WO2005113772A1 - 蛍光蛋白質 - Google Patents

蛍光蛋白質 Download PDF

Info

Publication number
WO2005113772A1
WO2005113772A1 PCT/JP2005/009720 JP2005009720W WO2005113772A1 WO 2005113772 A1 WO2005113772 A1 WO 2005113772A1 JP 2005009720 W JP2005009720 W JP 2005009720W WO 2005113772 A1 WO2005113772 A1 WO 2005113772A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
seq
dna
acid sequence
Prior art date
Application number
PCT/JP2005/009720
Other languages
English (en)
French (fr)
Inventor
Atsushi Miyawaki
Ryoko Ando
Hideaki Mizuno
Satoshi Karasawa
Original Assignee
Riken
Medical & Biological Laboratories Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken, Medical & Biological Laboratories Co., Ltd. filed Critical Riken
Priority to EP05743552.1A priority Critical patent/EP1767635B1/en
Priority to AU2005245737A priority patent/AU2005245737A1/en
Priority to JP2006513770A priority patent/JP4695073B2/ja
Priority to US11/569,275 priority patent/US7897385B2/en
Publication of WO2005113772A1 publication Critical patent/WO2005113772A1/ja
Priority to US13/008,610 priority patent/US8034614B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • G03C1/731Biological compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • G03C1/733Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds with macromolecular compounds as photosensitive substances, e.g. photochromic

Definitions

  • the present invention relates to a novel fluorescent protein capable of controlling emission and extinction of fluorescence by irradiation with two lights having different wavelengths. More specifically, the present invention relates to a novel fluorescent protein derived from Echinophylia sp., A novel fluorescent protein monomerized by introducing a mutation into the protein, and use thereof. Background Art ..
  • Green fluorescent protein (GFP) from the jellyfish Aequorea victoria has many uses in biological systems. Recently, based on random mutagenesis and semi-rational mutagenesis, we changed the color, improved the folding properties, increased the brightness, or altered the pH sensitivity Various GFP mutants have been produced. Fusion of other proteins to fluorescent proteins such as GFP by genetic recombination technology has been performed to monitor their expression and transport.
  • YFP Yellow Fluorescent Protein
  • YFP shows the longest wavelength fluorescence among jellyfish (Aequorea) GFP mutants.
  • the ⁇ and ⁇ most YF P respectively 60,000 ⁇ 100,0003 ⁇ 41- 1 011 a 1 - 1 Oyo beauty 0 ⁇ 6 ⁇ 0.8 (Tsien, RY ( 1998).
  • Ann. Rev. Biochem. 67, 509-544 these values are comparable to those of common fluorophores (such as fluorescein and rhodamine). Therefore, the improvement of the absolute brightness of YFP is almost reaching its limit.
  • CFP cyan fluorescent protein
  • ECFP enhanced cyan fluorescent protein
  • RFP Red fluorescent protein
  • the yellow fluorescent protein (YFP) which is a variant derived from O jellyfish, has a tendency to gradually increase by irradiation with light at 488 nm, and then recover slightly (at most 20%) by irradiation with light at 405 nm. It recognized. However, the photochromism reduction (ie, loss and recovery of fluorescence) of YFP is imperfect and is far from practical.
  • An object of the present invention is to solve the above-described problem. Specifically, a novel on- and off-state of fluorescence that can be controlled by two light irradiations having different wavelengths is provided. Providing fluorescent proteins was an issue to be solved.
  • the present inventors have conducted intensive studies in order to solve the above problems, and succeeded in producing a protein capable of completely realizing the above-described photochromism effect using a novel fluorescent protein derived from Kikka coral (Echinophylia sp.). . That is, the fluorescent protein of the present invention can control the fluorescence intensity between 0% and 100% by irradiating light of 488 nm and 405 nm.
  • the present invention has been completed based on these findings.
  • a fluorescent protein represented by the following (a) or (b) is provided.
  • a DNA encoding a fluorescent protein represented by the following (a) or (b):
  • nucleotide sequence having a nucleotide sequence having deletion, substitution and / or addition of one to several nucleotides and encoding a protein having a fluorescent property DNA having a sequence in the nucleotide sequence of SEQ ID NO: 2 or 6, a nucleotide sequence having a nucleotide sequence having deletion, substitution and / or addition of one to several nucleotides and encoding a protein having a fluorescent property DNA having a sequence.
  • a fluorescent protein represented by the following (a) or (b):
  • a DNA encoding a fluorescent protein represented by the following (a) or (b):
  • DNA having the nucleotide sequence of SEQ ID NO: 4 or 8 (b) In the nucleotide sequence of SEQ ID NO: 4 or 8, encodes a protein having a nucleotide sequence having deletion, substitution, Z or addition of one to several bases, and having a fluorescence property showing a photochromic effect.
  • DNA having a base sequence of SEQ ID NO: 4 or 8 encodes a protein having a nucleotide sequence having deletion, substitution, Z or addition of one to several bases, and having a fluorescence property showing a photochromic effect.
  • a photochromic material comprising the above-described fluorescent protein of the present invention.
  • an optical recording medium comprising the above-described fluorescent protein of the present invention and having a recording layer capable of recording and reading information by light irradiation.
  • FIG. 1 shows an absorption spectrum and a fluorescence / excitation spectrum of 22G.
  • Figure 2 shows the results of measurement of P H sensitivity of the fluorescence intensity of 22G.
  • FIG. 3 shows the absorption spectrum and fluorescence / excitation spectrum of m22G3.
  • FIG. 4 shows the results of measuring the pH sensitivity of the fluorescence intensity of m22G3.
  • Figure 5 shows that when m22G3 is irradiated with light near the maximum absorption wavelength of 518 nm, absorption and fluorescence are reduced, and instead absorption near 380 nm appears.
  • FIG. 6 shows that when m22G3 is irradiated with light near 380 nm, the absorption at 380 nm disappears and the absorption and fluorescence at 518 nm are completely recovered.
  • FIG. 7 shows the absorption spectrum of 22B.
  • FIG. 8 shows the fluorescence and excitation spectrum of 22B.
  • FIG. 9 shows the absorption spectrum of m3m4.
  • FIG. 10 shows the fluorescence / excitation spectrum of m3m4.
  • FIG. 11 shows a comparison of the fluorescence properties of m3m4 and m22G3 (Dronpa).
  • the first fluorescent protein of the present invention is a protein shown in either (a) or (b) below.
  • the fluorescent protein (22G) having the amino acid sequence of SEQ ID NO: 1 has the following characteristics.
  • the absorption maximum wavelength is 507 nm, and the fluorescence maximum wavelength is 518 nm;
  • the fluorescent protein (22B) having the amino acid sequence of SEQ ID NO: 5 has an absorption maximum wavelength of 380 nm and a fluorescence maximum wavelength of 467 nm.
  • Echinophylia sp. Is a type of coral belonging to the Cnidaria Chrysophyta, Six-released Coral Subfamily Ichthyidae (Lepidoptera), and often forms a sticky, coated, lamellar, or leaf-like colony. .
  • the protein of the present invention can be obtained from a coral emitting fluorescence other than kickal coral (Echinophylia sp.), And such a protein is also within the scope of the present invention.
  • the DNA encoding the amino acid sequence described in SEQ ID NO: 3 is obtained by converting the DNA encoding the amino acid sequence described in SEQ ID NO: 1 into type III, It is obtained by performing PCR with MnCl 2 added and introducing mutations at random, and selecting from clones obtained by random mutagenesis.
  • the second fluorescent protein of the present invention is a protein shown in either (a) or (b) below.
  • the fluorescent protein (m22G3) having the amino acid sequence of SEQ ID NO: 3 has the following characteristics.
  • the absorption maximum wavelength is 503 nm and the fluorescence maximum wavelength is 518 nm;
  • the fluorescent protein (m3m4) having the amino acid sequence of SEQ ID NO: 7 has the following characteristics.
  • the absorption maximum wavelength is 486 nm and the fluorescence maximum wavelength is 513 nm;
  • the DNA encoding the amino acid sequence of SEQ ID NO: 3 is obtained by converting the DNA encoding the amino acid sequence of SEQ ID NO: 1 into a ⁇ -type. And perform PCR with MnCl 2 added to It is obtained by selecting a clone having the size of a monomer among clones obtained by introducing a difference and random mutagenesis.
  • the DNA encoding the amino acid sequence described in SEQ ID NO: 7 was obtained by randomizing the DNA encoding the amino acid sequence described in SEQ ID NO: 3 into type III and performing PCR with MnCl 2 added thereto. This was obtained by introducing a mutation into a clone and selecting from clones obtained by random mutagenesis.
  • the second fluorescent protein of the present invention is characterized by having a fluorescent property exhibiting a photochromic effect.
  • the range of "one to several" in the "amino acid sequence having one to several amino acid deletions, substitutions and / or additions" referred to in the present specification is not particularly limited, but is, for example, one to twenty. It preferably means about 1 to 10, more preferably about 1 to 7, even more preferably about 1 to 5, particularly preferably about 1 to 3.
  • fluorescent property refers to the ability to emit fluorescence upon irradiation with excitation light.
  • the fluorescent properties of a fluorescent protein having an amino acid sequence in which one to several amino acids are deleted, substituted, and / or added in the amino acid sequence of SEQ ID NO: 1 or 5 are as follows: It may be the same as or different from the fluorescent characteristics of the fluorescent protein having an acid sequence. Indicators of the fluorescence characteristics include fluorescence intensity, excitation wavelength, fluorescence wavelength, pH sensitivity, and the like.
  • fluorescence characteristic exhibiting photochromic effect means that absorption and fluorescence are attenuated or eliminated by irradiation with light of a predetermined wavelength such as a wavelength near the absorption maximum wavelength, and are absorbed in another wavelength range. This refers to the fluorescence characteristic in which the absorption and fluorescence that has been attenuated or eliminated as described above are restored when light having a newly appearing absorption wavelength is irradiated.
  • the method for obtaining the fluorescent protein of the present invention is not particularly limited, and may be a protein synthesized by chemical synthesis or a recombinant protein produced by a genetic recombination technique.
  • DNA encoding the protein When producing a recombinant protein, it is first necessary to obtain DNA encoding the protein. Described in SEQ ID NO: 1, 3, 5, or 7 in the sequence listing of this specification CDNA library prepared from Kikka coral (Echinophylia sp.) Using appropriate amino acid sequence and base sequence information shown in SEQ ID NO: 2, 4, 6, or 8 to design appropriate primers By performing PCR with the as a ⁇ , DNA encoding the first fluorescent protein of the present invention can be obtained. Further, a DNA encoding the second fluorescent protein of the present invention can be obtained by introducing a predetermined mutation into the DNA encoding the first fluorescent protein of the present invention.
  • the desired fluorescent protein is obtained by ligating the prepared DNA fragments in sequence by a gene recombination technique. You can get the coding DNA. By introducing this DNA into an appropriate expression system, the fluorescent protein of the present invention can be produced. The expression in the expression system will be described later in this specification.
  • DNA encoding the first fluorescent protein of the present invention include a DNA encoding the protein shown in the following (a) or (b).
  • DNA encoding the first fluorescent protein of the present invention also include the following DNA shown in (a) or (b).
  • nucleotide sequence having a nucleotide sequence having deletion, substitution and / or addition of one to several nucleotides and encoding a protein having a fluorescent property DNA having a sequence in the nucleotide sequence of SEQ ID NO: 2 or 6, a nucleotide sequence having a nucleotide sequence having deletion, substitution and / or addition of one to several nucleotides and encoding a protein having a fluorescent property DNA having a sequence.
  • Specific examples of the DNA encoding the second fluorescent protein of the present invention include a DNA encoding the protein shown in the following (a) or (b).
  • DNA encoding the second fluorescent protein of the present invention also include the following DNA shown in (a) or (b).
  • ⁇ 1 to several '' in the ⁇ base sequence having 1 to several bases of deletion, substitution and / or addition '' referred to herein is not particularly limited, for example, 1 to 50, It preferably means about 1 to 30, more preferably about 1 to 20, more preferably about 1 to 10, particularly preferably about 1 to 5.
  • the DNA of the present invention can be synthesized by, for example, the phosphoramidite method or the like, or can be produced by the polymerase chain reaction (PCR) using specific primers.
  • PCR polymerase chain reaction
  • the method for producing DNA or a fragment thereof of the present invention is as described above in this specification.
  • a method for introducing a desired mutation into a predetermined nucleic acid sequence is known to those skilled in the art.
  • a DNA having a mutation is constructed by appropriately using a known technique such as site-directed mutagenesis, PCR using a degenerate oligonucleotide, exposure of a cell containing nucleic acid to a mutagen or radiation. can do.
  • a known technique such as site-directed mutagenesis, PCR using a degenerate oligonucleotide, exposure of a cell containing nucleic acid to a mutagen or radiation.
  • Such known techniques are described, for example, Molecular Cloning:.. A laboratory Mannual, 2 nd Ed, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989 average Pini Current Protocols in Molecular Biology, Supplement: ! ⁇ 38, described in John Wiley & Sons (1987-1997) Has been.
  • the DNA of the present invention can be used by inserting it into an appropriate vector.
  • the type of vector used in the present invention is not particularly limited, and may be, for example, an autonomously replicating vector (for example, plasmid or the like), or may be integrated into the host cell genome when introduced into the host cell. It may be replicated along with the chromosome obtained.
  • the vector used in the present invention is an expression vector.
  • elements required for transcription eg, promoter
  • the promoter is a DNA sequence showing transcriptional activity in a host cell, and can be appropriately selected depending on the type of the host.
  • the promoters operable in bacterial cells include Bacillus, stearic thermophilus, manolethodienic amylase gene (Bac i 1 lus stearothermophi lus maltogenic amylase gene), and tenenoles lichenizozoles aa fusae gene. (Bacillus licheniformis alpha-amylase gene) Bacillus amyloliquefaciens BAN amylase gene, Bacillus subtilis.
  • Alkaline protease gene (Bacillus S ubtilis alkaline protease gene)
  • xylosidase gene (Bacillus pumilus xylosldase gene) promoter or phage lambda P R or P L promoters,, lac of E.coli, such as trp or tac promoter and the like.
  • promoters operable in mammalian cells include the SV40 promoter, the MT-11 (metamouth thionein gene) promoter, or the adenovirus 2 major late promoter.
  • promoters operable in insect cells include the polyhedrin promoter, the P10 promoter, the autographer, the force reformer, the polyhedral cis basic protein promoter, and the baculourovirus immediate early gene 1 promoter. Or the Bakiurovirus 39K delayed early gene promoter.
  • promoters operable in yeast host cells include yeast glycolytic genes-derived promoters, anoreconorede hydrogenase gene promoters, TPI1 promoters, ADH2-4c promoters, and the like.
  • promoters operable in filamentous fungal cells include the ADH3 promoter or the tpIA promoter.
  • the DNA of the present invention may be operably linked to a suitable terminator, such as, for example, a human growth hormone terminator or, for fungal hosts, a TPI1 terminator or an ADH3 terminator.
  • a suitable terminator such as, for example, a human growth hormone terminator or, for fungal hosts, a TPI1 terminator or an ADH3 terminator.
  • the recombinant vectors of the present invention further include a polyadenylation signal (eg, from the SV40 or adenovirus 5E1b region), a transcription enhancer sequence (eg, the SV40 enhancer) and a translation enhancer sequence (eg, an adenovirus). (Which encodes VA R NA).
  • the recombinant vector of the present invention may further comprise a DNA sequence enabling the vector to replicate in a host cell, such as the SV40 origin of replication (when the host cell is a mammalian cell). ).
  • the recombinant vector of the present invention may further contain a selection marker.
  • Selectable markers include, for example, genes whose receptor is lacking in the host cell, such as dihydrofolate reductase (DHFR) or the Schizosaccharomyces bomb TPI gene, or ampicillin, kanamycin, tetracycline, chloramphenicol And drug resistance genes such as neomycin or hygromycin.
  • DHFR dihydrofolate reductase
  • Schizosaccharomyces bomb TPI gene or ampicillin, kanamycin, tetracycline, chloramphenicol And drug resistance genes such as neomycin or hygromycin.
  • Transformants can be prepared by introducing the DNA or recombinant vector of the present invention into a suitable host.
  • the host cell into which the DNA or the recombinant vector of the present invention is introduced may be any cell as long as it can express the DNA construct of the present invention, and examples include bacteria, yeast, fungi and higher eukaryotic cells.
  • Examples of bacterial cells include Gram-positive bacteria such as Bacillus or Streptomyces or Gram-negative bacteria such as Escherichia coli. Transformation of these bacteria can be carried out by using protoplast method or by using a competent cell by a known method.
  • Examples of mammalian cells include HEK293 cells, HeLa cells, COS cells, BHK cells, CHL cells or CHO cells. A method for transforming a mammalian cell and expressing the introduced DNA sequence in the cell is also known. For example, an electoral poration method, a calcium phosphate method, a ribofusion method and the like can be used.
  • yeast cells include cells belonging to Saccharomyces or Schizosaccharomyces, such as Saccharomyces cerevislae or Saccharomyces kluyveri.
  • Examples of a method for introducing a recombinant vector into a yeast host include an electoral-portion method, a spheroblast method, and a lithium acetate method.
  • filamentous fungi such as cells belonging to Aspergillus, Neurospora, Fusarium, or Trichoderma.
  • transformation can be performed by integrating the DNA construct into the host chromosome to obtain a recombinant host cell. Integration of the DNA construct into the host chromosome can be performed according to known methods, for example, by homologous recombination or heterologous recombination.
  • the recombinant gene transfer vector and paculovirus are co-transfected into the insect cell to obtain the recombinant virus in the insect cell culture supernatant, and then the recombinant virus is transmitted to the insect cell.
  • the protein For example, described in Baculovirus Expression Vectors, A Laboratory Manual; and current 'Protocols' in Molecular Molecular Biology, Bio / Technology, 6, 47 (1988), etc.).
  • the baculovirus for example, it is possible to use a virus that infects the insects of the family Spodopteridae, such as Atographa, force riforni, nuclei, polyhedrosis, and virus (Autographa californica nuclear polyhedrosis virus).
  • Insect cells include Spodoptera frugiperda ovarian cells, Sf9 and Sf21 [Baculovirus' Expression Vectors', 'Laboratory' Manual, Doublet 'Jay' Freeman 'and Company (WH Freeman and Company), New York, (1992)], and HiFiVe (Invitrogen), which is an ovarian thin-month sac of Trichoplusia ni, can be used.
  • Examples of a method for co-introducing the recombinant gene transfer vector and the above-mentioned paculovirus into insect cells for preparing a recombinant virus include a calcium phosphate method and a ribofusion method.
  • the above transformants are cultured in a suitable nutrient medium under conditions that allow expression of the introduced DNA construct.
  • a usual protein isolation and purification method may be used.
  • the protein of the present invention when expressed in a dissolved state in the cells, the cells are collected by centrifugation, suspended in an aqueous buffer after culturing, and then disrupted by an ultrasonic disrupter or the like. Obtain a cell-free extract.
  • a normal protein isolation and purification method that is, a solvent extraction method, a salting out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Anion exchange chromatography using a resin such as getylaminoethyl (DEAE) sepharose, cation exchange chromatography using a resin such as S-Sepharose FF (manufactured by Pharmacia), butyl sepharose, Hydrophobic'I raw chromatography using resin such as ninoresepharose, gel filtration using molecular sieve, affinity chromatography, chromatography focusing, electrophoresis such as isoelectric focusing Or a single method Can be used in combination to obtain a purified sample.
  • a resin such as getylaminoethyl (DEAE) sepharose
  • cation exchange chromatography using a resin such as S-Sepharose FF (manufactured by Pharmacia), butyl sepharose
  • the fluorescent protein of the present invention can be used as a fluorescent labeling substance. That is, the fluorescent protein of the present invention is purified as a fusion protein with a test amino acid sequence, introduced into cells by a technique such as microinjection, and the distribution of the fusion protein is observed over time. It is possible to detect the intracellular targeting activity of the sequence.
  • the type of other protein (test amino acid sequence) to which the fluorescent protein of the present invention is fused is not particularly limited.
  • proteins localized in cells, proteins specific to intracellular organelles, A targeting signal (for example, a nuclear transport signal, a mitochondrial blur sequence) and the like are suitable.
  • the fluorescent protein of the present invention can be used by expressing it in a cell, instead of introducing it into the cell by a microinjection method or the like. In this case, a vector into which DNA encoding the fluorescent protein of the present invention has been inserted so that it can be expressed is introduced into host cells.
  • the fluorescent protein of the present invention can be used as a reporter protein for measuring promoter activity. That is, a vector in which a DNA encoding the fluorescent protein of the present invention is arranged downstream of the test promoter is introduced into a host cell, and the fluorescence of the fluorescent protein of the present invention emitted from the cell is detected. By doing so, it is possible to measure the activity of the test motor.
  • the test promoter is not particularly limited as long as it can function in the host cell.
  • the vector used for detecting the targeting activity of the amino acid sequence or measuring the promoter activity is not particularly limited.
  • pNE0 P. Southern, and P. Berg (1982) J. M01. Appl. Genet. 1: 3 27
  • pCAGGS H. Niwa, K. Yamamura, and J. Miyazaki.
  • the types of cells that can be used are not particularly limited, and various animal cells, such as L cells, BalbC-3T3 cells, NIH3T3 cells, CHO (Chinese hamster ovary) cells, HeLa cells, and NRK (normal rat kidney) Cells, yeast cells such as Saccharomyces cerevisiaej, and Escherichia coli (E. coli) cells can be used.
  • Vectors are introduced into host cells by a conventional method such as the calcium phosphate method or the electoporation method. be able to.
  • the protein in the cell is obtained. It becomes possible to analyze the localization and dynamics of X. That is, by observing cells transformed or transfected with DNA encoding the fusion fluorescent protein of the present invention with a fluorescence microscope, the localization and dynamics of protein X in the cells can be visualized and analyzed.
  • protein X a protein specific to an intracellular organelle as protein X
  • the distribution and movement of nuclei, mitochondria, endoplasmic reticulum, Golgi apparatus, secretory vesicles, peroxisomes, etc. can be observed.
  • axons and dendrites of nerve cells show remarkably complicated changes in strike direction in developing individuals, so dynamic analysis becomes possible by fluorescently labeling such sites.
  • the fluorescence of the fluorescent protein of the present invention can be detected as it is in living cells. This detection can be performed, for example, using a fluorescence microscope (Axio Photo Filter Set 09 by Carl Zeiss) or an image analyzer (ATT0 Digital Image Analyzer).
  • the type of microscope can be appropriately selected according to the purpose. Frequent changes such as tracking changes over time When observation is required, an ordinary epifluorescence microscope is preferable. When resolution is important, for example, when pursuing detailed localization in a cell, a confocal laser microscope is preferable. As a microscope system, an inverted microscope is preferable from the viewpoint of maintaining the physiological state of cells and preventing contamination. When using an upright microscope, a water immersion lens can be used when using a high magnification lens.
  • An appropriate filter set can be selected according to the fluorescence wavelength of the fluorescent protein.
  • the fluorescent protein having the amino acid sequence of SEQ ID NO: 1 has an absorption maximum wavelength of 507 nm and a fluorescence maximum wavelength of 518 nm
  • the excitation light has a wavelength of about 500 to 51 Onm and a fluorescence of about 510 to 53 Onm.
  • Filters can be used.
  • the fluorescent protein having the amino acid sequence described in SEQ ID NO: 3 has an absorption maximum wavelength of 503 nm and a fluorescence maximum wavelength of 518 nm, so that the excitation light is about 500 to 51 Onm and the fluorescence is about 510 to 53 Onm. Filters can be used.
  • the excitation light has a wavelength of about 370 to 390 nm and a fluorescence of about 460 to 480 nm. Filters can be used.
  • the fluorescent protein having the amino acid sequence of SEQ ID NO: 7 has an absorption maximum wavelength of 486 nm and a fluorescence maximum wavelength of 513 nm, the excitation light is 480 to 49 Onm and the fluorescence is 500 to 520 nm. A degree filter can be used.
  • Cooling CCD cameras can reduce thermal noise by cooling the CCD, and can capture weak fluorescent images clearly with short exposures.
  • the second fluorescent protein of the present invention has a fluorescent property showing a photochromic effect (photochromic fluorescent property), it can be used for CD, DVD, holographic It can be applied to various uses such as optical recording media such as optical recording media, smart cards, advertising boards, fluorescent screens, display elements such as TVs and computer monitors, lenses, biosensors, biochips, and photochromic fiber materials. it can.
  • the optical recording medium of the present invention can be produced by forming a recording layer containing a fluorescent protein exhibiting the photochromic effect according to the present invention and having fluorescent properties on a substrate.
  • the NA number of numerical aperture
  • the NA can be increased by using a water immersion type lens for the optical system for writing and reproduction. As a result, high resolution can be expected.
  • the material of the substrate used for the production of the optical recording medium is not particularly limited, and examples thereof include glass (plastic or paper) and metals such as aluminum (which may be plate-like or foil-like). preferable.
  • the material of the plastic is not particularly limited, but examples include acrylic resin, methacrylic resin, vinyl acetate resin, vinyl chloride resin, nitrocellulose resin, polyethylene resin, polypropylene resin, polycarbonate resin, polyimide resin, and polysulfone resin.
  • Can be The fluorescent protein of the present invention is dissolved in a suitable solvent together with a binder if necessary, and the film thickness is 1 nm to 10 nm on the substrate by means such as a doctor blade method, a cast method, a spinner method, and an immersion method.
  • a recording layer By applying so as to form a thin film having a thickness of about 50 ⁇ , a recording layer can be formed on the substrate.
  • the binder used here include polyester, polystyrene, polyvinyl butyral, polyvinylidene chloride, polyvinyl chloride, polymethyl methacrylate, polyvinyl acetate, cellulose acetate, epoxy resin, and phenol resin.
  • Suitable solvents include toluene, cyclohexanone, methyl ethyl ketone, ethyl acetate and the like.
  • the content of the fluorescent protein of the present invention in the formed thin film is not particularly limited, and can be appropriately determined according to the absorbance of the fluorescent protein to be used, the intensity of the generated fluorescence, and the like.
  • the recording layer may be provided on both sides of the substrate, or may be provided only on one side.
  • Recording on the optical recording medium of the present invention produced as described above can be performed by irradiating convergent light to the recording layers provided on both sides or one side of the substrate.
  • Light irradiation The part that has been changed absorbs light energy, causing a change in the fluorescent properties, and information is recorded.
  • Reproduction of recorded information can be performed by reading the difference in fluorescence due to light irradiation.
  • the fluorescent protein of the present invention is applicable to the field of photochromism.
  • International Publication W098 / 47148 Photochromic fluorescent proteins and optical memory storage devices based on fluorescent proteins
  • International Publication W002 / 96924 Kermling fluorescent proteins and methods for their use.
  • Example 1 Isolation of a novel fluorescent protein gene (22G) from coral
  • a fluorescent protein gene was isolated from the fluorescent ginger (Echinophylia sp.) By the following procedure.
  • Total RNA was extracted by the Acid Guanidium-Phenol-Chloroform method.
  • the frozen kita coral was broken in a denaturing solution using Multi-Beads Shocker (Yasui Kikki), phenol I chloroform was added, and centrifugation was performed to separate RA from the protein-DNA complex.
  • the aqueous layer containing RA was added to isopropanol and centrifuged to obtain total RNA as a precipitate.
  • MRNA was separated from total RNA using 01igotex TM -dT30 (Roche). Add Oligotex TM -dT30 ⁇ super> to the total RNA, heat to reduce the secondary structure of the RNA, and bind the RNA to Oligotex-dT30 at 37 ° C. After washing, heating and centrifugation yield the supernatant from which the mRNA has been eluted. After removing Oligotex-dT30, mRNA was precipitated with ethanol and NaCl and dissolved in water.
  • the protein obtained by adding His-Tag to fluorescent protein 22G was expressed in a conventional manner using Escherichia coli, and purified using Ni-Agarose.
  • Example 2 Analysis of fluorescent properties of fluorescent protein (22G)
  • the absorption spectrum was measured using a 50 mM HEPES (H7.5) solution. Using a 50 mM HEPES (pH 7.5) solution, the fluorescence and excitation spectra were measured at 480 nm and at 540 rnn, respectively.
  • the absorption spectrum of the fluorescent protein 22G is shown on the left side of FIG. 1, and the fluorescence / excitation spectrum is shown on the right side of FIG.
  • Table 1 shows the properties of 22G determined from the above results.
  • Mutagenesis was introduced into the fluorescent protein (22G) obtained in Example 1 by random mutagenesis in the following manner to monomerize it.
  • the cleaved 22G DNA was subjected to PCR in the form of ⁇ with MnCl 2 added to introduce mutations at random.
  • the DNA polymerase used was TAKARA Taq (Takara), and a primer added with a BsiffL site on the 5 'side as a forward (MG CTC CCG GAT CCG ATG AGT GTG ATT AAA CCA GAC) (SEQ ID NO: 10);
  • MG CTC CCG GAT CCG ATG AGT GTG ATT AAA CCA GAC SEQ ID NO: 10
  • a product obtained by adding a cd I site to the 3 ′ side was used.
  • the amplified DNA was inserted into pRSET B by virtue of Bail and ccRI, introduced into the JM109 DE3 strain, and cultured on an LA plate.
  • the nucleotide sequence of the clone that was indeed monomerized was determined using a DNA sequencer and named m22G3.
  • the amino acid sequence and nucleotide sequence of the monomer clone (m22G3) are shown in SEQ ID NOs: 3 and 4.
  • the protein obtained by adding His-Tag to the fluorescent protein m22G3 using Escherichia coli was expressed by a conventional method, and purified using Ni-Agarose.
  • Example 4 Analysis of fluorescence properties of mutant m22G3
  • a 50 mM HEPES (pH 7.5) solution was used for the absorption spectrum.
  • a 50 mM HEPES (pH 7.5) solution was used for the fluorescence and excitation spectrum to measure the fluorescence spectrum when excited at 480 nm and the excitation spectrum due to 540 nm fluorescence.
  • the absorption spectrum of the fluorescent protein m22G3 is shown on the left side of FIG. 3, and the fluorescence / excitation spectrum is shown on the right side of FIG.
  • Table 2 shows the properties of m22G3 determined from the above results.
  • this mutant causes photochromism.
  • absorption and fluorescence are reduced by irradiation with light near the maximum absorption wavelength of 518 nm. It weakens and instead absorbs around 380 nm ( Figure 5).
  • the absorption at 380 nm disappears, and the absorption and fluorescence at 518 nm are completely restored (Fig. 6).
  • a major feature of this mutant m22G3 is that it can switch between the light state and the dark state with two lights having different wavelengths.
  • PCR was performed on 22G DNA in the form of ⁇ with MnCl 2 added to introduce mutations at random.
  • the DNA polymerase used was TAKARA Taq (Takara).
  • the primer used was a forward with a Baim site added to the 5 ′ side and the reverse was a primer with a ⁇ c3 ⁇ 4I site added to the 3 ′ side.
  • the amplified DNA was cultivated with Baj and v3 ⁇ 4cRI, inserted into pRSET B , introduced into the J1109 DE3 strain, and cultured on an LA plate.
  • FIG. 7 shows the absorption spectrum of the fluorescent protein 22B
  • FIG. 8 shows the fluorescence excitation spectrum.
  • the absorption maximum is 380 nm
  • the fluorescence maximum is 467 nm.
  • the m22G3 (Dronpa) DNA was subjected to PCR in the form of type I with MnCl 2 added to introduce mutations at random.
  • the DNA polymerase used was TAKA Taq (Takara), and the primer used was a forward with a Basill site added to the 5 'side and the reverse was a primer with an Acc I site added to the 3' side.
  • the amplified DNA ⁇ enter into pRSET B with force Tsu shot with BsOil and CCRI, were cultured in LA plates was introduced into JM109 DE3 strain.
  • m3m4 darkens about five times faster when exposed to the same intensity of 480nm light as m22G3 (Dronpa), and becomes almost as fast when exposed to 400nm light of the same intensity on the darkened one ( ( Figure 11 left figure).
  • the fluorescent protein of the present invention can obtain or extinguish fluorescence by controlling light, it is useful as a material for a photonitus device in the technical field of information recording or image display.
  • the fluorescent protein of the present invention can be put to practical use, for example, as a rewritable optical memory element.
  • the fluorescent protein of the present invention or the gene encoding the fluorescent protein may be a copy-preventive printing material, a reversible image display medium capable of repeatedly writing and erasing color image information by irradiating light, a horodharam material, It can be used as a light-shielding material or a material for an optical switching element.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明の目的は、蛍光のオンとオフを波長の異なる2つの光照射によって制御することが可能な新規な蛍光蛋白質を提供することである。本発明によれば、以下の(a)又は(b)に示す蛍光蛋白質が提供される。(a)配列番号3又は7に記載のアミノ酸配列を有する蛋白質;(b)配列番号3又は7に記載のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、フォトクロミズム効果を示す蛍光特性を有する蛋白質。

Description

明細書
蛍光蛋白質 技術分野
本発明は、 蛍光の放出と消失を波長の異なる 2つの光照射によって制御するこ とが可能な新規な蛍光蛋白質に関する。 より詳細には、 本発明は、 キッカサンゴ (Echinophylia sp. )由来の新規蛍光蛋白質、 並びにこれに変異を導入することに より単量体化した新規な蛍光蛋白質及びその利用に関する。 背景技術 ..
クラゲのェクオレア ·ビクトリア (Aequorea victoria) に由来する緑色蛍光蛋 白質 (GF P) は、 生物系において多くの用途を有する。 最近、 ランダム突然変 異誘発法および半合理的(semi- rational)突然変異誘発法に基づいて、色を変化さ せたり、 折りたたみ特性を改善したり、 輝度を高めたり、 あるいは pH感受性を 改変したといった様々な GF P変異体が作製されている。 遺伝子組み換え技術に より他の蛋白質を GF P等の蛍光蛋白質に融合させて、 それらの発現および輸送 のモニタリングを行うことが行われている。
最もよく使用される GF P変異体の一つとして黄色蛍光蛋白質 (YF P) が挙 げられる。 YF Pは、 クラゲ (Aequorea) G F P変異体の中でも最長波長の蛍光 を示す。 大部分の YF Pの∑および Φは、 それぞれ 60,000〜100,000¾1—10111 _1ぉょ び 0·6〜0.8であり (Tsien, R. Y. (1998). Ann. Rev. Biochem. 67, 509—544)、 これらの値は、 一般的な蛍光団 (フルォレセインおょぴローダミンなど) の値に 匹敵する。 従って YFPの絶対的輝度の改善は、 ほぼ限界に達しつつある。
GF P変異体の他の例として、 シアン色蛍光蛋白質 (CF P) があり、 ECF P (enhanced cyan fluorescent protein)が知られている。 また、 イソギンチヤ ク (Discoma sp. ) からは赤色蛍光蛋白質 (RF P) も単離されており、 DasRed が知られている。 このように蛍光蛋白質は、 緑色、 黄色、 シアン色、 赤色の 4種 が次々と開発されスぺクトルの範囲は大幅に広がっている。 発明の開示
ォワンクラゲ由来の改変体である黄色蛍光蛋白質(YFP) には、 488nmの光 照射によって徐々に喑くなる傾向、かつその後、 405 nmの光照射によって僅かに 蛍光が回復 (せいぜい 20%) する傾向が認められている。 しかし、 YFPのフ オトクロミズム (photochromism) 減少(即ち、 蛍光の消失と回復) は不完全であ るため、 実用化には程遠い状況である。 本発明は、 上記した問題を解消すること を解決すべき課題とするものであり、 具体的には、 蛍光のオンとオフを波長の異 なる 2つの光照射によって制御することが可能な新規な蛍光蛋白質を提供するこ とを解決すべき課題とした。
本発明者らは上記課題を解決するために鋭意検討し、 キッカサンゴ (Echinophylia sp. )由来の新規の蛍光蛋白質を用いて、 上記したフォトクロミズ ム効果を完全に実現できる蛋白質を作製することに成功した。 即ち、 本発明の蛍 光蛋白質においては、 488 nmと 405 n mの光を照射することによって蛍光 強度を 0%と 100%の間でコントロールすることができる。 本発明はこれらの 知見に基づいて完成したものである。
即ち、 本発明によれば、 以下の (a) 又は (b) に示す蛍光蛋白質が提供され る。
(a) 配列番号 1又は 5に記載のアミノ酸配列を有する蛋白質;
( b ) 配列番号 1又は 5に記載のァミノ酸配列において 1から数個のアミノ酸が 欠失、 置換、 及び Z又は付加されたアミノ酸配列を有し、 蛍光特性を有する蛋白 質。
本発明の別の態様によれば、 以下の (a) 又は (b) に示す蛍光蛋白質をコー ドする DNAが提供される。
( a ) 配列番号 1又は 5に記載のァミノ酸配列を有する蛋白質
(b) 配列番号 1又は 5に記載のァミノ酸配列において 1から数個のアミノ酸が 欠失、 置換、 及ぴ Z又は付加されたアミノ酸配列を有し、 蛍光特性を有する蛋白 質。
本発明のさらに別の態様によれば、 以下の (a) 又は (b) に示す DN Aが提 供される。
( a ) 配列番号 2又は 6に記載の塩基配列を有する D N A
(b) 配列番号 2又は 6に記載の塩基配列において、 1から数個の塩基の欠失、 置換及び/又は付加を有する塩基配列を有し、 かつ蛍光特性を有する蛋白質をコ 一ドする塩基配列を有する DNA。
本発明のさらに別の態様によれば、 上記した本発明の DN Aを有する組み換え ベクターが提供される。
本発明のさらに別の態様によれば、 上記した本発明の DN A又は組み換えべク ターを有する形質転換体が提供される。
本発明のさらに別の態様によれば、 以下の (a) 又は (b) に示す蛍光蛋白質 が提供される。
(a) 配列番号 3又は 7に記載のアミノ酸配列を有する蛋白質;
(b) 配列番号 3又は 7に記載のアミノ酸配列において 1から数個のアミノ酸が 欠失、 置換、 及び/又は付加されたアミノ酸配列を有し、 フォトクロミズム効果 を示す蛍光特性を有する蛋白質。
本発明のさらに別の態様によれば、 以下の (a) 又は (b) に示す蛍光蛋白質 をコードする DNAが提供される。
(a) 配列番号 3又は 7に記載のアミノ酸配列を有する蛋白質
( b ) 配列番号 3又は 7に記載のァミノ酸配列において 1から数個のァミノ酸が 欠失、 置換、 及び 又は付加されたアミノ酸配列を有し、 フォトクロミズム効果 を示す蛍光特性を有する蛋白質。
本発明のさらに別の態様によれば、 以下の (a) 又は (b) に示す DNAが提 供される。
(a) 配列番号 4又は 8に記載の塩基配列を有する DNA ( b ) 配列番号 4又は 8に記載の塩基配列において、 1から数個の塩基の欠失、 置換及び Z又は付加を有する塩基配列を有し、 かつフォトクロミズム効果を示す 蛍光特性を有する蛋白質をコードする塩基配列を有する D N A。
本発明のさらに別の態様によれば、 上記した本発明の D N Aを有する組み換え ベクターが提供される。
本発明のさらに別の態様によれば、 上記した本発明の D N A又は組み換えべク ターを有する形質転換体が提供される。
本発明のさらに別の態様によれば、 上記した本発明の蛍光蛋白質からなるフォ トクロミック材料が提供される。
本発明のさらに別の態様によれば、 上記した本発明の蛍光蛋白質を含んでいて 光照射により情報の記録及び読取が可能な記録層を有する光記録媒体が提供され る。 図面の簡単な説明
図 1は、 22Gの吸収スぺク トル及ぴ蛍光 ·励起スぺク トルを示す。
図 2は、 22Gの蛍光強度の PH感受性を測定した結果を示す。
図 3は、 m22G3の吸収スぺク トル及ぴ蛍光 ·励起スぺク トルを示す。
図 4は、 m22G3の蛍光強度の pH感受性を測定した結果を示す。
図 5は、 m22G3に吸収極大波長 518nm付近の光を照射すると、 吸収と蛍光が減 弱し、 代わりに 380nm付近の吸収が現れることを示す図である。
図 6は、 m22G3に 380nm付近の光を照射すると、 380nmの吸収が消失して、 518nm の吸収及び蛍光が完全に回復することを示す図である。
図 7は、 22Bの吸収スぺク トルを示す。
図 8は、 22Bの蛍光 ·励起スぺク トルを示す。
図 9は、 m3m4の吸収スぺク トルを示す。
図 1 0は、 m3m4の蛍光 ·励起スぺク トルを示す。
図 1 1は、 m3m4と m22G3 (Dronpa) の蛍光特性の比較を示す。 発明を実施するための最良の形態
以下、 本発明の実施の形態について詳細に説明する。
(1) 本発明の蛍光蛋白質
本発明の第一の蛍光蛋白質は、 以下の (a) 又は (b) の何れかに示す蛋白質 である。
( a ) 配列番号 1又は 5に記載のァミノ酸配列を有する蛋白質;
(b) 配列番号 1又は 5に記載のアミノ酸配列において 1から数個のアミノ酸が 欠失、 置換、 及び/又は付加されたアミノ酸配列を有し、 蛍光特性を有する蛋白 質。
配列番号 1に記載のアミノ酸配列を有する蛍光蛋白質(22G) は、下記の特性を 有することを特徴とする。
( 1 ) 吸収極大波長が 507 nmであり、 蛍光極大波長は 5 18 n mである ;
(2) 507 nmにおけるモル吸光係数が、 1 10, 000である;
(3) 量子収率が 0. 67である;及ぴ
(4) 蛍光特性の pH感受性が pKa = 4. 7である。
配列番号 5に記載のアミノ酸配列を有する蛍光蛋白質(22B)の吸収極大波長は 380 nmであり、 蛍光極大波長は 467 n mである。
本明細書中の実施例においては、 本発明の第一の蛍光蛋白質のうち配列番号 1 に記載のアミノ酸配列をコードする DN Aは、 キッカサンゴ(Echinophylia sp. ) を出発材料としてクローニングされた。 キッカサンゴ (Echinophylia sp. )は刺胞 動物門花虫綱六放サンゴ亜綱イシサンゴ目ゥミバラ科に属するサンゴの一種であ り、 固着性で被覆状または薄板状や葉状の群体を形成することが多い。 なお、 キ ッカサンゴ (Echinophylia sp. )以外の蛍光を発するサンゴから本発明の蛋白質を 取得することができる場合もあり、 そのような蛋白質も本発明の範囲内である。 本明細書中の実施例においては、 配列番号 3に記载のァミノ酸配列をコードす る DNAは、配列番号 1に記載のアミノ酸配列をコードする DNAを铸型にして、 MnCl2を加えた状態で PCRを行って無作為に変異を導入し、無作為変異導入によつ て得られたクローンから選択することによって取得されたものである。
本発明の第二の蛍光蛋白質は、 以下の (a) 又は (b) の何れかに示す蛋白質 である。
( a ) 配列番号 3又は 7に記載のァミノ酸配列を有する蛋白質;
(b) 配列番号 3又は 7に記載のアミノ酸配列において 1から数個のアミノ酸が 欠失、 置換、 及び/又は付加されたアミノ酸配列を有し、 フォトクロミズム効果 を示す蛍光特性を有する蛋白質。
配列番号 3に記載のアミノ酸配列を有する蛍光蛋白質(m22G3) は、下記の特性 を有することを特徴とする。
(1) 吸収極大波長が 503 nmであり、 蛍光極大波長は 518 n mである;
(2) 503 nmにおけるモル吸光係数が、 570, 000である ;
(3) 量子収率が 0. 62である;及び
(4) 蛍光特性の pH感受性が pKa = 5である。
(5) フォトクロミズム効果を示す蛍光特性を有する。 具体的には、 吸収極大波 長 518nm付近の光の照射によって吸収と蛍光が減弱し、 代わりに 380nm付近の吸 収が現れるが、 380nm付近の光を照射すると、 380nmの吸収が消失して、 518nmの 吸収及び蛍光が完全に回復する。
配列番号 7に記載のアミノ酸配列を有する蛍光蛋白質 (m3m4) は、 下記の特性 を有することを特徴とする。
(1) 吸収極大波長が 486 nmであり、 蛍光極大波長は 513 n mである;
(2) 486 nmにおけるモル吸光係数が、 560, 000である ;
(3) 量子収率が 0. 28である;及ぴ
(4) フォトクロミズム効果を示す蛍光特性を有する。
本明細書中の実施例においては、 本発明の第二の蛍光蛋白質のうち配列番号 3 に記載のアミノ酸配列をコードする DNAは、 配列番号 1に記載のアミノ酸配列 をコードする DNAを錶型にして、 MnCl2を加えた状態で PCRを行って無作為に変 異を導入し、 無作為変異導入によって得られたクローンのうち、 単量体のサイズ を有するものを選択することによって取得されたものである。 また、 配列番号 7 に記載のァミノ酸配列をコードする D N Aは、 配列番号 3に記载のァミノ酸配列 をコードする D N Aを铸型にして、 MnCl2を加えた状態で PCRを行つて無作為に変 異を導入し、 無作為変異導入によって得られたクローンから選択することによつ て取得されたものである。 本発明の第二の蛍光蛋白質は、 フォトクロミズム効果 を示す蛍光特性を有することを特徴とする。
本明細書で言う 「 1から数個のァミノ酸の欠失、 置換及び/又は付加を有する アミノ酸配列」における 「1から数個」の範囲は特には限定されないが、例えば、 1から 2 0個、 好ましくは 1から 1 0個、 より好ましくは 1から 7個、 さらに好 ましくは 1から 5個、 特に好ましくは 1から 3個程度を意味する。
本明細書で言う 「蛍光特性」 とは、 励起光の照射により蛍光を発することがで きる能力のことを言う。 配列番号 1又は 5に記載のァミノ酸配列において 1から 数個のアミノ酸が欠失、 置換、 及び/又は付加されたアミノ酸配列を有する蛍光 蛋白質の蛍光特性は、 配列番号 1又は 5に記載のァミノ酸配列を有する蛍光蛋白 質の蛍光特性と同等のものでもよいし、 異なるものでもよい。 蛍光特性の指標と しては、 蛍光強度、 励起波長、 蛍光波長、 p H感受性などが挙げられる。
本明細書で言う 「フォトクロミズム効果を示す蛍光特性」 とは、 吸収極大波長 付近の波長などのような所定の波長の光の照射によって吸収と蛍光が減弱又は消 失し、 別の波長域に吸収が現れること、 更に、 新たに現れた吸収波長の光を照射 すると、 上記で減弱又は消失した吸収及ぴ蛍光が回復するという蛍光特性のこと を言う。
本発明の蛍光蛋白質の取得方法については特に制限はなく、 化学合成により合 成した蛋白質でもよいし、 遺伝子組み換え技術による作製した組み換え蛋白質で もよい。
組み換え蛋白質を作製する場合には、 先ず当該蛋白質をコードする D N Aを入 手することが必要である。 本明細書の配列表の配列番号 1、 3、 5又は 7に記載 したアミノ酸配列並びに配列番号 2、 4、 6又は 8に記載した塩基配列の情報を 利用することにより適当なプライマーを設計し、 それらを用いて、 キッカサンゴ (Echinophylia sp. )から調製した c D N Aライブラリーを铸型にして P CRを行 うことにより、 本発明の第一の蛍光蛋白質をコードする DNAを取得することが できる。 また、 本発明の第一の蛍光蛋白質をコードする DNAに基づいてこれに 所定の変異を導入することにより本発明の第二の蛍光蛋白質をコードする DNA を取得することができる。 本発明の蛍光蛋白質をコードする DN Aの一部の断片 を上記した P CRにより得た場合には、 作製した DN A断片を順番に遺伝子組み 換え技術により連結することにより、 所望の蛍光蛋白質をコードする DN Aを得 ることができる。 この DNAを適当な発現系に導入することにより、 本発明の蛍 光蛋白質を産生することができる。 発現系での発現については本明細書中後記す る。
(2) 本発明の DNA
本発明によれば、 本発明の蛍光蛋白質をコードする DNAが提供される。
本発明の第一の蛍光蛋白質をコードする DNAの具体例としては、以下の(a) 又は (b) に示す蛋白質をコードする DNAが挙げられる。
( a ) 配列番号 1又は 5に記載のァミノ酸配列を有する蛋白質
(b) 配列番号 1又は 5に記載のァミノ酸配列において 1から数個のアミノ酸が 欠失、 置換、 及び 又は付加されたアミノ酸配列を有し、 蛍光特性を有する蛋白 質。
本発明の第一の蛍光蛋白質をコードする DNAの更なる具体例としては、 以下 の (a) 又は (b) に示す DNAもまた挙げられる。
( a ) 配列番号 2又は 6に記載の塩基配列を有する D N A
(b) 配列番号 2又は 6に記載の塩基配列において、 1から数個の塩基の欠失、 置換及び/又は付加を有する塩基配列を有し、 かつ蛍光特性を有する蛋白質をコ 一ドする塩基配列を有する D N A。 本発明の第二の蛍光蛋白質をコードする D N Aの具体例としては、以下の(a ) 又は (b ) に示す蛋白質をコードする D N Aが挙げられる。
( a ) 配列番号 3又は 7に記載のァミノ酸配列を有する蛋白質
( b ) 配列番号 3又は 7に記載のアミノ酸配列において 1から数個のアミノ酸が 欠失、 置換、 及び/又は付加されたアミノ酸配列を有し、 フォトクロミズム効果 を示す蛍光特性を有する蛋白質。
本発明の第二の蛍光蛋白質をコードする D N Aの更なる具体例としては、 以下 の (a ) 又は (b ) に示す D N Aもまた挙げられる。
( a ) 配列番号 4又は 8に記載の塩基配列を有する D N A
( b ) 配列番号 4又は 8に記載の塩基配列において、 1から数個の塩基の欠失、 置換及び/又は付加を有する塩基配列を有し、 かつフォトクロミズム効果を示す 蛍光特性を有する蛋白質をコードする塩基配列を有する D NA。
本明細書で言う 「 1から数個の塩基の欠失、 置換及び/又は付加を有する塩基 配列」 における 「1から数個」 の範囲は特には限定されないが、 例えば、 1から 5 0個、 好ましくは 1から 3 0個、 より好ましくは 1から 2 0個、 さらに好まし くは 1から 1 0個、 特に好ましくは 1から 5個程度を意味する。
本発明の D N Aは、 例えばホスホアミダイト法などにより合成することができ るし、 特異的プライマーを用いたポリメラーゼ連鎖反応 (P C R) によって製造 することもできる。 本発明の D N A又はその断片の作製方法については、 本明細 書中上述した通りである。
また、 所定の核酸配列に所望の変異を導入する方法は当業者に公知である。 例 えば、 部位特異的変異誘発法、 縮重オリゴヌクレオチドを用いる P C R、 核酸を 含む細胞の変異誘発剤又は放射線への露出等の公知の技術を適宜使用することに よって、変異を有する D N Aを構築することができる。このような公知の技術は、 例えば、 Molecular Cloning: A laboratory Mannual, 2nd Ed. , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. , 1989 並ぴに Current Protocols in Molecular Biology, Supplement :!〜 38, John Wiley & Sons (1987-1997)に記載 されている。
( 3 ) 本発明の組み換えベクター
本発明の D N Aは適当なベクター中に挿入して使用することができる。 本発明 で用いるベクターの種類は特に限定されず、 例えば、 自立的に複製するベクター (例えばプラスミ ド等) でもよいし、 あるいは、 宿主細胞に導入された際に宿主 細胞のゲノムに組み込まれ、 組み込まれた染色体と共に複製されるものであって あよい。
好ましくは、 本発明で用いるベクターは発現ベクターである。 発現ベクターに おいて本発明の D N Aは、 転写に必要な要素 (例えば、 プロモータ等) が機能的 に違結されている。 プロモータは宿主細胞において転写活性を示す D N A配列で あり、 宿主の種類に応じて適宜することができる。
細菌細胞で作動可能なプロモータとしては、 バチルス ·ステア口テルモフィル ス · マノレトジエニック · アミ ラーゼ遺伝子 (Bac i 1 lus st earothermophi lus maltogenic amylase gene)、 ノ テノレス · リケニホゾレ^ス a ァ フーセ遺伝ナ (Baci llus licheniformis alpha一 amylase gene) ノ テノレス · ア^ロリケフアチェ ンス · BAN ァ フーセ遺伝十 (Bacillus amyloliquefaciens BAN amylase gene)、 バチルス ' サブチリス . アルカリプロテアーゼ遺伝子(Bacillus S ubtilis alkaline protease gene)もしくはバチルス ·プミルス ·キシロシダーゼ遺伝子 (Bacillus pumilus xylosldase gene)のプロモータ、 またはファージ ·ラムダの P R若しくは P Lプロモータ、 大腸菌の lac、 trp若しくは tacプロモータなどが 挙げられる。
哺乳動物細胞で作動可能なプロモータの例としては、 S V 4 0プロモータ、 M T一 1 (メタ口チォネイン遺伝子) プロモータ、 またはアデノウイルス 2主後期 プロモータなどがある。 昆虫細胞で作動可能なプロモータの例としては、 ポリへ ドリンプロモータ、 P 1 0プロモータ、 ォートグラファ ·力リホル二力 ·ポリへ ド口シス塩基性蛋白プロモータ、 バキユウロウィルス即時型初期遺伝子 1プロモ ータ、 またはバキユウロウィルス 3 9 K遅延型初期遺伝子プロモータ等がある。 酵母宿主細胞で作動可能なプロモータの例としては、 酵母解糖系遺伝子由来のプ 口モータ、ァノレコーノレデヒ ドロゲナーゼ遺伝子プロモータ、 T P I 1プロモータ、 AD H2-4cプロモータなどが挙げられる。
糸状菌細胞で作動可能なプロモータの例としては、 AD H 3プロモータまたは t p i Aプロモータなどがある。
また、 本発明の D NAは必要に応じて、 例えばヒ ト成長ホルモンターミネータ または真菌宿主については T P I 1ターミネータ若しくは AD H 3ターミネータ のような適切なターミネータに機能的に結合されてもよい。 本発明の組み換えべ クタ一は更に、ポリアデニレーションシグナル(例えば S V 4 0またはアデノウイ ルス 5 E 1 b領域由来のもの)、転写ェンハンサ配列(例えば S V 4 0ェンハンサ) および翻訳ェンハンサ配列(例えばアデノウイルス VA R NA をコードするも の) のような要素を有していてもよレ、。
本発明の組み換えベクターは更に、 該ベクターが宿主細胞内で複製することを 可能にする D NA配列を具備してもよく、その一例としては S V 4 0複製起点(宿 主細胞が哺乳類細胞のとき) が挙げられる。
本発明の組み換えベクターはさらに選択マーカーを含有してもよい。 選択マー カーとしては、 例えば、 ジヒドロ葉酸レダクターゼ (D H F R) またはシゾサッ カロマイセス ·ボンべ T P I遺伝子等のようなその捕体が宿主細胞に欠けている 遺伝子、 または例えばアンピシリン、 カナマイシン、 テトラサイクリン、 クロラ ムフエ二コール、 ネオマイシン若しくはヒグロマイシンのような薬剤耐性遺伝子 を挙げることができる。
本発明の D NA、 プロモータ、 および所望によりターミネータおよび または 分泌シグナル配列をそれぞれ連結し、 これらを適切なベクターに挿入する方法は 当業者に周知である。
( 4 ) 本発明の形質転換体 本発明の D N A又は組み換えべクターを適当な宿主に導入することによって形 質転換体を作製することができる。
本発明の D N Aまたは組み換えベクターを導入される宿主細胞は、 本発明の D NA構築物を発現できれば任意の細胞でよく、 細菌、 酵母、 真菌おょぴ高等真核 細胞等が挙げられる。
細菌細胞の例としては、 バチルスまたはストレプトマイセス等のグラム陽性菌 又は大腸菌等のグラム陰性菌が挙げられる。 これら細菌の形質転換は、 プロトプ ラスト法、または公知の方法でコンビテント細胞を用いることにより行えばよレ、。 哺乳類細胞の例としては、 H E K 2 9 3細胞、 H e L a細胞、 C O S細胞、 B HK細胞、 C H L細胞または C HO細胞等が挙げられる。 哺乳類細胞を形質転換 し、 該細胞に導入された D NA配列を発現させる方法も公知であり、 例えば、 ェ レクト口ポーレーシヨン法、 リン酸カルシウム法、 リボフヱクシヨン法等を用い ることができる。
酵母細胞の例としては、 サッカロマイセスまたはシゾサッカロマイセスに属す る細胞が挙げられ、 例えば、 サッカロマイセス · セレビシェ(Saccharomyces cerevislae)またはサッカロマイセス · クノレイべリ ( S accharomyces kluyveri)等 が挙げられる。 酵母宿主への組み換えベクターの導入方法としては、 例えば、 ェ レクト口ポレーシヨン法、 スフヱロブラスト法、 酢酸リチウム法等を挙げること ができる。
他の真菌細胞の例は、 糸状菌、 例えばァスペルギルス、 ニューロスポラ、 フザ リウム、 またはトリコデルマに属する細胞である。 宿主細胞として糸状菌を用い る場合、 D N A構築物を宿主染色体に組み込んで組換え宿主細胞を得ることによ り形質転換を行うことができる。 D N A構築物の宿主染色体への組み込みは、 公 知の方法に従い、 例えば相同組換えまたは異種組換えにより行うことができる。 昆虫細胞を宿主として用いる場合には、 組換え遺伝子導入ベクターおよびパキ ュロウィルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウィルスを得 た後、 さらに組換えウィルスを昆虫細胞に感染させ、 蛋白質を発現させることが できる (例えば、 Baculovirus Expression Vectors, A Laboratory Manual;及び カレント 'プロ トコールズ 'イン.モレキュラー 'バイオロジー、 Bio/Technology, 6, 47 (1988)等に記載)。
バキュロウィルスとしては、 例えば、 ョトウガ科昆虫に感染するウィルスであ るァゥトグラファ · 力リフォルニ力 · ヌクレアー · ポリへドロシス · ウィルス (Autographa californica nuclear polyhedrosis virus)等を用いること力でさる。 昆虫細胞としては、 Spodoptera frugiperda の卵巣細胞である S f 9、 S f 2 1 〔バキュロウィルス 'エクスプレッション ·ベクターズ、 ァ 'ラボラトリー ' マニュアル、ダブリユー 'ェイチ'フリーマン'アンド.カンパニー(W. H. Freeman and Company)、 ニューヨーク(New York)、 (1992)〕、 Trichoplusia niの卵巣細月包 である H i F i V e (インビトロジェン社製)等を用いることができる。
組換えウィルスを調製するための、 昆虫細胞への組換え遺伝子導入べクターと 上記パキュロウィルスの共導入方法としては、 例えば、 リン酸カルシウム法又は リボフヱクシヨン法等を挙げることができる。
上記の形質転換体は、 導入された D N A構築物の発現を可能にする条件下で適 切な栄養培地中で培養する。 形質転換体の培養物から、 本発明の蛍光蛋白質を単 離精製するには、 通常の蛋白質の単離、 精製法を用いればよい。
例えば、 本発明の蛋白質が、 細胞内に溶解状態で発現した場合には、 培養終了 後、 細胞を遠心分離により回収し水系緩衝液に懸濁後、 超音波破砕機等により細 胞を破砕し、 無細胞抽出液を得る。 該無細胞抽出液を遠心分離することにより得 られた上清から、 通常の蛋白質の単離精製法、 即ち、 溶媒抽出法、 硫安等による 塩析法、 脱塩法、 有機溶媒による沈殿法、 ジェチルアミノエチル (DEAE)セファロ ース等のレジンを用いた陰イオン交換クロマトグラフィ一法、 S- Sepharose FF (フ ァルマシァ社製)等のレジンを用いた陽ィオン交換クロマトグラフィ一法、プチル セファロース、 フエニノレセファロース等のレジンを用いた疎水' I生クロマトグラフ ィ一法、 分子篩を用いたゲルろ過法、 ァフィユティークロマトグラフィー法、 ク ロマトフオーカシング法、 等電点電気泳動等の電気泳動法等の手法を単独あるい は組み合わせて用い、 精製標品を得ることができる。
( 5 ) 本発明の蛍光蛋白質の蛍光標識物質としての利用
本発明の蛍光蛋白質は、 蛍光標識物質として利用することができる。 即ち、 本 発明の蛍光蛋白質を被検アミノ酸配列との融合蛋白質として精製し、 マイクロイ ンジヱクション法などの手法により細胞内に導入し、 該融合蛋白質の分布を経時 的に観察すれば、 被検アミノ酸配列の細胞内におけるターゲッティング活性を検 出することが可能である。
本発明の蛍光蛋白質を融合させる他の蛋白質 (被検アミノ酸配列) の種類は特 に限定されるものではないが、 例えば、 細胞内に局在する蛋白質、 細胞内小器官 に特異的な蛋白質、 ターグティングシグナル (例えば、 核移行シグナル、 ミ トコ ンドリアブレ配列) 等が好適である。 なお、 本発明の蛍光蛋白質は、 マイクロイ ンジェクション法などにより細胞内に導入する以外に、 細胞内で発現させて用い ることも可能である。 この場合には、 本発明の蛍光蛋白質をコードする D NAが 発現可能に挿入されたベクターが宿主細胞に導入される。
また、 本発明の蛍光蛋白質は、 レポーター蛋白質としてプロモータ活性の測定 に用いることも可能である。 即ち、 被検プロモータの下流に、 本発明の蛍光蛋白 質をコードする D N Aが配置されたベクターを構築し、これを宿主細胞に導入し、 該細胞から発せられる本発明の蛍光蛋白質の蛍光を検出することにより、 被検プ 口モータの活性を測定することが可能である。 被検プロモータとしては、 宿主細 胞内で機能するものであれば、 特に制限はない。
上記アミノ酸配列のターグティング活性の検出やプロモータ活性の測定におい て用いられるベクターとしては、 特に制限はないが、 例えば、 動物細胞用べクタ 一では、 「pNE0」 (P. Southern, and P. Berg (1982) J. M01. Appl. Genet. 1 : 3 27)、 「pCAGGS」 (H. Niwa, K. Yamamura, and J. Miyazaki. Gene 108, 193-200 (1991) ) - 「pRc/CMV」 (インビトロゲン社製)、 「PCDM8」 (インビトロゲン社製) などが、 酵 母用ベクターでは、 「pRS303」 , rpRS304j , rpRS305j , r RS306j , rpRS313j , 「pRS314」 , rpRS315j , [pRS316] (R. S. Sikorski and P. Hieter (1989) Genetic s 122: 19-27)、 「pRS423」 , 「pRS424」 , 「pRS425」 , 「pRS426」 (T. W. Christians on, R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter (1992) Gene 110: 119 -122) などが好適に用いられる。
また、 使用可能な細胞の種類も特に限定されず、 各種の動物細胞、 例えば、 L 細胞、 BalbC- 3T3細胞、 NIH3T3細胞、 CHO (Chinese hamster ovary)細胞、 HeLa細 胞、 NRK (normal rat kidney)細胞、 「Saccharomyces cerevisiaej などの酵母細胞 や大腸菌 (E. coli) 細胞などを使用することができる。 ベクターの宿主細胞への 導入は、 例えば、 リン酸カルシウム法やエレクト口ポレーシヨン法などの常法に より行うことができる。
上記のようにして得た、 本発明の蛍光蛋白質と他の蛋白質 (蛋白質 Xとする) とを融合させた融合蛍光蛋白質を細胞内で発現させ、 発する蛍光をモニターする ことにより、細胞内における蛋白質 Xの局在や動態を分析することが可能になる。 即ち、 本発明の融合蛍光蛋白質をコードする D NAで形質転換またはトランスフ ェクトした細胞を蛍光顕微鏡で観察することにより細胞内における蛋白質 Xの局 在や動態を可視化して分析することができる。
例えば、 蛋白質 Xとして細胞内オルガネラに特異的な蛋白質を利用することに より、 核、 ミ トコンドリア、 小胞体、 ゴルジ体、 分泌小胞、 ペルォキソームなど の分布や動きを観察できる。
また、 例えば、 神経細胞の軸索、 樹状突起などは発生途中の個体の中で著しく 複雑な走向の変化を示すので、 こういった部位を蛍光ラベルすることにより動的 解析が可能になる。
本発明の蛍光蛋白質の蛍光は、 生細胞のまま検出することが可能である。 この 検出は、 例えば、 蛍光顕微鏡 (カールツァイス社 アキシォフォト フィルターセ ット 09) や画像解析装置 (ATT0デジタルイメージアナライザー) などを用いて 行うことが可能である。
顕微鏡の種類は目的に応じて適宜選択できる。 経時変化を追跡するなど頻回の 観察を必要とする場合には、 通常の落射型蛍光顕微鏡が好ましい。 細胞内の詳細 な局在を追及したい場合など、 解像度を重視する場合は、 共焦点レーザー顕微鏡 の方が好ましい。 顕微鏡システムとしては、 細胞の生理状態を保ち、 コンタミネ ーシヨンを防止する観点から、 倒立型顕微鏡が好ましい。 正立顕微鏡を使用する 場合、 高倍率レンズを用いる際には水浸レンズを用いることができる。
フィルターセットは蛍光蛋白質の蛍光波長に応じて適切なものを選択できる。 例えば、 配列番号 1に記載のアミノ酸配列を有する蛍光蛋白質は、 吸収極大波長 が 507 nmであり、 蛍光極大波長は 518 nmであることから、 励起光 500 〜51 Onm、 蛍光 510〜53 Onm程度のフィルターを使用することができる。 同様に、 配列番号 3に記載のアミノ酸配列を有する蛍光蛋白質は、 吸収極大波長 が 503 nmであり、 蛍光極大波長は 518 nmであることから、 励起光 500 〜51 Onm、 蛍光 510〜53 Onm程度のフィルターを使用することができる。 同様に、 配列番号 5に記載のアミノ酸配列を有する蛍光蛋白質は、 吸収極大波長 が 380 nmであり、 蛍光極大波長は 467 nmであることから、 励起光 370 〜390nm、 蛍光 460〜480 nm程度のフィルターを使用することができる。 同様に、 配列番号 7に記載のアミノ酸配列を有する蛍光蛋白質は、 吸収極大波長 が 486 nmであり、 蛍光極大波長は 51 3 nmであることから、 励起光 480 〜49 Onm、 蛍光 500〜520 nm程度のフィルターを使用することができる。 また、 蛍光顕微鏡を甩いた生細胞での経時観察を行う場合には、 短時間で撮影 を行うべきなので、 高感度冷却 CCDカメラを使用する。 冷却 CCDカメラは、 CCDを冷却することにより熱雑音を下げ、 微弱な蛍光像を短時間露光で鮮明に 撮影することができる。
(6) 本発明の蛍光蛋白質のフォトク口ミズム効果を利用した記録媒体等におけ る利用
さらに、 本発明の第二の蛍光蛋白質は、 フォトクロミズム効果を示す蛍光特性 (フォトクロミックな蛍光特性) を有することから、 CD、 DVD、 ホログラフ ィー記録媒体、 スマートカードなどの光記録媒体、 広告板、 蛍光板、 T V、 コン ピュータモニターなどの表示素子、 レンズ、 バイオセンサー、 バイオチップ、 フ オトクロミック繊維素材など多様な用途に適用することができる。
本発明の光記録媒体は、 基板上に本発明によるフォトクロミズム効果を示す蛍 光特性を有する蛍光蛋白質を含有する記録層を形成することによつて製造するこ とができる。 書きこみ、 再生のための光学系に水浸式のレンズを用いることによ つて NA (開口数) を大きくできる。 これにより高解像度が期待できる。
光記録媒体の製造のために用いられる基板の材質は特に限定されないが、 例え ば、 ガラス、 プラスチック、 紙、 アルミニウム等の金属 (板状でも箔状でもよい) などが挙げられ、 特にはプラスチックが好ましい。 プラスチックの材料も特に限 定されるものではないが、 アクリル樹脂、 メタクリル樹脂、 酢酸ビュル樹脂、 塩 化ビュル樹脂、ニトロセルロース樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、 ポリカーボネート樹脂、 ポリイミド樹脂、 ポリサルホン樹脂等が挙げられる。 本発明の蛍光蛋白質を、 必要に応じバインダーとともに適当な溶媒に溶解し、 ドクターブレード法、 キャス ト法、 スピナ一法、 浸漬法等の手段により、 上記基 板上に膜厚 1 n m〜l 0 0 w m、 好ましくは 1 0 η π!〜 5 0 μ πιの薄膜となるよ うに塗布することにより、 基板上に記録層を形成することができる。 ここで用い るバインダーとしては、 ポリエステル、 ポリスチレン、 ポリビュルブチラール、 ポリ塩化ビニリデン、 ポリ塩化ビュル、 ポリメタクリル酸メチル、 ポリ酢酸ビニ ル、 酢酸セルロース、 エポキシ樹脂、 フエノール樹脂等が挙げられる。 また、 溶 媒としては、 トルエン、 シクロへキサノン、 メチルェチルケトン、 ェチルァセテ 一ト等が適当である。
成膜された薄膜中の、 本発明の蛍光蛋白質の含有量は特に限定されず、 使用す る蛍光蛋白質の吸光度や、 発生する蛍光の強度等に応じて適宜決定することがで きる。 記録層は基板の両面に設けてもよいし、 片面だけに設けてもよい。
上記のようにして製造された本発明の光記録媒体への記録は、 基体の両面又は 片面に設けた記録層に収束した光を当てることにより行うことができる。 光照射 された部分は光エネルギーの吸収により、 蛍光特性の変化が起こり、 情報が記録 される。 記録された情報の再生は、 光照射による蛍光の差を読みとることにより 行うことができる。
本発明の蛍光蛋白質は、 上記の通りフォトク口ミズム分野に応用可能であり、 例えば、 国際公開 W098/47148 (Photochromic fluorescent proteins and optical memory storage devices based on fluorescent proteins ) 及ぴ国際公開 W002/96924 (Kindling fluorescent proteins and methods for their use) など に記載の応用例が挙げられる。
以下の実施例により本発明を具体的に説明するが、 本発明は実施例によって限 定されるものではない。 実施例
実施例 1 :サンゴからの新規蛍光蛋白質遺伝子 (22G)の単離
蛍光を放つキッカサンゴ (Echinophylia sp. )から、 蛍光蛋白質遺伝子を以下の 手順で単離した。
( 1 ) total RNAの抽出
Acid Guanidium- Phenol-Chloroform法で total RNAを抽出した。 凍結したキッ 力サンゴを Multi- Beads Shocker (安井器機) を用いて変性溶液中で砕き、 phenol I chloroformを加え、 遠心して R Aを蛋白質 · DNA複合体から分離した。 R Aを 含む水層を isopropanolに加え、遠心すると、沈殿として total RNAが得られた。
( 2 ) RNAの精製
01igotex™-dT30 (Roche社製)を用いて、 total RNAから mR Aを分離した。 total RNA に Oligotex™- dT30〈super> を加え、 加熱して RNAの 2次構造を壌してから、 3 7 °Cで RNAと Oligotex - dT30を結合させる。 洗浄後、 加熱、 遠心すると、 mRNA が溶出された上清が得られる。 Oligotex - dT30を取り除いた上、 ethanol と NaCl で mRNAを沈殿させ、 水に溶した。
( 3 ) cDNAの合成 TimeSaver™と Directional Cloning Toolbox™ (共に Amarsham pharmacia社製) を用いて cDNA を合成した。 mRNAを加熱して 2次構造を壌した後、 First-Strand Reaction Mi に DTTと Not I— dT primer (5, d (AAC TGG AAG AAT TCG CGG CCG CAG GAA T18) p3' (配列番号 9 ) ) と共に加え、 first - strandを合成する。 更にそれを Second-Strand Reaction Mixにカ卩え、 second- strandを合成し、 付属のスノ ンカ ラムで精製する。 精製した double- stranded cDNAの 5, 末端に AcoRI adaptorを 付け、 Not 1'で 3' 側のみカットする。 もう一度スパンカラムで精製して、 cDNA を取得した。
、 4 ) expression Cloning
pRSETB (Invitrogen社製)に Eco RI、 Not I サイトを設け、 合成した cDNAを 揷入、 大腸菌の JM109 DE3株に導入してライブラリー化した。 この大腸菌株では 蛋白質が合成されるため、コロニーが光の照射によつて蛍光を発するかどうかで、 蛍光蛋白質のクローンを選別できる。 その結果、 約 8万個から 1個のポジティブ コロニーを得、 クローン 22Gと命名し、 塩基配列を DNAシークェンサ一により決 定した。 22Gのァミノ酸配列及び塩基配列を配列番号 1及ぴ 2に示す。
大腸菌を用いて蛍光蛋白質 22Gに His- Tagを付加した蛋白質を常法により発現 させ、 Ni- Agaroseを用いて精製した。 実施例 2 :蛍光蛋白質 (22G)の蛍光特性の解析
( 1 ) 吸収スぺク トル及び蛍光 ·励起スぺク トル
吸収スぺクトルは 50 mM HEPES ( H 7. 5) 溶液を用いて測定した。 蛍光 ·励起 スぺクトルは 50 mM HEPES (pH 7. 5) 溶液を用い、 480 nmで励起した時の蛍光ス ぺク トルと 540 rnnの蛍光による励起スぺク トルを測定した。蛍光蛋白質 22Gの吸 収スぺク トルを図 1の左側に示し、 蛍光 ·励起スぺク トルを図 1の右側に示す。
( 2 ) pH感受性の特性
以下のバッファーを用いて、 480 nmで励起した時の 518 nmの蛍光強度を測定 した。 結果を図 2に示す。 pH4, 4. 5, 5, 5. 5 : 50 mM AcONa— AcOH
pH6. 5 : 50 mM MES-NaOH
pH7 : 50 mM MOPS -匪
pH8, 8. 5 : 50 mM HEPES- NaOH
pH9, 9. 5, 10, 10. 5 : 50 mM glycin-NaOH
pHll : 50 mM Na2HP04-NaOH
( 3 ) 22Gの蛍光特性のまとめ
以上の結果から求められた 22Gの性質を表 1に示す。
表 1
Figure imgf000021_0001
実施例 3 :蛍光蛋白質 (22G)の単量体化
実施例 1で取得した蛍光蛋白質(22G)に以下の方法でランダム変異誘発により 変異を導入し、 単量体化した。
クローユングした 22Gの DNAを铸型に、 MnCl2を加えた状態で PCRをして無作為 に変異を導入した。 DNA polymeraseは TAKARA Taq (Takara社製)を用い、 primer には forwardとして 5 ' 側に BsiffLサイトを加えたもの (MG CTC CCG GAT CCG ATG AGT GTG ATT AAA CCA GAC) (配列番号 1 0 )と、 reverseとして 3 ' 側に cd Iサ ィトを加えたもの (ATC GTT GAA TTC TTA CTT GGC CTG CCT CGG CAG) (配列番号 1 1 ) を用いた。 増幅された DNAは Bai lと ccRIで力ットして pRSETBに挿入、 JM109 DE3株に導入して LAプレートで培養した。 Random Mutagenesisによって得 られたクローンのうち、 pseudo— native pageで単量体のものと同じくらいのサイ ズになったものに関して、 超遠心で分子量を確認した。 確かに単量体化されてい たクローンの塩基配列を DNAシークェンサ一により決定し、 m22G3 と命名した。 単量体クローン (m22G3)のァミノ酸配列及ぴ塩基配列を配列番号 3及ぴ 4に示す。 大腸菌を用いて蛍光蛋白質 m22G3に His - Tagを付カ卩した蛋白質を常法により発 現させ、 Ni- Agaroseを用いて精製した。 実施例 4 :変異体 m22G3の蛍光特性の解析
( 1 ) 吸収スペク トル及ぴ蛍光 ·励起スペク トル
吸収スぺク トルは 50 mM HEPES (pH 7. 5) 溶液を用いた。 蛍光 ·励起スぺク ト ルは 50 mM HEPES (pH 7. 5)溶液を用い、 480 nmで励起した時の蛍光スぺクトルと 540 nmの蛍光による励起スぺク トルを測定した。 蛍光蛋白質 m22G3の吸収スぺク トルを図 3の左側に示し、 蛍光 ·励起スぺク トルを図 3の右側に示す。
( 2 ) p H感受性の特性
以下のバッファーを用いて、 480 nmで励起した時の 518. 5 nmの蛍光強度を測 定した。 結果を図 4に示す。
pH4, 4. 5, 5, 5. 5 : 50 mM AcONa-AcOH
pH6. 5 : 50 mM MES— NaOH
pH7 : 50 mM MOPS- K0H
pH8, 8. 5 : 50 mM HEPES-NaOH
pH9, 9. 5, 10, 10. 5 : 50 mM glycin-NaOH
pHll : 50 mM Na2HP04-NaOH
( 3 ) m22G3の蛍光特性のまとめ
以上の結果から求められた m22G3の性質を表 2に示す。
表 2
Figure imgf000022_0001
( 3 ) m22G3のフォ トクロミズム効果
さらに、 この変異体 (m22G3) の特徴として、 フォトクロミズムを起こすことが 挙げられる。 まず、 吸収極大波長 518nm付近の光の照射によって吸収と蛍光が減 弱し、 代わりに 380nm付近の吸収が現れる (図 5 )。 しかし、 380nm付近の光を照 射すると、 380nmの吸収が消失して、 518nmの吸収及ぴ蛍光が完全に回復する (図 6 )。つまり、波長の異なる 2つの光によって、 明状態と暗状態との間を行き来で きるのがこの変異体 m22G3の大きな特徴である。 実施例 5 :蛍光蛋白(22G)の変異体の作製
実施例 1で取得した蛍光蛋白 22Gに以下の方法でさらに変異を導入し、 性質の 異なるものを得た。
<方法〉 Random Mutagenesis
22Gの DNAを铸型に、 MnCl2を加えた状態で PCRをして無作為に変異を導入した。
DNA polymeraseは TAKARA Taq (Takara社製)を用い、 プライマーには forward として 5 ' 側に Baimサイトを加えたものと、 reverseとして 3 ' 側に ^ c¾Iサイ トを加えたものを用いた。増幅された DNAは Baj と v¾cRIで力ットして pRSETB に挿入、 J1109 DE3株に導入して LAプレートで培養した。
Random Mutagenesisで得られたクローンのうち、 22Gと大きく性質の異なるも のを取り出し、 クローンの塩基配列を DNAシークェンサ一により決定した。 この クローンを 22Bと命名した。 22Bのァミノ酸配列及ぴ塩基配列を配列番号 5及び 6に示す。
大腸菌を用いて蛍光蛋白質 22Bに His- Tagを付加した蛋白質を常法により発現 させ、 Ni- Agaroseを用いて精製した。 実施例 6 :変異体 22Bの蛍光特性の解析
( 1 ) 吸収スぺク トル及び蛍光 ·励起スぺク トル
吸収スぺク トルは 50 mM HEPES (pH 7. 5) 溶液を用いた。 蛍光 ·励起スぺク ト ルは 50 mM HEPES (pH 7. 5)溶液を用い、 380 nmで励起した時の蛍光スぺクトルと 470 nmの蛍光による励起スぺク トルを測定した。 蛍光蛋白質 22Bの吸収スぺク ト ルを図 7に示し、蛍光'励起スぺクトルを図 8に示す。吸収極大は 380nmであり、 蛍光極大は 467nmである 実施例 7 :蛍光蛋白質 m22G3の変異体の作製
実施例 3で取得した蛍光蛋白質 m22G3 (蛍光蛋白 22Gの変異体) (Dronpaとも称 する) に以下の方法でさらに変異を導入し、 性質の異なるものを得た。
く方法 > Random Mutagenesis
m22G3 (Dronpa) の DNAを鎵型に、 MnCl2を加えた状態で PCRをして無作為に変 異を導入した。
DNA polymeraseは TAKA Taq (Takara社製)を用い、 primerには forwardとし て 5' 側に Basillサイトを加えたものと、 reverseとして 3, 側に Acc Iサイトを 加えたものを用いた。増幅された DNAは BsOilと ccRIで力ットして pRSETBに揷 入、 JM109 DE3株に導入して LAプレートで培養した。
Random Mutagenesis で得られたクローンのうち、 m22G3 (Dronpa) と大きく十生 質の異なるものを取り出し、 クローンの塩基配列を DNAシークェンサ一により決 定した。 このクローンを m3m4と命名した。 m3m4のァミノ酸配列及び塩基配列を 配列番号 7及び 8に示す。
大腸菌を用いて蛍光蛋白質 m3m4に His- Tagを付加した蛋白質を常法により発現 させ、 Ni - Agaroseを用いて精製した。 実施例 8 :変異体 m3m4の蛍光特性の解析
( 1 ) 吸収スぺク トル及び蛍光 ·励起スぺク トル
吸収スぺク トルは 50 mM HEPES (pH 7. 5) 溶液を用いた (図 9、 黒)。 480nmの 強い光を 3分間当てると、 486nmのピークが低くなり 390nmに吸収が現れる (図 9、 灰色)。
蛍光 ·励起スぺクトルは 50 mM HEPES (pH 7. 5)溶液を用い、 470 nmで励起した 時の蛍光スぺクトルと 530 nmの蛍光による励起スぺクトルを測定した(図 1 0 )。 m3m4の性質を表 3に示す。 表 3
Figure imgf000025_0001
( 2 ) m22G3 (Dronpa) と m3m4の比較
m3m4は、 m22G3 (Dronpa) と同じ強度の 480nmの強い光を当てると約 5倍の速 さで暗くなり、 暗くなったものに同じ強度の 400nmの光を当てるとほぼ同じ速さ で明るくなる (図 1 1の左図)。
また、 480nmの強い光で暗くした m3m4と m22G3 (Dronpa) を約 1 0分間室温で 放置すると、 m22G3 (Dronpa) はほとんど変化がないが、 m3m4 は 8割程度蛍光が 回復する (図 1 1の右図)。 産業上の利用可能性
本発明の蛍光蛋白質は、 光の制御により蛍光を獲得又は消失することができる ことから、 情報記録又は画像表示の技術分野におけるフォトニタスデバイスのた めの材料として有用である。 本発明の蛍光蛋白質は、 例えば、 書き換え可能な光 メモリー素子として実用化することができる。 さらに、 本発明の蛍光蛋白質また はそれをコードする遺伝子は、 複写防止用印刷材料、 光照射によりカラー画像情 報の書き込みと消去の繰り返しが可能な可逆画像表示用媒体、 ホロダラム材料、 特定波長用の遮光材料、 又は光スィツチング素子用材料などとして利用すること ができる。

Claims

請求の範囲
1. 以下の (a) 又は (b) に示す蛍光蛋白質。
( a ) 配列番号 1又は 5に記載のァミノ酸配列を有する蛋白質;
( b ) 配列番号 1又は 5に記載のァミノ酸配列において 1から数個のアミノ酸が 欠失、 置換、 及び/又は付加されたアミノ酸配列を有し、 蛍光特性を有する蛋白 質。
2. 以下の (a) 又は (b) に示す蛍光蛋白質をコードする DNA。
( a ) 配列番号 1又は 5に記載のァミノ酸配列を有する蛋白質;
( b ) 配列番号 1又は 5に記載のァミノ酸配列において 1から数個のァミノ酸が 欠失、 置換、 及ぴ Z又は付加されたアミノ酸配列を有し、 蛍光特性を有する蛋白 質。
3. 以下の (a) 又は (b) に示す DNA。
( a ) 配列番号 2又は 6に記載の塩基配列を有する D N A
(b) 配列番号 2又は 6に記載の塩基配列において、 1から数個の塩基の欠失、 置換及び Z又は付加を有する塩基配列を有し、 かつ蛍光特性を有する蛋白質をコ 一ドする塩基配列を有する DNA。
4. 請求項 2又は 3に記載の DN Aを有する組み換えベクター。
5. 請求項 2又は 3に記載の D N A又は請求項 4に記載の組み換えベクター を有する形質転換体。
6. 以下の (a) 又は (b) に示す蛍光蛋白質。
( a ) 配列番号 3又は 7に記載のァミノ酸配列を有する蛋白質;
(b) 配列番号 3又は 7に記載のァミノ酸配列において 1から数個のアミノ酸が 欠失、 置換、 及ぴ Z又は付加されたアミノ酸配列を有し、 フォトクロミズム効果 を示す蛍光特性を有する蛋白質。
7. 以下の (a) 又は (b) に示す蛍光蛋白質をコードする DNA。
( a ) 配列番号 3又は 7に記载のァミノ酸配列を有する蛋白質 ( b ) 配列番号 3又は 7に記载のァミノ酸配列において 1から数個のアミノ酸が 欠失、 置換、 及び/又は付加されたアミノ酸配列を有し、 フォトクロミズム効果 を示す蛍光特性を有する蛋白質。
8 . 以下の (a ) 又は (b ) に示す D NA。
( a ) 配列番号 4又は 8に記載の塩基配列を有する D N A
( b ) 配列番号 4又は 8に記載の塩基配列において、 1から数個の塩基の欠失、 置換及び/又は付加を有する塩基配列を有し、 かつフォトクロミズム効果を示す 蛍光特性を有する蛋白質をコードする塩基配列を有する D N A。
9 . 請求項 7又は 8に記載の D N Aを有する組み換えベクター。
1 0 . 請求項 7又は 8に記載の D N A又は請求項 9に記載の組み換えべクタ 一を有する形質転換体。
1 1 . 請求項 6に記載の蛍光蛋白質からなるフォトクロミック材料。
1 2 . 請求項 6に記載の蛍光蛋白質を含んでいて光照射により情報の記録及 ぴ読取が可能な記録層を有する光記録媒体。
PCT/JP2005/009720 2004-05-20 2005-05-20 蛍光蛋白質 WO2005113772A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05743552.1A EP1767635B1 (en) 2004-05-20 2005-05-20 Fluorescent protein
AU2005245737A AU2005245737A1 (en) 2004-05-20 2005-05-20 Fluorescent protein
JP2006513770A JP4695073B2 (ja) 2004-05-20 2005-05-20 蛍光蛋白質
US11/569,275 US7897385B2 (en) 2004-05-20 2005-05-20 Fluorescent protein
US13/008,610 US8034614B2 (en) 2004-05-20 2011-01-18 Fluorescent protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004150607 2004-05-20
JP2004-150607 2004-05-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11569275 A-371-Of-International 2002-05-20
US13/008,610 Continuation US8034614B2 (en) 2004-05-20 2011-01-18 Fluorescent protein

Publications (1)

Publication Number Publication Date
WO2005113772A1 true WO2005113772A1 (ja) 2005-12-01

Family

ID=35428409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009720 WO2005113772A1 (ja) 2004-05-20 2005-05-20 蛍光蛋白質

Country Status (5)

Country Link
US (2) US7897385B2 (ja)
EP (1) EP1767635B1 (ja)
JP (1) JP4695073B2 (ja)
AU (1) AU2005245737A1 (ja)
WO (1) WO2005113772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037674A1 (ja) 2013-09-13 2015-03-19 国立大学法人大阪大学 蛍光蛋白質

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897385B2 (en) * 2004-05-20 2011-03-01 Riken Fluorescent protein
EP2436690B1 (en) 2010-10-04 2015-12-23 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Reversibly photoswitchable polypeptides
WO2012162514A2 (en) 2011-05-26 2012-11-29 Regents Of The University Of Michigan Epigenetic co-repressors of the gamma-globin gene and methods of using same
US8735096B2 (en) 2012-03-22 2014-05-27 The Board Of Trustees Of The Leland Stanford Junior University Optical control of protein activity and localization by fusion to photochromic protein domains

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047148A1 (en) 1997-04-14 1998-10-22 The Regents Of The University Of California Photochromic fluorescent proteins and optical memory storage devices based on fluorescent proteins
WO2002096924A1 (en) 2001-05-25 2002-12-05 Clontech Laboratories, Inc. Kindling fluorescent proteins and methods for their use
WO2003042401A2 (en) 2001-11-13 2003-05-22 Clontech Laboratories, Inc. Novel chromophores/fluorophores and methods for using the same
US20030157643A1 (en) 2000-08-24 2003-08-21 Almond Brian D Synthetic nucleic acids from aquatic species

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253261A (ja) * 2001-03-05 2002-09-10 Inst Of Physical & Chemical Res 蛍光タンパク質
JP3829252B2 (ja) * 2001-06-08 2006-10-04 独立行政法人理化学研究所 蛍光蛋白質
US7247449B2 (en) * 2001-10-11 2007-07-24 Riken Fluorescent protein
WO2003054191A1 (fr) * 2001-12-20 2003-07-03 Riken Protéines fluorescentes
JP4381147B2 (ja) * 2002-02-25 2009-12-09 独立行政法人理化学研究所 蛍光蛋白質
WO2003104460A1 (ja) * 2002-06-10 2003-12-18 理化学研究所 色素蛋白質
US20060154296A1 (en) * 2002-06-10 2006-07-13 Riken Pigment protein
ATE495247T1 (de) * 2002-08-23 2011-01-15 Riken Chromoprotein und fluoroproteine
JP4214206B2 (ja) * 2002-12-10 2009-01-28 独立行政法人理化学研究所 Fretを利用した蛍光指示薬
US7960530B2 (en) * 2003-06-16 2011-06-14 Riken Fluorescent protein
EP2098535B1 (en) * 2003-06-16 2011-10-05 Riken Fluorescent protein and chromoprotein
EP2163618A3 (en) * 2003-12-03 2010-06-02 Riken Fluorescent protein
US7897385B2 (en) * 2004-05-20 2011-03-01 Riken Fluorescent protein
JP4557685B2 (ja) * 2004-11-15 2010-10-06 独立行政法人理化学研究所 蛍光蛋白質
US20090017516A1 (en) * 2004-12-21 2009-01-15 Riken Target physiological function inactivator using photosensitizer-labeled fluorescent protein
JP5019771B2 (ja) * 2005-03-29 2012-09-05 独立行政法人理化学研究所 蛍光蛋白質を用いた蛋白質の相互作用の分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047148A1 (en) 1997-04-14 1998-10-22 The Regents Of The University Of California Photochromic fluorescent proteins and optical memory storage devices based on fluorescent proteins
US20030157643A1 (en) 2000-08-24 2003-08-21 Almond Brian D Synthetic nucleic acids from aquatic species
WO2002096924A1 (en) 2001-05-25 2002-12-05 Clontech Laboratories, Inc. Kindling fluorescent proteins and methods for their use
WO2003042401A2 (en) 2001-11-13 2003-05-22 Clontech Laboratories, Inc. Novel chromophores/fluorophores and methods for using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDO R. ET AL: "Regulated Fast Nucleocytoplasmic Shuttling Observed by Reversible Protein Highlighting.", SCIENCE., vol. 306, no. 5700, 19 November 2004 (2004-11-19), pages 1370 - 1373, XP002991339 *
DATABASE GENBANK [online] 20 July 2001 (2001-07-20), LESSER M.P. ET AL: "The DDBJ.", XP002991337, Database accession no. (AF401282) *
DATABASE GENBANK [online] 30 April 2001 (2001-04-30), MATZ M. ET AL: "The DDBJ.", XP002991338, Database accession no. (AY037766) *
KELMANSON IV ET AL: "Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: Faviida).", MOL.BIOL.EVOL., vol. 20, no. 7, 2003, pages 1125 - 1133, XP002987402 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037674A1 (ja) 2013-09-13 2015-03-19 国立大学法人大阪大学 蛍光蛋白質
JPWO2015037674A1 (ja) * 2013-09-13 2017-03-02 国立大学法人大阪大学 蛍光蛋白質
US9945784B2 (en) 2013-09-13 2018-04-17 Osaka University Fluorescent protein

Also Published As

Publication number Publication date
US20110152502A1 (en) 2011-06-23
EP1767635A1 (en) 2007-03-28
AU2005245737A1 (en) 2005-12-01
JP4695073B2 (ja) 2011-06-08
US20090155888A1 (en) 2009-06-18
EP1767635A4 (en) 2008-05-28
JPWO2005113772A1 (ja) 2008-03-27
US8034614B2 (en) 2011-10-11
US7897385B2 (en) 2011-03-01
EP1767635B1 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5117465B2 (ja) 色素蛋白質及び蛍光蛋白質
JP5147915B2 (ja) 蛍光蛋白質
US8034614B2 (en) Fluorescent protein
JP4214209B2 (ja) 蛍光蛋白質
JP4852676B2 (ja) 蛍光蛋白質及び色素蛋白質
JP4258724B2 (ja) 蛍光蛋白質
US8013119B2 (en) Fluorescent protein
JP4648834B2 (ja) 蛍光蛋白質
JP4381147B2 (ja) 蛍光蛋白質
JP4794887B2 (ja) 蛍光蛋白質
JP2006271239A (ja) 蛍光蛋白質

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513770

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005743552

Country of ref document: EP

Ref document number: 2005245737

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005245737

Country of ref document: AU

Date of ref document: 20050520

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005245737

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005743552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11569275

Country of ref document: US