WO2005101483A1 - 半導体ウェハの検査装置及び方法 - Google Patents

半導体ウェハの検査装置及び方法 Download PDF

Info

Publication number
WO2005101483A1
WO2005101483A1 PCT/JP2005/007120 JP2005007120W WO2005101483A1 WO 2005101483 A1 WO2005101483 A1 WO 2005101483A1 JP 2005007120 W JP2005007120 W JP 2005007120W WO 2005101483 A1 WO2005101483 A1 WO 2005101483A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattered light
intensity
pls
light
narrow
Prior art date
Application number
PCT/JP2005/007120
Other languages
English (en)
French (fr)
Inventor
Fumi Nabeshima
Kazuya Togashi
Hiroshi Jiken
Yoshinori Suenaga
Original Assignee
Komatsu Electronic Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co., Ltd. filed Critical Komatsu Electronic Metals Co., Ltd.
Priority to DE112005000828.2T priority Critical patent/DE112005000828B4/de
Priority to JP2006512348A priority patent/JP4694476B2/ja
Priority to US10/598,933 priority patent/US7576852B2/en
Publication of WO2005101483A1 publication Critical patent/WO2005101483A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • G01N2021/4716Using a ring of sensors, or a combination of diaphragm and sensors; Annular sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws

Definitions

  • the present invention relates to a technique for inspecting a surface quality of a semiconductor wafer, and is particularly suitable for detecting a surface defect of an epitaxial wafer.
  • a defect (a structural or chemical abnormality that impairs an ideal crystal structure of the surface layer of a semiconductor wafer) of a semiconductor wafer includes a semiconductor device to be formed on the wafer.
  • Fatal defects are called "killer defects" and reduce device yield.
  • the main defect is a stacking fault (SF) of the epitaxy layer, and usually appears as a bump or a dent on the surface of the semiconductor wafer.
  • SF stacking fault
  • Killer defetats have heights that cause defocus defects in the device manufacturing process, and LADs (large area defects) that have a large area and affect multiple devices And so on.
  • LADs large area defects
  • a defect including a surface defect of an epitaxial wafer is simply referred to as an ELD (EP layer defect).
  • ELD EP layer defect
  • a foreign substance inspection apparatus For inspecting the surface of a semiconductor wafer, a foreign substance inspection apparatus using a light scattering method is widely used.
  • This foreign matter inspection device scans the surface of a semiconductor wafer with a laser beam of a very small size, detects scattered light from light scatterers (defects and particles) on the surface of the semiconductor wafer, and detects the intensity of the scattered light. Measure the size of the light scatterer on the wafer surface (a value corresponding to the size of standard particles (PLS: polystyrene latex sphere)). While defects cannot be permanently removed from semiconductor wafers, particles can be removed by post-processing and are not fatal to semiconductor devices.
  • PLS polystyrene latex sphere
  • Patent Document 1 discloses a method for detecting stacking faults of an epitaxial wafer using a light scattering method. This method uses a light scattering method for detecting foreign matter (for example, Surfscan 6200 (trademark) manufactured by KLA-Tencor) on the surface of an epitaxial wafer.
  • foreign matter for example, Surfscan 6200 (trademark) manufactured by KLA-Tencor
  • Measure the size of light scatterers present classify those light scatterers into those with a size of 1.6 m or less and those with a size of more than 1.6 m, and stack light scatterers with a size of more than 1.6 m Defects and light scatterers of 1.6 m or less are judged to be pits other than stacking faults.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-176943
  • Patent Document 1 The method disclosed in Patent Document 1 has the following problems.
  • Patent Document 1 does not refer to the point that light scatterers on the wafer surface are distinguished from those that are killer diffeatate and those that are not.
  • an object of the present invention is to improve the accuracy of surface inspection of a semiconductor wafer, particularly an epitaxial wafer, using a light scattering method.
  • Another object is to enhance the accuracy of identifying defects and particles in a surface inspection of a semiconductor wafer, particularly an epitaxial wafer, using a light scattering method.
  • Still another object is to improve the accuracy of discriminating between killer diffetate and a defect that is not a defect in a surface inspection of a semiconductor wafer, particularly an epitaxy ueno, using a light scattering method. is there.
  • Still another object is to provide an inspection apparatus or an inspection method more suitable for mass production. Means for solving the problem
  • a semiconductor wafer inspection apparatus includes: a light irradiation apparatus that irradiates a light spot on a detection point on a surface of a semiconductor wafer; A first optical sensor for receiving the narrow scattered light and detecting the intensity of the narrow scattered light; and receiving the wide and narrow scattered light having a scattering angle wider than a predetermined angle out of the scattered light of the inspection point force. A second optical sensor for detecting light intensity, and a signal for determining a type of light scatterer (LLS) present at the inspection point in response to detection signals from the first and second optical sensors.
  • a processing circuit includes: a light irradiation apparatus that irradiates a light spot on a detection point on a surface of a semiconductor wafer; A first optical sensor for receiving the narrow scattered light and detecting the intensity of the narrow scattered light; and receiving the wide and narrow scattered light having a scattering angle wider than a predetermined angle out of the scattered light of the inspection point force.
  • a second optical sensor for detecting light intensity, and a signal for
  • the signal processing circuit includes: first calculation means for calculating a first PLS equivalent size based on the intensity of the narrow scattered light when the intensity of the narrow scattered light is within a predetermined sizing range; and When the light intensity is within the sizing range, second calculating means for calculating a second PLS equivalent size based on the intensity of the wide scattered light; and both the intensity of the narrow scattered light and the intensity of the wide scattered light. And determining means for determining the type of the light scatterer based on both the first PLS equivalent size and the second PLS equivalent size when is within the sizing range.
  • the determination unit is configured to determine that the first PLS equivalent size in the sizing range is substantially equal to or larger than the second PLS equivalent size by a predetermined particle. In the area, it is determined that the light scatterer present at the inspection point is a particle.
  • the determination means is configured to determine, in the sizing range, a predetermined defect area in which the first PLS equivalent size is larger than the second PLS equivalent size by the predetermined degree or more.
  • the light scatterer existing at the inspection point is determined to be defective.
  • the determination means determines whether or not the defect is estimated to be a killer shift in the defect area according to whether the first PLS equivalent size is larger or smaller than a predetermined size.
  • the light scatterer present at the inspection point is estimated to be a killer digit. It is determined that it is a defect.
  • a method for inspecting a semiconductor wafer provides a method for inspecting a surface of a semiconductor wafer. Illuminating a spot with a light spot; detecting the intensity of narrow scattered light having a scattered angle narrower than a predetermined angle out of the scattered light from the inspection point; Detecting the intensity of the wider and narrower scattered light; and calculating the first PLS equivalent size based on the intensity of the narrower scattered light when the intensity of the narrower scattered light is within a predetermined sizing range.
  • the accuracy of surface inspection of a semiconductor wafer using the light scattering method is improved.
  • FIG. 1A is a cross-sectional side view showing a configuration of a semiconductor wafer inspection apparatus according to one embodiment of the present invention
  • FIG. 1B is a diagram showing a state of scanning a surface of a semiconductor wafer by a light spot. It is a top view which shows a mode that it shows.
  • FIG. 2 is a waveform diagram showing a plurality of types of light intensity signals 122 and 124 output from optical sensors 114 and 120.
  • FIG. 3 is a view for explaining the most basic principle underlying analysis processing for determining the type of surface abnormality performed by a second signal processing device 126B.
  • FIG. 4 is a diagram for explaining logic for determining the type of LLS used in the analysis performed by the second signal processing device 126B.
  • FIG. 5 is a view for explaining the principle significance of the second EKD area 420.
  • FIG. 6 is a diagram showing a flow of analysis processing performed by the signal processing devices 126A and 126B.
  • FIG. 1A is a sectional view showing the configuration of a semiconductor wafer inspection apparatus according to one embodiment of the present invention. It is a surface side view.
  • FIG. IB shown in the dotted blowing block is a plan view showing a state of scanning the surface of the semiconductor wafer by the light spot.
  • the inspection apparatus 100 can selectively irradiate two types of laser beams 102 and 104 to one point (inspection point) on the surface of the semiconductor wafer 200.
  • One laser beam 102 is perpendicularly incident on the surface of the semiconductor wafer 200, and the other laser beam 102 is incident on the surface of the semiconductor wafer 200 at an oblique angle.
  • only the vertically incident laser beam 102 is used, and the obliquely incident laser beam 104 is not used.
  • An inspection point on the surface of the semiconductor wafer 200 is illuminated by a small laser spot 103 formed by the normal incidence laser beam 102. As shown in FIG.
  • the laser spot 103 has an elongated elliptical shape, and its major axis and minor axis are oriented in directions that are parallel to the radial line and the circumferential line of the semiconductor wafer 200, respectively.
  • the size of the laser spot 103 is, for example, a major dimension L force of about 0 to 350 m and a minor dimension W of about 20 m.
  • the inspection apparatus 100 rotates the semiconductor wafer 200 around the center point as shown by the arrow 200A in FIG. 1B, and at the same time, moves the laser spot 103 along the radius line of the semiconductor wafer 200 as shown by the arrow 103A. This causes the laser spot 103 to spirally scan the entire surface of the semiconductor wafer 200.
  • the interval between the spiral scan lines (the radial interval between the Nth and N + 1th scan lines) is about 20 to 180 ⁇ m, which is about half of the major dimension L of the laser spot 103. Therefore, the positional resolution of the inspection result by this scanning is about 20-180 m.
  • the vertically incident laser beam 102 is reflected in a direction corresponding to the surface state of this inspection point.
  • the surface shape of the inspection point is completely flat, and the normally incident laser beam 102 is reflected vertically.
  • the reflected light of the normally incident laser beam 102 becomes directional scattered light 108 or 116 in various directions because the surface shape has bumps and depressions.
  • the vertical reflected beam from the inspection point is absorbed by the mask 106 and is not used for inspection.
  • a part of the scattered reflected light at the inspection point is detected by the optical sensor 114 and another part is detected by another optical sensor 120 according to the scattering angle (reflection angle). That is, the scattering angle is equal to or less than a predetermined value.
  • the reflected light hereinafter, referred to as “narrowly scattered light” scattered in the lower narrow angle range is detected by the first optical sensor 114 through the convex lens 110 and the reflecting mirror 112.
  • the reflected light (hereinafter, referred to as “wide scattered light”) 116 scattered over a wide angle range having a scattering angle larger than a predetermined value is detected by the second optical sensor 120 through the three-dimensional concave reflecting mirror 118.
  • the first optical sensor 114 generates an electric signal (for example, a voltage signal) 122 having a level corresponding to the intensity of the narrow scattered light 108 (hereinafter, referred to as a “narrow scattered light intensity signal”) 122, and Output to the signal processing device 126A.
  • the second optical sensor 120 generates an electric signal (for example, a voltage signal) 124 having a level corresponding to the intensity of the wide scattered light 116 (hereinafter, referred to as a “wide scattered light intensity signal”) 124, Output to the signal processing device 126A.
  • the optical sensors 114 and 120 for example, photomultiplier tubes are used.
  • first and second signal processing devices 126A and 126B Interconnected first and second signal processing devices 126A and 126B are provided.
  • the combination of the first and second signal processing devices 126A and 126B is used to analyze the input narrow scattered light intensity signal 122 and the wide scattered light intensity signal 124 by a method described later in detail, thereby obtaining the surface of the semiconductor wafer 200.
  • the upper light scatterer hereinafter, LLS (laser light
  • the first signal processing device 126A performs light scattering (hereinafter referred to as LLS (laser light) on the surface of the semiconductor wafer 200 based on the narrow scattered light intensity signal 122 and the wide scattered light intensity signal 124.
  • LLS laser light
  • the second signal processing device 126B receives the data 125 indicating the size and position coordinates of the LLS, and determines whether the LLS is a particle or a serious defect. Then, based on the discrimination result, an inspection result as to whether or not the semiconductor wafer 200 is non-defective is determined, and the judgment result and the inspection result are output. Of the output data from the second signal processing device 126B, at least data 127 indicating the inspection result is input to the first signal processing device 126A. The first signal processing unit 126A sorts according to the inspection results. An instruction signal 128 is output to the wafer manipulator 129.
  • each of the first and second signal processing devices 126A and 126B can be realized by, for example, a programmed computer, a dedicated hardware circuit, or a combination thereof.
  • SP1 (trademark) manufactured by KLA-Tencor
  • KLA-Tencor KLA-Tencor
  • FIG. 2 is a waveform diagram showing different types of the reflected light intensity signals 122 and 124 to be analyzed by the signal processing devices 126A and 126B. The type shown in FIG. 2 is applied to both the wide scattered light intensity signal 122 and the narrow scattered light intensity signal 124.
  • the reflected light intensity signal 122 to be analyzed by the signal processing device 126,
  • the first type 130 is a type in which the peak value of the signal level falls within a range of not less than a predetermined lower limit level Min and less than a predetermined saturation level Max.
  • the predetermined lower limit level Min is the lowest signal level at which it can be recognized that LLS has been detected (that is, the level at which LLS cannot be recognized as present unless the signal level is higher than this).
  • the saturation level Max is the signal level corresponding to the maximum size at which LLS sizing (calculating the size of PLS (polystyrene latex sphere) based on the signal level) can be performed.
  • this first type 130 is referred to as a “sized LLS type”.
  • the second type 136 is a case where the signal level reaches the saturation level Max.
  • the second type 136 is where the intensity of the reflected light 108, 116 exceeds the maximum sizable value.
  • the second type 136 is referred to as a “saturated area type”.
  • saturation area When a large number of signals of type 136 or the size LLS type 130 described above are detected in a continuous or dense manner, one of the following third to fifth types 138, 140, 142
  • the third type 138 is a case where a signal of the above-mentioned size LLS type 130 or saturation area type 136 is continuously detected in the radial direction of the semiconductor wafer 200 for a predetermined number of tracks (for example, 8 tracks) or more. is there.
  • the continuously detected signal may include only the size LLS type 130, only the saturation area type 136, or a mixture of both types 130 and 136.
  • the continuous signals belonging to the third type 138 are collectively referred to as “track area type” hereinafter.
  • the fourth type 140 is continuous in the circumferential direction of the semiconductor wafer (200) (that is, along the spiral scanning line) for a predetermined distance (for example, 180 m corresponding to eight continuous laser spots 130).
  • a signal of the size LLS type 130 or the signal of the saturation area type 136 is detected.
  • the continuously detected signal may include only the size LLS type 130, only the saturated area type 136, or a mixture of both types 130 and 136.
  • the continuous signals belonging to the fourth type 140 are collectively referred to as “angle area type”.
  • the fifth type 142 does not correspond to the above-described track area type 138 or the angle area type 1430! /, But a plurality of signals of the above-described size LLS type 130 or saturation area type 136 This is a case where the distance between them is detected at a close position within a predetermined distance.
  • the plurality of signals belonging to the fifth type 142 are collectively referred to as a “cluster area type” hereinafter.
  • area type 144 the above-described track area type 138, angle area type 140, and cluster area type 142 are hereinafter simply referred to as "area type" 144.
  • the first signal processing device 126 A adjusts the signal level of each of the reflected light intensity signals 122 and 124 during the scanning of the semiconductor wafer 200 by the laser spot 103. It monitors and detects reflected light intensity signals belonging to the size LLS type 130 and the saturated area type 136, and stores the level, type and position coordinates of the detected signals. In addition, the first signal processing device 126A is Based on the position coordinates of a plurality of signals of 130 and saturation area type 136, the reflected light intensity signal belonging to area type 144 (track area type 138, angle area type 140 and cluster area type 142) is detected, Calculate the size of the area where such a signal is detected.
  • the second signal processing device 126B outputs the size LLS type 130, the saturated area type 136, and the area type 144 described above for each of the wide scattered light intensity signal 122 and the narrow scattered light intensity signal 124 from the first signal processing device 126A.
  • Data 125 indicating the detection result of the signal is received, and both of the detection results are analyzed by a method described later to determine the type of LLS (particle, serious defect, or minor defect). .
  • FIG. 3 illustrates the most basic principle underlying this analysis process.
  • FIG. 3A shows the intensity distribution of reflected scattered light 108 and 116 estimated when PLS 300 is mounted on the surface of semiconductor wafer 200.
  • FIG. 3B shows the intensity distribution of the reflected scattered light 108 and 116 estimated when the particle 302 is mounted on the surface of the semiconductor wafer 200.
  • FIG. 3C shows the estimated reflection scattering when there is a flat ridge 304 or shallow pit 306 on the surface of the semiconductor wafer 200 (lower or shallower than its planar dimensions). The intensity distribution of light 108, 116 is shown.
  • FIG. 3D shows the estimated intensity distribution of the reflected scattered light 108, 116 when a tower-shaped ridge 308 is present on the surface of the semiconductor wafer 200 (height compared to its planar dimension).
  • PLS 300 is close to a perfect sphere. Then, the inspection apparatus 100 is calibrated so that both the calculated size of the narrow scattered light power and the calculated size of the wide scattered light power from the PLS 300 indicate the actual diameter value of the actual PLS 300. As shown in FIG. 3B, most of the particles 302 are considered to have a three-dimensional shape in which the planar dimensions and the height are balanced to some extent, and thus the PLS calculated from the narrow scattered light 108 from the particles 302 The equivalent size and the PLS equivalent size calculated from the wide scattered light 116 are not significantly different, or if the particle 302 takes a slightly flat and stable posture, the narrow scattered light 108 force is also calculated.
  • SF stacking faults
  • LAD large area defect
  • the intensity of the narrow scattered light 108 is significantly larger than the intensity of the wide scattered light 116 as shown in FIG. Is presumed to have a defect. And, it is considered that the larger the size of the defect, the higher the possibility that the defect is killer difate.
  • the intensity of the wide scattered light 116 and the intensity of the narrow scattered light 108 at a certain detection point are the same as shown in Fig. 3B or the former is slightly larger than the latter, the detection point It is estimated that particles are present.
  • a certain area on the surface of the epitaxial wafer as shown in Fig. 2 If a Type 144 reflected light intensity signal is obtained, the region is likely to have a correspondingly large defect or LAD.
  • detection / determination logic based on the above principle is used to determine the type of LLS.
  • FIG. 4 shows an example of the detection / determination logic.
  • the detection / judgment logic shown in FIG. 4 is based on the principle described above with reference to FIG. 3, and furthermore, the inventors have developed a KLA-Tencor product. It was obtained as a result of repeated studies using SP1 (SP1) to repeatedly detect various particles and defects on actual epitaxy wafers.
  • FIG. 4A shows detection / judgment logic applied when the reflected light intensity signals 122 and 124 of the size LLS type 130 and the saturation area type 136 shown in FIG. 2 are obtained.
  • the horizontal axis represents the PLS equivalent size (diameter) DWN calculated based on the wide scattered light intensity signal 124 of the size LLS type 130, and the right end is the wide scattered light intensity signal of the saturated area type 136. This corresponds to the case where 124 is obtained.
  • the vertical axis indicates the PLS equivalent size (diameter) DNN calculated based on the narrow scattered light intensity signal 124 of the size LLS type 130, and the upper end thereof indicates the narrow scattered light intensity signal of the saturated area type 136.
  • FIG. 4B shows detection / determination logic applied when the reflected light intensity signals 122 and 124 of the area type 144 shown in FIG. 2 are obtained.
  • the horizontal axis represents the size of the area where the wide scattered light intensity signal 124 of the area type 144 was detected
  • the vertical axis represents the size of the area where the narrow scattered light intensity signal 122 of the area type 144 was detected. Indicates the size.
  • both the scattered light intensity signals 124 and 122 shown in FIG. 4A are of the size LLD type 130 (for example, about 0.0 / DNN, about 0.8 / ⁇ , and 0.0 / DWN Within the range of about 0.6 m (hereinafter referred to as “sizing range”), it is determined that a signal analysis result belonging to area 410 is obtained from a certain detection point, and that particles exist at that detection point. Is done. This area is called a “particle area”.
  • Particle zone 410 includes a first determination line 400 in the sizing range is sandwiched region between the second discrimination line 402, and, the wide scattered light 116 Yoru 1 3 1 ⁇ equivalent Size 0 1 ⁇ N is about 0 or less, and the condition that the narrow scattered light intensity signal 122 does not reach saturation is satisfied.
  • the first discrimination line 400 shows that the PLS equivalent size DWN due to the wide scattered light 116 and the PLS equivalent size DNN due to the narrow scattered light 108 are almost the same (the PLS equivalent size DWN due to the wide scattered light 116 is smaller). Is slightly smaller than its DNN due to the narrow scattered light 108).
  • the first determination line 400 is referred to as a “particle lower limit line”.
  • the particle lower limit line 400 is, for example,
  • K is a coefficient of less than 1 and not less than 0.5, for example, a value of about 0.8 to 0.9.
  • the second determination line 402 corresponds to the case where the PLS equivalent size DNN due to the narrow scattered light 108 is somewhat larger than that DWN due to the wide scattered light 116.
  • the second determination line 402 will be referred to as a “defect separation line”.
  • the defect separation line 402 is, for example,
  • S and T are positive coefficients less than 1, for example, values of about 0.4 to 0.6.
  • the particle area 410 has a large PLS equivalent size DNN calculated from the narrow scattered light 108 under the condition that both the narrow scattered light intensity signal 122 and the wide scattered light intensity signal 124 are of the size LLS type. This corresponds to a case where the DWN from the scattered light 116 is equal to or larger than the DWN within a predetermined range. In this case, a determination result that a particle is present is issued. This determination result conforms to the principle described with reference to FIG. 3B.
  • the area 414 is referred to as the “first small defect area” Zone 418 is referred to as the “first EKD zone”.
  • the first small defect area 414 and the first EKD area 418 are areas where the PLS equivalent size DWN based on the wide scattered light intensity signal 124 is smaller than the defect separation line 402. Then, the first small defect area 414 and the first EKD area 418 are distinguished by the third determination line 403.
  • the third determination line 403 is hereinafter referred to as an “EKD separation line”.
  • the EKD separation line 403 is a line corresponding to a PLS equivalent size DNN of 0.6 m based on the narrow scattered light intensity signal 122, for example.
  • the first small defect area 414 has a PLS equivalent size DNN based on the narrow scattered light intensity signal 122 of less than 0.6 m, and the first EKD area 418 has a size of 0.6 m or more.
  • both the small defect area 414 and the first EKD area 418 are cases where the PLS equivalent size DNN due to the narrow scattered light 108 is larger than the DWN due to the wide scattered light 116 by a predetermined degree or more. If the PLS equivalent size DNN detected based on the narrow scattered light 108 is less than 0.6 / zm, it is determined that a small defect exists, and if it is 0.6 m or more, EKD Is determined to exist. This result is consistent with the principles described above with reference to FIG. 3C.
  • the area 430 is very unlikely to be actually detected, but exists near the tower-shaped defect force or near the edge as shown in FIG. 3D. This is considered to be equivalent to a defect.
  • This area 430 is determined to correspond to the small defect described above.
  • This area 430 is hereinafter referred to as “second small defect area”.
  • the second small defect area 430 is an area where the PLS equivalent size DNN based on the narrow scattered light intensity signal 122 is smaller than the particle lower limit line 400.
  • FIG. 4A shows that the first small defect 412, the first EKD region 418, the particle region 402 and the second / J, and the outer edge of the defect region 430 have unique regions 412, 416, 417, 420, and 421. Shown, 423, 424, 425 & 426 force! These singular areas 412, 416, 417, 420, 421, 423, 424, 425 and 426 are, at a minimum, at least one of the levels of the tongue L light intensity signals 122 and 124 at the lower limit shown in FIG. This means that the level is less than Min (LLS is not detected) or the area is saturated area type 136. The unique area 412 in contact with the first small defect area is determined to correspond to a small defect.
  • the two unique areas 416 and 417 adjacent to the first EKD area 418 are both judged as EKD.
  • the three unique areas 420, 421, and 423 that are in contact with the particle area 410 are also determined to be EKD.
  • Boring in contact with the second small defect area 430 Two unique zone levels 424 and 425, corresponding to sum area type 136, are also considered EKD.
  • the narrow scattered light intensity signal 122 is of a saturated area type
  • the wide scattered light intensity signal 124 is of a size LLS type, which is equivalent to the PLS equivalent size DWN. Is greater than 0.3 m.
  • This singular area 420 is, in principle, a projection area of the particle extension area 431 which is an extension of the particle area 410 and a EKD extension area 432 which is an extension of the first EKD area 418, as shown in FIG. It is also considered a projection area. Therefore, in principle, particles and EKD can exist on the unique area 420. However, practically, it is possible to avoid this problem by choosing an appropriate value for the saturation size of the DNN. According to the inventors' research, it was confirmed that almost all of the laser light scatterers on the specific area 420 were EKD by setting the saturation value of DNN to about 0.8 m. Therefore, in this unique area 420, it is determined that EKD exists.
  • the area 422 shown in FIG. 4B is a case where both the narrow scattered light signal 122 and the reflected light intensity signal 124 are the saturated area type 136 or the area type 144 shown in FIG.
  • the minimum values of the vertical and horizontal axes of this area 422 are larger than the maximum values of the PLS equivalent sizes DNN and DWN that can be calculated based on the signal of the size LLS type 130. It is determined that the above-mentioned EKD exists at the detection point where the analysis result belonging to the area 422 is obtained. This area 422 is called “Second EKD area”.
  • FIG. 6 shows a flow of analysis processing performed by the signal processing devices 126A and 126B in the surface inspection of a semiconductor wafer.
  • the scanning mask S is performed on the surface of the semiconductor wafer 200 by the light spot 103 [3 ⁇ 4, steps 500, 502, 504, and 506 shown in Fig. 6 continuously. It is executed at In steps 500 and 502, the narrow scattered light intensity signal 122 and the wide scattered light intensity signal 124 from the current detection point are simultaneously input to the first signal processing device 126A. In steps 504 and 507, if the signal levels of the narrow scattered light intensity signal 122 and the wide scattered light intensity signal 124 exceed the lower limit level Min shown in FIG. 2, the signal level and the detection point The position coordinates are stored in a storage device (not shown) in the first signal processing device 126A.
  • routines after steps 508 and 510 may be performed while the scanning is being performed, or may be performed after the scanning is completed.
  • step 508 for each position coordinate of the detection point stored in the storage device in the first signal processing device 126A, the signal level of the narrow scattered light intensity signal 122 detected at that position reaches the saturation level Max. It is checked whether it is! / Or less (unsaturated).
  • step 510 for each position coordinate of the detection point stored in the storage device in the signal processing device 126, the signal level of the wide scattered light intensity signal 124 detected at that position reaches the saturation level Max! Is checked to see if it is less than (unsaturated).
  • step 512 if the check result in step 508 is non-saturated (ie, if the narrow scattered light intensity signal 122 is a size LLS type 130), then based on the signal level of the narrow scattered light intensity signal 122, The PLS equivalent size DNN is calculated, and the PLS equivalent size DNN is stored in the storage device in association with the position coordinates of the corresponding detection point.
  • step 514 if the result of the check in step 510 is non-saturated (ie, if the wide scattered light intensity signal 124 is a size LLS type 130), the PLS The equivalent size DWN is calculated, and the PLS equivalent size DWN force is associated with the position coordinates of the corresponding detection point and fed to the storage device.
  • step 516 it is checked whether or not the narrow scattered light intensity signal 122 corresponding to the saturated area type 136 and the area type 144 exists, and the check result is associated with the position coordinates of the corresponding detection point. And stored in the storage device.
  • step 518 the presence or absence of the wide scattered light intensity signal 124 corresponding to the saturated area type 136 and the area type 144 is checked, and the check result is associated with the position coordinates of the corresponding detection point and stored in the memory. Stored in the device.
  • step 520 if the check result of step 516 indicates the area type 144, the area where the narrow scattered light intensity signal 122 of the area type 144 is detected based on the position coordinates of the corresponding plurality of detection points. Is calculated, and the size of the area is stored in the storage device in association with the position coordinates of the corresponding detection point.
  • step 52 In step 2, if the check result of step 518 indicates the area type 144, the size of the area where the wide scattered light intensity signal 124 of the area type 144 is detected is calculated based on the position coordinates of the corresponding detection points. Then, the size of the area is stored in the storage device in association with the position coordinates of the corresponding detection point.
  • step 524 the position coordinates of the detection point stored in the storage device, the PLS equivalent size DNN or region size based on the narrow scattered light intensity signal 122, and the PLS equivalent size DWN or Data strength indicating the area size is passed to the second signal processing device 126B.
  • the second signal processing device 126B Based on the data, the second signal processing device 126B detects the position of the LLS on the semiconductor wafer 200 according to the determination logic described above and shown in FIG. In this case, it is determined whether the LLS is a particle defect, a small defect, or an EKD.
  • the determination result is stored in the storage device in association with the position coordinates of the corresponding detection point, and the pass / fail of the semiconductor wafer 200 is determined based on the result.
  • the wafer marker 129 sorts the semiconductor wafers 200 based on the result of the quality judgment.
  • the inspection can be performed even when the surface of the semiconductor wafer 200 is not subjected to the selective etching as performed before the inspection by the conventional inspection method. Is possible. Therefore, the inspection device 100 and the inspection method are suitable for mass production.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 光散乱法を用いてエピタキシャルウェハの表面が検査される。ウェハ表面上の光散乱体(LLS)から反射される、散乱角の狭い狭散乱光と広い広散乱光の強度が検出される。狭散乱光と広散乱光の強度が所定のサイジング範囲内に入る場合、狭散乱光強度に基づくPLSサイズと広散乱光強度に基づくPLSサイズが、サイジング範囲内のどの区域(410,414,418,439)に属するか判断され、光散乱体がパーティクルかキラーディフェクトかが判定される。狭散乱光又は広散乱光の強度がサイジング範囲を越える場合(417,420,421,423,424,425)、及び多くの光散乱体が連続又は密集する場合(422)、光散乱体はキラーディフェクトと判定される。

Description

明 細 書
半導体ウェハの検査装置及び方法
技術分野
[0001] 本発明は、半導体ウェハの表面品質を検査するための技術に関し、特に、ェピタキ シャルウェハの表面欠陥の検出に好適である。
背景技術
[0002] 一般に、半導体ウェハの欠陥(defect) (半導体ウェハの表層の理想的な結晶構造 を損なう構造的又は化学的な異常)には、そのウェハ上に形成されることになる半導 体デバイスにとり、許容できる軽微なものと致命的なものとがある。致命的な欠陥は「 キラーディフエタト(killer defect)」と呼ばれ、デバイスの歩留まりを低下させる。特に ェピタキシャルウェハの場合、主たる欠陥はェピタキシャル層の積層欠陥(stacking fault : SF)であり、通常、半導体ゥヱハの表面に隆起又は窪みとなって現れる。キラー ディフエタトの多くはこの SFの一部である。キラーディフエタトには、デバイスの製造ェ 程でデフォーカス(defocus)不良を発生させるような高さを伴ったものや、広い面積を 有し複数のデバイスへ影響を与える LAD (large area defect)と呼ばれるものなどがあ る。ここでは、ェピタキシャルウェハの表面欠陥も含めた欠陥を簡易的に ELD (EP layer defect)と呼ぶことにする。半導体ウェハの表面上の「キラーディフエタト」を検出 する技術は、半導体製造において極めて重要である。
[0003] 半導体ウェハの表面検査のために、光散乱法を用いた異物検査装置が広く用いら れている。この異物検査装置は、微小サイズのレーザ光で半導体ウェハの表面を走 查し、半導体ウェハの表面の光散乱体 (欠陥やパーティクル)からの散乱光を検出し 、そして、その散乱光の強度力 ウェハ表面上に存在する光散乱体のサイズ (標準粒 子(PLS: polystyrene latex sphere)のサイズに相当する値)を測定する。欠陥が半導 体ウエノ、から永久に除去することが不可能であるのに対し、パーティクルは事後処理 により除去することが可能であり、半導体デバイスにとり致命的ではない。従って、光 散乱法を用いた表面検査においては、検出された個々の光散乱体が欠陥であるか パーティクルであるかを判別できることが重要である。 [0004] 特許文献 1には、光散乱法を用いて、ェピタキシャルウェハの積層欠陥を検出する ための方法が開示されている。この方法は、光散乱法を用いた異物検査装置 (例え ば、ケーエルエーテンコール(KLA- Tencor)社製のサーフスキャン 6200 (Surfscan 6200) (商標))を用いてェピタキシャルウェハの表面上に存在する光散乱体のサイズ を測定し、それら光散乱体を、そのサイズが 1. 6 m以下のものとそれを超えるものと に分類し、そして、 1. 6 mを超える光散乱体は積層欠陥、 1. 6 m以下の光散乱 体は積層欠陥以外のピットと判断する。
[0005] 特許文献 1 :特開 2001— 176943号公報
発明の開示
発明が解決しょうとする課題
[0006] 特許文献 1に開示された方法には、次のような問題がある。
[0007] まず、単一のレーザ散乱光の強度からでは、ウェハ表面に数多くの形体種として存 在する欠陥を確度高く分類することは困難である。ましてや欠陥とパーティクルを区 別することは困難である。この方法では、欠陥を 1. 6 /z mの閾値で 2種類にしか分類 できない。また、前処理として選択エッチングを実施することは、欠陥検査のスループ ットを大幅に低下させるから、量産用にはこの方法は適さず、また、選択エッチングに より、ウェハの表面の品質が損われ、最早製品として出荷できなくなるおそれもある。 さらに、特許文献 1は、ウェハ表面上の光散乱体をキラーディフエタトとそうでないもの とに区別する点に関して言及してない。
[0008] したがって、本発明の目的は、半導体ウェハ、特にェピタキシャルウェハ、の光散乱 法を用いた表面検査の精度を高めることである。
[0009] また、別の目的は、半導体ウェハ、特にェピタキシャルウェハ、の光散乱法を用いた 表面検査において、欠陥とパーティクルを識別する精度を高めることにある。
[0010] また、さらに別の目的は、半導体ウェハ、特にェピタキシャルウエノ、、の光散乱法を 用いた表面検査において、キラーディフエタトとそうでない欠陥とを識別する精度を高 めることにある。
[0011] さらにまた別の目的は、量産に一層適した検査装置又は検査方法を提供すること にある。 課題を解決するための手段
[0012] 本発明の一つの側面に従う半導体ウェハの検査装置は、半導体ウェハの表面の検 查点に光スポットを当てる光照射装置と、前記検査点力 の散乱光のうち散乱角が 所定角より狭い狭散乱光を受けて、前記狭散乱光の強度を検出する第 1の光センサ と、前記検査点力 の散乱光のうち散乱角が所定角より広い広狭散乱光を受けて、 前記広散乱光の強度を検出する第 2の光センサと、前記第 1と第 2の光センサからの 検出信号に応答して、前記検査点に存在する光散乱体 (LLS)の種別を判定する信 号処理回路とを備える。前記信号処理回路は、前記狭散乱光の強度が所定のサイ ジング範囲内にある場合、前記狭散乱光の強度に基づいて第 1の PLS相当サイズを 計算する第 1計算手段と、前記広散乱光の強度が前記サイジング範囲内にある場合 、前記広散乱光の強度に基づいて第 2の PLS相当サイズを計算する第 2計算手段と、 前記狭散乱光と前記広散乱光の強度のいずれもが前記サイジング範囲内にある場 合、第 1の PLS相当サイズと前記第 2の PLS相当サイズの双方に基づいて、前記光散 乱体の種別を判定する判定手段とを有する。
[0013] 好適な実施形態では、前記判定手段は、前記サイジング範囲内における前記第 1 の PLS相当サイズが前記第 2の PLS相当サイズとほぼ等しいか又は所定程度以下の 程度でより大きい所定のパーティクル区域において、前記検査点に存在する光散乱 体がパーティクルであると判定する。
[0014] 好適な実施形態では、前記判定手段は、前記サイジング範囲内における前記第 1 の PLS相当サイズが前記第 2の PLS相当サイズより前記所定程度以上の程度でより大 きい所定の欠陥区域において、前記検査点に存在する光散乱体が欠陥であると判 定する。その場合、前記判定手段は、前記欠陥区域において、第 1の PLS相当サイズ 力 所定のサイズより大きいか小さいかに応じて、前記欠陥がキラーディフ タトと推 定されるカゝ否かを判定する。
[0015] 好適な実施形態では、前記判定手段は、前記狭散乱光又は前記広散乱光の強度 が前記サイジング範囲を越える場合、前記検査点に存在する光散乱体がキラーディ フ タトと推定される欠陥であると判定する。
[0016] 本発明の別の側面に従う半導体ウェハの検査方法は、半導体ウェハの表面の検査 点に光スポットを当てるステップと、前記検査点からの散乱光のうち散乱角が所定角 より狭い狭散乱光の強度を検出するステップと、前記検査点力 の散乱光のうち散乱 角が所定角より広い広狭散乱光の強度を検出するステップと、前記狭散乱光の強度 が所定のサイジング範囲内にある場合、前記狭散乱光の強度に基づいて第 1の PLS 相当サイズを計算するステップと、前記広散乱光の強度が前記サイジング範囲内に ある場合、前記広散乱光の強度に基づいて第 2の PLS相当サイズを計算するステツ プと、前記狭散乱光と前記広散乱光の強度のいずれもが前記サイジング範囲内にあ る場合、第 1の PLS相当サイズと前記第 2の PLS相当サイズの大小関係に基づいて、 前記検査点に存在する光散乱体の種別を判定するステップとを有する。
発明の効果
[0017] 本発明によれば、光散乱法を用いた半導体ウェハの表面検査の精度が高まる。
図面の簡単な説明
[0018] [図 1]図 1Aは、本発明の一実施形態にかかる半導体ウェハの検査装置の構成を示 す断面側面であり、図 1Bは、光スポットによる半導体ウェハの表面のスキャニングの 様子を示す様子を示す平面図である。
[図 2]光センサ 114、 120から出力される光強度信号 122、 124の複数のタイプを示 す波形図である。
[図 3]第 2信号処理装置 126Bが行う表面異常の種別を判別するための分析処理の 根底にある最も基本的な原理を説明する図。
[図 4]第 2信号処理装置 126Bにより行われる分析処理で用いられる、 LLSの種別を判 別するためのロジックを説明する図。
[図 5]第 2EKD区域 420の原理的な意義を説明する図。
[図 6]信号処理装置 126Aと 126Bにより行われる分析処理の流れを示す図。
符号の説明
[0019] 100 半導体ウェハの検査装置
102 垂直入射レーザビーム
103 レーザスポット
108 狭散乱光 114 光センサ
116 広散乱光
120 光センサ
122 狭散乱光強度信号
124 広散乱光強度土信号
126A 第 1信号処理装置
126B 第 2信号処理装置
130 サイズド LLSタイプ
136 飽和エリアタイプ
138 トラックエリアタイプ
140 アング/レエリアタイプ
142 クラスタエリ タイプ
144 エリアタイプ
200 半導体ゥ ハ
300 PLS (.polystyrene latex sphere)
302 ノ ーテイクノレ
304 フラット形の隆起
306 フラット形の窪み
308 タワー形の隆起
400 第 1判別ライン
402 第 2判別ライン
410 パーティクル区域
414 第 1小欠陥区域
418 第 1EKD区域
422 第 2EKD区域
430 第 2小欠陥区域
発明を実施するための最良の形態
図 1Aは、本発明の一実施形態にかかる半導体ウェハの検査装置の構成を示す断 面側面図である。点線の吹き出しブロック内に示される図 IBは、光スポットによる半導 体ウェハの表面のスキャニングの様子を示す平面図である。
[0021] 図 1Aに示すように、この検査装置 100は、 2種類のレーザビーム 102、 104を選択 的に半導体ウェハ 200の表面の一点 (検査点)に照射することができる。一方のレー ザビーム 102は、半導体ウェハ 200の表面に垂直に入射するようになっており、他方 のレーザビーム 102は、半導体ウェハ 200の表面に斜め角度で入射するようになつ ている。この実施形態では、垂直入射のレーザビーム 102のみが使用され、斜め入 射のレーザビーム 104は使用されない。半導体ウェハ 200の表面の検査点は、垂直 入射レーザビーム 102が形成する微小なレーザスポット 103によって照射されること になる。図 1Bに示すように、このレーザスポット 103は、細長い楕円形の形状を有し、 その長径と短径が半導体ウェハ 200の半径線と円周線にそれぞれ平行になる方向を 向いている。レーザスポット 103のサイズは、例えば、長径寸法 L力 0— 350 m程 度、短径寸法 Wが 20 m程度である。検査装置 100は、図 1Bの矢印 200Aに示すよ うに半導体ウェハ 200を中心点回りに回転させ、同時に、矢印 103Aに示すようにレ 一ザスポット 103を半導体ウェハ 200の半径線に沿って移動させ、これにより、レーザ スポット 103が半導体ウエノ、 200の表面の全域を螺旋状にスキャンする。螺旋状のス キャンライン同士の間隔(N回転目と N+ 1回転目のスキャンラインの半径方向の間隔 )は、レーザスポット 103の長径寸法 Lの半分程度の 20— 180 μ m程度である。従つ て、このスキャニングによる検査結果の位置分解能は 20— 180 m程度である。
[0022] 半導体ウェハ 200の検査点(光スポット 103が照射された場所)では、垂直入射レ 一ザビーム 102がこの検査点の表面状態に応じた方向へ反射される。例えば、検査 点に欠陥やパーティクルが存在しな 、場合、検査点の表面形状は完全に平坦である から、垂直入射レーザビーム 102は垂直に反射される。一方、検査点に欠陥又はパ 一ティクルが存在する場合、表面形状には隆起や窪みがあるから、垂直入射レーザ ビーム 102の反射光は様々な方向へ向力 散乱光 108、 116となる。検査点からの 垂直の反射ビームはマスク 106に吸収され、検査には使用されない。一方、検査点 力もの散乱反射光は、その散乱角(反射角)に応じて、その一部は光センサ 114で検 出され、他の一部は別の光センサ 120で検出される。すなわち、散乱角が所定値以 下の狭角範囲へ散乱した反射光 (以下、「狭散乱光」という) 108は、凸レンズ 110と 反射鏡 112を通じて、第 1の光センサ 114で検出される。また、散乱角が所定値より 大きい広角範囲へ散乱した反射光 (以下、「広散乱光」という) 116は、立体凹面反射 鏡 118を通じて、第 2の光センサ 120で検出される。第 1の光センサ 114は、狭散乱 光 108の強度に応じたレベルをもつ電気信号 (例えば、電圧信号)(以下、「狭散乱 光強度信号」という) 122を生成して、これを第 1信号処理装置 126Aへ出力する。第 2の光センサ 120は、広散乱光 116の強度に応じたレベルをもつ電気信号 (例えば、 電圧信号)(以下、「広散乱光強度信号」という) 124を生成して、これを第 1信号処理 装置 126Aへ出力する。光センサ 114、 120として、例えば光電子増倍管が用いられ る。
相互接続された第 1と第 2の信号処理装置 126Aと 126Bが設けられる。第 1と第 2の 信号処理装置 126Aと 126Bの組み合わせは、入力された狭散乱光強度信号 122と 広散乱光強度信号 124を後に詳述する方法で分析することにより、半導体ウェハ 20 0の表面上の光散乱体(以下、 LLS (laser light
scattering)という)(これは、典型的には、ウェハ表面の隆起や窪みなどの「表面異常 」、換言すれば欠陥やパーティクルに相当する)を検出し、検出された LLSがパーティ クルである力、キラーディフエタトの可能性の高い重大な欠陥である力、或いはキラー ディフエタトの可能性の低い軽微な欠陥であるかを判別し、そして、その判別結果を 出力する。第 1の信号処理装置 126Aは、特に、狭散乱光強度信号 122と広散乱光 強度信号 124に基づいて、半導体ウェハ 200の表面上の光散乱体(以下、 LLS (laser light
scattering)という)を検出し、そのサイズと位置座標を計算する。第 2の信号処理装置 126Bは、特に、第 1の信号処理装置 126A力 LLSのサイズと位置座標を示すデー タ 125を受けて、その LLSがパーティクルか重大な欠陥力軽微な欠陥である力判別し 、その判別結果に基づき、半導体ウェハ 200が良品である否かという検査結果を決 定し、そして、その判決結果と検査結果を出力する。第 2の信号処理装置 126Bから の出力データのうち、少なくとも上記検査結果を示すデータ 127を第 1の信号処理装 置 126Aに入力される。第 1の信号処理装置 126Aは、その検査結果に応じた仕分け 指示信号 128をウェハマニピュレータ 129に出力する。ウェハマニピュレータ 129は、 仕分け指示信号 128に応答して、検査の終わった半導体エノ、 200を良品か不良品 かに仕分ける。ここで、第 1と第 2の信号処理装置 126Aと 126Bはそれぞれ、例えば、 プログラムされたコンピュータ、専用ハードウェア回路又はそれらの組み合わせによつ て実現することができる。
[0024] この検査装置 100の第 2の信号処理装置 126Aを除いた部分には、例えば、ケー エルエーテンコール(KLA-Tencor)社製のエスピーワン(SP1) (商標)を採用すること ができる。よって、このエスピーワン(SP1)に、第 2の信号処理装置 126Bの信号分析 機能を追加することにより、この検査装置 100を実現することができる。
[0025] 図 2は、信号処理装置 126Aと 126Bが分析の対象とする反射光強度信号 122、 12 4の異なるタイプを示す波形図である。図 2に示されるすタイプは、広散乱光強度信 号 122及び狭散乱光強度信号 124のいずれにも適用される。
[0026] 図 2に示すように、信号処理装置 126による分析対象となる反射光強度信号 122、
124は、その信号レベル (例えば電圧レベル)〖こ応じて大きく 5つのタイプ 130、 136、 138、 140、 142に分類される。第 1のタイプ 130は、信号レベルのピーク値力 所定 の下限レベル Min以上で所定の飽和レベル Max未満の範囲内に入るタイプである。こ こで、所定の下限レベル Minとは、 LLSが検出されたと認めることができる最低の信号 レベル(つまり、信号レベルがそれ以上でないと、 LLSが存在すると認めることができ ないレベル)である。一方、飽和レベル Maxとは、 LLSのサイジング(その信号レベル に基づいて PLS (polystyrene latex sphere)のサイズを計算すること)を行うことが可能 な最大のサイズに対応する信号レベルである。反射光強度信号 122、 124の各々の レベルのピーク値が高いほど、より大きいサイズが計算される。しかし、計算された結 果は、 LLSと同強度の散乱光を反射する PLSのサイズ (以下、「PLS相当サイズ」という )であって、 LLSそれ自体のサイズではない。以下、この第 1のタイプ 130を、「サイズド LLSタイプ」と呼ぶ。
[0027] 第 2のタイプ 136は、信号レベルが飽和レベル Maxに達した場合である。要するに、 第 2のタイプ 136は、反射光 108、 116の強度がサイジング可能な最大値を越えてい る場合である。以下、第 2のタイプ 136を「飽和エリアタイプ」と呼ぶ。また、飽和エリア タイプ 136又は上述したサイズド LLSタイプ 130の信号が多数連続して又は密集した 状態で検出されると、以下の第 3から第 5のタイプ 138, 140, 142のいずれかになる
[0028] 第 3のタイプ 138は、半導体ウェハ 200の半径方向に所定トラック数 (例えば 8トラッ ク)以上連続して、上述したサイズド LLSタイプ 130又は飽和エリアタイプ 136の信号 が検出される場合である。連続検出される信号には、サイズド LLSタイプ 130のみでも 、飽和エリアタイプ 136のみでも、或いは両タイプ 130と 136が混ざって含まれていて よい。第 3のタイプ 138に属する連続信号を、それら全体で、以下、「トラックエリアタイ プ」と呼ぶ。
[0029] 第 4のタイプ 140は、半導体ウエノ、 200の周方向に(すなわち、螺旋スキャニングの ラインに沿って)に所定距離 (例えば連続 8つのレーザスポット 130に相当する 180 m)以上連続して、サイズド LLSタイプ 130又は飽和エリアタイプ 136の信号が検出さ れる場合である。連続検出される信号には、サイズド LLSタイプ 130のみでも、飽和ェ リアタイプ 136のみでも、或いは両タイプ 130と 136が混ざって含まれていてよい。以 下、第 4のタイプ 140に属する連続信号を、それら全体で、「アングルエリアタイプ」と 呼ぶ。
[0030] 第 5のタイプ 142は、上述したトラックエリアタイプ 138にもアングルエリアタイプ 143 0にも該当しな!/、が、上述したサイズド LLSタイプ 130又は飽和エリアタイプ 136の複 数の信号が、相互間の間隔が所定の距離以内の近接した位置で検出される場合で ある。第 5のタイプ 142に属する複数信号を、それら全体で、以下、「クラスタエリアタ ィプ」と呼ぶ。
[0031] さらに、上述したトラックエリアタイプ 138、アングルエリアタイプ 140及びクラスタエリ ァタイプ 142を、以下、単純に「エリアタイプ」 144と総称する。
[0032] 再び図 1を参照して、第 1信号処理装置 126Aは、半導体ウェハ 200のレーザスポッ ト 103によるスキャニング行われている間、反射光強度信号 122、 124のそれぞれに ついて、その信号レベルを監視して、サイズド LLSタイプ 130と飽和エリアタイプ 136 に属する反射光強度信号を検出し、そして、検出された信号のレベル、タイプ及び位 置座標を記憶する。更に、第 1信号処理装置 126Aは、検出されたサイズド LLSタイプ 130と飽和エリアタイプ 136の複数の信号の位置座標に基づ!/、て、エリアタイプ 144 (トラックエリアタイプ 138、アングルエリアタイプ 140及びクラスタエリアタイプ 142)に 属する反射光強度信号を検出し、そのような信号が検出される領域のサイズを計算 する。
[0033] 第 2信号処理装置 126Bは、第 1信号処理装置 126Aから、広散乱光強度信号 122 及び狭散乱光強度信号 124のそれぞれについて上述したサイズド LLSタイプ 130、 飽和エリアタイプ 136及びエリアタイプ 144の信号の検出結果を示すデータ 125を受 け、そして、その検出結果の双方を後述する方法で分析して、 LLSの種別 (パーティ クルか、重大な欠陥か、軽微な欠陥か)を判別する。
[0034] 以下、第 2信号処理装置 126Bが行う LLSの種別を判別するための分析処理につ いて具体的に説明する。
[0035] 図 3は、この分析処理の根底にある最も基本的な原理を説明する。
[0036] 図 3Aは、半導体ウェハ 200の表面上に PLS300が乗っている場合に推定される反 射散乱光 108、 116の強度分布を示す。図 3Bは、半導体ウェハ 200の表面上にパ 一ティクル 302が乗って 、る場合に推定される反射散乱光 108、 116の強度分布を 示す。図 3Cは、半導体ウェハ 200の表面上に (その平面寸法に比較して高さが低い 又は深さが浅 、)フラット形の隆起 304又は浅 、窪み 306が存在する場合に推定さ れる反射散乱光 108、 116の強度分布を示す。図 3Dは、半導体ウェハ 200の表面 上に(その平面寸法に比較して高さが高 、)タワー形の隆起 308が存在する場合に 推定される反射散乱光 108、 116の強度分布を示す。
[0037] 図 3Aに示すように、 PLS300は完全な球形に近い。そして、検査装置 100は、 PLS3 00からの狭散乱光力 計算されるサイズも広散乱光力 算出されるサイズもどちらも 実際の PLS300の正確な直径値を示すように校正されている。図 3Bに示すように、パ 一ティクル 302の多くは平面寸法と高さがある程度にバランスのとれた立体形状であ ると考えられ、よって、パーティクル 302からの狭散乱光 108から算出される PLS相当 サイズと広散乱光 116から算出される PLS相当サイズは大きくは違わないか、又は、 パーティクル 302がややフラット気味の安定した姿勢をとる場合には、狭散乱光 108 力も算出される PLS相当サイズが広散乱光 116からのそれより若干大きいと推定され る。また、図 3Cに示すように、フラット形の隆起 304又は窪み 306の場合には、水平 に近い面の方が垂直に近い面より明らかに広いため、狭散乱光 108の方力も算出さ れる PLS相当サイズが広散乱光 116からのそれよりも明らかに大きいと推定される。逆 に、図 3Dに示すように、タワー形の隆起 308の場合、垂直に近い面の方が水平に近 い面より明らかに広 、ため、広散乱光 116から算出される PLS相当サイズの方が狭散 乱光 108からのそれよりも明らかに大きいと推定される。
[0038] さて、ここで、ェピタキシャルウェハ(半導体ベース基板の表面上に成長した薄!ヽェ ピタキシャル層を有する半導体)の場合を例にとり、その欠陥、特にキラーディフエタト に関して、図 3の原理との関係を説明する。
[0039] ェピタキシャルウェハの欠陥の多くは、ェピタキシャル層の積層欠陥(stacking fault : SF)である。ェピタキシャル層の SFにはさまざまなタイプがある力 大部分のタイプは 、図 3Cに示されたようなフラット形の隆起 304又は窪み 306をェピタキシャル層の表 面に形成する。これらの SFの全てが必ずしもキラーディフエタトというわけではないが 、隆起 304又は窪み 306のサイズがある程度以上に大きいものはキラーディフエタト である可能性が高い。例えば、数/ z mから数十/ z m程度の平面寸法と数十 nmから 数百 nm程度の高さをもち、ピラミッド若しくはメサに似た幾何立体形状、または、それ らが不規則に交じり合った複雑な立体形状をもつ隆起 304又は窪み 306がェピタキ シャル層の表面に存在する場合、それはキラーディフエタトであると認められる。また 、ェピタキシャル層の表面に、例えば全長 100 mを超えるような広い領域にわたつ て多数の LLSの隆起及び窪みが連続して集合している場合、これは広域欠陥 (large area defect: LAD)と呼ばれ、これもキラーディフエタトの典型である。
[0040] 従って、ェピタキシャルウェハの表面上のある検出点において、図 3Cに示したよう な狭散乱光 108の強度が広散乱光 116の強度よりも顕著に大きい場合には、その検 出点には欠陥が存在すると推定される。そして、その欠陥のサイズが大きい程、その 欠陥がキラーディフエタトである可能性が高いと考えられる。また、ある検出点力もの 広散乱光 116の強度と狭散乱光 108の強度が図 3Bに示したように同程度か又は前 者が後者よりも軽微に大きい場合には、その検出点にはパーティクルが存在すると推 定される。また、ェピタキシャルウェハの表面上のある領域で図 2に示したようなエリア タイプ 144の反射光強度信号が得られた場合には、その領域は、それ相応の大サイ ズの欠陥又は LADが存在する可能性が高いと考えられる。
[0041] 第 2信号処理装置 126Bにより行われる分析処理では、 LLSの種別を判別するため に、上記のような原理をベースにした検出 ·判定ロジックが使用される。
[0042] 図 4は、この検出.判定ロジックの一例を示す。
[0043] 図 4に示された検出 ·判定ロジックは、図 3を参照して上に説明した原理をベースに しつつ、さらに、発明者らがケーエルエーテンコール(KLA- Tencor)社製のエスピー ワン(SP1)を用いて実際のェピタキシャルウェハ上の様々なパーティクルや欠陥の検 查を繰り返し行って研究を重ねた結果として得られたものである。
[0044] 図 4Aは、図 2に示したサイズド LLSタイプ 130及び飽和エリアタイプ 136の反射光 強度信号 122、 124が得られた場合に適用される検出 ·判定ロジックを示す。図 4A において、横軸は、サイズド LLSタイプ 130の広散乱光強度信号 124に基づいて計 算される PLS相当サイズ(直径) DWNを示し、その右端は、飽和エリアタイプ 136の 広散乱光強度信号 124が得られた場合に対応する。図 4Aにおいて、縦軸は、サイ ズド LLSタイプ 130の狭散乱光強度信号 124に基づいて計算される PLS相当サイズ( 直径) DNNを示し、その上端は、飽和エリアタイプ 136の狭散乱光強度信号 122が 得られた場合に対応する。また、図 4Bは、図 2に示したエリアタイプ 144の反射光強 度信号 122、 124が得られた場合に適用される検出 ·判定ロジックを示す。図 4Bにお いて、横軸は、エリアタイプ 144の広散乱光強度信号 124が検出された領域のサイズ を示し、縦軸は、エリアタイプ 144の狭散乱光強度信号 122が検出された領域のサイ ズを示す。
[0045] 図 4Aに示される散乱光強度信号 124と 122の双方がサイズド LLDタイプ 130であ る範囲(例えば、 0. 0く DNNく約 0. 8 /ζ πι、及び 0. 0く DWNく約 0. 6 mの範囲 であり、以下、「サイジング範囲」という)において、ある検出点から区域 410に属する 信号分析結果が得られた場合、また、その検出点にはパーティクルが存在すると判 定される。この区域を「パーティクル区域」と呼ぶ。
[0046] パーティクル区域 410は、サイジング範囲内の第 1の判別ライン 400と、第 2の判別 ライン 402との間に挟まれた区域であり、且つ、広散乱光 116ょる131^相当サィズ01^ Nが約 0. 以下であって、狭散乱光強度信号 122が飽和に達していないしない という条件を満たす。ここで、第 1の判別ライン 400は、広散乱光 116による PLS相当 サイズ DWNと狭散乱光 108による PLS相当サイズ DNNとがほぼ同程度である(広散 乱光 116による PLS相当サイズ DWNの方が狭散乱光 108によるそれ DNNより僅か に小さい)場合に対応する。以下、第 1の判別ライン 400を、「パーティクル下限線」と 呼ぶ。パーティクル下限線 400は、例えば、
DNN=K-DWN
という一次関数で表すことができる。ここに、 Kは、 1未満の 0. 5以上の係数であり、例 えば、 0. 8〜0. 9程度の値である。
[0047] 第 2の判別ライン 402は、狭散乱光 108による PLS相当サイズ DNNが広散乱光 11 6によるそれ DWNよりある程度に大きい場合に対応する。以下、第 2の判別ライン 40 2を、「欠陥分離線」と呼ぶ。欠陥分離線 402は、例えば、
log(DNN) =(l/S)log (DWN) +T/S、且つ
DNN≥ DWN
という関数で表すことができる。ここに、 Sと Tは、 1未満の正の係数であり、例えば、 0. 4〜0. 6程度の値である。
[0048] パーティクル区域 410は、要するに、狭散乱光強度信号 122と広散乱光強度信号 124の双方がサイズド LLSタイプであるという条件下で、狭散乱光 108から算出される PLS相当サイズ DNNが広散乱光 116からのそれ DWNと同程度であるか又は所定程 度未満の範囲内でより大きい場合に相当する。この場合、パーティクルが存在すると いう判定結果が出される。この判定結果は、図 3Bを参照して説明した原理と適合す る。
[0049] 図 4Aに示されるサイジング範囲内において、区域 414に属する分析結果が得られ た検出点には、キラーディフエタトでないと推定される(その可能性が低い)軽微な欠 陥(以下、「小欠陥」と呼ぶ)が存在すると判定される。また、区域 418に属する分析 結果が得られた検出点には、キラーディフエタトであると推定される(その可能性が高 い)重大な構造欠陥(以下、「EKD (estimated killer
defect)」と呼ぶ)が存在すると判定される。ここで、区域 414を「第 1小欠陥区域」、区 域 418を「第 1EKD区域」と呼ぶ。
[0050] 第 1小欠陥区域 414と第 1EKD区域 418は、広散乱光強度信号 124による PLS相 当サイズ DWNが欠陥分離線 402よりも小さい側の区域である。そして、第 1小欠陥区 域 414と第 1EKD区域 418は、第 3の判別ライン 403により区別される。第 3の判別ラ イン 403を、以下、「EKD分離線」と呼ぶ。 EKD分離線 403は、例えば、狭散乱光強 度信号 122による PLS相当サイズ DNNが 0. 6 mに相当する線である。第 1小欠陥 区域 414は狭散乱光強度信号 122による PLS相当サイズ DNNが 0. 6 m未満であり 、第 1EKD区域 418は、 0. 6 m以上である。簡単に言えば、小欠陥区域 414も第 1 EKD区域 418も、狭散乱光 108による PLS相当サイズ DNNが広散乱光 116によるそ れ DWNより所定程度以上に大きい場合である。そして、狭散乱光 108に基づいて検 出された PLS相当サイズ DNNが 0. 6 /z m未満である場合には、小欠陥が存在すると 判定され、 0. 6 m以上である場合には、 EKDが存在すると判定される。この判定結 果は、図 3Cを参照して上に説明した原理と適合する。
[0051] また、図 4Aに示されるサイジング範囲内において、区域 430は、現実に検出される 可能性はかなり低いが、図 3Dに示したようなタワー形の欠陥力、又はエッジ付近に存 在する欠陥に相当すると考えられる。この区域 430は、上述した小欠陥に該当すると 判定される。この区域 430を以下、「第 2小欠陥区域」と呼ぶ。第 2小欠陥区域 430は 、狭散乱光強度信号 122による PLS相当サイズ DNNがパーティクル下限線 400よりも 小さい側の区域である。
[0052] 更に、図 4Aには、上述した第 1小欠陥 412、第 1EKD区域 418、パーティクル区域 402及び第 2/J、欠陥区域 430の外縁に、特異区域 412、 416、 417、 420、 421、 42 3、 424、 425及び 426力示されて!/ヽる。これらの特異区域 412、 416、 417、 420、 4 21、 423、 424、 425及び 426は、要するに、散舌 L光強度信号 122と 124の少なくと も一方のレベルが、図 2に示した下限レベル Min未満である(LLSが検出されない)か 又は飽和エリアタイプ 136である場合を意味する。第 1小欠陥領域に接する特異区 域 412は、小欠陥に該当すると判定される。第 1EKD区域 418に接する 2つの特異区 域 416と 417は、いずれも、 EKDと判断される。パーティクル区域 410に接する 3つの 特異区域 420、 421及び 423も、 EKDと判断される。第 2小欠陥区域 430に接する飽 和エリアタイプ 136に相当する 2つの特異区域レベル 424と 425も、 EKDと判断され る。第 2小欠陥区域 430に接する DNN = 0. 0 mに相当する特異区域 426は、小欠 陥と判定される。
[0053] ところで、パーティクル区域 410に接する特異区域 420は、狭散乱光強度信号 122 が飽和エリアタイプであり、一方、広散乱光強度信号 124はサイズド LLSタイプであつ て、それによる PLS相当サイズ DWNが 0. 3 m以上である場合である。この特異区域 420は、原理的に図 5に示すように、パーティクル区域 410の延長上であるパーティ クル拡張領域 431の投影領域であるとともに、第 1EKD区域 418の延長上の EKD拡 張領域 432の投影領域でもあると考えられる。従って、原理的には特異区域 420上 にはパーティクルも EKDも存在し得る。し力し、実用的には、 DNNの飽和サイズを適 当な値に選ぶことで、この問題を回避することが可能である。発明者らの研究によれ ば、 DNNの飽和値を 0. 8 m程度に設定することで特異区域 420上のレーザ光散 乱体はほとんど全てが EKDであることが確認された。従って、この特異区域 420では 、 EKDが存在すると判定される。
[0054] 図 4Bに示された区域 422は、狭散乱光信号 122および反射光強度信号 124のい ずれもが図 2に示した飽和エリアタイプ 136か又はエリアタイプ 144である場合である 。この区域 422の縦軸と横軸の最小値は、サイズド LLSタイプ 130の信号に基づいて 計算可能な PLS相当サイズ DNNと DWNの最大値よりも大きな値である。この区域 422 に属する分析結果が得られた検出点には、上述した EKDが存在すると判定される。こ の区域 422を「第 2EKD区域」と呼ぶ。
[0055] 図 6は、半導体ウェハの表面検査において信号処理装置 126Aと 126Bにより行わ れる分析処理の流れを示す。
[0056] 図 1で説明したようにして光スポット 103による半導体ウエノ、 200の表面のスキヤ- ングカ S行われて ヽる [¾、図 6に示したステップ 500、 502、 504及び 506力 続的に 実行される。ステップ 500と 502では、現在の検出点からの狭散乱光強度信号 122と 広散乱光強度信号 124が同時に第 1信号処理装置 126Aに入力される。ステップ 50 4と 507では、狭散乱光強度信号 122と広散乱光強度信号 124のそれぞれの信号レ ベルが図 2に示した下限レベル Minを超えた場合、その信号レベルとその検出点の 位置座標とが、第 1信号処理装置 126A内の記憶装置(図示省略)に記憶される。
[0057] ステップ 508と 510以降のルーチンは、上記スキャニングが行われている間に行わ れてもよ 、し、上記スキャニングが終わった後に行われても良 、。
[0058] ステップ 508では、第 1信号処理装置 126A内の記憶装置に記憶された検出点の 位置座標毎に、その位置で検出された狭散乱光強度信号 122の信号レベルが飽和 レベル Maxに達して!/、るかそれ未満(非飽和)であるかがチェックされる。ステップ 51 0では、信号処理装置 126内の記憶装置に記憶された検出点の位置座標毎に、そ の位置で検出された広散乱光強度信号 124の信号レベルが飽和レベル Maxに達し て!、る力、それ未満 (非飽和)であるかがチェックされる。
[0059] ステップ 512では、ステップ 508のチェック結果が非飽和である(つまり、狭散乱光 強度信号 122がサイズド LLSタイプ 130である)場合に、その狭散乱光強度信号 122 の信号レベルに基づいて PLS相当サイズ DNNが計算され、そして、その PLS相当サイ ズ DNNが、対応する検出点の位置座標に関連付けられて、上記記憶装置に記憶さ れる。ステップ 514では、ステップ 510のチェック結果が非飽和である(つまり、広散乱 光強度信号 124がサイズド LLSタイプ 130である)場合に、その広散乱光強度信号 1 24の信号レベルに基づいて、 PLS相当サイズ DWNが計算され、そして、その PLS相 当サイズ DWN力 対応する検出点の位置座標に関連付けられて、上記記憶装置に SC fedれる。
[0060] ステップ 516では、飽和エリアタイプ 136及びエリアタイプ 144に該当する狭散乱光 強度信号 122が存在するかがチェックされ、そして、そのチヱック結果が、対応する検 出点の位置座標に関連付けられて、上記記憶装置に記憶される。ステップ 518では 、飽和エリアタイプ 136及びエリアタイプ 144に該当する広散乱光強度信号 124が存 在するがチェックされ、そして、そのチェック結果が、対応する検出点の位置座標に 関連付けられて、上記記憶装置に記憶される。
[0061] ステップ 520では、ステップ 516のチェック結果がエリアタイプ 144を示す場合、対 応する複数の検出点の位置座標に基づいて、そのエリアタイプ 144の狭散乱光強度 信号 122が検出された領域のサイズが計算され、そして、その領域のサイズが、対応 する検出点の位置座標に関連付けられて、上記記憶装置に記憶される。ステップ 52 2では、ステップ 518のチェック結果がエリアタイプ 144を示す場合、対応する複数の 検出点の位置座標に基づいて、そのエリアタイプ 144の広散乱光強度信号 124が検 出された領域のサイズが計算され、そして、その領域のサイズが、対応する検出点の 位置座標に関連付けられて、上記記憶装置に記憶される。
[0062] ステップ 524では、記憶装置に記憶された検出点の位置座標、狭散乱光強度信号 122による PLS相当サイズ DNN又は領域サイズ、及び、広散乱光強度信号 124によ る PLS相当サイズ DWN又は領域サイズを示すデータ力 第 2信号処理装置 126Bに 渡される。、第 2信号処理装置 126Bは、そのデータに基づき、既に説明した図 4に示 された検出.判定ロジックに従って、半導体ウェハ 200上のどの位置に LLSが存在す るか否か、及び、存在する場合には、その LLSがパーティクルカゝ、小欠陥か、あるいは EKDかが判定される。この判定結果は、対応する検出点の位置座標に関連付けられ て、上記記憶装置に記憶され、そして、それに基づいて半導体ウェハ 200の良否が 判断される。これらの判定や判断の結果は検査結果の表示或いは更なる解析を行う ために外部へ出力される。また、上記良否判断の結果に基づいて、ウェハマ-ピユレ ータ 129が半導体ウェハ 200の仕分けを行う。
[0063] 以上図面を参照して説明した検査装置 100及び検査方法によると、従来の検査方 法で検査前に行われていたような選択エッチングを半導体ウェハ 200に表面に施さ なくても、検査が可能である。そのため、この検査装置 100及び検査方法は、量産に 適する。
[0064] 以上、本発明の実施形態を説明したが、この実施形態は本発明の説明のための例 示にすぎず、本発明の範囲をこの実施形態にのみ限定する趣旨ではない。本発明 は、その要旨を逸脱することなぐその他の様々な態様でも実施することができる。

Claims

請求の範囲
[1] 半導体ウェハの表面の検査点に光スポットを当てる光照射装置と、
前記検査点力もの散乱光のうち散乱角が所定角より狭い狭散乱光を受けて、前記 狭散乱光の強度を検出する第 1の光センサと、
前記検査点力 の散乱光のうち散乱角が所定角より広い広狭散乱光を受けて、前 記広散乱光の強度を検出する第 2の光センサと、
前記第 1と第 2の光センサからの検出信号に応答して、前記検査点に存在する光 散乱体の種別を判定する信号処理回路と
を備え、
前記信号処理回路は、
前記狭散乱光の強度が所定のサイジング範囲内にある場合、前記狭散乱光の強 度に基づいて第 1の PLS相当サイズを計算する第 1計算手段と、
前記広散乱光の強度が前記サイジング範囲内にある場合、前記広散乱光の強度 に基づ!、て第 2の PLS相当サイズを計算する第 2計算手段と、
前記狭散乱光と前記広散乱光の強度のいずれもが前記サイジング範囲内にある場 合、第 1の PLS相当サイズと前記第 2の PLS相当サイズの双方に基づいて、前記光散 乱体の種別を判定する判定手段と
を有する半導体ゥ ハの検査装置。
[2] 請求項 1記載の検査装置において、前記判定手段は、前記サイジング範囲内におけ る前記第 1の PLS相当サイズが前記第 2の PLS相当サイズとほぼ等しいか又は所定程 度以下の程度でより大きい所定のパーティクル区域において、前記検査点に存在す る光散乱体がパーティクルであると判定する、
半導体ウェハの検査装置。
[3] 請求項 1記載の検査装置において、前記判定手段は、前記サイジング範囲内におけ る前記第 1の PLS相当サイズが前記第 2の PLS相当サイズより前記所定程度以上の程 度でより大きい所定の欠陥区域において、前記検査点に存在する光散乱体が欠陥 であると判定する、
半導体ウェハの検査装置。
[4] 請求項 3記載の検査装置において、前記判定手段は、前記所定の欠陥区域におい て、前記第 1の PLS相当サイズが、所定のサイズより大きいか小さいかに応じて、前記 欠陥がキラーディフエタトであると推定される力否かを判定する、
半導体ウェハの検査装置。
[5] 請求項 1記載の検査装置において、前記判定手段は、前記狭散乱光又は前記広散 乱光の強度が前記サイジング範囲を越える場合、前記検査点に存在する光散乱体 力 Sキラーディフエタトと推定される欠陥であると判定する、 半導体ウェハの検査装置。
[6] 半導体ウェハの表面の検査点に光スポットを当てるステップと、
前記検査点力 の散乱光のうち散乱角が所定角より狭い狭散乱光の強度を検出す るステップと、
前記検査点力 の散乱光のうち散乱角が所定角より広い広狭散乱光の強度を検出 するステップと、
前記狭散乱光の強度が所定のサイジング範囲内にある場合、前記狭散乱光の強 度に基づいて第 1の PLS相当サイズを計算するステップと、
前記広散乱光の強度が前記サイジング範囲内にある場合、前記広散乱光の強度 に基づ!/、て第 2の PLS相当サイズを計算するステップと、
前記狭散乱光と前記広散乱光の強度のいずれもが前記サイジング範囲内にある場 合、第 1の PLS相当サイズと前記第 2の PLS相当サイズの双方に基づいて、前記検査 点に存在する光散乱体の種別を判定するステップと
を有する半導体ウェハの検査方法。
PCT/JP2005/007120 2004-04-13 2005-04-13 半導体ウェハの検査装置及び方法 WO2005101483A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005000828.2T DE112005000828B4 (de) 2004-04-13 2005-04-13 Vorrichtung und Verfahren zur Prüfung von Halbleiter-Wafern
JP2006512348A JP4694476B2 (ja) 2004-04-13 2005-04-13 半導体ウェハの検査装置及び方法
US10/598,933 US7576852B2 (en) 2004-04-13 2005-04-13 Semiconductor wafer inspection device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004117910 2004-04-13
JP2004-117910 2004-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/598,933 Continuation US20070111265A1 (en) 2005-11-15 2006-11-14 Ligands for mineralocorticoid receptor (MR) and methods for screening for or designing MR ligands

Publications (1)

Publication Number Publication Date
WO2005101483A1 true WO2005101483A1 (ja) 2005-10-27

Family

ID=35150251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007120 WO2005101483A1 (ja) 2004-04-13 2005-04-13 半導体ウェハの検査装置及び方法

Country Status (5)

Country Link
US (1) US7576852B2 (ja)
JP (1) JP4694476B2 (ja)
DE (1) DE112005000828B4 (ja)
TW (1) TWI257140B (ja)
WO (1) WO2005101483A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433033B2 (en) 2006-05-05 2008-10-07 Asml Netherlands B.V. Inspection method and apparatus using same
DE102011076954A1 (de) 2011-06-06 2012-03-15 Siltronic Ag Fertigungsablauf für Halbleiterscheiben mit Rückseiten-Getter
JP2012068103A (ja) * 2010-09-22 2012-04-05 Sumco Corp ウェーハの欠陥検出方法
CN103245677A (zh) * 2013-05-02 2013-08-14 苏州欧菲光科技有限公司 感光光阻检验方法及装置
WO2016189778A1 (ja) * 2015-05-27 2016-12-01 信越半導体株式会社 半導体ウェーハの評価方法
JP2017072403A (ja) * 2015-10-05 2017-04-13 株式会社Sumco エピタキシャルウェーハ裏面検査装置およびそれを用いたエピタキシャルウェーハ裏面検査方法
EP4181171A1 (de) 2021-11-12 2023-05-17 Siltronic AG Verfahren zur reinigung einer halbleiterscheibe
EP4411789A1 (de) 2023-02-02 2024-08-07 Siltronic AG Verfahren zur reinigung einer halbleiterscheibe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108133900A (zh) * 2017-12-21 2018-06-08 上海华力微电子有限公司 一种缺陷扫描机台及其缺陷自动分类方法
JP7158224B2 (ja) * 2018-09-26 2022-10-21 浜松ホトニクス株式会社 半導体デバイス検査方法及び半導体デバイス検査装置
CN114018930A (zh) * 2021-10-26 2022-02-08 上海新昇半导体科技有限公司 一种硅晶体原生缺陷的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126736A (ja) * 1997-10-23 1999-05-11 Mitsubishi Electric Corp 半導体装置の製造管理装置および半導体装置の製造管理システム
WO2001027600A1 (fr) * 1999-10-14 2001-04-19 Sumitomo Metal Industries., Ltd. Technique d'inspection de la surface d'une tranche de semi-conducteur
JP2002098645A (ja) * 2000-09-26 2002-04-05 Hitachi Electronics Eng Co Ltd 基板の表面検査装置及び表面検査方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271916B1 (en) * 1994-03-24 2001-08-07 Kla-Tencor Corporation Process and assembly for non-destructive surface inspections
JP2001176943A (ja) 1999-12-15 2001-06-29 Shin Etsu Handotai Co Ltd 半導体ウェーハの評価方法
US6515742B1 (en) * 2000-11-28 2003-02-04 Memc Electronic Materials, Inc. Defect classification using scattered light intensities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126736A (ja) * 1997-10-23 1999-05-11 Mitsubishi Electric Corp 半導体装置の製造管理装置および半導体装置の製造管理システム
WO2001027600A1 (fr) * 1999-10-14 2001-04-19 Sumitomo Metal Industries., Ltd. Technique d'inspection de la surface d'une tranche de semi-conducteur
JP2002098645A (ja) * 2000-09-26 2002-04-05 Hitachi Electronics Eng Co Ltd 基板の表面検査装置及び表面検査方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433033B2 (en) 2006-05-05 2008-10-07 Asml Netherlands B.V. Inspection method and apparatus using same
JP2012068103A (ja) * 2010-09-22 2012-04-05 Sumco Corp ウェーハの欠陥検出方法
DE102011076954A1 (de) 2011-06-06 2012-03-15 Siltronic Ag Fertigungsablauf für Halbleiterscheiben mit Rückseiten-Getter
CN103245677A (zh) * 2013-05-02 2013-08-14 苏州欧菲光科技有限公司 感光光阻检验方法及装置
US10054554B2 (en) 2015-05-27 2018-08-21 Shin-Etsu Chemical Co., Ltd. Method for evaluating semiconductor wafer
WO2016189778A1 (ja) * 2015-05-27 2016-12-01 信越半導体株式会社 半導体ウェーハの評価方法
JP2016225347A (ja) * 2015-05-27 2016-12-28 信越半導体株式会社 半導体ウェーハの評価方法
KR20180005674A (ko) 2015-05-27 2018-01-16 신에쯔 한도타이 가부시키가이샤 반도체 웨이퍼의 평가 방법
JP2017072403A (ja) * 2015-10-05 2017-04-13 株式会社Sumco エピタキシャルウェーハ裏面検査装置およびそれを用いたエピタキシャルウェーハ裏面検査方法
EP4181171A1 (de) 2021-11-12 2023-05-17 Siltronic AG Verfahren zur reinigung einer halbleiterscheibe
WO2023083628A1 (de) 2021-11-12 2023-05-19 Siltronic Ag Verfahren zur reinigung einer halbleiterscheibe
EP4411789A1 (de) 2023-02-02 2024-08-07 Siltronic AG Verfahren zur reinigung einer halbleiterscheibe
WO2024160595A1 (de) 2023-02-02 2024-08-08 Siltronic Ag Verfahren zur reinigung einer halbleiterscheibe

Also Published As

Publication number Publication date
JPWO2005101483A1 (ja) 2008-03-06
US20090040512A1 (en) 2009-02-12
TWI257140B (en) 2006-06-21
DE112005000828B4 (de) 2017-12-21
DE112005000828T5 (de) 2007-02-22
US7576852B2 (en) 2009-08-18
TW200534423A (en) 2005-10-16
JP4694476B2 (ja) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2005101483A1 (ja) 半導体ウェハの検査装置及び方法
JP5097335B2 (ja) プロセス変動のモニタシステムおよび方法
JP4426313B2 (ja) 多検出器欠陥検出システム及び欠陥検出方法
US6256093B1 (en) On-the-fly automatic defect classification for substrates using signal attributes
US6798504B2 (en) Apparatus and method for inspecting surface of semiconductor wafer or the like
US8154717B2 (en) Optical apparatus for defect inspection
JP2004516461A (ja) 基板を検査するための方法及び装置
KR100551570B1 (ko) 반도체 웨이퍼표면의 검사방법
US7522290B2 (en) Apparatus and method for inspecting semiconductor wafer
US20140071442A1 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
KR100493847B1 (ko) 파티클을 검출하기 위한 장치 및 방법
JP2001284423A (ja) 半導体検査装置及び半導体装置の製造方法
JPS5961142A (ja) 欠陥検出装置
JPH09145627A (ja) 半導体検査方法および装置
JPS62223651A (ja) 検査方法および装置
JP2964974B2 (ja) 異物検査方法
JPH03264851A (ja) 板材端面の欠陥検査方法およびその装置
JPH04245660A (ja) 異物検査方法
JP2001082920A (ja) リード検査方法
JPS62150142A (ja) パタ−ン欠陥検査装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512348

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120050008282

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005000828

Country of ref document: DE

Date of ref document: 20070222

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112005000828

Country of ref document: DE

122 Ep: pct application non-entry in european phase