WO2005098326A1 - 空気調和機および空気調和機の制御方法 - Google Patents

空気調和機および空気調和機の制御方法 Download PDF

Info

Publication number
WO2005098326A1
WO2005098326A1 PCT/JP2005/005511 JP2005005511W WO2005098326A1 WO 2005098326 A1 WO2005098326 A1 WO 2005098326A1 JP 2005005511 W JP2005005511 W JP 2005005511W WO 2005098326 A1 WO2005098326 A1 WO 2005098326A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
load
air conditioner
control
heat load
Prior art date
Application number
PCT/JP2005/005511
Other languages
English (en)
French (fr)
Inventor
Satoshi Ishida
Nobuki Matsui
Tomohiro Yabu
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004104765A external-priority patent/JP3712001B2/ja
Priority claimed from JP2004104762A external-priority patent/JP2005291569A/ja
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP05727006A priority Critical patent/EP1752716A4/en
Priority to AU2005230518A priority patent/AU2005230518B2/en
Priority to US10/593,441 priority patent/US7810339B2/en
Publication of WO2005098326A1 publication Critical patent/WO2005098326A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Air conditioner and control method of air conditioner are Air conditioner and control method of air conditioner
  • the present invention relates to an air conditioner and an air conditioner control method, and in particular, an air conditioner that processes a latent heat load and a sensible heat load indoors using a vapor compression refrigeration cycle having a compressor. About.
  • an air conditioner capable of adjusting the humidity of air using an adsorbent is known as a desiccant humidity controller or a desiccant external conditioner.
  • the air conditioning system disclosed in Patent Document 1 includes two desiccants (adsorbents), and performs the adsorption operation and the regeneration operation of each desiccant in a batch.
  • indoor dehumidification air conditioning is performed by repeatedly performing the regeneration of the first desiccant and the dehumidification of the processing air with the second desiccant, and the dehumidification of the processing air with the first desiccant and the regeneration of the second desiccant. It is carried out.
  • the first operation in which the first adsorption element (a unit including the adsorbent) performs the adsorption operation and the second adsorption element performs the regeneration operation, and the second adsorption element performs the adsorption operation.
  • the dehumidifying operation or the humidifying operation is performed by alternately switching between the first operation and the second operation in which the first adsorption device performs the regeneration operation, and supplying the first air on the adsorption side or the second air on the regeneration side to the room.
  • Patent Document 3 discloses a method for controlling the operation of a heat pump that is a heat source for regenerating a desiccant based on the humidity and temperature of the air-conditioned space as a control method for uniformly adjusting the temperature of the regeneration air. Being done!
  • Patent Document 4 describes a method of controlling the capacity using a means for promoting the temperature rise of the regeneration air.
  • Means for promoting the temperature rise of the regeneration air include increasing the temperature of the regeneration air by reducing the flow rate of the regeneration air in the path of the regeneration air, or an auxiliary heating means disposed upstream of the desiccant in the regeneration air path. Or to raise the temperature of the regeneration air.
  • the means for suppressing the adsorption speed suppresses the moisture adsorption speed by stopping the circulation of the processing air in the processing air path, or a means for bypassing the downstream side of the desiccant provided in the processing air path to the upstream side.
  • the flow of treated air through the bypass passage suppresses the moisture adsorption rate.
  • Patent Document 1 JP-A-10-9963
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-60954
  • Patent Document 3 JP-A-9-318128
  • Patent Document 4 JP-A-10-54586
  • An object of the present invention is to provide an air conditioner for processing an indoor latent heat load and a sensible heat load, and to provide an air conditioner capable of performing appropriate capacity control and a method of controlling the air conditioner. is there.
  • the capacity control of the dehumidification and humidification operation of the conventional desiccant type external conditioner as disclosed in Patent Document 3 and Patent Document 4 for example, the capacity control for controlling the air temperature as a control target is performed by a flow type Power that is possible with a dehumidifying device
  • the notch-type dehumidifying device has a large time delay in air temperature change with respect to changes in operating conditions such as when the notch is switched, and temperature distribution in various parts of the flow passage. It is not suitable for reasons such as large (including time-dependent change).
  • An object of the present invention is to provide an air conditioner and a control method of an air conditioner that enable appropriate control of the capacity of the air conditioner and the Z or the sensible and latent heat treatment amount ratio.
  • An air conditioner is an air conditioner that processes a latent heat load and a sensible heat load indoors using a vapor compression refrigeration cycle having a compressor.
  • the adsorbent adsorbs moisture in the passing air that is absorbed by heat exchange acting as an evaporator, and the regeneration operation that desorbs moisture from the passing air heated by heat exchange acting as a condenser. I do.
  • the control unit performs control such that the adsorption operation and the regeneration operation of the adsorbent are switched at a predetermined switching time interval.
  • control unit controls the capacity of the compressor and controls the suction so that a predetermined load among the total heat load, the latent heat load, and the sensible heat load, which is the sum of the latent heat load and the sensible heat load, is preferentially processed.
  • the change control of the switching time interval between the receiving operation and the reproducing operation is performed.
  • the adsorbent performs an adsorption operation by heat exchange acting as an evaporator, and the adsorbent performs a regeneration operation by a heat exchanger acting as a condenser. Then, control for changing the time interval (switching time interval) of switching between the adsorption operation and the regeneration operation of the adsorbent is performed by the control unit together with the capacity control of the compressor.
  • the ratio of the capacity of processing the latent heat load of the air conditioner (hereinafter referred to as latent heat treatment capacity) to the capacity of processing the sensible heat load (hereinafter, referred to as “sensible heat treatment capacity”). (Referred to as latent heat treatment ratio).
  • latent heat treatment capacity the capacity of processing the latent heat load of the air conditioner
  • sensible heat treatment capacity the capacity of processing the sensible heat load
  • latent heat treatment ratio the sum of the latent heat treatment capacity and the sensible heat treatment capacity
  • the control unit can adjust the latent heat treatment ability, the sensible heat treatment ability, and the total heat treatment ability.
  • the control unit having such an adjustment function controls and switches the capacity of the compressor so that a predetermined load among the total heat load, the latent heat load, and the sensible heat load is processed with priority.
  • Time Control the change of the interval. Since such control is performed, in the present air conditioner, it is easy to perform appropriate capacity control.
  • the user selects the load to be processed with priority.
  • the predetermined load to be processed with priority is selected by a user.
  • the predetermined load to be preferentially processed is defined as the difference between the latent heat treatment capacity and the size of the latent heat treatment, the difference between the sensible heat treatment capacity and the size of the sensible heat treatment,
  • the load having the largest difference is preferentially processed as a predetermined load, and the total heat load, the latent heat load, and the sensible heat load are determined. Process can be balanced.
  • An air conditioner according to a second invention is the air conditioner of the first invention, further comprising an input unit.
  • the input unit allows the user to select a predetermined load for performing processing with priority.
  • An air conditioner according to a third invention is the air conditioner according to the first invention, wherein the control unit performs a predetermined process for giving priority to the processing based on the first difference, the second difference, and the third difference.
  • Determine the load The first difference is the difference between the current ability to handle the total heat load and the magnitude of the total heat load.
  • the second difference is the difference between the current ability to handle the latent heat load and the magnitude of the latent heat load.
  • the third difference is the difference between the current ability to handle the sensible heat load and the magnitude of the sensible heat load.
  • An air conditioner according to a fourth invention is the air conditioner according to any one of the first invention to the third invention, wherein the control unit performs compression when the predetermined load for performing the process with priority is a latent heat load.
  • the change in the processing amount of the latent heat load by the capacity control of the machine is given priority over the change in the processing amount of the latent heat load by the change time interval change control.
  • the capacity of the compressor is controlled to change the processing amount of the latent heat load, and when the processing is insufficient, switching between the adsorption operation and the regeneration operation is performed.
  • the time interval change control is performed to further change the processing amount of the latent heat load.
  • An air conditioner according to a fifth invention is the air conditioner according to any one of the first invention to the third invention, wherein the control unit switches when the predetermined load for performing the process with priority is a latent heat load.
  • a change in the processing amount of the latent heat load by the change control of the time interval is given priority over a change in the processing amount of the latent heat load by the control of the capacity of the compressor.
  • control is performed to change the switching time interval between the adsorption operation and the regeneration operation to change the processing amount of the latent heat load.
  • the control is performed to further change the processing amount of the latent heat load.
  • the switching time interval is controlled to be changed. Therefore, even when it is necessary to increase the processing amount of the latent heat load, the control of increasing the capacity of the compressor does not significantly increase the energy consumption.
  • the processing amount of the latent heat load can be increased. For example, if the required amount of latent heat load can be secured by increasing the ratio of the amount of latent heat load to the amount of sensible heat load by changing the switching time interval, the capacity of the compressor must be increased. There is no.
  • An air conditioner according to a sixth invention is the air conditioner according to any one of the first invention to the third invention, wherein the control unit is configured so that the predetermined load for performing processing with priority is a sensible heat load.
  • the change in the processing amount of the sensible heat load by controlling the capacity of the compressor is given priority over the change in the processing amount of the sensible heat load by the change control of the switching time interval.
  • the capacity of the compressor is first controlled to change the processing amount of the sensible heat load, and when it is not enough, the switching time between the adsorption operation and the regeneration operation is performed.
  • the interval change control is performed to further change the throughput of the sensible heat load.
  • the air conditioner according to the seventh invention is the air conditioner according to any one of the first invention to the third invention, wherein the control unit, when the predetermined load for performing the process with priority is a sensible heat load, Prioritize the change in the sensible heat load through the changeover of the switching time interval over the change in the sensible heat load through the compressor capacity control.
  • control is performed to change the time interval for switching between the adsorption operation and the regeneration operation to change the processing amount of the sensible heat load.
  • the capacity of the compressor is controlled to further change the throughput of the sensible heat load.
  • the control of increasing the capacity of the compressor can increase the processing amount of the sensible heat load without greatly increasing the energy consumption. For example, if the required amount of sensible heat load can be secured by increasing the ratio of the amount of sensible heat load to the amount of latent heat load by changing the switching time interval, increase the capacity of the compressor. No need.
  • An air conditioner according to an eighth invention is the air conditioner according to any one of the first invention to the third invention, wherein the control unit, when the predetermined load for performing the process with priority is a total heat load, First, the capacity of the compressor is controlled.
  • An air conditioner according to a ninth invention is the air conditioner according to any one of the first invention to the third invention, wherein the control unit is configured such that, when the predetermined load for performing the process with priority is a total heat load, First, the ratio between the processing amount of the latent heat load and the processing amount of the sensible heat load is fixed by controlling the switching time interval, and then the compressor capacity is controlled.
  • the compressor capacity is controlled after fixing the sensible / latent heat treatment amount ratio first. For this reason, unnecessary changes in the latent heat treatment ratio can be suppressed.
  • An air conditioner according to a tenth invention is the air conditioner according to any one of the first invention to the ninth invention, wherein the first heat exchanger and the second heat exchanger having a surface provided with an adsorbent are used as heat exchangers. It has adsorption heat exchange. Then, the control unit switches between the first state and the second state. In the first state, dehumidification or dehumidification is performed by the adsorbent adsorption operation or regeneration operation of the first adsorption heat exchanger. Supplies humidified air indoors. In the second state, the air dehumidified or humidified by the adsorption operation or the regeneration operation of the adsorbent of the second adsorption heat exchanger is supplied indoors.
  • This air conditioner is provided with two adsorption heat exchanges as heat exchange ⁇ , a state in which dehumidified or humidified air is sent indoors from one of the adsorption heat exchangers (first state), Switch to the state in which dehumidified or humidified air is sent indoors using the other adsorption heat exchanger (second state).
  • first state a state in which dehumidified or humidified air is sent indoors from one of the adsorption heat exchangers
  • second state switches to the state in which dehumidified or humidified air is sent indoors using the other adsorption heat exchanger
  • An air conditioner according to an eleventh invention is the air conditioner according to any one of the first invention to the tenth invention, and includes heat exchange as use-side heat exchange. And this air conditioner further includes heat source side heat exchange in addition to user side heat exchange.
  • a heat source side heat exchange is further provided in addition to a use side heat exchange in which an adsorbent performs an adsorption operation and a regeneration operation.
  • a plurality of heat exchangers that cause the adsorbent to perform an adsorption operation or a regeneration operation may be provided as the use side heat exchanger.
  • a heat exchanger that causes the adsorbent to perform adsorption and regeneration operations and another heat exchanger dedicated to sensible heat load processing are provided.
  • An air conditioner according to a twelfth invention is the air conditioner according to any one of the first invention to the eleventh invention, wherein the control unit comprises: an evaporator temperature, an evaporator pressure, a condenser temperature, and a condenser temperature. Based on at least one of the pressures, the compressor capacity control and the switching time interval change control are performed.
  • the temperature and pressure of the heat exchanger (evaporator temperature, evaporator pressure, condenser temperature, and condenser pressure), which causes the adsorbent to perform adsorption and regeneration operations, are used to determine the temperature in the heat exchanger.
  • the state of the refrigerant can be obtained. This state of the refrigerant is a factor that greatly affects the temperature of the adsorbent.
  • the adsorption operation and the regeneration operation of the adsorbent are switched at a predetermined switching time interval, so if we try to estimate the temperature of the adsorbent by the temperature and humidity around the adsorbent and heat exchange ⁇ It is difficult to secure the estimation accuracy.
  • the processing capacity of the latent heat load divided by the processing capacity of the sensible heat load, particularly the pressure of the evaporator, which is closely related to the temperature of the adsorbent, which directly affects the processing capacity of the latent heat load Compressor capacity control and switching time interval change control are performed based on at least one of temperature and condenser pressure.
  • capacity control control of the capacity of the compressor and control of changing the switching time interval
  • the control method of the air conditioner according to the thirteenth invention uses the vapor-compression refrigeration cycle having a compressor and a heat exchanger to use an adsorbent that performs an adsorption operation and a regeneration operation, and to use the indoor latent heat load. And a method for controlling an air conditioner for processing a sensible heat load.
  • the operation of adsorbing the adsorbent is an operation of adsorbing moisture of passing air absorbed by heat exchange acting as an evaporator.
  • the regenerating operation of the adsorbent is an operation of desorbing moisture from the passing air heated by the heat exchanger acting as a condenser.
  • control is performed so that the adsorption operation and the regeneration operation of the adsorbent are switched at a predetermined switching time interval, and the total heat load which is the sum of the latent heat load and the sensible heat load is controlled.
  • Compressor capacity control and switching time interval change control are performed so that a predetermined load among the latent heat load and the sensible heat load is processed with priority.
  • the air conditioner of a fourteenth invention is an air conditioner that processes a latent heat load and a sensible heat load indoors using a vapor compression refrigeration cycle having a compressor.
  • the air conditioner includes a heat exchanger, an adsorbent, and a control unit.
  • the adsorbent adsorbs water in the passing air absorbed by the heat exchanger acting as an evaporator, and regenerates the moisture to the passing air heated by the heat exchanger acting as a condenser. I do .
  • the control unit performs control so that the adsorbent adsorption operation and the regeneration operation are switched at a predetermined switching time interval.
  • the control unit controls the capacity of the compressor and the Z or switching time interval based on at least one of the evaporator temperature, the evaporator pressure, the condenser temperature, and the condenser pressure. Perform change control.
  • the temperature of the adsorbent follows the refrigerant temperature rather than the air temperature, instead of the conventional regeneration air temperature, etc., the evaporator temperature, evaporator pressure, condenser temperature, and Compressor capacity control based on at least one of the condenser pressures Control and change of Z or switching time interval.
  • This makes it possible to control the latent heat capacity during dehumidification (control of the amount of dehumidification moisture) and the ratio of the latent heat treatment amount during dehumidification more appropriately than before.
  • the air conditioner of a fifteenth invention is the air conditioner of the fourteenth invention, wherein the heat exchanger is an adsorption heat exchanger having a surface carrying an adsorbent.
  • the adsorbent is carried on the surface of heat exchange ⁇ ,
  • the temperature of the adsorbent will be very strongly linked to the refrigerant temperature. Therefore, based on at least one of evaporator temperature, evaporator pressure, condenser temperature, and condenser pressure, control of compressor capacity and change of Z or switching time interval should be performed. Will be very effective. This makes it possible to more appropriately control the latent heat capacity at the time of dehumidification and humidification and to control the ratio of the latent heat treatment amount at the time of dehumidification.
  • An air conditioner according to a sixteenth aspect is the air conditioner according to the fourteenth or fifteenth aspect, wherein the air conditioner includes a heat exchanger as use-side heat exchange and further includes a heat source-side heat exchange.
  • the air conditioner includes a heat exchanger as use-side heat exchange and further includes a heat source-side heat exchange.
  • heat source side heat exchange is further provided, it is desirable in processing sensible heat load.
  • An air conditioner according to a seventeenth invention is the air conditioner according to any of the fourteenth to sixteenth inventions, wherein the control unit further controls the capacity of the compressor based on a humidity value of indoor air. Controls change of Z or switching time interval. Here, the capacity control of the air conditioner can be performed more appropriately.
  • An air conditioner according to an eighteenth aspect of the present invention is the air conditioner according to any one of the fourteenth to seventeenth aspects, wherein the control unit further controls the capacity of the compressor based on a humidity value of the air flowing indoors with respect to heat exchange. And change control of Z or switching time interval.
  • the capacity control of the air conditioner can be performed more appropriately.
  • the air conditioner of a nineteenth invention is the air conditioner of any of the fourteenth to eighteenth inventions, wherein the control unit further controls the capacity of the compressor based on the temperature value of the air flowing indoors with respect to heat exchange. And change control of Z or switching time interval.
  • the capacity control of the air conditioner can be performed more appropriately.
  • a control method for an air conditioner according to a twentieth invention utilizes a vapor compression refrigeration cycle having a compressor and a heat exchanger.
  • the heat absorbed by the heat exchange ⁇ acting as an evaporator An adsorbent capable of performing an adsorption operation for adsorbing excess moisture and a regeneration operation for removing moisture from the passing air heated by the heat exchanger acting as a condenser is used. Handles indoor latent and sensible heat loads. Control is performed so that the adsorption operation and the regeneration operation of the adsorbent are switched at a predetermined switching time interval, and at least one of an evaporator temperature, an evaporator pressure, a condenser temperature, and a condenser pressure. Compressor capacity control and Z or switching time interval change control are performed based on one slip force.
  • the evaporator temperature, evaporator pressure, condenser temperature Based on at least one of the condenser pressures, compressor capacity control and Z or switching time interval change control are performed. This makes it possible to control the latent heat capacity during dehumidification (control of the amount of dehumidification moisture) and the ratio of the latent heat treatment amount during dehumidification more appropriately than before.
  • FIG. 1 is a plan view showing the internal structure of an air conditioner according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of FIG.
  • FIG. 3 is a cross-sectional view taken along arrows ⁇ - ⁇ of FIG. 1.
  • FIG. 4 is a circuit diagram showing a refrigerant circuit of the air conditioner.
  • FIG. 5 is a block diagram showing a state of a cooling dehumidifying ventilation operation in the air conditioner.
  • FIG. 6 is a block diagram showing a state of a cooling and dehumidifying circulation operation in the air conditioner.
  • FIG. 7 is a block diagram showing a state of a heating, humidifying, and ventilating operation in the air conditioner.
  • FIG. 8 is a block diagram showing a state of a heating and humidifying circulation operation in the air conditioner.
  • FIG. 9 is a flow chart of capacity control using a condenser temperature and an evaporator temperature in an air conditioner.
  • FIG. 10 is a flow chart at the time of cooling and dehumidification of capacity control in an air conditioner using a condenser temperature and indoor air humidity.
  • FIG. 11 is a flowchart at the time of heating and humidification of capacity control in an air conditioner using a condenser temperature and indoor air humidity.
  • FIG. 12 is a schematic configuration diagram of an air conditioner according to another embodiment (2) of the present invention.
  • FIG. 13 (A) is a diagram showing a first state of a humidifying operation in an air conditioner according to another embodiment (3) of the present invention.
  • FIG. 14 is a diagram showing a state of a cooling and dehumidifying operation in an air conditioner according to another embodiment (4) of the present invention.
  • FIG. 15 is a diagram showing a state of a cooling and dehumidifying operation in an air conditioner according to another embodiment (5) of the present invention.
  • the air conditioner 10 of the present embodiment is a desiccant type external air conditioner in which an adsorbent such as silica gel is carried on the surface of heat exchange, and is supplied to the indoor space.
  • a cooling dehumidifying operation and a heating humidifying operation are performed on air, and a hollow rectangular parallelepiped casing 17 is provided.
  • the casing 17 houses the refrigerant circuit 1 and the like.
  • the refrigerant circuit 1 includes an inverter compressor 7 whose frequency can be changed, a four-way switching valve 9, a first adsorption heat exchanger 3, an expansion valve 11 such as an electric valve, and a second The adsorption heat exchangers 5 and are connected in order to form a closed circuit.
  • the first adsorption heat exchange 3 and the second adsorption heat exchanger 5 perform the function of either the condenser or the evaporator by switching the refrigerant flow path by the four-way switching valve 9.
  • the refrigerant circuit 1 is configured so that the refrigerant is filled in the entire circuit, and the refrigerant circulates to perform a vapor compression refrigeration cycle.
  • One end of the first adsorption heat exchanger 3 is connected to the four-way switching valve 9.
  • the other end of the first adsorption heat exchanger 3 is connected to one end of the second adsorption heat exchange 5 via an expansion valve 11.
  • the other end of the second adsorption heat exchange 5 is connected to the four-way switching valve 9.
  • the first adsorption heat exchanger 3 and the second adsorption heat exchanger 5 are configured by, for example, a cross-fin type fin 'and' tube type heat exchanger, and specifically, have a rectangular shape. It has a large number of aluminum fins formed in a plate shape and copper heat transfer tubes penetrating the fins.
  • An adsorbent is carried on the outer surfaces of the fins and the heat transfer tubes. Examples of the adsorbent include zeolite, silica gel, activated carbon, organic polymer materials having hydrophilicity or water absorption, ion-exchange resin materials having carboxylic acid groups or sulfonic acid groups, temperature-sensitive polymers, etc. Functional polymer material and the like can be adopted.
  • an inverter compressor is employed as the compressor whose frequency can be changed.
  • the capacity of the inverter compressor can be controlled (output control) by changing the frequency.
  • the four-way switching valve 9 is in a state where the first port P1 and the third port P3 are in communication and at the same time the second port P2 and the fourth port P4 are in communication (the state shown in FIG. 4 (A)). And the state in which the first port P1 and the fourth port P4 communicate with each other and the second port P2 and the third port P3 communicate with each other (the state shown in Fig. 4 (B)). Have been.
  • the first adsorption heat exchange 3 functions as a condenser and at the same time the second adsorption heat exchanger 5 functions as an evaporator, and the second adsorption heat exchanger At the same time as 5, the first adsorption heat exchange 3 is switched to the second state, which functions as an evaporator.
  • the lower end of the casing 17 is the front side of the casing 17, the upper end is the rear side of the casing 17, the left end is the left side of the casing 17, and the right end is the right side of the casing 17.
  • the casing 17 in FIG. 2-3 has an upper end on the upper surface of the casing 17 and a lower end on the lower surface of the casing 17.
  • the casing 17 is formed in a flat box shape having a square shape in plan view.
  • a first suction port 19 for taking in outside air OA and a second suction port 21 for taking in return air RA from the room, which is return air, are formed in the left side plate 17a of the casing 17.
  • the right side plate 17b of the casing 17 is formed with a first outlet 23 for discharging the exhaust EA to the outside of the room and a second outlet 25 for supplying air supply SA, which is air-conditioned air, to the room.
  • a partition plate 27 as a partition member is provided inside the casing 17.
  • An air chamber 29a and an equipment chamber 29b are formed inside the casing 17 by the partition plate 27.
  • the partition plate 27 is provided in the vertical direction, which is the thickness direction of the casing 17, and is provided from the upper surface plate 17e of the upper casing 17 to the lower surface plate 17f of the lower casing 17 in FIG. ing. Further, in FIG. 1, the partition plate 27 From the front plate 17c to the rear plate 17d of the casing 17, which is the upper end. Further, the partition plate 27 is disposed slightly to the right of the center of the casing 17 in FIG.
  • equipment such as the inverter compressor 7 excluding the adsorption heat exchanges 3 and 5 in the refrigerant circuit 1 is arranged, and the first fan 79 and the second fan 77 are housed.
  • the first fan 79 is connected to the first outlet 23, and the second fan 77 is connected to the second outlet 25.
  • a first end face plate 33, a second end face plate 31, and a center partition plate 67, which are partition members, are provided in the air chamber 29a of the casing 17.
  • the first end face plate 33, the second end face plate 31, and the partition plate 67 are provided in a vertical direction that is the thickness direction of the casing 17, and as shown in FIG. It is provided over the face plate 17f.
  • the first end plate 33 and the second end plate 31 are provided from the left side plate 17a of the casing 17 to the partition plate 27, as shown in FIG.
  • the first end plate 33 is disposed slightly above the center of the casing 17 in FIG. 1 (on the side of the back plate 17d), and the second end plate 31 is positioned from the center of the casing 17 in FIG.
  • the partition plate 67 disposed slightly below (the front plate 17c side) is provided across the first end plate 33 and the second end plate 31, as shown in FIG.
  • a first heat exchange chamber 69 is defined by the first end face plate 33, the second end face plate 31, the partition plate 67, and the partition plate 27.
  • a second heat exchange chamber 73 is defined by the first end face plate 33, the second end face plate 31, the partition plate 67, and the left side plate 17 a of the casing 17. That is, the first heat exchange chamber 69 is located on the right side in FIG. 1, and the second heat exchange chamber 73 is located on the left side in FIG. 1, and the first heat exchange chamber 69 and the second heat exchange chamber 73 are different from each other. , And are formed adjacently and in parallel.
  • the first heat exchange chamber 69 is provided with the first adsorption heat exchange 3, and the second heat exchange chamber 73 is provided with the second adsorption heat exchange 5.
  • a horizontal plate 61 as a partition member is provided between the first end face plate 33 and the back plate 17d of the casing 17 as shown in FIG. 2, and a first inflow channel 63 and a first outflow channel 65 are formed. Is done. Also, A horizontal plate 55 as a partition member is provided between the second end face plate 31 and the front plate 17c of the casing 17 as shown in FIG. 3 to form a second inflow channel 57 and a second outflow channel 59. You.
  • the horizontal plates 61 and 55 partition the internal space of the casing 17 up and down in the vertical direction that is the thickness direction of the casing 17.
  • the first inflow channel 63 is formed on the upper surface plate 17e side
  • the first outflow channel 65 is formed on the lower surface plate 17f side.
  • the second inflow channel 57 is formed on the upper surface plate 17e side
  • the outflow channel 59 is formed on the lower plate 17f side.
  • first inflow channel 63 and the first outflow channel 65 and the second inflow channel 57 and the second outflow channel 59 cross the first heat exchange chamber 69 and the second heat exchange chamber 73 in FIG.
  • the first inflow channel 63 communicates with the first suction port 19.
  • the first outflow passage 65 communicates with the first fan 79 and communicates with the first outlet 23.
  • the second inflow path 57 communicates with the second suction port 21.
  • the second outflow passage 59 communicates with the second fan 77 and communicates with the second outlet 25.
  • each of the openings 33a-33d has a first damper 47, a second damno 49, a third A dambar 51 and a fourth dambar 53 are provided.
  • the four openings 33a-33d are located close to each other in the matrix direction.
  • the openings 33a-33d are arranged in a grid shape in two at the top, bottom, left and right, the first opening 33a and the third opening 33c open to the first heat exchange chamber 69, and the second opening 33b and the second opening 33b.
  • the opening 33d of the opening 4 opens into the second heat exchange chamber 73.
  • the first opening 33a allows the first inflow channel 63 to communicate with the first heat exchange chamber 69
  • the third opening 33c allows the first outflow channel 65 to communicate with the first heat exchange chamber 69
  • the second opening 33b allows the first inflow path 63 to communicate with the second heat exchange chamber 73
  • the fourth opening 33d allows the first outflow path 65 to communicate with the second heat exchange chamber 73.
  • each of the openings 31a-31d has a fifth damper 35, a sixth damper 37, a seventh A dambar 39 and an eighth dambar 41 are provided.
  • the four openings 31a-31d are located close to each other in the matrix direction.
  • the openings 31a-31d are arranged in a grid shape in two at the top, bottom, left and right, the fifth opening 31a and the seventh opening 31c open to the first heat exchange chamber 69, and the sixth opening 31b and the Eight openings 31d open to the second heat exchange chamber 73.
  • the fifth opening 31a allows the second inflow path 57 to communicate with the first heat exchange chamber 69
  • the seventh opening 31c allows the second outflow path 59 to communicate with the first heat exchange chamber 69
  • the sixth opening 31b allows the second inflow path 57 to communicate with the second heat exchange chamber 73
  • the eighth opening 31d allows the second outflow path 59 to communicate with the second heat exchange chamber 73.
  • the air conditioner 10 is configured as shown in the first state shown in FIG.
  • the first adsorption heat exchange 3 which functions as a condenser, takes in the return air RA or outside air OA as indoor air into the first adsorption heat exchanger 3 as the second air to dehumidify it, then discharges exhaust EA outside the room, or supplies air SA to the room. Supply.
  • the outside air OA or the return air RA from the room is taken into the second adsorption heat exchange 5, which functions as an evaporator, as the first air for humidification, and then the air supply SA is supplied to the room. Or exhaust EA to the outside of the room.
  • the outside air OA or the return air RA from inside the room is taken into the first adsorption heat exchanger 3 functioning as an evaporator as the first air to perform humidification, and then the indoor air supply SA Or exhaust the exhaust EA outside the room.
  • the second adsorption heat exchange 5 functioning as a condenser takes the return air RA or outdoor OA of indoor power as the first air to dehumidify it, and then discharges the exhaust EA outside the room. Or supply air to the room.
  • the air conditioner 10 of the present embodiment can alternately perform the adsorption operation and the regeneration operation in each adsorption heat exchange 5 by switching between the first state and the second state. That is, in each of the adsorption heat exchangers 3, 5, the batch operation, ie, the adsorption operation or the regeneration operation, is switched at a predetermined batch switching time interval.
  • the first adsorption heat exchanger 3 and the second adsorption heat exchange 5 are alternately made to function as an evaporator, and the first adsorption heat exchange 3 or the second adsorption heat exchange 3 is used.
  • heat Moisture contained in the air flowing through the air conditioner 10 via the exchanger 5 is adsorbed by the adsorbent.
  • the second adsorption heat exchange 5 or the first adsorption heat exchange 3 is made to function as a condenser, and the heat of condensation causes the air in the air conditioner 10 to pass through the second adsorption heat exchanger 5 or the first adsorption heat exchanger 3.
  • the adsorbent is regenerated by releasing the moisture adsorbed by the adsorbent to the air flowing through the adsorbent. Then, the direction of the refrigerant circulation of the refrigerant circuit 1 is switched by the four-way switching valve 9 so that the air dehumidified by the adsorbent is supplied into the room and the air from which the moisture has been released from the adsorbent is discharged outside the room.
  • the air flow path is switched by the first and eighth dampers 47-53 and 35-41.
  • the air conditioner 10 When the air conditioner 10 performs the humidifying operation, the moisture contained in the air flowing through the air conditioner 10 due to the heat absorption of the first adsorption heat exchanger 3 or the second adsorption heat exchanger 5 functioning as an evaporator. Is adsorbed by the adsorbent. On the other hand, the water adsorbed by the adsorbent is released to the air flowing through the air conditioner 10 by the heat radiation action of the second adsorption heat exchanger 5 or the first adsorption heat exchanger 3, which functions as a condenser. Regenerate the sorbent.
  • the direction of the refrigerant circulation in the refrigerant circuit 1 is switched by the four-way switching valve 9 so that the humidified air is supplied to the room by receiving the release of water from the adsorbent, and the first to eighth dampers 47 are provided. — 53, 35— 41 to switch the air flow path.
  • the first adsorption heat exchange 3 or the second adsorption heat exchanger that takes in outside air OA and functions as an evaporator
  • the adsorbent carried on the surface of 5 absorbs the moisture of the outside air OA, and supplies the outside air OA to the room as dehumidified air supply SA.
  • the return air RA from the room is taken in, and moisture is released from the adsorbent carried on the surface of the second adsorption heat exchanger 5 or the first adsorption heat exchanger 3 functioning as a condenser to remove the adsorbent.
  • the regenerated air which is regenerated and returned as humidified air, is released outside the room as exhaust EA.
  • the return air RA from the room is taken in and the first adsorption heat exchanger 3 or the second adsorption heat exchange 5 functioning as an evaporator is taken.
  • Moisture is adsorbed by the adsorbent carried on the surface, and dehumidified return air RA is supplied indoors as air supply SA.
  • outside air ⁇ ⁇ ⁇ ⁇ is taken in and the second adsorption heat exchanger 5 or 1
  • the adsorbent carried on the surface of the adsorption heat exchanger 3 releases moisture from the adsorbent to regenerate the adsorbent, and releases the humidified outside air OA to the outside as exhaust air.
  • the return air RA from the room is taken in, and the first adsorption heat exchanger 3 or 3 functioning as an evaporator is taken.
  • the adsorbent carried on the surface of the second adsorption heat exchanger 5 adsorbs moisture contained in the air taken in, and discharges it as dehumidified return air RA and exhaust air EA to the outside.
  • humidified outside air OA is supplied indoors as air supply SA.
  • the outside air OA is taken in, and the surface of the first adsorption heat exchanger 3 or the second adsorption heat exchanger 5 functioning as an evaporator is taken up. Moisture contained in the outside air OA taken in by the supported adsorbent is adsorbed, and the dehumidified outside air OA is released to the outside as exhaust EA. On the one hand, it takes in the return air RA from the room and releases adsorbent water carried on the surface of the second adsorption heat exchange 5 or the first adsorption heat exchange 3 functioning as a condenser to release the adsorbent. The regenerated and humidified return air RA is supplied indoors as air supply S S.
  • a temperature sensor 12 such as a thermistor is provided to measure the temperature of the refrigerant inside the first adsorption heat exchanger 3.
  • a temperature sensor 13 is provided for measuring the temperature of the refrigerant inside the second adsorption heat exchanger 5.
  • these temperature sensors 12 and 13 measure the temperature of the refrigerant by measuring the temperature of the heat transfer tubes by contacting the heat transfer tubes through which the refrigerants of the adsorption heat exchanges 3 and 5 pass. It is connected to a powerful control unit 2 such as a CPU.
  • the control unit 2 controls the capacity of the inverter compressor 7 based on the refrigerant temperatures of the first adsorption heat exchanger 3 and the second adsorption heat exchanger 5 detected by the temperature sensors 12 and 13. , And the batch switching time interval. Further, the control unit 2 has an input unit 2a such as a dip switch for allowing a user maintenance person to make an input, and a load to be processed with priority (latent heat load, sensible load, etc.) input to the input unit 2a. Heat load or The control of the capacity of the inverter compressor 7 and the control of the batch switching time interval are performed so that the total heat load is preferentially processed. The total heat load is the sum of the latent heat load and the sensible heat load.
  • the batch switching time interval is controlled by switching the four-way switching valve 9 and switching between the air flow path and the four-way switching valve 9 by the first to 18th dampers 47-53 and 35-41. This is the control of the batch switching time interval, which is the time interval to be performed.
  • the supply air humidity and the indoor air humidity are used as additional control conditions other than the temperature of the refrigerant in the first adsorption heat exchanger 3 and the second adsorption heat exchanger 5.
  • the supply air humidity sensor 14 for measuring the supply air humidity and the indoor air humidity sensor 15 for measuring the humidity of the indoor air are also connected to the control unit 2.
  • each operation of the air conditioner 10 of the present embodiment will be described in detail, and then air conditioning capacity control including control of a batch switching time interval will be described in detail.
  • the typical operations include cooling and dehumidifying operation and heating and humidifying operation!
  • the time between the switching of the four-way switching valve 9 and the switching of the air flow path by the 18th dampers 47-53, 35-41 is shifted, and the 18th dampers 47-53, 35-
  • a cooling humidification operation or a heating humidification operation can be performed.
  • the four-way switching valve 9 is switched to the state shown in FIG. 5 with the first fan 79 and the second fan 77 being driven.
  • the regeneration (desorption) of the adsorbent in the second adsorption heat exchanger 5 functioning as a condenser and the adsorption operation of the adsorbent in the first adsorption heat exchanger 3 functioning as an evaporator are performed.
  • the return air RA from the room is supplied to the second adsorption heat exchanger 5, and the water desorbed from the second adsorption heat exchanger 5 is added to the exchange RA to be humidified. Ventilation RA force exhaust Exhausted outside as EA.
  • outside air OA is supplied to the first adsorption heat exchanger 3, where moisture in the outside air OA is adsorbed in the first adsorption heat exchanger 3, and dehumidified outside air OA is supplied to the room as air supply SA. Supplied.
  • the supply air SA is dehumidified and cooled by the first adsorption heat exchange 3 functioning as an evaporator. That is, the high-temperature and high-pressure refrigerant discharged from the inverter compressor 7 flows to the second adsorption heat exchanger 5 as a heating medium for heating, and is carried on the outer surface of the second adsorption heat exchanger 5 The adsorbent is heated. By this heating, water is desorbed from the adsorbent, and the adsorbent of the second adsorption heat exchange 5 is regenerated.
  • the refrigerant condensed in the second adsorption heat exchanger 5 is decompressed by the expansion valve 11.
  • the depressurized refrigerant flows to the first adsorption heat exchanger 3 as a heat medium for cooling.
  • heat of adsorption is generated when the adsorbent carried on the outer surface of the first adsorption heat exchanger 3 adsorbs moisture in the outside air OA.
  • the refrigerant of the first adsorption heat exchanger 3 evaporates by absorbing the heat of adsorption and the heat of the outside air OA.
  • the evaporated refrigerant returns to the inverter compressor 7 and is compressed.
  • the state is switched to the second state.
  • the first fan 79 and the second fan 77 are driven, and the four-way switching valve 9 is operated in the state shown in FIG. 5 (that is, from the inverter compressor 7 to the second adsorption heat exchange 5).
  • the state is switched from a state in which the refrigerant is pumped to the refrigerant) to a state in which the refrigerant is pumped from the inverter compressor 7 to the first adsorption heat exchanger 3.
  • the return air RA of the indoor power is supplied to the first adsorption heat exchange 3
  • the outside air OA is supplied to the second adsorption heat exchange 5.
  • the return air RA from the room is supplied to the first adsorption heat exchange 3, and the water desorbed from the adsorbent force of the first adsorption heat exchange 3 is released to the ventilation RA and humidified.
  • Ventilation RA is discharged as exhaust ⁇ ⁇ .
  • the outside air OA is supplied to the second adsorption heat exchange 5, and the moisture in the taken outside air OA is adsorbed by the adsorbent of the second adsorption heat exchange 5, so that the dehumidified outside air OA is removed.
  • Air supply SA is supplied indoors. This supply air SA is dehumidified and cooled by the second adsorption heat exchange 5 functioning as an evaporator.
  • the high-temperature and high-pressure refrigerant discharged from the inverter compressor 7 flows to the first adsorption heat exchanger 3 as a heating medium for heating, and is carried on the outer surface of the first adsorption heat exchanger 3.
  • the adsorbent is heated. By this heating, water is desorbed from the adsorbent, and the first adsorption heat exchange 3 is absorbed. The adhesive is regenerated.
  • the refrigerant condensed in the first adsorption heat exchanger 3 is decompressed by the expansion valve 11.
  • the depressurized refrigerant flows to the second adsorption heat exchanger 5 as a heat medium for cooling.
  • heat of adsorption is generated when the adsorbent carried on the outer surface of the second adsorption heat exchanger 5 adsorbs moisture in the outside air OA.
  • the refrigerant in the second adsorption heat exchanger 5 evaporates by absorbing the heat of adsorption and the heat of the outdoor OA.
  • the evaporated refrigerant returns to the inverter compressor 7 and is compressed.
  • the basic adsorption and regeneration operations of the heat exchanger are the same, but as shown in Fig. 6, the second adsorption heat which takes in outside air OA and functions as a condenser
  • the heat is supplied to the heat exchanger 5 (or the first adsorption heat exchanger 3) and discharged again as exhaust air EA to the outside, and the return air RA taken in from the room is discharged to the first adsorption heat exchanger 3 (or the second heat exchanger 3).
  • the difference is that the air is supplied to the adsorption heat exchanger 5) and is supplied again to the room as air supply SA. That is, the supply air SA supplied to the room is obtained by dehumidifying and cooling the ventilation taken in from the room, and the supply of the outside air OA to the room is not performed.
  • outside air OA is taken in, supplied to the second adsorption heat exchanger 5, and supplied with moisture desorbed from the adsorbent of the second adsorption heat exchanger 5.
  • Humidified air is supplied indoors as air supply SA.
  • the return air RA taken in from the room is supplied to the first adsorption heat exchanger 3, and the adsorbent of the first adsorption heat exchanger 3 adsorbs the water in the return air RA.
  • the return air RA dehumidified in this way is discharged outside as an exhaust EA.
  • the supply air SA is humidified and calo-heated by the second adsorption heat exchange 5 functioning as a condenser.
  • the four-way switching valve 9 From the state shown in FIG. 7 (that is, the state in which the refrigerant is pumped from the inverter compressor 7 to the second adsorption heat exchanger 5), the state in which the refrigerant is pumped from the inverter compressor 7 to the first adsorption heat exchanger 3 It has been switched. Further, by switching the air flow path by the dampers 47-53 and 35-41, the return air RA of the indoor power is supplied to the second adsorption heat exchange 5, and the outside air OA is supplied to the first adsorption heat exchange 3. It has become.
  • the moisture desorbed by the adsorbent of the first adsorption heat exchanger 3 is applied to the outside air OA, so that the humidified outside air OA is supplied indoors as the supply air SA.
  • the moisture of the return air RA is adsorbed by the adsorbent of the second adsorption heat exchange 5, so that it is discharged as dehumidified return air RA power S exhaust EA.
  • the supply air SA is heated by the first adsorption heat exchange 3 functioning as a condenser.
  • the basic adsorption and regeneration operations of the heat exchanger are the same, but as shown in Fig. 8, the first adsorption heat that takes in external OA and functions as an evaporator
  • the heat is supplied to the heat exchanger 3 (or the second adsorption heat exchanger 5) and discharged again as exhaust EA to the outside, and the return air RA taken in from the room is returned to the second adsorption heat exchanger 5 (or the first heat exchanger 5).
  • the air-conditioning capacity control that is, the capacity control of the inverter compressor 7 and the control of changing the batch switching time interval
  • the capacity control of the inverter compressor 7 is performed by changing the compressor frequency of the inverter compressor 7, and controls the total heat capacity including the control of the latent heat capacity for processing the latent heat load.
  • the change control of the batch switching time interval mainly controls the ratio of sensible latent heat capability, which is the ratio of the latent heat capability for processing the latent heat load to the sensible heat capability for processing the sensible heat load.
  • the control unit 2 when the control unit 2 performs any of the above-described operations of the air conditioner 10, At the same time, based on the evaporator temperature and condenser temperature in the first adsorption heat exchanger 3 and the second adsorption heat exchanger 5 functioning as an evaporator and a condenser, the capacity control of the inverter compressor 7 and the batch switching time interval are performed. Is controlled. In addition to using the evaporator temperature and the condenser temperature as the control targets, the control unit 2 controls one or more parameters of the indoor air humidity, the air supply SA humidity, and the air supply SA temperature. It may be a goal.
  • the compressor frequency When controlling the compressor frequency with the condenser temperature as the control target, the compressor frequency is increased when the condenser temperature is lower than the target value, and decreased when the condenser temperature is higher than the target value. Also, when controlling the batch switching time interval with the condenser temperature as the control target, shorten the batch switching time interval when the condenser temperature is lower than the target value, and shorten the batch switching time interval when the condenser temperature is higher than the target value. Lengthen.
  • the compressor frequency When controlling the compressor frequency with the evaporator temperature as the control target, the compressor frequency is decreased when the evaporator temperature is lower than the target value, and the compressor frequency is raised when the evaporator temperature is higher than the target value.
  • the batch switching time interval When controlling the batch switching time interval, the batch switching time interval is lengthened when the evaporator temperature is lower than the target value, and the batch switching time interval is shortened when the evaporator temperature is higher than the target value.
  • control is performed with the condenser temperature Tc as the first target and the evaporator temperature Te as the second target.
  • the batches of the adsorption operation or the regeneration operation are switched at predetermined batch switching time intervals in each of the adsorption heat exchangers 3 and 5, so the condenser temperature Tc and the evaporator temperature Te are representative of each notch. Values or average representative values throughout the batch.
  • the condenser temperature Tc is adjusted again. Operate the compressor (Steps S1 to S4), and then adjust the batch switching time interval to adjust Te (Steps S6 to S9).
  • control is performed with the condenser temperature Tc as a first target and the indoor air humidity Hm as a second target.
  • control is performed with the condenser temperature Tc as the first target and the indoor air humidity Hm as the second target.
  • step S28 if Hra> HraO (step S28), the batch switching time interval is increased (step S29), and the process returns to the start. If the notch switching time interval is increased, the condenser temperature Tc Rises and the indoor air humidity Hra falls.
  • the air-conditioning capacity control that is, the capacity control of the inverter compressor 7 and the control of changing the batch switching time interval
  • the air-conditioning capacity control include the evaporator temperature and the condenser temperature, the indoor air humidity, and the air supply SA humidity as described above.
  • the control target is determined by appropriately combining the temperature of the air supply and the temperature of the air supply SA, but the conditions based on the following initial input settings are also taken into account.
  • the input unit 2a of the control unit 2 is The load to be processed with priority (latent heat load, sensible heat load, or total heat load) may be input. In this case, the load input thereto affects the capacity control of the inverter compressor 7 and the control of the batch switching time interval as follows.
  • the input load to be processed preferentially is a latent heat load
  • a change in the processing amount of the latent heat load by the change control of the batch switching time interval is changed to a latent heat load by the capacity control of the inverter compressor 7. Priority is given to a change in the processing amount.
  • the change of the processing amount of the sensible heat load by the change control of the batch switching time interval is performed by controlling the capacity of the inverter compressor 7. Priority over the change in the amount of sensible heat load.
  • the input load to be preferentially processed is the total heat load
  • the sensible heat treatment which is the ratio of the amount of the latent heat load to the amount of the sensible heat load
  • the capacity of the inverter compressor 7 is controlled.
  • the first adsorption heat exchanger 3 and the second adsorption heat exchanger 5 alternately function as a condenser and an evaporator. Focusing on the fact that the temperature of the sorbent, which directly affects the latent heat capacity, follows the temperature of the condenser and evaporator rather than the temperature of the supply air SA and the temperature of the indoor air. Instead of using the regeneration air temperature or the like as the conventional control target in the capacity control of the compressor (capacity control of the compressor 7 and control of changing the batch switching time interval), the evaporator temperature and the condenser temperature are used here.
  • the first and second adsorption heat exchangers 3, 5 carry an adsorbent on the surface, and the temperature of the adsorbent is very strongly linked to the refrigerant temperature. . Therefore, it is very effective to control the performance of the air conditioner 10 with the evaporator temperature and the condenser temperature as control targets.
  • capacity control is performed with the condenser temperature as the first target and the evaporator temperature as the second target, and the condenser temperature and the evaporator temperature as the first target, the indoor air humidity, Capability control can be performed with one or more parameters of SA humidity and air supply SA temperature as the second target, and the capacity control of the air conditioner 10 is performed only by the condenser temperature and evaporator temperature. More appropriate capacity control becomes possible as compared with the case.
  • the adsorbent performs an adsorption operation by the adsorption heat exchangers 3, 5 functioning as evaporators, and the adsorbent performs a regeneration operation by the adsorption heat exchangers 5, 3 functioning as condensers.
  • the control section 2 controls the change of the time interval (batch switching time interval) for switching between the adsorption operation and the regeneration operation of the adsorbent together with the capacity control of the inverter compressor 7.
  • the sensible / latent heat treatment amount ratio which is the ratio of the latent heat treatment capability and the sensible heat treatment capability of the air conditioner 10
  • the control unit 2 can adjust the latent heat treatment capability, the sensible heat treatment capability, and the total heat treatment capability.
  • the control unit 2 having such an adjustment function is configured so that the load (total heat load, latent heat load, or sensible heat load) input by the user or the like at the input unit 2a is preferentially processed. , And controls the capacity of the inverter compressor 7 and changes the batch switching time interval. . Since such control is performed, the present air conditioner 10 can perform appropriate capacity control and can provide a user with an air-conditioning environment according to the preference of the user.
  • the change in the processing amount of the latent heat load by the change control of the batch switching time interval is changed to the latent heat load by the capacity control of the inverter compressor 7.
  • Priority is given to the change in the processing amount. That is, in the case where the latent heat load is prioritized for processing, first, the batch switching time interval change control is performed to change the processing amount of the latent heat load, and when that is not enough, the capacity control of the inverter compressor 7 is performed. Control to further change the latent heat load throughput.
  • control for changing the batch switching time interval is performed, so even when it is necessary to increase the processing amount of the latent heat load, the power consumption can be significantly increased by controlling the capacity of the inverter compressor 7. And the amount of processing of the latent heat load can be increased. For example, if the required amount of latent heat load can be secured by increasing the ratio of the amount of latent heat load to the amount of sensible heat load by controlling the change of the batch switching time interval, the inverter compressor 7 There is no need to increase the capacity.
  • the change in the processing amount of the sensible heat load by the change control of the batch switching time interval is performed by the capacity control of the inverter compressor 7.
  • Priority is given to changes in the sensible heat load throughput.
  • the batch switching time interval change control is performed to change the processing amount of the sensible heat load, and if that is not enough, the capacity of the inverter compressor 7 is reduced.
  • Control is performed to further change the sensible heat load throughput.
  • the control of changing the batch switching time interval is performed first. Therefore, even when it is necessary to increase the processing amount of the sensible heat load, the power consumption is greatly increased by controlling the capacity of the inverter compressor 7.
  • the required amount of sensible heat load can be secured by increasing the ratio of the amount of sensible heat load to the amount of latent heat load by changing the batch switching time interval, the capacity of the inverter compressor 7 can be secured. There is no need to raise.
  • the batch switching time The latent heat treatment ratio is fixed by controlling the interval, and then the capacity of the inverter compressor 7 is controlled. This is because, when giving priority to the total heat load, it is basically not necessary to change the sensible and latent heat treatment amount ratio, so the capacity control of the inverter compressor 7 is performed after fixing the sensible and latent heat treatment amount ratio first. Things. Here, an unnecessary change in the latent heat treatment ratio is suppressed. More specifically, in the air conditioner 10 that switches between the adsorption operation and the regeneration operation of the adsorbent, the ratio of the latent heat treatment amount is adjusted in accordance with the ratio of the latent heat load to the total heat load. This is likely to result in complicated ability control.
  • the sensible / latent heat treatment amount ratio is fixed, and the processing amount of the total heat load is first changed, and the sensible or latent heat load and the sensible or latent heat processing amount are balanced to some extent.
  • the processing amount of the remaining sensible heat load or latent heat load can be changed by adjusting the sensible / latent heat treatment amount ratio. Therefore, the control can be simplified.
  • the air conditioner 10 employs a system that collects and uses the temperature (sensible heat) and humidity (latent heat) of the air in the room that processes the load, so the effects of the condition of the air being processed directly affect the sensible heat treatment. Appears individually in the amount and latent heat throughput. Therefore, the operation of the air conditioner 10 and other air conditioners causes the sensible and latent heat treatment ratio to gradually change, and the sensible and latent heat treatment amount of the air conditioner 10 also changes accordingly.
  • the ratio of the sensible / latent heat treatment amount is changed by adjusting the ratio of the required amounts of latent heat and sensible heat at the present time. It is not desirable to perform the process during the heating and when the amount of the latent heat treatment is sequentially changing, since this leads to complicated control.
  • the condenser temperature and the evaporator temperature are used as the control targets when controlling the capacity of the air conditioner 10. Appropriate capacity control of the air conditioner 10 can be performed.
  • a sensible heat exchange and an expansion valve 18 that do not have an adsorbent and mainly perform sensible heat treatment may be provided to improve the sensible heat treatment capability. Good. Even in an air conditioner with such a configuration, the temperature of the adsorbent in the adsorption heat exchangers 3, 5 still follows the refrigerant temperature strongly, so the condenser temperature, the evaporator temperature, or the condenser temperature It is possible to appropriately control the capacity of the air conditioner with the pressure and evaporator pressure as control targets.
  • the force with which the adsorbent is carried on the surfaces of the first adsorption heat exchanger 3 and the second adsorption heat exchanger 5 The present invention is not limited to this.
  • the present invention can be applied to a humidity control device (air conditioner) as described in JP-A-2004-469257.
  • the humidity control elements 181 and 182 having the adsorbent are arranged away from the regenerative heat exchange 105 for regenerating the adsorbent.
  • the humidity control elements 181 and 182 are configured by alternately stacking rectangular flat plate members and wavy corrugated plate members, and the humidity control side passage and the cooling side passage are alternately partitioned with the flat plate member interposed therebetween. It is formed and configured.
  • An adsorbent composed of an inorganic porous material and a temperature-sensitive organic polymer material is carried on the surface of the corrugated plate member provided in the humidity control side passage.
  • the air conditioner 110 drives the exhaust fan 108a and the air supply fan 108b to dehumidify the return air RA with the first humidity control element 181 and reproduce the second humidity control element 182 with outside air OA.
  • the first state and the second state in which the first humidity control element 181 is regenerated with outside air OA and the return air RA is dehumidified by the second humidity control element 182 are alternately performed.
  • the air conditioner 110 supplies the outside air OA humidified by the humidity control elements 181 and 182 to the room.
  • the external air OA and the return air RA dehumidified by the humidity control elements 181 and 182 are supplied to the room as air supply SA to perform the dehumidification operation.
  • the humidification operation will be described.
  • the exhaust fan 108a and the air supply fan 108b are driven during the humidification operation, the outside air OA is taken into the casing, and the return air RA is taken into the casing.
  • the regenerative heat exchanger 105 functions as a condenser, and the heat exchanger 107 functions as an evaporator.
  • the first operation of the humidifying operation will be described with reference to Fig. 13 (A).
  • the suction operation on the first humidity control element 181 and the regeneration operation on the second humidity control element 182 are performed. That is, in the first operation, the air is humidified by the second humidity control element 182, and the adsorbent of the first humidity control element 181 adsorbs moisture.
  • the return air RA taken into the casing flows into the adsorption side passage of the first humidity control element 181. While flowing through the adsorption side passage, water vapor (water) contained in the return air RA is adsorbed by the adsorbent.
  • the return air RA thus dehumidified passes through the heat exchange 107 and is cooled by heat exchange with the refrigerant. After that, the return air RA deprived of moisture and heat is discharged outside as outdoor air.
  • the outside air OA taken into the casing flows into the cooling-side passage of the first humidity control element 181. While flowing through the cooling-side passage, the outside air OA absorbs heat of adsorption generated when moisture is adsorbed by the adsorbent in the adsorption-side passage. The outside air OA that has lost the heat of adsorption passes through the regenerative heat exchanger 105. At that time, in the regenerative heat exchanger 105, the outside air OA is heated by heat exchange with the refrigerant.
  • the outside air OA heated by the first humidity control element 181 and the regenerative heat exchanger 105 is introduced into the adsorption side passage of the second humidity control element 182.
  • the adsorbent is heated by the external air OA
  • the temperature-sensitive organic polymer material undergoes a volume phase transition from a swollen phase to a contracted phase, and water vapor is desorbed from the adsorbent. That is, regeneration of the second humidity control element 182 is performed.
  • the water vapor that has also desorbed the adsorbent power is released into the outside air OA, and the outside air OA is humidified.
  • the outside air OA humidified by the second humidity control element 182 passes through the heat exchange 106.
  • the outside air OA is neither heated nor cooled. If the heat exchange ⁇ 106 is functioning, the outside air OA is heated or cooled.
  • the outside air OA that has exited the heat exchange 106 is supplied to the room through the air supply fan 108b as air supply SA.
  • the second operation of the humidification operation will be described with reference to FIG. 13 (B).
  • the adsorption operation on the second humidity control element 182 and the regeneration operation on the first humidity control element 181 are performed in reverse to the first operation. That is, in the second operation, the air is humidified by the first humidity control element 181 and the adsorbent of the second humidity control element 182 adsorbs water vapor.
  • the return air RA taken into the casing flows into the adsorption side passage of the second humidity control element 182 shown in FIG. 13 (B). While flowing through the adsorption side passage, the water vapor contained in the return air RA is adsorbed by the adsorbent. The return air RA thus dehumidified passes through the heat exchange 107 and is cooled by heat exchange with the refrigerant. After that, the return air RA deprived of moisture and heat is discharged outside as outdoor air.
  • the outside air OA taken into the casing flows into the cooling-side passage of the second humidity control element 182. While flowing through the cooling-side passage, the outside air OA absorbs heat of adsorption generated when water vapor is adsorbed by the adsorbent in the adsorption-side passage. The outside air OA that has lost the heat of adsorption passes through the regenerative heat exchanger 105. At that time, in the regenerative heat exchanger 105, the outside air OA is heated by heat exchange with the refrigerant.
  • the outside air OA heated by the second humidity control element 182 and the regenerative heat exchanger 105 is introduced into the adsorption side passage of the first humidity control element 181.
  • the adsorbent is heated by the outside air OA, and the temperature-sensitive organic polymer material undergoes a volume phase transition from a swelling phase to a shrinking phase, and water vapor is desorbed from the adsorbent. That is, the regeneration of the first humidity control element 181 is performed. Then, the water vapor desorbed from the adsorbent is released to the outside air OA, and the outside air OA is humidified.
  • the outside air OA humidified by the first humidity control element 181 passes through heat exchange ⁇ 106. At that time, the heat exchanger 106 is at rest, and the outside air OA is neither heated nor cooled.
  • the humidified outside air OA is supplied indoors as air supply SA.
  • the first operation and the second operation are switched at predetermined time intervals, so that the regenerative heat exchanger 105 functioning as a condenser is used. If the capacity control is performed based on the condenser temperature and the condenser pressure, more appropriate control will be performed than when the capacity control is performed based on the temperature of the supply air SA.
  • the present invention can also be applied to an air conditioner 210 including an outdoor heat source side heat exchanger 211 and indoor use side heat exchangers 212, 213, and 214 as shown in FIG. The same effect as the embodiment can be obtained.
  • a sensible heat exchange 212 mainly performing sensible heat treatment without an adsorbent and an adsorption heat exchange having an adsorbent provided on the surface are used.
  • the compressor 221 has its discharge side connected to the first port P1 of the first four-way switching valve 225, and its suction side connected to the fourth port P4 of the first four-way switching valve 225.
  • One end of the outdoor heat exchanger 211 is connected to the second port P2 of the first four-way switching valve 225, and the other end is connected to the first port P1 of the second four-way switching valve 226.
  • the sensible heat exchange 212 has one end connected to the third port P3 of the first four-way switching valve 225 and the other end connected to the fourth port P4 of the second four-way switching valve 226. I have.
  • the first adsorption heat exchange 213, the expansion valve 223, and the second adsorption heat exchange 214 are arranged in order from the second port P2 of the second four-way switching valve 226 to the third port P3. ing.
  • the first four-way switching valve 225 is in a first state in which the first port P1 and the second port P2 communicate with each other and the third port P3 and the fourth port P4 communicate with each other (FIG. 14). State) and the second state in which the first port P1 and the third port P3 communicate with each other and the second port P2 and the fourth port P4 communicate with each other.
  • the second four-way switching valve 226 is in a first state in which the first port P1 and the second port P2 communicate with each other and the third port P3 and the fourth port P4 communicate with each other (FIG. 14).
  • the cooling and dehumidifying operation and the heating and humidifying operation are performed.
  • the cooling and dehumidifying operation will be described as an example.
  • the first four-way switching valve 225 is set to the first state shown in FIG. 14, the opening of the expansion valve 223 is appropriately adjusted, and the outdoor heat exchange 211 is connected to the condenser. Then, the sensible heat exchanger 212 becomes an evaporator.
  • the first adsorption heat exchanger 213 and the second adsorption heat exchanger 214 the first state in which the first adsorption heat exchanger 213 becomes a condenser and the second adsorption heat exchanger 214 becomes an evaporator. And the second adsorption heat exchanger 214 becomes a condenser The second state in which 213 is an evaporator is alternately repeated.
  • outside air OA is supplied to the outdoor heat exchanger 211, and return air RA is supplied to the sensible heat exchanger 212 and the first and second adsorption heat exchangers 213 and 214. Is done. Then, the return air RA that has passed through the sensible heat exchanger 212 is continuously supplied to the room as air supply SA, and the return air RA that has passed through the first adsorption heat exchange 213 and the second air that has passed through the second adsorption heat exchange 214 The returned air RA is alternately supplied indoors as air supply SA.
  • the regenerating operation of the first adsorbent heat exchanger 213 on the adsorbent and the adsorbing operation of the second adsorbent heat exchanger 214 on the adsorbent are performed in parallel.
  • the second four-way switching valve 226 is set to the state shown in FIG. In this state, the refrigerant discharged from the compressor 221 also condenses while sequentially passing through the outdoor heat exchange 211 and the first adsorption heat exchange 213, and is depressurized by the expansion valve 223. And evaporates while passing through the sensible heat exchanger 212 in order, and is sucked into the compressor 221 and compressed.
  • the outside air OA that has absorbed heat from the refrigerant in the outdoor heat exchanger 211 is discharged outside as the exhaust EA, and the return air RA from the room cooled by the sensible heat exchange 212 is returned to the room as the supply air SA. It is.
  • the first adsorption heat exchange 213 water is desorbed from the adsorbent heated by the refrigerant, and the desorbed water is provided to the return air RA.
  • the water desorbed from the first adsorption heat exchanger 213 is discharged outside as outdoor EA together with the return air RA (see the flow of the return air RA indicated by the dotted line in FIG. 14).
  • the moisture in the return air RA from the room is adsorbed by the adsorbent, the return air RA is dehumidified, and the heat of adsorption generated at that time is absorbed by the coolant.
  • the return air RA dehumidified by the second adsorption heat exchange 214 is sent back into the room as air supply SA (see the flow of return air RA indicated by the dotted line in Fig. 14).
  • the adsorption operation of the first adsorption heat exchanger 213 on the adsorbent and the regeneration operation of the second adsorption heat exchanger 214 on the adsorbent are performed in parallel.
  • the refrigerant discharged from the compressor 221 is condensed while sequentially passing through the outdoor heat exchange 211 and the second adsorption heat exchange 214, and is depressurized by the expansion valve 223, and thereafter the first adsorption Heat exchange
  • the refrigerant heat also absorbs heat in the outdoor heat exchange 211 as in the first state.
  • the outside air OA power exhaust EA is exhausted outside the room as EA and cooled by the sensible heat exchange 212, and the return air RA is sent back indoors as air supply SA.
  • the first adsorption heat exchange 213 the moisture in the return air RA from the room is adsorbed by the adsorbent to dehumidify the return air RA, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the return air RA from the room dehumidified by the first adsorption heat exchange 213 is returned to the room as air supply SA (see the flow of the return air RA indicated by the two-dot chain line in FIG. 14).
  • the second adsorption heat exchanger 214 water is desorbed from the adsorbent heated by the refrigerant, and the desorbed water is provided to the return air RA.
  • the moisture desorbed from the second adsorption heat exchange 214 is discharged outside as outdoor EA together with the return air RA (see the flow of the return air RA indicated by the two-dot chain line in Fig. 14).
  • the first adsorption heat exchanger 213 functioning as a condenser or an evaporator, and If capacity control is performed based on the condenser temperature and evaporator temperature of the second adsorption heat exchanger 214, appropriate control will be performed based on the temperature of the supply air SA, etc. become.
  • the present invention can be applied to an air conditioner 220 including an outdoor heat source side heat exchanger 222 and indoor use side heat exchangers 224 and 227 as shown in FIG. The same effect as described above can be obtained.
  • the air conditioner 220 shown in FIG. 15 includes an outdoor heat exchanger 222 as a heat source side heat exchanger outside the room, and an adsorption heat exchanger 224 carrying an adsorbent therein as a use side heat exchanger in the room. And a sensible heat exchanger 227 that mainly performs sensible heat treatment without any agent.
  • cooling dehumidifying operation In the air conditioner 220, a cooling dehumidifying operation and a heating humidifying operation are performed.
  • the cooling dehumidifying operation will be described as an example.
  • the four-way switching valve 225 is set to the state shown in FIG. 15 so that the outdoor heat exchanger 222 functions as a condenser and the sensible heat exchanger 227 functions as an evaporator. Then, the adsorption operation in which the adsorption heat exchange 224 becomes an evaporator, the regeneration operation in which the adsorption heat exchange 224 becomes a condenser, and the control of the force solenoid valve 232b and the expansion valve 229 are alternately repeated.
  • outside air OA is supplied to the outdoor heat exchanger 222, and the sensible heat exchanger 7 and the adsorption heat exchange 224 are supplied with the return air RA of the room power. Then, the return air RA cooled by the sensible heat exchanger 227 is continuously supplied to the room, while the return air RA dehumidified by the adsorption heat exchange ⁇ 224 is supplied intermittently to the room as air supply SA. Is done.
  • the electromagnetic valve 232b is opened, and the opening of the expansion valve 229 is appropriately adjusted.
  • the refrigerant discharged from the compressor 221 is condensed in the outdoor heat exchanger 222 and then decompressed by the expansion valve 229, and then passes through the adsorption heat exchanger 224 and the sensible heat exchanger 227 in this order. It evaporates in the meantime, is sucked into the compressor 221 and is compressed.
  • the outside air OA that has absorbed heat from the refrigerant in the outdoor heat exchanger 222 is discharged outside as EA, and the return air RA from the room cooled by the sensible heat exchange 227 is supplied into the room as air SA. Will be sent back.
  • the adsorption heat exchanger 224 the moisture in the return air RA from the room is adsorbed by the adsorbent to dehumidify the return air RA, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the return air RA from the room dehumidified by the adsorption heat exchange 224 is returned to the room as air supply SA.
  • the electromagnetic valve 232b is closed, and the expansion valve 229 is fully opened.
  • the refrigerant discharged from the compressor 221 is condensed while sequentially passing through the outdoor heat exchanger 222 and the adsorption heat exchanger 224, and then decompressed by the capillary tube 232a, so that the heat is also sensible heat exchange. It evaporates in 227 and is sucked into the compressor 221 to be compressed.
  • the outside air OA that has absorbed heat from the refrigerant in the outdoor heat exchanger 222 is discharged outside as air EA, and the return air RA from the room cooled by the sensible heat exchange 227 is supplied into the room. Ki is sent back as SA.
  • the adsorption heat exchanger 224 the adsorbent is heated and regenerated by the refrigerant, and the moisture desorbed from the adsorbent is provided to the return air RA from the room.
  • the moisture desorbed from the adsorption heat exchange ⁇ 224 is exhausted to the outside together with the return air RA from the room (see the flow of return air RA indicated by the two-dot chain line in Fig. 15).
  • the adsorption heat exchange functioning as a condenser or an evaporator is performed. If the capacity control is performed based on the condenser temperature, the evaporator temperature, etc. of the 224, more appropriate control will be performed than when the capacity control is performed based on the temperature of the supply air SA. (6)
  • an input unit 2a such as a dip switch for allowing a user or a maintenance person to make an input
  • the load latent heat load, sensible heat load, or total heat load
  • the control unit 2 controls the capacity of the inverter compressor 7 and controls the batch switching time interval so as to be processed.
  • the selected (input) load is processed with priority, and the air-conditioning environment that is more preferred can be obtained.
  • control unit 2 can automatically determine the load to be processed with priority.
  • the control unit 2 can determine a load that performs processing with priority based on the first difference, the second difference, and the third difference.
  • the first difference is a difference between the current capacity of the air conditioner 10 for processing the total heat load and the magnitude of the total heat load in the room.
  • the second difference is the difference between the current ability to handle the latent heat load and the magnitude of the indoor latent heat load.
  • the third difference is the difference between the current ability to handle sensible heat loads and the magnitude of indoor sensible heat loads. Specifically, the control unit 2 selects the one having the largest value among the first difference, the second difference, and the third difference, and when the difference is the first difference, gives priority to the total heat load and performs processing.
  • the load is the second difference, it is determined as the load to be processed with priority given to the latent heat load, and if it is the third difference, the load is to be processed with priority given to the sensible heat load. decide.
  • the magnitude of each load and the current ability to process each load can be determined by the obtained data power control unit 2 such as various air temperature / refrigerant state information (temperature and pressure).
  • control unit 2 automatically determines the load to be preferentially processed as described above, the processing of the total heat load, the latent heat load, and the sensible heat load can be performed in a well-balanced manner. become able to.
  • control unit 2 when the load to be preferentially processed is a latent heat load, the control unit 2 changes the processing amount of the latent heat load by changing the batch switching time interval by controlling the capacity of the inverter compressor 7. Priority is given to changing the amount of latent heat load.
  • the change in the processing amount of the latent heat load by the capacity control of the inverter compressor 7 is given priority over the change in the processing amount of the latent heat load by the change control of the batch switching time interval.
  • the capacity control of the inverter compressor 7 is performed first to change the processing amount of the latent heat load, and when the processing is insufficient, the change control of the notch switching time interval is performed. To further vary the throughput of the latent heat load. If the capacity control is performed in this manner, the capacity control of the inverter compressor 7 is performed first, so that a change in the processing amount of the latent heat load appears relatively quickly, so that the processing of the required latent heat load is achieved quickly. Become.
  • the control unit 2 changes the processing amount of the sensible heat load by the change control of the batch switching time interval to the capacity of the inverter compressor 7.
  • the control is given priority over the change in the processing amount of the sensible heat load.
  • the change in the amount of sensible heat load by controlling the capacity of the inverter compressor 7 is controlled by changing the batch switching time interval. It is conceivable to give priority to the change in the processing amount of the sensible heat load due to the above.
  • the capacity control of the inverter compressor 7 is performed to change the processing amount of the sensible heat load, and when that is not enough, the notch switching time interval is changed. The control is performed to further change the throughput of the sensible heat load. If the capacity control is performed in this manner, first, since the capacity control of the inverter compressor 7 is performed, a change in the processing amount of the sensible heat load appears relatively quickly, and the necessary processing of the sensible heat load is achieved quickly. Become like
  • the load to be preferentially processed is the total heat load
  • the ratio of the processing amount of the latent heat load to the processing amount of the sensible heat load is set.
  • the volume ratio is fixed, and then the capacity of the inverter compressor 7 is controlled.
  • the capacity control of the inverter compressor 7 may be performed first.
  • the batch switching time interval is controlled when the total heat load must be processed with priority. Before starting, let us control the capacity of the inverter compressor 7 first. Yes. As a result, the processing amount of the total heat load increases and decreases as quickly as possible, so that it is possible to quickly respond to the change in the total heat load.
  • an air conditioner in which switching between an adsorbent adsorption operation and a regeneration operation is performed, a predetermined load among a total heat load, a latent heat load, and a sensible heat load is preferentially processed. Next, control of the capacity of the compressor and change control of the switching time interval are performed. For this reason, this air conditioner can easily perform appropriate capacity control, and is useful as an air conditioner that processes indoor latent heat loads and sensible heat loads.

Abstract

 空気調和機は、インバータ圧縮機(7)を有する冷凍サイクルを利用して、屋内の潜熱負荷および顕熱負荷を処理するもので、熱交換器(3),(5)と、吸着剤と、制御部(2)とを備える。吸着剤は、蒸発器として働く熱交換器(5),(3)によって吸熱される通過空気の水分を吸着する吸着動作、および、凝縮器として働く熱交換器(3),(5)によって加熱される通過空気に対して水分を脱離する再生動作、を行う。制御部(2)は、吸着剤の吸着動作と再生動作とが所定の切換時間間隔で切り換わるように制御するとともに、潜熱負荷と顕熱負荷との和である全熱負荷、潜熱負荷、および顕熱負荷のうち所定の負荷が優先して処理されるように、インバータ圧縮機(7)の容量制御および吸着動作と切換時間間隔の変更制御を行う。

Description

明 細 書
空気調和機および空気調和機の制御方法
技術分野
[0001] 本発明は、空気調和機および空気調和機の制御方法、特に、圧縮機を有する蒸気 圧縮式の冷凍サイクルを利用して、屋内の潜熱負荷および顕熱負荷を処理する空 気調和機に関する。
背景技術
[0002] 従来から、吸着剤を用いて空気の湿度調整を可能とした空気調和機が、デシカント 調湿機やデシカント外調機として知られている。例えば、特許文献 1に示される空調 システムでは、デシカント(吸着剤)を 2つ備え、各デシカントの吸着動作と再生動作と をバッチ的に行っている。そして、例えば、第 1のデシカントの再生および第 2のデシ カントによる処理空気の除湿と、第 1のデシカントによる処理空気の除湿および第 2の デシカントの再生とを繰り返し行うことによって、屋内の除湿空調を行っている。
特許文献 2に示される調湿装置でも、第 1吸着素子 (吸着剤を含むユニット)で吸着 動作を行うとともに第 2吸着素子で再生動作を行う第 1動作と、第 2吸着素子で吸着 動作を行うとともに第 1吸着素子で再生動作を行う第 2動作とを交互に切り換え、吸着 側の第 1空気または再生側の第 2空気を室内に供給することによって、除湿運転また は加湿運転を行っている。
[0003] また、従来の吸着剤を用いたデシカント式外調機の除湿および加湿運転の能力制 御について、以下の方法が提案されていた。
(1)再生空気温度を一律に調整する制御方法として、空調空間の湿度および温度に 基づ!/、て、デシカントを再生する熱源となるヒートポンプの運転を制御する方法が、 特許文献 3に記載されて!ヽる。
(2)室内空気湿度または給気空気湿度の設定値と測定値とからの再生空気温度の 決定による制御方法として、処理空気経路のデシカントへの水分吸着速度を抑制す る手段と、再生空気経路の再生空気の昇温を促進する手段とを用いて能力制御を 行う方法が、特許文献 4に記載されている。 この再生空気の昇温を促進する手段は、再生空気の経路中の再生空気の流量を 減少させることによって再生空気の温度を上昇させたり、再生空気経路のデシカント の上流側に配置した補助加熱手段を用いて再生空気の温度を上昇させたりする。吸 着速度を抑制する手段は、処理空気経路における処理空気の循環を停止することに より水分吸着速度を抑制したり、処理空気経路中に設けたデシカントの下流側力 上 流側へバイパスするノ ィパス流路に処理空気を流通させることにより水分吸着速度を 抑制したりする。
[0004] さらに、除湿および加湿運転の能力につ 、ての他の制御方法として、吸排気風量 ノ ランス調整によるものも考えられる。
特許文献 1:特開平 10- 9963号公報
特許文献 2:特開 2004— 60954号公報
特許文献 3:特開平 9—318128号公報
特許文献 4:特開平 10— 54586号公報
発明の開示
[0005] 上記のような吸着剤を用いた従来の空気調和機では、吸着剤による空気中の水分 の吸着動作と、吸着剤の水分を脱離させる再生動作とを切り換えているが、その切り 換えの制御については、従来では特に目立った技術を採用していない。あまりに切り 換えの時間間隔が長ければ吸着剤の吸着作用が限界に近づ!、て水分の吸着が十 分に出来なくなるので、適当な時間間隔で切り換えを行う必要はあると思われるが、 そのような適当な時間間隔を決めれば、除加湿の能力につ 、ては圧縮機の容量制 御が通常考えられる調整方法であると思われる。
また、潜熱負荷および顕熱負荷を処理する空気調和機において、どのような能力 制御を行うことが望ましいかについては、あまり目立った技術が存在していない。 本発明の 1つの課題は、屋内の潜熱負荷および顕熱負荷を処理する空気調和機 であって、適切な能力制御をすることができる空気調和機および空気調和機の制御 方法を提供することにある。
[0006] 一方、特許文献 3や特許文献 4にあるような従来のデシカント式外調機の除湿およ び加湿運転の能力制御、例えば空気温度を制御目標とする能力制御は、フロー式 除加湿装置では可能である力 ノ ツチ式除加湿装置については、ノ ツチ切換時のよ うな運転状態の変化に対する空気温度変化の時間的な遅れが大きいこと、流路内各 部での温度分布 (経時変ィ匕も含む)が大きいことなどの理由から、適したものではな い。
本発明の別の課題は、適切な空気調和機の能力および Zまたは顕潜熱処理量比 の制御を可能とする空気調和機および空気調和機の制御方法を提供することにある 第 1発明に係る空気調和機は、圧縮機を有する蒸気圧縮式の冷凍サイクルを利用 して、屋内の潜熱負荷および顕熱負荷を処理する空気調和機であって、熱交^^と 、吸着剤と、制御部とを備えている。吸着剤は、蒸発器として働く熱交 によって吸 熱される通過空気の水分を吸着する吸着動作、および、凝縮器として働く熱交翻 によって加熱される通過空気に対して水分を脱離する再生動作、を行う。制御部は、 吸着剤の吸着動作と再生動作とが所定の切換時間間隔で切り換わるように制御する 。また、制御部は、潜熱負荷と顕熱負荷との和である全熱負荷、潜熱負荷、および顕 熱負荷のうち所定の負荷が優先して処理されるように、圧縮機の容量制御および吸 着動作と再生動作との切換時間間隔の変更制御を行う。
[0007] ここでは、蒸発器として働く熱交 によって吸着剤が吸着動作を行 ヽ、また凝縮 器として働く熱交換器によって吸着剤が再生動作を行う。そして、吸着剤の吸着動作 と再生動作との切り換えの時間間隔 (切換時間間隔)の変更制御が、圧縮機の容量 制御とともに、制御部によって行われる。
切換時間間隔の変更をすると、空気調和機の潜熱負荷を処理する能力(以下、潜 熱処理能力という。)と顕熱負荷を処理する能力(以下、顕熱処理能力という。)との 比(以下、顕潜熱処理量比という。)を変えることができる。一方、圧縮機の容量制御 を行うと、潜熱処理能力および顕熱処理能力の和(以下、全熱処理能力という。)を 増減することができる。すなわち、制御部は、潜熱処理能力、顕熱処理能力、および 全熱処理能力を、それぞれ調整することができる。
[0008] そして、そのような調整機能を持つ制御部は、全熱負荷、潜熱負荷、および顕熱負 荷のうち所定の負荷が優先して処理されるように、圧縮機の容量制御および切換時 間間隔の変更制御を行う。このような制御が為されるため、本空気調和機では、適切 な能力制御をすることが容易になって 、る。
例えば、第 2発明に係る空気調和機のように、優先して処理される所定の負荷がュ 一ザにより選択されたものである場合には、ユーザとしては、選んだ負荷が優先して 処理されるようになり、より好みにあった空調環境を得ることができるようになる。
また、第 3発明に係る空気調和機のように、優先して処理される所定の負荷を、潜 熱処理能力と潜熱処理の大きさとの差分、顕熱処理能力と顕熱処理の大きさとの差 分、および全熱処理能力と全熱処理の大きさとの差分に基づいて決定する場合には 、例えば、差分が最も大きい負荷を所定の負荷として優先処理するようにして、全熱 負荷、潜熱負荷、顕熱負荷の処理のバランスを取ることができるようになる。
[0009] 第 2発明に係る空気調和機は、第 1発明の空気調和機であって、入力部をさらに備 えている。入力部は、優先して処理を行う所定の負荷を、ユーザに選択させる。 第 3発明に係る空気調和機は、第 1発明の空気調和機であって、制御部は、第 1差 分、第 2差分、および第 3差分に基づいて、優先して処理を行う所定の負荷を決定す る。第 1差分は、全熱負荷を処理する現在の能力と、全熱負荷の大きさとの差である 。第 2差分は、潜熱負荷を処理する現在の能力と、潜熱負荷の大きさとの差である。 第 3差分は、顕熱負荷を処理する現在の能力と、顕熱負荷の大きさとの差である。 第 4発明に係る空気調和機は、第 1発明から第 3発明のいずれかの空気調和機で あって、制御部は、優先して処理を行う所定の負荷が潜熱負荷である場合に、圧縮 機の容量制御による潜熱負荷の処理量の変更を、切換時間間隔の変更制御による 潜熱負荷の処理量の変更よりも優先させる。
[0010] ここでは、潜熱負荷を優先して処理する場合に、まず圧縮機の容量制御を行って 潜熱負荷の処理量を変化させ、それでも足りないときに、吸着動作と再生動作との切 換時間間隔の変更制御を行って潜熱負荷の処理量をさらに変化させる。このように、 まず圧縮機の容量制御を行うため、潜熱負荷の処理量の変化が比較的早く現れ、必 要な潜熱負荷の処理が早く達成されるようになる。
第 5発明に係る空気調和機は、第 1発明から第 3発明のいずれかの空気調和機で あって、制御部は、優先して処理を行う所定の負荷が潜熱負荷である場合に、切換 時間間隔の変更制御による潜熱負荷の処理量の変更を、圧縮機の容量制御による 潜熱負荷の処理量の変更よりも優先させる。
ここでは、潜熱負荷を優先して処理する場合に、まず吸着動作と再生動作との切換 時間間隔の変更制御を行って潜熱負荷の処理量を変化させ、それでも足りないとき に、圧縮機の容量制御を行って潜熱負荷の処理量をさらに変化させる。このように、 まず切換時間間隔の変更制御を行うため、潜熱負荷の処理量を増加させる必要があ る場合にも、圧縮機の容量を上げる制御によって消費エネルギー量を大幅に増加さ せることなく潜熱負荷の処理量を増やすことができるようになる。例えば、切換時間間 隔の変更制御によって潜熱負荷の処理量の顕熱負荷の処理量に対する比を大きく することで必要な潜熱負荷の処理量が確保できる場合には、圧縮機の容量を上げる 必要はない。
[0011] 第 6発明に係る空気調和機は、第 1発明から第 3発明のいずれかの空気調和機で あって、制御部は、優先して処理を行う所定の負荷が顕熱負荷である場合に、圧縮 機の容量制御による顕熱負荷の処理量の変更を、切換時間間隔の変更制御による 顕熱負荷の処理量の変更よりも優先させる。
ここでは、顕熱負荷を優先して処理する場合に、まず圧縮機の容量制御を行って 顕熱負荷の処理量を変化させ、それでも足りないときに、吸着動作と再生動作との切 換時間間隔の変更制御を行って顕熱負荷の処理量をさらに変化させる。このように、 まず圧縮機の容量制御を行うため、顕熱負荷の処理量の変化が比較的早く現れ、必 要な顕熱負荷の処理が早く達成されるようになる。
第 7発明に係る空気調和機は、第 1発明から第 3発明のいずれかの空気調和機で あって、制御部は、優先して処理を行う所定の負荷が顕熱負荷である場合に、切換 時間間隔の変更制御による顕熱負荷の処理量の変更を、圧縮機の容量制御による 顕熱負荷の処理量の変更よりも優先させる。
[0012] ここでは、顕熱負荷を優先して処理する場合に、まず吸着動作と再生動作との切換 時間間隔の変更制御を行って顕熱負荷の処理量を変化させ、それでも足りないとき に、圧縮機の容量制御を行って顕熱負荷の処理量をさらに変化させる。このように、 まず切換時間間隔の変更制御を行うため、顕熱負荷の処理量を増加させる必要があ る場合にも、圧縮機の容量を上げる制御によって消費エネルギー量を大幅に増加さ せることなく顕熱負荷の処理量を増やすことができるようになる。例えば、切換時間間 隔の変更制御によって顕熱負荷の処理量の潜熱負荷の処理量に対する比を大きく することで必要な顕熱負荷の処理量が確保できる場合には、圧縮機の容量を上げる 必要はない。
第 8発明に係る空気調和機は、第 1発明から第 3発明のいずれかの空気調和機で あって、制御部は、優先して処理を行う所定の負荷が全熱負荷である場合に、まず 圧縮機の容量制御を行う。
[0013] 全熱負荷を増減させるときには圧縮機の容量を変えることが効果的であることから、 ここでは、全熱負荷を優先して処理しなければならないときに、まず圧縮機の容量制 御を行っている。
第 9発明に係る空気調和機は、第 1発明から第 3発明のいずれかの空気調和機で あって、制御部は、優先して処理を行う所定の負荷が全熱負荷である場合に、まず 切換時間間隔の制御により潜熱負荷の処理量と顕熱負荷の処理量との比を固定し、 その後に圧縮機の容量制御を行う。
全熱負荷を優先させる場合、基本的には顕潜熱処理量比を変える必要がな ヽため 、ここでは、顕潜熱処理量比をまず固定した上で圧縮機の容量制御を行っている。こ のため、不要な顕潜熱処理量比の変化が抑えられる。
[0014] より具体的に説明する。吸着剤の吸着動作と再生動作とを切り換える方式の空気 調和機において全熱負荷の中の顕潜熱負荷の比に合わせて顕潜熱処理量比を調 整していくと、能力制御が徒に複雑ィ匕してしまう恐れがある。しかし、ここでは、まず全 熱負荷の処理量を変化させて!/、き、顕熱または潜熱の負荷と顕熱または潜熱の処理 量とがある程度均衡した時点から、残る顕熱負荷または潜熱負荷の処理量を顕潜熱 処理量比の調整によって変化させることができ、制御をシンプルィ匕することができる。 第 10発明に係る空気調和機は、第 1発明から第 9発明のいずれかの空気調和機で あって、熱交 として、表面に吸着剤が設けられた第 1吸着熱交^^および第 2吸 着熱交 を備えている。そして、制御部は、第 1状態と第 2状態とを切り換える。第 1状態では、第 1吸着熱交換器の吸着剤の吸着動作または再生動作により除湿また は加湿された空気を、屋内に供給する。第 2状態では、第 2吸着熱交換器の吸着剤 の吸着動作または再生動作により除湿または加湿された空気を、屋内に供給する。
[0015] この空気調和機では、熱交^^として 2つの吸着熱交 を備えており、一方の吸 着熱交換器から除湿または加湿された空気を屋内に送る状態 (第 1状態)と、他方の 吸着熱交 カゝら除湿または加湿された空気を屋内に送る状態 (第 2状態)とを切り 換える。このように 2つの吸着熱交^^を備えているため、一方の吸着熱交^^の吸 着剤に吸着動作をさせながら他方の吸着熱交^^の吸着剤に再生動作をさせること ができ、連続的に屋内に対して除湿または加湿された空気を送り続けることが可能と なっている。
第 11発明に係る空気調和機は、第 1発明から第 10発明のいずれかの空気調和機 であって、熱交 を、利用側熱交 として備えている。そして、この空気調和機 は、利用側熱交^^とは別に、熱源側熱交 をさらに備えている。
ここでは、吸着剤に吸着動作や再生動作を行わせる利用側熱交^^とは別に、熱 源側熱交 をさらに備えている。
[0016] なお、利用側熱交換器として、吸着剤に吸着動作や再生動作を行わせる複数の熱 交換器を配備することもできる。また、利用側熱交換器として、吸着剤に吸着動作や 再生動作を行わせる熱交換器と、それとは別の顕熱負荷処理専用の熱交換器とを 酉己備することちでさる。
第 12発明に係る空気調和機は、第 1発明から第 11発明のいずれかの空気調和機 であって、制御部は、蒸発器の温度、蒸発器の圧力、凝縮器の温度、および凝縮器 の圧力のうち少なくともいずれ力 1つに基づいて、圧縮機の容量制御および切換時 間間隔の変更制御を行う。
ここでは、吸着剤に吸着動作や再生動作を行わせる熱交換器の温度や圧力 (蒸発 器の温度、蒸発器の圧力、凝縮器の温度、凝縮器の圧力)から、熱交換器の中の冷 媒の状態を得ることができる。この冷媒の状態は、吸着剤の温度に大きな影響を与え るファクターである。一方、ここでは吸着剤の吸着動作と再生動作とが所定の切換時 間間隔で切り換わるため、吸着剤や熱交^^の周囲の温度や湿度だけ力も吸着剤 の温度を推定しょうとすると、その推定精度を確保することが難しい。 [0017] これに鑑み、潜熱負荷の処理能力ゃ顕熱負荷の処理能力、特に潜熱負荷の処理 能力に直接的な影響を与える吸着剤の温度に深い関係がある蒸発器の圧力、凝縮 器の温度、および凝縮器の圧力のうち少なくともいずれ力 1つに基づいて、圧縮機の 容量制御および切換時間間隔の変更制御を行っている。これにより、冷房除湿運転 や暖房加湿運転などを行う際の能力制御 (圧縮機の容量制御および切換時間間隔 の変更制御)が、より適切に為されるようになる。
第 13発明に係る空気調和機の制御方法は、圧縮機および熱交換器を有する蒸気 圧縮式の冷凍サイクルを利用して、吸着動作および再生動作を行う吸着剤を使用し て、屋内の潜熱負荷および顕熱負荷を処理する空気調和機の制御方法である。吸 着剤の吸着動作とは、蒸発器として働く熱交 によって吸熱される通過空気の水 分を吸着する動作である。吸着剤の再生動作とは、凝縮器として働く熱交換器によつ て加熱される通過空気に対して水分を脱離する動作である。そして、この空気調和機 の制御方法では、吸着剤の吸着動作と再生動作とが所定の切換時間間隔で切り換 わるように制御するとともに、潜熱負荷と顕熱負荷との和である全熱負荷、潜熱負荷 、および顕熱負荷のうち所定の負荷が優先して処理されるように、圧縮機の容量制 御および切換時間間隔の変更制御を行う。
[0018] 第 14発明の空気調和機は、圧縮機を有する蒸気圧縮式の冷凍サイクルを利用し て、屋内の潜熱負荷および顕熱負荷を処理する空気調和機である。空気調和機は、 熱交換器と、吸着剤と、制御部とを備えている。吸着剤は、蒸発器として働く熱交換 器によって吸熱される通過空気の水分を吸着する吸着動作、および、凝縮器として 働く熱交換器によって加熱される通過空気に対して水分を脱離する再生動作を行う 。制御部は、吸着剤の吸着動作と再生動作とが所定の切換時間間隔で切り換わるよ うに制御する。制御部は、蒸発器の温度、蒸発器の圧力、凝縮器の温度、および凝 縮器の圧力のうち少なくともいずれ力 1つに基づいて、圧縮機の容量制御および Zま たは切換時間間隔の変更制御を行う。
ここでは、吸着剤の温度が空気温度よりも冷媒温度により追随することに着目して、 従来の再生空気温度などの代わりに、蒸発器の温度、蒸発器の圧力、凝縮器の温 度、および凝縮器の圧力のうち少なくともいずれか 1つに基づいて、圧縮機の容量制 御および Zまたは切換時間間隔の変更制御を行う。これにより、従来より適切な除加 湿時の潜熱能力制御(除加湿水分量の制御)および除加湿時の顕潜熱処理量比の 制御が可能になる。
[0019] 第 15発明の空気調和機は、第 14発明の空気調和機であって、熱交換器が、表面 に吸着剤を担持している吸着熱交^^である。ここでは、熱交^^の表面に吸着剤 を担持しており、
吸着剤の温度は非常に強く冷媒温度に連動することになる。したがって、蒸発器の 温度、蒸発器の圧力、凝縮器の温度、および凝縮器の圧力のうち少なくともいずれ 力 1つに基づいて、圧縮機の容量制御および Zまたは切換時間間隔の変更制御を 行うことが非常に効果的になる。これにより、より適切な除加湿時の潜熱能力制御お よび除加湿時の顕潜熱処理量比の制御が可能になる。
第 16発明の空気調和機は、第 14または第 15発明の空気調和機であって、熱交換 器を利用側熱交翻として備え、熱源側熱交翻をさらに備えている。ここでは、熱 源側熱交 をさらに備えているので、顕熱負荷を処理する点で望ましい。
[0020] 第 17発明の空気調和機は、第 14から第 16発明のいずれかの空気調和機であつ て、制御部は、さらに屋内の空気の湿度値に基づいて、圧縮機の容量制御および Z または切換時間間隔の変更制御を行う。ここでは、空気調和機の能力制御をより適 切に行うことができる。
第 18発明の空気調和機は、第 14から第 17発明のいずれかの空気調和機であつ て、制御部は、さらに熱交 力も屋内に流れる空気の湿度値に基づいて、圧縮機 の容量制御および Zまたは切換時間間隔の変更制御を行う。ここでは、空気調和機 の能力制御をより適切に行うことができる。
第 19発明の空気調和機は、第 14から第 18発明のいずれかの空気調和機であつ て、制御部は、さらに熱交 力も屋内に流れる空気の温度値に基づいて、圧縮機 の容量制御および Zまたは切換時間間隔の変更制御を行う。ここでは、空気調和機 の能力制御をより適切に行うことができる。
[0021] 第 20発明の空気調和機の制御方法は、圧縮機および熱交換器を有する蒸気圧縮 式の冷凍サイクルを利用する。蒸発器として働く前記熱交^^によって吸熱される通 過空気の水分を吸着する吸着動作および凝縮器として働く前記熱交換器によって加 熱される通過空気に対して水分を脱離する再生動作を行うことができる吸着剤を使 用する。屋内の潜熱負荷および顕熱負荷を処理する。前記吸着剤の前記吸着動作 と前記再生動作とを所定の切換時間間隔で切り換えるように制御するとともに、蒸発 器の温度、蒸発器の圧力、凝縮器の温度、および凝縮器の圧力のうち少なくともい ずれ力 1つに基づいて、圧縮機の容量制御および Zまたは切換時間間隔の変更制 御を行う。
ここでは、吸着剤の温度が空気温度よりも冷媒温度により追随することに着目して、 従来の再生空気温度などの代わりに、蒸発器の温度、蒸発器の圧力、凝縮器の温 度、および凝縮器の圧力のうち少なくともいずれか 1つに基づいて、圧縮機の容量制 御および Zまたは切換時間間隔の変更制御を行う。これにより、従来より適切な除加 湿時の潜熱能力制御(除加湿水分量の制御)および除加湿時の顕潜熱処理量比の 制御が可能になる。
図面の簡単な説明
[図 1]本発明の一実施形態に係る空気調和機の内部構造を示した平面図。
[図 2]図 1の Π-Π矢視断面図。
[図 3]図 1の ΠΙ-ΠΙ矢視断面図。
[図 4]空気調和機の冷媒回路を示す回路図。
[図 5]空気調和機における冷房除湿換気運転の状態を示すブロック図。
[図 6]空気調和機における冷房除湿循環運転の状態を示すブロック図。
[図 7]空気調和機における暖房加湿換気運転の状態を示すブロック図。
[図 8]空気調和機における暖房加湿循環運転の状態を示すブロック図。
[図 9]空気調和機における凝縮器温度および蒸発器温度を用いた能力制御のフロー チャート。
[図 10]空気調和機における凝縮器温度および室内空気の湿度を用いた能力制御の 冷房除湿時のフローチャート。
[図 11]空気調和機における凝縮器温度および室内空気の湿度を用いた能力制御の 暖房加湿時のフローチャート。 [図 12]本発明の他の実施形態 (2)に係る空気調和機の概略構成図。
[図 13] (A) 本発明の他の実施形態(3)に係る空気調和機における加湿運転の第 1 状態を示す図。
[0023] (B) 本発明の他の実施形態(3)に係る空気調和機における加湿運転の第 2状態 を示す図。
[図 14]本発明の他の実施形態 (4)に係る空気調和機における冷房除湿運転の状態 を示す図。
[図 15]本発明の他の実施形態(5)に係る空気調和機における冷房除湿運転の状態 を示す図。
符号の説明
[0024] 1 冷媒回路
2 制御部
3 第 1吸着熱交換器
5 第 2吸着熱交換器
7 インバータ圧縮機
9 四路切換弁
10 空気調和機
12, 13 温度センサ
14 給気湿度センサ
15 室内空気の湿度センサ
101 圧縮機
105 再生熱交換器
110 空気調和機
181, 182 調湿エレメント
210 空気調和機
211 室外熱交
213 第 1吸着熱交換器
214 第 2吸着熱交換器 221 圧縮機
222 室外熱交
224 吸着熱交換器
発明を実施するための最良の形態
[0025] <空気調和機 10の基本構成 >
図 1一 4に示すように、本実施形態の空気調和機 10は、熱交^^の表面にシリカゲ ル等の吸着剤を担持したデシカント式外調機であって、室内空間に供給される空気 に対して冷房除湿運転や暖房加湿運転を行うものであり、中空直方体状のケーシン グ 17を備えている。そして、ケーシング 17には、冷媒回路 1等が収納されている。 冷媒回路 1は、図 4に示すように、周波数を変更可能なインバータ圧縮機 7と、四路 切換弁 9と、第 1吸着熱交換器 3と、電動弁などの膨張弁 11と、第 2吸着熱交換器 5と が順に接続されて閉回路に形成されている。第 1吸着熱交 3および第 2吸着熱 交換器 5は、四路切換弁 9によって冷媒の流路を切り換えることによって、凝縮器およ び蒸発器の!/、ずれか一方の機能を奏する。
[0026] さらに、冷媒回路 1は、冷媒が回路全体に充填され、冷媒が循環して蒸気圧縮式の 冷凍サイクルを行うように構成されて 、る。
第 1吸着熱交換器 3の一端は、四路切換弁 9に接続されている。第 1吸着熱交換器 3の他端は、膨張弁 11を介して第 2吸着熱交 5の一端に接続されている。第 2吸 着熱交 5の他端は、四路切換弁 9に接続されている。
<吸着熱交換器および吸着剤の構成 >
図 1一 3に示すように、第 1吸着熱交換器 3及び第 2吸着熱交換器 5は、たとえば、ク ロスフィン式のフィン 'アンド'チューブ型熱交換器により構成され、具体的に、長方形 板状に形成されたアルミニウム製の多数のフィンと、フィンを貫通する銅製の伝熱管と を有している。フィン及び伝熱管の外表面には、吸着剤が担持されている。吸着剤と しては、ゼォライト、シリカゲル、活性炭、親水性または吸水性を有する有機高分子ポ リマー系材料、カルボン酸基またはスルホン酸基を有するイオン交換榭脂系材料、 感温性高分子等の機能性高分子材料などが採用され得る。
[0027] <圧縮機の構成 > ここでは、周波数変更可能な圧縮機として、インバータ圧縮機が採用されている。ィ ンバータ圧縮機は、周波数を変更することにより容量制御(出力の制御)が可能であ る。
<四路切換弁の構成 >
四路切換弁 9は、第 1のポート P1と第 3のポート P3とが連通すると同時に第 2のポ ート P2と第 4のポート P4が連通する状態(図 4 (A)に示す状態)と、第 1のポート P1と 第 4のポート P4とが連通すると同時に第 2のポート P2と第 3のポート P3とが連通する 状態(図 4(B)に示す状態)とに切り換え自在に構成されている。そして、この四路切 換弁 9を切り換えることにより、第 1吸着熱交 3が凝縮器として機能すると同時に 第 2吸着熱交換器 5が蒸発器として機能する第 1状態と、第 2吸着熱交換器 5が凝縮 器として機能すると同時に第 1吸着熱交 3が蒸発器として機能する第 2状態との 切り換えが行われる。
[0028] <空気調和機の内部の詳細構成 >
次に、図 1一 3に基づいて、空気調和機 10の内部構造についてさらに詳細に説明 する。なお、ケーシング 17は、図 1において、下端をケーシング 17の正面とし、上端 をケーシング 17の背面とし、左端をケーシング 17の左側面とし、右端をケーシング 1 7の右側面とする。また、ケーシング 17は、図 2— 3において、上端がケーシング 17の 上面であり、下端がケーシング 17の下面である。
ケーシング 17は、平面視正方形で、扁平な箱形に形成されている。ケーシング 17 の左側面板 17aには、外気 OAを取り入れる第 1吸込口 19と、リターン空気である室 内からの還気 RAを取り入れる第 2吸込口 21とが形成されている。一方、ケーシング 1 7の右側面板 17bには、排気 EAを室外に排出する第 1吹出口 23と、空調空気である 給気 SAを室内に供給する第 2吹出口 25とが形成されている。
[0029] ケーシング 17の内部には、仕切部材である仕切板 27が設けられる。仕切板 27によ つて、ケーシング 17の内部には、空気室 29aと機器室 29bとが形成されている。仕切 板 27は、ケーシング 17の厚さ方向である垂直方向に設けられ、図 2— 3において、上 端であるケーシング 17の上面板 17eから下端であるケーシング 17の下面板 17fに亘 つて設けられている。さらに、仕切板 27は、図 1において、下端であるケーシング 17 の正面板 17cから上端であるケーシング 17の背面板 17dに亘つて設けられている。 また、仕切板 27は、図 1において、ケーシング 17の中央部よりやや右側に配置され ている。
機器室 29bには、冷媒回路 1における吸着熱交翻3, 5を除くインバータ圧縮機 7 などの機器が配置される共に、第 1ファン 79および第 2ファン 77が収納されている。 第 1ファン 79は、第 1吹出口 23に接続され、第 2ファン 77は、第 2吹出口 25に接続さ れている。
[0030] ケーシング 17の空気室 29aには、仕切部材である第 1端面板 33と第 2端面板 31と 中央の区画板 67とが設けられている。第 1端面板 33と第 2端面板 31と区画板 67とは 、ケーシング 17の厚さ方向である垂直方向に設けられ、図 2— 3に示すように、ケー シング 17の上面板 17eから下面板 17fに亘つて設けられている。
第 1端面板 33と第 2端面板 31とは、図 1に示すように、ケーシング 17の左側面板 1 7aから仕切板 27に亘つて設けられている。また、第 1端面板 33は、図 1において、ケ 一シング 17の中央部よりやや上側(背面板 17d側)に配置され、第 2端面板 31は、図 1において、ケーシング 17の中央部よりやや下側(正面板 17c側)に配置されている 区画板 67は、図 1に示すように、第 1端面板 33と第 2端面板 31とに亘つて設けられ ている。
[0031] ケーシング 17の内部には、第 1端面板 33と第 2端面板 31と区画板 67と仕切板 27 とによって、第 1熱交換室 69が区画形成されている。また、ケーシング 17の内部には 、第 1端面板 33と第 2端面板 31と区画板 67とケーシング 17の左側面板 17aとによつ て、第 2熱交換室 73が区画形成されている。つまり、第 1熱交換室 69は、図 1におい て右側に位置し、第 2熱交換室 73は、図 1において左側に位置し、第 1熱交換室 69 と第 2熱交換室 73とは、隣接して並行に形成されている。
また、第 1熱交換室 69には、第 1吸着熱交翻3が配置され、第 2熱交換室 73には 、第 2吸着熱交 5が配置されている。
第 1端面板 33とケーシング 17の背面板 17dとの間には、仕切部材である水平板 61 が図 2に示すように設けられて、第 1流入路 63と第 1流出路 65とが形成される。また、 第 2端面板 31とケーシング 17の正面板 17cとの間には、仕切部材である水平板 55 が図 3に示すように設けられて第 2流入路 57と第 2流出路 59とが形成される。
[0032] 水平板 61、 55は、ケーシング 17の内部空間を、ケーシング 17の厚さ方向である垂 直方向に上下に仕切っている。そして、図 2において、第 1流入路 63が上面板 17e 側に、第 1流出路 65が下面板 17f側に形成され、図 3において、第 2流入路 57が上 面板 17e側に、第 2流出路 59が下面板 17f側に形成されて!ヽる。
そして、第 1流入路 63及び第 1流出路 65と第 2流入路 57及び第 2流出路 59とは、 図 1にお 、て、第 1熱交換室 69及び第 2熱交換室 73を横断する中央面 (正面板 17c と背面板 17dとの真ん中に位置する仮想面)を基準として面対称に配置されている。 第 1流入路 63は、第 1吸込口 19に連通している。第 1流出路 65は、第 1ファン 79に 連通し、第 1吹出口 23に連通している。第 2流入路 57は、第 2吸込口 21に連通して いる。第 2流出路 59は、第 2ファン 77に連通し、第 2吹出口 25に連通している。
[0033] 第 1端面板 33には、図 2に示すように、 4つの開口 33a— 33dが形成されて、各開 口 33a— 33dには、第 1ダンバ 47、第 2ダンノ 49、第 3ダンバ 51及び第 4ダンバ 53が 設けられている。 4つの開口 33a— 33dは、行列方向に近接して位置している。つまり 、開口 33a— 33dは、上下左右に 2つずつ升目状に配置され、第 1の開口 33aと第 3 の開口 33cとが第 1熱交換室 69に開口し、第 2の開口 33bと第 4の開口 33dとが第 2 熱交換室 73に開口して 、る。
第 1の開口 33aは、第 1流入路 63と第 1熱交換室 69とを連通させ、第 3の開口 33c は、第 1流出路 65と第 1熱交換室 69とを連通させている。また、第 2の開口 33bは、 第 1流入路 63と第 2熱交換室 73とを連通させ、第 4の開口 33dは、第 1流出路 65と 第 2熱交換室 73とを連通させて 、る。
[0034] 第 2端面板 31には、図 3に示すように、 4つの開口 31a— 31dが形成されて、各開 口 31a— 31dには、第 5ダンバ 35、第 6ダンバ 37、第 7ダンバ 39及び第 8ダンバ 41が 設けられている。 4つの開口 31a— 31dは、行列方向に近接して位置している。つまり 、開口 31a— 31dは、上下左右に 2つずつ升目状に配置され、第 5の開口 31aと第 7 の開口 31cとが第 1熱交換室 69に開口し、第 6の開口 31bと第 8の開口 31dとが第 2 熱交換室 73に開口して 、る。 第 5の開口 31aは、第 2流入路 57と第 1熱交換室 69とを連通させ、第 7の開口 31c は、第 2流出路 59と第 1熱交換室 69とを連通させている。また、第 6の開口 31bは、 第 2流入路 57と第 2熱交換室 73とを連通させ、第 8の開口 31dは、第 2流出路 59と 第 2熱交換室 73とを連通させて 、る。
[0035] <空気調和機の第 1状態、第 2状態、および両状態のバッチ切換動作の概略 > 本実施の形態の空気調和機 10は、図 4 (A)に示す第 1状態のように、凝縮器として 機能する第 1吸着熱交 3に室内力 の還気 RAまたは外気 OAを第 2空気として 取り込んで除湿を行ったのち、室外へ排気 EAを排出し、または室内へ給気 SAを供 給する。それとともに、第 1状態では、蒸発器として機能する第 2吸着熱交 5に、 外気 OAまたは室内からの還気 RAを第 1空気として取り込んで加湿を行ったのち、 室内へ給気 SAを供給し、または室外へ排気 EAを排出する。
そして、所定のバッチ切換時間間隔で、四路切換弁 9を切り換えるとともに、ダンバ 47— 53、 35— 41による空気流路の切り換えを行う。これにより、図 4 (B)に示す第 2 状態となる。
[0036] この第 2状態では、蒸発器として機能する第 1吸着熱交換器 3に外気 OAまたは室 内からの還気 RAを第 1空気として取り込んで加湿を行ったのち、室内へ給気 SAを 供給し、または室外へ排気 EAを排出する。それとともに、第 2状態では、凝縮器とし て機能する第 2吸着熱交 5に室内力 の還気 RAまたは外気 OAを第 1空気とし て取り込んで除湿を行ったのち、室外へ排気 EAを排出し、または室内へ給気 SAを 供給する。
このように、本実施形態の空気調和機 10は、第 1状態と第 2状態とを切り換えること で、各吸着熱交 5において吸着動作と再生動作とを交互に行わせることがで きる。すなわち、各吸着熱交換器 3, 5では、吸着動作あるいは再生動作というバッチ 力 所定のバッチ切換時間間隔で切り換えられる。
<空気調和機の除湿運転および加湿運転 >
次に、空気調和機 10の除湿運転および加湿運転にっ 、て説明する。
[0037] 空気調和機 10が除湿運転を行う場合には、第 1吸着熱交換器 3および第 2吸着熱 交 5を交互に蒸発器として機能させ、この第 1吸着熱交 3または第 2吸着熱 交換器 5を介して空気調和機 10内を流れる空気に含まれる水分を吸着剤で吸着さ せる。一方、第 2吸着熱交 5または第 1吸着熱交 3を凝縮器として機能させ、 凝縮熱により、この第 2吸着熱交換器 5または第 1吸着熱交換器 3を介して空気調和 機 10内を流れる空気に対して吸着剤において吸着した水分を放出して吸着剤を再 生させる。そして、吸着剤によって除湿された空気を室内に供給し、かつ吸着剤から 水分が放出された空気を室外に放出するように、四路切換弁 9によって冷媒回路 1の 冷媒循環の向きを切り換えるとともに、第 1一第 8ダンバ 47— 53、 35— 41によって空 気流路を切り換える。
空気調和機 10が加湿運転を行う場合には、蒸発器として機能する第 1吸着熱交換 器 3または第 2吸着熱交換器 5の吸熱作用により空気調和機 10内を流れる空気に含 まれる水分を吸着剤で吸着する。一方、凝縮器として機能する第 2吸着熱交換器 5ま たは第 1吸着熱交換器 3の放熱作用により空気調和機 10内を流れる空気に対して吸 着剤において吸着した水分を放出して吸着剤を再生する。そして、吸着剤からの水 分の放出を受けて加湿された空気を室内に供給するように、四路切換弁 9によって 冷媒回路 1の冷媒循環の向きを切り換えるとともに、第 1一第 8ダンバ 47— 53、 35— 41によって空気流路を切り換える。
具体的には、全換気モードにおいて除湿運転を行う場合 (除湿換気運転を行う場 合)には、外気 OAを取り込み、蒸発器として機能する第 1吸着熱交翻 3または第 2 吸着熱交換器 5の表面に担持された吸着剤において外気 OAの水分を吸着し、外気 OAを除湿された給気 S Aとして室内に供給する。一方では、室内からの還気 RAを 取り込み、凝縮器として機能する第 2吸着熱交換器 5または第 1吸着熱交換器 3の表 面に担持された吸着剤から水分を放出させて吸着剤を再生し、加湿空気となった還 気 RAを排気 EAとして室外へ放出する。
また、循環モードにおいて除湿運転を行う場合(除湿循環運転を行う場合)には、 室内からの還気 RAを取り込み、蒸発器として機能する第 1吸着熱交換器 3または第 2吸着熱交 5の表面に担持された吸着剤において水分を吸着させ、除湿された 還気 RAを給気 SAとして室内に供給する。一方、吸着剤の再生については、外気 Ο Αを取り込み、その外気 OAに凝縮器として機能する第 2吸着熱交換器 5または第 1 吸着熱交 3の表面に担持された吸着剤カゝら水分を放出させて吸着剤を再生さ せ、加湿された外気 OAを排気 ΕΑとして室外へ放出する。
[0039] また、全換気モードにぉ ヽて加湿運転を行う場合 (加湿換気運転を行う場合)には 、室内からの還気 RAを取り込み、蒸発器として機能する第 1吸着熱交換器 3または 第 2吸着熱交換器 5の表面に担持された吸着剤において取り込まれた空気に含まれ る水分を吸着し、除湿された還気 RAと排気 EAとして室外に排出する。一方では、外 気 OAを取り込み、凝縮器として機能する第 2吸着熱交換器 5または第 1吸着熱交換 器 3の表面に担持された吸着剤カゝら水分を放出させて吸着剤を再生し、加湿された 外気 OAを給気 S Aとして室内に供給する。
また、循環モードにおいて加湿運転を行う場合 (加湿循環運転を行う場合)には、 外気 OAを取り込み、蒸発器として機能する第 1吸着熱交換器 3または第 2吸着熱交 換器 5の表面に担持された吸着剤において取り込まれた外気 OAに含まれる水分を 吸着させ、除湿された外気 OAを排気 EAとして屋外へ放出する。一方では、室内か らの還気 RAを取り込み、凝縮器として機能する第 2吸着熱交 5または第 1吸着 熱交 3の表面に担持された吸着剤カゝら水分を放出して吸着剤を再生し、加湿さ れた還気 RAを給気 S Αとして室内に供給する。
[0040] <制御部による各運転の詳細と空調能力制御 >
図 5に示すように、本実施形態では、第 1吸着熱交換器 3の内部における冷媒の温 度を測定するために、サーミスタなどの温度センサ 12が設けられている。また、第 2吸 着熱交換器 5の内部における冷媒の温度を測定するために、温度センサ 13が設けら れている。これらの温度センサ 12、 13は、具体的には、各吸着熱交翻 3, 5の冷媒 を通す伝熱管に接触して伝熱管の温度を測ることで冷媒の温度を測定するものであ り、 CPUなど力もなる制御部 2に接続されている。
制御部 2は、温度センサ 12、 13によって検出された第 1吸着熱交換器 3および第 2 吸着熱交換器 5の冷媒の温度に基づいて、インバータ圧縮機 7の周波数の制御によ る容量制御、およびバッチ切換時間間隔を制御する。また、制御部 2は、ユーザゃメ ンテナンスパーソンに入力を行わせるディップスィッチ等の入力部 2aを有しており、 その入力部 2aに入力された優先して処理すべき負荷 (潜熱負荷、顕熱負荷、あるい は全熱負荷)が優先して処理されるように、インバータ圧縮機 7の容量制御およびバ ツチ切換時間間隔の制御を行う。なお、全熱負荷とは、潜熱負荷と顕熱負荷との和 である。
[0041] バッチ切換時間間隔の制御は、具体的には、四路切換弁 9の切り換え、および第 1 一 8ダンバ 47— 53、 35— 41による空気流路と四路切換弁 9の切り換えを行う時間間 隔であるバッチ切換時間間隔の制御である。
さらに、本実施の形態では、第 1吸着熱交換器 3および第 2吸着熱交換器 5の冷媒 の温度以外の追加の制御条件として、給気湿度および室内空気の湿度も用いる。給 気湿度を測定するための給気湿度センサ 14および室内空気の湿度を測定するため の室内空気の湿度センサ 15も、制御部 2に接続されている。
以下に、本実施形態の空気調和機 10の各運転について詳細に説明し、その後に バッチ切換時間間隔の制御を含む空調能力制御について詳しく説明する。なお、こ こでは代表的な運転として、冷房除湿運転や暖房加湿運転を挙げて説明して!/ヽるが 、四路切換弁 9の切り換えと第 1一 8ダンバ 47— 53、 35— 41による空気流路の切り 換えとの時間をずらしたり、第 1一 8ダンバ 47— 53、 35— 41による空気流路の切り換 えを更に細かく制御したりすることによって、冷房加湿運転や暖房加湿運転を行うこと も可能である。
[0042] (冷房除湿換気運転)
第 1状態では、第 1ファン 79及び第 2ファン 77を駆動した状態で、四路切換弁 9が 図 5に示す状態に切り換えられている。その結果、凝縮器として機能する第 2吸着熱 交換器 5での吸着剤の再生 (脱離)動作と、蒸発器として機能する第 1吸着熱交換器 3での吸着剤の吸着動作とが行われることになる。つまり、第 1状態では、室内からの 還気 RAを第 2吸着熱交換器 5に供給し、第 2吸着熱交換器 5から脱離した水分が換 気 RAに付与されることによって、加湿された換気 RA力排気 EAとして室外に排出さ れる。一方では、外気 OAが第 1吸着熱交換器 3に供給され、第 1吸着熱交換器 3〖こ おいて外気 OA中の水分が吸着されて、除湿された外気 OAが給気 SAとして室内へ 供給される。この給気 SAは、除湿が為されているとともに、蒸発器として機能する第 1 吸着熱交^^ 3によって冷却されている。 [0043] つまり、インバータ圧縮機 7から吐出された高温高圧の冷媒は、加熱用の熱媒体と して第 2吸着熱交換器 5に流れ、第 2吸着熱交換器 5の外表面に担持された吸着剤 が加熱される。この加熱によって吸着剤から水分が脱離し、第 2吸着熱交 5の吸 着剤が再生される。
一方、第 2吸着熱交換器 5で凝縮した冷媒は、膨張弁 11で減圧される。減圧後の 冷媒は、冷却用の熱媒体として第 1吸着熱交換器 3に流れる。この第 1吸着熱交換器 3において、第 1吸着熱交換器 3の外表面に担持された吸着剤が外気 OA中の水分 を吸着する際に吸着熱が発生する。第 1吸着熱交換器 3の冷媒は、この吸着熱や外 気 OAの熱を吸熱して蒸発する。蒸発した冷媒は、インバータ圧縮機 7に戻って圧縮 される。
この第 1状態において上記の動作を所定のバッチ切換時間間隔だけ行った後、第 2状態に切り換えられる。
[0044] 第 2状態では、第 1ファン 79及び第 2ファン 77を駆動した状態で、四路切換弁 9が、 図 5に示す状態 (すなわち、インバータ圧縮機 7から第 2吸着熱交翻 5へ冷媒を圧 送する状態)から、インバータ圧縮機 7から第 1吸着熱交換器 3へ冷媒を圧送する状 態へと切り換えられている。また、ダンバ 47— 53ならびにダンバ 35— 41による空気 流路の切り換えにより、室内力 の還気 RAが第 1吸着熱交 3へ供給され、外気 OAが第 2吸着熱交 5へ供給されるようになって 、る。
その結果、第 2状態では、室内からの還気 RAが第 1吸着熱交 3に供給され、 第 1吸着熱交 3の吸着剤力ゝら脱離した水分が換気 RAに放出されて、加湿された 換気 RAが排気 ΕΑとして排出される。一方では、外気 OAが第 2吸着熱交 5に供 給され、取り込まれた外気 OA中の水分が第 2吸着熱交 5の吸着剤に吸着される こと〖こよって、除湿された外気 OAが給気 SAとして室内へ供給される。この給気 SA は、除湿が為されているとともに、蒸発器として機能する第 2吸着熱交 5によって 冷却されている。
[0045] つまり、インバータ圧縮機 7から吐出された高温高圧の冷媒は、加熱用の熱媒体と して第 1吸着熱交換器 3に流れ、第 1吸着熱交換器 3の外表面に担持された吸着剤 が加熱される。この加熱によって吸着剤から水分が脱離し、第 1吸着熱交 3の吸 着剤が再生される。
一方、第 1吸着熱交換器 3で凝縮した冷媒は、膨張弁 11で減圧される。減圧後の 冷媒は、冷却用の熱媒体として第 2吸着熱交換器 5に流れる。この第 2吸着熱交換器 5において、第 2吸着熱交換器 5の外表面に担持された吸着剤が外気 OA中の水分 を吸着する際に吸着熱が発生する。第 2吸着熱交換器 5の冷媒は、この吸着熱や外 気 OAの熱を吸熱して蒸発する。蒸発した冷媒は、インバータ圧縮機 7に戻って圧縮 される。
以上のような第 1状態および第 2状態を所定のバッチ切換時間間隔で交互に切り換 えることにより、冷房除湿および換気が連続的に行われる。
[0046] (冷房除湿循環運転)
上述の冷房除湿換気運転と比較して、基本的な熱交換器の吸着動作および再生 動作は同じであるが、図 6に示すように、外気 OAを取り込んで凝縮器として機能する 第 2吸着熱交換器 5 (または第 1吸着熱交換器 3)に供給し再び排気 EAとして室外に 排出するとともに、室内から取り込んだ還気 RAを蒸発器として機能する第 1吸着熱 交換器 3 (または第 2吸着熱交換器 5)に供給し再び室内に給気 SAとして供給する点 で異なる。すなわち、室内に供給される給気 SAは、室内から取り込まれた換気 を 除湿 ·冷却したものとなり、外気 OAの室内への供給は行われな 、。
(暖房加湿換気運転)
第 1状態では、図 7に示すように、外気 OAを取り込んで第 2吸着熱交換器 5に供給 し、第 2吸着熱交換器 5の吸着剤から脱離した水分が付与された外気 OA (加湿空気 )が、給気 SAとして室内へ供給される。一方では、室内から取り込んだ還気 RAが第 1吸着熱交換器 3に供給され、第 1吸着熱交換器 3の吸着剤に還気 RA中の水分が 吸着される。このようにして除湿された還気 RAは、排気 EAとして室外に排出される。 この給気 SAは、加湿されるとともに、凝縮器として機能する第 2吸着熱交 5によ つてカロ熱される。
[0047] この第 1状態において上記の動作を所定のバッチ切換時間間隔だけ行った後、第 2状態に切り換えられる。
第 2状態では、第 1ファン 79及び第 2ファン 77を駆動した状態で、四路切換弁 9が、 図 7に示す状態 (すなわち、インバータ圧縮機 7から第 2吸着熱交換器 5へ冷媒を圧 送する状態)から、インバータ圧縮機 7から第 1吸着熱交換器 3へ冷媒を圧送する状 態へ切り換えられている。また、ダンバ 47— 53ならびにダンバ 35— 41による空気流 路の切り換えにより、室内力 の還気 RAが第 2吸着熱交 5へ供給され、外気 OA が第 1吸着熱交 3へ供給されるようになっている。
その結果、第 2状態では、第 1吸着熱交換器 3の吸着剤力 脱離した水分が外気 O Aに付与されることによって、加湿された外気 OAが給気 SAとして室内へ供給される 。一方では、第 2吸着熱交 5の吸着剤に還気 RAの水分が吸着されることによつ て、除湿された還気 RA力 S排気 EAとして排出される。また、給気 SAは、凝縮器として 機能する第 1吸着熱交 3によって加熱されている。
[0048] 以上のような第 1状態および第 2状態を所定のバッチ切換時間間隔で交互に切り換 えることにより、暖房加湿および換気が連続的に行われる。
(暖房加湿循環運転)
上述の暖房加湿換気運転と比較して、基本的な熱交換器の吸着動作および再生 動作は同じであるが、図 8に示すように、外気 OAを取り込んで蒸発器として機能する 第 1吸着熱交換器 3 (または第 2吸着熱交換器 5)に供給し再び排気 EAとして室外に 排出するとともに、室内から取り込んだ還気 RAを凝縮器として機能する第 2吸着熱 交換器 5 (または第 1吸着熱交換器 3)に供給し再び室内に給気 SAとして供給する点 で異なる。すなわち、室内に供給される給気 SAは、室内から取り込まれた換気 を 加湿 ·暖房したものとなり、外気 OAの室内への供給は行われな 、。
[0049] (空調能力制御)
次に、空調能力制御、すなわち、インバータ圧縮機 7の容量制御およびバッチ切換 時間間隔の変更制御について説明する。インバータ圧縮機 7の容量制御は、具体的 にはインバータ圧縮機 7の圧縮機周波数を変えることによって行われ、潜熱負荷を処 理する潜熱能力の制御を含む全熱能力の制御となる。また、バッチ切換時間間隔の 変更制御は、主として、潜熱負荷を処理する潜熱能力と顕熱負荷を処理する顕熱能 力との比である顕潜熱能力比の制御となる。
本実施の形態では、制御部 2が、空気調和機 10が上述のいずれかの運転を行うと きに、蒸発器および凝縮器として機能する第 1吸着熱交換器 3および第 2吸着熱交 5における蒸発器温度や凝縮器温度に基づいて、インバータ圧縮機 7の容量制 御およびバッチ切換時間間隔の変更制御を行う。また、制御部 2は、制御目標として 蒸発器温度や凝縮器温度を用いることに加えて、室内空気の湿度、給気 SAの湿度 、および給気 SAの温度のうち 1又は複数のパラメータを制御目標としてもよい。
[0050] まず、凝縮器温度ある!/ヽは蒸発器温度を制御目標としたインバータ圧縮機 7の容量 制御およびバッチ切換時間間隔の変更制御について説明する。
凝縮器温度を制御目標として圧縮機周波数を制御する場合、凝縮器温度が目標 値より低い時には圧縮機周波数を上昇させ、目標値より高い時には圧縮機周波数を 下降させる。また、凝縮器温度を制御目標としてバッチ切換時間間隔を制御する場 合、凝縮器温度が目標値より低い時にはバッチ切換時間間隔を短くし、凝縮器温度 が目標値より高い時にはバッチ切換時間間隔を長くする。
蒸発器温度を制御目標として圧縮機周波数を制御する場合、蒸発器温度が目標 値より低い時には圧縮機周波数を下降させ、目標値より高い時には圧縮機周波数を 上昇させる。また、バッチ切換時間間隔を制御する場合、蒸発器温度が目標値より 低い時にはバッチ切換時間間隔を長くし、蒸発器温度が目標値より高い時にはバッ チ切換時間間隔を短くする。
[0051] さらに、凝縮器温度と蒸発器温度との組合せを制御目標にして、圧縮機周波数お よびバッチ切換時間間隔を同時に制御することも可能である。
次に、凝縮器温度と蒸発器温度との 2つの制御目標を用いて空調能力制御を行う 場合の制御例について、図 9を参照して説明する。この制御は、冷房除湿運転にお Vヽても暖房加湿運転にお!、ても用いられる。
ここでは、凝縮器温度 Tcを第 1目標とし、蒸発器温度 Teを第 2目標とした制御が行 われる。図 9に示すように、まず、現在の凝縮器温度 Tcを目標の凝縮器温度 TcOと 比較し (ステップ S1およびステップ S 2)、 Tc=TcOの場合はステップ S5ヘスキップし 、 Tcく TcOの場合には、圧縮機周波数を上げる (ステップ S3)。これにより、現在の 凝縮器温度 Tcが上昇し、現在の蒸発器温度 Teが下降する。一方、 Tc >TcOの場 合には、圧縮機周波数を下げる (ステップ S4)。これにより、現在の凝縮器温度 Tcが 下降し、現在の蒸発器温度 Teが上昇する。
[0052] その後、ステップ S5において、現在の蒸発器温度 Teと目標の蒸発器温度 TeOとの 比較が行われる (ステップ S5およびステップ S6)。 Te=TeOの場合は、圧縮機周波 数およびバッチ切換時間間隔をともに操作しないでスタートに戻る。 Teく TeOの場 合には、ノツチ切換時間間隔を長くし (ステップ S7)、その後スタートに戻る。パッチ 切換時間間隔を長くすると、凝縮器温度 Tcおよび蒸発器温度 Teがともに上昇する。 一方、 Te>TeOの場合 (ステップ S8)には、ノ ツチ切換時間間隔を短くし (ステップ S9)、その後スタートに戻る。
なお、ここでは、各吸着熱交換器 3, 5において吸着動作あるいは再生動作というバ ツチが所定のバッチ切換時間間隔で切り換えられるため、凝縮器温度 Tcや蒸発器 温度 Teは、ノ ツチごとの代表値またはバッチの間を通じての平均代表値になる。
[0053] また、この例では、蒸発器温度 Teを目標の蒸発器温度 TeOに合わせるためにバッ チ切換時間間隔を操作 (ステップ S6— S9)したのち、再度凝縮器温度 Tcを調整する ために圧縮機を操作し (ステップ S1— S4)、さらに Teの調整のためにバッチ切換時 間間隔を操作 (ステップ S6— S9)する。図 9に示す制御フローでは、このような操作 の繰り返しが行われることが考えられる力 必ずしも Tc=TcO且つ Te=TeOに収束 しなくても操作上は問題がない。
次に、凝縮器温度と室内空気の湿度との 2つの制御目標を用いて空調能力制御を 行う場合の制御例について、図 10および図 11を参照して説明する。冷房除湿運転 を行うときには図 10のフローチャートの制御が採られ、暖房加湿運転を行うときには 図 11のフローチャートの制御が採られる。
[0054] ここでは、凝縮器温度 Tcを第 1目標とし、室内空気の湿度 Hmを第 2目標とした制 御が行われる。
冷房除湿運転時の制御では、圧縮機周波数を上げると、凝縮器温度 Tcは上がり、 室内空気の湿度 Hmは下がる。また、ノツチ切換時間間隔を長くすると、凝縮器温度 Tcおよび室内空気の湿度 Hraが両方とも上がる。
まず、現在の凝縮器温度 Tcを目標の凝縮器温度 TcOと比較し (ステップ SI 1およ びステップ S 12)、 Tc=TcOの場合はステップ S15ヘスキップし、 Tcく TcOの場合に は、圧縮機周波数を上げる (ステップ S13)。このとき、現在の凝縮器温度 Tcは上昇 し、現在の室内空気の湿度 Hraは下降する。一方、 Tc >TcOの場合には、圧縮機周 波数を下げる (ステップ S 14)。このとき、現在の凝縮器温度 Tcは下降し、現在の室 内空気の湿度 Hraは上昇する。
[0055] その後、現在の室内空気の湿度 Hraと目標の室内空気の湿度 HraOとを比較する( ステップ S15およびステップ S16)。 Hra=HraOの場合は、圧縮機周波数およびバッ チ切換時間間隔をともに操作しないでスタートに戻る。 Hraく HraOの場合には、バッ チ切換時間間隔を長くし (ステップ S17)、その後スタートに戻る。ノ ツチ切換時間間 隔を長くすると、凝縮器温度 Tcおよび室内空気の湿度 Hmがともに上昇する。一方、 Hra > HraOの場合 (ステップ S 18)には、バッチ切換時間間隔を短くし (ステップ S19 )、その後スタートに戻る。
暖房加湿運転の制御では、冷房除湿運転の制御と同様に、凝縮器温度 Tcを第 1 目標とし、室内空気の湿度 Hmを第 2目標とした制御が行われる。
また、暖房加湿運転の制御では、圧縮機周波数を上げると、凝縮器温度 Tcおよび 室内空気の湿度 Hmが両方とも上がる。一方、バッチ切換時間間隔を長くすると、凝 縮器温度 Tcは上がり、室内空気の湿度 Hmは下がる。
[0056] ここでは、まず、現在の凝縮器温度 Tcを目標の凝縮器温度 TcOと比較し (ステップ S21およびステップ S22)、 Tc=TcOの場合はステップ S25ヘスキップし、 Tcく TcO の場合には、圧縮機周波数を上げる (ステップ S23)。このとき、現在の凝縮器温度 T cおよび現在の室内空気の湿度 Hraは、両方とも上昇する。一方、 Tc >TcOの場合 には、圧縮機周波数を下げる (ステップ S24)。このとき、現在の凝縮器温度 Tcおよ び現在の室内空気の湿度 Hraは、両方とも下降する
その後、現在の室内空気の湿度 Hraと目標の室内空気の湿度 HraOとを比較する( ステップ S25およびステップ S26)。 Hra=HraOの場合は、圧縮機周波数およびバッ チ切換時間間隔をともに操作しないでスタートに戻る。 Hraく HraOの場合には、バッ チ切換時間間隔を短くし (ステップ S27)、その後スタートに戻る。
一方、 Hra>HraOの場合 (ステップ S28)には、バッチ切換時間間隔を長くし (ステツ プ S29)、その後スタートに戻る。ノ ツチ切換時間間隔を長くすると、凝縮器温度 Tc は上昇し、室内空気の湿度 Hraは下降する。
[0057] (初期入力設定に基づく空調能力制御)
空調能力制御、すなわち、インバータ圧縮機 7の容量制御およびバッチ切換時間 間隔の変更制御については、上記のように、蒸発器温度や凝縮器温度、さらには室 内空気の湿度、給気 SAの湿度、および給気 SAの温度などを適宜組み合わせて制 御目標を決めて行っているが、以下のような初期入力設定に基づく条件も加味される 制御部 2の入力部 2aには、ユーザなどによって、優先して処理すべき負荷 (潜熱負 荷、顕熱負荷、あるいは全熱負荷)が入力されていることがある。この場合には、そこ で入力された負荷によって、インバータ圧縮機 7の容量制御およびバッチ切換時間 間隔の制御が以下のように影響を受けることになる。
まず、入力された優先して処理すべき負荷が潜熱負荷である場合には、バッチ切 換時間間隔の変更制御による潜熱負荷の処理量の変更を、インバータ圧縮機 7の容 量制御による潜熱負荷の処理量の変更よりも優先させる。
[0058] また、入力された優先して処理すべき負荷が顕熱負荷である場合にも、バッチ切換 時間間隔の変更制御による顕熱負荷の処理量の変更を、インバータ圧縮機 7の容量 制御による顕熱負荷の処理量の変更よりも優先させる。
また、入力された優先して処理すべき負荷が全熱負荷である場合には、まずバッチ 切換時間間隔の制御により潜熱負荷の処理量と顕熱負荷の処理量との比である顕 潜熱処理量比を固定し、その後にインバータ圧縮機 7の容量制御を行う。
<本実施形態の空気調和機の特徴 >
(1)
本実施形態の空気調和機 10では、第 1吸着熱交換器 3および第 2吸着熱交換器 5 が交互に凝縮器および蒸発器として機能する。そして、潜熱能力に直接影響する吸 着剤の温度が、給気 SAの温度や室内の空気温度よりも、凝縮器および蒸発器の冷 媒温度により追随することに着目して、空気調和機 10の能力制御 (圧縮機 7の容量 制御およびバッチ切換時間間隔の変更制御)における制御目標として、従来のように 再生空気温度などを用いる代わりに、ここでは蒸発器温度や凝縮器温度を用いて ヽ る。
[0059] このため、従来よりも適切な除加湿時の潜熱能力制御(除加湿水分量の制御)およ び除加湿時の顕潜熱処理量比の制御ができるようになって!/、る。
(2)
本実施形態の空気調和機 10では、第 1および第 2吸着熱交換器 3, 5が表面に吸 着剤を担持しており、吸着剤の温度は非常に強く冷媒温度に連動することになる。し たがって、蒸発器温度や凝縮器温度を制御目標として空気調和機 10の能力制御を 行うことは、非常に効果的になっている。
(3)
また、空気調和機 10では、凝縮器温度を第 1目標、蒸発器温度を第 2目標として能 力制御を行ったり、凝縮器温度や蒸発器温度を第 1目標、室内空気の湿度、給気 S Aの湿度、および給気 SAの温度のうち 1又は複数のパラメータを第 2目標として能力 制御を行ったりすることができ、凝縮器温度や蒸発器温度だけにより空気調和機 10 の能力制御を行う場合に較べて更に適切な能力制御が可能となる。
[0060] (4)
空気調和機 10では、蒸発器として働く吸着熱交換器 3, 5によって吸着剤が吸着動 作を行い、また凝縮器として働く吸着熱交換器 5, 3によって吸着剤が再生動作を行 う。そして、吸着剤の吸着動作と再生動作との切り換えの時間間隔 (バッチ切換時間 間隔)の変更制御が、インバータ圧縮機 7の容量制御とともに、制御部 2によって行わ れている。
バッチ切換時間間隔の変更をすると、空気調和機 10の潜熱処理能力と顕熱処理 能力との比である顕潜熱処理量比を変えることができる。一方、インバータ圧縮機 7 の容量制御を行うと、潜熱処理能力および顕熱処理能力の和である全熱処理能力 を増減することができる。すなわち、制御部 2は、潜熱処理能力、顕熱処理能力、お よび全熱処理能力を、それぞれ調整することができる。
[0061] そして、そのような調整機能を持つ制御部 2は、ユーザなどが入力部 2aにおいて入 力した負荷 (全熱負荷、潜熱負荷、あるいは顕熱負荷)が優先して処理されるように、 インバータ圧縮機 7の容量制御およびバッチ切換時間間隔の変更制御を行っている 。このような制御が為されるため、本空気調和機 10では、適切な能力制御をすること ができるとともに、ユーザに対して、そのユーザの好みに応じた空調環境を提供する ことができる。
具体的には、優先して処理すべき負荷が潜熱負荷である場合には、バッチ切換時 間間隔の変更制御による潜熱負荷の処理量の変更を、インバータ圧縮機 7の容量制 御による潜熱負荷の処理量の変更よりも優先させている。すなわち、ここでは、潜熱 負荷を優先して処理する場合に、まずバッチ切換時間間隔の変更制御を行って潜 熱負荷の処理量を変化させ、それでも足りないときに、インバータ圧縮機 7の容量制 御を行って潜熱負荷の処理量をさらに変化させている。このように、まずバッチ切換 時間間隔の変更制御を行うため、潜熱負荷の処理量を増加させる必要がある場合に も、インバータ圧縮機 7の容量を上げる制御によって消費電力量を大幅に増加させる ことなく潜熱負荷の処理量を増やすことができるようになつている。例えば、バッチ切 換時間間隔の変更制御によって潜熱負荷の処理量の顕熱負荷の処理量に対する 比を大きくすることで必要な潜熱負荷の処理量が確保できる場合には、インバータ圧 縮機 7の容量を上げる必要はな 、。
[0062] また、優先して処理すべき負荷が顕熱負荷である場合にも、バッチ切換時間間隔 の変更制御による顕熱負荷の処理量の変更を、インバータ圧縮機 7の容量制御によ る顕熱負荷の処理量の変更よりも優先させている。すなわち、ここでは、顕熱負荷を 優先して処理する場合に、まずバッチ切換時間間隔の変更制御を行って顕熱負荷 の処理量を変化させ、それでも足りないときに、インバータ圧縮機 7の容量制御を行 つて顕熱負荷の処理量をさらに変化させる。このように、まずバッチ切換時間間隔の 変更制御を行うため、顕熱負荷の処理量を増加させる必要がある場合にも、インバー タ圧縮機 7の容量を上げる制御によって消費電力量を大幅に増カロさせることなく顕熱 負荷の処理量を増やすことができるようになる。例えば、バッチ切換時間間隔の変更 制御によって顕熱負荷の処理量の潜熱負荷の処理量に対する比を大きくすることで 必要な顕熱負荷の処理量が確保できる場合には、インバータ圧縮機 7の容量を上げ る必要はない。
[0063] また、優先して処理すべき負荷が全熱負荷である場合には、まずバッチ切換時間 間隔の制御により顕潜熱処理量比を固定し、その後にインバータ圧縮機 7の容量制 御を行っている。これは、全熱負荷を優先させる場合、基本的には顕潜熱処理量比 を変える必要がな 、ため、顕潜熱処理量比をまず固定した上でインバータ圧縮機 7 の容量制御を行っているものである。ここでは、不要な顕潜熱処理量比の変化が抑 えられている。より具体的に説明すると、吸着剤の吸着動作と再生動作とを切り換え る方式の空気調和機 10において全熱負荷の中の顕潜熱負荷の比に合わせて顕潜 熱処理量比を調整していくことは、能力制御が徒に複雑ィ匕してしまうことにつながる 恐れが高い。しかし、ここでは、顕潜熱処理量比を固定してまず全熱負荷の処理量を 変化させて 、き、顕熱または潜熱の負荷と顕熱または潜熱の処理量とがある程度均 衡した時点から、残る顕熱負荷または潜熱負荷の処理量を顕潜熱処理量比の調整 によって変化させることができる。したがって、制御をシンプルィ匕することができている
[0064] なお、全熱負荷の中の顕潜熱負荷の比に合わせて顕潜熱処理量比を調整してい くことが能力制御の複雑ィ匕につながる理由は、次のとおりである。空気調和機 10では 、負荷を処理する室内の空気の温度 (顕熱)および湿度 (潜熱)を回収して利用する 方式を採っているため、処理する空気の状態の影響が直接的に顕熱処理量や潜熱 処理量に個別に現れる。したがって、空気調和機 10や他の空気調和機の運転により 顕潜熱処理量比が逐次変化して ヽき、それにつれて空気調和機 10の顕潜熱処理 量も逐次変化していくため、最初に顕潜熱処理量比を決めたとしても、処理する空気 の温湿度条件が変化すると必要な処理量も変化して、好ま U、顕潜熱処理量比が変 化していく。このように、顕潜熱処理量比の変更は、現時点における必要な潜熱、顕 熱の各処理量の比から調整して行うことが望ましぐインバータ圧縮機 7の容量制御 により全熱処理量を増減させている最中であって顕潜熱処理量も逐次変化している ときに行うことは、制御の複雑ィ匕につながり望ましくない。
[0065] <他の実施形態 >
以上、本発明の一実施形態について説明したが、本発明は実施形態に限定される ものではなぐ発明の要旨を逸脱しない範囲で種々の変更が可能である。
(1) 上記実施形態では、空気調和機 10の能力制御を行う際の制御目標として凝縮器 温度や蒸発器温度を用いているが、凝縮器圧力や蒸発器圧力を制御目標としても、 同様に従来よりも適切な空気調和機 10の能力制御ができる。
(2)
上記実施形態の構成に加え、図 12に示すように、吸着材を有さず顕熱処理を主と して行う顕熱熱交 と膨張弁 18とを設けて、顕熱処理能力を向上させてもよい 。このような構成の空気調和機であっても、吸着熱交換器 3, 5の吸着剤の温度が冷 媒温度に強く追随することに変わりはないので、凝縮器温度や蒸発器温度あるいは 凝縮器圧力や蒸発器圧力を制御目標として空気調和機の能力制御を適切に行うこ とがでさる。
[0066] (3)
上記実施形態では、吸着剤が第 1吸着熱交換器 3および第 2吸着熱交換器 5の表 面に担持されている力 本発明はこれに限定されるものではない。例えば、特開 200 4 69257号公報に記載されているような調湿装置 (空気調和機)に対して本発明を 適用することも可能である。
図 13 (A) , (B)に示す空気調和機 110では、吸着剤を有する調湿エレメント 181, 182力 吸着剤を再生させるための再生熱交^^ 105とは離れて配置されている。 調湿エレメント 181, 182は、長方形の平板状の平板部材と波形状の波板部材とを 交互に積層して構成され、調湿側通路と冷却側通路とが平板部材を挟んで交互に 区画形成されて構成されたものである。調湿側通路に設けられた波板部材の表面に は、無機多孔質材料と感温性有機系高分子材料からなる吸着剤が担持されて ヽる。
[0067] 空気調和機 110は、排気ファン 108aおよび給気ファン 108bを駆動させて第 1の調 湿エレメント 181で還気 RAを除湿するとともに第 2の調湿エレメント 182を外気 OAで 再生する第 1状態と、第 1の調湿エレメント 181を外気 OAで再生するとともに第 2の 調湿エレメント 182で還気 RAを除湿する第 2状態とを交互に行う。そして、空気調和 機 110は、調湿エレメント 181、 182で加湿された外気 OAを室内へ供給する。なお、 調湿エレメント 181, 182で除湿した外気 OAや還気 RAを給気 S Aとして室内に供給 して除湿運転を行うことも可能である力 ここでは加湿運転につ!、て説明する。 加湿運転時において、排気ファン 108aおよび給気ファン 108bを駆動すると、外気 OAがケーシング内に取り込まれるとともに、還気 RAがケーシング内に取り込まれる。 また、加湿運転時において、圧縮機 101により冷凍サイクルが生じる冷媒回路では、 再生熱交 105が凝縮器となり、熱交 107が蒸発器となる。
[0068] 加湿運転の第 1動作について、図 13 (A)を参照しながら説明する。この第 1動作で は、第 1の調湿エレメント 181についての吸着動作と、第 2の調湿エレメント 182につ いての再生動作とが行われる。つまり、第 1動作では、第 2の調湿エレメント 182で空 気が加湿され、第 1の調湿エレメント 181の吸着剤が水分を吸着する。ケーシングに 取り込まれた還気 RAは、第 1の調湿エレメント 181の吸着側通路へ流入する。この吸 着側通路を流れる間に、還気 RAに含まれる水蒸気 (水分)が吸着剤に吸着される。 このように減湿された還気 RAは、熱交 107を通過し、冷媒との熱交換によって 冷却される。その後、水分と熱を奪われた還気 RAは、排気 ΕΑとして室外へ排出され る。
一方、ケーシングに取り込まれた外気 OAは、第 1の調湿エレメント 181の冷却側通 路へ流入する。この冷却側通路を流れる間に、外気 OAは、吸着側通路で水分が吸 着剤に吸着される際に生じた吸着熱を吸熱する。吸着熱を奪った外気 OAは、再生 熱交換器 105を通過する。その際、再生熱交換器 105では、外気 OAが冷媒との熱 交換によって加熱される。
[0069] そして、第 1の調湿エレメント 181及び再生熱交換器 105で加熱された外気 OAは 、第 2の調湿エレメント 182の吸着側通路へ導入される。この吸着側通路では、外気 OAによって吸着剤が加熱され、感温性有機系高分子材料が膨潤相から収縮相へ 体積相転移を起こして、水蒸気が吸着剤から脱離する。つまり、第 2の調湿エレメント 182の再生が行われる。そして、吸着剤力も脱離した水蒸気が外気 OA中に放出さ れ、外気 OAが加湿される。第 2の調湿エレメント 182で加湿された外気 OAは、熱交 翻 106を通過する。ここでは、熱交^^ 106が休止しているので、外気 OAは加熱 も冷却もされない。もし、熱交^^ 106が機能していれば、外気 OAが加熱あるいは 冷却される。熱交翻106を出た外気 OAは、給気ファン 108bを通って室内へ給気 SAとして供給される。 [0070] 次に、加湿運転の第 2動作について、図 13 (B)を参照しながら説明する。この第 2 動作では、第 1動作時とは逆に、第 2の調湿エレメント 182についての吸着動作と、第 1の調湿エレメント 181についての再生動作とが行われる。つまり、この第 2動作では 、第 1の調湿エレメント 181で空気が加湿され、第 2の調湿エレメント 182の吸着剤が 水蒸気を吸着する。
ケーシングに取り込まれた還気 RAは、図 13 (B)に示す第 2の調湿エレメント 182の 吸着側通路へ流入する。この吸着側通路を流れる間に、還気 RAに含まれる水蒸気 が吸着剤に吸着される。このように減湿された還気 RAは、熱交 107を通過し、 冷媒との熱交換によって冷却される。その後、水分と熱を奪われた還気 RAは、排気 ΕΑとして室外へ排出される。
[0071] 一方、ケーシングに取り込まれた外気 OAは、第 2の調湿エレメント 182の冷却側通 路へ流入する。この冷却側通路を流れる間に、外気 OAは、吸着側通路で水蒸気が 吸着剤に吸着される際に生じた吸着熱を吸熱する。吸着熱を奪った外気 OAは、再 生熱交換器 105を通過する。その際、再生熱交換器 105では、外気 OAが冷媒との 熱交換によって加熱される。
第 2の調湿エレメント 182及び再生熱交換器 105で加熱された外気 OAは、第 1の 調湿エレメント 181の吸着側通路へ導入される。この吸着側通路では、外気 OAによ つて吸着剤が加熱され、感温性有機系高分子材料が膨潤相から収縮相へ体積相転 移を起こして、吸着剤から水蒸気が脱離する。つまり、第 1の調湿エレメント 181の再 生が行われる。そして、吸着剤から脱離した水蒸気が外気 OAに放出され、外気 OA が加湿される。第 1の調湿エレメント 181で加湿された外気 OAは、熱交^^ 106を 通過する。その際、熱交換器 106は休止しており、外気 OAは加熱も冷却もされない 。そして、加湿された外気 OAは、給気 SAとして室内へ供給される。
[0072] このような図 13 (A) , (B)に示す空気調和機 110においても、第 1動作と第 2動作と を所定の時間間隔で切り換えるため、凝縮器として機能する再生熱交 l05の凝 縮器温度や凝縮器圧力に基づ!/ヽて能力制御を行えば、給気 SAの温度などに基づ いて能力制御を行うよりも適切な制御が為されることになる。
(4) 図 14に示すような室外の熱源側熱交換器 211と室内の利用側熱交換器 212, 21 3, 214とから成る空気調和機 210においても、本発明を適用することが可能であり、 上記実施形態と同様の効果を得ることができる。
図 14に示す空気調和機 210では、利用側熱交換器として、吸着剤を有さず顕熱処 理を主として行う顕熱熱交 212と、吸着剤が表面に設けられた吸着熱交
3, 214を備えており、熱源側熱交翻として室外熱交翻211を備えている。圧縮 機 221は、その吐出側が第 1の四路切換弁 225の第 1のポート P1に、その吸入側が 第 1の四路切換弁 225の第 4のポート P4にそれぞれ接続されている。室外熱交換器 211は、その一端が第 1の四路切換弁 225の第 2のポート P2に、他端が第 2の四路 切換弁 226の第 1のポート P1にそれぞれ接続されている。顕熱熱交翻212は、そ の一端が第 1の四路切換弁 225の第 3のポート P3に、他端が第 2の四路切換弁 226 の第 4のポート P4にそれぞれ接続されている。また、第 2の四路切換弁 226の第 2の ポート P2から第 3のポート P3へ向力つて順に、第 1吸着熱交翻 213と膨張弁 223 と第 2吸着熱交 214とが配置されている。
[0073] 第 1の四路切換弁 225は、第 1のポート P1と第 2のポート P2が互いに連通して第 3 のポート P3と第 4のポート P4が互いに連通する第 1状態(図 14に示す状態)と、第 1 のポート P1と第 3のポート P3が互いに連通して第 2のポート P2と第 4のポート P4が互 いに連通する第 2状態とに切り換わる。一方、第 2の四路切換弁 226は、第 1のポート P1と第 2のポート P2が互いに連通して第 3のポート P3と第 4のポート P4が互いに連 通する第 1状態(図 14に示す状態)と、第 1のポート P1と第 3のポート P3が互いに連 通して第 2のポート P2と第 4のポート P4が互いに連通する第 2状態とに切り換わる。 図 14に示す空気調和機 210では、冷房除湿運転と暖房加湿運転とが行われるが 、ここでは冷房除湿運転を例にとって説明を行う。
[0074] 冷房除湿運転中には、第 1の四路切換弁 225が図 14に示す第 1状態に設定される とともに膨張弁 223の開度が適宜調節され、室外熱交 211が凝縮器となって顕 熱熱交換器 212が蒸発器となる。一方、第 1吸着熱交換器 213および第 2吸着熱交 換器 214については、第 1吸着熱交換器 213が凝縮器となって第 2吸着熱交換器 21 4が蒸発器となる第 1状態と、第 2吸着熱交換器 214が凝縮器となって第 1吸着熱交 213が蒸発器となる第 2状態とが、交互に繰り返される。
さらに、冷房除湿運転中には、室外熱交換器 211へ外気 OAが供給され、顕熱熱 交換器 212と第 1及び第 2吸着熱交換器 213、 214へは室内力もの還気 RAが供給 される。そして、顕熱熱交換器 212を通過した還気 RAが給気 SAとして室内へ連続 的に供給されるとともに、第 1吸着熱交 213を通過した還気 RAと第 2吸着熱交 214を通過した還気 RAとが、交互に給気 SAとして室内へ供給される。
[0075] 第 1状態では、第 1吸着熱交換器 213の吸着剤についての再生動作と、第 2吸着 熱交換器 214の吸着剤についての吸着動作とが並行して行われる。第 1状態では、 第 2の四路切換弁 226が、図 14に示す状態に設定される。この状態で、圧縮機 221 力も吐出された冷媒は、室外熱交 211と第 1吸着熱交 213を順に通過する 間に凝縮し、膨張弁 223で減圧され、その後、第 2吸着熱交翻 214と顕熱熱交換 器 212を順に通過する間に蒸発し、圧縮機 221へ吸入されて圧縮される。
この第 1状態において、室外熱交換器 211で冷媒から吸熱した外気 OAが排気 EA として室外へ排出され、顕熱熱交 212で冷却された室内からの還気 RAが給気 SAとして室内へ送り返される。第 1吸着熱交 213では、冷媒で加熱された吸着 剤から水分が脱離し、この脱離した水分が還気 RAに付与される。第 1吸着熱交換器 213から脱離した水分は、還気 RAとともに排気 EAとして室外へ排出される(図 14の 点線で示す還気 RAの流れを参照)。第 2吸着熱交換器 214では、室内からの還気 R A中の水分が吸着剤に吸着されて還気 RAが除湿され、その際に生じた吸着熱が冷 媒に吸熱される。第 2吸着熱交 214で除湿された還気 RAは、給気 SAとして室 内へ送り返される(図 14の点線で示す還気 RAの流れを参照)。
[0076] 一方、第 2状態では、第 1吸着熱交換器 213の吸着剤についての吸着動作と、第 2 吸着熱交 214の吸着剤についての再生動作とが並行して行われる。第 2状態で は、圧縮機 221から吐出された冷媒は、室外熱交翻 211と第 2吸着熱交翻 214 を順に通過する間に凝縮し、膨張弁 223で減圧され、その後、第 1吸着熱交
3と顕熱熱交 212を順に通過する間に蒸発し、圧縮機 221へ吸入されて圧縮さ れる。
この第 2状態では、第 1状態のときと同様に、室外熱交翻 211で冷媒カも吸熱し た外気 OA力排気 EAとして室外へ排出され、顕熱熱交 212で冷却された室内 力もの還気 RAが給気 SAとして室内へ送り返される。一方、第 1吸着熱交 213で は、室内からの還気 RA中の水分が吸着剤に吸着されて還気 RAが除湿され、その 際に生じた吸着熱が冷媒に吸熱される。第 1吸着熱交 213で除湿された室内か らの還気 RAは、給気 SAとして室内へ送り返される(図 14の 2点鎖線で示す還気 RA の流れを参照)。第 2吸着熱交換器 214では、冷媒で加熱された吸着剤から水分が 脱離し、この脱離した水分が還気 RAに付与される。第 2吸着熱交 214から脱離 した水分は、還気 RAとともに排気 EAとして室外へ排出される(図 14の 2点鎖線で示 す還気 RAの流れを参照)。
[0077] このような図 14に示す空気調和機 210においても、第 1状態と第 2状態とを所定の 時間間隔で切り換えるため、凝縮器や蒸発器として機能する第 1吸着熱交換器 213 および第 2吸着熱交換器 214の凝縮器温度や蒸発器温度などに基づいて能力制御 を行えば、給気 SAの温度などに基づ 、て能力制御を行うよりも適切な制御が為され ることになる。
(5)
図 15に示すような室外の熱源側熱交換器 222と室内の利用側熱交換器 224, 22 7とから成る空気調和機 220においても、本発明を適用することが可能であり、上記 実施形態と同様の効果を得ることができる。
図 15に示す空気調和機 220では、室外に熱源側熱交換器として室外熱交換器 22 2を備え、室内に、利用側熱交換器として、吸着剤を担持した吸着熱交換器 224と、 吸着剤を有さず顕熱処理を主として行う顕熱熱交換器 227とを備えている。
[0078] 空気調和機 220では、冷房除湿運転と暖房加湿運転とが行われるが、ここでは冷 房除湿運転を例にとって説明を行う。
冷房除湿運転中には、室外熱交換器 222が凝縮器となり顕熱熱交換器 227が蒸 発器となるように、四路切換弁 225が図 15に示す状態に設定される。そして、吸着熱 交 224が蒸発器となる吸着動作と、吸着熱交 224が凝縮器となる再生動作 と力 電磁弁 232bおよび膨張弁 229の制御によって、交互に繰り返される。さらに、 冷房除湿運転中には、室外熱交換器 222へ外気 OAが供給され、顕熱熱交換器 22 7および吸着熱交 224へ室内力もの還気 RAが供給される。そして、顕熱熱交換 器 227で冷却された還気 RAが室内へ連続的に供給される一方、吸着熱交^^ 224 で除湿された還気 RAは室内へ給気 SAとして間欠的に供給される。
[0079] 吸着動作中は、電磁弁 232bが開放され、膨張弁 229の開度が適宜調節される。こ の状態で、圧縮機 221から吐出された冷媒は、室外熱交換器 222で凝縮した後に膨 張弁 229で減圧され、その後、吸着熱交換器 224と顕熱熱交換器 227を順に通過 する間に蒸発し、圧縮機 221へ吸入されて圧縮される。
この吸着動作中において、室外熱交換器 222で冷媒から吸熱した外気 OAが室外 へ排気 EAとして排出され、顕熱熱交 227で冷却された室内からの還気 RAが室 内へ給気 SAとして送り返される。また、吸着熱交換器 224では、室内からの還気 RA 中の水分が吸着剤に吸着されて還気 RAが除湿され、その際に生じた吸着熱が冷媒 に吸熱される。吸着熱交 224で除湿された室内からの還気 RAは、給気 SAとし て室内へ送り返される。
[0080] 再生動作中は、電磁弁 232bが閉鎖され、膨張弁 229が全開となる。この状態で、 圧縮機 221から吐出された冷媒は、室外熱交換器 222と吸着熱交換器 224を順に 通過する間に凝縮し、その後、キヤビラリ一チューブ 232aで減圧されてカも顕熱熱 交翻227で蒸発し、圧縮機 221へ吸入されて圧縮される。
この再生動作中にぉ ヽて、室外熱交換器 222で冷媒から吸熱した外気 OAが室外 へ排気 EAとして排出され、顕熱熱交 227で冷却された室内からの還気 RAが室 内へ給気 SAとして送り返される。また、吸着熱交換器 224では、冷媒によって吸着 剤が加熱されて再生され、吸着剤から脱離した水分が室内からの還気 RAに付与さ れる。吸着熱交^^ 224から脱離した水分は、室内からの還気 RAとともに室外へ排 気 ΕΑとして排出される(図 15の 2点鎖線で示す還気 RAの流れを参照)。
[0081] このような図 15に示す空気調和機 220においても、吸着熱交換器 224の吸着動作 と再生動作とを所定の時間間隔で切り換えるため、凝縮器や蒸発器として機能する 吸着熱交翻 224の凝縮器温度や蒸発器温度などに基づいて能力制御を行えば、 給気 SAの温度などに基づいて能力制御を行うよりも適切な制御が為されることにな る。 (6)
上記実施形態では、ユーザやメンテナンスパーソンに入力を行わせるディップスィ ツチ等の入力部 2aを設け、その入力部 2aに入力された負荷 (潜熱負荷、顕熱負荷、 あるいは全熱負荷)が優先して処理されるように、制御部 2がインバータ圧縮機 7の容 量制御およびバッチ切換時間間隔の制御を行っている。この場合には、ユーザとし ては、選んだ (入力した)負荷が優先して処理されるようになり、より好みにあった空調 環境を得ることができるようになる。
[0082] このように、優先して処理すべき負荷を入力させるのではなぐ優先して処理すべき 負荷を自動的に制御部 2が決定するようにすることもできる。
例えば、制御部 2は、第 1差分、第 2差分、および第 3差分に基づいて、優先して処 理を行う負荷を決定することができる。第 1差分は、全熱負荷を処理する現在の空気 調和機 10の能力と、室内の全熱負荷の大きさとの差である。第 2差分は、潜熱負荷 を処理する現在の能力と、室内の潜熱負荷の大きさとの差である。第 3差分は、顕熱 負荷を処理する現在の能力と、室内の顕熱負荷の大きさとの差である。具体的には、 制御部 2は、第 1差分、第 2差分、および第 3差分のうち最も値が大きなものを選び、 それが第 1差分の場合には全熱負荷を優先して処理すべき負荷として決定し、それ が第 2差分の場合には潜熱負荷を優先して処理すべき負荷として決定し、それが第 3差分の場合には顕熱負荷を優先して処理すべき負荷として決定する。なお、各負 荷の大きさや各負荷を処理する現在の能力につ 、ては、各種空気温度ゃ冷媒状態 情報 (温度や圧力)などの入手データ力 制御部 2が判断することができる。
[0083] このように優先して処理すべき負荷を制御部 2にお 、て自動的に決定するようにす れば、全熱負荷、潜熱負荷、顕熱負荷の処理をバランス良く行うことができるようにな る。
(7)
上記実施形態では、優先して処理すべき負荷が潜熱負荷である場合に、制御部 2 は、バッチ切換時間間隔の変更制御による潜熱負荷の処理量の変更を、インバータ 圧縮機 7の容量制御による潜熱負荷の処理量の変更よりも優先させている。
このような能力制御に代えて、優先して処理すべき負荷が潜熱負荷である場合に、 インバータ圧縮機 7の容量制御による潜熱負荷の処理量の変更を、バッチ切換時間 間隔の変更制御による潜熱負荷の処理量の変更よりも優先させることも考えられる。 ここでは、潜熱負荷を優先して処理する場合に、まずインバータ圧縮機 7の容量制御 を行って潜熱負荷の処理量を変化させ、それでも足りないときに、ノ ツチ切換時間間 隔の変更制御を行って潜熱負荷の処理量をさらに変化させる。このように能力制御を 行えば、まずインバータ圧縮機 7の容量制御を行うため、潜熱負荷の処理量の変化 が比較的早く現れることになり、必要な潜熱負荷の処理が早く達成されるようになる。
[0084] (8)
上記実施形態では、優先して処理すべき負荷が顕熱負荷である場合に、制御部 2 は、バッチ切換時間間隔の変更制御による顕熱負荷の処理量の変更を、インバータ 圧縮機 7の容量制御による顕熱負荷の処理量の変更よりも優先させている。
このような能力制御に代えて、優先して処理すべき負荷が顕熱負荷である場合に、 インバータ圧縮機 7の容量制御による顕熱負荷の処理量の変更を、バッチ切換時間 間隔の変更制御による顕熱負荷の処理量の変更よりも優先させることも考えられる。 ここでは、顕熱負荷を優先して処理する場合に、まずインバータ圧縮機 7の容量制御 を行って顕熱負荷の処理量を変化させ、それでも足りないときに、ノ ツチ切換時間間 隔の変更制御を行って顕熱負荷の処理量をさらに変化させる。このように能力制御を 行えば、まずインバータ圧縮機 7の容量制御を行うため、顕熱負荷の処理量の変化 が比較的早く現れることになり、必要な顕熱負荷の処理が早く達成されるようになる。
[0085] (9)
上記実施形態では、優先して処理すべき負荷が全熱負荷である場合に、まずバッ チ切換時間間隔の制御により潜熱負荷の処理量と顕熱負荷の処理量との比である 顕潜熱処理量比を固定し、その後にインバータ圧縮機 7の容量制御を行って ヽる。 このような能力制御に代えて、優先して処理すべき負荷が全熱負荷である場合に、 まずインバータ圧縮機 7の容量制御を行わせることも考えられる。
全熱負荷を増減させるときにはインバータ圧縮機 7の容量を変えることが効果的で あることから、ここでは、全熱負荷を優先して処理しなければならないときに、バッチ 切換時間間隔の制御を行う前に、まずはインバータ圧縮機 7の容量制御を行わせて いる。これにより、いち早く全熱負荷の処理量が増減し、全熱負荷の変化に素早く対 応することがでさるよう〖こなる。
産業上の利用可能性
本発明によれば、吸着剤の吸着動作と再生動作との切り換えが行われる空気調和 機において、全熱負荷、潜熱負荷、および顕熱負荷のうち所定の負荷が優先して処 理されるように、圧縮機の容量制御および切換時間間隔の変更制御を行う。このため 、この空気調和機は、適切な能力制御をすることが容易であり、屋内の潜熱負荷およ び顕熱負荷を処理する空気調和機として有用である。

Claims

請求の範囲
[1] 圧縮機 (7, 221)を有する蒸気圧縮式の冷凍サイクルを利用して、屋内の潜熱負 荷および顕熱負荷を処理する空気調和機(10, 110, 210, 220)であって、 熱交^^ (3, 5, 105, 213, 214, 224)と、
蒸発器として働く前記熱交 によって吸熱される通過空気の水分を吸着する吸 着動作、および、凝縮器として働く前記熱交換器によって加熱される通過空気に対し て水分を脱離する再生動作、を行う吸着剤と、
前記吸着剤の前記吸着動作と前記再生動作とが所定の切換時間間隔で切り換わ るように制御する制御部(2)と、
を備え、
前記制御部は、前記潜熱負荷と前記顕熱負荷との和である全熱負荷、前記潜熱負 荷、および前記顕熱負荷のうち所定の負荷が優先して処理されるように、前記圧縮 機の容量制御および前記切換時間間隔の変更制御を行う、
空気調和機。
[2] 前記所定の負荷をユーザに選択させる入力部(2a)をさらに備えた、
請求項 1に記載の空気調和機。
[3] 前記制御部は、前記全熱負荷を処理する現在の能力と前記全熱負荷の大きさとの 差である第 1差分、前記潜熱負荷を処理する現在の能力と前記潜熱負荷の大きさと の差である第 2差分、および前記顕熱負荷を処理する現在の能力と前記顕熱負荷の 大きさとの差である第 3差分を求め、前記第 1、第 2、第 3差分に基づいて前記所定の 負荷を決定する、
請求項 1に記載の空気調和機。
[4] 前記制御部は、前記所定の負荷が前記潜熱負荷である場合に、前記圧縮機の容 量制御による前記潜熱負荷の処理量の変更を、前記切換時間間隔の変更制御によ る前記潜熱負荷の処理量の変更よりも優先させる、
請求項 1から 3のいずれかに記載の空気調和機。
[5] 前記制御部は、前記所定の負荷が前記潜熱負荷である場合に、前記切換時間間 隔の変更制御による前記潜熱負荷の処理量の変更を、前記圧縮機の容量制御によ る前記潜熱負荷の処理量の変更よりも優先させる、
請求項 1から 3のいずれかに記載の空気調和機。
[6] 前記制御部は、前記所定の負荷が前記顕熱負荷である場合に、前記圧縮機の容 量制御による前記顕熱負荷の処理量の変更を、前記切換時間間隔の変更制御によ る前記顕熱負荷の処理量の変更よりも優先させる、
請求項 1から 3のいずれかに記載の空気調和機。
[7] 前記制御部は、前記所定の負荷が前記顕熱負荷である場合に、前記切換時間間 隔の変更制御による前記顕熱負荷の処理量の変更を、前記圧縮機の容量制御によ る前記顕熱負荷の処理量の変更よりも優先させる、
請求項 1から 3のいずれかに記載の空気調和機。
[8] 前記制御部は、前記所定の負荷が前記全熱負荷である場合に、まず前記圧縮機 の容量制御を行う、
請求項 1から 3のいずれかに記載の空気調和機。
[9] 前記制御部は、前記所定の負荷が前記全熱負荷である場合に、まず前記切換時 間間隔の制御により前記潜熱負荷の処理量と前記顕熱負荷の処理量との比を固定 し、その後に前記圧縮機の容量制御を行う、
請求項 1から 3のいずれかに記載の空気調和機。
[10] 前記熱交換器として、表面に前記吸着剤が設けられた第 1吸着熱交換器 (3, 213) および第 2吸着熱交換器 (5, 214)を備え、
前記制御部は、前記第 1吸着熱交換器の前記吸着剤の前記吸着動作または前記 再生動作により除湿または加湿された空気を前記屋内に供給する第 1状態と、前記 第 2吸着熱交換器の前記吸着剤の前記吸着動作または前記再生動作により除湿ま たは加湿された空気を前記屋内に供給する第 2状態とを切り換える、
請求項 1から 9のいずれかに記載の空気調和機(10, 210)。
[11] 前記熱交翻を、利用側熱交翻(213, 214)として備え、
熱源側熱交 (211)をさらに備えた、
請求項 1から 10のいずれかに記載の空気調和機(210)。
[12] 前記制御部は、前記蒸発器の温度、前記蒸発器の圧力、前記凝縮器の温度、およ び前記凝縮器の圧力のうち少なくともいずれ力 1つに基づいて、前記圧縮機の容量 制御および前記切換時間間隔の変更制御を行う、
請求項 1から 11のいずれかに記載の空気調和機。
[13] 圧縮機(7, 221)および熱交翻(3, 5, 105, 213, 214, 224)を有する蒸気圧 縮式の冷凍サイクルを利用して、蒸発器として働く前記熱交 によって吸熱される 通過空気の水分を吸着する吸着動作および凝縮器として働く前記熱交換器によって 加熱される通過空気に対して水分を脱離する再生動作を行う吸着剤を使用して、屋 内の潜熱負荷および顕熱負荷を処理する空気調和機(10, 110, 210, 220)の制 御方法であって、
前記吸着剤の前記吸着動作と前記再生動作とが所定の切換時間間隔で切り換わ るように制御するとともに、
前記潜熱負荷と前記顕熱負荷との和である全熱負荷、前記潜熱負荷、および前記 顕熱負荷のうち所定の負荷が優先して処理されるように、前記圧縮機の容量制御お よび前記切換時間間隔の変更制御を行う、
空気調和機の制御方法。
[14] 圧縮機(7、 101、 221)を有する蒸気圧縮式の冷凍サイクルを利用して、屋内の潜 熱負荷および顕熱負荷を処理する空気調和機(10、 110、 220)であって、
熱交^^ (3、 5、 105、 213、 214、 224)と、
蒸発器として働く前記熱交 によって吸熱される通過空気の水分を吸着する吸 着動作、および、凝縮器として働く前記熱交換器によって加熱される通過空気に対し て水分を脱離する再生動作、を行う吸着剤と、
前記吸着剤の前記吸着動作と前記再生動作とが所定の切換時間間隔で切り換わ るように制御する制御部(2)と、
を備え、
前記制御部(2)は、前記蒸発器の温度、前記蒸発器の圧力、前記凝縮器の温度、 および前記凝縮器の圧力のうち少なくともいずれか 1つに基づいて、前記圧縮機(7 、 101、 221)の容量制御および Zまたは前記切換時間間隔の変更制御を行う、 空気調和機(10、 110、 220)。
[15] 前記熱交換器 (3、 5、 213、 214、 224)が、表面に前記吸着剤を担持している吸 着熱交換器である、
請求項 14に記載の空気調和機(10、 220)。
[16] 前記熱交換器 (213、 214、 224)を、利用側熱交換器として備え、
熱源側熱交 (211、 222)をさらに備えた、
請求項 14または 15に記載の空気調和機(220)。
[17] 前記制御部(2)は、さらに屋内の空気の湿度値に基づいて、前記圧縮機の容量制 御および Zまたは前記切換時間間隔の変更制御を行うことを特徴とする、 請求項 14から 16のいずれかに記載の空気調和機(10、 110、 220)。
[18] 前記制御部(2)は、さらに前記熱交 力 屋内に流れる空気の湿度値に基づい て、前記圧縮機の容量制御および Zまたは前記切換時間間隔の変更制御を行うこと を特徴とする、
請求項 14から 17のいずれかに記載の空気調和機。(10、 110、 220)
[19] 前記制御部(2)は、さらに前記熱交 力 屋内に流れる空気の温度値に基づい て、前記圧縮機の容量制御および Zまたは前記切換時間間隔の変更制御を行うこと を特徴とする、
請求項 14から 18のいずれかに記載の空気調和機(10、 110、 220)。
[20] 圧縮機(7、 101、 221)および熱交換器(3、 5、 105、 213、 214、 224)を有する蒸 気圧縮式の冷凍サイクルを利用して、蒸発器として働く前記熱交 によって吸熱さ れる通過空気の水分を吸着する吸着動作および凝縮器として働く前記熱交換器によ つて加熱される通過空気に対して水分を脱離する再生動作を行うことができる吸着 剤を使用して、屋内の潜熱負荷および顕熱負荷を処理する空気調和機(10、 110、 220)の制御方法であって、
前記吸着剤の前記吸着動作と前記再生動作とを所定の切換時間間隔で切り換え るように制御するとともに、
前記蒸発器の温度、前記蒸発器の圧力、前記凝縮器の温度、および前記凝縮器 の圧力のうち少なくともいずれ力 1つに基づいて、前記圧縮機の容量制御および Zま たは前記切換時間間隔の変更制御を行う、 ことを特徴とする空気調和機(10、 110、 220)の制御方法。
PCT/JP2005/005511 2004-03-31 2005-03-25 空気調和機および空気調和機の制御方法 WO2005098326A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05727006A EP1752716A4 (en) 2004-03-31 2005-03-25 AIR CONDITIONER AND ITS CONTROL METHOD
AU2005230518A AU2005230518B2 (en) 2004-03-31 2005-03-25 Air conditioner and method of controlling air conditioner
US10/593,441 US7810339B2 (en) 2004-03-31 2005-03-25 Air conditioner and method of controlling air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004104765A JP3712001B2 (ja) 2004-03-31 2004-03-31 空気調和機および空気調和機の制御方法
JP2004104762A JP2005291569A (ja) 2004-03-31 2004-03-31 空気調和機およびその制御方法
JP2004-104762 2004-03-31
JP2004-104765 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005098326A1 true WO2005098326A1 (ja) 2005-10-20

Family

ID=35125166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005511 WO2005098326A1 (ja) 2004-03-31 2005-03-25 空気調和機および空気調和機の制御方法

Country Status (5)

Country Link
US (1) US7810339B2 (ja)
EP (1) EP1752716A4 (ja)
KR (1) KR100781501B1 (ja)
AU (1) AU2005230518B2 (ja)
WO (1) WO2005098326A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057321A1 (ja) * 2007-10-31 2009-05-07 Daikin Industries, Ltd. 調湿装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712000B2 (ja) * 2004-03-31 2005-11-02 ダイキン工業株式会社 空気調和機およびその制御方法
US8347640B2 (en) * 2005-11-16 2013-01-08 Technologies Holdings Corp. Enhanced performance dehumidification apparatus, system and method
US8316660B2 (en) * 2005-11-16 2012-11-27 Technologies Holdings Corp. Defrost bypass dehumidifier
JP4321650B2 (ja) * 2007-12-07 2009-08-26 ダイキン工業株式会社 調湿装置
US8051670B2 (en) * 2008-05-09 2011-11-08 Thermo King Corporation HVAC management system for a vehicle
JP4502065B1 (ja) * 2009-01-30 2010-07-14 ダイキン工業株式会社 ドレンレス空気調和装置
US8123571B2 (en) * 2009-05-21 2012-02-28 Lennox Industries Inc. Air conditioning wiring system
JP5228023B2 (ja) * 2010-10-29 2013-07-03 三菱電機株式会社 冷凍サイクル装置
WO2013061377A1 (ja) 2011-10-28 2013-05-02 三菱電機株式会社 冷凍空調装置及び調湿装置
US9285161B2 (en) * 2012-02-21 2016-03-15 Whirlpool Corporation Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods
US9618246B2 (en) 2012-02-21 2017-04-11 Whirlpool Corporation Refrigeration arrangement and methods for reducing charge migration
US9696077B2 (en) 2012-02-21 2017-07-04 Whirlpool Corporation Dual capillary tube / heat exchanger in combination with cycle priming for reducing charge migration
JPWO2014024332A1 (ja) * 2012-08-05 2016-07-21 株式会社横浜熱利用技術研究所 乗物用除湿装置
US20140260380A1 (en) * 2013-03-15 2014-09-18 Energy Recovery Systems Inc. Compressor control for heat transfer system
US11624544B2 (en) * 2013-04-24 2023-04-11 Mitsubishi Electric Corporation Dehumidifier
WO2014174623A1 (ja) * 2013-04-24 2014-10-30 三菱電機株式会社 除湿装置
KR102243384B1 (ko) * 2014-09-12 2021-04-22 엘지전자 주식회사 제습기의 제어 방법
US10962254B2 (en) * 2015-08-31 2021-03-30 Mitsubishi Electric Corporation Ventilation device
CN106671728A (zh) * 2015-11-06 2017-05-17 福特环球技术公司 空调系统及其控制方法
WO2018092357A1 (ja) * 2016-11-16 2018-05-24 三菱電機株式会社 空気調和制御装置及び空気調和制御方法
KR101973648B1 (ko) 2017-08-07 2019-04-29 엘지전자 주식회사 환기장치의 제어방법
KR101973646B1 (ko) * 2017-08-07 2019-04-29 엘지전자 주식회사 공기조화장치 및 그 제어방법
US11892192B1 (en) 2019-08-22 2024-02-06 Transaera, Inc. Air conditioning system with multiple energy storage sub-systems
US11874018B1 (en) 2020-11-04 2024-01-16 Transaera, Inc. Cooling and dehumidifcation system
US20220373200A1 (en) * 2021-05-04 2022-11-24 Transaera, Inc. Air conditioning system and control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129639A (ja) * 1985-11-29 1987-06-11 Toshiba Corp 空気調和機
JPH08178399A (ja) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd 除加湿装置
JPH09318128A (ja) 1996-05-24 1997-12-12 Ebara Corp 空調システム
JPH109633A (ja) 1996-06-20 1998-01-16 Ebara Corp 空調システム
JPH1054586A (ja) 1996-08-08 1998-02-24 Ebara Corp 空調システム
JP2000314540A (ja) * 1999-04-30 2000-11-14 Daikin Ind Ltd 空気調和装置
JP2003161465A (ja) 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置
JP2004060954A (ja) 2002-07-26 2004-02-26 Daikin Ind Ltd 調湿装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022245A (ja) * 2000-07-13 2002-01-23 Daikin Ind Ltd 空調システム
JP3709815B2 (ja) 2001-07-18 2005-10-26 ダイキン工業株式会社 空気調和装置
EP1739366B1 (en) * 2004-03-31 2017-07-05 Daikin Industries, Ltd. Air conditioning system
JP3709482B2 (ja) * 2004-03-31 2005-10-26 ダイキン工業株式会社 空気調和システム
JP3852014B1 (ja) * 2005-05-24 2006-11-29 ダイキン工業株式会社 空調システム
JP4052319B2 (ja) * 2005-05-24 2008-02-27 ダイキン工業株式会社 空調システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129639A (ja) * 1985-11-29 1987-06-11 Toshiba Corp 空気調和機
US4744223A (en) 1985-11-29 1988-05-17 Kabushiki Kaisha Toshiba Air conditioning apparatus
JPH08178399A (ja) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd 除加湿装置
JPH09318128A (ja) 1996-05-24 1997-12-12 Ebara Corp 空調システム
JPH109633A (ja) 1996-06-20 1998-01-16 Ebara Corp 空調システム
JPH1054586A (ja) 1996-08-08 1998-02-24 Ebara Corp 空調システム
JP2000314540A (ja) * 1999-04-30 2000-11-14 Daikin Ind Ltd 空気調和装置
JP2003161465A (ja) 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置
JP2004060954A (ja) 2002-07-26 2004-02-26 Daikin Ind Ltd 調湿装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1752716A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057321A1 (ja) * 2007-10-31 2009-05-07 Daikin Industries, Ltd. 調湿装置
JP2009109091A (ja) * 2007-10-31 2009-05-21 Daikin Ind Ltd 調湿装置
AU2008320210B2 (en) * 2007-10-31 2011-05-12 Daikin Industries, Ltd. Humidity control apparatus

Also Published As

Publication number Publication date
EP1752716A1 (en) 2007-02-14
AU2005230518B2 (en) 2008-06-26
KR20060131825A (ko) 2006-12-20
US20070193287A1 (en) 2007-08-23
KR100781501B1 (ko) 2007-11-30
US7810339B2 (en) 2010-10-12
EP1752716A4 (en) 2009-08-26
AU2005230518A1 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
WO2005098326A1 (ja) 空気調和機および空気調和機の制御方法
EP1757872B1 (en) Air conditioner and method of controlling the same
JP3624910B2 (ja) 調湿装置
JP3596549B2 (ja) 調湿装置
JP5885781B2 (ja) 除湿装置および除湿システム
US20230022397A1 (en) Air quality adjustment system
JP3992051B2 (ja) 空調システム
JP2005164165A (ja) 空気調和装置
JP2005291569A (ja) 空気調和機およびその制御方法
WO2005095865A1 (ja) 空気調和機およびその制御方法
WO2007004559A1 (ja) 調湿装置
WO2005103577A1 (ja) 調湿装置
WO2008015981A1 (fr) Appareil de climatisation
WO2006103968A1 (ja) 調湿装置
JP3596547B2 (ja) 調湿装置
JP3712001B2 (ja) 空気調和機および空気調和機の制御方法
JP2003232538A (ja) 調湿装置
JP4179052B2 (ja) 調湿装置
JP2005164220A (ja) 空気調和装置
JP4457653B2 (ja) 調湿装置
JP2004353889A (ja) 調湿装置
JP4273829B2 (ja) 調湿装置
JP2006349342A (ja) 熱交換器
JP4529530B2 (ja) 調湿装置
JP2005283054A (ja) 熱交換器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067015287

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580007743.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10593441

Country of ref document: US

Ref document number: 2007193287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005230518

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005727006

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005230518

Country of ref document: AU

Date of ref document: 20050325

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005230518

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020067015287

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005727006

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10593441

Country of ref document: US