの製造方法
JP2003212816A (ja) * 2002-01-16 2003-07-30 Mitsubishi Chemicals Corp 易重合性物質の製造方法
JP3971974B2 (ja) * 2002-09-03 2007-09-05 三菱化学株式会社 (メタ)アクリル酸類の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136611A (en) * 1975-05-23 1976-11-26 Asahi Glass Co Ltd Separation and recovery of unsaturated aldehyde and/or unsaturated car boxylic acid
WO2000051954A1 (fr) * 1999-03-03 2000-09-08 Asahi Kasei Kabushiki Kaisha Procede d'elaboration continue de carbonate dialcoyle et de diol
JP2001170597A (ja) * 1999-12-15 2001-06-26 Nippon Shokubai Co Ltd 固体触媒の廃棄方法
JP2003073327A (ja) * 2001-09-03 2003-03-12 Nippon Shokubai Co Ltd 有機酸の製造方法
WO2003074461A1 (fr) * 2002-03-06 2003-09-12 Mitsubishi Rayon Co., Ltd. Procede de manipulation d'une substance facilement polymerisable et appareil permettant de manipuler une substance facilement polymerisable
JP2004051489A (ja) * 2002-07-16 2004-02-19 Nippon Shokubai Co Ltd アクリル酸の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007120702A2 (en) 2006-04-11 2007-10-25 Arena Pharmaceuticals, Inc. Use of gpr119 receptor agonists for increasing bone mass and for treating osteoporosis, and combination therapy relating thereto

Also Published As

Publication number Publication date
JP2005336066A (ja) 2005-12-08
US20050267312A1 (en) 2005-12-01
CN1697800A (zh) 2005-11-16

Similar Documents

Publication Publication Date Title
KR101432517B1 (ko) 순수 형태를 포함하는 방향족 카르복실산의 제조 방법 및제조 장치
EP2311790B1 (en) Process for producing (meth)acrylic acids
RU2678993C2 (ru) Рецикл конденсата высокого давления при производстве очищенных ароматических карбоновых кислот
ZA200500279B (en) Process for producing (meth)acrylic acid and (meth)acrylic esters
JP6527523B2 (ja) 芳香族カルボン酸を製造するための連続プロセス
EP3197856B1 (en) Production of an aromatic dicarboxylic acid
WO2004022518A1 (ja) (メタ)アクリル酸類の製造方法
WO2005115952A1 (ja) (メタ)アクロレイン又は(メタ)アクリル酸の製造方法
WO2005115953A1 (ja) (メタ)アクロレイン又は(メタ)アクリル酸の製造方法
EP1688407B1 (en) Method of purifying (meth)acrylic acid
TWI691480B (zh) 用來建構用於生產環己酮之設備的方法
WO2019005532A1 (en) METHODS OF MAKING AROMATIC CARBOXYLIC ACIDS
US20210363091A1 (en) Electric heating of boiler feedwater in the manufacture of purified aromatic carboxylic acids
WO2011041337A2 (en) Systems and methods for reducing entrainment background
WO2011084472A2 (en) Systems and methods for production of aromatic carboxylic acids

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10974015

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048002745

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase