WO2005108950A1 - Dispositif permettant de secher, preserver et recuperer des echantillons liquides - Google Patents

Dispositif permettant de secher, preserver et recuperer des echantillons liquides Download PDF

Info

Publication number
WO2005108950A1
WO2005108950A1 PCT/CN2005/000285 CN2005000285W WO2005108950A1 WO 2005108950 A1 WO2005108950 A1 WO 2005108950A1 CN 2005000285 W CN2005000285 W CN 2005000285W WO 2005108950 A1 WO2005108950 A1 WO 2005108950A1
Authority
WO
WIPO (PCT)
Prior art keywords
container body
solid
cover body
container
phase carrier
Prior art date
Application number
PCT/CN2005/000285
Other languages
English (en)
French (fr)
Inventor
Ge Chen
Original Assignee
Ge Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ge Chen filed Critical Ge Chen
Publication of WO2005108950A1 publication Critical patent/WO2005108950A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • B01L3/50825Closing or opening means, corks, bungs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/042Caps; Plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/047Additional chamber, reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid

Definitions

  • the invention relates to a device for dry storage and recovery of liquid samples, in particular to a device for drying, storage and recovery of biological samples.
  • Liquid biological samples are the most widely used biological sample form in life science research. How to use the simplest and most cost-effective method to maintain the effective activity (including binding activity and biological activity), integrity (such as cells and other The accuracy of the concentration after the sample is recombined and recovered, and the safety of the entire process of biological sample processing are one of the basic problems to be solved in the fields of biology, medicine, medicine, and biotechnology. Over the years, scientists have worked diligently for this.
  • the preservation methods of liquid samples are mainly divided into liquid cryopreservation (2-8 degrees Celsius); cryopreservation (-20 ⁇ -200 degrees Celsius); frozen (below -60 degrees Celsius) dry storage; cryogenic dry preservation (2 degrees Celsius) -8 degrees); and dry storage at normal temperature (10 ⁇ 30 degrees Celsius or ambient temperature).
  • the invention provides a device for dry storage and recovery of liquid samples, especially biological samples, which can make dry storage of liquid samples simple and convenient, and can recover samples easily and efficiently.
  • the invention relates to a device for dry storage of a liquid sample, which comprises a cover body capable of cooperating with a container body and a solid-phase carrier for adsorbing a sample attached to the cover body. During mating, the solid phase carrier is completely contained in the cavity of the container body.
  • the invention also relates to a device for dry storage and recovery of a liquid sample, which comprises a cover body and a solid-phase carrier for adsorbing the sample attached to the cover body, and a container body capable of cooperating with the cover body.
  • a device for dry storage and recovery of a liquid sample which comprises a cover body and a solid-phase carrier for adsorbing the sample attached to the cover body, and a container body capable of cooperating with the cover body.
  • the cover in the device of the present invention includes a negative film and a peripheral edge disposed substantially perpendicular to the plane of the negative film, and the solid phase carrier is located in the space formed by the negative film and the peripheral edge.
  • the cover in the device of the present invention includes a backsheet, a peripheral edge disposed substantially perpendicular to the backsheet, and a topsheet with a hole covering the top of the peripheral edge. Therefore, the cover body forms a relatively closed space, and the solid support is located in the space.
  • cover body and the container body of the device of the present invention are connected by a flexible connecting member.
  • the solid phase support is an average pore size
  • a solid-phase support for drying and storing a liquid sample is attached to a cover, and the cover may be in close contact with the container.
  • a liquid sample is applied to a solid support and allowed to dry. After drying, the samples are stored and / or transported in a lid.
  • the sample is recovered, the liquid used for recovery is contained in the container body, and then the cover body is tightly sealed with the container body to make the liquid.
  • the solid-phase carrier on which the dried sample is adsorbed is contacted and soaked, and the solid-liquid separation is finally performed by gravity, manual vibration or centrifugation, thereby completing the recovery of the sample.
  • Using the device of the present invention makes it possible to simply and efficiently recover samples.
  • FIG. 1 is a diagram of a first embodiment of the present invention, where A is a cross-sectional view of a container body, and B is a cross-sectional view of a lid body and a solid-phase carrier attached thereto.
  • FIG. 2 is a diagram of a second embodiment of the present invention, where A is a cross-sectional view of a container body, and B is a cross-sectional view of a lid body and a solid phase carrier.
  • A is a cross-sectional view of a container body
  • B is a cross-sectional view before assembly of a lid body and a solid-phase carrier.
  • the container body is preferably cylindrical, and is more preferably composed of a cylindrical portion and a tapered portion.
  • the container body has a cylindrical portion at the opening, and the portion near the bottom of the container body is tapered. Office.
  • the container body in the apparatus of the present invention is preferably a container commonly used in the art for liquid sample storage, reaction, separation, and other operations, such as various test tubes, centrifuge tubes, and the like. More preferably, the container body of the present invention is a centrifuge tube, such as an Eppendorf tube.
  • the lid body is circular.
  • the cover body may be a flat plate body which can be simply matched with the container body.
  • the solid support preferably has a fixed shape and is fixed to the cover body by adhesion or physical connection.
  • the cover of the device of the present invention has a backsheet and a peripheral edge disposed substantially perpendicular to the plane of the cover backsheet.
  • the backsheet and the peripheral edge form a small container that opens into the container (when the lid body is matched with the container body).
  • a solid phase carrier is fixed in the small container.
  • the height of the periphery can be set according to the volume of the solid support.
  • the peripheral edge can also be used as a component that cooperates with the container body at the same time.
  • the cover of the device of the present invention consists of a backsheet, a base A peripheral edge arranged perpendicular to the bottom sheet and a top sheet covering the top of the peripheral edge are formed.
  • the cover body forms a relatively closed space.
  • the solid-phase carrier is placed in the space, and can be fixed to the cover body without any connection with the cover body component or by any means.
  • the top sheet faces the inside of the container body.
  • the top sheet needs to have pores, such as small holes or gaps, so that the liquid sample and the recovery liquid can enter the cover and contact the solid support therein.
  • the top sheet has a mesh structure. The pores are sized to retain the solid support in the lid.
  • the perimeter can also be used for mating with the container body.
  • the container body and the lid body may be independent members, but preferably can be connected together by a flexible connecting member.
  • the container body and the lid body are connected together to facilitate the recovery operation.
  • the container body and the lid body of the present invention may be made of any water-impermeable material, especially a material suitable for processing a raw sample.
  • a material suitable for processing a raw sample for example, various plastics, glass, and the like can be used.
  • the volume of the solid phase support is preferably not more than half of the volume of the container body, and more preferably not more than one-third of the volume of the container body, in order to leave sufficient space for the liquid used for sample recovery.
  • the material of the solid support may be a conventionally used filter paper, but is preferably a porous solid phase support having an average pore diameter of 0.01 mm to 5 mm or a particulate material having an average particle diameter of 0.01 mm to 5 mm (see the Chinese patent application filed by the applicant No. 200410004387.4, 200410029523.5).
  • the porous solid phase support having an average pore diameter of 0.01 mm to 5 mm and the particulate material having an average particle diameter of 0.01 mm to 5 mm can be made of any material, such as one or more materials selected from the group consisting of: polymer materials, Chemically treated or untreated materials of biological origin, metallic materials and inorganic non-metallic materials.
  • the porous solid material used in the present invention is a polymer material.
  • the particulate material used in the present invention is an inorganic non-metallic material.
  • polymer materials are: hydroxycarboxylic acid esters such as poly (3-hydroxybutyrate) (PHB), 3-hydroxybutyrate and 3-hydroxyhexanoate copolymer (PHB-HH), polylactic acid ( PLA), lactic-co-glycolic acid copolymerization (PLGA), polycaprolactone; polyorthoesters, polyanhydrides, etc.
  • PBB polyhydroxybutyrate
  • PHB-HH 3-hydroxybutyrate and 3-hydroxyhexanoate copolymer
  • PLA polylactic acid
  • PLGA lactic-co-glycolic acid copolymerization
  • polycaprolactone polyorthoesters, polyanhydrides, etc.
  • the porous polymer material can be conveniently obtained according to the prior art methods, for example, by a method such as polymer foaming.
  • the pore diameter of the porous polymer material can also be controlled by conventional methods, so as to obtain a porous material suitable for a specific application.
  • Inorganic non-metallic materials include ceramics, glass, cement, refractories, various ore, grit, etc. These materials can be made into particulate materials by conventional methods in the art.
  • the chemical composition of inorganic non-metallic materials includes silicates, other oxoates, oxides, nitrides, carbon and carbides, borides, fluorides, chalcogenides, silicon, germanium, II-V and II-VI Family compounds, etc.
  • the liquid storage and recovery device As shown in Figure 1, the liquid storage and recovery device. It consists of a container body 1, a lid body 2 and a solid phase carrier 3.
  • the container body 1 is formed by integrating a cylindrical portion la and a conical portion lb.
  • the inner diameter of the cylindrical portion la is equal to the inner diameter of the bottom surface of the conical portion lb.
  • the cover body 2 is integrally formed by a back sheet 2b and an annular protrusion 2a disposed substantially perpendicular to the plane of the back sheet.
  • the backsheet 2b is a circular pressing plate, the diameter of which is larger than the outer diameter of the cylindrical portion la of the container body; the outer diameter of the annular protrusion 2a is equal to the inner diameter of the cylindrical portion la of the container body, and it can be liquid tightly matched with the container body.
  • the back sheet 2b and the annular protrusion 2a constitute a small container which opens toward the inside of the container (when the lid body is matched with the container body).
  • the solid-phase carrier 3 is cylindrical and is fixed in this small container.
  • the height of the annular protrusion 2a can be set according to the volume of the solid-phase carrier.
  • the diameter of the solid carrier is equal to the inner diameter of the annular protrusion, and the thickness is 1/3 of the length of the cylindrical portion la.
  • the liquid storage and recovery device shown in FIG. 2 is composed of a container body 1, a lid body 2, and a solid-phase carrier 3.
  • the container body 1 is composed of a cylindrical portion and a conical portion lc, which are integrally formed, wherein the cylindrical portion is composed of two stepped portions: a step portion la and a step portion lb.
  • the inside and outside diameters of the first step la are larger than the second step lb.
  • An annular protrusion lb-1 is formed on the outer wall of the two steps of the step, and a groove is formed between the annular protrusion and the protruding bottom surface of one step of the step.
  • the degree is equal to the thickness of the collar described below. From the opening of the container body to the bottom of the container body, there are a step portion la, a step portion lb, and a conical portion lc in order. The smallest diameter of the conical portion is the bottom of the container body.
  • the cover body 2 is composed of a cylindrical receiving body 2a, a circular support seat 2b, a connecting member 2c, and a collar 2d which are open on one side.
  • the diameter of the support base 2b is not smaller than the outer diameter of the containing body 2a, and the diameter of the support base 2b is preferably larger than the outer diameter of the containing body 2a.
  • the accommodating body 2a is joined to the support base 2b to form an accommodating space.
  • the solid phase carrier 3 is located therein, so that the solid phase carrier is always in the accommodating space during the dry storage and recovery of the liquid sample.
  • the accommodating body 2a is formed by an accommodating body upper portion 2a-1 and an accommodating body lower portion 2a-2 having equal inner and outer diameters, and the accommodating body lower portion 2a-2 has a pore structure.
  • the outer diameter of the containing body 2a is the same as the inner diameter of a portion 1a of the step of the container body, and they are liquid-tightly matched when in use.
  • the length of the containing body 2a is less than or equal to the depth of a part la of the step, and it is preferable that they are equal.
  • the outer wall at the opening of the containing body 2a has external threads.
  • the joint surface of the support base 2b and the containing body 2a has a cylindrical recessed portion having a diameter equal to the outer diameter of the containing body 2a, and the inner peripheral surface has an internal thread.
  • the receiving body 2a and the support base 2b are fluid-tightly fitted by screwing.
  • the inner diameter of the collar 2d is the same as the outer diameter of the second step lb of the container body.
  • the thickness of the collar 2d is equal to the width of the groove formed between the annular protrusion lb-1 and the protruding bottom surface of the step.
  • the connecting member 2c connects the edge of the support seat 2b and the collar 2d. In use, the collar 2d is sleeved in the groove, so that the lid body 2 and the container body 1 are connected.
  • the receiving body 2a and the support base 2b can be joined in various ways to achieve liquid-tight mating, such as integral formation or other related technologies known in the art.
  • the side of the support base 2b facing the container body has an annular groove, the width of which is equal to the wall thickness of the containing body 2a, and the diameter is equal to the diameter of the containing body 2a, so that the containing body 2a and the supporting base 2b achieve liquid-tightness by being embedded.
  • the upper portion 2a-1 of the container may also have a pore structure.
  • the material of the solid phase support 3 is preferably a porous solid phase support having an average pore diameter of 0.01 mm to 5 mm or a particulate material having an average particle diameter of 0.01 mm to 5 mm.
  • the shape and volume are not particularly limited as long as it can be completely contained in the containing body 2a, but it is preferable that the solid phase carrier 3 fills the containing body 2a so that the liquid sample can be fully absorbed.
  • the liquid storage and recovery device shown in FIG. 3 is composed of a container body 1, a lid body 2, and a solid-phase carrier 3.
  • the container body 1 is composed of an integrally formed cylindrical portion and a round-shaped portion lc, wherein the cylindrical portion is composed of two stepped portions: a stepped portion la and a stepped portion lb.
  • the inner and outer diameters of the first step la are larger than the second step lb.
  • An annular protrusion lb-1 is formed on the outer wall of the two steps, and a groove is formed between the annular protrusion and the protruding bottom surface of the one step, and the width is equal to the thickness of the collar described below. From the opening of the container body to the bottom of the container body, there are a step la, a step lb, and a conical portion lc. The smallest diameter of the conical portion is the bottom of the container body.
  • the cover body 2 is composed of a cylindrical receiving body 2a, a support ring 2b, a connecting member 2c, a collar 2d, and a circular pressure plate 2e which are open on one side.
  • the outer diameter of the containing body 2a is equal to the inner diameter of the support ring 2b.
  • the receiving body 2a, the support ring 2b, and the connecting member 2c are integrally formed.
  • the accommodating body 2a is formed by an accommodating body upper portion 2a-1 and an accommodating body lower portion 2a-2 having the same inner and outer diameters, and the accommodating body lower portion 2a-2 has a pore structure.
  • the outer diameter of the containing body 2a is the same as the inner diameter of a portion 1a of the container body step, and the two are liquid-tightly matched during use.
  • the length of the accommodating body 2a is less than or equal to the depth of a portion 1a of the step, and the two are preferably equal.
  • the support ring 2b has an annular protrusion 2b-1 on the side opposite to the surface of the container.
  • the side of the pressure plate 2e facing the receiving body 2a has two annular protrusions 2e-1 and 2e-2, and an annular groove is formed therebetween, the width and diameter of which are equal to the width and diameter of the annular protrusion on the support ring 2b.
  • the groove of the pressure plate 2e and the annular protrusion 2b-1 of the support ring 2b are fitted in a liquid-tight manner to form a receiving space with the receiving body 2a, and the solid phase carrier 3 is contained in the receiving space.
  • the inner diameter of the collar 2d is the same as the outer diameter of the two steps of the container body step lb.
  • the thickness of the collar 2d is equal to the width of the groove formed between the annular protrusion lb-1 and the bottom surface of the stepped portion la. In use, the collar 2d is sleeved in the groove, so that the lid body 2 and the container body 1 are connected. Connector 2c connecting branch Edges of the collar 2b and the collar 2d.
  • the pressure plate 2e and the support ring 2b can be joined in various ways to achieve a liquid-tight fitting, such as integral formation or other related technologies known in the art.
  • the pressure plate 2e and the support ring 2b can be liquid-tightly fitted by means of a screw fitting.
  • the upper portion 2a-1 and the lower portion 2a-2 of the receiving body may be joined to form the receiving body 2a in various ways, such as a screw fit.
  • the upper portion 2a-1 of the containing body may also have a pore structure.
  • the material of the solid phase carrier 3 is not particularly limited, as long as it can adsorb the liquid sample and store the liquid sample dry, it is preferably a porous solid phase carrier having an average pore diameter of 0.01 mm to 5 mm or a particulate material having an average particle diameter of 0.01 mm to 5 mm.
  • a porous solid phase carrier having an average pore diameter of 0.01 mm to 5 mm or a particulate material having an average particle diameter of 0.01 mm to 5 mm.
  • the shape and volume of the solid phase support 3 is no particular limitation on the shape and volume of the solid phase support 3 as long as it can be completely contained in the containing body 2a, but it is preferable that the solid phase support 3 fills the containing space formed by the containing body 2a and the pressure plate 2e so that the liquid sample can be fully absorbed .

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

用于液体样品干燥保存和回收的装置 技术领域
本发明涉及一种用于液体样品的干燥保存和回收的装置, 特别是 生物样品的干燥、 保存和回收的装置。 背景技术
科学研究中的生物样品采集、 保存、 运输、 重组、 回收是进行各 种实验科学研究、 医学临床各种指标检测的先决条件。 液体生物样品 是生命科学研究中最为广泛采用的生物样品形式, 如何使用最为简便 经济有效的方法保持原样品内容物的有效活性(包括结合活性和生物 活性) 、 完整性(如细胞和其它有形成分) 、 样品重组回收后其浓度 的准确性以及生物样品处理全过程中的安全性是生物学、医学、医药、 生物技术领域需要解决的基本问题之一。 多年来, 科学工作者们为此 作出了不懈地的努力。
目前,液体样品的保存方法主要分为液态低温保存(摄氏 2-8度); 冷冻保存 (摄氏 -20 ~ -200度) ; 冷冻 (摄氏 -60度以下)干燥保存; 低 温干燥保存 (摄氏 2-8度) ; 和常温干燥保存 (摄氏 10 ~ 30度或环 境温度) 。
自 Robert Guthrie 于 1963 年首次利用 Schleicher & Schuell Bioscience公司(S&S公司)的 903滤膜(后称 Guthrie Card )收集新生 儿血样进行 PKU 筛查以来, 该滤膜已广泛应用于生物液体样品的干 燥保存。 通常的样品回收方法是用打孔器将干燥保存有液体样品的滤 膜取下, 浸泡在适宜的緩冲液中一段时间, 一般还需要加热以提高回 收率。 在保存液体样品时, 通常多种来源的液体样品被保存在一张滤 膜上, 在回收阶段再分别操作。 目前还没有用于液体样品干燥保存和 回收全过程的装置。 目前的常温干燥样品保存方法虽然解决了液体样 品的干燥保存和运输问题, 但在样品液体回收方面还存在很多缺陷。
因此, 本领域需要一种操作简单、 样品回收率高的液体样品干燥 保存、 回收的装置。 发明内容
本发明提供了一种用于液体样品特别是生物样品干燥保存和回 收的装置, 其可以使液体样品的干燥保存变得简便, 并且能够筒单、 高效地回收样品。
本发明涉及一种用于液体样品的干燥保存的装置, 其包含可与容 器体配合的盖体和附着于该盖体上的用于吸附样品的固相载体, 当所 述盖体与容器体配合时所述固相载体被完全容纳于容器体的腔中。
本发明还涉及一种用于液体样品的干燥保存及回收的装置, 其包 含盖体和附着于该盖体上的用于吸附样品的固相载体, 和可与所述盖 体配合的容器体, 当所述盖体与容器体配合时所述固相载体被完全容 纳于容器体的腔中。
在一个优选实施方案中, 本发明装置中盖体包括底片和相对于底 片平面基本垂直设置的周缘, 固相载体位于底片和周缘形成的空间 中。
在一个更优选的实施方案中, 本发明装置中盖体包括一个底片、 相对于该底片基本垂直设置的周缘、和覆盖所述周缘顶部的带有孔隙 的顶片。 因此, 所述盖体形成一个相对封闭的空间, 固相载体位于该 空间之中。
在另一实施方案中, 本发明的装置中盖体与容器体之间以柔性连 接件连接。
在本发明装置的一个实施方案中, 所述固相载体为平均孔径
0.01mm到 5 mm的多孔固相载体或者平均粒径 0.01mm到 5mm的颗 粒材料。
在本发明中, 用于干燥保存液体样品的固相载体被附着于盖体 上, 盖体可以与容器体密合。 使用时, 将液体样品施加在固体载体上 并使其干燥。 干燥后, 样品在盖体中保存和 /或运输。 在回收样品时, 用于回收的液体被装在容器体中, 然后将盖体与容器体密合, 使液体 接触并浸泡吸附有干燥样品的固相载体, 最后通过重力、 手工振动或 离心进行固液分离, 从而完成样品的回收。 使用本发明的装置使得简 单、 高效地回收样品成为可能。 附图说明
图 1是本发明第一实施例的图, 其中 A为容器体的剖面图, B为 盖体和附着于其上的固相载体的剖面图。
图 2是本发明第二实施例的图, 其中 A为容器体的剖面图, B为 盖体及固相载体的剖面图。
图 3是本发明第三实施例的剖面图, 其中 A为容器体的剖面图, B为盖体、 固相载体组装前的剖面图。 具体实施方式
对容器体的形状及大小没有特殊限定。 但容器体优选为圆柱形, 更优选由圆柱形和锥形两部分构成, 其中容器体开口处为圆柱形部 分, 靠近容器体底部的部分为锥形, 容器体底部为锥形部分的直径最 小处。 本发明装置中的容器体优选为本领域中常用来进行液体样品存 放、 反应、 分离等操作的容器, 例如各种试管、 离心管等。 更优选本 发明中的容器体为一种离心管, 例如 Eppendorf管。
对盖体的形状没有特殊限定,但应与容器体的形状相适应。例如, 当容器体开口处为圆形时, 盖体为圆形。 所述盖体可以是简单可与容 器体配合的平板体。 这种情状下, 固体载体优选具有固定形状, 并通 过粘合或物理连接固定在盖体上。
在一个优选实施方案中, 本发明装置的盖体有一个底片和基本垂 直于盖底片平面设置的周缘。 所述底片和周缘构成一个朝向容器内 (盖体与容器体配合时)开口的小容器。固相载体固定在该小容器中。 周缘的高度可以根据固相载体的体积来设置。 另外, 所述周缘也可以 同时作为与容器体配合的部件。
在一个更优选的实施方案中, 本发明装置的盖体由一个底片、 基 本垂直于所述底片设置的周缘和覆盖所述周缘顶部的顶片构成。 这 样, 盖体形成一个相对封闭的空间。 固相载体置于该空间之中, 可以 与盖体部件之间没有任何连接或通过任何方式固定在盖体上。 这种情 况下, 盖体与容器体配合时, 顶片朝向容器体内部。 所述顶片需要有 孔隙, 例如小孔或缝隙, 以便液体样品和回收用液体能够进入盖体中 与其中的固体载体接触。 例如所述顶片为网状结构。 所述孔隙的大小 适于将固体载体保留在盖体中。 在该实施方案中, 周缘也可以用于与 容器体的配合。
对容器体与盖体的配合方式没有特殊限定, 只要这种配合为液密 性的即可。 容器体和盖体可以是相互独立的构件, 但优选可以通过一 个柔性连接件连接在一起。 例如, 至少在样品回收过程中通过连接件 件容器体和盖体连接在一起, 以方便回收操作。
本发明容器体和盖体可以由任何不透水的材料制成, 特别是适于 处理生样品的材料。 例如, 可以使用各种塑料、 玻璃等。
对固相载体的体积没有特殊限定, 但优选其不超过容器体容积的 一半, 更优选不超过容器体容积的三分之一, 以便为样品回收时所用 的液体留下足够的作用空间。 对固相载体的材料没有特殊限制, 只要 其能够吸附并干燥保存液体样品。 例如所述固相载体可以是常规使用 的滤纸, 但优选为平均孔径为 0.01mm到 5mm的多孔固相载体或者 平均粒径为 0.01mm到 5mm的颗粒材料 (见本申请人提交的中国专 利申请号 200410004387.4、 200410029523.5 ) 。
平均孔径为 0.01mm 到 5mm 的多孔固相载体和平均粒径为 0.01mm到 5mm的颗粒材料可以是任何材料制成的,例如选自下组的 一种或多种材料: 聚合物材料、 经化学处理或未处理的生物来源的材 料、 金属材料和无机非金属材料。 在一个优选的实施方案中, 本发明 所用的多孔固体材料是聚合物材料。 在另一个优选的实施方案中, 本 发明所用的颗粒材料是无机非金属材料。 聚合物材料的实例有: 羟基 羧酸酯, 如聚(3 -羟基丁酸酯) (PHB)、 3 -羟基丁酸酯与 3 -羟基 己酸酯共聚物 (PHB-HH ) 、 聚乳酸(PLA ) 、 乳酸-羟基乙酸共聚 物 (PLGA ) 、 聚己内酯; 聚原酸酯、 聚酸酐等。 所述多孔聚合物材 料可以按现有技术方法方便地获得, 例如通过聚合物发泡等方法。 所 述多孔聚合物材料的孔径也可以按常规方法来控制, 从而获得适于具 体应用的多孔材料。 无机非金属材料包括陶瓷、 玻璃、 水泥、 耐火材 料、 各种矿石、 砂粒等。 这些材料可以通过本领域的常规方法制成颗 粒材料。 无机非金属材料的化学组成包括硅酸盐、 其它含氧酸盐、 氧 化物、 氮化物、 碳与碳化物、 硼化物、 氟化物、 硫系化合物、 硅、 锗、 II - V和 II - VI族化合物等。 实施例 1
如图 1所示的液体干燥保存和回收的装置。 其由容器体 1、 盖体 2和固相载体 3构成。
容器体 1由圆柱形部分 la和圆锥形部分 lb—体化形成。 圆柱形 部分 la的内径与圆锥形部分 lb底面的内径相等。 盖体 2由一个底片 2b和基本垂直于该底片平面设置的环形凸起 2a—体化形成。 所述底 片 2b为一个圆形压板, 其直径大于容器体圆柱形部分 la的外径; 所 述环形凸起 2a的外径等于容器体圆柱形部分 la的内径, 可以与容器 体液密性配合。 底片 2b和环形凸起 2a构成一个朝向容器内 (盖体与 容器体配合时)开口的小容器。 固相载体 3为圆柱形, 固定在该小容 器中。 环形凸起 2a的高度可以根据固相载体的体积来设置。 固相载 体的直径与环形凸起内径相等, 厚度为圆柱形部分 la长度的 1/3。 实施例 2
如图 2所示的液体干燥保存和回收的装置, 其由容器体 1、 盖体 2和固相载体 3构成。
容器体 1由一体形成的圆柱形部分和圆锥形部分 lc构成,其中圆 柱形部分由两个阶梯部分构成: 阶梯一部 la和阶梯二部 lb。 阶梯一 部 la的内、 外径均大于阶梯二部 lb。 在阶梯二部的外壁上有一环形 凸起 lb-1 , 该环形凸起与阶梯一部突出的底面之间形成一凹槽, 其宽 度等于下述套环的厚度。从容器体开口到容器体底部依次为阶梯一部 la、 阶梯二部 lb和圆锥形部分 lc。 圆锥形部分的直径最小处为容器 体底部。
盖体 2 由一面开放的圆柱形容纳体 2a、 圆形支承座 2b、 连接件 2c和套环 2d构成。 支承座 2b的直径不小于容纳体 2a的外径, 优选 支承座 2b的直径大于容纳体 2a的外径。 容纳体 2a与支承座 2b接合 形成容纳空间。 固相载体 3位于其中, 使得在液体样品的干燥保存和 回收过程中, 固相载体始终处于该容纳空间中。 容纳体 2a 由内、 外 径相等的容纳体上部 2a-l和容纳体下部 2a-2—体形成, 其中容纳体 下部 2a-2具有孔隙结构。使得在样品的保存和回收过程中,液体样品、 回收时所用的液体能够与固相载体充分接触。 容纳体 2a的外径与容 器体阶梯一部 la的内径相同, 在使用时二者液密性配合。 容纳体 2a 的长度小于或等于阶梯一部 la的深度, 优选二者相等。 容纳体 2a开 口处的外壁具有外螺紋。 支承座 2b与容纳体 2a的接合面具有圆柱形 凹陷部, 其直径与容纳体 2a的外径相等, 内周面具有内螺紋。 容纳 体 2a和支承座 2b通过螺紋接合实现液密性配合。 套环 2d的内径与 容器体阶梯二部 lb的外径相同。 套环 2d的厚度与环形凸起 lb-1和 阶梯一部突出底面之间形成的凹槽宽度相等。 连接件 2c连接支承座 2b和套环 2d的边缘。 使用时, 套环 2d被套在该凹槽中, 使得盖体 2 与容器体 1连接。
除上述配合方式外, 容纳体 2a与支承座 2b可以以多种方式接合 实现液密性配合, 例如一体形成或者其它本领域公知的各种相关技 术。 例如, 支承座 2b朝向容器体的一面具有环形凹槽, 其宽度与容 纳体 2a的壁厚相等, 直径与容纳体 2a的直径相等, 使得容纳体 2a 与支承座 2b通过嵌入方式实现液密性配合。 除了容纳体下部 2a-2具 有孔隙结构外, 容纳体上部 2a-l也可以具有孔隙结构。
对固相载体 3的材料没有特殊限制, 只要其能够吸附液体样品并 干燥保存液体样品, 优选为平均孔径为 0.01mm到 5mm的多孔固相 载体或者平均粒径为 0.01mm到 5mm的颗粒材料。 对固相载体 3的 形状、 体积没有特殊限定, 只要其能被完全容纳于容纳体 2a 中, 但 优选固相载体 3充满容纳体 2a, 使得液体样品能够被充分吸收。 实施例 3
如图 3所示的液体干燥保存和回收的装置, 其由容器体 1、 盖体 2和固相载体 3构成。
容器体 1由一体形成的圆柱形部分和圆雉形部分 lc构成,其中圆 柱形部分由两个阶梯部分构成: 阶梯一部 la和阶梯二部 lb。 阶梯一 部 la的内、 外径均大于阶梯二部 lb。 在阶梯二部的外壁上有一环形 凸起 lb-1 , 该环形凸起与阶梯一部突出的底面之间形成一凹槽, 其宽 度等于下述套环的厚度。从容器体开口到容器体底部依次为阶梯一部 la、 阶梯二部 lb和圆锥形部分 lc。 圆锥形部分的直径最小处为容器 体底部。
盖体 2由一面开放的圆柱形容纳体 2a、 支承环 2b、 连接件 2c、 套环 2d和圆形压板 2e组成。 容纳体 2a的外径与支承环 2b的内径相 等。 容纳体 2a、 支承环 2b和连接件 2c—体化形成。 容纳体 2a由内、 外径相等的容纳体上部 2a-l和容纳体下部 2a-2—体形成, 其中容纳 体下部 2a-2具有孔隙结构。使得在样品的保存和回收过程中, 液体样 品、 回收时所用的回收液能够与固相载体充分接触。 容纳体 2a的外 径与容器体阶梯一部 la的内径相同, 在使用时二者液密性配合。 容 纳体 2a的长度小于或等于阶梯一部 la的深度, 优选二者相等。 支承 环 2b的朝向容器体面的相反面上具有一个环形凸起 2b-l。压板 2e朝 向容纳体 2a的一面有两个环形凸起 2e-l和 2e-2, 二者之间形成一环 形凹槽, 其宽度和直径与支承环 2b上的环形凸起宽度和直径相等。 压板 2e的凹槽与支承环 2b的环形凸起 2b-l通过嵌合实现液密性配 合, 与容纳体 2a形成容纳空间, 其内容纳固相载体 3。 套环 2d的内 径与容器体阶梯二部 lb的外径相同。套环 2d的厚度与环形凸起 lb-1 和阶梯一部 la突出的底面之间形成的凹槽宽度相等。 使用时, 套环 2d被套在该凹槽中, 使得盖体 2与容器体 1连接。 连接件 2c连接支 承环 2b和套环 2d的边缘。
除上述配合方式外, 压板 2e与支承环 2b可以以多种方式接合实 现液密性配合, 例如一体形成或者其它本领域公知的各种相关技术。 例如, 压板 2e与支承环 2b可以通过螺旋配合方式实现液密性配合。 除一体形成, 容纳体上部 2a-l和容纳体下部 2a-2可以以多种方式接 合形成容纳体 2a, 例如螺紋配合。 除了容纳体下部 2a-2具有孔隙结 构外, 容纳体上部 2a-l也可以具有孔隙结构。
固相载体 3的材料没有特殊限制, 只要其能够吸附液体样品并干 燥保存液体样品, 优选为平均孔径为 0.01mm到 5mm的多孔固相载 体或者平均粒径为 0.01mm到 5mm的颗粒材料。 对固相载体 3的形 状、 体积没有特殊限定, 只要其能被完全容纳于容纳体 2a 中, 但优 选固相载体 3充满容纳体 2a与压板 2e形成的容纳空间, 使得液体样 品能够被充分吸收。

Claims

权 利 要 求
1.一种用于液体样品的干燥保存的装置, 其包含可与容器体配合 的盖体和附着于该盖体上的用于吸附样品的固相载体, 当所述盖体与 容器体配合时所述固相载体被完全容纳于容器体的腔中。
2.根据权利要求 1的装置, 其中所述盖体基本为平板体。
3.根据权利要求 1 的装置, 其中所述盖体包括一个底片和基本垂 直于所述底片的平面设置的周缘, 固相载体位于所述底片和周缘之间 形成的空间中。
4.根据权利要求 1的装置, 其中所述盖体包括一个底片、 基本垂 直于所述底片的平面设置的周缘和覆盖所述周缘顶部的带有孔隙的 顶片, 固相载体位于所述底片、 周缘和顶片所形成的相对封闭的空间 中。
5.根据权利要求 3或 4的装置, 其中所述底片和周缘一体成形、 或通过螺紋配合或凹凸嵌合结合成一体。
6.根据权利要求 1的装置, 其中盖体与容器体之间能够液密性配 合。
7.根据权利要求 1的装置, 其中盖体与容器体之间以柔性连接件 连接。
8.根据权利要求 1的装置,其中所述固相载体为平均孔径 0.01mm 到 5mm的多孔固相载体或者平均粒径 0.01mm到 5mm的颗粒材料。
9.一种用于液体样品的干燥保存并回收的装置, 其包含盖体和附 着于该盖体上的用于吸附样品的固相载体, 和可与所述盖体配合的容 器体, 当所述盖体与容器体配合时所述固相载体被完全容纳于容器体 的腔中。
PCT/CN2005/000285 2004-05-08 2005-03-09 Dispositif permettant de secher, preserver et recuperer des echantillons liquides WO2005108950A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410038126.4 2004-05-08
CN 200410038126 CN1693151A (zh) 2004-05-08 2004-05-08 用于液体样品干燥保存和回收的装置

Publications (1)

Publication Number Publication Date
WO2005108950A1 true WO2005108950A1 (fr) 2005-11-17

Family

ID=35320321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000285 WO2005108950A1 (fr) 2004-05-08 2005-03-09 Dispositif permettant de secher, preserver et recuperer des echantillons liquides

Country Status (2)

Country Link
CN (1) CN1693151A (zh)
WO (1) WO2005108950A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080232A1 (en) * 2008-12-19 2010-07-15 3M Innovative Properties Company System and method for concentrating samples
WO2012104812A3 (en) * 2011-02-03 2012-11-15 Universite De Geneve Non-card format devices for collecting, storing & analysing dried body fluids spots and related methods
US8647508B2 (en) 2008-12-19 2014-02-11 3M Innovative Properties Company System and method for processing samples
US9470612B2 (en) 2011-06-30 2016-10-18 3M Innovative Properties Company Systems and methods for detecting an analyte of interest in a sample using filters and microstructured surfaces
US9488563B2 (en) 2011-06-30 2016-11-08 3M Innovative Properties Company Systems and methods for detecting an analyte of interest in a sample using microstructured surfaces

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081872A1 (en) * 2013-12-04 2015-06-11 Gene Era Biotech Co. Ltd. Sample tube assemblies and pipette tip with improved leakage prevention
CN108579832A (zh) * 2018-05-21 2018-09-28 淮阴师范学院 一种化学实验用储液瓶

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032474A (en) * 1998-05-29 2000-03-07 Forensic Solutions, Inc. Evidence preservation system
US6265223B1 (en) * 1997-05-28 2001-07-24 Flexsite Diagnostics, Inc. Diagnostic assay
WO2003064993A2 (en) * 2001-11-15 2003-08-07 Whatman, Inc. Methods and materials for detecting genetic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265223B1 (en) * 1997-05-28 2001-07-24 Flexsite Diagnostics, Inc. Diagnostic assay
US6032474A (en) * 1998-05-29 2000-03-07 Forensic Solutions, Inc. Evidence preservation system
WO2003064993A2 (en) * 2001-11-15 2003-08-07 Whatman, Inc. Methods and materials for detecting genetic material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080232A1 (en) * 2008-12-19 2010-07-15 3M Innovative Properties Company System and method for concentrating samples
US8535945B2 (en) 2008-12-19 2013-09-17 3M Innovative Properties Company System and method for concentrating samples
US8647508B2 (en) 2008-12-19 2014-02-11 3M Innovative Properties Company System and method for processing samples
WO2012104812A3 (en) * 2011-02-03 2012-11-15 Universite De Geneve Non-card format devices for collecting, storing & analysing dried body fluids spots and related methods
US9470612B2 (en) 2011-06-30 2016-10-18 3M Innovative Properties Company Systems and methods for detecting an analyte of interest in a sample using filters and microstructured surfaces
US9488563B2 (en) 2011-06-30 2016-11-08 3M Innovative Properties Company Systems and methods for detecting an analyte of interest in a sample using microstructured surfaces
US9909969B2 (en) 2011-06-30 2018-03-06 3M Innovative Properties Company Systems and methods for detecting an analyte of interest in a sample using microstructured surfaces

Also Published As

Publication number Publication date
CN1693151A (zh) 2005-11-09

Similar Documents

Publication Publication Date Title
WO2005108950A1 (fr) Dispositif permettant de secher, preserver et recuperer des echantillons liquides
US7189331B2 (en) Centrifuge adapter
JP7188823B2 (ja) 試料容器
CA2658503C (en) Membrane-based double-layer tube for sample collections
US6503455B1 (en) Container for dying biological samples, method of making such container, and method of using same
JP6711825B2 (ja) 培養容器輸送用セットおよび細胞・生体組織輸送ユニット
US20150343438A1 (en) Specimen collection apparatus
US20050139547A1 (en) Plasma on demand tube
EP3473340B1 (en) A container for selective transfer of samples of biological material
EP1680332A1 (en) Processing cap assembly for isolating contents of a container
US20080274512A1 (en) Reagent Transfer Device
JP6680742B2 (ja) 磁性粒子収集方法及び試験セット
JPH11295301A (ja) 血液連続濾過装置
US20040048392A1 (en) Container for drying biological samples, method of making such container, and method of using same
CN114981398A (zh) 用于组合式细胞分离器和生物反应器的圆环体反应器
JPH08511957A (ja) 生物学的試料を収集および処理する装置
US10473566B2 (en) Blood sampling, storage and treatment apparatus
US7682570B2 (en) Multiwell plate
US6114153A (en) Hydrophobic particle-coated aqueous droplet reaction chamber
WO2022238469A1 (en) Container for processing and preserving a fluid biological sample, device and kit relevant thereto
CN114308166A (zh) 一种液体试剂预埋及释放结构
JPH02174835A (ja) 減圧採血管
JP2007003282A (ja) 検体採取用容器及び検体濾過方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase