WO2005104964A1 - Saw blade - Google Patents
Saw blade Download PDFInfo
- Publication number
- WO2005104964A1 WO2005104964A1 PCT/US2005/012476 US2005012476W WO2005104964A1 WO 2005104964 A1 WO2005104964 A1 WO 2005104964A1 US 2005012476 W US2005012476 W US 2005012476W WO 2005104964 A1 WO2005104964 A1 WO 2005104964A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- teeth
- hypotenuse
- saw blade
- pair
- tips
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D61/00—Tools for sawing machines or sawing devices; Clamping devices for these tools
- B23D61/12—Straight saw blades; Strap saw blades
- B23D61/121—Types of set; Variable teeth, e.g. variable in height or gullet depth; Varying pitch; Details of gullet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/14—Surgical saws
- A61B17/142—Surgical saws with reciprocating saw blades, e.g. with cutting edges at the distal end of the saw blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D51/00—Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends
- B23D51/08—Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends of devices for mounting straight saw blades or other tools
- B23D51/10—Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends of devices for mounting straight saw blades or other tools for hand-held or hand-operated devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D61/00—Tools for sawing machines or sawing devices; Clamping devices for these tools
- B23D61/006—Oscillating saw blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27B—SAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
- B27B19/00—Other reciprocating saws with power drive; Fret-saws
- B27B19/006—Other reciprocating saws with power drive; Fret-saws with oscillating saw blades; Hand saws with oscillating saw blades
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/14—Surgical saws
Definitions
- the following writing relates generally to instrumentalities for cutting bone during surgery. More particularly, the instant writing is directed to a saw blade adapted to be operatively coupled to an oscillatory (or sagittal) surgical power tool which reciprocates the cutting blade back and forth about a small arc.
- the surgical saw blade may have a distal end having at least one pair of teeth configured to be adjacent to each other and each of the pair of teeth is configured as a right triangle each having a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis.
- this writing discloses a surgical saw blade having at least one pair of opposed teeth shaped as right triangles .
- This kicking or grabbing that occurs causes a loss of accuracy in the cut from the sudden, unpredictable movements of the saw and induces increased fatigue of the surgeon because of the greater tension that the surgeon must maintain in his hands and arms in anticipation of receiving this kicking or grabbing motion.
- Another problem noted in existing blades involves the tendency of the saw to initially wander rather than to form a kerf.
- One reason for this involves the nature of oscillatory cutter blades.
- the handle portion of the saw remains stable because it is in the surgeon's control and remote from the cutting. However a blade (having a proximal end mounted into the oscillatory power tool) moves at a distal end that scribes an arc of a circle.
- the natural tendency is to make a plunge type cut, i.e., move the tool and blade in a single direction, plunging the saw in the bone for cutting.
- the direction of force imposed by the surgeon is intuitively coaxial with the long axis of the saw and blade.
- prior art cutting blades having curved cutting heads will cause the tip of the tooth to either wander or kick.
- the instant invention addresses the bone to be cut in a manner which reduces fatigue by the surgeon and vibration or impulses generated during the cutting process. More specifically, when a tooth profile parallels tangents to the arc of travel of the oscillatory cutter, the bone to be cut sees approximately one tooth at a time when the surgeon is making a plunge into the bone.
- each working tooth progressively cuts more material than the previous working tooth so that collectively, all teeth contacting the bone to be cut make progressive contributions.
- Three types of saw blades illustrative of these phenomena are disclosed * in the instant application.
- One blade includes a series of cutting tips all oriented in a linear plane and the teeth which support these tips all have the general configuration of isosceles triangles.
- a second form of cutting tool in which the tips of all of the teeth are also substantially in a horizontal plane, but the teeth which support these tips have a different contour from the first version.
- a central-most tooth may be in the form of an isosceles triangle as in the first invention form, but the remaining teeth disposed outboard the central isosceles tooth are all substantially right triangles in which the vertical leg of the right triangle is oriented adjacent the central isosceles tooth and the hypotenuse portion is outboard from the central isosceles tooth. This provides a positive rake, and the most aggressive cut as the blade cuts progressively from the inside out.
- a third form of cutting blade is shown in which the right
- triangles of the second version have been oriented 180 so that the hypotenuse of each cutting tooth faces the center of the cutting blade.”
- the "right” triangles may be "near"
- the cutting blade may have a distal end having at least one pair of teeth having tips configured to be adjacent to each other and positioned one on each side of the elongated central axis of the blade.
- Each of the pair of teeth is configured as a right triangle each having a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis.
- a further attempt with the present invention is to provide a device as characterized above which minimizes the degree of heat buildup associated with the surgical cutting to reduce the thermal necrosis that attends cutting bone.
- a further attempt with the present invention is to provi d e a device as characterized above which minimizes the backlash and kick that the surgeon experiences when using traditional blades.
- a further attempt with the present invention is to provide a device as characterized above which can be relatively economically manufactured, lends itself to mass production techniques and is extremely durable in construction.
- a further attempt with the present invention is to provide a device as characterized above which cuts aggressively and has a tendency to initially form a kerf, and self 'centers itself and cuts through the bone quickly within which the blade will reside.
- a further attempt with the present invention is to provide a
- surgical saw blade having a centrally positioned long axis, a proximal end configured to couple to a surgical bone saw and a distal end having at least one pair of teeth having tips for cutting bone which are configured to be adjacent to each other and wherein one of the pair of teeth is configured as a right triangle with a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis and the other of the pair of teeth configured as a right triangle with a hypotenuse which is oriented in a direction opposite to the hypotenuse of the one of the pair of teeth.
- a further attempt with the present invention is to provide a surgical saw blade having at least one pair of teeth having tips for cutting bone which are configured to be adjacent to each other and wherein the distal end has extending from each of the pair of teeth at least one additional tooth having a tip for cutting bone wjiich is substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of the adjacent tooth defining the pair of teeth and wherein the tips of all of the teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- a further attempt with the present invention is to provide a surgical saw blade having between at least two additional teeth having tips and up to five additional teeth having tips for cutting bone all of which are substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is,oriented in the same direction as the hypotenuse of the adjacent tooth defining the pair of teeth and wherein the tips of all of the teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- the present invention to provide a surgical cutting saw bla ⁇ e ror penetrating bone when the blade is operatively coupled to an oscillatory power tool.
- the saw blade has a proximal end and a distal end.
- the proximal end has means for attachment to the oscillatory power tool for driving engagement thereby.
- the distal end has a plurality of cutting teeth oriented such that, initially, the outboard teeth contact the bone to be cut to thereby provide better tracking of the saw when forming a kerf in the bone, and the teeth then cut sequentially as the kerf begins to form to provide faster, aggressive cutting and lower temperature cutting through efficient chip removal.
- Figure 1 is a top plan view of the apparatus according to one embodiment of the present invention
- Figure 2 is a top plan view of a second embodiment similar to Figure 1
- Figure 3 is a detail of the distal end of the embodiment shown in Figure 2
- Figure 4 shows the distal end of a third embodiment
- Figure 5A diagrammatically shows the blade of the present invention posed to begin a cut
- Figure 5B shows the Figure 5A blade having progressed partially through a cut
- Figures 6A and 6B parallel Figures 5A and 5B respectively but show prior art
- Figure 7 is a top plan view of another embodiment of the present invention wherein the saw blade has a tooth structure comprising a center tooth defining a "whale shaped" tooth formed of two opposing right triangles having tips and located to have the axially extending centerline of the saw blade passing therethrough followed on each side thereof with five identically shaped teeth having tips formed of a right triangle having tips and located to have the hypotenuse thereof extending at least one of towards and
- reference numeral 10 is directed to the straight saw blade according to one form of the invention
- reference numeral 30 is directed to the reverse opposed blade according to the second form of the invention
- reference numeral 40 is directed to the outwardly opposed blade according to a third form of the invention.
- the straight saw blade 10 of Figure 1 and according to the present invention includes a distal end 8 upon which a plurality of teeth 2 are positioned and a proximal end 12 which is adapted to coact with and attach to an oscillatory (or sagittal) surgical power tool (not shown) .
- the proximal end 12 has a somewhat bulbous terminus 22 that includes a slot 14 running along the long axis A of the saw blade 10.
- a plurality of holes 16 circumscribe portions of the slot adjacent the bulbous terminus 22 to further facilitate interconnection between the saw blade 10 and the oscillatory power tool.
- the blade .10 includes a shank 18 interposed between the proximal end 12 and the distal end 8.
- the shank 18 is formed from substantially flat stock material having side edges 20a which, as shown in Figure 1, are tapering so that the blade narrows as it goes from the distal end 8 to the proximal end 12.
- the distal end 8 of the blade 10. includes, coincident with the long axis A of the blade 10, a diamond shaped cutout 24 having radiused apices at the corners of the diamond.
- the diamond shaped cutout is oriented such that two of the four radiused apices are coincident with the long axis A of the shank 18.
- the diamond shaped orientation tends to assist in tooth profiling during fabrication.
- the distal end 8 of the saw blade 10 includes a plurality of teeth 2 disposed- on the distal end of the blade 10 remote from the slot 14. Each of the teeth 2 is formed from two sides.4, which coalesce to form the tooth 2. The area of coalescence is defined as tip 6.
- each of the teeth 2 are formed as isosceles triangles having all tips 6 located on a line T which is tangential to the oscillatory rotation R shown in Figure 1.
- the tips, decide6 terminate on the tangent line ' T which is perpendicular to the longitudinal axis A of the cutting blade 10. This is measured when the blade is at an angle which is one-half its maximum arc swing.
- an oscillating power o o . tool swings ' through an arc. of 2 to 8 and at speeds ranging from 10,000 cycles per minute to 30,000 cycles per minute.
- Figure 2 shows a variant of that which is shown in Figure 1. Tooth details for Figure 2 are shown in Figure 3.
- the blade 30 is generally characterized as one which is "reverse opposed” i.e., having a plurality of teeth which are inwardly directed such that when a centerline CL is drawn through the long axis of the blade, two sets of inwardly directed teeth will be evidenced. Those teeth which are to one side of the centerline face those teeth on the other side and are opposed to each other. ⁇
- the blade 30 also shows that the proximal end 12 includes a bulbous terminus 22 as described with respect to figure 1 but in addition to the slot 14 running parallel to the long axis or center line CL, a pair of recesses 15 extend inwardly on linear portions of the U-shaped slot for additional attachment to the oscillatory power tool.
- FIG. 1 the centerline reflects that one central tooth 32 has an apex or tip coincident with the centerline CL of- the long axis of the blade 30.
- the central tooth 32 is depicted as forming a substantially isosceles triangle similar to the teeth 2 shown in Figure 1.
- the centerline CL serves as a line of demarcation between the left lateral side of blade 30 and the right lateral side of blade 30.
- the left lateral side includes a plurality of inwardly (i.e. towards central tooth 32) canted teeth 34.
- the right lateral teeth 36 are also inwardly canted toward the central isosceles tooth 32.
- Both of the left lateral teeth 34 and right lateral teeth 36 are formed substantially as right triangles with the right angle
- p can be slightly greater than ' 90 to provide a positive tooth rake when cutting.
- the hypotenuse leg H of each tooth 34 and 36 is outboard with respect to its vertical leg V. As shown, when p is greater
- leg V slopes towards the centerline CL providing a positive rake.' 1
- teeth 34 and 36 on opposite sides of the central tooth 32 "oppose" each other when cutting.
- Figure 5A shows the blade poised and oriented tangential to the bone and the teeth perpendicular to the center line CL.
- Figure 5B shows the cut after progress has been made in the cut. The cut has been exaggerated to explain the effect.
- the kerf 33 is actually V shaped about central tooth 32.
- the right side teeth 36 cuts Figure 5B
- the left side teeth 34 are cooling and cleaning.
- the last tooth 36 has just finished cutting and the tooth labeled 34 is about to begin a cut.
- each tooth progressively takes a small cut 31 on each oscillatory stroke from the center then laterally outwards.
- This can be viewed as "progressive staircasing" with the stairs 31 being removed one at a time.
- Figure 5B shows a blade 30 in an advanced stroke of oscillation where the staircase of material on the left side of the center tooth 32 has already been removed (in an earlier stroke) . Then the blade goes into this advanced stroke and has just completely finished this stroke where tooth 36 has stopped its leftward or inward motion and this progressive staircase looking kerf has been formed.
- the left side teeth 34 are working, the right side teeth 36 are cooling and being cleaned of chips. A very slight V shaped kerf is formed in practice.
- the active cutting tip 6 is the end of the vertical leg V where it contacts leg H.
- the central tooth 32 is optional.
- Note the teeth in the Figure 3 embodiment also terminate along a tangent line T which is at right angles to the centerline CL.
- the proximal end of the Figure 4 version has not been shown. This is due to the fact that it could be accommodated by many commercially available or by either the Figure 1 or the Figure 2 variants and will not be belabored here. However, the distal end 8 of the Figure 4 version bears some differences which need to be addressed.
- This version 40 is distinguished from the first version 10 and second version 30 by including a plurality of outwardly opposed teeth.
- the centerline CL of the Figure 4 version 40 serves as a line of demarcation between the left side teeth 44 and the right side teeth 46.
- the centerline CL when bisecting between the left side teeth 44 and the right side teeth 46, passes through a central isosceles void 42 (i.e. the absence of a central tooth) .
- the tooth structure 44 and 46 is similar to the Figures 2 and 3 structure.
- the 0 hypotenuse leg H of these triangles has been transposed 180 so that this leg now faces the central isosceles void 42 and the vertical leg V is canted slightly to the "outside", i.e. away from the center line CL and center isosceles void 42, providing a negative rake.
- teeth 44 and 46 work opposite from the teeth 44 and 46 shown in figures 2 and 3.
- all teeth in all versions are substantially "flat-top” configured, i.e., the tips stop at the tangent T perpendicular to the center line CL.
- Note the tip 48 of the outermost teeth 44 and 46 extend beyond the side edges 20c.
- the aggressive cutting pattern of the blade 40 shown in Figure 4 has excellent chip clearing properties analogous to Figure 5B, but opposite therefrom.
- Prior art Figures 6A and 6B show the effect of cutting •teeth on a curve such that the radius r falls between the oscillatory axis 0 and the distal end 8. In use, only very few teeth actually do the cutting work and the cutting is not progressively advanced.
- FIG. 7 illustrates another embodiment or species of the present invention wherein the surgical saw blade 50 has a tooth structure comprising a center tooth 52 defining a "whale shaped" tooth formed of two opposing right triangles 56 and 58 having an axially extending centerline or a centrally positioned long axis 62 of the surgical saw blade passing there through.
- the surgical saw blade 50 includes a proximal end 66 configured to couple to a surgical bone saw.
- the surgical saw blade 50 includes a distal end 74 having at least one pair Of teeth 56 and 58 for cutting bone.
- the at least one pair of teeth 56 and 58 having tips are configured to be adjacent to each other and each tooth is configured as a right triangle with a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis.
- the one tooth 56 has a hypotenuse 80 which is oriented at least one of towards and away from the centrally positioned long axis.
- the other of the pair of teeth 58 is configured as a right triangle with a hypotenuse 86 which is oriented in a direction opposite to the hypotenuse of the one tooth 56 of the pair of teeth.
- the tips of the teeth 56 and 58 are arrayed substantially on a tangent perpendicular to the centrally positioned long axis 62.
- the distal end 74 has extending from each of the pair of teeth 56 and 58 at least one additional tooth 90 having a tip for cutting bone which is substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of the adjacent tooth defining the pair of teeth.
- the tips of all of the teeth 56, 58 and 90 are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- this species of the surgical saw blade has a pair of opposed teeth 56 and 58 and five additional teeth 90 having tips extending from each of the pair of teeth 56 and 58.
- the proximal end 66 has a hub that is configured to be 'driven by a saw having a single driving pin.
- the top plan view of Figure 8 illustrates yet another embodiment or species of the present invention wherein the surgical saw blade 100 has a tooth structure comprising a center tooth 102 defining a "whale shaped" tooth formed of two opposing right triangles 106 and 108 having an axially extending centerline or a centrally positioned long axis 112 of the surgical saw blade passing there through.
- the surgical saw blade 100 includes a proximal end 116 configured to couple to a surgical bone saw.
- the surgical saw blade 100 includes a distal end 120 having at least one pair of teeth 106 and 108 having tips for cutting bone.
- the at least one pair of teeth 106 and 108 are configured to be adjacent to each other and each tooth is configured as a right triangle with a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis.
- the one tooth 106 has a hypotenuse 124 which is oriented at least one of towards and away from the centrally positioned long axis.
- the other of the pair of teeth 108 is configured as a right triangle with a hypotenuse 128 which is oriented in a direction opposite to the hypotenuse of the one tooth 106 of the pair of teeth.
- the tips of the te'eth 106 and 108 are arrayed substantially on, a tangent perpendicular to the centrally positioned long axis 112.
- the distal end 116 has extending from each of the pair of teeth 106 and 108 at least one additional tooth 132 having a tip for cutting bone which is substantially identically shaped -as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of the adjacent tooth defining the pair of teeth.
- the tips of all of the teeth 106, 108 and 132 are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- this species of the surgical saw blade has a pair .of opposed teeth 106 and 108 and four additional teeth 132 having tips extending from each of the pair of teeth 106 and 108.
- the proximal end 116 has a hub that is configured to be driven by a saw having a multiple pin driver.
- the top plan view of Figure 9 illustrates still yet another embodiment or species of the present invention wherein the surgical saw blade 200 has a tooth structure comprising a center tooth 202 defining a "whale shaped" tooth formed of two opposing right triangles 206 and 208 having an axially extending centerline or a centrally positioned long axis 212 of the surgical saw blade passing there through.
- the surgical saw blade 200 includes a proximal end 216 configured to couple to a surgical bone saw.
- the surgical saw blade 200 includes a distal end 220 having at least one pair of teeth 206 and 208 having tips for cutting bone.
- the at least one pair of teeth 206 and 208 are configured to be adjacent to each other and each tooth is configured as a right triangle with a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis.
- the one tooth 206 has a hypotenuse 224 which is oriented at least one of towards and away from the centrally positioned long axis.
- the other of the pair of teeth 208 is configured as a right triangle with a hypotenuse 228 which is oriented in a direction opposite to the hypotenuse of the one tooth 206 of the pair of teeth.
- the tips of the teeth 206 and 208 are arrayed substantially on a tangent perpendicular to the centrally positioned long axis 212.
- the distal end 216 has extending from each of the pair of teeth 206 and 208 at least one additional tooth 232 having a tip for cutting bone which is substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of the adjacent tooth defining the pair of teeth.
- the tips of all of the teeth 206, 208 and 232 are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- this species of the surgical saw blade has a pair of opposed teeth 206 and 208 and two additional teeth 232 extending from each of the pair of teeth 206 and 208.
- the proximal end 216 has a hub that is configured to be driven by a saw having a multiple pin driver.
- the top plan view of Figure 10 illustrates yet still another embodiment or species of the present invention wherein the surgical saw blade 300 has a tooth structure comprising a center tooth 302 defining a "whale shaped" tooth formed of two opposing right triangles 306 and 308 having an axially extending centerline or a centrally positioned long axis 312 of the surgical saw blade passing there through.
- the surgical saw blade 300 includes a proximal end 316 configured to couple to a surgical bone saw.
- the surgical saw blade 300 includes a distal end 320 having at least one pair of teeth 306 and 308 having tips for cutting bone.
- the at least one pair of teeth 306 and 308 are configured to be adjacent to each other and each tooth is configured as a right triangle with a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis.
- the one tooth 306 has a hypotenuse 324 which is oriented at least one of towards and away from the centrally positioned long axis.
- the other of the pair of teeth 308 is configured as a right triangle with a hypotenuse 328 which is oriented in a direction opposite to the hypotenuse of the one tooth 306 of the pair of teeth.
- the tips of the teeth 306 and 308 are arrayed substantially on a tangent perpendicular to the centrally positioned long axis 212.
- the distal end 216 has extending from each of the pair of teeth 306 and 308 at least one additional tooth 332 having a tip for cutting bone which is substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of the adjacent tooth defining the pair of teeth.
- the tips of all of the teeth 306, 308 and 332 are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- this species of -the surgical saw blade has a pair of opposed teeth 306 and 308 and two additional teeth 332 having tips extending from each of the pair of teeth 306 and 308.
- the proximal end 316 has a hub that is configured to be driven by a saw having a single pin driver.
- the distal end 74 of surgical saw blade 50 has extending from each of the pair of teeth 56 and 58 has at least one additional tooth 90 for cutting bone which is substantially identically shaped as a right triangle as the teeth 56 and 58 including a hypotenuse and an angle opposite the hypotenuse with the hypotenuse oriented in the same direction as the hypotenuse of the adjacent tooth 56 or 58 defining the pair of teeth. All of the tips of all of the teeth 56, 58 and 90' are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- the number of additional teeth can be a number for at least two additional teeth having tips to five additional teeth having tips.
- the surgical saw blade illustrated therein are for use in combination with a surgical bone saw.
- the surgical saw blade 100 comprises a proximal end 116 which is configured to couple to a surgical bone saw.
- the surgical saw blade 100 includes a distal end 120 having a plurality of substantially identical teeth having tips for cutting bone. Each of the plurality of teeth end in a tip distally.
- the surgical saw blade includes a centrally positioned long axis 112 extending between the proximal end 116 and the distal end 120.
- the a plurality of substantially identical teeth for cutting bone include at least one pair of teeth 106 and 108 for cutting bone which are configured to be adjacent to each other and wherein one of the pair of teeth, tooth 106, has a hypotenuse 124 which is oriented at least one of towards and away from the centrally positioned long axis 112.
- the other of the pair of teeth, tooth 108 has a hypotenuse 128 which is oriented in a direction opposite to the hypotenuse 128 of the one of the pair of teeth 106 and the tips thereof are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- the distal end 120 has extending from each of the pair of teeth 106 and 108 at least one additional tooth 132 for cutting bone which is substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of its adjacent tooth defining the pair of teeth 106 and 108.
- the tips of all of the teeth 106, 108 and 132 are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- the at least one additional tooth may be a single- tooth having a tip or a number of teeth having tips which is at least two additional teeth to five additional teeth.
- Each of the additional teeth, teeth 132 in Figure 8 being exemplary, are substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse and the hypotenuse thereof is oriented in the same direction as the hypotenuse of the adjacent tooth of the pair of teeth 106 and 108, respectively.
- the tips of all of the teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- Each of the species of the surgical saw blade illustrated in Figures 7 through 10 can be used in a method of cutting bone.
- the method comprises the steps of: a) providing a surgical saw blade having a proximal end configured to couple to a surgical bone saw, a distal end having a plurality of substantially identical teeth having tips for cutting bone, each of the plurality of teeth ending in a tip distally and a centrally positioned long axis between the proximal end and the distal end and wherein said distal end has a plurality of substantially identical teeth having tips for cutting bone including at least one pair of teeth for cutting bone which are configured to be adjacent to each other and wherein one of the pair of teeth has a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis and the other of said pair of teeth has a hypotenuse which is oriented in a direction opposite to the hypotenuse of the one of the pair of teeth and wherein the tips are arrayed substantially on a tangent perpendic
- the method may include using a surgical saw blade wherein the additional number of teeth of the saw blade provided in step a) are at least two additional teeth having tips.
- the method may include using a surgical saw blade wherein the additional number of teeth of the saw blade provided in step a) are between at least two additional teeth having tips and five additional teeth having tips.
- the method may include using a surgical saw blade wherein the angle opposite each hypotenuse of the teeth provided in step o a) is greater than 90 .
- the structures of the surgical saw blades illustrated in Figs. 7 through 10 provide a surgeon with several variations of surgical saw blades for use in cutting bone as part of a surgical procedure or surgical operation. Specifically, the structure of each of the distal ends of the surgical saw blades of Figs.
- the teeth 7 through 10 enable the tips qf the teeth thereof to contact the bone to be cut thereby and to provide better tracking of the surgical saw blade when forming a kerf in the bone.
- the teeth cut both progressively and sequentially as the kerf begins to form to provide faster aggressive cutting and efficient chip removal. If a faster or more rapid cutting of the bone is desired during a surgical procedure, the surgeon may elect to use the surgical saw blade of Figs, 7 and 8 which have more teeth available to provide faster aggressive cutting and efficient chip removal . If a more controlled or slower cutting of the bone is desired during a surgical procedure, the surgeon may elect to use the surgical saw blades of Figs. 9 and 10 which have a lower number of teeth to provide a more controlled aggressive cutting and efficient chip removal.
- the coefficient of friction between a surgical saw blade, the bone to be cut and a surgical saw cutting guide may affect the quality of the final bone cut due to possible sticking or lack of smooth movement of the surgical saw blade during a surgical procedure. It is envisioned that a lubricious surface treatment, such as a coating could be applied to the surgical saw blades, described herein, to reduce the coefficient of friction between a surgical saw blade, the bone to be cut and a surgical accessory, such as for example a surgical saw ' blade cutting guide.
- a lubricious surface treatment and or coating material having a composition capable of decreasing the coefficient of friction between a surgical saw blade, the bone to be cut and a surgical accessory is applied to the distal end of the surgical saw blade including the teeth that would be in contact with bone or bone fragments during cutting. This results in a reduction of the coefficient of friction on the outer surface of the saw blade.
- the lubricious surface treatment and or coating material has a Vickers hardness number (HV) of about 820 or above.
- HV Vickers hardness number
- the coefficient of friction of a surgical saw blade that is untreated or uncoated with a lubricious surface treatment and or coating material is in the range of about 0.25 or more on/against steel.
- a lubricious surface treatment and or coating material When a lubricious surface treatment and or coating material is applied to the surgical saw blade, using coating techniques the coefficient of friction is lowered to about 0.8 to about 0.20 on/against steel, depending on the composition and physical characteristics of the lubricious surface treatment and or coating material.
- the lower coefficient of friction of the lubricious surface treatment and or coating of this invention gives the surgical . saw blades a significantly enhanced ability to glide easily between the bone being cut, tissue that .comes in contact with the surgical saw blade and interpro imal contact between the surgical saw blade and surgical accessory contacted by the surgical saw blade during a procedure such as, for example, a cutting guide.
- the following are examples, of lubricious surface treatment and or coating materials that can be used to practice this invention.
- the lubricious surface treatment and or- coating material may have a selected thickness. If the lubricious surface treatment and or coating material is applied by vacuum deposition or vapor deposition, e.g. PVD, the thickness may be in the order of a few microns (1 ⁇ mtolO ⁇ ). Oh the other hand, if the lubricious surface treatment and or coating material is applied by dipping, spraying, a laminated coating procedures or is applied using other coating procedures known to those skilled in the art, the thickness- may be in a range, of the order of about 1 mil to about 15 mils.
- this writing discloses a cutting saw blade for use with an oscillatory power tool used in surgical • bone cutting procedures including a blade having a distal end provided with teeth whose tips are located on a tangent line perpendicular to the long axis of the blade.
- the teeth are configured substantially as right triangles with their hypotenuses facing either towards the center of the blade or away from ' it'he center of the blade.-
- a central tooth can be optionally provided.
- the surgical saw blade may have a distal end having at least one pair of teeth configured to be adjacent to each oth@r and each of the pair of teeth is configured as a right triangle each having a hypotenuse which is oriented at least one of towards and away from .the centrally positioned long axis.
- a surgical saw blade having a centrally-positioned long axis comprising a proximal end configured to couple to a surgical bone saw; and a distal end having at least one pair of teeth for cutting bone which are configured to be adjacent to each other wherein one of the pair of teeth is configured as a right triangle with a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis and the other of said pair of teeth is configured as a right triangle with a hypotenuse which is oriented in a direction opposite to said one of the pair of teeth and wherein the tips are arrayed substantially on a tangent perpendicular to the centrally positioned long axis, and wherein said distal end has extending from each of 'said pair of teeth at least one additional tooth for cutting bone which is substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of the adjacent tooth defining said pair of teeth and
- the surgical saw blade of point 1 wherein said distal end has extending from each of said pair of teeth at least two additional teeth for cutting bone each of which are substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with the hypotenuse is oriented in the same direction as the hypotenuse of the adjacent tooth defining said pair of teeth and wherein the tips of all of the teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axis. 3.
- the surgical saw blade of point 1 wherein said distal end has extending from each of said pair of teeth at least three additional teeth for cutting bone each of which are substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with the hypotenuse is oriented in the same direction as the hypotenuse Of the adjacent tooth defining said pair of teeth and wherein the tips of all of the teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axis. 4.
- the surgical saw blade of point 1 wherein said distal end has extending from each of said pair of teeth at least four additional teeth for cutting bone each of which are substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with the hypotenuse is oriented in the same direction as the hypotenuse of the adjacent topth defining said pair of teeth and wherein the tips of all of the teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axis. 5.
- the pair of teeth having a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis has extending there from at least one additional tooth having a tip for cutting bone whi'ch is substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with the hypotenuse of said at least one additional tooth being oriented in the same direction as the hypotenuse of said one of the pair of teeth and the other of the pair of teeth having a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis has extending there from at least one additional tooth having a tip for cutting bone which is substantially identically shaped as a right triangle including a- hypotenuse and an angle opposite the hypotenuse with the hypotenuse of said other of the pair of teeth being oriented in the same direction as the hypotenuse of said other of the pair of teeth and wherein the tips of all of teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axi
- At least four additional teeth having tips for cutting bone which are substantially identically- shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with the hypotenuse of each of said at least four additional teeth being oriented in the same direction as the hypotenuse of said other of the pair of teeth and wherein the tips of all of the teeth sire arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
- a surgical saw blade for use in combination with a surgical bone saw, the surgical saw blade comprising: a) . a proximal end configured to couple to a surgical bone saw; b) a distal end having a plurality of substantially identical teeth for cutting bone, each of the plurality of teeth ending in a tip distally; and c) a centrally positioned long axis between the proximal end and the distal end; wherein said distal end having a plurality of substantially identical teeth having tips for cutting .
- bone include at least ⁇ one pair of teeth for cutting bone which are configured to be adjacent to each other and positioned one at each side of the centrally positioned long axis and wherein one of the pair of teeth has a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis and the other of said pa'ir of teeth has a hypotenuse which is oriented in a direction opposite to the hypotenuse of said one of the pair of teeth and wherein the tips are arrayed
- a surgical saw blade for penetrating bone when said surgical saw blade is operatively coupled to an oscillatory power tool comprising: a surgical saw blade having a proximal end and a distal end; and said proximal end having a hub for attachment to an oscillatory power tool for driving engagement thereby; said distal end having at least one pair of teeth having tips for cutting bone which are configured to be adjacent to each other and wherein one of the pair of teeth has a hypotenuse which is oriented at least one of towards and away from the centrally positioned long axis and the other of said pair of
- teeth has a hypotenuse which is oriented in a direction opposite to the hypotenuse of said one of the pair of teeth and wherein the tips are arrayed substantially on a tangent perpendicular to the centrally positioned long axis, and wherein said distal end has extending from each of said pair of teeth at least one additional tooth having a tip for cutting bone which is substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of the adjacent tooth defining said pair of teeth, and wherein the tips of all of the teeth are configured to be placed substantially on a tangent which is perpendicular to a radial line extending from the center line of the power tool cutting axis that bisects the arc of travel within which the blade travels such that said teeth contact the bone to be cut thereby to provide better tracking of said surgical saw blade when forming a kerf in the bone, whereupon said teeth cut both progressively and
- a surgical saw blade for use in combination with a surgical bone saw comprising: a) a proximal end configured to couple to a surgical bone saw; and b) a distal end having at least one pair of teeth having tips for cutting bone which are configured to be adjacent to each other and to have one of the pair of teeth configured as a right triangle with a hypotenuse which is oriented at least one of towards and away from a centrally positioned long axisextending between the proximal end and the distal end and the other of said pair of teeth wherein configured as a right triangle with a hypotenuse which is oriented in a direction opposite to the hypotenuse of said one of the pair of teeth and wherein said distal end has extending from each of said pair of teeth at least one additional tooth having a tip for cutting bone which is substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse w .
- a hypotenuse which is oriented in the same direction of as the hypotenuse of the adjacent tooth defining said pair of teeth, each of the plurality of teeth ending in a tip distally; wherein the tips of all of the teeth are configured to be placed substantially on a tangent which is perpendicular to. a radial line extending from the center line of the power tool cutting axis that bisects the arc of travel within which the blade travels. 15.
- the surgical saw blade of point 14 wherein the number of additional teeth each ' extending from each- of said pair of teeth are at least two additional teeth having tips for cutting bone which are substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of the adjacent tooth defining said pair of teeth, and wherein the tips of all of the teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axis. 16.
- the ⁇ surgical saw blade of point 14 wiierein the number of additional teeth each extending from each of said pair of teeth are at.
- a surgical bone saw and a bone saw blade comprising: a) an oscillatory or sagittal bone saw; and b) a surgical saw blade having; i) a proximal end configured' to couple to a surgical bone saw; ii) a distal end having at least one pair of teeth having tips for cutting bone which ' are configured to be adjacent to each other and to have one of the pair of teeth configured as a right triangle with a hypotenuse which is oriented at least one of towards and away from a centrally positioned axis extending between the proximal end and the distal end and the other of said* ''' pair of teeth configured as a right triangle with a hypotenuse which is oriented in a direction opposite to the hypotenuse of said one ' of the pair of teeth and wherein said distal end has extending from each of said pair of teeth at least one additional tooth for cutting bone which is substantially identically shaped as a right triangle including a hypotenuse
- a surgical saw blade for penetrating bone when said surgical saw blade is operatively coupled to an oscillatory power tool comprising: a surgical saw blade having a proximal end and a distal end; said proximal end having a hub for attachment to an oscillatory power tool for driving engagement thereby, said distal end having at least one pair of teeth having tips for cutting bone which are configured to be adjacent to each other and to have one of the pair of teeth configured as a right triangle with a hypotenuse which is oriented at least one of towards and away from a centrally positioned long axis extending between the proximal end and distal end axis and the other of said pair of teeth configured as a right triangle with the hypotenuse which is oriented in a direction opposite to the hypotenuse of said one of the pair of teeth and wherein
- T he surgical saw blade of point 22 wherein the number of additional teeth each extending from each of said pair of teeth are at least two additional teeth having tips for cutting bone which are substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of the adjacent tooth defining said pair of teeth, and wherein the tips of the additional teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axis. 24.
- the surgical saw blade of point 22 wherein the number of additional teeth each extending from each of said pair of eeth are at least three additional teeth having tips for cutting bone which are substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the as the hypotenuse of the adjacent tooth defining said pair of teeth, and wherein the tips of the additional teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axis. 25 .
- the surgical saw blade of point 22 wherein the number of additional teeth each extending from each of said pair of teeth are at least four additional teeth having tips for cutting bone which are substantially identically shaped as a right triangle including a hypotenuse and an angle opposite the hypotenuse with a hypotenuse which is oriented in the same direction as the hypotenuse of the adjacent tooth defining said pair of teeth, and wherein the tips of the additional teeth are arrayed substantially on a tangent perpendicular to the centrally positioned long axis.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Forests & Forestry (AREA)
- Wood Science & Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Harvester Elements (AREA)
- Dry Shavers And Clippers (AREA)
- Power Steering Mechanism (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP05735799A EP1740104B1 (en) | 2004-04-16 | 2005-04-11 | Saw blade |
| JP2007508489A JP2007532253A (ja) | 2004-04-16 | 2005-04-11 | 鋸刃 |
| DE602005017483T DE602005017483D1 (de) | 2004-04-16 | 2005-04-11 | Sägenblatt |
| AT05735799T ATE447369T1 (de) | 2004-04-16 | 2005-04-11 | Sägenblatt |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/826,209 US7527628B2 (en) | 1991-05-30 | 2004-04-16 | Surgical saw blade having at least one pair of opposed teeth shaped as right triangles |
| US10/826,209 | 2004-04-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2005104964A1 true WO2005104964A1 (en) | 2005-11-10 |
Family
ID=37487754
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2005/012476 Ceased WO2005104964A1 (en) | 2004-04-16 | 2005-04-11 | Saw blade |
Country Status (6)
| Country | Link |
|---|---|
| US (3) | US7527628B2 (enExample) |
| EP (2) | EP1740104B1 (enExample) |
| JP (1) | JP2007532253A (enExample) |
| AT (1) | ATE447369T1 (enExample) |
| DE (1) | DE602005017483D1 (enExample) |
| WO (1) | WO2005104964A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2515448A (en) * | 2013-03-06 | 2014-12-31 | Soutter Medical Ltd De | Surgical saw mount and blade |
| CN110025355A (zh) * | 2015-12-29 | 2019-07-19 | 重庆西山科技股份有限公司 | 护鞘摆锯片 |
| US10966730B2 (en) | 2019-05-27 | 2021-04-06 | Miyatani Co., Ltd. | Bone resection apparatus |
Families Citing this family (162)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7527628B2 (en) | 1991-05-30 | 2009-05-05 | Synvasive Technology, Inc. | Surgical saw blade having at least one pair of opposed teeth shaped as right triangles |
| USD525707S1 (en) * | 2003-07-16 | 2006-07-25 | Gebr. Brasseler Gmbh & Co. Kg | Surgical saw blade |
| US9247952B2 (en) * | 2004-10-15 | 2016-02-02 | Amendia, Inc. | Devices and methods for tissue access |
| US8273088B2 (en) * | 2005-07-08 | 2012-09-25 | Depuy Spine, Inc. | Bone removal tool |
| US7691106B2 (en) * | 2005-09-23 | 2010-04-06 | Synvasive Technology, Inc. | Transverse acting surgical saw blade |
| CA2523324C (en) * | 2005-09-27 | 2010-11-23 | Barry D. Fenton | Blade for rotary cutter |
| US7744616B2 (en) * | 2005-10-15 | 2010-06-29 | Stryker Ireland, Ltd. | Surgical sagittal saw blade with angled teeth and chip catchment and reciprocating saw blade with broached teeth |
| US20070147963A1 (en) * | 2005-12-23 | 2007-06-28 | Cooper Brands, Inc. | Transition Metal Nitride Coated File |
| US20150335438A1 (en) | 2006-02-27 | 2015-11-26 | Biomet Manufacturing, Llc. | Patient-specific augments |
| US8241293B2 (en) | 2006-02-27 | 2012-08-14 | Biomet Manufacturing Corp. | Patient specific high tibia osteotomy |
| US8858561B2 (en) | 2006-06-09 | 2014-10-14 | Blomet Manufacturing, LLC | Patient-specific alignment guide |
| US9918740B2 (en) | 2006-02-27 | 2018-03-20 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
| US8092465B2 (en) | 2006-06-09 | 2012-01-10 | Biomet Manufacturing Corp. | Patient specific knee alignment guide and associated method |
| US9907659B2 (en) | 2007-04-17 | 2018-03-06 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
| US9339278B2 (en) | 2006-02-27 | 2016-05-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
| US7967868B2 (en) | 2007-04-17 | 2011-06-28 | Biomet Manufacturing Corp. | Patient-modified implant and associated method |
| US20110046735A1 (en) * | 2006-02-27 | 2011-02-24 | Biomet Manufacturing Corp. | Patient-Specific Implants |
| US9113971B2 (en) | 2006-02-27 | 2015-08-25 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
| US9173661B2 (en) | 2006-02-27 | 2015-11-03 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
| US8535387B2 (en) * | 2006-02-27 | 2013-09-17 | Biomet Manufacturing, Llc | Patient-specific tools and implants |
| US9289253B2 (en) | 2006-02-27 | 2016-03-22 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
| US8608749B2 (en) | 2006-02-27 | 2013-12-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
| US8377066B2 (en) | 2006-02-27 | 2013-02-19 | Biomet Manufacturing Corp. | Patient-specific elbow guides and associated methods |
| US8407067B2 (en) * | 2007-04-17 | 2013-03-26 | Biomet Manufacturing Corp. | Method and apparatus for manufacturing an implant |
| US8603180B2 (en) | 2006-02-27 | 2013-12-10 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
| US8568487B2 (en) | 2006-02-27 | 2013-10-29 | Biomet Manufacturing, Llc | Patient-specific hip joint devices |
| US20080257363A1 (en) * | 2007-04-17 | 2008-10-23 | Biomet Manufacturing Corp. | Method And Apparatus For Manufacturing An Implant |
| US9345548B2 (en) | 2006-02-27 | 2016-05-24 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
| US8608748B2 (en) | 2006-02-27 | 2013-12-17 | Biomet Manufacturing, Llc | Patient specific guides |
| US8473305B2 (en) | 2007-04-17 | 2013-06-25 | Biomet Manufacturing Corp. | Method and apparatus for manufacturing an implant |
| US8864769B2 (en) | 2006-02-27 | 2014-10-21 | Biomet Manufacturing, Llc | Alignment guides with patient-specific anchoring elements |
| US8133234B2 (en) | 2006-02-27 | 2012-03-13 | Biomet Manufacturing Corp. | Patient specific acetabular guide and method |
| US8591516B2 (en) | 2006-02-27 | 2013-11-26 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
| US10278711B2 (en) | 2006-02-27 | 2019-05-07 | Biomet Manufacturing, Llc | Patient-specific femoral guide |
| US9795399B2 (en) | 2006-06-09 | 2017-10-24 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
| KR100873014B1 (ko) * | 2008-05-16 | 2008-12-09 | 의료법인 장산의료재단 | 로봇을 이용한 관절 절삭시스템 |
| USD603231S1 (en) * | 2008-05-30 | 2009-11-03 | Synvasive Technology, Inc. | Surgical saw blade hub |
| AU2014280901B2 (en) * | 2008-06-11 | 2017-02-16 | Medtronic Ps Medical, Inc. | Micro-saw blade for bone-cutting surgical saws |
| US8852221B2 (en) | 2008-06-11 | 2014-10-07 | Medtronic Ps Medical, Inc. | Surgical cutting instrument with near-perimeter interlocking coupling arrangement |
| US8920424B2 (en) * | 2008-06-11 | 2014-12-30 | Medtronic Ps Medical, Inc. | Micro-saw blade for bone-cutting surgical saws |
| USD601869S1 (en) * | 2008-09-12 | 2009-10-13 | Microaire Surgical Instruments, Inc. | Blade hub |
| USD627464S1 (en) * | 2008-09-18 | 2010-11-16 | Microaire Surgical Instruments, Inc. | Surgical saw blade teeth |
| US20100122620A1 (en) * | 2008-11-18 | 2010-05-20 | Pacific Saw And Knife Company Llc | Circular saw blade with thermal barrier coating |
| US8939981B1 (en) * | 2009-03-30 | 2015-01-27 | Keith Richard Anderson | Surgical saw blade for wedge osteotomies |
| US8672943B2 (en) * | 2009-05-12 | 2014-03-18 | Synvasive Technology, Inc. | Surgical saw blade device and system |
| USD642264S1 (en) * | 2009-05-28 | 2011-07-26 | Synvasive Technology, Inc. | Surgical saw blade hub |
| USD654590S1 (en) * | 2009-05-28 | 2012-02-21 | Synvasive Technology, Inc. | Surgical saw blade hub |
| CN201597020U (zh) * | 2009-07-01 | 2010-10-06 | 蔡吕乾 | 一种摆式工具工作头 |
| USD654167S1 (en) * | 2009-07-21 | 2012-02-14 | Sevika Holding AG | Surgical saw device |
| DE102009028503B4 (de) | 2009-08-13 | 2013-11-14 | Biomet Manufacturing Corp. | Resektionsschablone zur Resektion von Knochen, Verfahren zur Herstellung einer solchen Resektionsschablone und Operationsset zur Durchführung von Kniegelenk-Operationen |
| WO2011049566A1 (en) * | 2009-10-21 | 2011-04-28 | Synvasive Technology, Inc. | Surgical saw device and method of manufacture |
| US8828013B2 (en) * | 2009-11-02 | 2014-09-09 | Synvasive Technology, Inc. | Bone positioning device and method |
| US9095352B2 (en) | 2009-11-02 | 2015-08-04 | Synvasive Technology, Inc. | Bone positioning device and method |
| USD623034S1 (en) | 2009-12-18 | 2010-09-07 | Techtronic Power Tools Technology Limited | Tool arbor |
| USD619152S1 (en) | 2009-12-18 | 2010-07-06 | Techtronic Power Tools Technology Limited | Adapter |
| US8506569B2 (en) | 2009-12-31 | 2013-08-13 | DePuy Synthes Products, LLC | Reciprocating rasps for use in an orthopaedic surgical procedure |
| US8556901B2 (en) | 2009-12-31 | 2013-10-15 | DePuy Synthes Products, LLC | Reciprocating rasps for use in an orthopaedic surgical procedure |
| US8632547B2 (en) | 2010-02-26 | 2014-01-21 | Biomet Sports Medicine, Llc | Patient-specific osteotomy devices and methods |
| AU2011242551B2 (en) | 2010-04-22 | 2014-09-04 | Milwaukee Electric Tool Corporation | Saw blade |
| US10189099B2 (en) | 2010-04-22 | 2019-01-29 | Milwaukee Electric Tool Corporation | Saw Blade |
| US8925931B2 (en) | 2010-04-29 | 2015-01-06 | Black & Decker Inc. | Oscillating tool |
| US9073195B2 (en) | 2010-04-29 | 2015-07-07 | Black & Decker Inc. | Universal accessory for oscillating power tool |
| US9186770B2 (en) | 2010-04-29 | 2015-11-17 | Black & Decker Inc. | Oscillating tool attachment feature |
| CN201711607U (zh) * | 2010-05-11 | 2011-01-19 | 南京德朔实业有限公司 | 用于振荡式电动工具的工作元件 |
| USD646542S1 (en) | 2010-09-29 | 2011-10-11 | Milwaukee Electric Tool Corporation | Accessory interface for a tool |
| USD653523S1 (en) | 2010-09-29 | 2012-02-07 | Milwaukee Electric Tool Corporation | Adapter for a tool |
| US9271744B2 (en) | 2010-09-29 | 2016-03-01 | Biomet Manufacturing, Llc | Patient-specific guide for partial acetabular socket replacement |
| USD651062S1 (en) | 2010-09-29 | 2011-12-27 | Milwaukee Electric Tool Corporation | Tool interface for an accessory |
| US9968376B2 (en) | 2010-11-29 | 2018-05-15 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
| US8486076B2 (en) | 2011-01-28 | 2013-07-16 | DePuy Synthes Products, LLC | Oscillating rasp for use in an orthopaedic surgical procedure |
| USD665908S1 (en) * | 2011-02-15 | 2012-08-21 | Zimmer Surgical Sa | Surgical instrument |
| US9241745B2 (en) | 2011-03-07 | 2016-01-26 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
| US8715289B2 (en) | 2011-04-15 | 2014-05-06 | Biomet Manufacturing, Llc | Patient-specific numerically controlled instrument |
| US9675400B2 (en) | 2011-04-19 | 2017-06-13 | Biomet Manufacturing, Llc | Patient-specific fracture fixation instrumentation and method |
| US8668700B2 (en) | 2011-04-29 | 2014-03-11 | Biomet Manufacturing, Llc | Patient-specific convertible guides |
| US8956364B2 (en) | 2011-04-29 | 2015-02-17 | Biomet Manufacturing, Llc | Patient-specific partial knee guides and other instruments |
| US8532807B2 (en) | 2011-06-06 | 2013-09-10 | Biomet Manufacturing, Llc | Pre-operative planning and manufacturing method for orthopedic procedure |
| US9084618B2 (en) | 2011-06-13 | 2015-07-21 | Biomet Manufacturing, Llc | Drill guides for confirming alignment of patient-specific alignment guides |
| US8764760B2 (en) | 2011-07-01 | 2014-07-01 | Biomet Manufacturing, Llc | Patient-specific bone-cutting guidance instruments and methods |
| US20130001121A1 (en) | 2011-07-01 | 2013-01-03 | Biomet Manufacturing Corp. | Backup kit for a patient-specific arthroplasty kit assembly |
| DE102011078488A1 (de) * | 2011-07-01 | 2013-01-03 | Robert Bosch Gmbh | Werkzeug |
| USD716944S1 (en) | 2011-08-03 | 2014-11-04 | Synvasive Technology, Inc. | Surgical saw blade hub |
| US8597365B2 (en) | 2011-08-04 | 2013-12-03 | Biomet Manufacturing, Llc | Patient-specific pelvic implants for acetabular reconstruction |
| USD660963S1 (en) * | 2011-08-15 | 2012-05-29 | Zimmer Surgical Sa | Surgical instrument |
| USD660962S1 (en) * | 2011-08-15 | 2012-05-29 | Zimmer Surgical Sa | Surgical instrument |
| USD661805S1 (en) * | 2011-08-15 | 2012-06-12 | Zimmer Surgical Sa | Surgical instrument |
| US9066734B2 (en) | 2011-08-31 | 2015-06-30 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
| US9295497B2 (en) | 2011-08-31 | 2016-03-29 | Biomet Manufacturing, Llc | Patient-specific sacroiliac and pedicle guides |
| CN102974892A (zh) * | 2011-09-02 | 2013-03-20 | 博世电动工具(中国)有限公司 | 圆锯片 |
| US9386993B2 (en) | 2011-09-29 | 2016-07-12 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
| EP2775966B1 (en) | 2011-10-24 | 2015-09-16 | Synvasive Technology, Inc. | Knee balancing systems |
| US9554910B2 (en) | 2011-10-27 | 2017-01-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guide and implants |
| US9301812B2 (en) | 2011-10-27 | 2016-04-05 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
| US9451973B2 (en) | 2011-10-27 | 2016-09-27 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
| WO2013062848A1 (en) | 2011-10-27 | 2013-05-02 | Biomet Manufacturing Corporation | Patient-specific glenoid guides |
| KR20130046336A (ko) | 2011-10-27 | 2013-05-07 | 삼성전자주식회사 | 디스플레이장치의 멀티뷰 디바이스 및 그 제어방법과, 디스플레이 시스템 |
| DE102012208365A1 (de) * | 2011-12-20 | 2013-06-20 | Robert Bosch Gmbh | Drehoszillationssägeblatt für eine Werkzeugmaschine |
| US9237950B2 (en) | 2012-02-02 | 2016-01-19 | Biomet Manufacturing, Llc | Implant with patient-specific porous structure |
| US8936597B2 (en) | 2012-02-06 | 2015-01-20 | Medtronic Ps Medical, Inc. | Deflectable finger connection feature on surgical saw blade |
| US8858559B2 (en) | 2012-02-06 | 2014-10-14 | Medtronic Ps Medical, Inc. | Saw blade stability and collet system mechanism |
| USD682651S1 (en) | 2012-05-14 | 2013-05-21 | Campbell Hausfeld/Scott Fetzer Company | Accessory interface for a tool |
| USD682652S1 (en) | 2012-05-14 | 2013-05-21 | Campbell Hausfeld/Scott Fetzer Company | Tool accessory hub |
| US11253273B2 (en) * | 2019-07-01 | 2022-02-22 | Fusion Orthopedics, Llc | Surgical instruments including a set of cutting blades for performing an osteotomy |
| USD832666S1 (en) | 2012-07-16 | 2018-11-06 | Black & Decker Inc. | Oscillating saw blade |
| US9060788B2 (en) | 2012-12-11 | 2015-06-23 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
| US9204977B2 (en) | 2012-12-11 | 2015-12-08 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
| US9839438B2 (en) | 2013-03-11 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
| US9579107B2 (en) | 2013-03-12 | 2017-02-28 | Biomet Manufacturing, Llc | Multi-point fit for patient specific guide |
| US9498233B2 (en) | 2013-03-13 | 2016-11-22 | Biomet Manufacturing, Llc. | Universal acetabular guide and associated hardware |
| US9826981B2 (en) | 2013-03-13 | 2017-11-28 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
| US9517145B2 (en) | 2013-03-15 | 2016-12-13 | Biomet Manufacturing, Llc | Guide alignment system and method |
| US9555554B2 (en) | 2013-05-06 | 2017-01-31 | Milwaukee Electric Tool Corporation | Oscillating multi-tool system |
| DE102013107485B4 (de) * | 2013-07-15 | 2015-07-16 | Wolfgang Reng | Werkzeug zum Einsetzen in eine chirurgische Säge und Verfahren zum Fräsen einer Nut |
| USD742002S1 (en) * | 2013-09-04 | 2015-10-27 | Mako Surgical Corp. | Surgical saw blade |
| US9527146B2 (en) | 2013-10-04 | 2016-12-27 | Toronto Saw Works Inc. | Oscillating saw blades |
| US20150112349A1 (en) | 2013-10-21 | 2015-04-23 | Biomet Manufacturing, Llc | Ligament Guide Registration |
| US9637273B2 (en) * | 2013-12-23 | 2017-05-02 | Robert Bosch Tool Corporation | Hang tag package for a saw blade |
| CA158742S (en) * | 2014-04-18 | 2015-04-28 | Nanjing Jinmeida Tools Co Ltd | Oscillating saw blade |
| US10282488B2 (en) | 2014-04-25 | 2019-05-07 | Biomet Manufacturing, Llc | HTO guide with optional guided ACL/PCL tunnels |
| US9408616B2 (en) | 2014-05-12 | 2016-08-09 | Biomet Manufacturing, Llc | Humeral cut guide |
| US9561040B2 (en) | 2014-06-03 | 2017-02-07 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
| US9839436B2 (en) | 2014-06-03 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
| KR101647763B1 (ko) * | 2014-06-27 | 2016-08-11 | 김정환 | 금속 플레이트 자동절제장치 |
| US20160022879A1 (en) * | 2014-07-24 | 2016-01-28 | Jared Ruben Hillel FORAN | Hypoallergenic orthopedic surgical instruments and methods |
| US10307917B2 (en) * | 2014-09-22 | 2019-06-04 | Worktools, Inc. | Cutting blade for oscillating tool |
| US9833245B2 (en) | 2014-09-29 | 2017-12-05 | Biomet Sports Medicine, Llc | Tibial tubercule osteotomy |
| US9826994B2 (en) | 2014-09-29 | 2017-11-28 | Biomet Manufacturing, Llc | Adjustable glenoid pin insertion guide |
| WO2016109481A2 (en) | 2014-12-30 | 2016-07-07 | DePuy Synthes Products, Inc. | Coatings for surgical instruments |
| US9820868B2 (en) | 2015-03-30 | 2017-11-21 | Biomet Manufacturing, Llc | Method and apparatus for a pin apparatus |
| CN106238822A (zh) * | 2015-06-04 | 2016-12-21 | 苏州宝时得电动工具有限公司 | 锯片及设有该锯片的摆动机 |
| WO2016204401A1 (ko) * | 2015-06-18 | 2016-12-22 | 아이메디컴(주) | 외과 수술용 톱날 |
| US10226262B2 (en) | 2015-06-25 | 2019-03-12 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
| US10568647B2 (en) | 2015-06-25 | 2020-02-25 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
| US10543000B2 (en) * | 2015-07-02 | 2020-01-28 | AOD Holdings, LLC | Reciprocating surgical saw blade |
| US10442020B2 (en) * | 2015-12-29 | 2019-10-15 | Robert Bosch Tool Corporation | Saw blade for oscillating tool or handheld tool |
| US10456142B2 (en) | 2016-06-03 | 2019-10-29 | Mako Surgical Corp. | Surgical saw and saw blade for use therewith |
| CN109310442B (zh) * | 2016-06-13 | 2022-09-27 | 新特斯有限责任公司 | 锯齿轮组 |
| CN106426012B (zh) * | 2016-12-07 | 2019-09-06 | 海联锯业科技有限公司 | 多功能刀具 |
| USD814900S1 (en) * | 2017-01-16 | 2018-04-10 | Black & Decker Inc. | Blade for oscillating power tools |
| US10265778B2 (en) | 2017-01-16 | 2019-04-23 | Black & Decker Inc. | Accessories for oscillating power tools |
| US10722310B2 (en) | 2017-03-13 | 2020-07-28 | Zimmer Biomet CMF and Thoracic, LLC | Virtual surgery planning system and method |
| CN110650829A (zh) | 2017-05-16 | 2020-01-03 | 米沃奇电动工具公司 | 锯片 |
| US10687824B2 (en) | 2017-07-21 | 2020-06-23 | Stryker European Holdings I, Llc | Surgical saw and saw blade for use therewith |
| EP3909525A1 (en) * | 2018-03-06 | 2021-11-17 | CONMED Corporation | Surgical saw |
| JP7061789B2 (ja) * | 2018-03-30 | 2022-05-02 | 株式会社岡田金属工業所 | 鋸刃 |
| WO2020003244A2 (en) * | 2018-06-29 | 2020-01-02 | DePuy Synthes Products, Inc. | Hybrid saw blade |
| EP4079235B1 (en) * | 2018-07-27 | 2023-11-22 | Stryker Corporation | Surgical saw system |
| USD931069S1 (en) | 2019-05-03 | 2021-09-21 | Tti (Macao Commercial Offshore) Limited | Blade |
| USD1101531S1 (en) | 2019-08-22 | 2025-11-11 | Milwaukee Electric Tool Corporation | Oscillating multi tool anchor |
| US11919098B2 (en) | 2019-10-01 | 2024-03-05 | Milwaukee Electric Tool Corporation | Blade for a power tool |
| US11490898B2 (en) * | 2019-10-18 | 2022-11-08 | Depuy Synthes Products, Inc | Surgical saw blade |
| US12016802B2 (en) | 2019-10-22 | 2024-06-25 | Aerobiotix. Llc | Air treatment system for operating or patient rooms |
| CN112754589A (zh) * | 2020-03-08 | 2021-05-07 | 深圳海思医疗有限公司 | 锯片 |
| USD962027S1 (en) | 2020-04-23 | 2022-08-30 | Milwaukee Electric Tool Corporation | Blade |
| US11738398B2 (en) | 2020-11-18 | 2023-08-29 | Milwaukee Electric Tool Corporation | Accessory for an oscillating power tool |
| US12076802B2 (en) | 2021-01-22 | 2024-09-03 | Black & Decker Inc. | Accessories for oscillating power tools |
| USD1048844S1 (en) * | 2022-07-22 | 2024-10-29 | Milwaukee Electric Tool Corporation | Anchor for an accessory attachable to an oscillating multi-tool |
| USD1051682S1 (en) * | 2022-11-28 | 2024-11-19 | Milwaukee Electric Tool Corporation | Blade |
| US20240180565A1 (en) * | 2022-12-06 | 2024-06-06 | MAP Medical Solutions, LLC | Joint revision surgery osteotome blades and surgical chisel blades |
| US12349925B2 (en) | 2023-03-14 | 2025-07-08 | DePuy Synthes Products, Inc. | Powered surgical tool with an oscillating saw blade |
| USD1059978S1 (en) * | 2023-03-14 | 2025-02-04 | DePuy Synthes Products, Inc. | Saw blade |
| USD1047636S1 (en) * | 2023-03-14 | 2024-10-22 | DePuy Synthes Products, Inc. | Saw blade |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0382483A2 (en) * | 1989-02-10 | 1990-08-16 | Thomas D. Petersen | Coated gall-resistant surgical saw blades and the like |
| US5306285A (en) * | 1993-04-30 | 1994-04-26 | Komet Medical | Surgical saw blade |
| EP0884142A1 (en) * | 1997-06-10 | 1998-12-16 | Warner-Lambert Company | Improved blade edge |
| US6503253B1 (en) * | 1993-11-16 | 2003-01-07 | Synvasive Technology, Inc. | Surgical saw blade |
| US20030032971A1 (en) * | 2000-03-07 | 2003-02-13 | Thomas Hausmann | Saw blade for medical applications |
| US20030199880A1 (en) * | 2002-04-22 | 2003-10-23 | Meckel Nathan K. | Bone saw blade and a method for manufacturing a bone saw blade |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2455655A (en) * | 1946-11-01 | 1948-12-07 | Gay V Carroll | Bone saw |
| US2795247A (en) * | 1954-07-07 | 1957-06-11 | Skil Corp | Reversible circular saw |
| US3901117A (en) * | 1970-11-09 | 1975-08-26 | Simon J Hoffman | Saber saw and blade therefor |
| GB1455566A (en) * | 1973-01-08 | 1976-11-17 | Nat Res Dev | Saws and blades therefor |
| US3905374A (en) * | 1974-01-28 | 1975-09-16 | American Sterilizer Co | Knee osteotomy blade |
| US3943934A (en) * | 1974-09-30 | 1976-03-16 | Minnesota Mining And Manufacturing Company | Quick release mechanism for surgical devices |
| US4012978A (en) * | 1975-09-15 | 1977-03-22 | Lanauze Jacques De | Die cutting rule |
| US4069824A (en) * | 1976-07-12 | 1978-01-24 | Weinstock Robert E | Method of and apparatus for forming a crescentic joint in a bone |
| US4594781A (en) * | 1979-08-01 | 1986-06-17 | Hoffman Simon J | Holder for saber saw blade |
| US4386609A (en) * | 1979-12-17 | 1983-06-07 | Minnesota Mining And Manufacturing Company | Attaching assembly for an osteotomy saw blade |
| CH653238A5 (de) * | 1981-07-14 | 1985-12-31 | Richard Arnegger | Saegeblatt. |
| CH654196A5 (de) * | 1981-10-13 | 1986-02-14 | Richard Arnegger | Saegeblatt einer oszillationssaege. |
| US4922612A (en) * | 1988-06-16 | 1990-05-08 | Henry E. Bruce | Oscillatory saw |
| US5135533A (en) * | 1989-02-10 | 1992-08-04 | Petersen Thomas D | Coated gall-resistant surgical saw blades |
| US5133728A (en) * | 1990-01-05 | 1992-07-28 | Petersen Thomas D | Gall-resistant ribbed surgical saw blade |
| US5122142A (en) * | 1990-09-13 | 1992-06-16 | Hall Surgical Division Of Zimmer, Inc. | Irrigating saw blade |
| US5263972A (en) * | 1991-01-11 | 1993-11-23 | Stryker Corporation | Surgical handpiece chuck and blade |
| USD337160S (en) * | 1991-01-11 | 1993-07-06 | Stryker Corporation | Sagittal saw blade base |
| US6022353A (en) * | 1991-05-30 | 2000-02-08 | Synasive Technology, Inc. | Surgical saw blade |
| US5382249A (en) * | 1991-05-30 | 1995-01-17 | Synvasive Technology, Inc. | Adjustable surgical blade |
| US7527628B2 (en) * | 1991-05-30 | 2009-05-05 | Synvasive Technology, Inc. | Surgical saw blade having at least one pair of opposed teeth shaped as right triangles |
| US6852439B2 (en) | 2001-05-15 | 2005-02-08 | Hydrogenics Corporation | Apparatus for and method of forming seals in fuel cells and fuel cell stacks |
-
2004
- 2004-04-16 US US10/826,209 patent/US7527628B2/en not_active Expired - Fee Related
-
2005
- 2005-04-11 WO PCT/US2005/012476 patent/WO2005104964A1/en not_active Ceased
- 2005-04-11 DE DE602005017483T patent/DE602005017483D1/de not_active Expired - Lifetime
- 2005-04-11 AT AT05735799T patent/ATE447369T1/de not_active IP Right Cessation
- 2005-04-11 EP EP05735799A patent/EP1740104B1/en not_active Expired - Lifetime
- 2005-04-11 JP JP2007508489A patent/JP2007532253A/ja active Pending
- 2005-04-11 EP EP08017197A patent/EP2011444B1/en not_active Expired - Lifetime
-
2008
- 2008-12-08 US US12/330,063 patent/US7998158B2/en not_active Expired - Fee Related
- 2008-12-08 US US12/330,017 patent/US7901424B2/en not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0382483A2 (en) * | 1989-02-10 | 1990-08-16 | Thomas D. Petersen | Coated gall-resistant surgical saw blades and the like |
| US5306285A (en) * | 1993-04-30 | 1994-04-26 | Komet Medical | Surgical saw blade |
| US6503253B1 (en) * | 1993-11-16 | 2003-01-07 | Synvasive Technology, Inc. | Surgical saw blade |
| EP0884142A1 (en) * | 1997-06-10 | 1998-12-16 | Warner-Lambert Company | Improved blade edge |
| US20030032971A1 (en) * | 2000-03-07 | 2003-02-13 | Thomas Hausmann | Saw blade for medical applications |
| US20030199880A1 (en) * | 2002-04-22 | 2003-10-23 | Meckel Nathan K. | Bone saw blade and a method for manufacturing a bone saw blade |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2515448A (en) * | 2013-03-06 | 2014-12-31 | Soutter Medical Ltd De | Surgical saw mount and blade |
| GB2515448B (en) * | 2013-03-06 | 2017-02-01 | De Soutter Medical Ltd | Surgical saw mount and blade |
| US10239135B2 (en) | 2013-03-06 | 2019-03-26 | De Soutter Medical Ltd | Surgical saw mount and blade |
| US10363617B2 (en) | 2013-03-06 | 2019-07-30 | De Soutter Medical Ltd | Surgical saw mount and blade |
| CN110025355A (zh) * | 2015-12-29 | 2019-07-19 | 重庆西山科技股份有限公司 | 护鞘摆锯片 |
| CN110025355B (zh) * | 2015-12-29 | 2022-01-04 | 重庆西山科技股份有限公司 | 护鞘摆锯片 |
| US10966730B2 (en) | 2019-05-27 | 2021-04-06 | Miyatani Co., Ltd. | Bone resection apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2011444B1 (en) | 2012-09-19 |
| EP1740104A1 (en) | 2007-01-10 |
| EP2011444A2 (en) | 2009-01-07 |
| EP1740104B1 (en) | 2009-11-04 |
| JP2007532253A (ja) | 2007-11-15 |
| US20040199167A1 (en) | 2004-10-07 |
| DE602005017483D1 (de) | 2009-12-17 |
| US7998158B2 (en) | 2011-08-16 |
| EP2011444A3 (en) | 2010-02-17 |
| US20090093815A1 (en) | 2009-04-09 |
| ATE447369T1 (de) | 2009-11-15 |
| US7901424B2 (en) | 2011-03-08 |
| US7527628B2 (en) | 2009-05-05 |
| US20090093814A1 (en) | 2009-04-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2011444B1 (en) | Surgical saw blade | |
| US6022353A (en) | Surgical saw blade | |
| US6503253B1 (en) | Surgical saw blade | |
| EP2429420B1 (en) | Surgical saw blade device and system | |
| US11439426B2 (en) | Ultrasonic surgical blades | |
| US20060272468A1 (en) | Dual cut surgical saw blade | |
| JP2007532253A5 (enExample) | ||
| US8177803B2 (en) | Endoscopic cutting instruments having improved cutting efficiency and reduced manufacturing costs | |
| RU2509537C2 (ru) | Способы и устройства для срезания и очищения ткани | |
| CA2755424C (en) | Rotational atherectomy device and method to improve abrading efficiency | |
| US20040023187A1 (en) | Ultrasonic surgical dental tool and method of making same | |
| WO2014075039A1 (en) | Surgical instrument | |
| EP3138519B1 (en) | Arthroscopic resection devices | |
| US20060142776A1 (en) | Orthopedic instrument | |
| WO2006014318A2 (en) | Torsional pineapple dissection tip | |
| US20170360603A1 (en) | Membrane delamination devices | |
| US20100087845A1 (en) | Methods for ameliorating tissue trauma from surgical incisions | |
| WO2018069567A1 (en) | Device for processing of object | |
| US20250345085A1 (en) | Powered surgical tool with transmission | |
| EP3856050B1 (en) | Device for perforating a dense bone layer | |
| US20110207079A1 (en) | Coated surgical and dental implements and implants with superior heat dissipation and toughness | |
| CN210408549U (zh) | 一种手术刀及手术刀刀刃的结构 | |
| JP3002029U (ja) | 包丁,ナイフなどの手動利器 | |
| HK40058440B (en) | Device for perforating a dense bone layer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2007508489 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2005735799 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2005735799 Country of ref document: EP |