WO2005110745A1 - Polymermischung aus schlagzähmodifiziertem poly(meth)acrylat und fluorpolymer - Google Patents

Polymermischung aus schlagzähmodifiziertem poly(meth)acrylat und fluorpolymer Download PDF

Info

Publication number
WO2005110745A1
WO2005110745A1 PCT/EP2005/005381 EP2005005381W WO2005110745A1 WO 2005110745 A1 WO2005110745 A1 WO 2005110745A1 EP 2005005381 W EP2005005381 W EP 2005005381W WO 2005110745 A1 WO2005110745 A1 WO 2005110745A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
impact
plastic
acrylate
fluoropolymer
Prior art date
Application number
PCT/EP2005/005381
Other languages
English (en)
French (fr)
Inventor
Thomas Arndt
Uwe Numrich
Norbert Deusch
Christoph Krohmer
Original Assignee
Röhm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Röhm Gmbh filed Critical Röhm Gmbh
Priority to MXPA06012979A priority Critical patent/MXPA06012979A/es
Priority to EP20050748362 priority patent/EP1748890B1/de
Priority to AU2005243962A priority patent/AU2005243962B2/en
Priority to CA 2561254 priority patent/CA2561254A1/en
Priority to JP2007512124A priority patent/JP2007537063A/ja
Priority to KR1020067023760A priority patent/KR101157690B1/ko
Priority to NZ550378A priority patent/NZ550378A/en
Priority to DE200550006947 priority patent/DE502005006947D1/de
Priority to US10/590,932 priority patent/US7947781B2/en
Publication of WO2005110745A1 publication Critical patent/WO2005110745A1/de
Priority to HK07107526A priority patent/HK1103055A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer

Definitions

  • the invention relates to a polymer mixture of an impact modified poly (meth) acrylate plastic and a fluoropolymer.
  • the invention further relates to a film produced from the polymer mixture, a process for its production and the use as a surface protection film.
  • EP 0 476 942 describes a polymer mixture composed of an impact-modified poly (meth) acrylate plastic and a fluoropolymer, the proportion of which in the mixture can be 3 to 12% by weight.
  • Surface protection films for polyvinyl chloride or acrylonitrile butadiene stryrene (ABS) plastic parts can be produced from the polymer mixtures. This can improve their weather resistance.
  • JP-OS 03 124754 A2 describes films which are produced from polymer mixtures of impact-modified poly (meth) acrylate and fluoropolymers, the proportion of fluoropolymers being 5 to 25% by weight.
  • WO 00/37237 describes a process for the production of films which contain fluoropolymers and poly (meth) acrylates in at least one layer.
  • a mixture is used which contains 10 to 90% by weight of PVDF and 90 to 10% by weight of polymethyl methacrylate, based on the weight of the overall mixture.
  • DE 102 36 045 A1 describes an extrusion process for producing low-orientation thermoplastic films with a thickness range of 20 up to 1,000 ⁇ m.
  • Suitable materials for the films include polymer mixtures made from an impact-modified poly (meth) acrylate plastic and a fluoropolymer, the mixing ratio of which can be 10:90 to 90:10.
  • EP 1 093 911 A2 describes impact-resistant, multilayer protective films made of an exposed layer with a mixture of a fluoropolymer and an acrylic polymer and an underlying layer which, for. B. may consist of impact modified poly (meth) acrylate.
  • EP 0 306 385 A1 describes impact-resistant polymer mixtures. These can consist of an impact modified poly (meth) acrylate plastic and a fluoropolymer. The proportion of the fluoropolymer is below 30% by weight. A wide size range from 40 to 500 nm is specified for the elastomer particles.
  • JP 59127754 A2 and JP 59127755 A2 describe weather-resistant protective films for PVC-steel composites. The protective films consist of fluoropolymers, which have an acrylate elastomer component but no (meth) acrylate matrix.
  • Stand-alone films and composite films of the prior art in particular those which consist of fluoropolymers in a mixture with impact-modified poly (meth) acrylates, have outstanding properties. Particularly noteworthy are high weather resistance, good chemical resistance, high resistance to stress corrosion cracking and good mechanical toughness. They are therefore predestined for outdoor use. However, it has been shown that practically all of these films, regardless of whether as individual films or composite films, in particular for outdoor applications and simultaneously occurring thermal loads which occur over a longer period of time, react more or less with undesirable embrittlement if the film or the compound has a material thickness of at least 150, 200, 250 ⁇ m or more. This limits the uses of the films such. B. in warmer geographic regions or in general for applications, especially outdoor applications in a hot environment.
  • the impact-modified poly (meth) acrylate plastic consists of 20 to 70% by weight of a poly (meth) acrylate matrix and 80 to 30% by weight of elastomer particles.
  • the invention is based on the knowledge that polymer mixtures made from an impact-modified poly (meth) acrylate plastic, from a poly (meth) acrylate matrix and elastomer particles distributed therein, and a fluoropolymer from a material thickness of about at least 150, in particular at least 200 or at least 250 ⁇ m tend to be more embrittled compared to thinner parts.
  • the increased long-term embrittlement tendency is evident regardless of whether it is molded articles which consist entirely of the polymer mixture or whether it is composite molded articles in which the polymer mixture consists of the impact-modified poly (meth) acrylate plastic and the fluorine - Polymers are present in an outer layer with a continuous material thickness of at least 10 ⁇ m.
  • the increased long-term Embrittlement is a problem with exposed single foils, e.g. B. to be used as a roofing element, as well as in composite parts, for. B. automotive exterior parts, which are provided with a protective layer of the polymer mixture.
  • the parts can become unsightly after a few months or a few years. There is therefore a need to reduce the tendency to long-term embrittlement in such parts or moldings.
  • parts or moldings with a material thickness of about at least 150 microns which consist entirely of a polymer mixture of an impact modified poly (meth) acrylate plastic and a fluoropolymer, in practice with outdoor weathering or experimentally in the case of 10-day storage at 60 ° C., because of the transverse contraction of the mass, which is hampered by the material thickness, after thermal loads tend to fail prematurely when subjected to mechanical loads.
  • the polymer mixture mentioned is present in an outer layer with a continuous material thickness of at least 10 ⁇ m, this occurs Effect in a similar way, because here the firm connection to the substrate similarly impedes the cross-contraction of the polymer mixture in the outer layer.
  • the problem to be solved relates uniformly to molded articles made of plastic with a material thickness of at least 150 ⁇ m, containing a polymer mixture of an impact-modified poly (meth) acrylate plastic and a fluoropolymer in an outer layer with a continuous material thickness of at least 10 ⁇ m is present, regardless of whether the molded body consists entirely of the polymer mixture or is a composite molded body with a thin outer layer made of the polymer mixture.
  • the solution to the problem relates to a selection of the mixing ratio of the polymer mixture from the impact-modified poly (meth) acrylate plastic and the fluoropolymer, the proportion of the fluoropolymer in the mixture being 30 to 95% by weight.
  • the impact-modified poly (meth) acrylate plastic must consist of 20 to 70% by weight of a poly (meth) acrylate matrix and 30 to 80% by weight of elastomer particles.
  • these elastomer particles have an average particle diameter of from 10 to 1000 nm, from 20 to 600 nm, from 30 to 500 nm or from 50 to 150 nm.
  • the measures ensure that parts with a material thickness of at least 150 ⁇ m, which consist entirely of the polymer mixture, have a sufficient elongation at break after storage for 10 days at 60 ° C. of at least 150%.
  • the elongation at break after 10 days of storage In this case, 60 ° C is at least 60% of the value without a 10-day thermal load.
  • the polymer mixture of an impact modified poly (meth) acrylate plastic and a fluoropolymer characterized in that the proportion of the fluoropolymer in the mixture is 30 to 95, preferably 40 to 80, in particular 50 to 70% by weight.
  • Impact-modified poly (meth) acrylate plastic The impact-modified poly (meth) acrylate plastic consists of 20 to 70, preferably 25 to 60% by weight and particularly preferably 30 to 50% by weight of a poly (meth) acrylate matrix and 80 to 30, preferably 75 to 40 % By weight and particularly preferably 70 to 50% by weight of elastomer particles.
  • the average particle diameter of the elastomer particles is from 10 to 1000 nm, from 20 to 600 nm, from 30 to 500 nm or from 50 to 150 nm (measurement, for example, using the ultracentrifuge method).
  • the elastomer particles distributed in the poly (meth) acrylate matrix preferably have a core with a soft elastomer phase and a hard phase bonded to it.
  • the impact-modified poly (meth) acrylate plastic consists of a proportion of matrix polymer, polymerized from at least 80% by weight of units of methyl methacrylate and optionally 0 to 20% by weight of units of monomers copolymerizable with methyl methacrylate and a proportion distributed in the matrix on impact modifiers based on crosslinked poly (meth) acrylates
  • the matrix polymer consists in particular of 80 to 100, preferably 90-99.5% by weight, of free-radically polymerized methyl methacrylate units and optionally 0-20, preferably 0.5-10% by weight, of further free-radically polymerizable comonomers , e.g. B. Ci to C 4 - alkyl (meth) acrylates, especially methyl acrylate, ethyl acrylate or butyl acrylate.
  • the average molecular weight M w (weight average) of the matrix is preferably in the range from 90,000 g / mol to 200,000 g / mol, in particular 100,000 g / mol to 150,000 g / mol (determination of M w by means of gel permeation chromatography with reference to polymethyl methacrylate as Calibration standard).
  • the molecular weight M w can be determined, for example, by gel permeation chromatography or by scattered light method (see, for example, BHF Mark et al., Encyclopedia of Polymer Science and Engineering, 2nd Edition, Vol. 10, pages 1 ff., J. Wiley, 1989) ,
  • a copolymer of 90 to 99.5% by weight of methyl methacrylate and 0.5 to 10% by weight of methyl acrylate is preferred.
  • the Vicater softening temperatures VET ISO 306-B50
  • VET can be in the range of at least 90, preferably from 95 to 112 ° C.
  • the impact modifier is the impact modifier
  • the polymethacrylate matrix contains an impact modifier, which, for. B. can be a two- or three-shell impact modifier.
  • Impact modifiers for polymethacrylate plastics are well known. Production and construction of impact-modified polymethacrylate molding compositions are, for. B. in EP-A 0 113 924, EP-A 0 522 351, EP-A 0 465 049 and EP-A 0 683 028.
  • the impact modifier is prepared in a manner known per se by bead polymerization or by emulsion polymerization, and the crosslinked particles thus obtained can have an average particle size in the range from 10 to 1000 nm, from 20 to 600 nm, from 30 to 500 nm or from 50 to 150 nm exhibit.
  • These particles generally consist of at least 40, preferably 50-70% by weight methyl methacrylate, 20 to 40, preferably 25 to 35% by weight butyl acrylate and 0.1 to 2, preferably 0.5 to 1% by weight.
  • a crosslinking monomer e.g. B. a multifunctional (meth) acrylate such.
  • C 1 -C 4 -Alkylmet.hacrylat.en such as ethyl acrylate or butyl methacrylate, preferably methyl acrylate, or other vinyl polymerizable monomers such as. B. styrene.
  • Preferred impact modifiers are polymer particles which can have a two- or three-layer core-shell structure and are obtained by emulsion polymerization (see, for example, EP-A 0 113 924, EP-A 0 522 351, EP-A 0465 049 and EP- A 0 683 028).
  • Suitable particle sizes of these emulsion polymers are, for example, in the range from 10-150 nm, preferably 20-120 nm, particularly preferably 50-100 nm.
  • a three-layer or three-phase structure with a core and two shells can be as follows.
  • An innermost (hard) shell can e.g. B essentially from methyl methacrylate, small proportions of comonomers, such as. B. ethyl acrylate and a crosslinker, e.g. B. allyl methacrylate exist.
  • the middle (soft) shell can e.g. B. be made of butyl acrylate and optionally styrene, while the outermost (hard) shell essentially corresponds to the matrix polymer, whereby the compatibility and good connection to the matrix is effected.
  • the proportion of polybutyl acrylate in the impact modifier is decisive for the impact resistance and is preferably in the range from 20 to 40% by weight, particularly preferably in the range from 25 to 35% by weight.
  • the impact modifier and matrix polymer can be mixed in the melt to give impact-modified polymethacrylate molding compositions.
  • the discharged material is usually initially
  • Cut granules This can be done by means of extrusion or injection molding
  • Shaped bodies such as foils, profiles, plates or injection molded parts can be processed further.
  • a system known in principle from EP 0 528 196 A1, which is a two-phase, impact-modified polymer made from: a1) 10% to 95% by weight of a coherent hard phase with a Glass transition temperature T mg above 70 ° C, composed of a11) 80 to 100% by weight (based on a1) methyl methacrylate and a12) 0 to 20% by weight of one or more further ethylenically unsaturated, free-radically polymerizable monomers, and a2) 90 up to 5% by weight of a tough phase which is advantageous in the hard phase with a glass transition temperature T mg below -10 ° C, built up from a21) 50 to 99.5% by weight of a C r C 10 alkyl acrylate (based on a2) a22) 0.5 to 5% by weight of a crosslinking monomer with two or more ethylenically unsaturated, free-radically polymerizable radicals, and a23) optionally further ethylenically unsatur
  • the two-phase impact modifier can be produced by a two-stage emulsion polymerization in water, such as. B. described in DE-A 3842 796.
  • the tough phase a2) is produced, which is composed of at least 50, preferably more than 80% by weight of lower alkyl acrylates, which results in a glass transition temperature T mg of this phase of below -10 ° C.
  • Crosslinking monomers a22) are (meth) acrylic esters of diols, such as ethylene glycol dimethacrylate or 1,4-butanediol dimethacrylate, aromatic compounds with two vinyl or allyl groups, such as divinylbenzene, or other crosslinkers with two ethylenically unsaturated, free-radically polymerizable radicals, such as, for , B. allyl methacrylate used as a graft.
  • diols such as ethylene glycol dimethacrylate or 1,4-butanediol dimethacrylate
  • aromatic compounds with two vinyl or allyl groups such as divinylbenzene
  • crosslinkers with two ethylenically unsaturated, free-radically polymerizable radicals such as, for , B. allyl methacrylate used as a graft.
  • Triallyl cyanurate, trimethylolpropane triacrylate and trimethacrylate and pentaerythritol tetraacrylate and tetramethacrylate may be mentioned as examples of crosslinkers with three or more unsaturated, free-radically polymerizable groups, such as allyl groups or (meth) acrylic groups. Further examples are given in US 4,513,118.
  • the ethylenically unsaturated, free-radically polymerizable monomers mentioned under a23) can be, for example, acrylic or methacrylic acid and their alkyl esters with 1 to 20 carbon atoms, provided that not yet mentioned, where the alkyl radical can be linear, branched or cyclic. Furthermore, a23) can comprise further free-radically polymerizable aliphatic comonomers which are copolymerizable with the alkyl acrylates a21). However, noteworthy proportions of aromatic comonomers, such as styrene, alpha-methylstyrene or vinyltoluene, should be excluded, since they lead to undesirable properties of the molding composition A, especially when weathered.
  • the particle size of the tough phase essentially depends on the concentration of the emulsifier.
  • the particle size can advantageously be controlled by using a seed latex.
  • anionic emulsifiers such as the particularly preferred alkoxylated and sulfated paraffins.
  • polymerization initiators such. B. 0.01 to 0.5 wt .-% alkali or ammonium peroxodisulfate, based on the water phase and the polymerization is initiated at temperatures of 20 to 100 ° C.
  • Redox systems for example a combination of 0.01 to 0.05% by weight of organic hydroperoxide and 0.05 to 0.15% by weight of sodium hydroxymethyl sulfinate, at temperatures of 20 to 80 ° C. are preferably used.
  • the hard phase a1) which is at least 15% by weight covalently bonded to the tough phase a2) has a glass transition temperature of at least 70 ° C. and can be constructed exclusively from methyl methacrylate. Up to 20% by weight of one or more other ethylenically unsaturated, free-radically polymerizable monomers can be present as comonomers a12) in the hard phase, alkyl (meth) acrylates, preferably alkyl acrylates having 1 to 4 carbon atoms, being used in such amounts that the above-mentioned glass transition temperature is not fallen below.
  • the hard phase a1) is also polymerized in emulsion using the customary auxiliaries, such as are also used, for example, to polymerize the tough phase a2).
  • the hard phase contains low molecular weight and / or polymerized UV absorbers in amounts of 0.1 to 10% by weight, preferably 0.5-5% by weight, based on A as a component of the comonomer components a12) in the hard phase.
  • the polymerizable UV absorbers as are described, inter alia, in US Pat. No. 4,576,870, are 2- (2'-hydroxyphenyl) -5-methacrylamidobenzotriazole or 2-hydroxy-4-methacryloxybenzophenone.
  • Low molecular weight UV absorbers can be, for example, derivatives of 2-hydroxybenzophenone or 2-hydroxyphenylbenzotriazole or salicylic acid phenyl ester.
  • the low molecular weight UV absorbers have a molecular weight of less than 2 x 10 (g / mol). UV absorbers with low volatility at the processing temperature and homogeneous miscibility with the hard phase a1) of the polymer A are particularly preferred.
  • Light stabilizers are particularly preferred.
  • Light stabilizers are to be understood as UV absorbers, UV stabilizers and radical scavengers.
  • UV protection agents optionally included are e.g. B. derivatives of benzophenone, the substituents such as hydroxyl and / or alkoxy groups are usually in the 2- and / or 4-position. These include 2-hydroxy-4-n-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4 , -tetrahydroxybenzophenone, 2,2 , -dihydroxy-4, 4'-dimethoxybenzophenone, 2-hydroxy-4-methoxybenzophenone.
  • Substituted benzotriazoles are also very suitable as UV protection additives, especially 2- (2-hydroxy-5-methylphenyl) benzotriazole,
  • a UV absorber of the class 2- (2-hydroxyphenyl) -1, 3,5-triazines, such as phenol, 2- (4,6-diphenyl-1,2,5-triazine-2 -xy) -5- (hexyloxy), can be used.
  • UV protective agents which can also be used are ethyl 2-cyano-3,3-diphenylacrylate, bisanilide 2-ethoxy-2'-ethyl-oxalate, bis-2-ethoxy-5-t-butyl-2-ethyl-oxalate and substituted phenyl benzoate.
  • the light stabilizers or UV protective agents can be contained in the polymethacrylate compositions to be stabilized as low molecular weight compounds as stated above. But it can also UV-absorbing groups in the matrix polymer molecules covalently after copolymerization with polymerizable UV absorption compounds, such as. As acrylic, methacrylic or allyl derivatives of benzophenone or benzotriazole derivatives.
  • the proportion of UV protection agents is generally from 0.01 to 10% by weight, in particular from 0.01 to 5% by weight, in particular from 0.02 to 2 wt .-% based on the (meth) acrylate copolymer of layer a).
  • Sterically hindered amines which are known under the name HALS (hindered amine light stabilizer), may be mentioned here as an example of radical scavengers / UV stabilizers. They can be used for the inhibition of aging processes in paints and plastics, especially in polyolefin plastics (Kunstscher, 74 (1984) 10, pp. 620 to 623; Park + Lack, 96 vintage, 9/1990, pp. 689 to 693 ).
  • the tetramethylpiperidine group contained therein is responsible for the stabilizing effect of the HALS compounds.
  • This class of compounds on the piperidine nitrogen can be both unsubstituted and substituted with alkyl or acyl groups.
  • the sterically hindered amines do not absorb in the UV range. They trap the radicals that are formed, which the UV absorbers in turn cannot.
  • stabilizing HALS compounds that can also be used as mixtures are:
  • fluorine polymers are understood to mean polymers which can be obtained by the radical polymerization of olefinically unsaturated monomers, on the double bond of which there is at least one fluorine substituent. Copolymers are also included here. In addition to one or more fluorine-containing monomers, these copolymers can contain further monomers which are copolymerizable with these fluorine-containing monomers.
  • the preferred fluoropolymer is polyvinylidene fluoride (PVDF).
  • the fluorine-containing monomers include, among others, chlorotrifluoroethylene, fluorovinylsulfonic acid, hexafluoroisobutylene, hexafluoropropylene, perfluorovinylmethyl ether, tetrafluoroethylene, vinyl fluoride and vinylidene fluoride. Of these, vinylidene fluoride is particularly preferred.
  • the fluorine-containing polymer can be extruded into films. Accordingly, the molecular weight can vary within a wide range if auxiliaries or copolymers are used. In general, the weight average molecular weight of the fluorine-containing polymers is in the range from 100,000 to 200,000, preferably in the range from 110,000 to 170,000, without any intention that this should impose any restriction.
  • Shaped body a) Shaped body which consists entirely of the polymer mixture
  • the molded article according to the invention can consist entirely of the polymer mixture of the impact-modified poly (meth) acrylate plastic and the fluoropolymer.
  • conventional additives, auxiliaries and / or fillers such as. B. thermal stabilizers, UV stabilizers, UV absorbers, antioxidants and / or colorants, pigments or organic dyes. It is preferred to contain no more than 10, particularly preferably no more than 5, in particular no more than 2% by weight of customary additives, auxiliaries and / or fillers. If appropriate, the shaped body may also not contain any additives, auxiliaries and / or fillers.
  • the molded body according to the invention can, for. B. a film with a film thickness of 150 to 2000, preferably 200 to 1000, particularly preferably 300 to 500 microns.
  • the film according to the invention can have an elongation at break without storage for 10 days at 60 ° C. of at least 250, preferably at least 280, in particular at least 300%.
  • the film according to the invention can have an elongation at break after storage for 10 days at 60 ° C. of at least 150, preferably at least 175, in particular 200%.
  • the film according to the invention can have an elongation at break after storage for 10 days at 60 ° C., which is still at least 60, preferably at least 70, in particular at least 80% of the value without a 10-day thermal load.
  • the film can e.g. B. be contained in a membrane structure, the membrane structure contains at least two curved and welded together at the edges foils that enclose a cavity.
  • Membranes of buildings such as the well-known "Eden project" are known.
  • the molded body according to the invention or the film can be produced in a manner known per se by means of thermoplastic processing, in particular extrusion or injection molding.
  • the molded article according to the invention or the film can, for. B. can be used as a roofing element, facade element, as a window in a folding roof for a vehicle with a foldable fabric or plastic roof.
  • the molding according to the invention can be a composite molding which, in addition to the layer with the polymer mixture composed of the impact-modified poly (meth) acrylate plastic and the fluoropolymer, contains a further, thermoplastically processable plastic which is connected to the polymer mixture and the layer made of the polymer mixture contains a continuous one Material thickness of 10 to 100, preferably 20 to 80 microns.
  • additives, auxiliaries and / or fillers such as, B. thermal stabilizers, UV stabilizers, UV absorbers, antioxidants and / or colorants, pigments or organic dyes.
  • B. thermal stabilizers Preferably no more than 10, particularly preferably no more than 5, in particular no more than 2% by weight of customary additives, auxiliaries and / or fillers are present.
  • the plastics may not contain any additives, auxiliaries and / or fillers at all.
  • the layer of the polymer mixture composed of the impact-modified poly (meth) acrylate plastic and the fluoropolymer particularly preferably contains 0.01 to 10% by weight of a light stabilizer.
  • the further plastic contained in the composite molded body can be a polymethyl methacrylate, impact-modified polymethyl methacrylate, polycarbonate, polystyrene, acrylic ester / styrene / acrylonitrile graft copolymer (ASA), styrene-acrylonitrile (SAN), polyethylene terephthalate (PET), glycol-modified polyethylene terephthalate (PETG) - Plastic (PBT), polyvinyl chloride plastic (PVC), polyolefin plastic, cycloolefin copolymer (COC), acrylonitrile-butadiene-stryrene (ABS) or a mixture (blend) of various thermoplastics.
  • ASA acrylic ester / styrene / acrylonitrile graft copolymer
  • SAN styrene-acrylonitrile
  • PET polyethylene terephthalate
  • PET glycol-modified polyethylene terephthalate
  • the composite molded body according to the invention exhibits an elongation at the start of crack formation in the layer of the polymer mixture composed of the impact-modified poly (meth) acrylate plastic and the fluoropolymer of at least 100, preferably 120, particularly preferably 150% upon delivery and after 10 days of storage 60 ° C of at least 50, preferably at least 60, in particular at least 70% of this value.
  • the composite molded article according to the invention can be produced in a manner known per se by means of film lamination, coextrusion, extrusion coating, insert molding or solvent cast processes.
  • the composite molding according to the invention can, for. B. as a roofing element, facade element, parts of household appliances, communication devices, hobby or sports equipment, body parts or parts of body parts in automobile, ship or aircraft construction such. B. planking, bumpers, fenders, trims or trims can be used.
  • Films can be produced from the polymer mixture according to the invention in a manner known per se by extrusion. Are suitable for.
  • a mixture of the impact modified poly (meth) acrylate and the fluoropolymer is first produced.
  • the fluoropolymers and the impact-modified poly (meth) acrylates are commercially available.
  • Particularly preferred mixtures contain 30 to 95% by weight, preferably 40 to 80% by weight, particularly preferably 50 to 70% by weight of fluoropolymers, preferably polyvinylidene fluoride (PVDF) and 70 to 5% by weight, preferably 60 to 20 % By weight and particularly preferably 50 to 30% by weight of impact-modified poly (meth) acrylate, these values being based on the overall mixture.
  • fluoropolymers preferably polyvinylidene fluoride (PVDF) and 70 to 5% by weight, preferably 60 to 20 % By weight and particularly preferably 50 to 30% by weight of impact-modified poly (meth) acrylate, these values being based on the overall mixture.
  • PVDF polyvinylidene fluoride
  • the preferred PVDF can be used as a homopolymer and / or copolymer.
  • the extrudable polymer mixtures can optionally be used in small proportions, e.g. B. 0 to 20, preferably 0 to 10 or 0 to 5 wt .-% contain further polymers which are miscible both with the fluoropolymer and with the impact-modified poly (meth) acrylate. These include polycarbonates, polyesters, polyamides, polyimides, polyurethanes and polyethers.
  • the films particularly preferably consist predominantly, 98 to 100% by weight or exclusively of impact-modified poly (meth) acrylate and fluoropolymers.
  • Miscibility of the different substances means that the components form a homogeneous mixture which has no turbidity which can be attributed to a phase separation.
  • the films may contain additives well known in the art. These include antistatic agents, antioxidants, dyes, flame retardants, fillers, light stabilizers and organic phosphorus compounds such as phosphites or phosphonates, pigments, weathering agents and plasticizers. According to the invention, all known light stabilizers, in particular UV absorbers, can be used. UV absorbers of the benzotriazole and hydroxyphenyltriazine type are particularly preferred.
  • UV absorbers based on triazine are very particularly preferred. These UV absorbers are particularly durable and weatherproof. Furthermore, they have excellent absorption characteristics.
  • a dry mixture is preferably first prepared which contains at least one impact-modified poly (meth) acrylate and a fluoropolymer.
  • dry mixing means that no solvent has to be removed from this mixture in the course of the further process. Residual solvents that do not require further work-up or that can be separated from the mixture by vacuum in the extruder are permitted. Mixing can be done in conventional devices well known for this purpose.
  • the temperature at which the mixing takes place is below the gel temperature of the mixture. This step is preferably carried out at room temperature.
  • This mixture can e.g. B. extruded on a roller having a temperature less than 40 ° C, wherein a film is formed.
  • the extrusion of polymers into films is widely known and is described, for example, in Kunststoffextrusionstechnik II, Hanser Verlag, 1986, pp. 125 ff.
  • the hot melt is transferred from the nozzle of an extruder to a single chill roll (chill roll roll).
  • chill roll roll are well known in the art, using polished rollers to obtain a high gloss.
  • rollers other than cooling rollers can also be used in the method according to the invention.
  • Another roll initially picks up the melt cooled on the first roll (chill-roll roll), whereby a single-layer film is obtained which can be provided with further layers.
  • a filter is placed before the melt enters the nozzle so that the resulting film is largely free of impurities.
  • the mesh size of the filter generally depends on the starting materials used and can accordingly vary widely. In general, however, they are in the range from 300 ⁇ m to 20 ⁇ m. Filters with several screens of different mesh sizes can also be arranged in front of the nozzle inlet. These filters are well known in the art and are commercially available. The attached examples can serve as a further point of reference for the person skilled in the art.
  • PVDF increasingly forms gels at temperatures above approx. 240 ° C (manufacturer's specification from Solvay). These gel particles are relatively difficult to remove by filtration. Accordingly, it is necessary to avoid possible gel formation. Therefore, extrusion is carried out at temperatures which are as far as possible below the gel temperature. Powdery PVDF delivery forms are also suitable for the production of low-gel films, the average particle size of which is, for example, 0.2 mm. These are opened up more completely in the shear field of the extruder.
  • the temperature should be high enough so that the mixture can be extruded into a film that has an excellent surface quality and the least possible haze.
  • the optimal temperature depends, for example, on the composition of the mixture and can therefore vary over a wide range. But preferred temperatures of the mixture up to the nozzle inlet are in the range from 150 to 210 ° C., particularly preferably in Range from 180 to 200 ° C. The temperature of the mixture must be kept below the gel temperature over the entire molding process.
  • the pressure at which the molten mixture is pressed into the nozzle can be controlled, for example, via the speed of the screw.
  • the pressure is generally in the range from 40 to 100 bar, without the method according to the invention being restricted thereby.
  • the speed at which the films can be obtained according to the invention is accordingly greater than 5 m / min, in particular greater than 10 m / min, without this being intended to limit the method according to the invention.
  • the temperature of the nozzle is chosen to be higher than the temperature of the mixture before the nozzle enters but lower than the gel temperature.
  • the nozzle temperature is preferably set 5 to 20%, particularly preferably 10 to 20% and very particularly preferably 12 to 18% higher than the temperature of the mixture before the nozzle enters. Accordingly, preferred temperatures of the nozzle are in the range from 160 ° C. to 235 ° C., particularly preferably 200 ° C. to 230 ° C. and very particularly preferably 210 ° C. to 220 ° C.
  • the film After the film has been obtained, it can be laminated with other films. These films can serve to protect the PVDF / szPMMA-containing layer. Furthermore, this can facilitate further processing of the films, since these plastic films can have a particularly high adhesion to resins which are sprayed onto or onto the films in subsequent processes.
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PVC polyolefins
  • PP polypropylene
  • PE polyethylene
  • ABS acrylonitrile-butadiene-styrene copolymers
  • ABS ABS / ASA blends
  • ASA acrylonitrile-styrene-acrylic ester copolymers
  • polycarbonates and polyamides and mixtures of these polymers.
  • PVDF / szPMMA-containing films can also be provided with pigments or printed with dyes. It is also possible to achieve metallic effects on these foils. These processes are known to the person skilled in the art and are referred to, for example, as gravure printing, gravure coating and micro-gravure coating.
  • the aforementioned steps that is to say the production of the film containing PVDF / PMMA, the printing and the lamination with further layers, can generally be carried out in a continuous process.
  • the process of the present invention should not be limited to the laminating with further films. Rather, these layers can also be applied by solvent coating or by extrusion coating, as is described, for example, in patent application WO 96/40480 and WO 88/07416 and in US Pat. No. 4,902,557.
  • multilayer films can accordingly have a plurality of decorative layers / printing layers in a different order.
  • multilayer films can also contain adhesive layers which can be used both for connecting layers made of different plastics and for fastening the films to the objects to be protected.
  • the film according to the invention can have a thickness of 150 to 2000, preferably 200 to 1500, particularly preferably 400 to 1000 ⁇ m.
  • the value of the elongation at break with or without thermal stress which is particularly important for the characterization of the properties, can be determined using the following method.
  • the elongation at break is determined at 23 ° C and 50% relative humidity in accordance with ISO 527-3 / 2/100 in the case of thicknesses up to 100 ⁇ m or in accordance with ISO 527/1 B / 50 in the case of thicknesses above 100 ⁇ m. In both cases it is Elongation speed 100% / min.
  • the elongation at break of the material is determined upon delivery and after 10 days of storage in an oven, typically at 60 ° C. The smaller the ratio
  • the elongation at break of the film just extruded is in the delivery state with film thicknesses of at least 150 ⁇ m, e.g. B. at least 200 to 2000 microns, in the range of 200 to 300%.
  • the elongation at break is still at least 150, preferably at least 180, particularly preferably at least 200, in particular at least 250%.
  • the elongation at break of the film after 10 days of storage at 60 ° C is still at least 60, preferably at least 70% of the value without 10 days of thermal stress at 60 ° C.
  • a composite molded body has a further, thermoplastically processable plastic connected to the polymer mixture, the layer consisting of the polymer mixture having a continuous material thickness of 10 to 100 , in particular from 30 to 90 ⁇ m.
  • the composite molded body can have any overall thickness or material thickness of at least 150, e.g. B. 200 - 5000 microns.
  • the value of the stretch which is particularly important for the characterization of the properties at the start of crack formation in the layer of the polymer mixture comprising the impact-modified poly (meth) acrylate plastic and the fluoropolymer can then be determined by the following method.
  • a plastic is preferably selected as the material for the substrate, the elongation at break of which is higher than the elongation at the start of cracking in the cover layer.
  • B polyethylene terephthalate, LD or HD polyethylene.
  • the elongation at the start of crack formation is determined at 23 ° C and 50% relative humidity as part of a tensile test according to ISO 527/1 B / 50.
  • the layer of the polymer mixture is to be illuminated in a suitable manner, so that the occurrence of cracks in the top layer can be visually detected.
  • the current elongation when the first cracks appear in the top layer is noted.
  • the tensile test is carried out with 5 test specimens performed. Are suitable for. B. test specimens from 1 mm to 2 mm total thickness. The mean value of the elongation at the start of the crack formation is then given as the result.
  • the elongation at the start of the crack formation is determined in the delivery and after 10 days of storage in an oven, typically at 60 ° C. The smaller the ratio
  • An impact-modified poly (meth) acrylate plastic composed of 33% by weight of a poly (meth) acrylate matrix and 67% by weight of elastomer particles with an average particle diameter of 60 nm was used.
  • the elastomer particles distributed in the poly (meth) acrylate matrix have a core with a soft elastomer phase and a hard phase bonded to it.
  • PVDF Polyvinylidene fluoride
  • PVDF KT 1000 is VDF homopolymer; Manufacturer: Kureha Chemicals, Japan
  • the polymers were mixed dry and extruded into films.
  • the material to be examined is crushed, granules can be used directly, and an amount of approx. 1 to 2 g is precisely weighed into a 150 ml beaker using an analytical balance (accuracy 0.1 mg).
  • the sample is dissolved with stirring (magnetic stirrer) at approx. 50 ° C in approx. 80 ml acetone, with a clear cloudiness due to the insoluble elastomer phase.
  • the cloudy polymer solution thus obtained is quantitatively distributed on a laboratory balance (accuracy 0.1 g) in 4 centrifuge beakers (steel, 30 - 50 ml each) so that their final weights differ from each other by a maximum of 0.1 g. These are placed in the rotor of the centrifuge (with cooling, at least 35,000 g) and centrifuged for at least 30 minutes at approx. 21,000 rpm (approx. 41,000 RZB).
  • the mass acetycals are calculated from the ägfiii: AiBwaage fg) - 100% a) AcctonlösL share [%) - Weigh-in [g] Auswaagc (sediments) [g ' [- 100% b) acotonunlOsL share ⁇ % Weigh-in [g]
  • the acetone-insoluble fraction determined in this way corresponds to the elastomer particle content and is based on the entire molded body.
  • the person skilled in the art is able to determine the proportion of the fluoropolymer of the shaped body, e.g. B. by elemental analysis in combination with spectroscopic methods and / or the alkoxyl determination according to Zeisel, and then to relate the elastomer particle content to the proportion of the impact-modified poly (meth) acrylate plastic.
  • Fluoropolymer is not or not completely soluble in acetone:
  • the determination can optionally be carried out in another solvent other than acetone in which the fluoropolymer dissolves completely.
  • the acetone-insoluble fraction determined in this way is a mixture of the elastomer particles and insoluble fluoropolymer and is based on the entire molded article.
  • the proportion of the elastomer particles in the acetone-insoluble fraction (sediment) e.g. B. by determining the proportion of the fluoropolymer by elemental analysis in combination with spectroscopic methods and / or the alkoxyl determination according to Zeisel, and then the elastomer particle content to the proportion of the impact-modified poly (meth) acrylate plastic.

Abstract

Die Erfindung betrifft einen Formkörper aus Kunststoff mit einer Materialstärke von mindestens 150 µm an jedem beliebigen Punkt, enthaltend eine Polymermischung aus einem schlagzähmodifizierten Poly(meth)acrylat-Kunststoff, aus einer Polymethylmethacrylat-Matrix und darin enthaltenen Elastomerteilchen, und einem Fluor-Polymeren, wobei der Anteil des Fluorpolymeren in der Mischung 30 bis 95 Gew.-% beträgt, und die Polymermischung aus dem schlagzähmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor-Polymeren in einer aussen liegenden Schicht mit einer durchgängigen Materialstärke von mindestens 10 µm vorliegt, dadurch gekennzeichnet, dass der schlagzähmodifizierte Poly(meth)acrylat-Kunststoff aus 20 bis 70 Gew.-% einer Poly(meth)acrylat-Matrix und 30 bis 80 Gew.-% Elastomerteilchen besteht.

Description

Polymermischung aus schlagzähmodifiziertem Poly(meth)acrylat und Fluorpolymer
Die Erfindung betrifft eine Polymermischung aus einem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und einem Fluor-Polymeren. Die Erfindung betrifft weiterhin eine aus der Polymermischung hergestellte Folie, ein Verfahren zur ihrer Herstellung und die Verwendung als Oberflächenschutzfolie.
Stand der Technik
EP 0 476 942 beschreibt eine Polymermischung aus einem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und einem Fluor- Polymeren, wobei dessen Anteil in der Mischung 3 bis 12 Gew.-% betragen kann. Aus den Polymermischungen können Oberflächenschutzfolien für Polyvinylchlorid- oder Acrylnitril-Butadien-Stryrol (ABS)-Kunststoffteile hergestellt werden. Dadurch kann deren Bewitterungsbeständigkeit verbessert werden.
JP-OS 03 124754 A2 beschreibt Folien, die aus Polymermischungen aus schlagzahmodifizierten Poly(meth)acrylat und Fluor-Polymeren hergestellt werden, wobei der Anteil der Fluorpolymere 5 bis 25 Gew.-% betragen kann.
WO 00/37237 beschreibt ein Verfahren zur Herstellung von Folien, die in mindestens einer Schicht Fluor-Polymere und Poly(meth)acrylate enthalten. Zur Extrusion wird eine Mischung eingesetzt, die 10 bis 90 Gew.-% PVDF und 90 bis 10 Gew.-% Polymethylmethacrylat, bezogen auf das Gewicht der Gesamtmischung, enthält.
DE 102 36 045 A1 beschreibt ein Extrusionsverfahren zur Herstellung von niedrig orientierten thermoplastischen Folien mit einem Dickenbereich von 20 bis 1.000 μm. Als geeignete Materialien für die Folien werden unter anderem auch Polymermischungen aus einem schlagzahmodifizierten Poly(meth)acrylat- Kunststoff und einem Fluor-Polymeren aufgeführt, wobei deren Mischungsverhältnis 10 : 90 bis 90 : 10 betragen kann. Es werden eine Vielzahl von Verwendungsmöglichkeiten für die Folien genannt, so z. B. die Verwendung als Dekorfolien, UV-Schutzfolien, Trockenlackfolien, Verkratzschutzfolien für optische Datenträger, sowie Datenträgermaterialien, welche mittels kontinuierlichen Bedruckverfahren wie Tiefdruck, Flexodruck, Offset-Druck, Digitaldruck, Rollensiebdruck, Transferdruckverfahren bedruckt werden und/oder in kontinuierlichen Laminier- und Kaschierverfahren, wie Foliencolamination, Kaschierung von thermoplastischen Platten- und Profilwerkstoffen, Ummantelungstechniken, Coil-Coating-Verfahren und/oder kontinuierlichen Beschichtungsverfahren, wie wasserspreitende Beschichtung, antibakterielle Beschichtung, selbstreinigende Beschichtung, Antig raf itϊ- Beschichtung, Kratzfestbeschichtung, elektrisch leitfähige Beschichtung, optional verbunden mit Prägeverfahren, verarbeitet werden. Als Richtwert für die Dicke von Laminatfolien werden 100 μm angegeben.
EP 1 093 911 A2 beschreibt schlägzähe, mehrschichtige Schutzfilme aus einer exponierten Schicht mit einer Mischung aus einem Fluorpolymeren und einem Acrylpolymeren und einer darunter liegenden Schicht, die z. B. aus schlagzahmodifizierten Poly(meth)acrylat bestehen kann.
EP 0 306 385 A1 beschreibt schlagzähe Polymermischungen. Diese können aus aus einem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und einem Fluor-Polymeren bestehen. Der Anteil des Fluorpolymeren liegt unter 30 Gew.- %. Für die Elastomerteilchen wird ein weiter Größenbereich von 40 bis 500 nm angegeben. JP 59127754 A2 und JP 59127755 A2 beschreiben witterungsbeständige Schutzfolien für PVC-Stahl-Komposite. Die Schutzfolien bestehen aus Fluorpolymeren, die einen Acrylat-Elastomeranteil, jedoch keine (Meth)acrylatmatrix aufweisen.
Aufgabe und Lösung
Einzeln stehende Folien und Verbundfolien des Standes der Technik, insbesondere solche, die aus Fluorpolymeren in Mischung mit schlagzahmodifizierten Poly(meth)acrylaten bestehen, weisen hervorragende Eigenschaften auf. Insbesondere zu nennen sind hohe Witterungsbeständigkeit, gute Chemikalienbeständigkeit, hohe Beständigkeit gegen Spannungsrisskorrosion und gute mechanische Zähigkeit. Sie sind deshalb prädestiniert für den Außeneinsatz. Es hat sich jedoch gezeigt, daß praktisch alle diese Folien, egal ob als Einzel-Folien oder Verbundfolien, insbesondere bei Außenanwendungen und gleichzeitig auftretender, für längere Zeit einwirkender thermischer Belastung mehr oder weniger mit unerwünschter Versprödung reagieren, wenn die Folie oder der Verbund eine Materialstärke von mindestens 150, 200, 250 μm oder mehr aufweist. Dies schränkt die Verwendungsmöglichkeiten der Folien z. B. in wärmeren geographischen Regionen oder allgemein bei Anwendungen, insbesondere Außenanwendungen in heißer Umgebung ein.
Es wurde daher die Aufgabe gesehen ein Material bzw. einen Formkörper bereitzustellen, aus dem sich Einzel-Folien und Verbundfolien mit einer Materialstärke von mindestens 150 μm oder darüber herstellen lassen, die nach längerer thermischer Belastung keine oder nur sehr geringe Versprödung zeigen. Die Aufgabe wird gelöst durch einen Formkörper aus Kunststoff mit einer Materialstärke von mindestens 150 μm, enthaltend eine Polymermischung aus einem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff, aus einer Poly(meth)acrylat-Matrix und darin verteilten Elastomerteilchen, und einem Fluor-Polymeren, wobei der Anteil des Fluorpolymeren in der Mischung 30 bis 95 Gew.-% beträgt, und die Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor-Polymeren in einer außen liegenden Schicht mit einer durchgängigen Materialstärke von mindestens 10 μm vorliegt, dadurch gekennzeichnet, daß
der schlagzähmodifizierte Poly(meth)acrylat-Kunststoff aus 20 bis 70 Gew.-% einer Poly(meth)acrylat-Matrix und 80 bis 30 Gew.-% Elastomerteilchen besteht.
Der Erfindung liegt die Erkenntnis zugrunde, daß Polymermischungen aus einem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff, aus einer Poly(meth)acrylat-Matrix und darin verteilten Elastomerteilchen, und einem Fluor-Polymeren ab einer Materialstärke von etwa mindestens 150, insbesondere mindestens 200 oder mindestens 250 μm zu einer gegenüber dünneren Teilen erhöhten Langzeit-Versprödung neigen. Die erhöhte Langzeit- Versprödungsneigung zeigt sich dabei unabhängig davon, ob es sich um Formkörper handelt die ganz aus der Polymermischung bestehen oder ob es sich um Verbund-Formkörper handelt, bei denen die Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor- Polymeren in einer außen liegenden Schicht mit einer durchgängigen Materialstärke von mindestens 10 μm vorhanden ist. Die erhöhte Langzeit- Versprödung ist ein Problem bei exponierten Einzelfolien, die z. B. als Bedachungselement eingesetzt werden sollen, als auch bei Verbundteilen, z. B. Automobilaußenteilen, die mit einer Schutzschicht aus der Polymermischung versehen sind. Die Teile können je nach Beschaffenheit und Exposition nach einigen Monaten oder wenigen Jahren unansehnlich werden. Es besteht daher ein Bedarf die Neigung zur Langzeit-Versprödung bei solchen Teilen bzw. Formkörpern zu verringern.
Die erhöhte Langzeit-Versprödungsneigung z. B. bei Folien, die ganz aus der Polymermischung bestehen, geht experimentell einher mit einem Abfall der Bruchdehnung nach 10-tägiger Lagerung bei 60° C auf deutlich unter 50 % des Wertes ohne 10-tägige thermische Belastung. Diese experimentelle Korrelation wird bei dünnen Folien unter 150 oder unter 100 μm Materialstärke nicht festgestellt. Hier tritt praktisch kein relevanter Abfall der Bruchdehnung nach 10- tägiger Lagerung bei 60° C auf. Trotzdem tritt der Effekt der Langzeit- Versprödungsneigung auch bei Verbundformkörpern auf, bei denen die erwähnte Polymermischung in einer außen liegenden Schicht mit einer durchgängigen Materialstärke von mindestens 10 μm vorhanden ist.
Es wurde die Theorie entwickelt, daß Teile bzw. Formkörper mit einer Materialstärke von etwa mindestens 150 μm, die ganz aus einer Polymermischung aus einem schlagzahmodifizierten Poly(meth)acrylat- Kunststoff und einem Fluor-Polymeren bestehen, in der Praxis bei Außenbewitterung oder auch experimentell bei 10-tägiger Lagerung bei 60° C aufgrund ihrer durch die Materialstärke behinderten Querkontraktion der Masse nach thermischen Belastungen verstärkt zu frühzeitigem Versagen bei mechanischer Belastung neigen. Bei Verbundformkörpern, bei denen die erwähnte Polymermischung in einer außen liegenden Schicht mit einer durchgängigen Materialstärke von mindestens 10 μm vorhanden ist, tritt dieser Effekt in ähnlicher Weise auf, weil hier die feste Anbindung zum Untergrund in ähnlicherWeise die Querkontraktion der Polymermischung in der außen liegenden Schicht behindert. Bei einem einzelnen dünnen Formkörper, z. B. einer Folie, tritt dieser Effekt weder in der Praxis noch experimentell bei 10- tägiger Lagerung bei 60° C auf. Aufgrund dieser Erkenntnis betrifft das zu lösende Problem einheitlich Formkörper aus Kunststoff mit einer Materialstärke von mindestens 150 μm, enthaltend eine Polymermischung aus einem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und einem Fluor- Polymeren in einer außen liegenden Schicht mit einer durchgängigen Materialstärke von mindestens 10 μm vorliegt, unabhängig davon ob der Formkörper ganz aus der Polymermischung besteht oder es sich um einem Verbundformkörper mit einer dünnen außen liegenden Schicht aus der Polymermischung handelt.
Die Lösung des Problem betrifft eine Auswahl des Mischungsverhältnisses der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor-Polymeren, wobei der Anteil des Fluorpolymeren in der Mischung 30 bis 95 Gew.-% beträgt. Weiterhin muß der schlagzähmodifizierte Poly(meth)acrylat-Kunststoff aus 20 bis 70 Gew.-% einer Poly(meth)acrylat- Matrix und 30 bis 80 Gew.-% Elastomerteilchen bestehen.
In besonderen Ausführungsformen besitzen diese Elastomerteilchen einen mittleren Teilchendurchmesser von 10 bis 1000 nm, von 20 bis 600 nm, von 30 bis 500 nm oder von 50 bis 150 nm.
Die Maßnahmen stellen insgesamt sicher, daß Teile mit einer Materialstärke von mindestens 150 μm, die ganz aus der Polymermischung bestehen, eine ausreichende Bruchdehnung nach 10-tägiger Lagerung bei 60° C von mindestens 150 % aufweisen. Die Bruchdehnung nach 10-tägiger Lagerung bei 60° C beträgt in diesem Fall noch mindestens 60 % des Wertes ohne 10-tägige thermische Belastung.
Diese Maßnahmen gelten auch für Verbundteile mit einer Materialstärke von mindestens 150 μm, bei denen die Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor-Polymeren in einer außen liegenden Schicht mit einer durchgängigen Materialstärke von mindestens 10 μm vorliegt. Allerdings erfolgt hier die experimentelle Überprüfung der Eignung nicht durch Messung der Bruchdehnung nach 10- tägiger Lagerung bei 60° C sondern durch Messung der Dehnung bei Beginn der Rißbildung in der außen liegenden Schicht nach 10-tägiger Lagerung des Verbundteils bei 60°C. Dieser Wert soll bei Verbundteilen mindestens 50 % des Wertes ohne 10-tätige Lagerung bei 60 °C betragen. Der Ausgangswert ohne 10-tägige Lagerung bei 60 °C beträgt bei Verbundteilen mindestens 100 %.
Ausführung der Erfindung
Die Polymermischung
Die Polymermischung aus einem schlagzahmodifizierten Poly(meth)acrylat- Kunststoff und einem Fluor-Polymeren, dadurch gekennzeichnet, daß der Anteil des Fluorpolymeren in der Mischung 30 bis 95, bevorzugt 40 bis 80, insbesondere 50 bis 70 Gew.-% beträgt.
Schlagzähmodifizierter Poly(meth)acrylat-Kunststoff Der schlagzähmodifizierte Poly(meth)acrylat-Kunststoff besteht aus 20 bis 70, bevorzugt 25 bis 60 Gew.-% und besonders bevorzugt 30 bis 50 Gew.-% einer Poly(meth)acrylat-Matrix und 80 bis 30, bevorzugt 75 bis 40 Gew.-% und besonders bevorzugt 70 bis 50 Gew.-% Elastomerteilchen.
In besonderen Ausführungsformen ist der mittlere Teilchendurchmesser der Elastomerteilchen von 10 bis 1000 nm, von 20 bis 600 nm, von 30 bis 500 nm oder von 50 bis 150 nm (Messung z. B. mit der Ultrazentrifugenmethode).
Bevorzugt weisen die in der Poly(meth)acrylat-Matrix verteilten Elastomerteilchen einen Kern mit einer weichen Elastomerphase und einer daran gebundenen Hartphase auf.
Der schlagzähmodifizierte Poly(meth)acrylat-Kunststoff (szPMMA) besteht aus einem Anteil Matrixpolymer, polymerisiert aus mindestens 80 Gew.-% Einheiten Methylmethacrylat sowie gegebenenfalls 0 bis 20 Gew.-% Einheiten von mit Methylmethacrylat copolymerisierbaren Monomeren und einem in der Matrix verteilten Anteil an Schlagzähmodifizierungsmitteln auf Basis von vernetzten Poly(meth)acrylaten
Das Matrixpolymer besteht insbesondere aus 80 bis 100, vorzugsweise zu 90 - 99,5 Gew.-%, aus radikalisch polymerisierten Methylmethacrylat-Einheiten und gegebenenfalls zu 0 - 20, bevorzugt zu 0,5 - 10 Gew.-% aus weiteren radikalisch polymerisierbaren Comonomeren, z. B. C-i- bis C4- Alkyl(meth)acrylaten, insbesondere Methylacrylat, Ethylacrylat oder Butylacrylat. Vorzugsweise liegt das mittlere Molekulargewicht Mw (Gewichtsmittel) der Matrix im Bereich von 90.000 g/mol bis 200.000 g/mol, insbesondere 100.000 g/mol bis 150.000 g/mol (Bestimmung von Mw mittels Gelpermeationschromatographie unter Bezug auf Polymethylmethacrylat als Eichstandard) entsprechen. Die Bestimmung des Molekulargewichts Mw kann beispielsweise per Gelpermeationschromatographie oder per Streulichtmethode erfolgen (siehe z. B. H. F. Mark et al., Encyclopedia of Polymer Science and Engineering, 2nd. Edition, Vol. 10, Seiten 1 ff., J. Wiley, 1989).
Bevorzugt ist ein Copolymer aus 90 bis 99,5 Gew.-% Methylmethacrylat und 0,5 bis 10 Gew.-% Methylacrylat. Die Vicaterweichungstemperaturen VET (ISO 306-B50) können im Bereich von mindestens 90, bevorzugt von 95 bis 112 °C liegen.
Das Schlagzähmodifizierungsmittel
Die Polymethacrylat-Matrix enthält ein Schlagzähmodifizierungsmittel, welches z. B. ein zwei- oder dreischalig aufgebautes Schlagzähmodifizierungsmittel sein kann.
Schlagzähmodifizierungsmittel für Polymethacrylat-Kunststoffe sind hinlänglich bekannt. Herstellung und Aufbau von schlagzahmodifizierten Polymethacrylat- Formmassen sind z. B. in EP-A 0 113 924, EP-A 0 522 351 , EP-A 0 465 049 und EP-A 0 683 028 beschrieben.
Schlagzähmodifizierungsmittel
Das Schlagzähmodifizierungsmittel wird in an sich bekannter Weise durch Perlpolymerisation oder durch Emuisionspolymerisation hergestellt und die so erhaltenen, vernetzten Teilchen können eine mittlere Teilchengröße im Bereich von 10 bis 1000 nm, von 20 bis 600 nm, von 30 bis 500 nm oder von 50 bis 150 nm aufweisen. Diese Teilchen bestehen in der Regel aus mindestens 40, bevorzugt 50 - 70 Gew.-% Methylmethacrylat, 20 bis 40, bevorzugt 25 bis 35 Gew.-% Butylacrylat sowie 0,1 bis 2, bevorzugt 0,5 bis 1 Gew.-% eines vernetzenden Monomeren, z. B. einem mehrfunktionellen (Meth)acrylat wie z. B. Allylmethacrylat und gegebenenfalls weiteren Monomeren wie z. B. 0 bis 10, bevorzugt 0,5 bis 5 Gew.-% an C1-C4-Alkylmet.hacrylat.en, wie Ethylacrylat oder Butylmethacrylat, bevorzugt Methylacrylat, oder anderen vinylisch polymerisierbaren Monomeren wie z. B. Styrol.
Bevorzugte Schlagzähmodifizierungsmittel sind Polymerisatteilchen, die einen zwei- oder einen dreischichtigen Kern-Schale-Aufbau aufweisen können und durch Emulsionspolymerisation erhalten werden (s. z. B. EP-A 0 113 924, EP-A 0 522 351, EP-A 0465 049 und EP-A 0 683 028). Geeignete Teilchengrößen dieser Emulsionspolymerisate liegen beispielsweise im Bereich von 10 - 150, bevorzugt 20 bis 120 nm, besonders bevorzugt 50 - 100 nm liegen.
Ein dreischichtiger bzw. dreiphasiger Aufbau mit einem Kern und zwei Schalen kann wie folgt beschaffen sein. Eine innerste (harte) Schale kann z. B im wesentlichen aus Methylmethacrylat, geringen Anteilen von Comonomeren, wie z. B. Ethylacrylat und einem Vernetzeranteil, z. B. Allylmethacrylat, bestehen. Die mittlere (weiche) Schale kann z. B. aus Butylacrylat und gegebenenfalls Styrol aufgebaut sein, während die äußerste (harte) Schale im wesentlichen meist dem Matrixpolymerisat entspricht, wodurch die Verträglichkeit und gute Anbindung an die Matrix bewirkt wird. Der Polybutylacrylat-Anteil am Schlagzähmodifizierungsmittel ist entscheidend für die schlagzähe Wirkung und liegt bevorzugt im Bereich von 20 bis 40 Gew.-% , besonders bevorzugt im Bereich von 25 bis 35 Gew.-%. Schlagzähmodifizierte Polymethacrylat-Formmassen
Im Extruder können das Schlagzähmodifizierungsmittel und Matrix-Polymerisat zu schlagzahmodifizierten Polymethacrylat-Formmassen in der Schmelze vermischt werden. Das ausgetragene Material wird in der Regel zunächst zu
Granulat geschnitten. Dieses kann mittels Extrusion oder Spritzguß zu
Formkörpern, wie Folien, Profilen, Platten oder Spritzgußteilen weiterverarbeitet werden.
Zweiphasiger Schlagzähmodifier gemäß EP 0 528 196 A1
Bevorzugt, insbesondere zur Folienherstellung, jedoch nicht auf diese beschränkt, wird ein, im Prinzip aus EP 0 528 196 A1 bekanntes System verwendet, das ein zweiphasiges, schlagzähmodifiziertes Polymerisat ist aus: a1) 10 bis 95 Gew.-% einer zusammenhängenden Hartphase mit einer Glasübergangstemperatur Tmg über 70 °C, aufgebaut aus a11) 80 bis 100 Gew.-% (bezogen auf a1) Methylmethacrylat und a12) 0 bis 20 Gew.-% eines oder mehrerer weiterer ethylenisch ungesättigter, radikalisch polymerisierbarer Monomeren, und a2) 90 bis 5 Gew.-% einer in der Hartphase vorteilten Zähphase mit einer Glasübergangstemperatur Tmg unter -10 °C, aufgebaut aus a21) 50 bis 99,5 Gew.-% eines CrC10-Alkylacrylats (bezogen auf a2) a22) 0,5 bis 5 Gew.-% eines vernetzenden Monomeren mit zwei oder mehr ethylenisch ungesättigten, radikalisch polymerisierbaren Resten, und a23) gegebenenfalls weiteren ethylenisch ungesättigten, radikalisch polymerisierbaren Monomeren,
wobei wenigstens 15 Gew.-% der Hartphase a1) mit der Zähphase a2) kovalent verknüpft sind.
Das zweiphasige Schlagzähmodifizierungsmittel kann durch eine zweistufige Emulsionspolymerisation in Wasser erzeugt werden, wie z. B. in DE-A 3842 796 beschrieben. In der ersten Stufe wird die Zähphase a2) erzeugt, die zu mindestens 50, vorzugsweise zu mehr als 80 Gew.-%, aus niederen Alkylacrylaten aufgebaut ist, woraus sich eine Glasübergangstemperatur Tmg dieser Phase von unter -10 °C ergibt. Als vernetzende Monomere a22) werden (Meth)acrylester von Diolen, wie beispielsweise Ethylenglykoldimethacrylat oder 1 ,4-Butandioldimethacrylat, aromatische Verbindungen mit zwei Vinyl- oder Allylgruppen, wie beispielsweise Divinylbenzol, oder andere Vernetzer mit zwei ethylenisch ungesättigten, radikalisch polymerisierbaren Resten, wie z. B. Allylmethacrylat als Pfropfvernetzer, eingesetzt. Als Vernetzer mit drei oder mehr ungesättigten, radikalisch polymerisierbaren Gruppen, wie Allylgruppen oder (Meth)acrylgruppen, seien beispielhaft Triallylcyanurat, Trimethylolpropan- triacrylat und -trimethacrylat sowie Pentaerythrit-tetraacrylat und - tetramethacrylat genannt. Weitere Beispiele sind hierzu in US 4,513,118 angegeben.
Die unter a23) genannten ethylenisch ungesättigten, radikalisch polymerisierbaren Monomeren können beispielsweise Acryl- bzw. Methacrylsäure sowie deren Alkylester mit 1 - 20 Kohlenstoffatomen, sofern noch nicht genannt, sein, wobei der Alkylrest linear, verzweigt oder cyclisch sein kann. Desweiteren kann a23) weitere radikalisch polymerisierbare aliphatische Comonomere, die mit den Alkylacrylaten a21) copolymerisierbar sind, umfassen. Jedoch sollen nennenswerte Anteile an aromatischen Comonomeren, wie Styrol, alpha-Methylstyrol oder Vinyltoluol ausgeschlossen bleiben, da sie - vor allem bei Bewitterung - zu unerwünschten Eigenschaften der Formmasse A führen.
Bei der Erzeugung der Zähphase in der ersten Stufe muß die Einstellung der Teilchengröße und deren Uneinheitlichkeit genau beachtet werden. Dabei hängt die Teilchengröße der Zähphase im wesentlichen von der Konzentration des Emulgators ab. Vorteilhafterweise kann die Teilchengröße durch den Einsatz eines Saatlatex gesteuert werden. Teilchen mit einer mittleren Teilchengröße (Gewichtsmittel) unter 130 nm, vorzugsweise unter 70 nm, und mit einer Uneinheitlichkeit U80 der Teilchengröße unter 0,5, (U80 wird aus einer integralen Betrachtung der Teilchengrößenverteilung, die per Ultrazentrifuge bestimmt wird, ermittelt. Es gilt: U8o = [(rgo - ho) / r50] - 1 , wobei n0l r5o, r90 = mittlerer integraler Teilchenradius für den gilt 10,50,90 % der Teilchenradien liegen unter und 90,50,10 % der Teilchenradien liegen über diesem Wert) vorzugsweise unter 0,2, werden mit Emulgatorkonzentrationen von 0,15 bis 1 ,0 Gew.-%, bezogen auf die Wasserphase, erreicht. Dies gilt vor allem für anionische Emulgatoren, wie beispielsweise die besonders bevorzugten alkoxylierten und sulfatierten Paraffine. Als Polymerisationsinitiatoren werden z. B. 0,01 bis 0,5 Gew.-% Alkali- oder Ammoniumperoxodisulfat, bezogen auf die Wasserphase eingesetzt und die Polymerisation wird bei Temperaturen von 20 bis 100 °C ausgelöst. Bevorzugt werden Redox-Systeme, beispielsweise eine Kombination aus 0,01 bis 0,05 Gew.-% organischem Hydroperoxid und 0,05 bis 0,15 Gew.- % Natriumhydroxymethylsulfinat , bei Temperaturen von 20 bis 80 °C verwendet. Die mit der Zähphase a2) zumindest zu 15 Gew.-% kovalent verbundene Hartphase a1) weist eine Glasübergangstemperatur von wenigstens 70 °C auf und kann ausschließlich aus Methylmethacrylat aufgebaut sein. Als Comonomere a12) können bis zu 20 Gew.-% eines oder mehrerer weiterer ethylenisch ungesättigter, radikalisch polymerisierbarer Monomerer in der Hartphase enthalten sein, wobei Alkyl(meth)acrylate, vorzugsweise Alkylacrylate mit 1 bis 4 Kohlenstoffatomen, in solchen Mengen eingesetzt werden, daß die oben genannte Glasübergangstemperatur nicht unterschritten wird.
Die Polymerisation der Hartphase a1) verläuft in einer zweiten Stufe ebenfalls in Emulsion unter Verwendung der üblichen Hilfsmittel, wie sie beispielsweise auch zur Polymerisation der Zähphase a2) verwandt werden.
In einer bevorzugten Ausführungsform enthält die Hartphase niedermolekulare und/oder einpolymerisierte UV-Absorber in Mengen von 0,1 bis 10 Gew.-%, bevorzugt 0,5 - 5 Gew.-%, bezogen auf A als Bestandteil der comonomeren Komponenten a12) in der Hartphase. Beispielhaft für die polymerisierbaren UV- Absorber, wie sie u.a. in der US 4 576 870 beschrieben sind, seien 2-(2'- Hydroxyphenyl)-5-methacrylamidobenzotriazol oder 2-Hydroxy-4- methacryloxybenzophenon genannt. Niedermolekulare UV-Absorber können beispielsweise Derivate des 2-Hydroxybenzophenons oder des 2- Hydroxyphenylbenzotriazols oder Salicylsäurephenylester sein. Im allgemeinen weisen die niedermolekularen UV-Absorber ein Molekulargewicht von weniger als 2 x 10 (g/mol) auf. Besonders bevorzugt sind UV-Absorber mit geringer Flüchtigkeit bei der Verarbeitungstemperatur und homogener Mischbarkeit mit der Hartphase a1) des Polymerisats A. Lichtschutzmittel
Unter Lichtschutzmitteln sollen UV-Absorber, UV-Stabilisatoren und Radikalfänger verstanden werden.
Optional enthaltene UV-Schutzmittel sind z. B. Derivate des Benzophenons, dessen Substituenten wie Hydroxyl- und/oder Alkoxygruppen sich meist in 2- und/oder 4-Stellung befinden. Hierzu zählen 2-Hydroxy-4-n- octoxybenzophenon, 2,4-Dihydroxybenzophenon, 2,2'-Dihydroxy-4- methoxybenzophenon, 2,2',4,4,-Tetrahydroxybenzophenon, 2,2,-Dihydroxy-4,4'- dimethoxybenzophenon, 2-Hydroxy-4-methoxybenzophenon. Desweiteren sind substituierte Benztriazole als UV-Schutz-Zusatz sehr geeignet, wozu vor allem 2-(2-Hydroxy-5-methylphenyl)-benztriazol,
2-[2-Hydroxy-3,5-di-(alpha,alpha-dimethyl-benzyl)-phenyl]-benztriazol, 2-(2- Hydroxy-3,5-di-t-butylphenyl)-benztriazol, 2-(2-Hydroxy-3-5-butyl-5- methylphenyl)-5-chlorbenztriazol, 2-(2-Hydroxy-3,5-di-t-butylphenyl)-5- chlorbenztriazol, 2-(2-Hydroxy-3,5-di-t-amylphenyl)-benztriazol, 2-(2-Hydroxy-5- t-butylphenyl)-benztriazol,
2-(2-Hydroxy-3-sek-butyl-5-t-butylphenyl)-benztriazol und 2-(2-Hydroxy-5-t- octylphenyl)-benztriazol, Phenol, 2,2 -methylenbis[6-(2H-benztriazol-2-yl)-4- (1 ,1,3,3,-tetramethylbutyl)] zählen.
Neben den Benztriazolen kann auch ein UV-Absorber der Klasse der 2-(2 - Hydroxyphenyl)-1 ,3,5-Triazine, wie beispielweise Phenol, 2-(4,6-diphenyl-1,2,5- triazin-2-xy)-5-(hexyloxy), eingesetzt werden.
Weiterhin einsetzbare UV-Schutzmittel sind 2-Cyano-3,3- diphenylacrylsäureethylester, 2-Ethoxy-2'-ethyl-oxalsäurebisanilid, 2-Ethoxy-5-t- butyl-2'-ethyl-oxalsäurebisanilid und substituierte Benzoesäurephenylester. Die Lichtschutzmittel bzw. UV-Schutzmittel können als niedermolekulare Verbindungen, wie sie vorstehend angegeben sind, in den zu stabilisierenden Polymethacrylatmassen enthalten sein. Es können aber auch UV- absorbierende Gruppen in den Matrixpolymermolekülen kovalent nach Copolymerisation mit polymerisierbaren UV-Absorptionsverbindungen, wie z. B. Acryl-, Methacryl oder Allylderivaten von Benzophenon- oder Benztriazolderivaten, gebunden sein.
Der Anteil von UV-Schutzmitteln, wobei dies auch Gemische chemisch verschiedener UV-Schutzmittel sein können, beträgt in der Regel 0,01 bis 10 Gew.-%, vor allem 0,01 bis 5 Gew.-%, insbesondere 0,02 bis 2 Gew.-% bezogen auf das (Meth)acrylatcopolymer der Schicht a).
Als Beispiel für Radikalfänger/UV-Stabilisatoren seien hier sterisch gehinderte Amine, die unter dem Namen HALS (Hindered Amine Light Stabilizer) bekannt sind genannt. Sie können für die Inhibierung von Alterungsvorgängen in Lacken und Kunststoffen, vor allem in Polyolefinkunststoffen, eingesetzt werden (Kunststoffe, 74 (1984) 10, S. 620 bis 623; Farbe + Lack, 96 Jahrgang, 9/1990, S. 689 bis 693). Für die Stabilisierungswirkung der HALS-Verbindungen ist die darin enthaltene Tetramethylpiperidingruppe verantwortlich. Diese Verbindungsklasse kann am Piperidinstickstoff sowohl unsubstituiert als auch mit Alkyl- oder Acylgruppen substituiert sein. Die sterisch gehinderten Amine absorbieren im UV-Bereich nicht. Sie fangen gebildete Radikale ab, was die UV-Absorber wiederum nicht können.
Beispiele für stabilisierend wirkende HALS-Verbindungen, die auch als Gemische eingesetzt werden können sind:
Bis-(2,2,6I6-tetramethyl-4-piperidyl)-sebacat, 8-Acetyl-3-dodecyl-7,7,9,9- tetramethyl-1 ,3-8-triazaspiro(4,5)-decan-2,5-dion, Bis-(2,2,6,6-tetramethyl-4- piperidyl)-succinat, Poly-(N-ß-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy- piperidin-bemsteinsäureester) oder Bis-(N-methyl-2,2,6,6-tetramethyl-4- piperidyl)-sebacat.
Fluorpolymere
Unter Fluor-Polymeren sind im Rahmen der vorliegenden Erfindung Polymere zu verstehen, die durch die radikalische Polymerisation von olefinisch ungesättigten Monomeren erhalten werden können, an deren Doppelbindung sich mindestens ein Fluor-Substituent befindet. Hierbei sind auch Copolymere eingeschlossen. Diese Copolymere können neben einem oder mehreren fluorenthaltenden Monomeren weitere Monomere enthalten, die mit diesen fluorenthaltenden Monomeren copolymerisierbar sind. Das bevorzugte Fluorpolymer ist Polyvinylidenfluorid (PVDF).
Zu den fluorenthaltenden Monomeren gehören unter anderem Chlortrifluorethylen, Fluorvinylsulfonsäure, Hexafluorisobutylen, Hexafluorpropylen, Perfluorvinylmethylether, Tetrafluorethylen, Vinylfluorid und Vinylidenfluorid. Von diesen ist Vinylidenfluorid besonders bevorzugt.
Wichtig für die vorliegende Erfindung ist, daß das fluorenthaltende Polymer zu Folien extrudiert werden kann. Dementsprechend kann das Molekulargewicht in weiten Bereichen variieren, falls Hilfsstoffe oder Copolymere verwendet werden. Im allgemeinen liegt das Gewichtsmittel des Molekulargewichts der fluorenthaltenden Polymere im Bereich von 100 000 bis 200 000, bevorzugt im Bereich von 110 000 bis 170 000, ohne daß hierdurch eine Beschränkung erfolgen soll. Formkörper a) Formkörper, der ganz aus der Polymermischung besteht
Der erfindungsgemässe Formkörper kann in Bezug auf seine polymere Zusammensetzung ganz aus der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor-Polymeren bestehen. In der Regel sind in an sich bekannter Weise noch übliche Zusatz-, Hilfs- und/oder Füllstoffe, wie z. B. Thermostabilisatoren, UV-Stabilisatoren, UV- Absorber, Antioxidantien und/oder Farbmittel, Pigmente oder organische Farbstoffe, enthalten. Bevorzugt sind nicht mehr als 10, besonders bevorzugt nicht mehr als 5, insbesondere nicht mehr als 2 Gew.-% übliche Zusatz-, Hilfsund/oder Füllstoffe enthalten. Gegebenenfalls kann der Formkörper auch gar keine Zusatz-, Hilfs- und/oder Füllstoffe enthalten, enthalten.
Der erfindungsgemässe Formkörper kann z. B. eine Folie mit einer Foliendicke von 150 bis 2000, bevorzugt 200 bis 1000, besonders bevorzugt 300 bis 500 μm sein.
Die erfindungsgemässe Folie kann eine Bruchdehnung ohne 10-tägige Lagerung bei 60° C von mindestens 250, bevorzugt mindestens 280, insbesondere mindestens 300 % aufweisen.
Die erfindungsgemässe Folie kann eine Bruchdehnung nach 10-tägiger Lagerung bei 60° C von mindestens 150, bevorzugt mindestens 175, insbesondere 200 % aufweisen. Die erfindungsgemässe Folie kann eine Bruchdehnung nach 10-tägiger Lagerung bei 60° C aufweisen, die noch mindestens 60, bevorzugt mindestens 70, insbesondere mindestens 80 % des Wertes ohne 10-tägige thermische Belastung beträgt. Die Folie kann z. B. in einem Membranaufbau enthalten sein, wobei der Membranaufbau zumindest zwei gewölbte und an den Rändern miteinander verschweißte Folien enthält, die einen Hohlraum einschließen. Bekannt sind solche Membranen von Bauwerken wie dem bekannten „Eden- Projekt".
Der erfindungsgemässe Formkörper bzw. die Folie kann in an sich bekannter Weise mittels thermoplastischer Verarbeitung, insbesondere Extrusion oder Spritzguß hergestellt werden.
Der erfindungsgemässe Formkörper bzw. die Folie kann z. B. als Bedachungselement, Fassadenelement, als Fenster in einem Faltdach für ein Fahrzeug mit faltbarem Stoff- oder Kunststoffverdeck verwendet werden.
b) Verbundformkörper
Der erfindungsgemässe Formkörper kann ein Verbundformkörper sein, der zusätzlich zur Schicht mit der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor-Polymeren einen weiteren, thermoplastisch verarbeitbaren, mit der Polymermischung verbundenen Kunststoff enthält und die Schicht aus der Polymermischung eine durchgängige Materialstärke von 10 bis 100, bevorzugt 20 bis 80 μm aufweist.
In der Regel sind in der Schicht mit der Polymermischung und gegebenenfalls auch in dem darunterliegenden weiteren Kunststoff an sich bekannter Weise noch übliche Zusatz-, Hilfs- und/oder Füllstoffe, wie z. B. Thermostabilisatoren, UV-Stabilisatoren, UV-Absorber, Antioxidantien und/oder Farbmittel, Pigmente oder organische Farbstoffe, enthalten. Bevorzugt sind nicht mehr als 10, besonders bevorzugt nicht mehr als 5, insbesondere nicht mehr als 2 Gew.-% übliche Zusatz-, Hilfs- und/oder Füllstoffe enthalten. Gegebenenfalls können die Kunststoffe auch gar keine Zusatz-, Hilfs- und/oder Füllstoffe enthalten, enthalten. Besonders bevorzugt sind in der Schicht der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor- Polymeren 0,01 bis 10 Gew.-% eines Lichtschutzmittels enthalten sind.
Der in Verbundformkörper enthaltene weitere Kunststoff kann ein Polymethylmethacrylat, schlagzäh modifiziertes Polymethylmethacrylat, Polycarbonat, Polystyrol, Acrylsäureester/Styrol/Acrylnitril-Pfropfcopolymer (ASA), Styrol-Acryl-Nitril (SAN), Polyethylentherephthalat (PET), glycolmodifiziertes Polyethylentherephthalat (PETG), Polybutylenterephthalat- Kunststoff (PBT), Polyvinylchlorid-Kunststoff (PVC), Polyolefin-Kunststoff, Cycloolefincopolymer (COC), Acrylnitril-Butadien-Stryrol (ABS) oder eine Mischung (Blend) verschiedener thermoplastischer Kunststoffe sein.
Der erfindungsgemässe Verbundformkörper weist eine Dehnung bei Beginn der Rissbildung in der Schicht der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acryiat-Kunststoff und dem Fluor-Polymeren von mindestens 100, bevorzugt 120, besonders bevorzugt 150 % in Anlieferung und nach 10-tägiger Lagerung bei 60° C von mindestens 50, bevorzugt mindestens 60, insbesondere mindestens 70 % dieses Werts auf.
Der erfindungsgemässe Verbundformkörper kann in an sich bekannter Weise mittels Folienlamination, Coextrusion, Extrusionsbeschichten, Insert-Moulding- Verfahren oder Solvent-Cast-Verfahren hergestellt werden.
Der erfindungsgemässe Verbundformkörper kann z. B. als Bedachungselement, Fassadenelement, Teile von Haushaltsgeräten, Kommunikationsgeräten, Hobby- oder Sportgeräten, Karosserieteile oder Teile von Karosserieteilen im Automobil-, Schiffs- oder Flugzeugbau wie z. B. Beplankungen, Stossfänger, Kotflügel, Blenden oder Zierleisten verwendet werden.
Folien und deren Herstellung
Aus der erfindungsgemässen Polymermischung können Folien in an sich bekannterWeise durch Extrusion hergestellt werden. Geeignet sind z. B. Verfahren gemäß der DE 102 36 045 A1 oder gemäß der WO 00/37237. Es wird zunächst eine Mischung des schlagzahmodifizierten Poly(meth)acrylat und des Fluorpolymeren hergestellt. Im allgemeinen sind die Fluor-Polymere, die schlagzahmodifizierten Poly(meth)acrylate kommerziell erhältlich.
Besonders bevorzugte Mischungen enthalten 30 bis 95 Gew.-%, bevorzugt 40 bis 80 Gew.-%, besonders bevorzugt 50 bis 70 Gew.-% Fluorpolymere, bevorzugt Polyvinylidenfluorid (PVDF) und 70 bis 5 Gew.-%, bevorzugt 60 bis 20 Gew.-% und besonders bevorzugt 50 bis 30 Gew.-% schlagzähmodifiziertes Poly(meth)acrylat, wobei diese Werte auf die Gesamtmischung bezogen sind. Das bevorzugte PVDF kann als Homopolymer und/ oder Copolymer verwendet werden.
Die extrudierbaren Polymermischungen können gegebenenfalls in geringen Anteilen, z. B. 0 bis 20, bevorzugt 0 bis 10 oder 0 bis 5 Gew.-% weitere Polymere enthalten, die sowohl mit den Fluor-Polymeren als auch mit den schlagzahmodifizierten Poly(meth)acrylat mischbar sind. Hierzu gehören unter anderem Polycarbonate, Polyester, Polyamide, Polyimide, Polyurethane und Polyether. Besonders bevorzugt bestehen die Folien überwiegend, zu 98 bis 100 Gew.-% oder ausschließlich aus schlagzahmodifizierten Poly(meth)acrylat und Fluorpolymeren.
Mischbarkeit der verschiedenen Substanzen bedeutet, daß die Komponenten eine homogene Mischung bilden, die keine Trübungen aufweist, welche auf eine Phasentrennung zurückzuführen sind.
Des weiteren können die Folien in der Fachwelt weithin bekannte Zusatzstoffe enthalten. Hierzu gehören unter anderem Antistatika, Antioxidantien, Farbstoffe, Flammschutzmittel, Füllstoffe, Lichtstabilisatoren und organische Phosphorverbindungen, wie Phosphite oder Phosphonate, Pigmente, Verwitterungsschutzmittel und Weichmacher. Erfindungsgemäß können alle bekannten Lichtschutzmittel, insbesondere UV- Absorber eingesetzt werden. Besonders bevorzugt sind UV-Absorber vom Typ Benztriazol und Hydroxyphenyl-Triazin.
Ganz besonders bevorzugt sind UV-Absorber, die auf Triazin basieren. Diese UV-Absorber sind besonders haltbar und witterungsstabil. Desweiteren haben sie eine ausgezeichnete Absorptionscharakteristik.
Bevorzugt wird bei dem Verfahren zur Herstellung von Folien zunächst eine Trockenmischung hergestellt, die zumindest ein schlagzahmodifizierten Poly(meth)acrylat und ein Fluor-Polymer enthält.
Trockenmischen bedeutet im Rahmen der Erfindung, daß aus dieser Mischung im Lauf des weiteren Verfahrens kein Lösungsmittel entfernt werden muß. Lösungsmittelreste, die keine weitere Aufarbeitung benötigen bzw. im Extruder durch Vakuum von der Mischung getrennt werden können, sind erlaubt. Das Mischen kann in herkömmlichen, für diesen Zweck weithin bekannten Vorrichtungen erfolgen. Die Temperatur bei der das Mischen erfolgt, liegt unterhalb der Geltemperatur der Mischung. Bevorzugt wird dieser Schritt bei Raumtemperatur durchgeführt.
Diese Mischung kann z. B. auf eine Walze extrudiert werden, die eine Temperatur kleiner als 40°C aufweist, wobei eine Folie geformt wird. Das Extrudieren von Polymeren zu Folien ist weithin bekannt und beispielsweise in Kunststoffextrusionstechnik II, Hanser Verlag, 1986, S.125 ff. beschrieben. Die heiße Schmelze wird aus der Düse eines Extruders auf eine einzelne Kühlwalze (Chill-Roll-Walze) gegeben. Diese Chill-Roll-Walzen sind in der Fachwelt weithin bekannt, wobei zum Erhalt eines hohen Glanzes polierte Walzen verwendet werden. In dem erfindungsgemäßen Verfahren können aber auch andere Walzen als Kühlwalzen verwendet werden. Eine weitere Walze nimmt die auf der ersten Walze (Chill-Roll-Walze) abgekühlte Schmelze zunächst auf, wobei man eine einschichtige Folie erhält, die mit weiteren Schichten versehen werden kann.
Damit die entstehende Folie weitgehend frei von Verunreinigungen ist, wird vor dem Eintritt der Schmelze in die Düse ein Filter angeordnet. Die Maschenweite des Filters richtet sich im allgemeinen nach den eingesetzten Ausgangsstoffen und kann dementsprechend in weiten Bereichen variieren. Im allgemeinen liegen sie aber im Bereich von 300 μm bis 20 μm. Es können auch Filter mit mehreren Sieben unterschiedlicher Maschenweite vor dem Düseneintritt angeordnet werden. Diese Filter sind in der Fachwelt weithin bekannt und kommerziell erhältlich. Als weiteren Anhaltspunkt für den Fachmann können die beigefügten Beispiele dienen.
Um Folien mit hoher Güte zu erhalten, ist es des weiteren vorteilhaft besonders reine Rohstoffe einzusetzen.
PVDF bildet bei Temperaturen oberhalb von ca. 240°C zunehmend Gele (Herstellerangabe der Fa. Solvay). Diese Gelpartikel lassen sich nur relativ schlecht durch Filtrieren entfernen. Dementsprechend ist es notwendig, eine mögliche Gelbildung zu vermeiden. Daher wird bei Temperaturen extrudiert, die möglichst weit unterhalb der Geltemperatur liegen. Zur Herstellung von gelkörperarmen Folien bieten sich auch pulverförmige PVDF-Lieferformen an, deren mittlere Partikelgröße beispielsweise 0,2 mm beträgt. Diese werden im Scherfeld des Extruders kompletter aufgeschlossen.
Allerdings soll die Temperatur hoch genug sein, damit die Mischung zu einer Folie extrudiert werden kann, die eine hervorragende Oberflächengüte und eine möglichst geringe Trübung aufweist. Die optimale Temperatur ist beispielsweise von der Zusammensetzung der Mischung abhängig und kann daher in weiten Bereichen schwanken. Aber bevorzugte Temperaturen der Mischung bis zum Düseneintritt liegen im Bereich von 150 bis 210 °C, besonders bevorzugt im Bereich von 180 bis 200 °C. Hierbei muß die Temperatur der Mischung über den gesamten Formungsprozeß unterhalb der Geltemperatur gehalten werden.
Der Druck mit dem die geschmolzenen Mischung in die Düse gepreßt wird, kann beispielsweise über die Geschwindigkeit der Schnecke gesteuert werden. Der Druck liegt im allgemeinen in einem Bereich von 40 bis 100 bar, ohne daß das erfindungsgemäße Verfahren hierdurch beschränkt wird. Die Geschwindigkeit, mit der die Folien erfindungsgemäß erhalten werden können, ist dementsprechend größer als 5 m/min, insbesondere größer als 10 m/min, ohne daß hierdurch eine Beschränkung des erfindungsgemäßen Verfahrens erfolgen soll. Weitere Hinweise bezüglich der allgemeinen Verfahrensparameter erhält der Fachmann durch die beigefügten Beispiele.
Damit die erhaltene Folie eine hohe Oberflächengüte und eine geringe Trübung aufweist ist es wesentlich, daß man die Temperatur der Düse höher als die Temperatur der Mischung vor dem Düseneintritt, aber niedriger als die Geltemperatur wählt.
Bevorzugt wird die Düsentemperatur 5 bis 20 %, besonders bevorzugt 10 bis 20 % und ganz besonders bevorzugt 12 bis 18 % höher eingestellt als die Temperatur der Mischung vor dem Düseneintritt. Dementsprechend liegen bevorzugte Temperaturen der Düse im Bereich von 160°C bis 235°C, besonders bevorzugt 200 °C bis 230°C und ganz besonders bevorzugt 210°C bis 220°C.
Nachdem die Folie erhalten wurde, kann diese mit weiteren Folien laminiert werden. Diese Folien können zum Schutz der PVDF/szPMMA-enthaltenden Schicht dienen. Des weiteren kann hierdurch eine weitere Verarbeitung der Folien erleichtert werden, da diese Kunststofffolien eine besonders hohe Haftfähigkeit auf Harzen aufweisen können, die bei nachfolgenden Prozessen auf bzw. an die Folien gespritzt werden. Besonders bevorzugt sind diese Schichten, die beispielsweise zum Schutz oder zur Verbesserung der Haftfähigkeit auf die PVDF/szPMMA-enthaltende Schicht aufgebracht werden können, unter anderem aus Polyestern, wie Polybutylenterephthalat (PBT), Polyethylenterephthalat (PET), und Polyolefinen, wie Polyvinylchlorid (PVC), Polypropylen (PP), Polyethylen (PE), Acrylnitril-Butadien-Styrol-Copolymere (ABS), ABS/ASA-Blends (ASA = Acrylnitril-Styrol-Acrylester-Copolymere), Polycarbonaten und Polyamiden sowie Mischungen dieser Polymere.
Die PVDF/szPMMA-enthaltenden Folien können auch mit Pigmenten versehen oder mit Farbstoffen bedruckt werden. Es ist auch möglich auf diesen Folien metallische Effekte zu erzielen. Diese Prozesse sind dem Fachmann bekannt und werden beispielsweise als gravure printing, gravure coating und micro gravure coating bezeichnet.
Auf diese mit Dekor oder anderen Verzierungen versehene Schicht können wiederum weitere Schichten aufgebracht werden, die zur Verbesserung der Haftung von nachfolgend aufgebrachtem Polymer dienen können.
Das Aufbringen dieser Schichten durch Kolamineren kann bei Raumtemperatur oder bei leicht erhöhter Temperatur erfolgen, so daß die Oberflächengüte und die Trübung der PVDF/PMMA-enthaltenden Schicht nicht geschmälert wird. Diese Verfahren sind in der Fachwelt weithin bekannt und beispielsweise in Kunststoffextrusionstechnik II, Hanser Verlag, 1986, S. 320 ff. beschrieben.
Besonders vorteilhaft ist, daß die zuvor genannten Schritte, d.h., das Herstellen der PVDF/PMMA-enthaltenden Folie, das Bedrucken und das Laminieren mit weiteren Schichten im allgemeinen in einem kontinuierlichen Verfahren durchgeführt werden können. Auf das Kolaminieren mit weiteren Folien soll das Verfahren der vorliegenden Erfindung jedoch nicht beschränkt werden. Vielmehr können diese Schichten auch durch Lösungsmittelbschichtung (solvent casting) oder durch Extrusionsbeschichtung (extrusion casting) aufgebracht werden, wie dies beispielsweise in der Patentanmeldung WO 96/40480 und WO 88/07416 und in der US-Patentschrift 4 902 557 beschrieben ist.
Es ist für den Fachmann offensichtlich, daß diese Schichten in verschiedenen Anordnungen zu Mehrschichtfolien zusammengefügt werden können. Eine solche Folien kann dementsprechend mehrere Dekorschichten/Druckschichten in unterschiedlicher Reihenfolge aufweisen. Des weiteren können Mehrschichtfolien auch Klebstoffschichten enthalten, die sowohl zum Verbinden von Schichten aus unterschiedlichen Kunststoffen als auch zum Befestigen der Folien auf den zu schützenden Gegenständen dienen können.
Eigenschaften der Folie
Die erfindungsgemäße Folie kann eine Dicke von 150 bis 2000, bevorzugt von 200 bis 1500, besonders bevorzugt von 400 bis 1000 μm aufweisen.
Bestimmung der Bruchdehnung
Der für die Charakterisierung der Eigenschaften besonders wichtige Wert der Bruchdehnung mit oder ohne thermische Belastung kann nach folgender Methode bestimmt werden.
Die Bestimmung der Bruchdehnung geschieht bei 23°C und 50% relative Feuchte nach ISO 527-3/2/100 im Falle von Dicken bis 100μm bzw. nach ISO 527/1 B/50 im Falle von Dicken über 100μm. In beiden Fällen beträgt die Dehngeschwindigkeit damit 100%/min. Die Bruchdehnung des Materials wird in Anlieferung und nach 10 Tagen Lagerung im Wärmeschrank, typischerweise bei 60°C bestimmt. Je kleiner das Verhältnis
Bruchdehnung nach Wärmelagerung geteilt durch Bruchdehnung in Anlieferung
ausfällt, desto stärker hat die Wärmelagerung zu Versprödung geführt.
Die Bruchdehnung der gerade extrudierten Folie liegt im Anlieferungszustand bei Foliendicken von mindestens 150 μm, z. B. mindestens 200 bis 2000 μm, im Bereich von 200 bis 300 %.
Nach 10-tägiger Lagerung bei 60° C beträgt die Bruchdehnung noch mindestens 150, bevorzugt mindestens 180, besonders bevorzugt mindestens 200, insbesondere mindestens 250 %.
Bei Foliendicken im Bereich von mehr als 150 bis z. B. 2000 oder mehr, bevorzugt 200 bis 750 μm beträgt die Bruchdehnung der Folie nach 10-tägiger Lagerung bei 60° C noch mindestens 60, bevorzugt mindestens 70 % des Wertes ohne 10-tägige thermische Belastung bei 60 °C.
Bei nicht erfindungsgemäßen Mischungsanteilen von schlagzähmodifiziertem Poly(meth)acrylat und Fluorpolymeren, außerhalb des Bereiches von 30 bis 95 Gew.-% Fluorpolymerem, z. B. bei Anteilen an Fluorpolymerem von 25 oder darunter mehr als 95 Gew.-% oder darüber fallen die Werte der Bruchdehnung der Folie nach 10-tägiger Lagerung bei 60° C überraschenderweise relativ stark ab, sofern die Teile eine Materialstärke von mindestens 150 μm aufweisen. Es tritt eine merkliche und unerwünschte Versprödung ein, die sich insbesondere bei Außenanwendungen und gleichzeitiger thermischer Exposition, z. B. in wärmeren geographischen Regionen, nachteilig bemerkbar macht.
Eigenschaften des Verbundkörpers
Ein Verbundformkörper weist zusätzlich zur Schicht mit der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor- Polymeren einen weiteren, thermoplastisch verarbeitbaren, mit der Polymermischung verbundenen Kunststoff auf, wobei die Schicht aus der Polymermischung eine durchgängige Materialstärke von 10 bis 100, insbesondere von 30 - 90 μm aufweist. Der Verbundformkörper kann eine beliebige Gesamtdicke bzw. Materialstärke von mindestens 150, z. B. 200 - 5000 μm aufweisen.
Der für die Charakterisierung der Eigenschaften besonders wichtige Wert der Dehnung bei Beginn der Rißbildung in der Schicht der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor- Polymeren kann dann nach folgender Methode bestimmt werden. Als Werkstoff für das Substrat wird für diese Prüfmethode bevorzugt ein Kunststoff ausgewählt, dessen Bruchdehnung höher ist als die Dehnung bei Beginn der Rißbildung in der Deckschicht, geeignet ist z. B. Polyethylentherephthalat, LD- oder HD-Polyethylen.
Die Bestimmung der Dehnung bei Rissbildungsbeginn geschieht bei 23°C und 50% relative Feuchte im Rahmen eines Zugversuchs nach ISO 527/1 B/50. Während des Zugversuchs ist die Schicht aus der Polymermischung in geeigneter weise zu beleuchten, so daß das Auftreten von Rissen in der Deckschicht per Auge visuell erfasst werden kann. Die aktuelle Dehnung bei Auftreten erster Risse in der Deckschicht wird notiert. Der Zugversuch wird mit 5 Probekörpern durchgeführt. Geeignet sind z. B. Probekörper von 1 mm bis 2 mm Gesamtdicke. Als Ergebnis wird dann der Mittelwert der Dehnung bei Beginn der Rissbildung angegeben.
Die Dehnung bei Beginn der Rissbildung wird in Anlieferung und nach 10 Tagen Lagerung im Wärmeschrank, typischerweise bei 60°C bestimmt. Je kleiner das Verhältnis
Dehnung bei Beginn der Rissbildung nach Wärmelagerung geteilt durch Dehnung bei Beginn der Rissbildung in Anlieferung
ausfällt, desto stärker hat die Wärmelagerung zur Versprödung der Deckschicht geführt.
Beispiele
Es wurden Folien unterschiedlicher Dicke durch Extrusion hergestellt.
Als Ausgangsmaterialien wurden verwendet:
Schlagzähmodifiziertes Poly(meth)acrylat (szPMMA):
Es wurde ein schlagzähmodifizierte Poly(meth)acrylat-Kunststoff aus 33 Gew.- % einer Poly(meth)acrylat-Matrix und 67 Gew.-% Elastomerteilchen mit einem mittleren Teilchendurchmesser von 60 nm eingesetzt. Die in der Poly(meth)acrylat-Matrix verteilten Elastomerteilchen weisen einen Kern mit einer weichen Elastomerphase und einer daran gebundenen Hartphase auf.
Polyvinylidenfluorid (PVDF)
PVDF KT 1000 ist VDF-Homopolymer; Hersteller: Kureha Chemicals, Japan
Die Polymere wurden trocken vermischt und zu Folien extrudiert.
Bestimmung des Elastomerteilchengehalts
Zu untersuchendes Material wird zerkleinert, Granulate können direkt verwendet werden, und eine Menge von ca. 1 bis 2 g wird mit einer Analysenwaage (Genauigkeit 0,1 mg) in ein 150 ml-Becherglas genau eingewogen. Die Probe wird unter Rühren (Magnetrührer) bei etwa 50 °C in ca. 80 ml Aceton gelöst, wobei eine deutliche Trübung durch die unlösliche Elastomerphase eintritt. Die so erhaltene trübe Polymerlösung wird auf einer Laborwaage (Genauigkeit 0,1 g) quantitativ in 4 Zentrifugenbecher (Stahl, je 30 - 50 ml) verteilt, so dass deren Endgewichte jeweils maximal 0,1 g voneinander abweichen. Diese werden in den Rotor der Zentrifuge (mit Kühlung, mindestens 35.000 g) gebracht und mindestens 30 Minuten bei ca. 21.000 Upm (ca. 41.000 RZB) zentrifugiert.
Die nun klaren, überstehenden Lösungen in den Bechern werden abdekantiert, in einem vorgewogenen Wägeglas eingeengt und im Trockenschrank unter Vakuum bis zur Massekonstanz getrocknet (= acetonlöslicher Anteil).
Ebenso werden die Sedimente quantitativ in ein Wägeglas überführt und in gleicherweise bis zur Massekonstanz getrocknet (= acetonunlöslicher Anteil).
Aus den ägungfiii werden die Masseaantcilc berechnet: AiBwaage fg) - 100 % a) acctonlösL Anteil [%) - Einwaage [g] Auswaagc (Sedimente) [g'[ - 100% b) acotonunlOsL Anteil }% Einwaage [g]
Je nach Art des im Formkörper enthaltenen Fluor-Polymeren lassen sich für die weitere Auswertung zwei Fälle unterscheiden, die z. B. durch ein paar einfache Vorversuche (Löslichkeitstests) oder durch Elementaranalyse des acetonunlöslichen Anteils (Fluorbestimmung) unterscheiden lassen:
1) Fluor-Polymer ist vollständig in Aceton löslich
Der so bestimmte acetonun lösliche Anteil entspricht dem Elastomerteilchengehalt und ist bezogen auf den gesamten Formkörper. Für den Fachmann des Gebiets ist es ohne Probleme möglich, gegebenenfalls den Anteil des Fluor-Polymeren des Formkörpers zu bestimmen, z. B. durch Elementaranalyse in Kombination mit spektroskopischen Methoden und/oder der Alkoxylbestimmung nach Zeisel, und dann den Elastomerteilchengehalt auf den Anteil des schlagzahmodifizierten Poly(meth)acrylat-Kunststoffs zu beziehen.
2. Fluor-Polymer ist nicht oder nicht vollständig in Aceton löslich:
Die Bestimmung kann gegebenenfalls in einem anderen, von Aceton verschiedenen Lösungsmittel durchgeführt werden, in dem sich das Fluor- Polymer komplett löst.
Falls es nicht möglich ist, ein Lösungsmittel zu finden, in dem sich das Fluor- Polymer komplett löst, dann ist der so bestimmte acetonunlösliche Anteil eine Mischung aus den Elastomerteilchen und unlöslichem Fluorpolymer und ist bezogen auf den gesamten Formkörper. Für den Fachmann des Gebiets ist es ebenfalls ohne Probleme möglich, den Anteil der Elastomerteilchen in dem acetonunlöslichen Anteil (Sediment) zu bestimmen, z. B. durch Bestimmung des Anteils des Fluor-Polymeren durch Elementaranalyse in Kombination mit spektroskopischen Methoden und/oder der Alkoxylbestimmung nach Zeisel, und dann den Elastomerteilchengehalt auf den Anteil des schlagzahmodifizierten Poly(meth)acrylat-Kunststoffs zu beziehen.
Figure imgf000035_0001
Vgl = Vergleichsbeispiel „PMMA" bedeutet Standard-PMMA oder schlagzähmodifiziertes PMMA

Claims

Patentansprüche
1. Formkörper aus Kunststoff mit einer Materialstärke von mindestens 150 μm, enthaltend eine Polymermischung aus einem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff, aus einer Poly(meth)acrylat~Matrix und darin verteilten Elastomerteilchen, und einem Fluor-Polymeren, wobei der Anteil des Fluorpolymeren in der Mischung 30 bis 95 Gew.-% beträgt, und die Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor-Polymeren in einer außen liegenden Schicht mit einer durchgängigen Materialstärke von mindestens 10 μm vorliegt, dadurch gekennzeichnet, daß der schlagzähmodifizierte Poly(meth)acrylat-Kunststoff aus 20 bis 70 Gew.-% einer Poly(meth)acrylat-Matrix und 80 bis 30 Gew.-% Elastomerteilchen besteht.
2. Formkörper nach Anspruch 1 , dadurch gekennzeichnet, daß die Elastomerteilchen einen Kern mit einer weichen Elastomerphase und einer daran gebundenen Hartphase aufweisen.
3. Formkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der mittlere Teilchendurchmesser der Elastomerteilchen von 10 bis 1000 nm beträgt
BESTATIGUNGSKOPIE
4. Formkörper nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, daß er ganz aus der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor-Polymeren besteht.
5. Formkörper oder Folie nach Anspruch 4, dadurch gekennzeichnet, daß die Materialstärke von 150 bis 10 000 μm beträgt.
6. Formkörper oder Folie nach Anspruch 5, dadurch gekennzeichnet, daß die Bruchdehnung nach 10-tägiger Lagerung bei 60° C mindestens 150 % beträgt.
7. Formkörper oder Folie nach Anspruch 5, dadurch gekennzeichnet, daß die Bruchdehnung nach 10-tägiger Lagerung bei 60° C noch mindestens 60 % des Wertes ohne 10-tägige thermische Belastung beträgt.
8. Formkörper oder Folie nach einem oder mehreren der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Folie in einem Membranaufbau enthalten ist, wobei der Membranaufbau zumindest zwei gewölbte und an den Rändern miteinander verschweißte Folien enthält, die einen Hohlraum einschließen.
9. Verfahren zur Herstellung eines Formkörpers oder einer Folie nach einem oder mehreren der Ansprüche 5 bis 8 in an sich bekannter Weise mittels thermoplastischer Verarbeitung, insbesondere Extrusion oder Spritzguß, oder mittels Solvent-Casting.
10. Verwendung eines Formkörpers oder einer Folie nach einem oder mehreren der Ansprüche 5 bis 8 als Bedachungselement, Fassadenelement, als Fenster in einem Faltdach für ein Fahrzeug mit faltbarem Stoff- oder Kunststoffverdeck.
11. Formkörper nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß es sich um einen Verbundformkörper handelt, der zusätzlich zur Schicht mit der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor-Polymeren einen weiteren, thermoplastisch verarbeitbaren, mit der Polymermischung verbundenen Kunststoff enthält und die Schicht aus der Polymermischung eine durchgängige Materialstärke von 10 bis 150 μm aufweist.
12. Verbundformkörper nach Anspruch 11 , dadurch gekennzeichnet, daß der weitere Kunststoff ein Polymethylmethacrylat, schlagzäh modifiziertes Polymethylmethacrylat, Polycarbonat, Polystyrol, Acrylsäureester/Styrol/Acrylnitril-Pfropfcopolymer (ASA), Styrol-Acryl- Nitril (SAN), Polyethylentherephthalat (PET), glycolmodifiziertes Polyethylentherephthalat (PETG), Polybutylenterephthalat-Kunststoff (PBT), Polyvinylchlorid-Kunststoff (PVC), Polyolefin-Kunststoff, Cycloolefincopolymer (COC), Acrylnitril-Butadien-Stryrol (ABS) oder eine Mischung (Blend) verschiedener thermoplastischer Kunststoffe ist.
13. Verbundformkörper nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß er ein Verhältnis der Dehnung bei Beginn der Rissbildung in der Schicht der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor- Polymeren nach 10-tägiger Lagerung bei 60 °C geteilt durch den Wert ohne Wärmebehandlung von 0.5 aufweist.
14. Verfahren zur Herstellung eines Verbundformkörpers nach einem oder mehreren der Ansprüche 11 bis 13 in an sich bekannter Weise mittels Folienlamination, Coextrusion, Extrusionsbeschichten, Insert-Moulding- Verfahren oder Solvent-Cast-Verfahren.
15. Verwendung eines Verbundformkörpers nach einem oder mehreren der Ansprüche 11 bis 13 als Bedachungselement, Fassadenelement, Teile von Haushaltsgeräten, Kommunikationsgeräten, Hobby- oder Sportgeräten, Karosserieteile oder Teile von Karosserieteilen oder für Teile im Automobil-, Schiffs- oder Flugzeugbau wie z. B. Beplankungen, Stossfänger, Kotflügel, Blenden oder Zierleisten.
16. Formkörper nach einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß in der Schicht der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor- Polymeren 0,01 bis 10 Gew.-% eines Lichtschutzmittels enthalten sind.
17. Formkörper nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, daß es sich um einen Verbundformkörper handelt, der zusätzlich zur Schicht mit der Polymermischung aus dem schlagzahmodifizierten Poly(meth)acrylat-Kunststoff und dem Fluor-Polymeren eine mit der Polymermischung verbundene Hochdrucklaminatplatte, aus hochdruckverdichteten, kunstharzgetränktem Papier oder eine Metallplatte enthält, und die Schicht aus der Polymermischung eine durchgängige Materialstärke von 10 bis 150 μm aufweist.
18. Verfahren zur Herstellung eines Verbundformkörpers nach Anspruch 17 in an sich bekannter Weise mittels Hochdruck/Hochtemperatur- Pressprozess oder im Coil-Coating-Prozess.
19. Verwendung eines Verbundformkörpers nach Anspruch 17 als Bedachungselement, Fassadenelement, Teile von Haushaltsgeräten, Hobby- oder Sportgeräten, Karosserieteile oder Teile von Karosserieteilen oder für Teile im Automobil-, Schiffs- oder Flugzeugbau wie z. B. Beplankungen, Stossfänger, Kotflügel, Blenden oder Zierleisten.
PCT/EP2005/005381 2004-05-14 2005-05-17 Polymermischung aus schlagzähmodifiziertem poly(meth)acrylat und fluorpolymer WO2005110745A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
MXPA06012979A MXPA06012979A (es) 2004-05-14 2005-05-17 Mezcla de polimeros que comprende un polimetacrilato modificado para resistencia a impactos y un fluoropolimero.
EP20050748362 EP1748890B1 (de) 2004-05-14 2005-05-17 Polymermischung aus schlagzähmodifiziertem poly(meth)acrylat und fluorpolymer
AU2005243962A AU2005243962B2 (en) 2004-05-14 2005-05-17 Polymer mixture consisting of an impact-resistance modified poly(meth)acrylate and a fluoropolymer
CA 2561254 CA2561254A1 (en) 2004-05-14 2005-05-17 Polymer mixture consisting of an impact-resistance modified poly(meth)acrylate and a fluoropolymer
JP2007512124A JP2007537063A (ja) 2004-05-14 2005-05-17 耐衝撃性改良ポリ(メタ)アクリレートとフルオロポリマーとから成るポリマー混合物
KR1020067023760A KR101157690B1 (ko) 2004-05-14 2005-05-17 내충격성 개질 폴리(메트)아크릴레이트 및플루오로중합체로 이루어진 중합체 혼합물
NZ550378A NZ550378A (en) 2004-05-14 2005-05-17 Polymer mixture consisting of an impact-resistance modified poly(meth)acrylate and a fluoropolymer
DE200550006947 DE502005006947D1 (de) 2004-05-14 2005-05-17 Polymermischung aus schlagzähmodifiziertem poly(meth)acrylat und fluorpolymer
US10/590,932 US7947781B2 (en) 2004-05-14 2005-05-17 Polymer mixture consisting of an impact-resistance modified poly (meth) acrylate and a fluoropolymer
HK07107526A HK1103055A1 (en) 2004-05-14 2007-07-13 Polymer mixture consisting of an impact-resistance modified poly(meth)acrylate and a fluoropolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410024429 DE102004024429A1 (de) 2004-05-14 2004-05-14 Formkörper, enthaltend eine Polymermischung aus schlagzähmodifizierten Poly(meth)-acrylat und Fluorpolymer
DE102004024429.4 2004-05-14

Publications (1)

Publication Number Publication Date
WO2005110745A1 true WO2005110745A1 (de) 2005-11-24

Family

ID=34969441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005381 WO2005110745A1 (de) 2004-05-14 2005-05-17 Polymermischung aus schlagzähmodifiziertem poly(meth)acrylat und fluorpolymer

Country Status (16)

Country Link
US (1) US7947781B2 (de)
EP (1) EP1748890B1 (de)
JP (2) JP2007537063A (de)
KR (1) KR101157690B1 (de)
CN (1) CN100537223C (de)
AT (1) ATE426507T1 (de)
AU (1) AU2005243962B2 (de)
CA (1) CA2561254A1 (de)
DE (2) DE102004024429A1 (de)
ES (1) ES2324944T3 (de)
HK (1) HK1103055A1 (de)
MX (1) MXPA06012979A (de)
NZ (1) NZ550378A (de)
PT (1) PT1748890E (de)
WO (1) WO2005110745A1 (de)
ZA (1) ZA200609419B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913913A1 (fr) * 2007-03-21 2008-09-26 Arkema France Structure multicouche petg/pmma
FR2948036A1 (fr) * 2009-07-17 2011-01-21 Arkema France Utilisation d'une composition transparente pour photoreacteurs
US10745580B2 (en) 2014-09-11 2020-08-18 Evonik Operations Gmbh Surface-finishing on the basis of cross-linkable, saturated polyester resins and fluoropolymers

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9813383B1 (pt) * 1997-12-05 2008-11-18 processo para preparaÇço de laminados brilhantes, emprego do laminado e objeto de massas termoplÁsticas moldadas.
DE10236045A1 (de) * 2002-08-06 2004-02-19 Röhm GmbH & Co. KG Niedrig orientierte thermoplastische Folien
DE10345045A1 (de) * 2003-09-26 2005-04-14 Röhm GmbH & Co. KG Verfahren zur Oberflächenvergütung von Werkstoffen durch Aufbringen insbesondere transparenter Schichten auf Basis von Polymethacrylaten
DE10354379A1 (de) * 2003-11-20 2005-06-23 Röhm GmbH & Co. KG Formmasse, enthaltend ein Mattierungsmittel
DE102005002072A1 (de) * 2005-01-14 2006-07-20 Röhm GmbH & Co. KG Witterungsstabile Folie zur Gelbeinfärbung retroreflektierender Formkörper
DE102005019669A1 (de) * 2005-02-08 2006-10-12 Röhm Gmbh Folienmembran mit hervorragender Witterungsbeständigkeit, hoher Durchlässigkeit für solare Wärmestrahlung, effektiver Zurückhaltung der von der Erde emittierten Wärmestrahlung und hoher mechanischer Festigkeit sowie Verfahren zur Herstelung der Folienmembran
DE102005013082A1 (de) * 2005-02-23 2006-08-24 Röhm GmbH & Co. KG Extrudierte Folie oder Platte mit elektrisch leitfähiger Beschichtung, Verfahren zu ihrer Herstellung, sowie Verwendungen
DE102005062687A1 (de) 2005-12-23 2007-07-05 Röhm Gmbh PMMA-Folie mit besonders hoher Witterungsbeständigkeit und hoher UV-Schutzwirkung
DE102007029263A1 (de) * 2007-06-22 2008-12-24 Evonik Röhm Gmbh PMMA/PVDF-Folie mit besonders hoher Witterungsbeständigkeit und hoher UV-Schutzwirkung
EP2188120A1 (de) * 2007-08-21 2010-05-26 Saint-Gobain Performance Plastics Corporation Dachbahnmaterial
WO2009045437A1 (en) * 2007-10-04 2009-04-09 E. I. Du Pont De Nemours And Company Vehicular suspension components
WO2009108469A1 (en) * 2008-02-25 2009-09-03 Arkema France Transparent chemical resistant impact acrylic alloy
CN102245704B (zh) * 2008-12-08 2014-03-12 沙伯基础创新塑料知识产权有限公司 阻燃聚碳酸酯组合物、其制备方法和由其得到的制品
CN101457006B (zh) * 2008-12-31 2013-03-27 东莞金富亮塑胶颜料有限公司 一种仿木纹共挤pmma改性材料及其制备方法
DE102009003225A1 (de) * 2009-05-19 2010-11-25 Evonik Degussa Gmbh Transparente, witterungsbeständige Barrierefolie, Herstellung durch Lamination, Extrusionslamination oder Extrusionsbeschichtung
JP5763548B2 (ja) * 2009-11-30 2015-08-12 電気化学工業株式会社 ポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュール
US20120009427A1 (en) * 2010-07-08 2012-01-12 Christopher Hable Solvent cast flame retardant polycarbonate coatings, films and laminates
DE102010038288A1 (de) * 2010-07-22 2012-01-26 Evonik Röhm Gmbh Transparente, witterungsbeständige Barrierefolie mit verbesserter Barrierewirkung und Kratzfesteigenschaften
US9804305B2 (en) * 2012-01-31 2017-10-31 3M Innovative Properties Company Methods for sealing the edges of multi-layer articles
CN104798211B (zh) 2012-08-08 2017-04-12 3M创新有限公司 具有封装阻隔膜的光伏器件
SG11201500945XA (en) 2012-08-08 2015-03-30 3M Innovative Properties Co Urea (multi)-urethane (meth)acrylate-silane compositions and articles including the same
BR112015022164B1 (pt) 2013-03-15 2022-03-15 Trinseo Europe Gmbh Compósito de múltiplas camadas
BR112015021868B1 (pt) 2013-03-15 2021-03-23 Arkema France Compósito de múltiplas camadas resistente às condições ambientais
EP2784476B1 (de) * 2013-03-27 2016-07-20 Ul Llc Vorrichtung und Verfahren zur Lagerung von Probenkörpern
FR3014878B1 (fr) * 2013-12-18 2015-12-18 Arkema France Film pvdf resistant a la dechirure a basse temperature et ininflammable
US20170096553A1 (en) * 2014-03-25 2017-04-06 Mitsubishi Rayon Co., Ltd. Resin composition and molded body formed from resin composition
DE102014210007A1 (de) * 2014-05-26 2015-11-26 Evonik Röhm Gmbh Drei-Schicht-UV-Schutzfolie für dekorative Schichtpressstoffplatten (HPL)
CN104877278B (zh) * 2015-06-29 2017-08-15 北京化工大学 一种聚甲基丙烯酸正丁酯/聚偏氟乙烯基复合介电薄膜及其制备方法
CN105219011A (zh) * 2015-10-27 2016-01-06 合肥华凌股份有限公司 易清洁塑料及其制品、它们的制备方法、以及冰箱
CN112606500A (zh) * 2019-12-30 2021-04-06 武汉高正新材料科技有限公司 一种易粘接型建筑装饰膜
CN114683675B (zh) * 2020-12-28 2023-11-14 乐凯华光印刷科技有限公司 一种表面自带纹理的平顶网点的柔性树脂版及其制版方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236045A1 (de) * 2002-08-06 2004-02-19 Röhm GmbH & Co. KG Niedrig orientierte thermoplastische Folien
US20040086721A1 (en) * 2002-07-17 2004-05-06 Atofina Composition coextrudable with PVDF

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215863A (ja) * 1983-05-24 1984-12-05 ジェイエスアール株式会社 積層体
JPS618350A (ja) * 1984-06-23 1986-01-16 電気化学工業株式会社 フツ化ビニリデン樹脂系多層フイルム
FR2620127A1 (fr) * 1987-09-04 1989-03-10 Charbonnages Ste Chimique Composition polymere a base de fluorure de vinylidene et de methacrylate de methyle
FR2659085B1 (fr) * 1990-03-02 1992-05-15 Atochem Composition coextrudable avec le polyfluorure de vinylidene permettant l'adhesion de ce dernier avec une resine polymerique non compatible - composite obtenu avec cette composition.
BR9813383B1 (pt) 1997-12-05 2008-11-18 processo para preparaÇço de laminados brilhantes, emprego do laminado e objeto de massas termoplÁsticas moldadas.
DE19859393A1 (de) * 1998-12-22 2000-06-29 Roehm Gmbh Verfahren zur Herstellung von Folien
JP4480834B2 (ja) * 2000-01-25 2010-06-16 電気化学工業株式会社 フッ化ビニリデン系樹脂フィルム
DE10043868A1 (de) 2000-09-04 2002-04-04 Roehm Gmbh PMMA Formmassen mit verbesserter Schlagzähigkeit
JP2002225184A (ja) * 2001-02-06 2002-08-14 Mitsubishi Plastics Ind Ltd 耐候性樹脂被覆金属板
JP4465127B2 (ja) * 2001-03-30 2010-05-19 株式会社クラレ 耐候性、柔軟性に優れる農業用積層フィルム
DE10354379A1 (de) 2003-11-20 2005-06-23 Röhm GmbH & Co. KG Formmasse, enthaltend ein Mattierungsmittel
DE102005002072A1 (de) 2005-01-14 2006-07-20 Röhm GmbH & Co. KG Witterungsstabile Folie zur Gelbeinfärbung retroreflektierender Formkörper
DE102005062687A1 (de) 2005-12-23 2007-07-05 Röhm Gmbh PMMA-Folie mit besonders hoher Witterungsbeständigkeit und hoher UV-Schutzwirkung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086721A1 (en) * 2002-07-17 2004-05-06 Atofina Composition coextrudable with PVDF
DE10236045A1 (de) * 2002-08-06 2004-02-19 Röhm GmbH & Co. KG Niedrig orientierte thermoplastische Folien

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913913A1 (fr) * 2007-03-21 2008-09-26 Arkema France Structure multicouche petg/pmma
WO2008132380A2 (fr) * 2007-03-21 2008-11-06 Arkema France Structure multicouche petg/pmma
WO2008132380A3 (fr) * 2007-03-21 2010-12-16 Arkema France Structure multicouche petg/pmma
FR2948036A1 (fr) * 2009-07-17 2011-01-21 Arkema France Utilisation d'une composition transparente pour photoreacteurs
US10745580B2 (en) 2014-09-11 2020-08-18 Evonik Operations Gmbh Surface-finishing on the basis of cross-linkable, saturated polyester resins and fluoropolymers

Also Published As

Publication number Publication date
EP1748890A1 (de) 2007-02-07
US20070185270A1 (en) 2007-08-09
MXPA06012979A (es) 2006-12-20
HK1103055A1 (en) 2007-12-14
JP2012052139A (ja) 2012-03-15
DE102004024429A1 (de) 2005-12-08
KR20070020034A (ko) 2007-02-16
PT1748890E (pt) 2009-06-24
ES2324944T3 (es) 2009-08-20
ZA200609419B (en) 2007-09-26
CN100537223C (zh) 2009-09-09
EP1748890B1 (de) 2009-03-25
AU2005243962A1 (en) 2005-11-24
CN1933969A (zh) 2007-03-21
KR101157690B1 (ko) 2012-06-20
US7947781B2 (en) 2011-05-24
AU2005243962B2 (en) 2010-07-29
NZ550378A (en) 2009-07-31
JP2007537063A (ja) 2007-12-20
ATE426507T1 (de) 2009-04-15
CA2561254A1 (en) 2005-11-24
DE502005006947D1 (de) 2009-05-07

Similar Documents

Publication Publication Date Title
EP1748890B1 (de) Polymermischung aus schlagzähmodifiziertem poly(meth)acrylat und fluorpolymer
EP1140465B1 (de) Verfahren zur herstellung von folien aus pvdf und polyacrylaten
EP1685186B2 (de) Formmasse, enthaltend ein mattierungsmittel
EP1680276B1 (de) Mehrschichtfolie aus (meth)acrylatcopolymer und polycarbonat
EP0368094B1 (de) Schlagzähe, UV-Absorber-haltige Methacrylatschutzschicht für Polycarbonat
EP0203487B1 (de) Verträgliche Polymermischungen
EP0372213B1 (de) UV-Absorber-haltige Methacrylatschutzschicht für Polycarbonat
EP2160437B1 (de) Pmma/pvdf-folie mit besonders hoher witterungsbeständigkeit und hoher uv-schutzwirkung
CH663574A5 (de) Verfahren zur herstellung uv-geschuetzter mehrschichtiger kunststoff-formkoerper.
DE102007026200A1 (de) Zusammensetzung mit erhöhter Spannungsrissbeständigkeit
EP3148798B1 (de) Drei-schicht-uv-schutzfolie für dekorative schichtpressstoffplatten (hpl)
EP3003719A1 (de) Verbundsystem mit hoher schlagzähigkeit und wärmeformbeständigkeit
EP2432638A1 (de) Transparente, witterungsbeständige barrierefolie, herstellung durch lamination, extrusionslamination oder extrusionsbeschichtung
DE102007026201A1 (de) Eingefärbte Zusammensetzung mit erhöhter Spannungsrissbeständigkeit
DE102010038288A1 (de) Transparente, witterungsbeständige Barrierefolie mit verbesserter Barrierewirkung und Kratzfesteigenschaften
EP2976388B1 (de) Matte witterungsbeständige formmassen für extrusionsverfahren
DE102009003218A1 (de) Transparente. witterungsbeständige Barrierefolie für die Einkapselung von Solarzellen I

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005748362

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005243962

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10590932

Country of ref document: US

Ref document number: 2007185270

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2005243962

Country of ref document: AU

Date of ref document: 20050517

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005243962

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580009293.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2561254

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 550378

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/012979

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006/09419

Country of ref document: ZA

Ref document number: 1020067023760

Country of ref document: KR

Ref document number: 200609419

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2007512124

Country of ref document: JP

Ref document number: 4188/CHENP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005748362

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067023760

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10590932

Country of ref document: US