WO2005110383A1 - The use of kauranes compounds in the manufacture of medicament - Google Patents

The use of kauranes compounds in the manufacture of medicament Download PDF

Info

Publication number
WO2005110383A1
WO2005110383A1 PCT/CN2004/000508 CN2004000508W WO2005110383A1 WO 2005110383 A1 WO2005110383 A1 WO 2005110383A1 CN 2004000508 W CN2004000508 W CN 2004000508W WO 2005110383 A1 WO2005110383 A1 WO 2005110383A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
kauri
ischemia
group
compounds
Prior art date
Application number
PCT/CN2004/000508
Other languages
English (en)
French (fr)
Inventor
Wen Tan
Original Assignee
Wen Tan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wen Tan filed Critical Wen Tan
Priority to JP2007516940A priority Critical patent/JP2007538016A/ja
Priority to EP04738166.0A priority patent/EP1757282B1/en
Priority to CNB2004800430678A priority patent/CN100508962C/zh
Priority to BRPI0418845-4A priority patent/BRPI0418845A/pt
Priority to CA 2606472 priority patent/CA2606472A1/en
Priority to US11/596,514 priority patent/US9125877B2/en
Priority to AU2004319792A priority patent/AU2004319792A1/en
Priority to PCT/CN2004/000508 priority patent/WO2005110383A1/zh
Priority to MXPA06013503A priority patent/MXPA06013503A/es
Publication of WO2005110383A1 publication Critical patent/WO2005110383A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/191Carboxylic acids, e.g. valproic acid having two or more hydroxy groups, e.g. gluconic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to the application of kaurane compounds, and in particular, to the use of compounds including compound A and compound B having a parent structure of crustane in the pharmaceutical industry. Background technique
  • Coronary heart disease is a common and frequently-occurring disease. It is caused by coronary artery stenosis or occlusion, which is caused by inadequate myocardial blood supply (ischemia). According to the severity of the disease, myocardial ischemia mainly causes: 1. Reduced or failed heart pump function. 2. Arrhythmias or severe arrhythmias, tachycardia (ventricular tachycardia), or ventricular fibrillation (ventricular fibrillation). 3. Myocardial tissue damage or infarction. 4. Angina Pectoris.
  • Stroke is the leading cause of clinical death in the United States. It is caused by ischemia, hypoxia, and infarct damage to local brain tissue due to cerebral vascular occlusion (cerebral infarction) or ruptured congestion (cerebral hemorrhage). . In addition, trauma, shock, etc. can also cause cerebral ischemia. Cerebral and central nervous system oxygen consumption is very high, therefore, ischemia and hypoxia may cause brain tissue damage or death before other organs, and make patients lose the opportunity to restore function or survival. Finding effective drugs to protect or reduce brain cell damage during ischemia, protect brain tissue function, and prolong its survival time are also urgent clinical problems to be solved. ,
  • kaurane compounds represented by the structural formula (I) have long been studied for their biological or possible pharmacological effects.
  • Published documents show that certain compounds of kauri compounds can affect cell metabolism, absorption of sugars in the intestine and metabolism in the body, energy metabolism of mitochondria of liver cells, and kidney small tube Metabolism of sugar and oxygen in cells, some compounds of kauri compounds also have the effect of lowering blood pressure and so on.
  • R 1 is a hydrogen atom, a hydroxyl group or an alkoxy group
  • R 2 is a carboxyl group, a carboxylate, an acid halide, an acid group, a hydroxyl group, an ester group, an amide, an acyl group, or an ether that can be hydrolyzed to a carboxyl group;
  • R 3 , R 4 , R 5 , R 6 , R 8 hydrogen atom, hydroxyl group, methylol group, ester group or alkoxyfluorenyl group which can be hydrolyzed to methylol group;
  • R 7 is a fluorenyl group, a hydroxyfluorenyl group, an ester group or an alkoxyfluorenyl group which can be hydrolyzed to form a hydroxyfluorenyl group;
  • R 9 a methylene group or an oxygen atom.
  • Natural steviol-glycosides are kaurane compounds, which are 300 times sweeter than ordinary sucrose, and have long been used as food sweeteners in many countries. Published literature shows that steviol-glycoside can lower blood sugar (Gregersen S et al., 2004), lower blood pressure and other effects (Chen P at el., 2000), but does not change heart rate and related cardiac indicators (Hs ieh MH et al., 2003). Tests on animals have confirmed that it has diuretic effects, stimulates insulin secretion (; Teppesen PB, 2000), and inhibits mitochondrial energy metabolism (0, 1999). However, whether steviol-glycoside has a therapeutic effect on ischemic heart and brain has never been demonstrated or disclosed.
  • Two interesting kauri compounds related to steviol-glycosides are compound A (whose structure is shown by formula (II)) and compound B (whose structure is shown by formula (III)).
  • Compound A is an acid hydrolysis product of steviol-glycoside
  • compound B is a glycoside of steviol-glycoside.
  • Compound B has been confirmed to have a certain mutagenicity (Puzzuto JM et al., 1984), stimulate insulin secretion, inhibit glucose absorption and transport metabolism and energy metabolism (Teppesen BP, 2000), and can promote kidney Water and sodium excretion and inhibit the active secretion of certain alien organisms in the renal tubules (Chatsudthipong et al., 2001).
  • Teppesen BP glucose absorption and transport metabolism and energy metabolism
  • Compound A can inhibit the transport of sugars in liver cells, oxygen uptake in the renal tubules, and mitochondrial metabolic activity in animals. Recently, it has been reported that 25 mg / kg of Compound A in spontaneously hypertensive rats Times) has the effect of lowering blood pressure (Liu, C. J et., Al, 2001), which is related to the inhibition of vascular smooth muscle (Wang KL., At el., 2004).
  • steviol-glycosides In the body, steviol-glycosides cannot be broken down by intestinal digestive enzymes and need to undergo the action of intestinal bacteria to generate compound B and then be absorbed. Stevia-glycosides injected into the body cannot be directly metabolized to form compound A or compound B. Therefore, research on steviol-glycosides cannot be directly used to explain the effect of its glycoside, compound B or A.
  • Compound A and Compound B have low biological toxicity.
  • the minimum oral lethal dose of Compound A is 5060 mg / kg in mice, 3160 mg / kg in rats, and LD 5 is injected intravenously in rats.
  • coronary heart disease and stroke are currently diseases that are extremely harmful to humans.
  • the drugs currently used to treat the above-mentioned coronary heart disease and stroke are often due to toxic effects, or the effect is not significant or The therapeutic dose is close to the toxic dose (such as digitalis), which limits the clinical application.
  • pharmaceutical compounds derived from natural products have lower toxicity, but Few drugs found in natural products that are suitable for the treatment of these diseases and are highly effective and low in toxicity.
  • Compounds of formula (I) or kaurines represent an important chemical constituent of a series of natural products.
  • the main purpose of the present invention is to address the technical problem of the lack of effective low-toxic drugs that are generally accepted clinically in the current treatment methods for treating diseases related to ischemia of organs and tissues.
  • the compounds kaurane
  • more ideal drugs for the treatment and prevention of diseases such as coronary heart disease and stroke are found than the current ones, so that they have higher efficacy and relatively low toxicity, so that they are being treated.
  • Another object of the present invention is to provide an application of a kauri compound in a medicine for treating cardiac insufficiency.
  • Another object of the present invention is to provide an application of a kauri compound in a medicine for treating and preventing arrhythmia.
  • the object of the present invention and the solution of its technical problems are achieved by using the following technical solutions.
  • the kauri compounds proposed in accordance with the present invention can be used in the preparation of a medicament for treating diseases related to ischemia of organ tissues.
  • the aforementioned kauri compounds are used in medicine for treating diseases related to organ ischemia
  • the application wherein the diseases of the heart and brain tissue ischemia are coronary heart disease, stroke, cerebral tissue ischemia-related injury, and reperfusion injury after ischemia.
  • kauri compound in a medicament for treating diseases related to organ ischemia, wherein the coronary heart disease is angina pectoris, acute infarct of heart and month.
  • kauri compound in a medicament for treating diseases related to organ tissue ischemia, wherein the brain organ tissue ischemia-related injury is brain trauma, ischemic shock, cerebral vascular sclerosis or stenosis Blood supply is incomplete.
  • the object of the present invention and its technical problems can also be achieved by using the following technical solutions.
  • the kauri compounds according to the present invention can be used to prepare medicines for treating cardiac insufficiency.
  • the objective of the present invention and its technical problems can be further achieved by using the following technical measures.
  • the object of the present invention and its technical problems are also achieved by the following technical solutions.
  • the kauri compounds according to the present invention can be used for preparing medicines for treating and preventing arrhythmia.
  • the heart physiological anatomy site of arrhythmia is ventricular, supraventricular or atrial.
  • the kauri compound has a structure described by the formula (I):
  • R 1 is a hydrogen atom, a hydroxyl group or an alkoxy group
  • R 2 is a carboxyl group, a carboxylate, an acid halide, a hydroxy group, a methylol group, an ester group, an amide, an acyl group, or an ether that can be hydrolyzed to a carboxyl group;
  • R 3 , RR 5 , R 6 , R s hydrogen atom, hydroxyl group, hydroxymethyl group, ester group capable of hydrolysis to form methylol group, alkoxymethyl group;
  • R 7 fluorenyl, methylol, ester group capable of hydrolysis to methylol, alkoxymethyl;
  • R 9 fluorenylene, oxygen atom.
  • R 2 in the compound of formula (I) is a carboxyl group, a carboxylate, CH 0 , CH 2 0H, a methyl ester, a formyl group, an acid halide, and R 7 is CH 3 , CH 2 0H or methyl ether, and R 9 is a fluorenylene group or an oxygen atom.
  • the compound of the formula (I) is the compound A represented by the formula (II).
  • the kauri compound wherein the compound of formula (I) is a compound B represented by formula (III).
  • the carboxylate is an alkaline earth metal or an alkali metal carboxylate or an ammonium carboxylate thereof.
  • the aforementioned kauri compounds, wherein the dosage forms of the drugs are tablets, capsules, granules, injections, suppositories, ointments, and controlled or sustained-release dosage forms that are administered orally, infused or implanted in vivo, and administered through an interventional catheter Corresponding dosage form.
  • the present invention studies compounds of formula (I), namely kaurane compounds, on organ tissues, especially heart and brain tissue ischemia and arrhythmias. And cardiac dysfunction and other diseases, this compound represents a series of natural and artificial or semi-synthetic compounds, many of which have been published (Kinghorn, AD, 2002, p86-137; Sinder BB., Et al. , 1998; Chang FR et., Al., 1998; Hsu, FL et al., 2002).
  • Compounds of formula (I) contain one or more asymmetric centers and can exist in different configurations.
  • R 1 is a hydrogen atom, a hydroxyl group or an alkoxy group
  • R 2 is a carboxyl group, a carboxylate, an acid halide, an aldehyde group, a hydroxyl group, an ester group, an amide, an acyl group, or an ether capable of hydrolyzing to 1 ⁇ 2;
  • R 3 , R ⁇ R 5 , R 6 , R 8 a hydrogen atom, a hydroxyl group, a hydroxymethyl group, an ester group or an alkoxymethyl group capable of being hydrolyzed to form a methylol group;
  • R 7 is methyl, methylol, ester or alkoxyfluorenyl which can be hydrolyzed to methylol;
  • R 9 fluorenylene or an oxygen atom.
  • the structure of a group of preferred compounds is shown by the formula ( ⁇ ). This structure is based on the kauri skeleton structure and is substituted at the 13-position carbon atom, and the 18 and 17-position carbon atoms are derived to other atoms. Or groups. These compounds contain multiple asymmetric centers and exist in enantiomeric or diastereomeric forms.
  • the absolute configurations of the 8- and 13-positions are (8R, 13S)-or (8S, 13R)-.
  • R 2 carboxyl, carboxylate, CH0, CH 2 0H, methyl ester, formyl, acid halide;
  • R 7 CH 3 , CH 2 0H or fluorenyl ether;
  • R 9 is a methylene group or an oxygen atom.
  • Compound A is an acid hydrolysate of the natural product steviol-glycoside.
  • Compound B is a steviol-glycoside glycoside and isomers to compound A.
  • Compound B can be obtained from steviol-glycoside through oxidative hydrolysis or intestinal bacterial action.
  • Compound A molecular formula C 2 . H 3 . 0 3 ; Full name: (4 ⁇ , 8 ⁇ , 13 ⁇ ) -13-methyl-16-oxo- 17-norbornyl kaurane-18-acid ((4 ⁇ , 8 ⁇ , 13 ⁇ ) -13-methyl-16 -oxo -17-norkauran -18-oic acid ); also known as: iso-sweet leaf alcohol, enantiomers --16- oxo Bayer alkyl --18- acid (e / 2M6- ketobeyran-18- oic acid) 0 the compound It is a terpenoid steroid having a kauri parent structure.
  • the absolute configuration of its chiral complex atom is: (4R, 5S, 8R, 9R, 10S, 13S)-with a methyl substituent at the 13-position, 16
  • the 18 and 18 positions are carbonyl and carboxyl structures (Rodrigues et al., 1988).
  • Compound B molecular formula C 2 . H 3 . 0 3 , Full name: Enantio-13-hydroxykauri-16-ene-18-acid (e2i-13-hydroxykaur-16-en-18-oic acid); also known as steviol.
  • This compound is also a terpene steroid with a kauri parent structure.
  • the absolute configuration of its chiral carbon atom is: (4R, 5S, 8R, 9R, 10S, 13S)-with a hydroxyl substitution at the 13-position.
  • 16-position is a double bond structure with a methylene group
  • 18-position is a carboxyl group (Rodrigues et al., 1993).
  • Compounds A and B can also exist as salts of the carbonyl at position 18 (sodium and alkali metals or chlorine and halogens).
  • Both compound A and compound B have the parent structure of kauriane and belong to kaurane compounds.
  • compound A is a particularly preferred compound of the present invention.
  • the invention discloses that compound A and compound B are similar to resist arrhythmia caused by ischemia and reperfusion, prevent myocardial damage during ischemic phase, and protect and strengthen the contractile function of ischemic myocardium. Since compound B can also be used for coronary heart disease, Clinical treatment and prevention of arrhythmias, cardiac insufficiency and stroke Therefore, it can be inferred that other compounds represented by formula (I) may have the above-mentioned therapeutic effects. Moreover, it has been confirmed that a large number of compounds B have a mutagenic effect under certain conditions, and therefore compound A is a more preferred clinical therapeutic drug than compound B.
  • the present invention also finds that the compounds of formula (I) have a certain structure-activity relationship with anti-ischemic effects.
  • the present invention also finds that in the compounds of formula (I), when the kauri raccoon parent structure is unchanged, but only other groups (such as 13 and 17 positions) or When the stereo conformation (such as the 8th and 13th positions) is changed, its anti-cardio-cerebral ischemia, arrhythmia and other pharmacological effects still exist, but only the pharmacological effects are different.
  • the research of the present invention shows that the shell of formula (I)
  • the parent structure of taxane is related to the medicinal use of the present invention. It can be inferred that other compounds contained in formula (I) also have the same anti-myocardial ischemia, cerebral ischemia, arrhythmia, and cardiac strengthening effects as compound A. effect.
  • the present invention provides a method for salt formation of a compound of formula (I), preparation of a preparation, and a method for therapeutic use.
  • Compound A and Compound B can form a variety of pharmaceutically acceptable salts with other substances, such as alkali metals (such as sodium salts) and groups, thereby increasing their solubility.
  • Compound A and compound B can also be made into ordinary and slow-release solid dosage forms and oral administration with different medicinal excipients, such as tablets, capsules, etc., which are suitable for patients to take multiple long-term. It can also be combined with different excipients and diluents to make an aqueous solution for intravenous administration. It can also be made into suppositories, patches, plasters, etc., and administered through the rectum, vagina, sublingual area, etc., or it can be accessed with an interventional catheter. Intravenous or arterial administration.
  • the effective dose of the compound B in the present invention is 2-8 mg / kg, and the mouse is reported to take acute LD 5 orally. It was 1500 mg / kg (Mui 0, 1999).
  • the compound B proposed by the present invention has similar pharmacological effects as compound A, such as improving the contractile function of the ischemic heart, protecting and reducing the damage of myocardial cells during the ischemic and reperfusion periods, and combating arrhythmia.
  • the dose of Compound B to achieve the same effect is higher than that of Compound A.
  • the present invention confirms the smallest effective dose of the therapeutic effect of Compound A and Compound B. Because the compound A's half-lethal dose is usually large and the safety is large, general researchers are guided to use larger doses for pharmacodynamic studies. However, studies on the effects of small doses have been ignored.
  • the effective dose of Compound A and Compound B of the present invention is only 1-2 mg / kg (rat). If calculated based on body surface area, the corresponding dose for pigs is about 0.2 to 0.4 mg / kg; the corresponding dose for humans is about It is 0.1 to 0.2 mg / kg.
  • Compound A is 25 mg / kg, (rat, Liu, CJ et, al., 2001 ,); Compound B was 250 mg / kg (hamster, Was mtarawat C, 1998).
  • Oral therapeutic doses of steviol glycosides to lower blood pressure in humans are 250 and 50 Omg, three times a day ((Chen P at el., 2000; Hsieh MH et al., 2003), according to the molecular weight ratio of its glycoside, that is, compound B, which is equivalent to 80-160 mg of compound B per oral administration, about 1.2 to 2. 1 ⁇ 2 g / kg.
  • the published literature fails to confirm that the compounds of formula (I) including compounds A and B have a therapeutic and preventive effect on ischemic heart and brain, etc., which may have two main reasons: one is the excessive dosage, and the other is No studies have been performed using effective animal models of ischemia. These two points are the differences between the present invention and the published literature.
  • the results of the present invention show that the protective effects of compound A or compound B on cardio-cerebral ischemia and reperfusion injury may involve multiple mechanisms.
  • Relevant published literature has pointed out that the hypotensive effect of Compound A may be related to the potassium channel of the sarcoplasmic membrane (Wang, KL et al., 2004), while the stimulation of insulin secretion by Compound B is not related to the potassium channel (Jeppesen PB., Et al, 2000).
  • the morphological observation in this study showed that compound A or B had protective effects on ischemic myocardial mitochondria.
  • the specific mitochondrial potassium ATP channel blocker 5-OH-decanoate was not able to completely block the pharmacological effects of compound A.
  • the animal model adopted by the invention has obvious clinical representative significance.
  • occlusion of the descending coronary artery before the coronary artery successfully resulted in decreased cardiac function and arrhythmia during the ischemic and reperfusion periods, and the myocardium had obvious tissue damage and necrosis.
  • These pathological phenomena are consistent with the clinical pathological symptoms that occur in patients with coronary heart disease during clinical myocardial infarction, myocardial ischemia, and coronary reperfusion (such as thrombolytic / catheter angioplasty).
  • coronary reperfusion such as thrombolytic / catheter angioplasty
  • the animal model of the present invention is also a model of arrhythmia, which successfully simulates the occurrence of clinical arrhythmia. Because, in fact, myocardial ischemia and reperfusion have involved a variety of pathological mechanisms, as a model, it can also represent arrhythmias under different conditions and mechanisms.
  • the invention can effectively determine the use of kauri compounds in the treatment and prevention of various types of clinical arrhythmias.
  • the animal model of the present invention is also a model with reduced cardiac contractile function. Pass The ischemic damage of part of the myocardium reduces the pumping function of the heart, resulting in decreased or incomplete heart function. It can represent a class of pathological development processes in the heart with decreased cardiac output and insufficiency in the clinic.
  • the invention can effectively determine the positive inotropic effect of kauri compounds and is suitable for cardiac insufficiency or congestive heart failure characterized by reduced cardiac output
  • the present invention relates to the application of a kauri compound in pharmaceuticals, which can be used as an active ingredient of a drug to treat and prevent diseases such as coronary heart disease, stroke, cardiac insufficiency, and arrhythmia.
  • Two preferred compounds in the present invention are derived from natural products, namely compound A and compound B, which are acid hydrolysis products of steviol-glycoside and glycosides of steviol-glycoside.
  • the compounds of the present invention can obviously protect the heart from ischemia and ischemia reperfusion, reduce the damage of myocardial cells, enhance cardiac systolic function, obviously combat arrhythmia, reduce and prevent ventricular tachycardia (ventricular tachycardia), Occurrence of ventricular fibrillation (VF).
  • the invention also proves that it can significantly prolong the duration of ischemic brain function, and has a significant protective effect on stroke and cerebral ischemic injury by using an animal model of cerebral ischemia experiment.
  • the application of the kauri compounds of the present invention in pharmaceuticals has at least the following advantages:
  • the kaurane compounds including Compound A and Compound B provided by the present invention have protective and therapeutic effects on diseases such as myocardial ischemia, arrhythmia, and cerebral ischemia, and can be used for coronary heart disease, stroke, and arrhythmia , Prevention of heart dysfunction and other diseases.
  • Compounds A and B in kauri compounds are derived from natural products that exist in nature and have been eaten by humans for a long time, and have high safety.
  • therapeutic or preventive drugs compounds A and B have larger safe doses and smaller pharmacodynamic doses, have larger therapeutic indices, and have great clinical application prospects.
  • the present invention observes for the first time the effect of a compound of formula (I) on the ultrastructural changes of tissue cells.
  • the kauri compounds provided by the present invention have an anti- coronary heart disease (ischemic heart disease) effect.
  • ischemic heart disease ischemic heart disease
  • the main clinical manifestations of the damage caused by coronary heart disease to myocardial ischemia are: affected myocardial degeneration and necrosis, impaired systolic function and severe arrhythmia, which are well reflected in this experimental model.
  • the invention proves that the use of compound A and compound B can effectively protect ischemic myocardium, reduce the scope and degree of damage of myocardial ischemic infarction, reduce myocardial mitochondrial damage, protect and enhance ischemic cardiac contractile function, and effectively reduce and prevent myocardial ischemia Incidence and severity of severe arrhythmias such as ventricular tachycardia and ventricular fibrillation.
  • Compounds A and B are useful in the treatment and prevention of ischemic heart disease such as coronary heart disease.
  • the kauri compounds provided by the present invention have a significant positive inotropic effect.
  • the use of compound A and compound B in kauri compounds can prevent the decrease of contractile function and keep it close to normal levels.
  • the decline in cardiac systolic function clinically leads to a decrease in cardiac output and cardiac insufficiency. Therefore, the use of compounds A and B can prevent and treat the decrease in cardiac output by enhancing the contractile function of the diseased heart. Rarely characterized cardiac insufficiency or congestive heart failure.
  • the outstanding advantage of the compound of formula (I) of the present invention is that it does not increase or decrease the ischemic myocardial injury and infarct area while increasing cardiac contractile function, and also has the effect of alleviating severe arrhythmia.
  • Digitalis and other drugs are commonly used clinically to prevent heart failure and increase cardiac contractility (positive inotropic effect).
  • digitalis will increase the area of ischemic myocardial infarction at the same time as increasing systolic function; excessive use will lead to the side effects of severe arrhythmia. This limitation greatly limits the clinical use of the drug.
  • the compounds of the invention have a better therapeutic index than digitalis. Since the use of digitalis is by far one of the main treatments for cardiac insufficiency, this finding of the present invention has important clinical significance.
  • the kauri compounds in the present invention have obvious protective effects on re-irrigation damage.
  • the sudden recanalization of the occluded coronary artery and the reperfusion-induced heart injury are interventional treatments for coronary heart disease such as coronary angioplasty, coronary stent, bypass, thrombolytic therapy for coronary embolism, coronary drug expansion, and in vitro
  • thrombolytic therapy for coronary embolism
  • coronary drug expansion and in vitro
  • reperfusion after ischemia due to multiple factors such as excessive oxide production and calcium ion overload, fatal cardiac arrhythmias such as myocardial damage, decreased or failed heart function, ventricular tachycardia, and ventricular fibrillation will eventually be caused. This was also well verified in the experimental study of the present invention.
  • the coronary arteries are reopened to cause reperfusion of the heart.
  • the compound A and the compound B of the compound of the formula (I) can effectively protect the heart function during reperfusion, reduce the degree of myocardial damage, and significantly reduce the incidence and severity of ventricular tachycardia. Therefore, the kauri compounds and the compounds A and B of the present invention can be used for the treatment and prevention of coronary interventional therapy, coronary angioplasty, coronary stent, coronary bypass, coronary thrombolysis, and coronary arteries. Drug expansion, surgical extracorporeal circulation, and myocardial damage caused by myocardial reperfusion caused by spontaneous coronary embolism and spasm recanalization, reduced or impaired heart function and arrhythmia.
  • the kauri compounds in the present invention have obvious antiarrhythmic effects. Ventricular tachycardia and ventricular fibrillation appear in both the ischemic phase and reperfusion period caused by coronary occlusion in experimental animals in the present invention. After using compound A and compound B, ventricular tachycardia can be significantly reduced. Rate and duration of ventricular fibrillation. Therefore, the kauri compounds and compounds A and B of the present invention can be used to treat and prevent arrhythmias caused by ischemic heart disease and arrhythmias caused by reperfusion of the heart. At the same time, the kauri compounds and the compound A and compound B of the present invention can also be used for the treatment of other arrhythmias. Because, in fact, myocardial ischemia and reperfusion injury have involved many pathological mechanisms.
  • the kauri compounds in the present invention have anti-stroke and brain damage effects. After the mice lose the cerebral blood supply, their vital functions (such as respiratory functions) are rapidly lost. The use of compounds A and B in kauri compounds led to a significant prolongation of the loss of respiratory function in mice that lost brain blood supply, suggesting that kauri compounds have a significant protective effect on ischemic damage to the brain and nervous system. Therefore, kauri compounds and compounds A and B can be used to treat or prevent cerebral ischemia and brain damage caused by stroke (cerebral embolism, cerebral hemorrhage), shock, trauma, etc. Hurt.
  • ischemia Treatment or prevention of ischemia, renal ischemia (such as acute renal failure), etc.
  • the dose-effect relationship of the kauri compounds in the present invention is non-linear. Dose dependence exists only within a certain dose range, and the original effect may no longer increase or disappear when the dose is too large.
  • pigs are used as experimental animals, and the anterior descending coronary heart catheter is used for air thoron filling and defilling, resulting in a model of coronary occlusion ischemia and reperfusion.
  • kaurane compounds such as Compound A
  • Kauri compounds (such as Compound A) has no significant effect on the coronary heart without occlusion.
  • kauri compounds such as compound A
  • the contraction force is significantly weakened.
  • the effects of kauri compounds may involve different cellular targets or receptors, and show different affinity or pharmacological strength and mechanism of action; therefore, other mechanisms may be activated at large doses, producing opposite effects, and As a result, the original pharmacological effects at small doses are reduced or eliminated.
  • the kauri compounds in the present invention can be used as therapeutic drugs or preventive drugs. Because the compound A and compound B are used to protect the heart and cerebral ischemia during ischemia and ischemia-reperfusion, the low toxicity of kauridane compounds is important for coronary heart disease For patients with cerebrovascular disease, compounds A and B can be used as therapeutic drugs or as a preventive drug. For patients with angina pectoris, myocardial infarction, cerebral ischemia or embolism, severe arrhythmia, and various types of blood reperfusion injury, Compound A can be given prophylactically, and repeatedly used for a long time.
  • the present invention relates to the use of compounds with a parent structure of kauriane (such as compounds of formula (I)) as active ingredients of medicines for the treatment and prevention of coronary heart disease, stroke and other tissue and organ ischemia.
  • Compounds B and A are preferred and particularly preferred compounds of the formula (I).
  • use Animal models of ischemia were screened and determined for the pharmacodynamic effects of compounds of formula (I).
  • the present invention finds that the compound of formula (I) has the following significant pharmacological effects:
  • ventricular tachycardia and ventricular fibrillation occurred during the ischemic and reperfusion periods, and about one-third of the animals died due to persistent ventricular fibrillation.
  • the use of a compound of formula (I) can significantly reduce ventricular tachycardia and the incidence of ventricular fibrillation, the time and duration of onset, or prevent the occurrence of ventricular fibrillation. No animal died of sustained ventricular fibrillation.
  • Another outstanding advantage of the compound of formula (I) is that it does not increase or decrease the area of ischemic myocardial injury and infarct while increasing the systolic function, and also has the effect of alleviating severe arrhythmia.
  • the compound of formula (I) has the following medical uses: It is used for the treatment and prevention of ischemic heart disease (coronary heart disease) such as angina pectoris and acute myocardial infarction; as a positive inotropic medicine for the treatment and prevention of cardiac function Decline and cardiac insufficiency (congestive heart failure); used to treat and prevent arrhythmias such as ventricular tachycardia and ventricular fibrillation; used to treat and prevent damage caused by reperfusion of cardio-cerebral blood; used to treat and prevent stroke including cerebral infarction And cerebral hemorrhage and other cerebrovascular diseases, shock, trauma caused by brain tissue damage and dysfunction, ischemic damage to the extremities, retina and nerves and kidneys.
  • ischemic heart disease coronary heart disease
  • angina pectoris and acute myocardial infarction as a positive inotropic medicine for the treatment and prevention of cardiac function Decline and cardiac insufficiency (congestive heart failure)
  • arrhythmias such as ventricular
  • the compound (I) used in the present invention has a dose-dependent effect only in a certain dose range.
  • the dose of Compound B that achieves the same effect is higher than that of Compound A.
  • Compounds of formula (I), including compound A and compound B, can form a variety of pharmaceutically acceptable salts with other substances, such as alkali metals (such as sodium salts) and! Group 3 ⁇ 4, can also be composed of different pharmaceutical excipients pharmaceutical composition.
  • the pharmaceutical composition of the compound of formula (I) can be administered orally or intravenously, or can be made into other dosage forms for administration through other sites, or it can be administered intravenously or arterially through an interventional catheter.
  • the application of the special kauri compound in the pharmaceutical is aimed at the lack of effective low-toxicity which is generally accepted in the clinical treatment methods for coronary heart disease, stroke, cardiac insufficiency, arrhythmia and other diseases.
  • Technical difficulties of medicines Among natural kaurane compounds with lower biological toxicity, more ideal drugs than those currently used to treat and prevent coronary heart disease and stroke, cardiac insufficiency, and arrhythmias have been found. .
  • Kaurane compounds have higher pharmacological effects and relatively low toxicity, so they can be used more safely in the clinical treatment of diseases such as coronary heart disease, stroke, cardiac insufficiency, and arrhythmia. More effective drugs and methods.
  • the examples record the experimental methods and results related to the present invention, and these results provide experimental basis for the present invention.
  • the reliability of the animal model used in the experiment was verified, and all experiments were set up with corresponding control and statistical tests.
  • the content of the present invention is not limited to these limited embodiments, but merely illustrates the scientific method of the research method of the present invention through exemplary embodiments.
  • the examples exemplify the verification and screening processes and methods for the medicinal use of some compounds in kauri compounds, and similar medicinal uses of other compounds in kauri compounds can also be verified by the same process and method.
  • the present invention is more preferred for the preparation of compound A and compound B: compound A (ent-17-norkaurane-16-oxo- 18-oic acid), having a molecular formula of C20H40O3 and a molecular weight of 38.5.
  • a commercially available stevios ide was obtained by acid hydrolysis, decolorization, and crystallization. After infrared scanning and N M R analysis, it is consistent with literature values. The purity determined by HPLC should be greater than 99%.
  • Compound B e 2-13- hydroxykaur- 16-en-18- oic acid
  • the purity determined by HPLC method should be greater than 99%.
  • Medication route Intravenous, intraperitoneal or oral administration.
  • Rats were under anesthesia, tracheotomy, endotracheal intubation, connected to a ventilator, artificial respiration.
  • One side of the femoral artery was separated, and an arterial cannula was connected to the pressure transducer to measure blood pressure.
  • the cannula was filled with heparin for anticoagulation.
  • the common carotid artery was isolated on one side.
  • the miler pressure transducer catheter was inserted into the left ventricle through the arteries, and the internal pressure was measured.
  • the two pressure transducers were connected to the Power Lab bio-signal acquisition and processing system to monitor blood pressure and left ventricular hemodynamic changes in rats.
  • the electrodes were fixed under the skin of rat limbs to record and monitor the changes of ECG.
  • Observation indicators include: mean arterial blood pressure (MBP), left ventricular systol ic pres sure (LVSP), maximum rate of change in left ventricular pressure ( ⁇ dp / dt max), and left ventricular diastolic pressure ( left ventr icular dias tol ic pressure (LVDP), left ventricular icular end-dias tol ic pres sure (LVEDP), heart rate (HR), ventricle, 1 "tachycardia and ventricular fibrillation .
  • Maintaining occlusion for 20 min or 30 min was defined as myocardial ischemia or myocardial infarction. After that, the coronary ligatures were loosened, and the blood was reperfused, and the reperfusion or reperfusion was successfully marked as follows: The cyanotic heart gradually became ruddy, and the ST segment with elevated electrocardiogram gradually decreased or returned to normal. Reperfusion was maintained for 50 min or 80 rain as the reperfusion period. The above indicators were recorded before ischemia, ischemia and reperfusion.
  • This animal model is a classic method that has been used for a long time (Liu, Y and J Downey, 1992).
  • Ischemia phase the occlusion of the anterior descending coronary artery caused by ligation, leading to partial myocardial ischemia, which can simulate a series of symptoms of acute myocardial infarction or myocardial ischemia caused by clinical coronary heart disease And pathological phenomena.
  • Reperfusion period release of the ligature, reopen the coronary artery, and reperfusion of the heart. This process can simulate various cardiac ischemic reperfusion phenomena in clinical practice. Coronary angioplasty, thrombolytic or spontaneous coronary thrombolysis, relief of coronary spasm, extracorporeal circulation and acute bypass surgery, etc. The above clinical conditions may produce rapid reperfusion of the heart, resulting in myocardial injury and arrhythmia.
  • Coronary artery ligation ischemia / reperfusion group (control group);
  • the coronary artery was not ligated only in the surgery group (sham operation group).
  • Control group 1-10 min- I 20 min ---
  • Example 1 The experimental data are expressed by mean value SE, and the measurement data are tested by t test or paired t test. The count data was tested using the four-box probabilistic method.
  • This example illustrates the enhanced protective effect of Compound A on ischemic heart function and hemodynamic changes.
  • the maximum rate of left ventricular systolic pressure change is different from that of the control group.
  • the animals in the treatment group using Compound A (lmg / kg) are shown in Table 2.
  • the hemodynamic parameters including the left ventricular systolic pressure and the maximum rate of systolic pressure change did not decrease significantly. Comparing the results of the two groups shows that Compound A has a significantly enhanced protective effect on the contractile function of the ischemic heart.
  • This example illustrates the anti-arrhythmic effect of Compound A.
  • Ventricular tachycardia and ventricular fibrillation are the leading causes of clinically fatal arrhythmias.
  • ventricular tachycardia occurred in the ischemic period after coronary ligation and ventricular fibrillation occurred in 10 of the 11 animals without medication, and 3 of them died of sustained ventricular fibrillation.
  • the ischemic period after coronary ligation all survived.
  • the incidence of ventricular tachycardia and ventricular fibrillation during the ischemic period, the time of occurrence (latency period), and the duration were compared, as shown in Table 3.
  • the present invention illustrates the protective effect of Compound A on coronary artery occlusion and reperfusion heart injury and changes in hemodynamics.
  • the animals in the treatment group using Compound A had a greater increase in mean arterial pressure, left ventricular systolic pressure, and systolic pressure during the reperfusion period compared with the ischemic period.
  • Trend but the change was not statistically significant (P> 0.05).
  • the hemodynamic parameters including the maximum rate of change in left ventricular systolic pressure and systolic pressure did not decrease significantly.
  • This example illustrates the protective effect of Compound A in reducing the extent of coronary artery occlusion ischemic myocardial infarction.
  • Measurement of myocardial infarction In the control and medication groups, after the end of ischemia-reperfusion, religation was performed as described above to occlude the left anterior descending coronary artery, and 1% Evans Blue 0.5ml was injected intravenously. After blue staining, the ventricular tissue was frozen. The sections were treated with Tris s-hydrochloric acid buffer and observed under a microscope. Myocardium in non-ischemic areas is blue, myocardial ischemia but not necrosis is red, and infarcted or necrotic myocardium is white.
  • Myocardial infarction range infarcted myocardial weight / (infarcted myocardial weight + ischemic but not necrotic myocardial weight) X 100%.
  • This example illustrates the protective effect of Compound A on the histomorphology of ischemic myocardium after coronary artery occlusion.
  • Optical and electron microscopic histological observation of rat myocardium After the experiment in the control and drug groups, the ischemic area of each group was taken from each group, fixed in formalin, dehydrated, embedded in paraffin, and made into slices. Observe under a light microscope. The left ventricular anterior wall myocardium was taken under the ligature, dehydrated, embedded, and ultra-thin sectioned, and then observed under transmission electron microscopy after staining.
  • Optical display 4 inspection results Animals in the ischemic control group and the medication group (compound A 1 mg / kg), myocardial tissues were taken from the ischemic area under the ligature line, and normal myocardial tissues were obtained at the corresponding site in the sham operation group. The frozen section was examined under a 100x optical microscope, and the results showed that the normal myocardium had clear horizontal lines, the cardiac muscle space was tight, and there was no edema or inflammatory cell infiltration. Compared with the normal myocardium, the ischemic control group showed vacuole-like degeneration in the myocardium, the horizontal stripes disappeared, the myocardial space edema widened, inflammatory cell infiltration was marked, and cell damage was obvious.
  • Electron transmission display microscope examination results The normal myocardium of the operation group, the control group, and the medication group (compound A) were used to prepare myocardial tissues according to the above methods, and ultrathin films were prepared. After staining, the mitochondria in the myocardial cells were mainly examined under a 12000-times transmission microscope. The results showed that normal muscle cells showed intact cell membranes, intact mitochondrial membranes, dense ridges, and uniform mitochondrial matrix particles.
  • the control group the cell membrane was ruptured, the mitochondria were swollen, the membrane was ruptured, the number of ridges was reduced, the arrangement was disordered, or the mitochondria were reduced, and the large cavities were reduced. Compared with normal myocardium, mitochondrial damage is obvious.
  • the medication group Compound A
  • the myocardial cell membrane is intact, the mitochondrial membrane is intact, the ridges are dense, and the matrix particles are uniform. Compared with normal myocardium, the damage of the cells and mitochondria is not obvious.
  • This example illustrates the protective effect of Compound B on the histomorphology of ischemic myocardium after coronary artery occlusion.
  • Compound B and compound A are isomers.
  • compound B we also examined the role of compound B separately. This example further illustrates the protective effect of Compound B on the histomorphology of ischemic myocardium after coronary artery occlusion.
  • the drug group used compound B 2 mg / kg.
  • the myocardial tissue structures of the normal group, the ischemic control group, and the compound B medication group were compared by light-optical microscopy and electron transmission microscopy.
  • the results showed that the myocardial cell membrane, mitochondrial membrane integrity, ridge compaction, and matrix particles of the compound B medication group were complete. In both cases, the cells and mitochondria are not significantly damaged compared with normal myocardium.
  • This example illustrates the effect of Compound B against ischemia.
  • Example 2 Using the same method as in Example 2 above, the effect of compound B on arrhythmia during ischemic phase was studied.
  • Table 3 in Example 2 lists the experimental results of using compound B to prevent arrhythmia during ischemic phase. The results show that: Of the 11 animals in the control group, ventricular tachycardia occurred during the ischemic phase, and 3 of them died of sustained ventricular fibrillation. However, in a total of 5 animals using Compound B (2mg / kg), none died during the ischemic period.
  • This example illustrates the enhanced effect of Compound B on ischemic heart function.
  • Example 1 The experimental method of Example 1 was used to study the effect of compound B on ischemic heart and cardiac function.
  • the ischemic period after ligation was 98 ⁇ 2 awake Hg and 6472 ⁇ 219 mmHg / sec, and the reperfusion period was 107 ⁇ 4 mmHg and 6437 ⁇ 395 mmHg / sec.
  • the maximum rate of change in left ventricular systolic pressure and systolic pressure (+ dp / dt max) in the group of animals treated with Compound B (2mg / kg) before coronary artery ligation and ischemia were: 112 ⁇ 5 Wake Hg and 8609 ⁇ 543 hidden 3 ⁇ 4 / 36.
  • the ischemic period after ligation is: 104 ⁇ 4 leg Hg and 7592 ⁇ 433 mmHg / sec; the reperfusion period is: 110 ⁇ 4 let Hg and 8362 ⁇ 498 let Hg / sec.
  • Compound B has similar pharmacological effects as compound A, such as improving the contractile function of the ischemic heart, protecting and reducing the damage of myocardial cells during the ischemic and ischemic reperfusion periods, combating or reducing the ischemic and ischemic reperfusion periods Appearance of arrhythmia, etc.
  • the dose of Compound B that achieves the same effect is higher than that of Compound B.
  • Example 9 This example illustrates that steviol-glycoside does not have a similar therapeutic effect of the present invention.
  • This example illustrates the anti-stroke and cerebral ischemic effects of Compound A and Compound B.
  • mice cerebral decapitation model After the administration, the heads of the mice were cut off, and the number of wheezing after mouth opening was measured as an index for judging the function of the brain tissue, thereby inferring the degree of cerebral ischemia damage. The animals were divided into three groups, and the mice were randomly divided into groups of 8 animals, half male and half female.
  • Control group saline.
  • Medication group Compound A (4mg / kg).
  • Positive control group Edaravone, 8mg / kg, which is an antioxidant and has a protective effect on nerve injury (Granl A. et al., 1996), abdominal cavity 30 minutes before decapitation of mice Within administration.
  • This example illustrates a method for preparing a compound A and a compound B useful salts for clinical treatment and a solution for injection.
  • Both compound A and compound B are not easily soluble in water, therefore, they must first be prepared as water-soluble salts before being used for injection.
  • the salt can be sodium, potassium or other free Toxic inorganic salts, one of the preferred methods is the use of sodium salts.
  • the specific method for preparing the sodium salt injection is: firstly prepare a 0.01 mol NaOH solution, take 10 ml and then prepare a NaOH solution (0.1 lg / ml) containing 10% of compound A and compound B to form compound A and compound B Sodium salt, adjust the pH value to neutral, dilute it with distilled water to the concentration required for the test, and store it at room temperature for future use.
  • This example illustrates a method for preparing a pharmaceutical composition of a compound A preparation for clinical treatment.
  • Compound A is only available for clinical treatment in the form of a formulation or pharmaceutical composition.
  • Compound A can be combined with various medicinal components to make different preparations suitable for different clinical needs.
  • kauri compounds including compound A and compound B can be absorbed through the intestinal tract, so they can also be made into solid preparations for oral administration.
  • Kauri compounds such as compound A and compound B are mixed with pharmaceutical excipients in different proportions, such as starch, sugars, and excipients and binders such as methylol microcrystalline cellulose, and Made into tablets, capsules, granules and other solid dosage forms for oral use.
  • Tablets Compound A in different proportions (1-99%) with appropriate amount of fillers (such as starch, powdered sugar, lactose, dextrin, microcrystalline cellulose, etc.), disintegrants (such as dry starch, carboxymethyl starch) Sodium, cross-linked polyvinylpyrrolidone, low-substituted hydroxypropyl cellulose, etc.), binders (such as starch pulp, ethanol, sodium hydroxypropyl cellulose, hydroxypropyl cellulose, fluorenyl or cellulose, hydroxypropyl ⁇ cellulose, etc.) and lubricant (such as magnesium stearate, etc.), one of the combinations is: Compound A: 2g; starch: 40g; lactose 45g; sodium carboxymethyl starch: 10g; 8% starch slurry; Magnesium stearate: It is mixed, granulated, dried, sieved and compressed to make 1000 tablets, each containing 2 mg of Compound A, for clinical oral administration
  • Capsules Compound A is mixed with an appropriate amount of the above-mentioned filler lubricants in different proportions (1-99%), and packed into a capsule shell. Compound A can also be mixed with different solvents and then made into soft capsules. One of the combinations is: Compound A: 2g; starch 2 QGg; 1000 capsules after mixing. Each capsule contains 2 mg of Compound A for clinical oral administration.
  • Controlled-release and sustained-release tablets or capsules You can adjust the proportion of auxiliary materials on the basis of tablets or capsules, and then add the corresponding auxiliary materials (such as high-molecular polymers) to make a skeleton type, or use a release retarder or
  • the osmotic membrane coats the tablets into a coating type or an osmotic pump type, or uses a semi-permeable membrane to make a microcapsule type or a controlled release and sustained release dosage form such as a combination with a liposome. It is used for clinical oral administration to prolong the action time of drug compound A.
  • Compound A is mixed with an appropriate amount of water for injection and a pharmaceutically acceptable alkaline in different proportions (1-90%), stabilizes, adjusts the pH, filters, sterilizes, and seals. It is used clinically for injection or infusion.
  • One of the combinations is: Compound A: 2g; sodium bicarbonate: 2g; 1000 ml of water for injection, adjust the pH, filter, sterilize, and seal in a 2 ml or 5 ml bottle, each bottle containing 4 mg or 10 mg of compound A.
  • intraarterial or intravenous catheters or infusion drips are examples of compounds A.
  • Other dosage forms Compound A can also be made into other dosage forms according to clinical treatment needs: such as suppositories, plasters, transdermal absorbable patches, lozenges, etc.
  • the invention relates to the application of a kauri compound in medicine, which can be used as a medicine to treat and prevent diseases such as coronary heart disease, stroke, cerebral ischemia, and heart rhythm disorders.
  • the invention also proves that the compound can significantly prolong the duration of ischemic brain function, and has obvious protective effects on cerebral infarction and cerebral ischemic injury by using an animal model of cerebral ischemia experiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Hospice & Palliative Care (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

贝壳杉烷类化合物在制药中的应用 技术领域
本发明涉及贝壳杉类 (kaurane)化合物的应用, 特别是涉及包括具有贝 壳杉烷母体结构的化合物 A和化合物 B在制药中的应用。 背景技术
冠心病是常见多发病 , 是由于冠状动脉狭窄或闭塞造成心肌供血不全 (缺血)所引起的疾病。 根据病情严重程度不同心肌缺血主要造成: 1、 心 脏泵功能降低或衰竭。 2、 心律不齐或严重心律失常, 出现心动过速(室速) 或心室颤动 (室颤)等。 3、 心肌组织的损伤或梗死。 4、 心绞痛。 临床还 发现当冠状动脉再通, 血液急性复灌心脏时, 也会引起复灌损伤, 主要表 现为, 严重心律失常和心功能降低或衰竭。 在冠心病临床治疗中现已普遍 采用冠脉成形术(PTCA)、 动脉支架或溶栓药溶解血栓, 使冠脉血流再通,恢 复心肌的血供, 但同时,又造成缺血心肌的复灌损伤。 尽管已有许多药物上 市, 以对抗心肌缺血以及复灌所导致的心肌损伤和心律失常, 但这些药物 往往由于其疗效不明显或毒付作用高, 临床使用受到限制。
在美国脑卒中是造成临床死亡的第一病因, 它是由于脑血管闭塞(脑 梗塞)或破裂淤血(脑溢夕卜)造成局部脑组织因缺血、 缺氧、 梗死损伤而 导致脑功能障碍。 此外, 外伤、 休克等也会造成脑缺血。 脑及中枢神经系 统氧耗量极高, 因此, 缺血缺氧可能先于其它器官造成大脑组织损伤或死 亡, 使患者失去恢复功能或生存的机会。 寻找有效药物, 保护或减轻缺血 时脑细胞的损坏, 保护脑组织功能, 延长其存活时间, 也是临床急待解决 的问题。 ,
人类经验显示, 在天然植物中往往可以找到有药效或毒性低的化合物 结构, 如属夹竹桃科的天然产物洋地黄苷在抗心力衰竭和心律失常中的治 疗中起着不可替代的作用。 不过, 洋地黄苷又但因其安全剂量和毒性剂量 之间差异较小而给临床使用带来困难。 所以, 进一步在天然植物中寻找比 目前更为有效、 毒付作用更低的理想药物, 是提高冠心病和脑卒中、 心律 失常、 心功能不全等疾病的临床治疗水平的重要途径之一。
结构式 ( I ) 所示的贝壳杉类(kaurane)化合物, 其生物学或可能的药 理学作用 长期以来有大量研究。 已公开的文献 ( Kinghorn AD, 2002, P160-202 )显示, 贝壳杉类化合物的某些化合物可影响细胞代谢、 糖类在肠道的吸收和在体内的代谢、 肝细胞线粒体的能量代谢以及肾小管 细胞糖和氧的代谢等, 贝壳杉类化合物的某些化合物还有降血压的作用等 等。 但是目前尚没有公开关于贝壳杉类化合物有特定的对心脏的药效学作 用的研究报道, 如增强心收缩力、 保护心肌缺血、 抗冠心病、 抗心律失常 等, 以及报保护缺血脑组织, 抗脑卒中等病变的报道。
Figure imgf000004_0001
其中:
R1: 为氢原子、 羟基或烷氧基;
R2: 为羧基、 羧酸盐、 酰基卤、 酸基、 羟曱基、 能水解成羧基的酯基、 酰胺、 酰基或醚;
R3、 R4、 R5、 R6、 R8: 为氢原子、 羟基、 羟甲基、 能水解生成羟甲基的酯 基或烷氧基曱基;
R7: 为曱基、 羟曱基、 能水解生成羟曱基的酯基或烷氧基曱基;
R9: 亚甲基或氧原子。
天然甜菊醇-糖苷属于贝壳杉类(kaurane)化合物, 其甜味大于普通蔗 糖 300倍, 在许多国家长期被用作食品增甜剂。 已公开的文献表明, 甜菊 醇-糖苷有降血糖(Gregersen S et al., 2004) , 降血压等作用 (Chen P at el. , 2000 ), 但不改变心率和相关心脏指标 ( Hs ieh MH et al. , 2003 )。 对 动物的试验证实: 其有利尿、 刺激胰岛素分泌(; Teppesen PB, 2000 ) 以及 抑制线粒体能量代谢等作用 ( 0, 1999 )。 然而, 甜菊醇-糖苷对缺血心 脏和大脑是否有治疗作用则从未被证实或公开。
与甜菊醇 -糖苷相关的两个倍受关注的贝壳杉类化合物是化合物 A(其 结构如式 ( I I ) 所示)和化合物 B (其结构如式 ( I I I )所示)。 化合物 A是 甜菊醇 -糖苷的酸水解产物, 化合物 B是甜菊醇 -糖苷的配糖体。
Figure imgf000005_0001
isosteviol steviol 式(I I ) -化合物 A 式(I I I ) - 化合物 B
化合物 B 的生物学和药理学作用有较多的动物实验研究报道。 现已证 实化合物 B的有一定的致突变性 ( Puzzuto JM et al. , 1984 ), 刺激胰岛素 分泌、 对糖的吸收转运代谢和能量代谢有抑制作用 (: Teppesen BP, 2000 ), 以及能促进肾脏水钠排泄和抑制肾小管的某些异生物的主动分泌过程 ( Chatsudthipong et al. , 2001 )。 迄今有关化合物 Β 的公开文献中, 未 见有关对正常或缺血心脏的作用; 也没有化合物 Β 能对抗心肌缺血、 缺血 复灌损伤和心律失常, 以及对抗脑卒中疾病的保护和治疗作用的报道。
关于化合物 Α的药效作用也有公开文献报道。 在动物体内化合物 A可 抑制糖在肝细胞的转运, 肾小管的氧摄入以及线粒体的代谢活动 , 新近有 报道证实,在自发性高压大鼠 25mg/kg的化合物 A (本发明用剂量的 25倍) 有降低血压作用 ( Liu, C. J et. , al, 2001 ), 该作用与抑制血管平滑肌有关 ( Wang KL. , at el., 2004 )。 然而, 迄今没有任何公开文献证实化合物 A 对正常或缺血心脏有直接的作用, 如增强心收缩力,保护缺血心肌, 抗冠心 病, 抗心律失常等; 以及保护缺血脑组织, 抗脑卒中等病变的报道。
在体内甜菊醇-糖苷不能被肠道的消化酶分解而需经肠道细菌作用后 再生成化合物 B再被吸收, 注入体内的甜菊醇-糖苷并不能直接代谢生成化 合物 A或化合物 B。 因此,有关甜菊醇 -糖苷的研究也还不能直接用于解释 其配糖体即化合物 B或 A的作用。
化合物 A和化合物 B的生物毒性较低,化合物 A最小口服致死量:小鼠 为 5060 mg/kg,大鼠为 3160 mg/kg ,大鼠静脉注射半数致死量 LD5。为 503 mg/kg0 致死毒性主要表现为:血管扩张和肾功衰竭 (Zhongguo et al. , 1994. )。 化合物 Β对大鼠口服致死量为 LD5。为 1500 mg/kg ( WH0, 1999 )。 这 些数值说明, 与一般药物的致死量相比化合物 B和化合物 A是相对安全的。
已公开的文献显示, 化合物 B和化合物 A尚未用于临床治疗, 也未被 制成能用于临床治疗使用的制剂或药物组合物。
综上所述, 冠心病、 脑卒中等是目前对人类危害极大的疾病, 但在目 前使用的治疗上述冠心病、 脑卒中等疾病的药物中往往由于毒付作用大, 或疗效不显著或治疗剂量与中毒剂量接近(如洋地黄苷) 而使临床应用受 到限制。 一般认为, 源于天然产物的药物化合物具有较低毒性, 但迄今从 天然产物中发现的, 适用于治疗上述疾病且高效低毒的药物很少。 式(I ) 化合物或贝壳杉烷类化合物代表一系列天然产物的重要化学组成部分, 尽 管作为增甜剂及其生物学毒性有颇多研究, 并证明其毒性较低; 但其作为 疾病治疗的药物的可能用途却研究不多; 更没有公开文献验证过这类化合 物在治疗冠心病或脑卒中等疾病方面的作用。 因此,从天然的相对 ^氐毒的式 ( I )化合物或贝壳杉烷类化合物中找到对上述疾病有治疗用途的药物, 对 于提高这些疾病的临床治疗和预防水平意义重大。
鉴于上述现有技术存在的缺陷 , 本发明人第一次采用具有临床代表性 的心脏缺血复灌和脑缺血动物模型, 以及光学和电子显微镜的组织形态学 观察手段, 通过合理的实验设计和大量的客观的实验, 对式(I )化合物或 贝壳杉烷类化合物进行较以往文献更为科学的和更具针对性的歸选和验 证, 最终发现了式(I )化合物或贝壳杉烷类化合物对冠心病、 脑卒中等疾 病的药效用途, 并确证了药效最佳的优选化合物,为冠心病和脑卒中等疾病 治疗提供了更为有效的手段和方法。 发明内容
本发明的主要目的在于,针对目前在治疗与器官组织缺血有关的疾病 的治疗方法中缺乏易于被临床普遍接受的有效低毒药物这一技术难题, 在 已知生物毒性较低的天然贝壳杉类(kaurane)化合物中, 寻找比当前更理想 的用于治疗和预防冠心病和脑卒中等疾病的药物, 使其具有更高的药效而 具相对较低的毒性, 从而使其成为在治疗与器官组织缺血有关的疾病的临 床治疗中被使用的更为安全、 更加有效的药物和方法。
本发明的还一目的在于, 提供一种贝壳杉烷类化合物在治疗心功能不 全的药物中的应用。
本发明的再一目的在于, 提供一种贝壳杉烷类化合物在治疗与预防心 律失常的药物中的应用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的贝壳杉烷类化合物, 其可用于制备治疗与器官组织缺血有关 的疾病的药物。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的贝壳杉烷类化合物在治疗与器官组织缺血有关的疾病的药物中 的应用, 其中所述的与器官组织缺血有关的疾病为心脑组织缺血的疾病。
前述的贝壳杉烷类化合物在治疗与器官组织缺血有关的疾病的药物中 的应用, 其中所述的与器官组织缺血有关的疾病为肢端或视网膜、 视神经 缺血性损伤坏死、 腎脏缺血性损伤或坏死。
前述的贝壳杉烷类化合物在治疗与器官组织缺血有关的疾病的药物中 的应用, 其中所述的心脑组织缺血的疾病为冠心病、 脑卒中、 脑组织缺血 有关的损伤以及缺血后复灌损伤。
前述的贝壳杉烷类化合物在治疗与器官组织缺血有关的疾病的药物中 的应用, 其中所述的冠心病为心绞痛、 急性心月几梗塞。
前述的贝壳杉烷类化合物在治疗与器官组织缺血有关的疾病的药物中 的应用, 其中所述的脑卒中为脑梗塞、 脑溢血。
前述的贝壳杉烷类化合物在治疗与器官组织缺血有关的疾病的药物中 的应用,其中所述的脑器官组织缺血有关的损伤为脑外伤、 缺血性休克、 脑 血管硬化或狭窄造成的供血不全。
前述的贝壳杉烷类化合物在治疗与器官组织缺血有关的疾病的药物中 的应用, 其中所述的缺血复灌损伤为实施冠脉成形术,冠脉血栓溶解术, 冠 脉药物扩张、 体外循环心脏手术、 脑血管栓塞溶栓术。
本发明的目的及解决其技术问题也可以采用以下的技术方案实现。 依 据本发明提出的贝壳杉烷类化合物 , 其可以用于制备治疗心功能不全的药 物。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的贝壳杉烷类化合物在制备治疗治疗心功能不全的药物中的应 用, 其中所述的心功能不全为心脏收缩能力和心输出量降低引起的心功能 不全或充血性心力衰竭。
本发明的目的及解决其技术问题还采用以下的技术方案来实现。 依据 本发明提出的贝壳杉烷类化合物, 其可以用于制备治疗和预防心律失常的 药物。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的贝壳杉烷类化合物在治疗和预防心律失常的药物中的应用, 其 中所述的心律失常为心脏缺血引起的心律失常、 再灌注引起的心律失常。
前述的贝壳杉烷类化合物在治疗和预防心律失常的药物中的应用, 其 中心律失常病的心脏生理解剖发生部位为室性、 室上性或房性。
前述的贝壳杉烷类化合物在治疗和预防心律失常的药物中的应用, 其 中所述的心律失常为室性心动过速或心室颤动。
根据本发明的技术方案, 其中所述的贝壳杉烷类化合物具有式(I )所 述的结构:
Figure imgf000007_0001
其中, R1: 氢原子、 羟基或烷氧基;
R2: 为羧基、 羧酸盐、 酰基卤、 搭基、 羟甲基、 能水解成羧基的酯基、 酰胺、 酰基或醚;
R3、 R R5、 R6、 Rs: 氢原子、 羟基、 羟曱基、 能水解生成羟甲基的酯基、 烷氧基曱基;
R7: 曱基、 羟甲基、 能水解生成羟甲基的酯基、 烷氧基甲基;
R9: 亚曱基、 氧原子。
前述的贝壳杉烷类化合物, 其中所述的式(I )化合物中的 R2为羧基、 羧酸盐、 CH0、 CH20H、 甲基酯、 甲酰基、 酰基卤, R7为 CH3、 CH20H或甲基 醚, R9为亚曱基或氧原子。
前述的贝壳杉烷类化合物, 其中所述的式(I )化合物为式(II )所示 的化合物 A。
Figure imgf000008_0001
前述的贝壳杉烷类化合物, 其中所述的式 ( I )化合物为式 ( I I I )所 示的化合物 B。
Figure imgf000008_0002
前述的贝壳杉烷类化合物, 其中所述的羧酸盐为碱土金属或碱金属羧 酸盐或其羧酸铵盐。
前述的贝壳杉烷类化合物, 其中所述的药物的剂型为片剂、 胶嚢、 颗 粒、 注射剂、 栓剂、 膏剂以及经口服、 注入或体内植入型控緩释剂型、 通 过介入性导管给药的相应剂型。
本发明与现有技术相比具有明显的优点和有益效果。 由以上技术方案 可知, 为了达到前述发明目的, 本发明的主要技术内容如下: 本发明研究了式 ( I )所述的化合物,即贝壳杉类(kaurane)化合物对器 官组织特别是心脑组织缺血、 心律失常、 心功能不全等疾病的作用, 该化 合物代表了系列的天然和人工合成或半合成的化合物 , 其中有许多是已公 开的 (Kinghorn, AD, 2002, p86-137; Sinder BB. , et al. , 1998; Chang FR et. , al. , 1998; Hsu, FL et al., 2002) 。 式(I)化合物含一个或多 个不对称中心, 可以以不同的构型存在。
Figure imgf000009_0001
其中:
R1: 为氢原子、 羟基或烷氧基;
R2: 为羧基、 羧酸盐、 酰基卤、 醛基、 羟曱基、 能水解成½的酯基、 酰胺、 酰基或醚;
R3、 R\ R5、 R6、 R8: 为氢原子、 羟基、 羟曱基、 能水解生成羟甲基的酯 基或烷氧基曱基;
R7: 为甲基、 羟甲基、 能水解生成羟甲基的酯基或烷氧基曱基;
R9: 亚曱基或氧原子。
一组优选的化合物的结构如式( Γ )所示, 该结构是在贝壳杉烷骨架 结构的基础上, 在 13 -位碳原子上进行取代, 18和 17-位碳原子衍生为其 他的原子或基团。 该类化合物含有多个不对称中心, 以对映体或非对映的 形式存在, 8-位和 13-位的绝对构型为(8R, 13S) -或(8S, 13R) -。
( Γ )
Figure imgf000009_0002
其中:
R2: 为羧基、 羧酸盐、 CH0、 CH20H、 甲基酯、 甲酰基、 酰基卤; R7: 为 CH3、 CH20H或曱基醚;
R9: 为亚甲基或氧原子。
化合物 A是天然产物甜菊醇-糖苷的酸水解产物。 化合物 B是甜菊醇 -糖苷的配糖体, 与化合物 A是同分异构体。 甜菊醇 -糖苷经氧化水解或 肠道细菌作用可得到化合物 B。
Figure imgf000010_0001
式(II ) -化合物 A 式(III ) - 化合物 B
化合物 A, 分子式 C2。H3。03; 全名: (4α, 8β, 13β) -13 -甲基 -16-氧代- 17- 降曱基贝壳杉烷- 18 -酸 ( (4α, 8β, 13β) -13-methyl-16-oxo -17-norkauran -18-oic acid); 又名: 异甜叶醇, 对映- 16-氧代贝叶烷- 18-酸( e/2M6- ketobeyran-18-oic acid)0 该化合物为具有贝壳杉烷母体结构的萜类甾族 化合物, 其手性複原子的绝对构型为: ( 4R, 5S, 8R, 9R, 10S, 13S) - 在 13-位具有甲基取代基, 16、18位分别为羰基、羧基结构 (Rodrigues et al., 1988) 。
化合物 B,分子式 C2。H3。03,全名: 对映- 13-羟基贝壳杉- 16-烯 -18-酸 ( e2i-13-hydroxykaur-16-en-18-oic acid ) ;又名甜叶醇。 该化合物亦为 具有贝壳杉烷母体结构的萜类甾族化合物,其手性碳原子的绝对构型为: ( 4R, 5S, 8R, 9R, 10S, 13S) -, 在 13-位具有羟基取代基, 16位为连有 亚甲基的双键结构, 18位为羧基 ( Rodrigues et al. , 1993) 。
化合物 Α和化合物 B还可以是 18位羰基的盐(钠及碱金属或氯及卤族) 的形式存在。
化合物 A 和化合物 B 均具有贝壳杉烷的母体结构, 属于贝壳杉类 (kaurane)化合物。 其中, 化合物 A是本发明特别优选的化合物。
本发明公开了化合物 A和化合物 B相似的抗缺血和复灌所致的心律失 常、 对抗缺血期的心肌损伤, 保护增强缺血心肌的收缩功能作用, 由于化 合物 B也可用于冠心病, 心律失常, 心功能不全及脑卒中的临床治疗和预 防, 所以可以推知, 式( I )所代表的其它化合物均可能具有上述治疗作用。 而且,现已证实大量化合物 B在一定条件下有致突变作用, 因此与化合物 B 相比化合物 A是更为优选的临床治疗用药物。
本发明还发现关于式(I ) 中的化合物与抗缺血等药效有一定的构效关 系。 通过对化合物 A和化合物 B的比较研究, 本发明还发现在式 ( I )所述 的化合物中, 当其贝壳杉浣母体结构不变,而只是其它基团 (如 13位和 17 位)或立体构像(如 8位和 13位)发生改变时, 其抗心脑缺血、 心律失常 等药效作用仍然存在, 而只是药效强度不同. 本发明的研究显示, 式(I ) 的贝壳杉烷母体结构与本发明的药效用途有关, 可以推知, 式(I ) 中所包 含的其它化合物也具有与化合物 A同样的抗心肌缺血、 脑缺血、 心律失常、 强心等药效作用。
本发明提出了一种式(I )所述的化合物成盐的方法、 制剂制备以及用 于治疗使用的方法。 化合物 A和化合物 B可以与其它物质形成多种药学上 可接受的盐, 如碱金属 (如钠盐)和 族, 从而增加其溶解性。 化合物 A 和化合物 B也可与不同的药用辅料制成片、 胶嚢等普通和緩控释的固体剂 型和口服给药, 其适合于病人长期多次服用。 其也可以与不同辅料、 稀释 液结合制成水溶液以得到静脉给药, 也可制成栓剂、 贴剂、 膏剂等, 经直 肠,阴道,舌下等部位给药, 也可利用介入性导管进入静脉或动脉给药。
本发明提出的化合物 A 有效剂量为 0. 5 ~ 4. Omg/kg , 当静脉注射 40mg/kg,未见明显毒性反应。 已有研究报道, 化合物 A的毒性很低, 静脉 给药毒性 LD5。=650mg, 这说明更大剂量给药也可以是安全的。 临床使用剂量 在 0. 1 ~ 2. Omg/kg之间 , 都可能是有效和安全的。 式( I )化合物的其它化 合物如化合物 B也显示较小有效剂量和较大安全剂量。 本发明中化合物 B 有效剂量为 2 - 8mg/kg, 报道的小鼠口服急毒 LD5。为 1500mg/kg (丽 0, 1999 )。 而且, 本发明提出的化合物 B具有与化合物 A相类似药效作用,如 改善缺血心脏的收缩功能,保护和减低缺血期和复灌期心肌细胞的损坏,对 抗心律失常等。 一般来说化合物 B达到同样药效的剂量要高于化合物 A。
本发明确证了化合物 A和化合物 B治疗作用的最小的有效剂量。 由于 化合物 A半数致死剂量通常较大, 安全性大, 因而引导一般研究者使用较 大的剂量进行药效学研究。但忽略了对小剂量作用的研究。本发明化合物 A 和化合物 B的有效剂量仅为 l ~ 2mg/kg (大鼠), 如根据体表面积折算, 猪 的对应剂量约为 0. 2 ~ 0. 4 mg/kg; 人的对应剂量约为 0. 1 ~ 0. 2 mg/kg。 这 一剂量远小于已公开的有关研究文献中, 化合物 A和化合物 B在整体动物 药效研究的最小使用剂量:化合物 A为 25mg/kg, (大鼠, l iu,C. J. et,al., 2001 , ); 化合物 B为 250mg/kg (仓鼠, Was mtarawat C, 1998 )。 在人使用 甜菊糖苷降血压的口服治疗剂量为 250和 50 Omg, 一日三次(( Chen P at el. , 2000; Hs ieh MH et al. , 2003 ),按其配糖体即化合物 B的分子量比值估 算, 相当于每次口服化合物 B 80 - 160 mg, 约合 1. 2- 2. ½g/kg。 已公开 的文献未能证实化合物 A和 B在内的式( I )化合物对缺血心脑等本发明所 发现的治疗预防作用, 可能有两个主要原因: 一是使用剂量过大, 二是没 有使用有效的缺血动物模型进行研究。 这两点正是本发明与已公开文献不 同之处。
在已公开的文献曾证实, 在大鼠腹膜腔内注射大剂量化合物 A 25mg/kg, 可舒张血管平滑肌, 从而有显著降血压作用 (l iu, C. L et, al., 2001 λ 本发明大鼠静脉注射化合物 Α剂量仅为 lmg/kg, 而且没有观察到任 何降血压作用。 这表明本发明中有关化合物 A对心或脑的保护作用的机制 与上述已公开文献的作用机制明显不同。 上述文献的给药途径为腹膜腔内 与本发明经静脉有差异。 但关化合物 A毒理公开文献显示, 在大鼠经静脉 注入或经腹膜腔内注入化合物 A 其半数致死量 LD5。分别为: 503mg/kg 和 67 lmg/kg, 两者相接近( Zhonggou et al., 1994 )。 而同一文献公开的口 服给药半数致死量 LD5。为: 3160mg/kg, 远高于前两者。 这表明对于化合物 A来说, 静脉给药与腹膜腔注射给药两种途径下, 化合物 A被机体吸收和利 用程度没有显著差异。 因此, 本发明上述与文献中的有效剂量差异与给药 途径无关。
本发明结果显示化合物 A或化合物 B对心脑缺血和复灌损伤的保护作 用可能涉及多种机制。 已公开有关文献指出,化合物 A的降血压作用可能与 肌浆膜钾通道有关 (Wang, KL et al. , 2004 ), 而化合物 B刺激胰岛素分泌 作用于钾通道无关 ( Jeppesen PB., et al , 2000 )。 本研究形态学观察显 示化合物 A或 B对缺血心肌线粒体有保护作用, 本研究使用特异性线粒体 钾 ATP通道阻断剂 5 - OH-decanoate, 不能完全阻断化合物 A的药效作用。
本发明采用的动物模型并具有明显的临床代表意义。 实验所采用的心 肌缺血复灌模型中, 闭塞冠脉前降支血管成功地造成在缺血期和复灌期均 出现心功能降低和心律失常,同时心肌有明显的组织损伤和坏死等改变,这 些病理现象与临床中冠心病人出现心肌梗塞、 心肌缺血时和冠脉血管复灌 时(如溶栓 /导管动脉成形术等)情况下出现的病理症状一致。 这表明, 本 实验采用的缺血复灌动物模型能有效模拟临床病理现象。 因此, 本发明可 以有效确定贝壳杉烷类化合物的抗冠心病等相关临床用途。
本发明的上述动物模型也同时是一种心律失常的模型, 成功地模拟了 临床心律失常的发生。 因为, 实际上心肌缺血及复灌已涉及了多种病理机 制, 作为模型, 它也可代表多种病因机制不同情况下的心律失常。 使本发 明可以有效确定贝壳杉烷类化合物治疗和预防临床各类心律失常的用途。
本发明的上述动物模型也同时是一种心脏收缩功能降低的模型。 通过 部分心肌的缺血损伤,使心脏泵血功能减低、 造成心脏功能下降或不全。 它 可以代表临床以心输出量减少的心脏功能下降和不全的一类病理发展过 程。 使本发明可以有效确定贝壳杉烷类化合物的正性肌力作用 , 适用于以 心输出量减少为特征的心脏功能不全或充血性心力衰竭
经由上述可知, 本发明是 关于一种贝壳杉烷类化合物在制药中的应 用, 该化合物可以作为药物的活性组分治疗和预防冠心病、 脑卒中、 心功 能不全、 心律失常等疾病。 本发明中的两个优选化合物源于天然产物, 即 化合物 A和化合物 B,它是甜菊醇-糖苷的酸水解产物和甜菊醇 -糖苷的配糖 体。 而且, 本发明化合物能够明显地保护缺血及缺血复灌心脏, 减小心肌 细胞的损坏, 增强心脏收缩功能, 能明显地对抗心律失常, 减少和预防室 性心动过速(室速)、 心室颤动(室颤) 的发生。 本发明还利用大脑缺血实 验动物模型证明了其能明显延长缺血大脑功能的持续时间, 对脑卒中、 脑 缺血损伤有明显的保护作用。
借由上述技术方案, 本发明贝壳杉烷类化合物在制药中的应用至少具 有下列优点:
1、 本发明提出的包含化合物 A和化合物 B在内的贝壳杉烷类化合物对 心肌缺血、 心律失常、 脑缺血等疾病具有保护和治疗作用, 而且可用于冠 心病和脑卒中、 心律失常、 心功能不全等疾病的预防。 贝壳杉烷类化合物 中的化合物 A和化合物 B来源于自然界已存在的、 长期被人类食用的天然 产物, 具有较高的安全性。 作为治疗或预防性的药物, 化合物 A和化合物 B 具有较大的安全剂量和较小的药效学剂量, 有较大的治疗指数, ,有巨大的 临床应用前景。
2、 本发明首次观察了式(I )化合物对组织细胞超微结构变化的影响。 通过采用组织学研究与功能研究相结合的方法手段, 本发明提出的贝壳杉 烷类化合物有抗冠心病 (缺血性心脏病)作用。 冠心病造成心肌缺血的危 害的主要临床表现为: 受累心肌变性坏死, 心脏收缩功能受损和严重心律 失常, 这在本实验模型中得到了很好的映证。 本发明证明使用化合物 A和 化合物 B可以有效地保护缺血心肌, 减少心肌缺血梗死范围和损伤程度, 减小心肌线粒体损伤, 保护增强缺血心脏收缩功能, 以及有效地减少和防 止心肌缺血时室速室颤等严重心律失常的发生率和严重程度。 化合物 A和 化合物 B可用于临床冠心病等缺血性心脏病的治疗和预防。
3、 本发明提出的贝壳杉烷类化合物有明显的正性肌力作用。 在冠脉闭 塞缺血心脏的收缩功能降低时, 使用贝壳杉烷类化合物中的化合物 A和化 合物 B能对抗收缩功能降低, 使之维持在接近正常水平。 临床上心脏收缩 功能的下降, 最终导致心输出量下降, 心功能不全。 因此, 使用化合物 A 和化合物 B可以通过增强病变心脏的收缩功能, 预防和治疗以心输出量减 少为特征的心脏功能不全或充血性心力衰竭。 本发明式(I )化合物的突出 优点是, 在增加心脏收缩功能同时, 不增加或减小缺血心肌的损伤和梗死 面积, 此外还有緩解严重心律失常的作用。 洋地黄苷等是目前临床通常使 用的抗心衰、 增加心脏收缩功能(正性肌力作用) 的药物。 但洋地黄苷在 增加心脏收缩功能同时, 会增加缺血心肌梗死面积; 使用过量时会导致严 重心律失常的毒付作用。 这一缺限大大限制了该药临床使用。 与洋地黄苷 相比, 本发明的化合物有更好的治疗指数。 鉴于使用洋地黄是迄今心功能 不全的主要治疗方法之一, 因此, 本发明的这一发现具有重要的临床意义。
4、 本发明中的贝壳杉烷类化合物对复灌损伤的有明显保护作用。 闭塞 冠脉的突然再通,血流复灌导致的心脏损伤, 是冠心病的介入性治疗如冠脉 成型术, 冠脉支架、 搭桥、 冠脉栓塞的溶栓治疗、 冠脉药物扩张以及体外 循环手术等所面临的主要问题之一。 缺血后再复灌时由于过量的氧化物产 生, 钙离子超载等多方面因素, 最终造成心肌损伤、 心功能下降或衰竭、 室速、 室颤等致死性心律失常。 这在本发明的实验研究中也得到很好的证 实。 本发明中通过冠脉闭塞造成的心脏缺血之后, 使冠脉再通而造成心脏 的复灌。 本发明使用式(I )化合物的化合物 A和化合物 B可以有效地保护 复灌时心脏的功能, 减轻心肌的损伤程度, 明显地減小室速室颤的发生率 和严重程度。 因此, 本发明的贝壳杉烷类化合物及化合物 A和化合物 B可 以用于治疗和预防冠脉动脉介入性治疗, 冠脉成形术, 冠脉支架、 冠脉搭 桥、 冠脉溶栓术、 冠脉药物扩张、 外科进行体外循环, 以及自发性冠动 脉栓塞及痉挛再通时引起的心肌复灌时所造成的心肌损伤, 心脏功能降低 或不全和心律失常。
5、 本发明中的贝壳杉烷类化合物有明显的抗心律失常作用。 本发明中 实验动物在冠脉闭塞造成的缺血期和再通后的复灌期均所出现的室性心动 过速和心室颤动, 使用化合物 A和化合物 B后, 可明显减少室性心动过速 和心室颤动的发生率和持续时间。 因此, 本发明的贝壳杉烷类化合物及化 合物 A和化合物 B可以用于治疗和预防缺血性心脏病所致心律失常, 心脏 复灌所致心律失常。 同时, 本发明的贝壳杉烷类化合物及化合物 A和化合 物 B也可用于其它心律失常的治疗。 因为, 实际上心肌缺血及复灌的损伤 已涉及了多种病理机制。
6、 本发明中的贝壳杉烷类化合物有抗脑卒中和脑损伤作用。 小鼠失去 脑血供后, 其生命机能 (如呼吸机能 )迅速丧失。 使用贝壳杉烷类化合物 中的化合物 A和化合物 B, 失去脑血供小 鼠的呼吸机能丧失的时间显著延 长, 这表明贝壳杉烷类化合物对脑和神经系 统缺血损伤有明显的保护作 用。 因此, 贝壳杉烷类化合物及化合物 A和化合物 B它们可用于治疗或预 防脑卒中 (脑栓塞,脑溢血)、 休克、 外伤等所造成脑组织缺血和脑功能损 伤。
7、 由于上述本发明贝壳杉烷类化合物对心肌和脑神经组织的缺血保护
Figure imgf000015_0001
缺血、 肾脏缺血(如急性肾功能衰竭)等的治疗或预防。
8、 本发明中的贝壳杉烷类化合物的量效关系是非线性的。 剂量依赖性 仅在一定的剂量范围内存在, 过大剂量时原有药效作用可能不再增加或消 失。 本发明以猪作为实验动物, 采用冠脉前降支内心导管气嚢充盈和去充 盈, 造成冠脉闭塞缺血和复灌模型。 在猪的实验中, 发现经心导管向冠动 脉内预先注入一小剂量贝壳杉烷类化合物 (如化合物 A )可有效的预防冠脉 闭塞引起的室颤, 贝壳杉烷类化合物(如化合物 A ) 自身对冠脉未闭塞心脏 没有明显作用。 但当贝壳杉烷类化合物 (如化合物 A ) 的注入剂量增加 20 倍时, 在冠脉未闭塞心脏的情况下, 贝壳杉烷类化合物(如化合物 A )则引 起的心脏功能的显著下降, 心收缩力明显减弱。 这提示贝壳杉烷类化合物 的作用可能涉及不同的细胞靶点或受体, 并显示不同的亲和力或药效强度 和作用机制; 因此, 大剂量时可能激活了其它机制, 产生相反的效果, 并 因而减弱或消除了小剂量时原有的药效作用。
9、 本发明中的贝壳杉烷类化合物可作为治疗用药,也可作为预防性用 药。 由于实-险中事先使用化合物 A和化合物 B对缺血期和缺血复灌期心脏 及脑缺血均有明显的保护作用,还由于贝壳杉烷类化合物的低毒特点,所以 对于冠心病和脑血管病病人,化合物 A和化合物 B即可用于治疗性药物, 也 可作为一种预防性用药使用。 对于有心绞痛、 心肌梗塞可能、 有脑缺血或 栓塞可能、 有出现严重心律失常可能, 以及各种有发生血液复灌损伤可能 的病人可以预防性的给予化合物 A, 且多次长期使用。
综上所述 , 本发明是关于使用具有贝壳杉烷母体结构的化合物(如式 (I)化合物)作为药物的活性组分用于治疗和预防冠心病、 脑卒中等与组织 器官缺血有关的疾病以及心律失常、 心功能不全等疾病的用途和方法。 化 合物 B和化合物 A是式 ( I )化合物的优选和特别优选化合物。 利用
Figure imgf000015_0002
缺血动物模型对式(I)化 合物的药效作用进行了筛选和确定。 本发明发现式(I)化合物具有以下显著 的药效作用:
在缺血心脏有正性肌力作用, 能显著增强缺血左心室收缩压和压力变 化最大速率 ( + dp/dt 麵 Hg/sec ) ,增强缺血心脏的收缩功能。 组织学检查 显示式(I)化合物能显著地减小缺血心肌的梗死面积和减轻缺血复灌期心 肌细胞和线粒体损伤的程度, 对缺血心肌细胞有明显的保护作用。 在造成 缺血后使冠脉再通形成心脏复灌, 式(I)化合物能明显的保护复灌期心肌损 伤的增强心脏收缩功能。 在缺血复灌对照组动物, 缺血期和复灌期均出现 室速和室颤等严重心律失常, 有约三分之一动物因室颤持续而死亡。 使用 式(I)化合物后能显著减少室速和室颤发生率、 开始出现的时间和持续时 间, 或防止室颤发生, 没有动物因持续室颤而死亡。 式(I )化合物的另一 突出优点是, 在增加心脏收缩功能同时, 不增加或减小缺血心肌的损伤和 梗死面积, 此外还有緩解严重心律失常的作用。 与现有药物如洋地黄苷相 比, 式(I )化合物具有更好治疗指数。 在脑缺血动物, 使用式(I)化合物 可明显延长大脑功能维持时间, 保护缺血大脑。 根据本发明的发现, 式(I) 化合物有以下医药用途: 用于治疗和预防缺血性心脏病 (冠心病)如心绞 痛、 急性心几梗塞; 作为正性肌力药物治疗和预防心功能的下降和心功能 不全(充血性心力衰竭); 用于治疗和预防心律失常如室速室颤等; 用于治 疗和预防心脑血液复灌引起的损伤; 用于治疗和预防脑卒中包括脑梗塞和 脑溢外以及其它脑血管病、 休克、 外伤引起的脑组织损伤和功能障碍, 用 于肢端、 视网膜及神经和肾脏的缺血损伤。
本发明使用的化合物 (I)药效剂量依赖性仅在一定的剂量范围内存 在。 一般来说化合物 B的达到同样药效的剂量要高于化合物 A.
式( I )化合物包括化合物 A和化合物 B可以与其它物质形成多种药学 上可接受的盐, 如碱金属 (如钠盐)和! ¾族, 也可与不同的药用辅料组成 药物組合物。 式( I )化合物药物組合物可以口服或静脉给药、 也可制成其 它剂型经其它部位给药, 也可利用介入性导管进入静脉或动脉给药。
而且, 本发明特殊的贝壳杉烷类化合物在制药中的应用, 是针对目前 在冠心病、 脑卒中、 心功能不全、 心律失常等疾病的治疗方法中缺乏易于 被临床普遍接受的有效低毒的药物的技术难题, 在已知生物毒性较低的天 然贝壳杉类(kaurane)化合物中, 发现了比当前更为理想的治疗和预防冠心 病和脑卒中、 心功能不全、 心律失常等疾病的药物。 贝壳杉类(kaurane)化 合物具有更高的药效而 具相对较低的毒性, 从而可成为在冠心病、 脑卒 中、 心功能不全、 心律失常等疾病的临床治疗中被使用的更为安全、 更为 有效的药物和方法。 在针对贝壳杉类(kaurane)化合物的研究中, 已公开文 献从未使用本发明中的实验设计和动物模型; 也从未得到与本发明相似的 实验结果和发现。 本发明首次证实了贝壳杉类 (kaurane)化合物对组织细胞 超微结构的影响; 本发明所确证的贝壳杉类(kaurane)化合物, 对于整体动 物实验疾病的治疗药效, 与已公开文献相比是最强的。 本发明的化合物与 目前治疗临床心功能不全和心律失常的常用药物洋地黄苷相比有更好的治 疗指数。 这些表明, 本发明在研究贝壳杉类(kaurane)化合物与本发明相 关疾病的实险方法和实验结果以及药效用途上确属创新, 有明显的新颖性 和技术进步, 有广泛的医药应用和产业化前景。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 并可依照说明书的内容予以实施, 以下以本发明的较佳实施例 并配合附图详细说明如后。
本发明的具体方法由以下实施例及其附图详细给出。 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效, 对依据本发明提出的贝壳杉烷类化合物在制药中的应用其具体实施方 式、 方法步骤、 特征及其功效, 详细说明如后。
实施例记录了与本发明有关的实验方法和结果, 这些结果为本发明提 供了实验依据。 对实验所用的动物模型本身的可靠性进行了验证, 所有实 验都设置了相应的对照和统计学检验。 然而, 本发明所提出的内容并不仅 局限于这些有限实施例, 只是通过例举的实施例来说明本发明研究方法的 和其科学性。 实施例例举了贝壳杉烷类化合物中的部分化合物药效用途的 求证和筛选过程和方式, 贝壳杉烷类化合物中的其它化合物的相似药效用 途也可通过同样的过程和方式得到验证。
实验材料 '
实验动物:健康成年 SD大鼠 及小鼠, 雌雄兼用。
药品制备及使用: 本发明更优选化合物 A和化合物 B的制备: 化合物 A ( ent-17 - norkaurane-16-oxo- 18-oic acid ), 分子式为 C20H40O3 , 分子量为 318. 5。 取市售甜菊醇 -糖苷 (s tevios ide) , 经酸性水 解、 脱色并结晶精制而得。 经红外扫描及 N M R分析,与文献值一致, 高效 液相法确定纯度应大于 99%。 合物 B (e 2 - 13- hydroxykaur- 16-en-18- oic acid ) , 取市售甜菊醇 -糖苷 (s tevios ide) , 经氧化、 水解、 酸化、 提取、 脱色并结晶精制而得。 经红外扫描及 N M R分析,与文献 (Mosett ig E. et al. , 1963)值一致, HPLC法确定純度应大于 99%。
用药途径: 采用静脉给药,腹腔或经口给药。
用药剂量: 化合物 A: 0. 5 mg /kg ~ 4 mg/kg; 化合物 B: 2 ~ 8 mg/kg. 实验方法
1、 心脏缺血复灌实验动物模型制备及血流动力学测定
血流动力学参数和心电图的测定: 大鼠在麻醉下, 气管切开,气管内 插管, 接呼吸机, 人工呼吸。 分离一侧股动脉, 经动脉插管, 接压力换能 器测量血压, 插管内充入肝素抗凝。 分离一侧颈总动脉. 经动脉将 mi l ler 压力换能器导管插入左心室, 测量室内压。 两压力换能器分别接入 Power Lab 生物信号采集处理系统, 以监测大鼠血压和左心室血流动力学变化。 将电极固定在大鼠肢干皮下记录监测心电图变化。 观察指标包括:平均动脉 压 ( mean arterial blood pressure, MBP )、左心室收缩压 ( left ventricular systol ic pres sure, LVSP )、 左心室压力最大变化速率 ( ± dp/dt max )、 左 心室舒张压 ( left ventr icular dias tol ic pressure, LVDP )、 左心室舒张 末压 ( left ventr icular end-dias tol ic pres sure, LVEDP )、 心率 ( heart rate, HR ), 室, 1"生心动过速和心室颤动。
2、 模拟冠心病的心肌缺血和缺血后复灌的动物模型的建立
沿胸骨左缘剪开 3-5肋骨,剪开心包膜, 暴露心脏。 用不锈钢圆针, 在 左冠状动脉前降支下方穿一丝线,打一松结。 术后观察 10分钟, 待各指标 稳定后,记录心电图、 血压等血流动力学各项指标,作为缺血前对照值。 将 结扎线拉紧,致使左冠状动脉前降支闭塞。 结扎 后血管支配的心脏局部发 绀,心电图显示 T波高耸或 ST段抬高, 以此作为结扎成功, 冠脉已闭塞的 标准。 维持闭塞 20min或 30 min, 定为心肌缺血或心肌梗塞期。 之后, 松 开冠脉结扎线,使血液再灌注, 再灌注或复灌成功的标志为: 局部发绀的心 脏逐渐变为红润、 心电图升高的 ST段逐渐降低或恢复正常。 使血液再灌注 维持 50 min或 80 rain作为复灌期。 分别在缺血前,缺血期及复灌期记录 一次上述各项指标。
这一动物模型是被长期使用的经典的方法 (l iu, Y and J Downey, 1992) 。
缺血期: 结扎造成的冠状动脉前降支的闭塞,从而导致心脏部分心肌缺 血,它可以很好的模拟临床的冠心病所造成的急性心肌梗塞或心肌缺血时 所出现的一系列症状和病理现象。
复灌期: 解除结扎,使冠脉再通,心脏再复灌,这一过程可模拟临床上出 现的各类心脏缺血复灌现象,如目前较普遍实施的经心导管使冠脉闭塞再 通的冠状动脉成型术,溶栓剂或自发性冠脉血栓溶解,冠脉痉挛緩解以及体 外循环术和急性旁路手术等。 上述临床情况均可能产生心脏的快速再灌,造 成心肌损伤,心律失常。
3、 心脏缺血复灌动物分组和实验程序设计
动物分组: 大鼠随机分成不同对照或实验组, 每组 6 ~ 12 只, 雌雄各 半。
冠动脉结扎缺血 /复灌组(对照组);
冠动脉结扎缺血 /复灌組 +化合物 A或化合物 B (用药组);
不结扎冠动脉仅实施手术组(假手术组)。
实 呈序
对照组: 1—10 min- I 20 min --- | 50 min 1
盐水 i. v 冠脉前降支结扎 解除结扎,冠脉再通复灌 用药組: 1—10 min- | 20min 1 50 min 1 药品 i. v 冠脉前降支结扎 解除结扎,冠脉再通复灌 在部分实验中,为了加强缺血 /复灌效果,降结扎和解除结扎时间分别 设置为 30 和 80min.
4、 数据的表示和统计学处理
实验数据用平均值土 SE表示, 计量资料用 t检验或配对 t 检验。 计 数资料用四格表概率法检验。 实施例 1
本实施例说明化合物 A对缺血心脏功能的增强保护作用和血流动力学 改变。
如表 1 所示, 对照组动物在冠状动脉结扎后缺血期与未结扎缺血前相 比, 反应心脏功能的各项血流动力血指标中,心率和最大舒张压力变化速率 (-dp/dt max)均无明显改变。 平均动脉压有降低趋势, 左室舒张末压有升 高趋势但两者的改变均无统计学意义 (P> 0. 05)。 然而, 在缺血期,反应心 脏收缩功能的主要指标,左室收缩压和收缩期压力变化最大速率,与缺血前 相比均有非常显著的减少(P< 0. 01) ; 这表明在缺血期, 对照组动物的心脏 收缩功能显箸下降。 表 1 冠动脉闭塞导致心肌缺血和缺血后复灌的血液动力学改变
(对照组, n=8 )
Figure imgf000019_0001
与缺血前相比有显著差异.
+dp/dt max.: 左心室收缩期压力变化最大速率 与对照组不同, 在使用化合物 A (lmg/kg)的用药组动物, 如表 2所示。 在冠脉结扎后缺血期与未结扎缺血前相比, 包括左室收缩压和收缩期压力 变化最大速率在内的各项血流动力血指标均无明显减小。比较两组结果,表 明化合物 A对缺血期心脏的收缩功能下降有明显增强保护作用。 冠动脉闭塞导致心肌缺血和缺血后复灌的血液动力学改变
(化合物 A用药组, n=8 )
Figure imgf000020_0001
+dp/dt max 左心室收缩期压力变化最大速率 实施例 2
本实施例说明化合物 A抗心律失常作用。
室性心动过速和心室颤动是临床上心律失常致死性的主要原因。 本发 明中,在未用药的 11 个动物中,冠脉结扎后的缺血期全部出现室性心动过 速, 10个出现心室颤动,其中 3个动物因持续室颤导致死亡。然而,在使用化 合物 A的共 7个动物中, 冠脉结扎后的缺血期全部存活。 在对照和用药各 组,对缺血期出现室速和室颤的发生率,发生时间(潜伏期),持续时间进行 比较,如表 3所示。 该结果显示:使用化合物 A ( lmg/kg)的用药组动物在缺 血期,其室速和室颤的发生率和持续时间与对照相比有非常显著地减少 (P<0. 01)。缺血后出现室速和室颤的时间也显著延迟(P<0. 01)。这表明,化 合物 A可以有 效地对抗心 肌缺血导致的室速、 室颤 等致死性 的心律失 常、 预防或减少室速、 室颤的发生, 并能够显著的緩解其严重程度,降低其 危害性,从而保护心脏功能的正常。 表 3 化合物 A和化合物 B的抗心律失常作用
(冠脉结扎心肌缺血 20分钟)
Figure imgf000020_0002
* 与对照组相比,各值均有显著性差异 (P<0. 01) 实施例 3
本发明说明化合物 A对冠动脉闭塞再复灌心脏损伤的保护作用和对血 流动力学改变。
在对照组中, 在冠动脉闭塞导致心脏缺血后再复灌 50min,结果与缺血 期相比,反应心脏功能的各项血流动力血的指标没有明显改善, 与缺血前相 比,心率、 左室舒张末压和最大舒张速率均无明显改变,平均动脉压有降低 趋势,但改变无统计学意义 (P> 0. 05)。 和缺血期相似, 反应心脏收缩功能 的主要指标, 即左室收缩压和收缩期压力变化最大速率与缺血前期相比有 显著和非常显著的减少(P<0. 05 和 P< 0. 01)。 这表明在复灌期, 对照组动 物的心脏收缩功能维持在下降状态 (见表 1)。
和对照组不同, 使用化合物 A (lmg/kg)的用药组动物(见表 2) , 复灌 期与缺血期相比,平均动脉压、 左室收缩压和收缩期压力变化最大速率有增 加趋势, 但改变无统计学意义 (P> 0. 05)。 与缺血前相比,包括左室收缩压 和收缩期压力变化最大速率在内的各项血流动力血指标均无明显减小。
比较两组结果, 表明化合物 A对复灌期心脏的收缩功能可能损伤有明 显保护作用,并促进心脏功能恢复正常。 , 实施例 4
本实施例说明化合物 A减小冠动脉闭塞缺血心肌梗死范围的保护作用。 心肌梗塞范围测定。 在对照和用药组中, 缺血再灌注结束后,按前述方 法再行结扎,使左冠状动脉前降支闭塞,经静脉注入 1% 伊文思蓝 0. 5ml, 蓝染后,取心室组织 冷冻切片,切片经 Tr i s-盐酸緩冲液处理后, 镜 下观 察。 非缺血区心肌呈蓝色, 缺血但未坏死心肌呈红色, 梗死或坏死心肌呈 白色。 按显色不同将心肌切除分别称重,按下述方法计算心肌梗塞范围。 心 肌梗塞范围 =梗死心肌重量 / (梗死心肌重量 +缺血但未坏死心肌重量) X 100 %。
测定结果。 在对照组,冠动脉闭塞造成心脏缺血和复灌后,测定心肌梗 塞范围为 58. 6 ± 4. 7 %; 使用化合物 A的用药组 (lmg/kg) 缺血复灌后心 肌梗塞范围明显减小为 45. 8 ± 2. 9% (P < 0. 01)。 表明化合物 A对冠动脉闭 塞导致心肌缺血梗死有明显的保护作用。 实施例 5
本实施例说明化合物 A对冠动脉闭塞后缺血心肌的组织形态学的保护 作用。
大鼠心肌光学和电镜组织学观察。 对照和用药组实验结束后, 每组各 取缺血区心肌組织, 福尔马林固定, 经脱水、 石蜡包埋、 制片, 染色后在 光学显微镜下观察。 用取结扎线下左心室前壁心肌, 经脱水、 包埋、 超薄 切片, 染色后在透射电鏡下观察。
光学显 4敬镜检查结果。 缺血对照组和 用药组(化合物 A lmg/kg )动 物, 结扎线下缺血区取心肌组织 , 在假 手术组动物相 应部位正常心肌组 织。 冰冻切片,在 100倍光学镜下检查,结果显示: 正常心肌横纹清晰, 心 肌间隙紧密, 无水肿及炎细胞浸润。 缺血对照组与正常心肌相比, 心肌细 胞内呈空泡样变性, 月几横纹消失, 心肌间隙水肿增宽,炎细胞浸润明显, 细 胞损坏明显。 用药组 (化合物 A) 与正常心肌相比, 心肌细胞未见明显空泡 样变性, 横紋模糊可见, 心肌间隙无明显水肿增宽, 炎细胞浸润偶见, 细 胞损坏不明显。
电子透射显啟镜检查结果。 按上述方法分别取 手术组正常心肌、 对 照组和用药组(化合物 A )心肌组织, 制备超薄^片, 染色后在 12000倍透 射镜下, 主要对心肌细胞内线粒体进行检查。 结果显示, 正常肌细胞可见 胞膜完整, 线粒体膜完整, 嵴致密, 线粒体基质颗粒均匀。 缺 对照组细 胞膜有破裂, 线粒体肿胀, 膜破裂, 嵴数目减少, 排列紊乱, 或断裂, 线 粒体内基盾减少, 大片空化。 与正常心肌相比线粒体损害明显。 用药组(化 合物 A), 心肌细胞膜完整, 线粒体膜完整, 嵴致密, 基质颗粒均匀, 其细 胞和线粒体与正常心肌相比, 损害不明显。
上述组织学检查结果显示, 使用化合物 A可明显减轻缺血所致的心肌 细胞以及线粒体的损伤, 对缺血期心肌组织有明显的保护作用。 实施例六至八说明化合物 B的药学作用。
实施例 6
本实施例说明化合物 B对冠动脉闭塞后缺血心肌的组织形态学的保护 作用。
化合物 B化合物 A是同分异构体,在有关化合物 A的上述实验中我们也 分别考察了化合物 B的作用。 本实施例进一步说明化合物 B对冠动脉闭塞 后缺血心肌的组织形态学的保护作用。
在与前述实施例 5 中的化合物 A实验相似的实验中, 用药组使用化合 物 B: 2mg/kg。 通过光光学显微镜检查和电子透射显微镜检查, 分别比较正 常组, 缺血对照组和化合物 B用药组心肌组织结构, 其结果显示, 化合物 B 用药组心肌细胞膜完整, 线粒体膜完整, 嵴致密, 基质颗粒均勾, 其细胞 和线粒体与正常心肌相比, 损害不明显。 化合物 B用药组心肌与化合物 A 用药组(lmg/kg ) 心肌组织形态变化相似, 说明使用化合物 B也可明显减 轻缺血所致的心肌细胞以及线粒体的损伤, 对缺血期心肌组织有明显的保 护作用。 实施例 7
本实施例说明化合物 B对抗缺血期心律失常的作用。
采用前述实施例 2的相同方法, 研究中化合物 B对抗缺血期心律失常 的作用, 实施例 2中表 3列举了使用化合物 B对抗缺血期心律失常的实验 结果, 结果显示: 在未用药的对照组 11 个动物中,缺血期全部出现室性心 动过速,其中 3个动物因持续室颤导致死亡。然而,在使用化合物 B ( 2mg/kg) 的共 5个动物中, 缺血期无 1例死亡。 使用化合物 B ( 2mg/kg)的用药组动 物, 在缺血期、 室速和室颤的发生率和持续时间与对照相比有非常显著地 减少(P<0. 01) , 缺血后出现室速和室颤的时间也显著延迟(P<0. 01)。 另一 方面,比较化合物 B (2mg/kg)和化合物 A (lmg/kg)的药效作用可以发现, 化 合物 A lmg/kg 的抗心律失常作用相当或略大于化合物 B 2mg/kg 的同样作 用(见表 3) ,显示在本研究中化合物 A较化合物 B有更强的药效作用。 实施例 8
本实施例说明化合物 B对缺血心心脏功能的增强作用。
采用前述实施例 1的实验方法, 研究化合物 B对缺血心心脏功能的增 强作用。 在缺血对照组, 左室收缩压和收缩期压力变化最大速率 (+dp/dt max )。 在冠脉未结扎缺血前分别为 118 ± 6 mmHg和 8704 ± 326 mmHg/sec , 结扎后缺血期分别为 98 ± 2 醒 Hg 和 6472 ± 219 mmHg/ sec , 复灌期分别为 107 ± 4 mmHg和 6437 ± 395 mmHg/ sec。 结扎后缺血期和复灌期与未结扎缺 血前相比, 左室收缩压和收缩期压力变化最大速率 (+dp/dt max )均有明 显减小(P<0. 01 ),表明对照组动物心脏收缩功能明显下降, 心脏功能不全。
另一方面, 使用化合物 B (2mg/kg)的用药组动物, 左室收缩压和收缩 期压力变化最大速率 (+dp/dt max ), 在冠脉未结扎缺血前分别为: 112 土 5 醒 Hg和 8609 ± 543 隱¾/ 36。; 结扎后缺血期分别为: 104 ± 4 腿 Hg和 7592 ± 433 mmHg/sec; 复灌期分别为: 110 ± 4 讓 Hg和 8362 ± 498 讓 Hg/sec. 结扎后缺血期和复灌期与未结扎缺血前相比, 左室收缩压和收缩期压力变 化最大速率(+dp/dt max ) 均没有明显减小(P>0. 05) , 表明用药组动物心 脏收缩功能没有下降。 比较两组结果, 表明化合物 Β对缺血期心脏的收缩 功能下降有明显增强保护作用。
化合物 Β具有与化合物 Α相类似药效作用,如改善缺血心脏的收缩功 能、 保护和减低缺血期和缺血复灌期心肌细胞的损坏、 对抗或减低缺血期 和缺血复灌期出现的心律失常等。 一般来说化合物 B的达到同样药效的剂 量要高于化合物入。 实施例 9 本实施例说明甜菊醇 -糖苷没有本发明的类似疗效。
在部分动物, 按上述实验方法, 观察各项血流动力学指标的改变和心 律失常的程度, 以了解甜菊醇 -糖苷的类似药效学作用。 在用药组 (甜菊醇
-糖苷),用量为 10-50 mg/kg 时, 无论在缺血期或是复灌期, 均未见明显 的保护心肌收缩功能或抗心律失常作用。 结果表明, 甜菊醇 -糖苷对缺血 心肌没有类似化合物 A和化合物 B的药效作用。 实施例 10
本实施例说明化合物 A和化合物 B抗脑卒中和脑缺血药效作用。
脑缺血模型及实^方法。
小鼠脑缺血断头模型。 给药后, 切断小鼠头部, 测定断头后张口喘息 次数,作为评判脑组织功能的指标, 从而推断脑缺血的损伤程度。 动物分三 组, 小鼠随机分组, 每组 8只, 雌雄各半。
对照组: 生理盐水。
用药組: 化合物 A (4mg/kg) 。
阳性对照组: 依达拉丰 (Edaravone ) , 8mg/kg , 其为一种抗氧化物, 具有神经损伤保护作用 (Granl A. et a l. , 1996) , 在小鼠断头前 30 min腹 腔内给药。
结果: 与对照組相比, 断头造成模拟脑梗塞脑缺血后, 化合物 A和化 合物 B可显著地增加断头小鼠的呼吸次数和维持呼吸的时间, 显示该药对 脑和中枢神经的梗塞缺血损伤有保护作用。 化合物 A (4mg/kg) 和化合物 B ( 8mg/kg ), 这一作用与阳性对照药依达拉丰(8mg/kg)相当, 结果见表 4。 化合物 A的抗脑梗塞脑缺血作用
Figure imgf000024_0001
* Ρ<0· 05 实施例 11
本实施例说明化合物 Α和化合物 B用于临床治疗可用的盐及其注射用 溶液的制备方法。
实验用注射制剂的制备。 化合物 A和化合物 B 均不容易 溶于水, 因 此,必须首先制备成易溶于水的盐,方可注射使用。 盐可以是钠,钾或其它无 毒无机盐, 优先方法之一是采用钠盐。 制备纳盐注射液具体方法为: 先配 制为 0. 01摩尔 的 NaOH溶液, 取 10ml再配制含 10 %的化合物 A和化合物 B的 NaOH溶液( 0. lg/ml ) , 形成化合物 A和化合物 B的钠盐,调整 PH值至 中性, 用蒸馏水稀释至试验所需浓度的注射液,室温保存,备用。 实施例 12
本实施例说明化合物 A用于临床治疗的制剂的药物组合物的制备方法。 一般来说, 化合物 A 只有以制剂或药物组合物的形式才可用于临床治 疗。 化合物 A可以与各类药用组分组合制成不同适于临床不同需要的制剂。 此外, 贝壳杉烷类化合物包括化合物 A和化合物 B可经肠道吸收, 所以也 可制成固体制剂口服。
制备固体制剂具体方法为: 贝壳杉烷类化合物如化合物 A和化合物 B 按不同比例与药用辅料混合,如淀粉,糖类,和羟甲基微晶纤维素等赋性剂 与粘合剂,再制成片 ,胶嚢,颗粒等固体剂型,口服使用。
片剂: 化合物 A以不同比例 ( 1 - 99 % )与适量的填充剂 (如淀粉、 糖 粉、 乳糖、 糊精、 微晶纤维素等)、 崩解剂 (如干淀粉、 羧曱基淀粉钠、 交联聚乙烯吡咯烷酮、 低取代羟丙基纤维素等)、 粘合剂 (如淀粉浆、 乙 醇、 羟曱基纤维素钠、 羟丙基纤维素、 曱基或纤维素、 羟丙基曱基纤维素 等)、 润滑剂 (如硬脂酸镁等)组合, 组合方式之一为: 化合物 A: 2g ; 淀 粉: 40g; 乳糖 45g; 羧曱基淀粉钠: 10g; 8 %淀粉浆; 硬脂酸镁: 再 经混合、制粒、干燥、过筛和压片,制成 1000片片剂,每片含化合物 A 2mg, 用于临床口服。
胶嚢剂: 化合物 A以不同比例 ( 1 - 99 % )与适量的上述填充剂润滑剂 混合, 装如胶嚢壳。 化合物 A也可与不同溶剂混合后在制成软胶嚢。 組合 方式之一为: 化合物 A: 2g; 淀粉 2 QGg; 混合后制成胶嚢 1000个。 每个胶 嚢含化合物 A 2mg, 用于临床口服。
控释及緩释片或胶嚢: 可在制成片或胶嚢基础上调整辅料配比, 再加 入相应的辅料(如高分子聚合物)制成骨架型, 或用释放阻滞剂或半渗透 膜对片剂进行包衣制成包衣型或渗透泵型, 或用半渗透膜制成微胶嚢型或 采用与脂质体结合方式等控释和緩释剂型。 用于临床口服, 延长药物化合 物 A作用时间。
注射剂: 化合物 A以不同比例 (1 - 90 % )与适量的注射用水和药学可 接受的碱性物混合, 稳定、 调整 pH,经过滤, 消毒, 灌封。 临床用于注射或 输液点滴。组合方式之一为: 化合物 A: 2g;碳酸氢钠: 2g; 注射用水 1000 ml,调整 pH, 过滤、 灭菌、 灌封于 2ml或 5ml 瓶内, 每瓶含化合物 A4mg 或 10mg。 用于临床注射、 经动脉或静脉导管注入或加入输液点滴。 其它剂型: 化合物 A还可根据临床治疗需要制成其它剂型: 如栓剂、 膏剂、 可透皮吸收贴剂、 锭剂等。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内, 当可利 用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实 施例, 但凡是未脱离本发明技术方案的内容, 依据本发明的技术实质对以 上实施例所作的任何筒单修改、 等同变化与修饰, 均仍属于本发明技术方 案的范围内。 工业应用, ί生
本发明是关于一种贝壳杉烷类化合物在制药中的应用 , 该贝壳杉烷类 化合物能够作为药物治疗和预防冠心病、 脑卒中、 脑缺血、 心律紊乱等疾 病。 本发明还利用大脑缺血实验动物模型证明了该化合物能明显延长缺血 大脑功能的持续时间, 对脑梗塞、 脑缺血损伤有明显的保护作用。

Claims

权 利 要 求
1、 贝壳杉烷类化合物在治疗与器官组织缺血有关的疾病的药物中的应 用。
2、根据权利要求 1所述的贝壳杉烷类化合物在治疗与器官组织缺血有 关的疾病的药物中的应用, 其特征在于其中所述的与器官组织缺血有关的 疾病为心 ^组织缺血的疾病。
3、根据权利要求 1所述的贝壳杉烷类化合物在治疗与器官组织缺血有 关的疾病的药物中的应用, 其特征在于其中所述的与器官组织缺血有关的 疾病为肢端或视网膜、 视神经缺血性损伤坏死、 肾脏缺血性损伤或坏死。
4、 根据权利要求 1所述的贝壳杉烷类化合物在治疗与器官组织缺血有 关的疾病的药物中的应用, 其特征在于其中所述的心脑组织缺血的疾病为 冠心病、 脑卒中、 脑组织缺血有关的损伤以及缺血后复灌损伤。
5、 根据权利要求 4所述的贝壳杉烷类化合物在治疗与器官组织缺血有 关的疾病的药物中的应用, 其特征在于其中所述的冠心病为心绞痛、 急性 心肌梗塞。
6、 根据权利要求 4所述的贝壳杉烷类化合物在治疗与器官组织缺血有 关的疾病的药物中的应用, 其特征在于其中所述的脑卒中为脑梗塞、 脑溢 血。
7、 根据权利要求 4所述的贝壳杉烷类化合物在治疗与器官組织缺血有 关的疾病的药物中的应用, 其特征在于其中所述的脑器官组织缺血有关的 损伤为脑外伤、 缺血性休克、 脑血管硬化或狭窄造成的供血不全。
8、 根据权利要求 4所述的贝壳杉烷类化合物在治疗与器官组织缺血有 关的疾病的药物中的应用, 其特征在于其中所述的缺血复灌损伤为实施冠 脉成形术, 冠脉血栓溶解术, 冠脉药物扩张、 体外循环心脏手术、 脑血管 栓塞溶栓术。
9、 贝壳杉烷类化合物在治疗心功能不全的药物中的应用。
10、 根据权利要求 9 所述的贝壳杉烷类化合物在治疗心功能不全的药 物中的应用, 其特征在于其中所述的心功能不全为心脏收缩能力和心输出 量降低引起的心功能不全或充血性心力衰竭。
11、 贝壳杉烷类化合物在治疗和预防心律失常的药物中的应用。
12、 根据权利要求 11所述的贝壳杉烷类化合物在治疗心律失常的药物 中的应用,其特征在于其中所述的心律失常为心脏缺血引起的心律失常、 再 灌注引起的心律失常。
13、根据权利要求 11所述的贝壳杉烷类化合物在治疗心律失常的药物 中的应用,其特征在于其中心律失常病的心脏生理解剖发生部位为室性、 室 上性或房性。
14、根据权利要求 11所述的贝壳杉烷类化合物在治疗心律失常的药物 中的应用, 其特征在于其中所述的心律失常为室性心动过速或心室颤动。
15、根据权利要求 1至 14中任一权利要求所述的贝壳杉烷类化合物在 药物中的应用, 其特征在于其中所述的贝壳杉烷类化合物具有式(I )所述 的结构:
Figure imgf000028_0001
其中, R1: 氢原子、 羟基或烷氧基;
R2: 为羧基、 羧酸盐、 酰基卤、 醛基、 羟甲基、 能水解成羧基的 酯基、 酰胺、 酰基或醚;
R3、 R4、 R5、 R6、 R8: 氢原子、 羟基、 羟曱基、 能水解生成羟甲基 的酯基或烷氧基甲基;
R7: 甲基、 羟甲基、 能水解生成羟曱基的酯基或烷氧基甲基;
R9: 亚甲基或氧原子。
16、 根据权利要求 15所述的贝壳杉烷类化合物在药物中的应用, 其特 征在于其中所述的式 (I )化合物中的 R2为羧基、 羧酸盐、 CH0、 CH20H、 曱 基酯、 曱酰基、 酰基卤, R7为 CH3、 CH20H或曱基醚, R9为亚曱基或氧原子。
17、 根据权利要求 15所述的贝壳杉烷类化合物在药物中的应用, 其特 征在于其中所述的式( I )化合物为式( I I ) 所示的化合物 k。
Figure imgf000028_0002
i?。 slevitl
18、 根据权利要求 15所述的贝壳杉烷类化合物在药物中的应用, 其特 征在于其中所述的式 ( I )化合物为式( I I I ) 所示的化合物 B。
Figure imgf000029_0001
19、 根据权利要求 15所述的贝壳杉烷类化合物在制药中的应用, 其特 征在于其中所述的羧酸盐为碱土金属或碱金属羧酸盐或其羧酸铵盐。
20、 根据权利要求 15所述的贝壳杉烷类化合物在药物中的应用, 其特 征在于其中所述的药物的剂型为片剂、 胶嚢、 颗粒、 注射剂、 栓剂、 膏剂 以及经口服、 注入或体内植入型控緩释剂型、 通过介入性导管给药的相应 剂型。
PCT/CN2004/000508 2004-05-19 2004-05-19 The use of kauranes compounds in the manufacture of medicament WO2005110383A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2007516940A JP2007538016A (ja) 2004-05-19 2004-05-19 医薬品中におけるカウレン類化合物の使用
EP04738166.0A EP1757282B1 (en) 2004-05-19 2004-05-19 The use of kaurene compounds in the manufacture of medicaments for the treatment of ischemic diseases
CNB2004800430678A CN100508962C (zh) 2004-05-19 2004-05-19 贝壳杉烷类化合物在制备药物中的应用
BRPI0418845-4A BRPI0418845A (pt) 2004-05-19 2004-05-19 uso de compostos de kauranes na fabricação de medicamentos
CA 2606472 CA2606472A1 (en) 2004-05-19 2004-05-19 The use of kauranes compounds in the manufacture of medicament
US11/596,514 US9125877B2 (en) 2004-05-19 2004-05-19 Use of kauranes compounds in the manufacture of medicament
AU2004319792A AU2004319792A1 (en) 2004-05-19 2004-05-19 The use of kauranes compounds in the manufacture of medicament
PCT/CN2004/000508 WO2005110383A1 (en) 2004-05-19 2004-05-19 The use of kauranes compounds in the manufacture of medicament
MXPA06013503A MXPA06013503A (es) 2004-05-19 2004-05-19 Uso de compuestos de kaureno en la manufactura de medicamentos.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2004/000508 WO2005110383A1 (en) 2004-05-19 2004-05-19 The use of kauranes compounds in the manufacture of medicament

Publications (1)

Publication Number Publication Date
WO2005110383A1 true WO2005110383A1 (en) 2005-11-24

Family

ID=35393975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000508 WO2005110383A1 (en) 2004-05-19 2004-05-19 The use of kauranes compounds in the manufacture of medicament

Country Status (9)

Country Link
US (1) US9125877B2 (zh)
EP (1) EP1757282B1 (zh)
JP (1) JP2007538016A (zh)
CN (1) CN100508962C (zh)
AU (1) AU2004319792A1 (zh)
BR (1) BRPI0418845A (zh)
CA (1) CA2606472A1 (zh)
MX (1) MXPA06013503A (zh)
WO (1) WO2005110383A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529811A (zh) * 2013-11-18 2015-04-22 福建医科大学 对映贝壳杉衍生物及其制备方法和应用
CN112826815A (zh) * 2015-09-10 2021-05-25 东莞市凯法生物医药有限公司 一种贝壳杉烷化合物在治疗神经退行性疾病的药物应用
WO2022100720A1 (zh) * 2020-11-15 2022-05-19 珠海沅芷健康科技有限公司 一种制备增强CNPase活性的化合物或生物药物的方法用于治疗心脏疾病
CN115175671A (zh) * 2019-05-13 2022-10-11 东莞市凯法生物医药有限公司 新型贝壳杉烷类似物的制备和治疗用途

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633609B (zh) * 2009-08-12 2013-11-06 曹庸 一种从山莓叶中分离出的新化合物、制备方法及用途
US10213452B2 (en) * 2014-10-31 2019-02-26 Fresenius Medical Care Deutschland Gmbh Pharmaceutical compositions containing steviosides
WO2016077581A1 (en) * 2014-11-12 2016-05-19 University Of Florida Research Foundation, Inc. Isosteviol triazoles and uses thereof
CN109925302A (zh) * 2019-02-18 2019-06-25 东莞市凯法生物医药有限公司 一种使用贝壳杉烷类化合物保护蒽环类抗肿瘤药物心脏毒性的应用
CN113845424B (zh) * 2021-10-14 2023-09-12 南京医科大学 右崁醇酯类化合物及其药物用途
CN114917237A (zh) * 2022-05-13 2022-08-19 葛鹏飞 莱苞迪甙a在制备预防和/或治疗脑缺血所致神经元损伤药物中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047675A1 (en) * 2000-12-12 2002-06-20 Korea Research Institute Of Bioscience And Biotechnology Novel use of diterpene compound as a therapeutic agent of inflammation, immune disease or cancer
WO2002060419A2 (en) * 2001-02-01 2002-08-08 Nutri Pharma Asa A substance for use in a dietary supplement or for the preparation of a medicament for the treatment of non-insulin dependent diabetes mellitus, hypertension and/or the metabolic syndrome

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037716A (ja) * 2000-07-24 2002-02-06 Shiseido Co Ltd カウレン類含有組成物、養毛剤及び皮膚外用剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047675A1 (en) * 2000-12-12 2002-06-20 Korea Research Institute Of Bioscience And Biotechnology Novel use of diterpene compound as a therapeutic agent of inflammation, immune disease or cancer
WO2002060419A2 (en) * 2001-02-01 2002-08-08 Nutri Pharma Asa A substance for use in a dietary supplement or for the preparation of a medicament for the treatment of non-insulin dependent diabetes mellitus, hypertension and/or the metabolic syndrome

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1757282A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529811A (zh) * 2013-11-18 2015-04-22 福建医科大学 对映贝壳杉衍生物及其制备方法和应用
CN112826815A (zh) * 2015-09-10 2021-05-25 东莞市凯法生物医药有限公司 一种贝壳杉烷化合物在治疗神经退行性疾病的药物应用
CN115175671A (zh) * 2019-05-13 2022-10-11 东莞市凯法生物医药有限公司 新型贝壳杉烷类似物的制备和治疗用途
WO2022100720A1 (zh) * 2020-11-15 2022-05-19 珠海沅芷健康科技有限公司 一种制备增强CNPase活性的化合物或生物药物的方法用于治疗心脏疾病

Also Published As

Publication number Publication date
EP1757282A4 (en) 2010-02-10
CN100508962C (zh) 2009-07-08
AU2004319792A1 (en) 2005-11-24
BRPI0418845A (pt) 2007-11-13
US20100179097A1 (en) 2010-07-15
US9125877B2 (en) 2015-09-08
CA2606472A1 (en) 2005-11-24
EP1757282B1 (en) 2015-02-25
CN1997358A (zh) 2007-07-11
EP1757282A1 (en) 2007-02-28
MXPA06013503A (es) 2007-06-12
JP2007538016A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
WO2017041711A1 (en) The use of kauranes compounds in the manufacture of medicament for treatment of cardiac hypertropy and pulmonary hypertension
WO2019206159A1 (zh) 绿原酸及其组合物在制备治疗肉瘤的药物中的用途
WO2005110383A1 (en) The use of kauranes compounds in the manufacture of medicament
CN109925310B (zh) 含有治疗有效量银杏内酯的降血压药物
CA2782967C (en) Traditional chinese drug comprising danshen extracts and sanqi extracts and use thereof
CN102475738B (zh) 复方丹参制剂在制备抗肺动脉高压药物中的应用
AU2013247291A1 (en) Lercanidipine hydrochloride and losartan potassium compound preparation and preparation method thereof
JP2011521942A (ja) ユーフォルビア・プロストラータを含有する組成物およびその調製方法
ZA200603160B (en) Use of agomelatine in obtaining medicaments intended for the treatment of bipolar disorders
RU2345761C2 (ru) Применение каурановых соединений в производстве медикаментов
CN104688755B (zh) 栀子苷的医药用途
CN112915193B (zh) Kp-1在制备治疗慢性肺病的药物中的用途
KR20070023755A (ko) 의약 제품에서의 카우렌 화합물의 이용
CN101176772B (zh) 一种由蒲黄与红花制成的药物组合物
JP6162954B2 (ja) 微小循環障害に起因する疾患を予防及び治療するための医薬の調製におけるダンシェンス、ノトギンセノシドr1又はそれらの組み合わせの使用
KR20100048628A (ko) 아스피린 및 은행잎 추출물을 포함하는 약학 조성물
CN106822162A (zh) 人参皂苷Rg3急性心梗的治疗作用
CN111012790A (zh) 人参皂苷Rh2治疗急性心梗的用途
CN117180439A (zh) 治疗出血性疾病的化合物及其组合物
CN112494607A (zh) 一种预防和治疗脑卒中的药物组合物及其应用
WO2008154794A1 (fr) Utilisation d&#39;extrait de salvia miltiorrhiza pour la préparation d&#39;un médicament pour le traitement de la septicémie
JP2000016949A (ja) 口内炎、消化管粘膜障害又は皮膚潰瘍の治療又は予防剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480043067.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11596514

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007516940

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/013503

Country of ref document: MX

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004319792

Country of ref document: AU

Ref document number: 7659/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004738166

Country of ref document: EP

Ref document number: 2006146398

Country of ref document: RU

Ref document number: 1020067026742

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2004319792

Country of ref document: AU

Date of ref document: 20040519

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004738166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2606472

Country of ref document: CA

ENP Entry into the national phase

Ref document number: PI0418845

Country of ref document: BR