WO2005098458A1 - Stromsensor - Google Patents

Stromsensor Download PDF

Info

Publication number
WO2005098458A1
WO2005098458A1 PCT/EP2005/003584 EP2005003584W WO2005098458A1 WO 2005098458 A1 WO2005098458 A1 WO 2005098458A1 EP 2005003584 W EP2005003584 W EP 2005003584W WO 2005098458 A1 WO2005098458 A1 WO 2005098458A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
current sensor
coupling element
current
sensor according
Prior art date
Application number
PCT/EP2005/003584
Other languages
English (en)
French (fr)
Inventor
Michael Naumann
Markus Miklis
Original Assignee
Ellenberger & Poensgen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ellenberger & Poensgen Gmbh filed Critical Ellenberger & Poensgen Gmbh
Publication of WO2005098458A1 publication Critical patent/WO2005098458A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils

Definitions

  • the invention relates to a current sensor for detecting current changes as a result of arcs in the frequency range between 400 kHz and 60 MHz.
  • a current sensor based on the principle of the Rogowski coil is often used to measure a current flowing through a primary conductor.
  • This sensor which consists of an air coil without a ferromagnetic core, provides an output signal in the form of a voltage that is proportional to the current flowing through the primary conductor.
  • Such a Rogowski coil is therefore also used in particular to detect a time-varying electrical current.
  • the variable magnetic field between the ends of the coil conductor led around the primary conductor induces the voltage which is dependent on the change in the current over time.
  • the Rogowski coil is usually realized by an electrically conductive coil in the form of wire-shaped conductors wound on a toroidal body made of non-ferromagnetic material or by conductor tracks that radially on a non-conductive plate provided with a central hole are arranged running to the center of the hole.
  • the primary conductor carrying the current to be detected is guided centrally through the opening formed by the toroidal body or through the plate hole.
  • Rogowski coil requires a relatively large-area sensor design.
  • the measurable signal level is very small, which requires complex and therefore expensive electronics for signal evaluation.
  • interference fields are also detected with a Rogowski coil.
  • the invention is based on the object of specifying a current sensor which is particularly suitable for detecting events as a result of arcs.
  • the current sensor should reliably detect rapid changes in current or, in particular, steep-edged current increases (dl / dt) with the least possible effort.
  • This object is achieved according to the invention by the features of claim 1.
  • the current sensor comprises a ferromagnetic coupling element and a sensor winding surrounding it with a number of sensor windings, and an excitation winding carrying the current to be detected.
  • a current or voltage signal can be tapped at the connection ends of the sensor winding, which results from the change in slope (d 2 lp / dt 2 ) as a result of high-frequency signal components in the current signal and the damping or amplification as a result of the coupling of the sensor winding to the excitation winding via the ferromagnetic coupling element.
  • This signal is expediently sampled in an analog / digital converter, for example by means of a comparator or 1-bit converter.
  • the detectable frequency range is between approximately 400 kHz and approximately 60 MHz.
  • the essential assembly of the sensor consisting of the sensor winding and the coupling element made of ferromagnetic material, is coupled to the excitation winding by forming a distance via the coupling element.
  • both the sensor and the excitation winding expediently surround the coupling element, forming an insulation distance.
  • the field winding and the sensor winding are arranged next to one another to form a distance on the coupling element.
  • the field winding preferably coaxially surrounds the sensor winding, the coupling element then lying axially in the center of the sensor.
  • This variant has the advantage that a practically arbitrary conductor thickness, ie. H. a winding conductor with a comparatively large conductor diameter can be used.
  • the primary conductor carrying the current to be measured is therefore not passed through a sensor coil, but rather runs on or on the common coupling element adjacent to or above the sensor winding.
  • the excitation winding which carries the current whose rapid current changes are to be recorded, comprises a quarter turn to ten turns.
  • the excitation winding can represent an elongated conductor or comprise half a turn, that is to say a loop open on one side, an entire turn or even several turns.
  • the field winding expediently comprises at least one half be turn, preferably one and a half turns.
  • the number of turns of the secondary winding can be half a turn to fifteen turns or more than fifteen turns.
  • the detectable frequency range from approx. 400 kHz to approx. 60 MHz and the size of the signal that can be picked up at the sensor development are influenced by the mass, the material and the geometry of the coupling element as well as by the number of turns of the excitation or sensor winding and their geometric arrangement ,
  • the coupling element expediently consists of a preferably cylindrical ferrite core, which can also be hollow.
  • a diameter of 1 mm to 10 mm, preferably 2 mm, and a length of 2 mm to 40 mm, preferably 15 mm, are particularly suitable.
  • the number of excitation turns is preferably one and a half, while the number of sensor turns is preferably greater than or equal to four and a half.
  • the mass of the coupling element is between 0.1g and 2g, preferably 0.2g.
  • An evaluation electronics connected to the connection ends of the sensor winding, preferably in the form of an analog / digital converter with downstream signal processing, detects and processes directly the frequency-dependent sensor signal that can be tapped at the connections of the sensor winding, ie. H. a sensor signal with frequency-dependent amplitude. This signal generated by the sensor is larger or higher the higher the slope of the current change. Such a rapid current change (dl / dt) is stored in or by means of the coupling element and is thus damped or amplified.
  • the sensor signal that can be tapped at the connection ends of the sensor winding is standardized by means of the analog / digital converter to an adjustable value, the pulse height or logic voltage and pulse duration of which can be predetermined by a reference signal.
  • the pulse Duration or temporal pulse length of the output signal of the analog / digital converter is determined in particular by the mass of the coupling element and thus by the damping or amplification caused by the current sensor.
  • the samples of the signal digitized by means of the analog / digital converter are expediently counted or summed up.
  • the determined sum then contains a certain count value, which in turn can be assigned to a causal event.
  • the sum is greater, the more events have occurred per time unit of the scan. As a result of the summation, the data rate is reduced.
  • the discrete-time summation also enables simple signal evaluation.
  • the current sensor which is designed with the ferromagnetic coupling element in particular, provides a comparatively high signal level, in contrast to the Rogowski principle, with at the same time very small structural dimensions and therefore a small overall structure.
  • the signal levels are sufficiently high or high that simple processing is possible without further signal amplification.
  • the current sensor does not carry out a proportional current measurement, but reliably detects changes in the current strength in the frequency range to be detected from 400 kHz to ⁇ OMHhz.
  • the sensor winding of the current sensor is galvanically isolated from the current-carrying excitation conductor in a simple and reliable manner during the measurement, without the current sensor having to meet exact symmetry requirements.
  • the design of the sensor winding with respect to the current-carrying conductor is much freer.
  • the current sensor can thus be integrated into a housing with correspondingly small housing dimensions and / or advantageously also into a circuit breaker.
  • the current sensor itself does not require any further components, since due to the high signal level there are no agile signal processing is required.
  • signals in the frequency range from 400 kHz to 60 MHz can be reliably detected with regard to steep-edged current changes without additional filter measures. Practically every arc can be detected, which can always occur when two different voltage potentials on surfaces, conductors or the like. be performed and their electrical insulation to each other is insufficient.
  • Steep-edged current changes such as those generated by electrical consumers in the respective primary conductor, can also be reliably detected.
  • FIG. 1 schematically, in perspective, a current sensor according to the invention connected to a comparator with signal processing
  • FIG. 2a and 2b an end view of a sensor winding or an excitation winding of the current sensor
  • Fig. 3 in a diagram, the damping or amplification of the current sensor depending on the frequency
  • Fig. 4 schematically in a diagram, a current signal with steep-edged current change and a sensor output signal generated by the current sensor and a standardized output signal of the comparator
  • Fig. 5 in the upper part of the diagram a consumer current with interference components and in the lower part of the diagram an event rate as the output signal of the signal processing
  • Fig. 6 in a representation according to Fig. 5 the event rate as the output signal of the signal processing as a result of a switching operation
  • FIG. 7 is a front view of the current sensor according to the invention with the field winding coaxially surrounding the sensor winding.
  • the current sensor 1 comprises a sensor winding or coil 2 which, like an excitation winding 3, is wound around a common coupling element 4.
  • the cylindrical or rod-shaped and ferromagnetic coupling element 4 penetrates both windings 2, 3 in one piece.
  • the sensor winding 2 consisting of a plurality of sensor windings 5 and the excitation winding 3, which may also consist of a plurality of windings 6, are arranged on the coupling element 4, forming a distance a.
  • the coupling element 4 and the two windings 2, 3 are arranged in a sensor housing 7, the connection ends of the excitation winding 3 being guided inside the housing to corresponding connections 8a, 8b.
  • the housing 7 can also be that of an electronic circuit breaker or circuit breaker relay.
  • the distance b between the excitation winding 3 and the corresponding core end 4a of the coupling element 4 is preferably in the range of a few millimeters, eg. B. 2mm to 5mm.
  • the distance b should be equal to the width c of the excitation winding 3 on the coupling element 4.
  • the corresponding distance d between the sensor winding 2 and the opposite core end 4b can be dimensioned in the same order of magnitude.
  • the outer diameter D of the coupling element 4 is between 1 mm and 10 mm, preferably 2 mm.
  • the length L of the coupling element 4 is between 2mm and 40mm, preferably 15mm.
  • the mass of the coupling element is between 0.1g and 2g, preferably 0.2g.
  • the secondary windings 5 of the sensor winding 2 are guided around the coupling element 4 to form an insulation distance f. This in turn depends on the electrical requirements.
  • the insulation distance f is formed by a suitable insulation medium or material, preferably air.
  • the excitation winding 3 is guided around the coupling element 4 with an insulation distance g.
  • the insulation medium is also preferably air.
  • the distances a, f and g are essentially dependent on the electrical and / or thermal insulation requirements specified by the intended use.
  • the number of secondary turns 5 for forming the sensor winding 2 is 1 A.
  • the sensor winding 2 can also have more or fewer turns, for example two to ten turns.
  • the number of excitation windings is V ⁇ in the exemplary embodiment.
  • the excitation winding 3 can be a conductor running at a distance g across the coupling element 4 and carrying the current Ip to be detected.
  • the field winding 3 is the line carrying the current Ip itself or a line section which can be connected to it.
  • a voltage is induced in the sensor winding 2 as a result of a temporal change dlp / dt of the current Ip and on the basis of a concentration of the magnetic field generated by the rapid current change achieved by means of the coupling element 4.
  • a voltage signal S with a relatively high signal level can be tapped at the connection ends 2a, 2b of the sensor winding 2.
  • the gradient change d 2 lp / dt 2 of the rapid current change detected by the current sensor 1 results in a signal S which is greater or stronger the more steeply the current change dlp / dt is.
  • such a rapid current change dlp / dt is stored in or by means of the coupling element 4 and thus extended in time, as is illustrated in FIG. 4.
  • FIG. 4 shows schematically in the upper diagram the course of the detected excitation current Ip over time t with a steep-sided current change dlp / dt from a comparatively lower current value Ipi to a comparatively high current value lp 2 .
  • the middle representation in FIG. 4 shows the signal S at the inputs Ei of an analog / digital converter (A / D converter) 9 in response to the rapid current change or the change in the gradient d 2 lp / dt 2 .
  • Fig. 3 shows the dependence of the attenuation ⁇ of the signal S at the inputs Ei as a function of the frequency f for a sensor winding 2 with 4% turns and an excitation winding 3 with V ⁇ turns and a length L of the coupling element 4 of 15mm with an outer diameter D. of 2mm and a mass of the coupling element 4 of 0.2g.
  • the signal S which can be tapped at the sensor winding 2 is fed to the input Ei of the A / D converter 9, which is expediently designed as a comparator, of an evaluation device or electronics.
  • the further input E 2 of the comparator and thus of the A / D converter 9 designed as a 1 bit converter is a reference signal U R ⁇ f in the form of a voltage of z. B.
  • the A / D conversion converts the input or sensor signal S to the reference or logic voltage U Ref with a pulse width ⁇ t of z.
  • the pulse duration or temporal pulse length ⁇ t of the output signal P of the A / D converter 9 is in particular also determined by the mass of the coupling element 4 and thus by the damping ⁇ or amplification V of the signal S.
  • the sensor signal S normalized as a result of the A / D conversion at the output A of the converter 9 is illustrated in the lower illustration in FIG. 4. It can be seen that the A / D converter or comparator 9 responds to a rapid current increase dlp / dt with a short-time pulse P of the pulse length ⁇ t.
  • the output signals or digital values P of the A / D converter 9 are summed up in a processing device 10 connected downstream of this, hereinafter referred to as signal processing. Its input It is connected to the output A of the A / D converter 9.
  • a corresponding number or event rate R can be tapped off at a time interval at output B of signal processing 10.
  • the respective event rates R can - as shown in FIGS. 5 and 6 - be represented graphically.
  • the A / D converter 9 and the signal processing 10 are also arranged in the sensor housing 7.
  • the output B of the signal processing 10 is routed to a corresponding, analog or digital connection 11, via which the event rates R can be read out.
  • Further connections 12, 13 are provided for the supply voltage U B or ground.
  • FIG. 5 shows several half-waves of an excitation current I with SHF interference as a result of high-frequency signal components. These high-frequency signal components, which are not qualitatively or only extremely difficult to detect with conventional current measurements or can only be detected with high measurement complexity, are detected as such by the current sensor 1.
  • the short-term pulses P are summed in the signal processing 10 for a simplified graphical representation to the event rate R in a time interval.
  • FIG. 6 shows a typical current signal Ip recorded by conventional means as a result of a consumer being switched off.
  • the course of the current signal Ip shows a decrease in the current Ip over time t as a result of the switching off of one of several consumers.
  • the signal shown in the lower part of the diagram shows the event rate R determined by the signal processing 10. The arc generated in the switch for a short time was detected by the current sensor 1.
  • FIG. 7 shows an alternative embodiment of the current sensor 1, in which the excitation winding 3 is not located next to but above the sensor winding 2. This in turn surrounds the coupling element 4.
  • Such a geometric configuration of the current sensor 1 has the advantage that the conductor cross section of the excitation winding 3 can be comparatively large.
  • the current sensor 1 also reliably detects such high-frequency current changes in a current Ip to be detected that would previously have been detectable only with considerable expenditure on measurement technology. Since such steep-edged current changes occur in particular in the event of arcing faults, which lead, for example, as a result of equipotential bonding between two different voltage potentials and e.g. B. neighboring conductors having insulation defects, the current sensor 1 is particularly suitable, particularly because of its small dimensions and simple evaluation, also for detecting arcs in aircraft on-board networks (arc tracking). LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Der erfindungsgemäße Stromsensor (1) zur Erfassung von insbesondere steilfiankigen Stromänderungen (dl/dt) umfasst ein ferromagnetisches Koppelelement (4) und eine diesen mit einer Anzahl von Sekundärwindungen (5) umgebende Sensorwicklung (2) sowie eine den Strom (Ip) führende Erregerwicklung (3).

Description

Beschreibung
Stromsensor
Die Erfindung bezieht sich auf einen Stromsensor zur Erfassung von Stromänderungen in Folge von Lichtbögen im Frequenzbereich zwischen 400kHz und 60MHz.
Zur Messung eines durch einen Primärleiter fließenden Stromes wird häufig ein auf dem Prinzip der Rogowski-Spule basierender Stromsensor eingesetzt. Dieser aus einer Luftspule ohne ferromagnetischen Kern bestehende Sensor liefert ein Ausgangssignal in Form einer Spannung, die proportional zum den Primärleiter durchfließenden Strom ist. Eine derartige Rogowski-Spule wird daher insbesondere auch zur Erfassung eines sich zeitlich ändernden elektrischen Stroms eingesetzt. Dabei induziert das variable magnetische Feld zwischen den Enden des um den Primärleiter herumgeführten Spu- lenleiters die von der zeitlichen Änderung des Stromes abhängige Spannung.
Die Rogowski-Spule ist dabei üblicherweise realisiert durch eine auf einen torus- förmigen Körper aus nicht-ferromagnetischem Material gewickelte elektrisch leitende Spule in Form von drahtförmigen Leitern oder durch Leiterbahnen, die auf einer mit ei- nem zentralen Loch versehenen, nicht-leitenden Platte radial zum Lochmittelpunkt verlaufend angeordnet sind. Dabei ist der den zu erfassenden Strom führende Primärleiter durch die vom torusförmigen Körper gebildete Öffnung bzw. durch das Plattenloch zentral hindurchgeführt.
Der Einsatz einer Rogowski-Spule bedingt jedoch eine relativ großflächige Sensorkonstruktion. Zudem ist der messbare Signalpegel sehr klein, was zur Signalauswertung eine aufwändige und daher kostenintensive Elektronik erfordert. Ferner werden mit einer Rogowski-Spule auch Störfelder erfasst.
Der Erfindung liegt die Aufgabe zu Grunde, einen zur Detektion von Ereignissen in Folge von Lichtbögen besonders geeigneten Stromsensor anzugeben. Der Stromsensor soll dabei schnelle Stromänderungen oder insbesondere auch steilflankige Stromanstiege (dl/dt) mit geringstmöglichem Aufwand zuverlässig erfassen. Diese Aufgabe wird erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1. Dazu umfasst der Stromsensor ein ferromagnetisches Koppelelement und eine dieses mit einer Anzahl von Sensorwindungen umgebende Sensorwicklung sowie eine den zu erfassenden Strom führende Erregerwicklung. An den Anschlussenden der Sensorwicklung ist ein Strom- oder Spannungssignal abgreifbar, das aus der Steigungsänderung (d2lp/dt2) infolge hochfrequenter Signalanteile im Stromsignal und der Dämpfung bzw. Verstärkung infolge der Kopplung der Sensorwicklung mit der Erregerwicklung über das ferromagnetische Koppelelement resultiert. Dieses Signal wird zweck- mäßigerweise in einem Analog/Digital-Wandler, beispielsweise mittels eines Kompara- tors oder 1 bit-Wandlers, abgetastet. Der detektierbare Frequenzbereich liegt dabei zwischen ca. 400 kHz und etwa 60 MHz.
Die aus der Sensorwicklung und dem Koppelelement aus ferromagnetischem Material bestehende wesentliche Baugruppe des Sensors wird unter Bildung eines Abstandes über das Koppelelement mit der Erregerwicklung gekoppelt. Dazu umgeben zweckmäßigerweise sowohl die Sensor- als auch die Erregerwicklung das Koppelelement unter Bildung eines Isolationsabstandes. Die Erregerwicklung und die Sensorwicklung sind dabei unter Bildung eines Abstandes auf dem Koppelelement nebeneinander an- geordnet. Alternativ umgibt die Erregerwicklung die Sensorwicklung vorzugsweise koaxial, wobei dann das Koppelelement axial im Zentrum des Sensors liegt. Diese Variante hat den Vorteil, dass für die Erregerwicklung eine praktisch beliebige Leiterdicke, d. h. ein Wicklungsleiter mit vergleichsweise großem Leiterdurchmesser verwendet werden kann. Die Erregerwicklung, d. h. der den zu messenden Strom führende Pri- märleiter ist somit nicht durch eine Sensorspule hindurchgeführt, sondern verläuft auf oder an dem gemeinsamen Koppelelement benachbart zur bzw. über der Sensorwicklung.
Die Erregerwicklung, die denjenigen Strom führt, dessen schnelle Stromänderungen erfasst werden sollen, umfasst eine viertel Windung bis zehn Windungen. Dabei kann die Erregerwicklung einen langgestreckten Leiter darstellen oder eine halbe Windung, also eine einseitig offene Schlaufe, eine ganze Windung oder auch mehrere Windungen umfassen. Zweckmäßigerweise umfasst die Erregerwicklung mindestens eine hal- be Windung, vorzugsweise eineinhalb Windungen. Bezüglich der Anzahl der Windungen sowohl der Erregerwicklung als auch der Sensorwicklung ist dabei berücksichtigt, dass erkanntermaßen hinsichtlich elektrischer Kriterien möglichst wenige Wind ungen und hinsichtlich signaltechnischer Kriterien möglichst viele Windungen verwendet wer- den.
Die Windungszahl der Sekundärwicklung kann eine halbe Windung bis fünfzehn Windungen oder auch größer fünfzehn Windungen sein. Der detektierbare Frequenzbereich von etwa 400kHz bis ca. 60MHz und die Größe des an der Sensorwicl lung abgreifbaren Signals werden beeinflusst durch die Masse, das Material und die Geometrie des Koppelelementes sowie durch die Anzahl der Windungen der Erreg er- bzw. Sensorwicklung und deren geometrische Anordnung.
Das Koppelelement besteht zweckmäßigerweise aus einem vorzugsweise zylindrischen Ferritkern, der auch hohl ausgeführt sein kann. Hinsichtlich der Abmessungen des Koppelelements sind ein Durchmesser von 1mm bis 10mm, vorzugsweise 2mm, und eine Länge von 2mm bis 40mm, vorzugsweise 15mm, besonders geeignet. Die Anzahl der Erregerwindungen beträgt vorzugsweise eineinhalb, während die Anzahl der Sensorwindungen vorzugsweise größer oder gleich viereinhalb ist. Die Masse des Koppel- elementes beträgt zwischen 0,1g und 2g, vorzugsweise 0,2g.
Eine mit den Anschlussenden der Sensorwicklung verbundene Auswerteelektronik, vorzugsweise in Form eines Analog/Digital-Wandlers mit nachgeschalteter Signalverarbeitung, erfasst und verarbeitet direkt das an den Anschlüssen der Sensorwicklung abgreifbare frequenzabhängige Sensorsignal, d. h. ein Sensorsignal mit freque nzabhängiger Amplitude. Dieses von dem Sensor erzeugte Signal ist dabei um so g rößer oder höher, je steilflankiger die Stromänderung ist. Eine solche schnelle Stromände- rung (dl/dt) wird im oder mittels des Koppelelementes gespeichert und damit gedämpft bzw. verstärkt.
Das an den Anschlußenden der Sensorwicklung abgreifbare Sensorsignal wird mittels des Analog/Digital-Wandlers auf einen einstellbaren Wert normiert, dessen Pul shöhe oder Logikspannung und Pulsdauer durch ein Referenzsignal vorgebbar ist. Die Puls- dauer oder zeitliche Pulslänge des Ausgangssignals des Analog/Digital-Wandlers wird insbesondere auch durch die Masse des Koppelelementes und damit durch die mit dem Stromsensor bewirkte Dämpfung bzw. Verstärkung bestimmt.
Die Abtastwerte des mittels des Analog/Digital-Wandlers digitalisierten Signals wird zweckmäßigerweise gezählt oder aufsummiert. Die ermittelte Summe enthält dann einen bestimmten Zählwert, der wiederum einem ursächlichen Ereignis zugeordnet werden kann. Die Summe ist dabei umso größer, je mehr Ereignisse pro Zeiteinheit der Abtastung aufgetreten sind. In Folge der Summation wird eine Reduktion der Datenrate erreicht. Durch die zeitdiskrete Summation ist zudem eine einfache Signalauswertung ermöglicht.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass der mit dem insbesondere ferromagnetischen Koppelelement ausgeführte Stromsensor im Gegen- satz zum Rogowski-Prinzip bei gleichzeitig sehr geringen konstruktiven Abmessungen und daher kleinem Gesamtaufbau einen vergleichsweise hohen Signalpegel liefert. Die Signalpegel sind ausreichend groß bzw. hoch, so dass eine einfache Verarbeitung ohne weitere Signalverstärkung möglich ist. Der Stromsensor führt dabei keine proportionale Strommessung durch, sondern erfasst zuverlässig Änderungen der Stromstärke im zu detektierenden Frequenzbereich von 400kHz bis ΘOMHhz.
Zudem ist die Sensorwicklung des Stromsensors auf einfache sowie zuverlässige Art und Weise vom Strom führenden Erregerleiter während der Messung galvanisch getrennt, ohne dass der Stromsensor exakte Symmetrievoraussetzungen erfüllen muß. Daher ist eine im Vergleich zum Rogowski-Sensor wesentlich freiere konstruktive Positionierung der Sensorwicklung zum Strom führenden Leiter erreicht.
Insbesondere aufgrund der sehr geringen Abmessungen des Stromsensors eignet sich dieser besonders vorteilhaft zur Messung von Ereignissen in Systemen, bei denen be- sondere Anforderungen an Gewicht und Volumen gestellt werden. So kann der Stromsensor in ein Gehäuse mit entsprechend geringen Gehäuseabmessungen und/oder vorteilhaft auch in einen Schutzschalter integriert werden. Der Stromsensor selbst benötigt keinerlei weitere Bauelemente, da aufgrund des hohen Signalpegels keine auf- wendige Signalaufbereitung erforderlich ist. Zudem können Signale im Frequenzbereich von 400 kHz bis 60 MHz ohne zusätzliche Filtermaßnahmen zuverlässig hinsichtlich steilflankiger Stromänderungen detektiert werden. Dabei ist praktisch jeder Lichtbogen detektierbar, der immer dann entstehen kann, wenn zwei unterschiedliche Spannungs- potentiale an Flächen, Leitern o.dgl. geführt werden und deren elektrische Isolation zueinander nicht ausreichend ist. Auch sind steilflankige Stromänderungen, wie diese von elektrischen Verbrauchern im jeweiligen Primärleiter erzeugt werden können, zuverlässig detektierbar.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
Fig. 1 schematisch in perspektivischer Darstellung einen an einem Kom- parator mit Signalverarbeitung angeschlossenen erfindungsge- mäßen Stromsensor,
Fig. 2a und 2b eine Stirnansicht auf eine Sensorwicklung bzw. auf eine Erregerwicklung des Stromsensors, Fig. 3 in einem Diagramm die Dämpfung bzw. Verstärkung des Stromsensors in Abhängigkeit von der Frequenz, Fig. 4 schematisch in einer Diagrammdarstellung ein Stromsignal mit steilflankiger Stromänderung und ein mittels des Stromsensors generiertes Sensorausgangssignal sowie ein normiertes Ausgangssignal des Komparators, Fig. 5 im oberen Diagrammteil ein Verbraucherstrom mit Störanteilen und im unteren Diagrammteil eine Ereignisrate als Ausgangssignal der Signalverarbeitung, Fig. 6 in einer Darstellung gemäß Fig. 5 die Ereignisrate als Ausgangssignal der Signalverarbeitung in Folge eines Schaltvorgangs, und. Fig. 7 in einer Stirnansicht den erfindungsgemäßen Stromsensor mit die Sensorwicklung koaxial umgebender Erregerwicklung.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen. Gemäß den Figuren 1 und 2 umfasst der Stromsensor 1 eine Sensorwicklung oder - spule 2, die ebenso wie eine Erregerwicklung 3 um ein gemeinsames Koppelelement 4 gewickelt ist. Das zylinder- oder stabförmig ausgebildete und ferromagnetische Koppel- element 4 durchdringt beide Wicklungen 2, 3 einstückig. Dabei sind die aus mehreren Sensorwindungen 5 bestehende Sensorwicklung 2 und die Erregerwicklung 3, die e- benfalls aus mehreren Windungen 6 bestehen kann, unter Bildung eines Abstandes a auf dem Koppelelement 4 angeordnet. Das Koppelelement 4 und die beiden Wicklungen 2, 3 sind in einem Sensorgehäuse 7 angeordnet, wobei die Anschlußenden der Erregerwicklung 3 gehäuseintern an entsprechende Anschlüsse 8a, 8b geführt sind. Das Gehäuse 7 kann auch dasjenige eines elektronischen Schutzschalters oder Schutzschaltrelais sein.
Der Abstand b der Erregerwicklung 3 zum entsprechenden Kernende 4a des Koppel- elements 4 liegt vorzugsweise im Bereich weniger Millimeter, z. B. 2mm bis 5mm. Der Abstand b sollte dabei gleich der Breite c der Erregerwicklung 3 auf dem Koppelelement 4 sein. Der entsprechende Abstand d der Sensorwicklung 2 zum gegenüberliegenden Kernende 4b kann in der gleichen Größenordnung dimensioniert sein.
Der Außendurchmesser D des Koppelelementes 4 beträgt zwischen 1 mm und 10mm, vorzugsweise 2mm. Die Länge L des Koppelelementes 4 beträgt zwischen 2mm und 40mm, vorzugsweise 15mm. Die Masse des Koppelelementes beträgt zwischen 0,1g und 2g, vorzugsweise 0,2g.
Die Sekundärwindungen 5 der Sensorwicklung 2 sind um das Koppelelement 4 unter Bildung eines Isolationsabstandes f herumgeführt. Dieser richtet sich wiederum nach den elektrischen Anforderungen. Der Isolationsabstand f wird durch ein geeignetes I- solationsmedium oder -material, vorzugsweise Luft, gebildet. Die Erregerwicklung 3 ist mit einem Isolationsabstand g um das Koppelelement 4 herumgeführt. Isolationsmedi- um ist hierbei ebenfalls vorzugsweise Luft. Die Abstände a, f und g sind im Wesentlichen abhängig von durch den bestimmungsgemäßen Einsatzzweck vorgegebenen e- lektrischen und/oder thermischen Isolationsanforderungen. Die Anzahl der Sekundärwindungen 5 zur Bildung der Sensorwicklung 2 beträgt im Ausführungsbeispiel 41A Auch kann die Sensorwicklung 2 mehr oder weniger Windungen, beispielsweise zwei bis zehn Windungen aufweisen. Die Anzahl der Erregerwicklungen beträgt im Ausführungsbeispiel VΛ. Auch hier können mehr oder weniger Erre- gei indungen 6 vorgesehen sein. Beispielsweise kann die Erregerwicklung 3 ein im Abstand g quer zum Koppelelement 4 verlaufender und den zu detektierenden Strom Ip führender Leiter sein. Die Erregerwicklung 3 ist die den Strom Ip führende Leitung selbst oder ein mit dieser verbindbarer Leitungsabschnitt.
Bei einer Messung wird in Folge einer zeitlichen Änderung dlp/dt des Stromes Ip sowie aufgrund einer mittels des Koppelelementes 4 erreichten Konzentration des durch die schnelle Stromänderung erzeugten Magnetfeldes in der Sensorwicklung 2 eine Spannung induziert. Infolge einer Verstärkung durch die Magnetfeldkonzentration im ferro- magnetischen Koppelelement 4 ist an den Anschlussenden 2a, 2b der Sensorwicklung 2 ein Spannungssignal S mit relativ hohem Signalpegel abgreifbar. Die vom Stromsensor 1 detektierte Steigungsänderung d2lp/dt2 der schnellen Stromänderung resultiert in einem Signal S, das um so größer oder stärker ist, je steilflankiger die Stromänderung dlp/dt ist. Zeitgleich wird eine solche schnelle Stromänderung dlp/dt im oder mittels des Koppelelementes 4 gespeichert und damit zeitlich verlängert, wie dies in Fig. 4 veran- schaulicht ist.
Fig. 4 zeigt schematisch im oberen Diagramm den Verlauf des erfassten Erregerstromes Ip über die Zeit t mit einer steilflankigen Stromänderung dlp/dt von einem vergleichsweise niedrigeren Stromwert Ipi zu einem vergleichsweise hohen Stromwert lp2. Die mittlere Darstellung in Fig. 4 zeigt das Signal S an den Eingängen Ei eines Analog/Digital-Wandlers (A/D-Wandler) 9 als Antwort auf die schnelle Stromänderung oder die Änderung der Steigung d2lp/dt2.
Fig. 3 zeigt die Abhängigkeit der Dämpfung θ des Signals S an den Eingängen Ei in Abhängigkeit von der Frequenz f bei einer Sensorwicklung 2 mit 4% Windungen und einer Erregerwicklung 3 mit VΛ Windungen sowie einer Länge L des Koppelelementes 4 von 15mm bei einem Außendurchmesser D von 2mm und einer Masse des Koppelelementes 4 von 0,2g . Das an der Sensorwicklung 2 abgreifbare Signal S wird dem Eingang Ei des zweckmäßigerweise als Komparator ausgeführten A/D-Wandler 9 einer Auswerteeinrichtung o- der -elektronik zugeführt. Dem weiteren Eingang E2 des Komparator und damit des als 1 bit-Wandler ausgeführten A/D-Wandlers 9 wird ein Referenzsignal URΘf in Form einer Spannung von z. B. 50mV bis 300mV zugeführt. Durch die A/D-Wandlung wird das Eingangs- oder Sensorsignal S auf die Referenz- oder Logikspannung URef bei einer Pulsweite Δt von z. B. 10ns bis 100ns normiert. Dadurch können die entsprechenden Ereignisse einfach verarbeitet werden.
Die Pulsdauer oder zeitliche Pulslänge Δt des Ausgangssignals P des A/D-Wandlers 9 wird insbesondere auch durch die Masse des Koppelelementes 4 und damit durch die Dämpfung θ bzw. Verstärkung V des Signals S bestimmt. Das infolge der A/D- Wandlung normierte Sensorsignal S am Ausgang A des Wandlers 9 ist in der unteren Darstellung in Fig. 4 veranschaulicht. Erkennbar ist, dass der A/D-Wandler bzw. Komparator 9 auf einen schnellen Stromanstieg dlp/dt mit einem zeitlich kurzen Impuls P der Impulslänge Δt reagiert.
Für eine vereinfachte Darstellbarkeit der Ereignisse werden die Ausgangssignale oder Digitalwerte P des A/D-Wandlers 9 in einer diesem nachgeschalteten, nachfolgend als Signalverarbeitung bezeichneten Verarbeitungseinrichtung 10 aufsummiert. Deren Eingang Es ist mit dem Ausgang A des A/D-Wandlers 9 verbunden. Am Ausgang B der Signalverarbeitung 10 ist eine entsprechende Zahl oder Ereignisrate R in einem Zeitintervall abgreifbar. Die jeweiligen Ereignisraten R können - wie in den Fig. 5 und 6 ge- zeigt - graphisch dargestellt werden.
Der A/D-Wandler 9 und die Signalverarbeitung 10 sind ebenfalls im Sensorgehäuse 7 angeordnet. Der Ausgang B der Signalverarbeitung 10 ist dabei an einen entsprechenden, analogen oder digitalen Anschluß 11 geführt, über den die Ereignisraten R aus- lesbar sind. Weitere Anschlüsse 12, 13 sind für die Versorgungsspannung UB bzw. Masse (Ground) vorgesehen. Fig. 5 zeigt mehrere Halbwellen eines Erregerstroms I mit Störungen SHF in Folge hochfrequenter Signalanteile. Diese, mit herkömmlichen Strommessungen bereits qualitativ nicht oder nur äußerst schwierig bzw. mit hohem messtechnischen Aufwand erkennbaren hochfrequenten Signalanteile werden vom Stromsensor 1 als solche detek- tiert. Die kurzzeitigen Impulse P werden in der Signalverarbeitung 10 für eine vereinfachte graphische Darstellbarkeit zur Ereignisrate R in einem Zeitintervall summiert.
Fig. 6 zeigt ein mit herkömmlichen Mitteln erfasstes typisches Stromsignal Ip in Folge des Abschaltens eines Verbrauchers. Anhand des Verlaufes des Stromsignals Ip ist eine Abnahme des Strom Ip über die Zeit t in Folge des Abschaltens eines von mehreren Verbrauchern erkennbar. Das in dem unteren Teil des Diagramms dargestellte Signal zeigt die durch die Signalverarbeitung 10 ermittelte Ereignisrate R. Vom Stromsensor 1 detektiert wurde dabei der in dem Schalter für kurze Zeit erzeugte Lichtbogen.
Figur 7 zeigt eine alternative Ausführungsform des Stromsensors 1 , bei dem die Erregerwicklung 3 nicht neben, sondern über der Sensorwicklung 2 liegt. Diese wiederum umgibt das Koppelelement 4. Eine derartige geometrische Ausgestaltung des Stromsensors 1 hat den Vorteil, dass der Leiterquerschnitt der Erregerwicklung 3 vergleichsweise groß sein kann.
Anhand dieser Versuchsmessungen ist erkennbar, das mittels des erfindungsgemäßen Stromsensors 1 auch solche hochfrequente Stromänderungen eines zu erfassenden Stromes Ip zuverlässig erfasst werden, die bisher nur mit erheblichem messtechnischen Aufwand detektierbar wären. Da derartige, steilflankige Stromänderung insbesondere auch bei Störlichtbögen auftreten, die beispielsweise in Folge eines Potentialausgleichs zwischen zwei unterschiedliche Spannungspotentiale führenden und z. B. Isolationsdefekte aufweisenden benachbarten Leitern entstehen, eignet sich der Stromsensor 1 , insbesondere aufgrund dessen geringen Abmessungen und der einfachen Auswertung, vorteilhafterweise auch zur Detektion von Lichtbögen in Flugzeug-Bord netzen (arc tra- cking). Bezugszeichenliste
1 Stromsensor
2 Sensorwicklung
2a,2b Anschlussende
3 Erregerwicklung
4 Koppelelement
4a,b Kernende
5 Sensorwindung
6 Erregerwindung
8a,b Anschluß
9 A/D-Wandler
10 Signalverarbeitung
11-13 Anschluß
a-g Abstand
Ip Erregerstrom lpi,P2 Stromverlauf t Zeit
A,B Ausgang
D Durchmesser
E Eingang
L Länge
R Ereignisrate
P Ausgangssignal/Digitalwert
S Signal
SHF Störanteil

Claims

Ansprüche
1. Stromsensor (1 ) zur Erfassung von Stromänderungen in Folge von Lichtbögen im Frequenzbereich zwischen 400kHz und 60MHz, mit einem ferromagnetischen s Koppelelement (4) und mit einer diesen mit einer Anzahl von Sekundärwindungen (5) umgebenden Sensorwicklung (2) sowie mit einer den Strom (Ip) führenden Erregerwicklung (3).
2. Stromsensor nach Anspruch 1 ,0 dadurch gekennzeichnet, dass das Koppelelement (4) eine Masse von 0,1g bis 2g, vorzugsweise 0,2g, aufweist.
5 3. Stromsensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Erregerwicklung (3) eine viertel Windung (6) bis zehn Windungen (6) umfasst. 0 4. Stromsensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Sensorwicklung (2) das Koppelement (4) unter Bildung eines Isolationsabstandes (f) umgibt. 5 5. Stromsensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Erregerwicklung (3) zur Sensorwicklung (2) beabstandet das Koppelelement (4) umgibt und dabei neben oder über der Sensorwicklung (2) angeordnet ist.0 6. Stromsensor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Erregerwicklung (3) das Koppelelement (4) unter Bildung eines Isolationsabstandes (g) umgibt.
7. Stromsensor nach einem der Ansprüche 1 bis 6, s dadurch gekennzeichnet, dass ein an den Anschlußenden (2a, 2b) der Sensorwicklung (2) abgreifbares Signal (S) direkt an einem Eingang (E-ι) eines Analog/Digital-Wandlers (9) zugeführt ist, an dessen weiteren Eingang (E2) ein Referenzsignal (l-Ref) geführt ist. 0 8. Stromsensor nach der Anspruch 7, gekennzeichnet durch einen Spannungswert des Referenzsignal (URef) von 1 mV bis 1000mV, vorzugsweise 50mV bis 300mV. 5 9. Stromsensor nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Abtastzeit (Δt) des an den Anschlußeneden (2a, 2b) der Sensorwicklung (2) abgreifbaren Signals (S) 1 ns bis 1000ns, vorzugsweise 20ns, beträgt. 0 10. Stromsensor nach einem der Ansprüche 1 bis 9, gekennzeichnet durch ein Gehäuse (7) mit darin angeordnet einem mit der Sensorwicklung (2) ein- gangsseitig verbundenen Analog/Digital-Wandler (9). 5 11. Stromsensor nach Anspruch 10, gekennzeichnet durch eine dem Analog/Digital-Wandler (9) gehäuseintern nachgeschaltete Signalverarbeitung (10). o 12. Stromsensor nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass das Koppelelement (4) ein nicht geschlossener Zylinderkörper ist.
13. Stromsensor nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Koppelelement (4) ein langgestreckter Zylinderkörper ist.
s 14. Stromsensor nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Koppelelement (4) aus ferromagnetischem Material besteht.
15. Stromsensor nach einem der Ansprüche 1 bis 14,0 dadurch gekennzeichnet, dass der Außendurchmesser (D) des Koppelelementes (4) zwischen 1mm und 10mm, vorzugsweise 2mm, beträgt.
16. Stromsensor nach einem der Ansprüche 1 bis 15,5 dadurch gekennzeichnet, dass das Koppelelement (4) eine Länge (L) von 2mm bis 40mm, vorzugsweise 15mm, aufweist.
PCT/EP2005/003584 2004-04-07 2005-04-06 Stromsensor WO2005098458A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200420005495 DE202004005495U1 (de) 2004-04-07 2004-04-07 Stromsensor
DE202004005495.7 2004-04-07

Publications (1)

Publication Number Publication Date
WO2005098458A1 true WO2005098458A1 (de) 2005-10-20

Family

ID=34877809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003584 WO2005098458A1 (de) 2004-04-07 2005-04-06 Stromsensor

Country Status (2)

Country Link
DE (1) DE202004005495U1 (de)
WO (1) WO2005098458A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007013712A1 (de) 2007-03-22 2008-09-25 Ellenberger & Poensgen Gmbh Verfahren und Vorrichtung zur Auswertung schneller Stromänderungen
DE202010017328U1 (de) 2010-06-29 2011-11-08 Ellenberger & Poensgen Gmbh Stromleitspule
DE102011008140A1 (de) 2010-08-31 2012-03-01 Ellenberger & Poensgen Gmbh Verfahren und Vorrichtung zum Schalten einer Gleichspannungsanlage
DE202012007257U1 (de) 2012-07-26 2013-10-28 Ellenberger & Poensgen Gmbh Vorrichtung zum sicheren Schalten einer Photovoltaikanlage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558310A (en) * 1982-09-29 1985-12-10 Mcallise Raymond J Current sensing device and monitor
JPH10160763A (ja) * 1996-12-04 1998-06-19 Makoto Yamamoto 電流の測定構造
US5835319A (en) * 1997-04-16 1998-11-10 General Electric Company Method and apparatus for circuit breaking
US5835321A (en) * 1996-08-02 1998-11-10 Eaton Corporation Arc fault detection apparatus and circuit breaker incorporating same
US6043641A (en) * 1998-02-17 2000-03-28 Singer; Jerome R. Method and apparatus for rapid determinations of voltage and current in wires and conductors
US6094043A (en) * 1998-04-15 2000-07-25 Square D Company ARC detection sensor utilizing discrete inductors

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1516202B1 (de) * 1964-04-10 1970-01-15 Siemens Ag Messwandler
CH660538A5 (de) * 1983-03-02 1987-04-30 Landis & Gyr Ag Messwandler zum messen eines stromes.
GB8805245D0 (en) * 1988-03-04 1988-04-07 Cambridge Consultants Active current transformer
DE4026799A1 (de) * 1990-08-24 1992-02-27 Licentia Gmbh Verfahren zur selektiven erfassung von fehlern der leiter in hoch- und hoechstspannungsnetzen
US5152762A (en) * 1990-11-16 1992-10-06 Birtcher Medical Systems, Inc. Current leakage control for electrosurgical generator
NO175394C (no) * 1991-07-01 1994-10-05 Abb En As Anordning ved måling av ström
US5583732A (en) * 1994-12-19 1996-12-10 General Electric Company Modular current transformer for electronic circuit interrupters
DE19532197C2 (de) * 1995-08-31 2000-05-18 Siemens Ag Stromwandler
JPH10221382A (ja) * 1997-01-24 1998-08-21 Eaton Corp 交流電流の測定装置及びその方法
US6337571B2 (en) * 1998-11-13 2002-01-08 Tektronix, Inc. Ultra-high-frequency current probe in surface-mount form factor
DE10003638A1 (de) * 2000-01-28 2001-08-09 Vacuumschmelze Gmbh Kompensationsstromsensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558310A (en) * 1982-09-29 1985-12-10 Mcallise Raymond J Current sensing device and monitor
US5835321A (en) * 1996-08-02 1998-11-10 Eaton Corporation Arc fault detection apparatus and circuit breaker incorporating same
JPH10160763A (ja) * 1996-12-04 1998-06-19 Makoto Yamamoto 電流の測定構造
US5835319A (en) * 1997-04-16 1998-11-10 General Electric Company Method and apparatus for circuit breaking
US6043641A (en) * 1998-02-17 2000-03-28 Singer; Jerome R. Method and apparatus for rapid determinations of voltage and current in wires and conductors
US6094043A (en) * 1998-04-15 2000-07-25 Square D Company ARC detection sensor utilizing discrete inductors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 11 30 September 1998 (1998-09-30) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008018257U1 (de) 2007-03-22 2012-06-12 Ellenberger & Poensgen Gmbh Auswertung schneller Stromänderungen
WO2008113423A1 (de) 2007-03-22 2008-09-25 Ellenberger & Poensgen Gmbh Verfahren und vorrichtung zur auswertung schneller stromänderungen
JP2010521686A (ja) * 2007-03-22 2010-06-24 エレンベルガー ウント ペンスゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング 急速な電流変化の評価方法および装置
US7834614B2 (en) 2007-03-22 2010-11-16 Ellenberger & Poensgen Gmbh Method and apparatus for evaluating rapid changes in current
EP2357482A1 (de) 2007-03-22 2011-08-17 Ellenberger & Poensgen GmbH Verfahren und Vorrichtung zur Auswertung schneller Stromänderungen
DE102007013712A1 (de) 2007-03-22 2008-09-25 Ellenberger & Poensgen Gmbh Verfahren und Vorrichtung zur Auswertung schneller Stromänderungen
DE202010017328U1 (de) 2010-06-29 2011-11-08 Ellenberger & Poensgen Gmbh Stromleitspule
DE102011008140A1 (de) 2010-08-31 2012-03-01 Ellenberger & Poensgen Gmbh Verfahren und Vorrichtung zum Schalten einer Gleichspannungsanlage
WO2012028247A1 (de) 2010-08-31 2012-03-08 Ellenberger & Poensgen Gmbh Verfahren und vorrichtung zum sicheren schalten einer photovoltaikanlage nach unterscheidung der lichtbogenart
JP2013542699A (ja) * 2010-08-31 2013-11-21 エレンベルガー ウント ペンスゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング アークタイプを識別後に太陽光発電システムを安全に遮断するための方法および装置
US8929038B2 (en) 2010-08-31 2015-01-06 Ellenberger & Poensgen Gmbh Method and device for safely switching a photovoltaic system after differentiating the arc type
KR101530300B1 (ko) * 2010-08-31 2015-06-19 엘렌베르거 앤드 포엔스겐 게엠베하 아크 유형을 구별한 후 태양광발전 시스템을 안전하게 스위칭하기 위한 방법 및 장치
DE202011110757U1 (de) 2010-08-31 2016-02-23 Ellenberger & Poensgen Gmbh Vorrichtung zum Schalten einer Gleichspannungsanlage
DE202012007257U1 (de) 2012-07-26 2013-10-28 Ellenberger & Poensgen Gmbh Vorrichtung zum sicheren Schalten einer Photovoltaikanlage
WO2014015947A2 (de) 2012-07-26 2014-01-30 Ellenberger & Poensgen Gmbh Vorrichtung zum sicheren schalten einer photovoltaikanlage

Also Published As

Publication number Publication date
DE202004005495U1 (de) 2005-08-18

Similar Documents

Publication Publication Date Title
DE69919723T2 (de) Induktiver magnetischer Sensor mit mehreren enggekoppelten Wicklungen
EP0990123A1 (de) Wirbelstromsensor
EP1580563A1 (de) Vorrichtung zur potenzialfreien Strommessung
DE102010039820A1 (de) Leistungsschalter mit Rogowski-Stromwandlern zum Messen des Stroms in den Leitern des Leistungsschalters
WO2005098458A1 (de) Stromsensor
DE202008018257U1 (de) Auswertung schneller Stromänderungen
DE102017215722B4 (de) Einrichtung zur Messung von Kommutierungsströmen schnell schaltender Halbleiterbauelemente
EP0698897B1 (de) Stromwandler für eine metallgekapselte gasisolierte Hochspannungsanlage
DE102018111308B3 (de) Vorrichtung zur Erfassung elektrischer Ströme an oder in der Nähe elektrischer Leiter
EP0797078A1 (de) Induktiver Drehwinkelsensor
EP0002225B1 (de) Fehlerstromschutzschalter, der auf Wechselstromfehlerströme, Gleichstromanteile sowie auf glatte Gleichstromfehlerströme anspricht
DE19924237A1 (de) Einrichtung zur Überwachung des Stroms eines elektrischen Leiters
EP1312929B1 (de) Verfahren zum Überwachen einer elektrischen Isolation eines Läufers einer elektrischen Maschine
DE3708731C1 (en) Electrical circuit arrangement for detecting noise pulses in high-voltage systems
DE69911745T2 (de) Induktionssensor
EP2116855B1 (de) Strommesseinrichtung
EP1656537B1 (de) Positionssensor
DE19828890A1 (de) Stromwandler
EP3837556B1 (de) Vorrichtung zur messung von stromstärke und spannung
DE10258115A1 (de) Breitbandiges Messmodul zur Strommessung an Einrichtungen der Leistungselektronik
DE3826457A1 (de) Anordnung zur messung von impulsfoermigen starkstroemen
DE102004032681B4 (de) Verfahren und Vorrichtung zum Ermitteln eines Zustands einer Gebereinrichtung
DE1227731B (de) Pruefvorrichtung fuer Zuendanlagen von Brennkraftmaschinen
DE19752497C2 (de) Wirbelstromsensor
DE4327130C2 (de) Vorrichtung zur Stromerfassung bei Leitungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase