WO2005095865A1 - 空気調和機およびその制御方法 - Google Patents

空気調和機およびその制御方法 Download PDF

Info

Publication number
WO2005095865A1
WO2005095865A1 PCT/JP2005/005318 JP2005005318W WO2005095865A1 WO 2005095865 A1 WO2005095865 A1 WO 2005095865A1 JP 2005005318 W JP2005005318 W JP 2005005318W WO 2005095865 A1 WO2005095865 A1 WO 2005095865A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
drain water
air conditioner
heat exchanger
heat
Prior art date
Application number
PCT/JP2005/005318
Other languages
English (en)
French (fr)
Inventor
Satoshi Ishida
Nobuki Matsui
Tomohiro Yabu
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2005095865A1 publication Critical patent/WO2005095865A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/30Condensation of water from cooled air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • Air conditioner and control method thereof Air conditioner and control method thereof
  • the present invention relates to an air conditioner provided with heat exchange for causing heat exchange between air and a refrigerant, and a control method thereof.
  • an air conditioner provided with a heat exchanger for processing a sensible heat load and a latent heat load existing in an indoor space in order to keep the indoor space in a comfortable environment.
  • the temperature of the heat exchanger functioning as an evaporator (the temperature of the refrigerant) is lowered to the dew point temperature of the air passing through it, and the heat exchanger is passed through. At this time, the moisture in the air is removed by dew condensation, and a latent heat treatment is performed (see Patent Document 1).
  • drain water generated in the heat exchanger as described above is passed outdoors through a drain pipe provided to the indoor power of the air conditioner and outdoors. Discharging. As a result, it is possible to prevent a large amount of drain water generated in the indoor unit of the air conditioner from overflowing into the indoor unit and causing problems such as dripping into the room, and to discharge the water to the outside.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-13756 (published on January 18, 2002)
  • Patent Document 2 JP-A-10-196995 (published on July 31, 1998)
  • An object of the present invention is to provide an air conditioner capable of suppressing generation of drain water on the indoor unit side of a desiccant type air conditioner and a control method thereof.
  • An air conditioner according to a first aspect of the present invention is an air conditioner that processes a sensible heat load and a latent heat load in an indoor space by performing a vapor compression type refrigeration cycle operation. It is provided with an exchange, a drain water recognition unit, and a control unit. The adsorbent adsorbs moisture in the air.
  • an adsorption operation that functions as a refrigerant evaporator in a refrigeration cycle to adsorb moisture to the adsorbent and a regeneration operation that functions as a condenser to desorb water from the adsorbent are performed.
  • the drain water recognition unit predicts or detects the generation of drain water in the heat exchanger.
  • the control unit performs the drying operation for suppressing the generation of the drain water based on the prediction or the detection result in the drain water recognition unit.
  • the drain water recognition unit predicts or detects the generation of drain water in an air conditioner, for example, a heat exchanger that performs an adsorption operation as an evaporator, for example, in an air conditioner. Then, the controller performs the drying operation.
  • an air conditioner for example, a heat exchanger that performs an adsorption operation as an evaporator, for example, in an air conditioner. Then, the controller performs the drying operation.
  • drain water has been generated during heat exchange ⁇ , which becomes an evaporator and performs adsorption operation, or if it is detected that drain water has actually been generated, a drying operation is performed and air conditioning is performed.
  • An environment in which drain water is unlikely to be generated inside the machine can be formed. Accordingly, it is possible to prevent or suppress the generation of drain water inside the air conditioner.
  • drain water pipe can be replaced with a pipe having a diameter smaller than the conventional pipe diameter.
  • An air conditioner according to a second invention is the air conditioner according to the first invention, wherein the drain water recognition unit is attached to a drain pan disposed below the heat exchanger. It has a water level sensor.
  • the drain water recognition unit is provided with a water level sensor that detects the generation of drain water in a drain pan in which drain water generated when the heat exchanger functions as an evaporator is accumulated!
  • a water level sensor that detects the generation of drain water in a drain pan in which drain water generated when the heat exchanger functions as an evaporator is accumulated!
  • the drain water recognition unit includes at least one of a temperature and a humidity of the air passing through the heat exchanger functioning as an evaporator.
  • the drain water recognition unit includes a sensor that functions as an evaporator and detects the temperature, Z, or humidity of the air that has passed through the heat exchange side that has performed the adsorption operation.
  • An air conditioner according to a fourth invention is the air conditioner according to the first invention, wherein the drain water recognition unit has temperature sensors provided at an upper portion and a lower portion of the heat exchanger, respectively. ing.
  • the drain water recognizing unit includes, as means for detecting the generation of drain water, temperature sensors provided at the upper and lower portions of the heat exchanger, respectively.
  • the heat exchanger performs a regeneration operation as a condenser.
  • a temperature sensing element is provided between the upper and lower parts of the heat exchanger.
  • An air conditioner according to a fifth invention is the air conditioner according to any one of the first to fourth inventions, wherein the air conditioner is a compressor that pressurizes a refrigerant flowing in a refrigeration cycle.
  • the control unit also performs the drying operation while suppressing the capacity of the compressor.
  • the control unit adjusts the capacity of the compressor that constitutes the refrigeration cycle, and adjusts the evaporation temperature of the refrigerant flowing through the refrigeration cycle. Raise the dew point temperature of the air in the indoor space.
  • the air conditioner according to the sixth invention is the air conditioner according to any one of the first to fourth inventions.
  • the control unit performs the operation while alternately switching the regeneration operation and the adsorption operation in the heat exchange every time a predetermined batch switching time elapses, and increases the notch switching time. To perform drying operation.
  • the control unit makes the batch switching time longer than the operation state at the time of detection.
  • the amount of sensible heat contained in the air that has passed through the heat exchanger decreases, leaving a large sensible heat load on the air and evaporating the drain water. It can be in an easy state.
  • the refrigerant flow switching time becomes longer, the heat of condensation increases, and the drain water can be easily evaporated.
  • the generation of drain water can be effectively suppressed.
  • An air conditioner according to a seventh invention is the air conditioner according to any one of the first to fourth aspects, wherein the control unit performs a regeneration operation and an adsorption operation in the heat exchange in a predetermined manner. The operation is performed while switching alternately each time the batch switching time elapses. Then, the drying operation is performed with the batch switching time shortened.
  • the control unit sets the batch switching time shorter than the operation state at the time of detection.
  • the switching between the adsorption operation and the regeneration operation is accelerated, and the state in which the adsorbent always maintains a high adsorption force can be maintained.
  • the heat exchanger functioning as an evaporator and a condenser is switched before the temperature rises and falls sufficiently, so that the sensible heat treatment capacity decreases. As a result, a drying operation for efficiently processing the latent heat load can be performed.
  • An air conditioner according to an eighth invention is the air conditioner according to any one of the first to fourth inventions, wherein the control unit is configured to process the latent heat load on the air taken in from the indoor space.
  • the drying operation is performed by switching to a circulation operation in which a latent heat load is supplied to the air taken in from the outside and discharged to the outside.
  • the control unit switches the air flow path to perform a circulating operation, and releases the latent heat load to the outside air.
  • An air conditioner according to a ninth invention is the air conditioner according to any one of the first to fourth inventions, further comprising a heat source disposed near the heat exchanger ⁇ , The control unit gives sensible heat to the heat source power drain water when the drain water recognition unit predicts or detects the occurrence of drain water.
  • the drain water is heated by a heat source such as an electric heater arranged near the heat exchanger.
  • the drain water generated in the heat exchange can be evaporated to prevent the drain water from accumulating in the air conditioner.
  • An air conditioner according to a tenth invention is the air conditioner according to any one of the first to fourth inventions, wherein the control unit performs a regeneration operation and an adsorption operation in heat exchange. The operation is performed while alternately switching the air conditioner every time a predetermined notch switching time elapses, and a refrigerant flow switching unit that switches the refrigerant flow when the batch switching time elapses, and an air that switches the air flow when the batch switching time elapses. And a flow path switching unit for performing the drying operation by switching the flow path of the coolant in the refrigerant flow switching unit earlier than the timing of switching the air flow path in the air flow switching unit.
  • the control unit sets the switching timing of the refrigerant flow path earlier than the switching timing of the air flow path. Therefore, since low-humidity air can be quickly sent to the heat exchanger functioning as an evaporator for generating drain water, the subsequent generation of drain water can be suppressed.
  • the heat exchange on the side that functions as a condenser the time during which it functions as a condenser does not change, so that the heat exchange can be dried.
  • a control method for an air conditioner processes a sensible heat load and a latent heat load in an indoor space and adsorbs moisture in the air by performing a vapor compression refrigeration cycle operation.
  • the heat exchange between the adsorbent and the adsorbent which acts as a refrigerant evaporator in the refrigeration cycle and adsorbs moisture to the adsorbent, and the adsorbent acts as a condenser to regenerate the adsorbent and removes moisture, ⁇
  • This is a method for controlling an air conditioner that includes a drain water recognition unit that predicts or detects the generation of drain water in the aircraft. And the original According to the control method of the air conditioner of Ming, the predicted value in the drain water recognition unit is based on the detection result.
  • the control unit performs the drying operation. I do.
  • the drying operation is performed by predicting that drain water is generated in heat exchange ⁇ performing an adsorption operation as an evaporator, or detecting that drain water is actually generated, An environment in which drain water is unlikely to be generated inside the air conditioner can be formed. Accordingly, it is possible to prevent or suppress the generation of drain water inside the air conditioner.
  • drain water pipe can be replaced with a pipe having a diameter smaller than the conventional pipe diameter.
  • FIG. 1 is a plan view showing a configuration of an air conditioner according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG. 1, showing the internal structure of the casing.
  • FIG. 3 is a cross-sectional view taken along the line II-II of FIG. 1, showing the internal structure of the casing.
  • FIG. 4 is a perspective view showing a heat exchanger included in the air conditioner of FIG. 1.
  • FIG. 5 is a circuit diagram showing a refrigerant circuit provided in the air conditioner according to one embodiment of the present invention.
  • FIGS. 6 (a) and (b) are circuit diagrams showing control states of a refrigerant circuit provided in the air conditioner of FIG. 1.
  • FIG. 7 is a plan view showing the flow of air in the air conditioner of FIG. 1.
  • FIG. 8 is a plan view showing the flow of air in the air conditioner of FIG. 1.
  • FIG. 9 is a plan view showing the flow of air in the air conditioner of FIG. 1.
  • FIG. 10 is a plan view showing the flow of air in the air conditioner of FIG. 1.
  • FIG. 11 is a block diagram showing components connected to a control unit included in the air conditioner in FIG. 1.
  • FIG. 12 is a flowchart showing an example of a drain water recognition unit provided in the air conditioner of FIG. 1.
  • FIG. 13 is a flowchart illustrating another example of the drain water recognition unit included in the air conditioner of FIG. 1
  • FIG. 14 is a flowchart showing another example of the drying operation control in the air conditioner of FIG. 1.
  • FIG. 15 is a side view showing a heat source provided in an air conditioner according to still another embodiment of the present invention.
  • FIG. 16 is a side view showing an example of a drain water recognition unit provided in an air conditioner according to still another embodiment of the present invention.
  • FIG. 17 is a side view showing another example of a drain water recognition unit provided in an air conditioner according to still another embodiment of the present invention.
  • Thermistor (Drain water recognition unit, sensor)
  • Water level sensor Drain water recognition unit
  • Thermistor drain water recognition unit, temperature sensor
  • Heater heat source
  • the air conditioner 10 of the present embodiment is a desiccant type external conditioner in which an adsorbent such as silica gel is carried on the surface of a heat exchanger, and performs cooling / dehumidifying operation or heating of air supplied to the indoor space. Perform humidification operation.
  • the air conditioner 10 has a first heat exchange (heat exchange) 3, a second heat exchange (heat exchange) 5, and thermistors 3a and 5a (see Fig. 5).
  • Control humidity sensor (drain water recognition section) 3b, 5b (see Fig. 5), temperature / humidity sensor (drain water recognition section) 4 (see Fig. 5), blower fans 77, 79, compressor 7, casing 17, control
  • the refrigerant circuit 1 includes a portion 80 (see FIG. 11) and the like, and forms a refrigerant circuit 1 described later.
  • the first heat exchanger 3 and the second heat exchanger 5 are cross-fin type fin-and-tube heat exchangers, and are formed in a rectangular plate shape. It has a number of fins 13 made of aluminum and a copper heat transfer tube 15 penetrating the fins 13. An adsorbent for adsorbing moisture contained in the air passing through the first and second heat exchangers 5 is carried on the outer surfaces of the fins 13 and the heat transfer tubes 15 by dip molding (immersion molding) or the like.
  • the first and second heat exchangers 3 and 5 are divided into a first state in which the first heat exchanger 3 functions as a condenser and a second state of the heat exchanger 5 as an evaporator.
  • a so-called batch-type control is performed in which the control unit 80, which will be described later, alternately switches between the evaporator and the second state in which the second heat exchanger 5 functions as a condenser.
  • the adsorbent regenerates an operation of desorbing moisture from the adsorbent
  • the second heat exchange 5 functions as an evaporator
  • An adsorption operation of adsorbing moisture to the adsorbent is performed.
  • the first heat exchanger 3 functions as an evaporator
  • An adsorption operation for adsorbing moisture to the adsorbent, and a regenerating operation of the adsorbent for desorbing moisture from the adsorbent when the second heat exchanger 5 functions as a condenser are performed.
  • the adsorption operation and the regeneration operation are alternately repeated, and the air supplied to the indoor and outdoor through each heat exchange ⁇ 3, 5
  • the adsorption and release (desorption) of water by the adsorbent can be performed continuously. Therefore, various operations can be stably performed while maintaining the dehumidifying performance or the humidifying performance.
  • the first heat exchanger 3 and the second heat exchanger 5 exchange heat with the refrigerant flowing through the heat exchange 5 when functioning as an evaporator in, for example, a cooling and dehumidifying operation.
  • the sensible heat load is processed by exchanging heat with the passing air.
  • the latent heat treatment is performed by absorbing moisture contained in the air passing through the heat exchangers 3 and 5 by the adsorbent carried on the surface of the heat exchanger 5.
  • the adsorption operation and the regeneration operation are performed alternately using the two heat exchanges 5, so that the adsorption operation by the adsorbent is performed in a stable state without reducing the adsorption power. Both heat treatment and latent heat treatment can be performed.
  • the thermistor 3a is attached to the first heat exchanger 3, and in the first state in which the first heat exchanger 3 functions as a condenser and the second state in which it functions as an evaporator, the first heat exchanger 3 Measure the surface temperature (coolant temperature) of 3.
  • the humidity sensor 3b is provided before or after passing through the first heat exchanger 3 in accordance with the switching of the air flow path in the air flow path switching mechanism (air flow switching section) 91 described later. Measure the air humidity.
  • the temperature and humidity sensor 4 measures the temperature and humidity of air before or after passing through the heat exchangers 3 and 5.
  • the thermistor 5a is attached to the second heat exchanger 5, and in the first state in which the second heat exchanger 5 functions as an evaporator and the second state in which it functions as a condenser, the second heat exchanger 5 Measure the surface temperature (coolant temperature) of 5.
  • the humidity sensor 5b measures the humidity of the air before or after passing through the second heat exchanger 5 according to the switching of the air channel in the air channel switching mechanism 91.
  • control unit 80 obtains the humidity measurement results of the temperature and humidity sensor 4 and the humidity sensors 3b and 5b.
  • the generation of drain water is predicted based on
  • the first fan 79 is attached corresponding to the position of the first outlet 23, and sends out the air with the internal force of the casing 17 also directed outward.
  • the second fan 77 is attached corresponding to the position of the second outlet 25, and sends out the air with the internal force of the casing 17 also directed outward. Then, the first and second fans 77 and 79 flow through the first air inlet 19, the second air inlet 21, the first air outlet 23, and the second air outlet 25, which will be described later, through the air flow in the air conditioner 10. Form a road.
  • the casing 17 is a box having a substantially rectangular parallelepiped shape, and houses a refrigerant circuit 1 described later.
  • the left side plate 17a of the casing 17 is formed with a first suction port 19 for taking in the outdoor air OA and a second suction port 21 for taking in the room air RA as return air.
  • a first outlet 23 for discharging the exhaust air EA to the outside and a second outlet 25 for supplying the conditioned air SA to the room are formed in the right side plate 17b of the casing 17.
  • a partition plate 27 is provided inside the casing 17 as a partition member for partitioning the inside of the casing 17.
  • the casing 17 has an air chamber 29a and an equipment chamber 29b formed by the partition plate 27.
  • the partition plate 27 is provided from the front plate 17c, which is the lower end of the casing 17, to the rear plate 17d, which is the upper end, and is disposed slightly to the right of the center of the casing 17. Further, the partition plate 27 is provided in the vertical direction which is the thickness direction of the casing 17, and as shown in FIGS. 2 and 3, the upper plate 17e which is the upper end of the casing 17 and the lower plate 17f which is the lower end thereof. Is provided.
  • the air chamber 29a is provided with a first end face plate 33, a second end face plate 31, and a central partition plate 67 as partition members.
  • the first end plate 33 and the second end plate 31 are provided from the left side plate 17a of the casing 17 to the partition plate 27, as shown in FIG.
  • the first end plate 33 is disposed slightly above the center of the casing 17 as shown in FIG. 1, and the second end plate 31 is slightly below the center of the casing 17 as shown in FIG. Is located on the side.
  • the first end face plate 33 and the second end face plate 31 are provided from the upper surface plate 17e to the lower surface plate 17f of the casing 17, as shown in FIGS.
  • the partition plate 67 is provided from the first end plate 33 to the second end plate 31 as shown in FIG. [0022]
  • the equipment room 29b houses the compressor 7 and the like of the members constituting the refrigerant circuit 1 excluding the first and second heat exchanges 3, 5 and the first fan 79 and the second fan 79.
  • the fan 77 is
  • the casing 17 includes, in the air chamber 29a, a first heat exchange chamber 69 formed by the first end face plate 33, the second end face plate 31, the partition plate 67, and the partition plate 27, the first end face plate 33, and the second end face plate. It has a second heat exchange chamber 73 formed by the second end plate 31, the partition plate 67, and the left side plate 17a.
  • the first heat exchanger 3 is arranged in the first heat exchange chamber 69
  • the second heat exchanger 5 is arranged in the second heat exchange chamber 73.
  • a horizontal plate 61 as a partition member is provided between the first end face plate 33 and the back plate 17d, and a first inflow channel 63 and a first outflow channel 65 are formed.
  • a horizontal plate 55 as a partition member is provided between the second end face plate 31 and the front plate 17c to form a second inflow channel 57 and a second outflow channel 59.
  • the horizontal plates 61 and 55 partition the internal space of the casing 17, and as shown in FIG. 2, a first inflow channel 63 is formed on the upper surface side, and a first outflow channel 65 is formed on the lower surface side.
  • the second inflow path 57 is formed on the upper surface side
  • the second outflow path 59 is formed on the lower surface side.
  • the first inflow channel 63 and the first outflow channel 65 are formed along one end face in the thickness direction where one surface of each of the first heat exchange chamber 69 and the second heat exchange chamber 73 is continuous.
  • the heat exchange chamber 69 and the second heat exchange chamber 73 are arranged so as to overlap in the thickness direction.
  • the second inflow path 57 and the second outflow path 59 are formed along an opposing surface opposing one end surface at an end surface where one surface of each of the first heat exchange chamber 69 and the second heat exchange chamber 73 is continuous,
  • the first heat exchange chamber 69 and the second heat exchange chamber 73 are arranged so as to overlap in the thickness direction.
  • the first inflow channel 63 and the first outflow channel 65 and the second inflow channel 57 and the second outflow channel 59 are vertically symmetrically arranged as shown in FIG. 1, that is, the first heat exchange chamber 69 and the second (2) They are arranged symmetrically with respect to the center line that crosses the heat exchange room 73!
  • first inflow path 63 communicates with the first suction port 19, and the first outflow path 65 communicates with the first outlet 23 via the first fan 79.
  • second inflow path 57 communicates with the second suction port 21, and the second outflow path 59 communicates with the second outlet 25 via the second fan 77.
  • the first end face plate 33 has four openings 33a-33d as shown in FIG. each The openings 33a-33d are provided with a first dambar 47, a second damno 48, a third dambar 49, and a fourth dambar 50 (air flow switching unit).
  • the four openings 33a-33d are arranged close to each other in the row and column direction, that is, two openings are arranged vertically, horizontally and vertically, and the first opening 33a and the third opening 33c are connected to the first heat
  • the second opening 33b and the fourth opening 33d are formed inside the exchange chamber 69, and are formed inside the second heat exchange chamber 73.
  • the first opening 33a allows the first inflow channel 63 to communicate with the first heat exchange chamber 69
  • the third opening 33c allows the first outflow channel 65 to communicate with the first heat exchange chamber 69
  • the second opening 33b allows the first inflow path 63 to communicate with the second heat exchange chamber 73
  • the fourth opening 33d allows the first outflow path 65 to communicate with the second heat exchange chamber 73.
  • the second end face plate 31 is formed with four openings 31a-31d.
  • the openings 31a to 31d are provided with fifth dampers 35, sixth dampers 36, seventh dampers 37, and eighth dampers 38 (air flow switching units).
  • the four openings 31a to 31d are arranged close to each other in the matrix direction. In other words, the four openings 31a-31d are arranged in a grid shape in two at the top, bottom, left and right.
  • the fifth opening 31a and the seventh opening 31c are formed inside the first heat exchange chamber 69
  • the sixth opening 31b and the eighth opening 31d are formed inside the second heat exchange chamber 73. Has been established.
  • the fifth opening 31a allows the second inflow path 57 to communicate with the first heat exchange chamber 69
  • the seventh opening 31c allows the second outflow path 59 to communicate with the first heat exchange chamber 69
  • the sixth opening 31b allows the second inflow path 57 to communicate with the second heat exchange chamber 73
  • the eighth opening 31d allows the second outflow path 59 to communicate with the second heat exchange chamber 73.
  • the first and eighth dampers 47-50 and 35-38 are not shown to open and close the openings 33a-33d and the openings 31a-31d. Section 91), and the air flow path is changed using the opening / closing means when switching between the first state and the second state.
  • the air conditioner 10 of the present embodiment includes a control unit 80 shown in FIG. 11 inside. Then, the control unit 80 controls so that the dehumidifying operation and the humidifying operation can be switched. As shown in FIG. 11, the control unit 80 includes a temperature / humidity sensor 4, humidity sensors 3b and 5b, a water level sensor (drain water recognition unit) 81, an air flow path switching mechanism 91, and a four-way switching valve (refrigerant flow path). (Switching section) 9, expansion valve 11 Is connected to
  • the temperature and humidity sensor 4 and the humidity sensors 3b and 5b are as described above.
  • the water level sensor 81 has the first heat exchanger 3 and the second heat exchanger 5 functioning as an evaporator immediately below the first heat exchange 3 and the second heat exchange 5.
  • This is a float-type water level sensor attached to the bottom of the drain pan 83 that stores drain water W that may be generated when the water is discharged.
  • the water level sensor 81 has a main body 81a, a stem 81b, and a float 81c.
  • the main body 81a includes a limit switch (not shown) for generating a detection signal when the float 81c reaches a predetermined position.
  • the stem 81b is a columnar member extending downward from the main body 81a.
  • the float 81c is attached to the stem 81b so as to be slidable in the vertical direction, and is a donut-shaped member having a hollow inside.
  • the limit switch detects the actually generated drain water W, as shown in FIG. 12, in which the drain water W accumulates in the drain pan 83 and the float 81c that has risen to a predetermined height along the stem 81b. It is done by that.
  • the drain pan 83 may be generated immediately below the first and second heat exchanges 3, 5 when the first heat exchange ⁇ and the second heat exchange 5 each function as an evaporator. It is a member that serves as a tray for storing drain water W.
  • the control unit 80 switches to a drying operation described later to perform control for suppressing the generation of the drain water.
  • the drain pan 83 should be large enough to accommodate the float 81 c of the water level sensor 81 because it performs control to promote the evaporation of the drain water already generated.
  • the drying operation in the present embodiment includes both an operation for suppressing the generation of the drain water thereafter and an operation for promoting the evaporation of the generated drain water.
  • the air flow path switching mechanism 91 is a switching means provided in the first to fourth dampers 35 to 38 and the fifth to eighth dampers 47 to 50, and switches the air flow path in accordance with an instruction from the control unit 80. Switch.
  • the four-way switching valve 9 switches the flow path of the refrigerant to the refrigerant circuit 1 described later.
  • the four-way switching valve 9 will be described in detail later in the description of the refrigerant circuit 1.
  • the expansion valve 11 adjusts the pressure of the refrigerant in the refrigerant circuit 1 described below.
  • the control unit 80 causes the first heat exchange 3 and the second heat exchange 5 to alternately function as an evaporator, and the first heat exchange 3 or the second heat exchange 3 Moisture contained in air flowing through the air conditioner 10 via the heat exchanger 5 is adsorbed by the adsorbent.
  • the second heat exchange 5 or the first heat exchange 3 is made to function as a condenser, and the heat of condensation causes the inside of the air conditioner 10 to pass through the second heat exchanger 5 or the first heat exchanger 3.
  • the adsorbent is regenerated by releasing the water adsorbed by the adsorbent to the flowing air. Then, the refrigerant circulation of the refrigerant circuit 1 and the first to eighth dampers 47-50, 35 are provided so that the air dehumidified by the adsorbent is supplied into the room and the air from which the moisture has been released is supplied outside the room. — Switch air flow path with 38.
  • the control unit 80 controls the moisture contained in the air flowing through the air conditioner 10 via the first heat exchanger 3 or the second heat exchanger 5 functioning as an evaporator. Is adsorbed by the adsorbent. On the other hand, water adsorbed by the adsorbent is released to the air flowing through the air conditioner 10 via the second heat exchanger 5 or the first heat exchanger 3 functioning as a condenser to regenerate the adsorbent . Then, the refrigerant circulation of the refrigerant circuit 1 and the air circulation by the dampers 47-50, 35-38 are switched so as to supply the air humidified by the release of moisture from the adsorbent into the room.
  • the control unit 80 takes in outdoor air and carries it on the surface of the first heat exchanger 3 or the second heat exchanger 5 functioning as an evaporator.
  • the adsorbent absorbs the moisture of the outdoor air and converts the outdoor air into dehumidified air and supplies it to the room.
  • indoor air is taken in, the adsorbent carried on the surface of the second heat exchanger 5 or the first heat exchanger 3, which functions as a condenser, releases moisture to regenerate the adsorbent, and the humidified air goes outside the room. discharge.
  • the control unit 80 takes in room air and carries it on the surface of the first heat exchanger 3 or the second heat exchanger 5 functioning as an evaporator.
  • the adsorbent absorbs the moisture of the indoor air and supplies the dehumidified air to the room.
  • the outdoor air is taken in, the adsorbent carried on the surface of the second heat exchanger 5 or the first heat exchanger 3 functioning as a condenser is released, and the moisture is released to regenerate the adsorbent, and the humidified air is discharged outside.
  • Dehumidification operation is performed by discharging to
  • the control unit 80 takes in the indoor air, and adsorbent carried on the surface of the first heat exchange 3 or the second heat exchange 5 functioning as an evaporator. Absorbs the moisture contained in the air taken in and discharges the dehumidified air outside the room.
  • the outdoor air is taken in, the adsorbent carried on the surface of the second heat exchanger 5 or the first heat exchanger 3 functioning as a condenser is released to release moisture, and the adsorbent is regenerated. Supply indoors.
  • the control unit 80 takes in the outdoor air and takes a surface of the first heat exchanger 3 or the second heat exchanger 5 functioning as an evaporator. Adsorbs moisture contained in the air taken in by the adsorbent carried by the vehicle, and releases the dehumidified air to the outside.
  • the indoor air is taken in, the adsorbent carried on the surface of the second heat exchanger 5 or the first heat exchanger 3, which functions as a condenser, releases moisture to regenerate the adsorbent, and the humidified air is released. Is released indoors.
  • the refrigerant circuit 1 includes a compressor 7, a four-way switching valve 9, a first heat exchanger 3, an expansion valve 11, and a second heat exchanger 5 in this order via a refrigerant pipe. It is formed as a closed circuit connected by Further, the refrigerant circuit 1 is filled with refrigerant, and the refrigerant circulates through the refrigerant circuit 1 to form a vapor compression refrigeration cycle.
  • the first heat exchanger 3 has one end connected to the four-way switching valve 9 and the other end connected to one end of the second heat exchanger 5 via the expansion valve 11.
  • the second heat exchanger 5 has one end connected to the first heat exchanger 3 via the expansion valve 11 and the other end connected to the four-way switching valve 9.
  • the four-way switching valve 9 is a refrigerant flow switching means, and as shown in FIG. 6 (a), the first port and the third port communicate with each other and at the same time, the second port and the fourth port. Switchable between a state where the port communicates and a state where the first port and the fourth port communicate with the second port and the third port at the same time as shown in FIG. 6 (b). It is.
  • the switching of the four-way switching valve 9 changes the flow path of the refrigerant in the refrigerant circuit, so that the first heat exchanger 3 functions as a condenser and the second heat exchanger 5 functions as an evaporator at the same time.
  • the state and the second heat exchange 5 functioning as a condenser while the first heat exchange 3 functions as an evaporator It is possible to switch between the two states.
  • the air conditioner 10 takes in the first air and the second air, and switches between the dehumidifying operation and the humidifying operation. Further, the air conditioner performs the dehumidifying operation and the humidifying operation continuously by alternately repeating the first state and the second state. Further, the air conditioner 10 performs a dehumidifying operation and a humidifying operation in a full ventilation mode and a dehumidifying operation and a humidifying operation in a circulation mode.
  • the control contents in each operation mode will be described in detail.
  • control unit 80 When performing the cooling / dehumidifying operation in the full ventilation mode in the air conditioner 10, the control unit 80 supplies the first air taken in as the outdoor air OA to the room as the conditioned air SA while the indoor air RA Each part is controlled so that the second air taken in as air is discharged outside as outdoor air EA.
  • the adsorption operation is performed in the second heat exchange 5
  • the regeneration (desorption) operation is performed in the first heat exchange 3. That is, in the first operation, as shown in FIGS. 6A and 7, the moisture in the outdoor air OA taken into the second heat exchanger 5 as the first air is adsorbed, and the first heat exchange 3 Adsorbent force carried on the surface The desorbed moisture is applied to the second air.
  • the four-way switching valve 9 is switched so that the first port and the third port are connected and the second port and the fourth port are connected.
  • the first heat exchanger 3 of the refrigerant circuit 1 functions as a condenser
  • the second heat exchanger 5 functions as an evaporator. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 7 flows to the first heat exchanger 3 as a heating medium for heating.
  • the adsorbent carried on the outer surfaces of the fins 13 and the heat transfer tubes 15 is heated by the refrigerant, and water is desorbed from the adsorbent to regenerate the adsorbent.
  • the refrigerant condensed in the first heat exchanger 3 is decompressed by the expansion valve 11.
  • the depressurized refrigerant flows to the second heat exchanger 5 as a heat medium for cooling.
  • the second heat exchanger 5 When the fin 13 and the adsorbent carried on the outer surfaces of the heat transfer tubes 15 adsorb moisture, heat of adsorption is generated.
  • the refrigerant in the second heat exchanger 5 absorbs the heat of adsorption and evaporates.
  • the evaporated refrigerant returns to the compressor 7, and the circulation is repeated.
  • the room air RA that has flowed in as the second air from the second suction port 21 flows through the second inflow path 57, and the first heat from the fifth opening 31a. It flows into the exchange room 69.
  • the desorbed moisture is released from the adsorbent of the first heat exchanger 3 and the second air is humidified.
  • the humidified second air flows from the first heat exchange chamber 69 through the third opening 33c through the first outflow passage 65, passes through the first fan 79, and exits the first outlet 23 as exhaust air EA. Is discharged.
  • the outdoor air OA flowing from the first suction port 19 flows through the first inflow path 63 as first air, and flows from the second opening 33b to the second heat exchange chamber 73.
  • the first air is dehumidified by adsorbing moisture to the adsorbent of the second heat exchange 5. Further, the first air is deprived of sensible heat by the heat of evaporation of the refrigerant in the second heat exchanger 5.
  • the first air thus cooled and dehumidified flows from the second heat exchange chamber 73 through the eighth opening 31d, flows through the second outflow passage 59, passes through the second fan 77, and flows out of the second air outlet 25 through the second air outlet 25. Supplied indoors as SA.
  • the adsorption operation in the first heat exchanger 3 and the regeneration operation in the second heat exchanger 5 Is performed. That is, in the second operation, as shown in FIGS. 6 (b) and 8, the moisture in the outdoor air OA taken into the first heat exchanger 3 as the first air is adsorbed, and the second heat exchange 5 The water desorbed from the adsorbent carried on the surface of the first air is given to the first air, and supplied to the room as room air SA.
  • the four-way switching valve 9 is switched to a state in which the first port and the fourth port are connected and the second port and the third port are connected. .
  • the second heat exchange 5 functions as a condenser
  • the first heat exchange 3 functions as an evaporator. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 7 flows to the second heat exchanger 5 as a heating medium for heating.
  • the adsorbent carried on the outer surfaces of the fins 13 and the heat transfer tubes 15 is heated by the refrigerant to remove adsorbent water from the adsorbent and regenerate the adsorbent.
  • the refrigerant condensed in the second heat exchanger 5 is decompressed by the expansion valve 11.
  • the depressurized refrigerant flows to the first heat exchanger 3 as a heat medium for cooling.
  • the first heat exchanger 3 when the adsorbent carried on the outer surfaces of the fins 13 and the heat transfer tubes 15 adsorbs moisture, heat of adsorption is generated.
  • the refrigerant in the first heat exchanger 3 evaporates by absorbing the heat of adsorption.
  • the evaporated refrigerant returns to the compressor 7, and the refrigerant repeats this circulation.
  • the second air that has flowed in as the room air RA from the second suction port 21 flows through the second inflow path 57, and flows through the sixth opening 31b into the second air path RA. 2 Flow to heat exchange room 73.
  • the second air is humidified by releasing the water desorbed from the adsorbent of the second heat exchange 5.
  • the humidified second air flows from the second heat exchange chamber 73 through the fourth opening 33d to the first outflow path 65, passes through the first fan 79, and flows out of the first outlet 23 as the exhaust air EA. Is discharged.
  • the first air that has flowed in as the outdoor air OA from the first suction port 19 flows through the first inflow channel 63, and flows into the first heat exchange chamber 69 from the first opening 33a.
  • the moisture of the first air is adsorbed by the adsorbent of the first heat exchange 3 to be dehumidified.
  • the first air is deprived of sensible heat by the heat of evaporation of the refrigerant in the first heat exchanger 3.
  • the first air thus cooled and dehumidified flows from the first heat exchange chamber 69 through the seventh opening 31c to the second outflow passage 59, passes through the second fan 77, and flows from the second outlet 25 to the conditioned air. Supplied indoors as SA.
  • the first operation is performed again. Then, the first operation and the second operation are repeated each time a predetermined batch switching time elapses, so that dehumidification in the indoor space is continuously performed.
  • control unit 80 When performing the heating and humidifying operation in the full ventilation mode in the air conditioner 10, the control unit 80 outputs the first air taken in as the indoor air RA to the outside as the outdoor air EA and discharges the outdoor air as the outdoor air EA. Each part is controlled so that the second air taken in as air OA is supplied indoors as room air SA.
  • the adsorption operation in the second heat exchange 5 and the regeneration operation in the first heat exchanger 3 are performed. That is, in the first operation, as shown in FIGS. 6A and 9, the moisture in the indoor air RA taken into the second heat exchanger 5 as the first air is adsorbed, and the first heat exchange 3 is performed. Adsorbent force carried on the surface Desorbed moisture force Applied to the second air taken in as SOA.
  • the four-way switching valve 9 is switched to a state in which the first and third ports are connected and the second and fourth ports are connected. .
  • the first heat exchanger 3 of the refrigerant circuit 1 functions as a condenser
  • the second heat exchanger 5 functions as an evaporator. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 7 flows to the first heat exchanger 3 as a heating medium for heating.
  • the adsorbent carried on the outer surfaces of the fins 13 and the heat transfer tubes 15 is heated by the refrigerant to remove adsorbent water from the adsorbent and regenerate the adsorbent.
  • the refrigerant condensed in the first heat exchange 3 is decompressed by the expansion valve 11.
  • the depressurized refrigerant flows to the second heat exchanger 5 as a heat medium for cooling.
  • heat of adsorption is generated when the adsorbent carried on the outer surfaces of the fins 13 and the heat transfer tubes 15 adsorbs moisture.
  • the refrigerant in the second heat exchanger 5 absorbs the heat of adsorption and evaporates.
  • the evaporated refrigerant returns to the compressor 7, and the refrigerant repeats this circulation.
  • the first air that has flowed in as the room air R from the second suction port 21 flows through the second inflow path 57, and from the sixth opening 31b. It flows to the second heat exchange chamber 73.
  • the moisture contained in the first air is adsorbed by the adsorbent of the second heat exchange 5 and dehumidified.
  • the dehumidified first air becomes exhausted air EA, flows from the second heat exchange chamber 73 through the fourth opening 33d, flows through the first outflow path 65, passes through the first fan 79, and flows out of the first outlet 23 through the first outlet 23. Is discharged.
  • the second air that has flowed in as the outdoor air OA from the first suction port 19 flows through the first inflow path 63, and flows from the first opening 33a to the first heat exchange chamber 69.
  • the second air is supplied to the first heat exchange chamber.
  • the desorbed water is released from the adsorbent of the first heat exchanger 3 and humidified.
  • the second air is given sensible heat by the heat of condensation of the refrigerant in the first heat exchange 3.
  • the second air heated and humidified in this way flows from the first heat exchange chamber 69 through the seventh opening 31c to the second outflow passage 59, passes through the second fan 77, and flows from the second outlet 25 to the humidified air SA. Is supplied indoors.
  • the second operation After performing the first operation until a predetermined batch switching time has elapsed, the second operation is performed.
  • the adsorption operation in the first heat exchange 3 and the regeneration operation in the second heat exchanger 5 are performed.
  • the second operation as shown in FIGS. 6 (b) and 10
  • moisture in the first air taken into the first heat exchanger 3 as the indoor air RA is adsorbed, and the second heat exchange 5
  • the moisture desorbed from the air is given to the second air taken in as outdoor air OA.
  • the four-way switching valve 9 is switched to a state in which the first port and the fourth port are connected, and the second port and the third port are connected.
  • the second heat exchange 5 functions as a condenser
  • the first heat exchange 3 functions as an evaporator.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 7 flows to the second heat exchanger 5 as a heating medium for heating.
  • the adsorbent carried on the outer surfaces of the fins 13 and the heat transfer tubes 15 is heated by the refrigerant to remove adsorbent water from the adsorbent and regenerate the adsorbent.
  • the refrigerant condensed in the second heat exchanger 5 is decompressed by the expansion valve 11.
  • the depressurized refrigerant flows to the first heat exchanger 3 as a heat medium for cooling.
  • heat of adsorption is generated when the adsorbent carried on the outer surfaces of the fins 13 and the heat transfer tubes 15 adsorbs moisture.
  • the refrigerant in the first heat exchanger 3 evaporates by absorbing the heat of adsorption.
  • the evaporated refrigerant returns to the compressor 7, and the refrigerant repeats this circulation.
  • the first air that has flowed in as room air R from the second suction port 21 by the driving of the first fan 79 and the second fan 77 flows through the second inflow path 57, and the first heat flows through the fifth opening 31a. It flows into the exchange room 69.
  • the moisture contained in the first air is subjected to the first heat exchange. Adsorbed by 3 adsorbents and dehumidified. Further, the first air is deprived of sensible heat by the heat of evaporation of the refrigerant in the first heat exchange 3.
  • the first air that has been cooled and dehumidified flows from the first heat exchange chamber 69 through the third opening 33c to the first outflow passage 65, passes through the first fan 79, and exits from the first outlet 23. Released into the room as EA.
  • the second air that has flowed in as the outdoor air OA from the first suction port 19 flows through the first inflow path 63, and flows from the second opening 33b to the second heat exchange chamber 73.
  • the water desorbed from the adsorbent of the second heat exchanger 5 is released and humidified into the second air.
  • the humidified second air flows from the second heat exchange chamber 73 through the eighth opening 31d to the second outflow passage 59, passes through the second fan 77, and flows from the second outlet 25 to the outside as humidified air SA. Supplied.
  • the first operation is performed again.
  • the first operation and the second operation are repeated each time a predetermined batch switching time elapses, and humidification is continuously performed on the indoor space.
  • control unit 80 takes in the indoor air RA and supplies it to the room as the first air, while taking in the outdoor air OA as the second air and discharges it to the outside. Control each part so that The circulation of the refrigerant in the refrigerant circuit 1 is the same as in the above-described full ventilation mode.
  • the adsorption operation in the second heat exchanger 5 and the regeneration (desorption) operation in the first heat exchanger 3 are performed. That is, in the first operation, the moisture in the first air taken in as the indoor air RA by the second heat exchange 5 is adsorbed, and the moisture desorbed from the adsorbent carried on the surface of the first heat exchange 3 is discharged outside the room. Air Applied to the second air taken in as OA.
  • the desorbed water is released from the adsorbent of the first heat exchanger 3 and the second air is humidified.
  • the humidified second air flows from the first heat exchange chamber 69 through the third opening 33c to the first outflow passage 65, passes through the first fan 79, and flows out of the first outlet 23 as the exhaust air EA. Is discharged.
  • the first air flowing from the second suction port 21 as room air RA flows through the second inflow path 57.
  • the flow then flows from the sixth opening 31b to the second heat exchange chamber 73.
  • the moisture contained in the second air is adsorbed by the adsorbent of the second heat exchange 5 and dehumidified.
  • the second air is deprived of sensible heat by the heat of evaporation of the refrigerant in the second heat exchanger 5.
  • the second air thus cooled and dehumidified flows from the second heat exchange chamber 73 through the eighth opening 31d, flows through the second outflow passage 59, passes through the second fan 77, and flows through the second outlet 25 to the conditioned air SA. Is supplied indoors.
  • the adsorption operation in the first heat exchanger 3 and the regeneration operation in the second heat exchanger 5 are performed.
  • the moisture in the first air taken into the first heat exchanger 3 as the indoor air RA is adsorbed, and the adsorbent force carried on the surface of the second heat exchanger 5 releases the desorbed moisture. Applied to the second air.
  • the desorbed water is released from the adsorbent of the second heat exchanger 5 and the second air is humidified.
  • the first air that has flowed in as room air RA from the second suction port 21 flows through the second inflow path 57, and flows from the fifth opening 31a to the first heat exchange chamber 69.
  • the moisture contained in the first air is adsorbed by the adsorbent of the first heat exchange 3 and dehumidified. Further, the first air is deprived of sensible heat by the heat of evaporation of the refrigerant in the second heat exchanger 5.
  • the first air that has been cooled and dehumidified flows from the first heat exchange chamber 69 through the seventh opening 31c to the second outflow passage 59, passes through the second fan 77, and flows from the second air outlet 25 to the conditioned air. Supplied indoors as SA.
  • the first operation After performing the second operation until a predetermined batch switching time has elapsed, the first operation is performed again. Then, the first operation and the second operation are repeated every time a predetermined batch switching time elapses, and the dehumidification in the indoor space is continuously performed.
  • the control unit 80 discharges the first air taken in as the outdoor air OA to the outside and takes the second air taken as the indoor air RA. Each part is controlled to supply air into the room.
  • the circulation of the refrigerant in the refrigerant circuit 1 is the same as in the above-described full ventilation mode.
  • the adsorption operation in the second heat exchanger 5 and the regeneration operation in the first heat exchanger 3 are performed.
  • the moisture in the first air taken in as the outdoor air OA by the second heat exchanger 5 is adsorbed, and the adsorbent force carried on the surface of the first heat exchanger 3
  • the desorbed moisture becomes the indoor heat.
  • Air is given to the second air taken in as RA.
  • the desorbed water is released from the adsorbent of the first heat exchanger 3 and the second air is humidified.
  • the second air is given sensible heat by the heat of condensation of the refrigerant in the first heat exchange 3.
  • the second air heated and humidified in this way flows from the first heat exchange chamber 69 through the seventh opening 31c to the second outflow passage 59, is supplied to the room from the second outlet 25 through the second fan 77, and is supplied to the room. You.
  • the first air that has flowed in as the outdoor air OA from the first suction port 19 flows through the first inflow path 63, and flows from the second opening 33b to the second heat exchange chamber 73.
  • the moisture contained in the first air is adsorbed by the adsorbent of the second heat exchange 5 and dehumidified.
  • the dehumidified first air flows from the second heat exchange chamber 73 through the fourth opening 33d through the first outflow passage 65, passes through the first fan 79, and is discharged from the first outlet 23 as exhaust air EA outside the room. Is done.
  • the second operation After performing the first operation until a predetermined batch switching time has elapsed, the second operation is performed.
  • the adsorption operation in the first heat exchanger 3 and the regeneration operation in the second heat exchanger 5 are performed.
  • the moisture in the first air taken in as the outdoor air OA by the first heat exchanger 3 is adsorbed, and the adsorbent force carried on the surface of the second heat exchanger 5 releases the desorbed moisture. It is given to the second air taken in as room air RA.
  • Air dehumidified from the adsorbent of the second heat exchanger 5 is released and humidified. Further, the second air is given sensible heat by the heat of condensation of the refrigerant in the second heat exchange 5. in this way
  • the heated and humidified second air flows from the second heat exchange chamber 73 through the eighth opening 31d, flows through the second outflow passage 59, passes through the second fan 77, and flows from the second outlet 25 as humidified air SA into the room. Supplied to
  • the moisture contained in the first air is adsorbed by the adsorbent of the first heat exchange 3 and dehumidified.
  • the dehumidified first air flows from the first heat exchange chamber 69 through the third opening 33c through the first outflow passage 65, passes through the first fan 79, and is discharged from the first outlet 23 as exhaust air EA outside the room. Is done.
  • the first operation is performed again.
  • the first operation and the second operation are repeated each time a predetermined batch switching time elapses, and the humidification of the indoor space is continuously performed.
  • the air conditioner 10 of the present embodiment performs various operations in accordance with the above-described operation modes, while predicting and detecting the generation of drain water in the air conditioner (a water level sensor 81, humidity sensors 3b, 5b, etc.). ) Is provided, and when the generation of drain water is predicted and detected by the drain water prediction detection means, the control unit 80 shown in FIG. 11 performs the drying operation according to the flowchart shown in FIG.
  • the air conditioner 10 includes a drain pan 83 disposed immediately below each of the heat exchange units 3 and 5, and a water level sensor 81 that detects that the drain water W has accumulated in the drain pan 83. (See Figure 12).
  • the generation of drain water W in the air conditioner 10 of the present embodiment will be described.
  • the two heat exchangers 3, 5 having the adsorbent supported on the surface thereof, as described above, are alternately arranged.
  • the cooling and dehumidifying operation is continuously performed by repeating the adsorption operation and the regeneration operation Alternatively, a heating and humidifying operation is performed.
  • the power of air from the air passing through the heat exchange 5 is adsorbed by the adsorbent to dehumidify (latent heat treatment) the batch switching time with respect to the humidity of the air.
  • drain water may be generated on the surfaces of the heat exchangers 3, 5 exceeding the limit of the amount of water absorbed by the adsorbent.
  • the drain water W generated exceeding the adsorption capacity of the adsorbent carried on the surfaces of the heat exchangers 3 and 5 when functioning as an evaporator is formed on the surfaces of the heat exchangers 3 and 5 by itself. It accumulates in a drain pan 83 located directly below.
  • control unit 80 When the water level sensor 81 detects the drain water W accumulated in the drain pan 83, the control unit 80 performs the following control.
  • control unit 80 detects the generation of the drain water W in S2 during the normal operation in step (hereinafter referred to as S) 1, first, for example, in S4, the drain in the subsequent operation is performed in S4. Control to shorten the notch switching time is performed to suppress the generation of water W.
  • S4 the control unit 80 detects the generation of the drain water W in S2 during the normal operation in step (hereinafter referred to as S) 1
  • S4 the drain in the subsequent operation is performed in S4.
  • Control to shorten the notch switching time is performed to suppress the generation of water W.
  • the adsorption operation can be performed while the adsorbent maintains a high adsorption force. Therefore, for example, the generation of the drain water W generated in the heat exchangers 3, 5 without being completely absorbed by the adsorbent can be suppressed.
  • control for reducing the capacity of the compressor 7 constituting the refrigerant circuit 1 in S3 may be performed.
  • the evaporation temperature of the refrigerant flowing through the refrigerant circuit 1 is raised to the dew point temperature of the air or higher, and the temperatures of the heat exchangers 3 and 5 functioning as evaporators are raised.
  • the refrigerant flow switching timing is set based on the air flow switching timing. May be controlled so as to speed up the process.
  • the detection of the drain water W by the water level sensor 81 indicates that the drain water W has already been generated and is present in the drain pan 83! /.
  • the air conditioner 10 of the present embodiment in addition to the first control for suppressing the further generation of the drain water after the above-described detection, it is also possible to perform, as the second control, a control for extinguishing the already generated drain water W. it can.
  • the control unit 80 performs control to extend the batch switching time.
  • the sensible heat load contained in the air that has passed through the heat exchange can be increased by elongating the air flow path switching time, and the evaporation of the drain water that has already been generated can be promoted.
  • the refrigerant flow switching time becomes longer, the sensible heat load increases due to the heat of condensation, and the evaporation of drain water that has already been generated can be promoted.
  • the heat exchange ⁇ 3, 5 and the drain water generated in the drain pan 83 can be eliminated.
  • control unit 80 performs control to temporarily switch the operation to the above-described circulation mode. May be.
  • a heater (heat source) 86 for applying heat for evaporating the generated drain water is provided.
  • the control unit 80 sets the heater 86 in S8. It may be a control to turn on the power supply. Thereby, the generated drain water can be extinguished in the machine by applying heat and evaporating the generated drain water.
  • the arrangement of the heater 86 is not limited to the lower side of the drain pan 83 as shown in FIG. 15, and the heater 86 may be arranged so as to directly heat the drain water. Also, instead of directly heating the drain water from the heater 86, the heated air may be heated and blown against the drain water to dry.
  • the air conditioner 10 includes a temperature / humidity sensor 4 and a humidity sensor 3b, 5b for measuring the temperature and humidity of the air before or after passing through each heat exchange 3, 5, respectively. I have it.
  • the humidity of the air that has passed through the heat exchangers 3, 5 is measured using the humidity sensors 3b, 5b, and the control unit 80 determines that the measurement result is a predetermined value. If this is the case, or if the high humidity condition continues for a certain period of time or more, the generation of drain water is predicted.
  • the control unit 80 obtains the dew point temperature from the measurement result by the temperature and humidity sensor 4, and the value obtained by adding the correction value to the dew point temperature is used as the thermistor 3a, If the temperature is higher than the temperature measured by 5a, the generation of drain water is predicted.
  • the generation of drain water is predicted before the drain water is actually generated in the heat exchangers 3 and 5, and the operation state is switched to an operation state in which drain water is hardly generated. Control can be performed.
  • control unit 80 predicts the generation of drain water based on the measurement results of the humidity sensors 3b and 5b, the control unit 80 performs the following control.
  • control unit 80 performs control to reduce the batch switching time in S4 in order to suppress the generation of drain water in subsequent operations. This shortens the time for each heat exchanger 3 and 5 to function as an evaporator, thereby allowing the adsorbent to perform the adsorption operation while maintaining a high adsorption force. It is possible to suppress the generation of the drain water that has been generated without being completed.
  • control unit 80 may perform control to reduce the capacity of the compressor 7 constituting the refrigerant circuit 1 in S3.
  • the vaporization temperature of the refrigerant flowing through the refrigerant circuit 1 can be raised to the dew point temperature of the air or higher, and the temperatures of the heat exchangers 3, 5 functioning as evaporators can be raised.
  • control unit 80 performs control to make the switching timing of the refrigerant flow path earlier than the switching timing of the air flow path after the elapse of the batch switching time in S5. May be.
  • moisture is adsorbed and desorbed (regenerated) by the adsorbent after the heat capacity of the refrigerant circuit 1 is processed, so that the amount of latent heat load contained in the air passing through the heat exchangers 3 and 5 is reduced.
  • the generation of drain water in the heat exchangers 3 and 5 can be suppressed.
  • the air conditioner 10 of the present embodiment is a desiccant type external air conditioner, and the control unit 80 uses the water level sensor 81 functioning as a drain water recognition unit and the like as an evaporator in the heat exchange 5. If the generation of drain water on the functioning side is detected, or the generation of drain water is predicted using the humidity sensors 3b and 5b, etc. Perform dry operation.
  • the diameter of the drain pipe can be reduced, or the drain pipe can be eliminated, and the material cost of the drain pipe and the cost of arranging the pipe can be reduced to reduce the cost.
  • the air conditioner 10 of the present embodiment includes a water level sensor 81, humidity sensors 3b and 5b, a temperature and humidity sensor 4, and the like as a drain water recognition unit.
  • the generation of drain water in the indoor unit of the air conditioner 10 can be detected or estimated.
  • the drying operation is performed with the capacity of the compressor 7 constituting the refrigerant circuit 1 suppressed.
  • the evaporation temperature of the refrigerant flowing in the refrigerant circuit 1 can be increased to, for example, be higher than the dew point temperature of the air passing through the heat exchangers 3, 5.
  • the air passing through the heat exchangers 3, 5 functioning as evaporators from condensing at the heat exchange ⁇ 3, 5 to generate drain water. Can be suppressed.
  • the control unit 80 controls the two heat exchangers 3 and 5 in a first state in which they function as a condenser and an evaporator, and a second state in which the two heat exchangers 3 and 5 function as evaporators and condensers.
  • the state and the state are alternately switched every time a predetermined batch switching time elapses, and the adsorption operation and the regeneration operation of the adsorbent carried on the surfaces of the heat exchangers 3 and 5 are repeatedly performed. Then, when the generation of drain water is predicted and detected, the drying operation is performed with the batch switching time shortened.
  • control unit 80 controls the air flow path switching mechanism 91 to switch between the full ventilation mode and the circulation mode. Then, when detecting the generation of drain water, the control unit 80 temporarily switches to the circulation mode to perform the drying operation.
  • the control unit 80 performs the first state in which the two heat exchangers 3, 5 function as condensers and evaporators, and the second state in which the two heat exchangers 3, 5 function as evaporators and condensers. And are alternately switched every time a predetermined batch switching time elapses, so that the adsorption operation and the regeneration operation of the adsorbent carried on the surfaces of the heat exchangers 3 and 5 are repeatedly performed. Further, when detecting that drain water has actually been generated, the control unit 80 performs the drying operation longer than the operation before detecting the batch switching time or the like.
  • the evaporator is used for the heat exchange 5 in which the adsorbent is carried on the surface by using the water level sensor 81 or the like functioning as the drain water recognition unit. Drain water generation on the functioning side is detected, or humidity sensor 3b When the generation of drain water is predicted using 5b, 5b, etc., a drying operation is performed to suppress the generation of drain water thereafter.
  • the water level sensor 81 is used as a means for detecting the generation of drain water.
  • the present invention is not limited to this.
  • the generation of drain water may be detected by using.
  • the control unit 80 can detect the generation of drain water.
  • one of the thermistors 3 c and 3 d or the thermistors 5 c and 5 d is applied to the heat exchangers 3 and 5 in which the thermistors are attached to both the heat exchangers 3 and 5. only It may be configured with
  • the float type water level sensor 81 has been described as an example of means for detecting the generation of drain water.
  • the present invention is not limited to this.
  • the temperature measurement value is calculated from the air temperature to the drain It is possible to detect the occurrence of drain water by detecting that the temperature has dropped to the water temperature.
  • the air conditioner 10 includes the two heat exchangers (the first heat exchanger 3 and the second heat exchanger) and performs the batch control has been described.
  • the present invention is not limited to this.
  • a flow-type air conditioner that performs an adsorption operation and a regeneration operation by, for example, rotating a humidity control unit carrying an adsorbent using a single heat exchanger may be used (Japanese Patent Application Laid-Open No. 2001-2001). No. 208374). Even with such a flow type air conditioner, the drying control operation can be performed similarly to the air conditioner 10 of the above embodiment.
  • the air conditioner of the present invention may be provided with a ventilation function in comparison with the desiccant type external conditioner of the above embodiment having a ventilation function.
  • the air conditioner 10 includes two heat exchangers (the first heat exchanger 3 and the second heat exchanger 5) has been described.
  • the present invention is not limited to this.
  • the air conditioner 10 may be a batch type control that switches between a regeneration state of the heat exchanger and a second state in which the other heat exchanger performs the adsorption operation.
  • first heat exchange 3 and the second heat exchange 5 are cross-fin type fin-and-tube heat exchangers.
  • present invention is not limited to this.
  • heat exchanger such as a corrugated fin heat exchanger may be used.
  • the adsorbent may be supported on the outer surface by any other method as long as the performance as the adsorbent is not impaired.
  • a configuration may be employed in which any one of the temperature and humidity sensor 4 and the humidity sensors 3b and 5b is provided.
  • the temperature and humidity in the indoor space should be measured as in the above embodiment. It is more preferable to include both a temperature and humidity sensor 4 for measuring and humidity sensors 3b and 5b for measuring humidity.
  • the humidity sensors 3b, 5b and the temperature / humidity sensor 4 are each provided with one of the two heat exchanges, ⁇ ! ,.
  • the air conditioner of the present invention has an effect of effectively suppressing the generation of drain water in the device, and therefore can be widely applied to air conditioners such as desiccant type humidity controllers and external conditioners. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

 デシカント式の空気調和機の室内機側におけるドレン水の発生を抑制することが可能な空気調和機およびその制御方法を提供する。空気調和機(10)は、第1熱交換器、第2熱交換器、サーミスタ、湿度センサ(3b),(5b)、温湿度センサ、送風ファン、圧縮機、ケーシング、制御部(80)等を備えている。制御部(80)は、ドレン水認識部として機能する水位センサ(81)等を用いて、吸着剤が表面に担持された熱交換器のうち、蒸発器とし機能する側におけるドレン水の発生を検知、あるいは湿度センサ(3b),(5b)等を用いてドレン水の発生を予測すると、それ以降のドレン水の発生を抑制するために、空気流路切換機構(91)、四路切換弁(9)、膨張弁(11)等を調整して乾燥運転を行う。

Description

明 細 書
空気調和機およびその制御方法
技術分野
[0001] 本発明は、空気と冷媒との間で熱交換を行わせるための熱交 を備えた空気調 和機およびその制御方法に関する。
背景技術
[0002] 従来より、室内空間を快適な環境に保っために、室内空間に存在する顕熱負荷お よび潜熱負荷をそれぞれ処理する熱交換器を備えた空気調和機が提供されている。 空気調和機において除湿運転を行う場合には、一般的に、蒸発器として機能する 熱交換器の温度 (冷媒の温度)を、これを通過する空気の露点温度以下まで下げて 熱交 を通過する際に空気中の水分を結露させることで除去し、潜熱処理を行つ ている (特許文献 1参照)。
例えば、特許文献 1に開示された空気調和機では、上記のようにして熱交換器にお いて発生したドレン水を空気調和機の室内機力 屋外まで配設されたドレン配管を 通じて屋外へ排出している。これにより、空気調和機の室内機において大量に発生 するドレン水が室内機であふれて室内にたれてくる等の不具合の発生を防止して、 屋外へ排出することができる。
特許文献 1:特開 2002— 13756号公報(平成 14年 1月 18日公開)
特許文献 2 :特開平 10- 196995号公報(平成 10年 7月 31日公開)
発明の開示
[0003] し力しながら、上記公報に開示された従来の空気調和機では、以下に示すような問 題点を有している。
すなわち、上記公報に開示された空気調和機では、上記のようにドレン水を室内機 力 屋外へ排出するためのドレン配管を配設する必要があるため、工事が面倒で、 かつコストアップの要因となっていた。
本発明の課題は、デシカント式の空気調和機の室内機側におけるドレン水の発生 を抑制することが可能な空気調和機およびその制御方法を提供することにある。 第 1の発明に係る空気調和機は、蒸気圧縮式の冷凍サイクル運転を行うことによつ て、室内空間における顕熱負荷および潜熱負荷を処理する空気調和機であって、吸 着剤と熱交^^とドレン水認識部と制御部とを備えている。吸着剤は、空気中の水分 を吸着する。熱交 は、冷凍サイクルにおける冷媒の蒸発器として機能して吸着 剤に水分を吸着させる吸着動作と、凝縮器として機能して吸着剤から水分を脱離さ せる再生動作とを行う。ドレン水認識部は、熱交換器におけるドレン水の発生を予測 あるいは検知する。制御部は、ドレン水認識部における予測あるいは検知結果に基 づいて、ドレン水の発生を抑制する乾燥運転を行う。
[0004] ここでは、ドレン水認識部が、ドレン水が発生しやす!/、空気調和機の内部、例えば 、蒸発器となって吸着動作を行う熱交換器におけるドレン水の発生を予測または検 知して、制御部が乾燥運転を行う。
これにより、蒸発器となって吸着動作を行う熱交^^においてドレン水が発生したこ とを予測して、あるいは実際にドレン水が発生したことを検知して乾燥運転を行い、空 気調和機の内部においてドレン水が発生しにくい環境を形成することができる。よつ て、空気調和機の内部におけるドレン水の発生を予防または抑制することが可能に なる。
この結果、ドレン水配管が設置されている空気調和機と比較して、例えば、空気調 和機からドレン水を外部へ排出するためのドレン水配管の設置を不要にしてコストダ ゥンを図ることができる、ドレン水配管を従来の配管径よりも細いものに置き換えられ る等の効果を奏する。
[0005] 第 2の発明にかかる空気調和機は、第 1の発明に記載の空気調和機であって、ドレ ン水認識部は、熱交^^の下部に配置されたドレンパンに取り付けられた水位セン サを有している。
ここでは、ドレン水認識部が、熱交換器が蒸発器として機能する際に発生するドレ ン水が溜まるドレンパンにお!ヽてドレン水の発生を検知する水位センサを備えて!/、る これにより、熱交^^においてドレン水が発生したことを容易に検知することができ る。 第 3の発明に係る空気調和機は、第 1の発明に記載の空気調和機であって、ドレン 水認識部は、蒸発器として機能する熱交換器を通過した空気の温度および湿度の 少なくとも一方を検知するセンサを有している。
[0006] ここでは、ドレン水認識部が、蒸発器として機能して吸着動作を行った熱交 側 を通過した空気の温度および Zまたは湿度を検知するセンサを備えている。
これにより、蒸発器として機能して吸着動作を行う熱交換器を通過した空気が高湿 度になって 、ることを検知して、蒸発器として機能する熱交^^におけるドレン水の 発生を予測することができる。
第 4の発明に係る空気調和機は、第 1の発明に記載の空気調和機であって、ドレン 水認識部は、熱交^^の上部と下部とにそれぞれ設けられた温度センサを有してい る。
ここでは、ドレン水認識部が、ドレン水の発生を検知する手段として、熱交^^の上 部、下部のそれぞれに設けられた温度センサを備えて 、る。
これにより、熱交換器が蒸発器として吸着動作を行った際に吸着剤で吸収できずに 発生したドレン水が熱交換器の下部に溜まると、この熱交換器が凝縮機として再生動 作を行う際に熱交^^における上部と下部とで温度上昇に差が生じる。このため、熱 交 が蒸発器カゝら凝縮器へと切り換えられた際に生じる熱交 上部と下部と〖こ おける温度差を検出するために、熱交換器の上部と下部とに温度検知素子をそれぞ れ設けることで、ドレン水の発生を検知することができる。
[0007] 第 5の発明に係る空気調和機は、第 1から第 4の発明のいずれか 1つに記載の空気 調和機であって、冷凍サイクルにお ヽて流れる冷媒を加圧する圧縮機をさらに備え ており、制御部は、圧縮機の容量を抑えて乾燥運転を行う。
ここでは、ドレン水認識部においてドレン水の発生を検知した場合には、制御部が 冷凍サイクルを構成する圧縮機の容量を調整して、冷凍サイクルにお!ヽて流れる冷 媒の蒸発温度を室内空間における空気の露点温度よりも上昇させる。
これにより、空気調和機の内部におけるドレン水の発生を効果的に抑制して乾燥運 転を行うことができる。
第 6の発明に係る空気調和機は、第 1から第 4の発明のいずれか 1つに記載の空気 調和機であって、制御部は、熱交^^における再生動作と吸着動作とを、所定のバ ツチ切換時間が経過するたびに交互に切り換えながら運転を行うとともに、ノツチ切 換時間を長くして乾燥運転を行う。
[0008] ここでは、上記ドレン水認識部においてドレン水の発生を検知した場合には、制御 部が検知時における運転状態よりもバッチ切換時間を長くする。
これにより、例えば、空気流路切換時間が長くなることで、熱交換器を通過した空気 に含まれる顕熱の処理量が減少して空気に顕熱負荷が多く残され、ドレン水を蒸発 させやすい状態にすることができる。また、冷媒流路切換時間が長くなることで、凝縮 熱が増大してドレン水を蒸発させやすい状態にすることができる。この結果、複数の 熱交 において吸着動作と再生動作とを切り換えながら運転を行う空気調和機に おいて、ドレン水の発生を効果的に抑制することができる。
第 7の発明に係る空気調和機は、第 1から第 4のいずれか 1つに記載の空気調和機 であって、制御部が、熱交^^における再生動作と吸着動作とを、所定のバッチ切 換時間が経過するたびに交互に切り換えながら運転を行う。そして、バッチ切換時間 を短くして乾燥運転を行う。
[0009] ここでは、上記ドレン水認識部においてドレン水の発生を検知した場合には、制御 部が検知時における運転状態よりもバッチ切換時間を短くする。これにより、吸着動 作と再生動作との切り換えが早くなり、吸着剤が常に高い吸着力を保持した状態を維 持することができる。一方、蒸発器、凝縮器として機能する熱交換器が十分に温度上 昇、下降する前に切り換えられるため、顕熱の処理能力が低下する。この結果、潜熱 負荷を効率よく処理する乾燥運転を行うことができる。
第 8の発明に係る空気調和機は、第 1から第 4の発明のいずれか 1つに記載の空気 調和機であって、制御部は、室内空間から取り込んだ空気に対して潜熱負荷の処理 を行い、処理された空気を室内空間へ排出するとともに、室外から取り込んだ空気に 対して潜熱負荷を供給して室外へ放出する循環運転に切り換えて乾燥運転を行う。
[0010] ここでは、上記ドレン水認識部においてドレン水の発生を検知した場合には、制御 部が空気の流路を切り換えて循環運転を行!、、潜熱負荷を外気へ放出する。
これにより、空気調和機におけるドレン水の発生を効果的に抑制することができる。 第 9の発明に係る空気調和機は、第 1から第 4の発明のいずれか 1つに記載の空気 調和機であって、熱交^^の近傍に配置された熱源をさらに備えており、制御部は、 ドレン水認識部においてドレン水の発生が予測あるいは検知された場合には、熱源 力 ドレン水に対して顕熱を与える。
ここでは、上記ドレン水認識部にぉ 、てドレン水の発生を予測または検知した場合 には、熱交換器の近傍に配置された電気ヒータ等の熱源によってドレン水を加熱す る。
これにより、熱交^^において発生したドレン水を蒸発させて、空気調和機におけ るドレン水が溜まることを防止することができる。
[0011] 第 10の発明に係る空気調和機は、第 1から第 4の発明のいずれか 1つに記載の空 気調和機であって、制御部は、熱交 における再生動作と吸着動作とを、所定の ノ ツチ切換時間が経過するたびに交互に切り換えながら運転を行うとともに、バッチ 切換時間の経過時において、冷媒の流路を切り換える冷媒流路切換部と、空気の流 路を切り換える空気流路切換部とをさらに備えており、冷媒流路切換部における冷 媒の流路切り換えを空気流路切換部における空気の流路を切り換えるタイミングより も早くして乾燥運転を行う。
ここでは、上記ドレン水認識部においてドレン水の発生を検知した場合には、制御 部が冷媒流路の切り換えタイミングを空気流路の切り換えタイミングよりも早くする。 これにより、ドレン水が発生する蒸発器として機能する熱交換器側に早めに湿度の 低い空気を送り込むことができるため、その後のドレン水の発生を抑制できる。また、 凝縮器として機能する側の熱交^^については、凝縮器として機能する時間は変化 しないため、熱交 を乾燥させることができる。
[0012] 第 11の発明に係る空気調和機の制御方法は、蒸気圧縮式の冷凍サイクル運転を 行うことによって、室内空間における顕熱負荷および潜熱負荷を処理するとともに、 空気中の水分を吸着する吸着剤と、冷凍サイクルにおける冷媒の蒸発器として機能 して吸着剤に水分を吸着させる吸着動作と凝縮器として機能して吸着剤力 水分を 脱離させる再生動作とを行う熱交^^と、機内におけるドレン水の発生を予測あるい は検知するドレン水認識部と、を備えた空気調和機の制御方法である。そして、本発 明の空気調和機の制御方法では、ドレン水認識部における予測ある 、は検知結果 に基づ!/、て、ドレン水の発生を抑制する乾燥運転を行う。
ここでは、ドレン水認識部が、ドレン水が発生しやすい空気調和機の内部、例えば 蒸発器となって吸着動作を行う熱交換器におけるドレン水の発生を予測または検知 すると、制御部が乾燥運転を行う。
[0013] これにより、蒸発器となって吸着動作を行う熱交^^においてドレン水が発生したこ とを予測して、あるいは実際にドレン水が発生したことを検知して乾燥運転を行い、空 気調和機の内部においてドレン水が発生しにくい環境を形成することができる。よつ て、空気調和機の内部におけるドレン水の発生を予防または抑制することが可能に なる。
この結果、ドレン水配管が設置されている空気調和機と比較して、例えば、空気調 和機からドレン水を外部へ排出するためのドレン水配管の設置を不要にしてコストダ ゥンを図ることができる、ドレン水配管を従来の配管径よりも細いものに置き換えられ る等の効果を奏する。
図面の簡単な説明
[0014] [図 1]本発明の一実施形態に係る空気調和機の構成を示す平面図。
[図 2]図 1の I I線におけるケーシング内部の構成を示す矢視断面図。
[図 3]図 1の II II線におけるケーシング内部の構成を示す矢視断面図。
[図 4]図 1の空気調和機が備えている熱交換器を示す斜視図。
[図 5]本発明の一実施形態に係る空気調和機が備えている冷媒回路を示す回路図。
[図 6] (a) , (b)は、図 1の空気調和機が備えている冷媒回路の制御状態を示す回路 図。
[図 7]図 1の空気調和機における空気の流れを示す平面図。
[図 8]図 1の空気調和機における空気の流れを示す平面図。
[図 9]図 1の空気調和機における空気の流れを示す平面図。
[図 10]図 1の空気調和機における空気の流れを示す平面図。
[図 11]図 1の空気調和機が備えている制御部に接続された各構成を示すブロック図 [図 12]図 1の空気調和機が備えているドレン水認識部の一例を示すフローチャート。
[図 13]図 1の空気調和機が備えているドレン水認識部の他の例を示すフローチャート
[図 14]図 1の空気調和機における乾燥運転制御の他の例を示すフローチャート。
[図 15]本発明のさらに他の実施形態に係る空気調和機が備えている熱源を示す側 面図。
[図 16]本発明のさらに他の実施形態を示す空気調和機が備えているドレン水認識部 の一例を示す側面図。
[図 17]本発明のさらに他の実施形態を示す空気調和機が備えているドレン水認識部 の他の例を示す側面図。
符号の説明
1 冷媒回路
3 第 1熱交換器
3a, 5a サーミスタ(ドレン水認識部、センサ)
3b, 5b 湿度センサ(ドレン水認識部、センサ)
3c, 5c サーミスタ(ドレン水認識部、センサ)
3d, 5d サーミスタ(ドレン水認識部、センサ)
5 第 2熱交換器
6 第 3熱交換器
7 圧縮機
9 四路切換弁 (冷媒流路切換部)
10 空気調和機
11 膨張弁
13 フィン
15 伝熱管
17 ケーシング
19 第 1吸込口
21 第 2吸込口 第 1吹出口
第 2吹出口
仕切板
a 空気室
b 機器室
a、一 31b 第 1一第 4の開口
— 38 第 5—第 8ダンバ (空気流路切換部) — 50 第 1一第 4ダンバ (空気流路切換部) 第 2流入路
第 2流出路
第 1流入路
第 1流出路
第 1熱交換室
第 2熱交換室
, 79 送風ファン
制御部
水位センサ(ドレン水認識部)
a 本体部
b ステム
c フロート
ドレンノ ン
サーミスタ(ドレン水認識部、温度センサ) ヒータ (熱源)
空気流路切換機構
キヤビラリ一チューブ
電磁弁
0 冷媒回路
1 空気調和機 102, 103 調湿エレメント
発明を実施するための最良の形態
[0016] 本発明の一実施形態に係る空気調和機およびその制御方法について、図 1一図 1 5を用いて説明すれば以下の通りである。
[空気調和機全体の構成]
本実施形態の空気調和機 10は、熱交換器の表面にシリカゲル等の吸着剤を担持 したデシカント式外調機であって、室内空間に供給される空気に対して冷房除湿運 転、あるいは暖房加湿運転を行う。また、空気調和機 10は、図 1一図 3に示すように、 第 1熱交翻 (熱交翻) 3、第 2熱交翻 (熱交翻) 5、サーミスタ 3a, 5a (図 5参 照)、湿度センサ(ドレン水認識部) 3b, 5b (図 5参照)、温湿度センサ (ドレン水認識 部) 4 (図 5参照)、送風ファン 77, 79、圧縮機 7、ケーシング 17、制御部 80 (図 11参 照)等を備え、後述する冷媒回路 1を形成している。
[0017] 第 1熱交換器 3および第 2熱交換器 5は、図 4に示すように、クロスフィン式のフィン' アンド'チューブ型の熱交換器であって、長方形板状に形成されたアルミニウム製の 多数のフィン 13と、このフィン 13を貫通する銅製の伝熱管 15とを備えている。各フィ ン 13および伝熱管 15の外表面には、第 1 ·第 2熱交 5を通過する空気に含ま れる水分を吸着させる吸着剤がディップ成形 (浸漬成形)等によって担持されて ヽる この吸着剤としては、ゼォライト、シリカゲル、活性炭、親水性または吸水性を有す る有機高分子ポリマー系材料、カルボン酸基またはスルホン酸基を有するイオン交 換榭脂系材料、感温性高分子等の機能性高分子材料等を使用することができる。 なお、上記第 1 ·第 2熱交換器 3, 5は、第 1熱交換器 3が凝縮器、第 2熱交換器 5が 蒸発器として機能する第 1の状態と、第 1熱交換器 3が蒸発器、第 2熱交換器 5が凝 縮器として機能する第 2の状態とが、後述する制御部 80によって交互に切り換えられ る、いわゆるバッチ式制御が行われる。また、第 1の状態においては、第 1熱交換器 3 が凝縮器として機能する際に吸着剤から水分を脱離させる吸着剤の再生動作、第 2 熱交 5が蒸発器として機能する際に吸着剤に水分を吸着させる吸着動作が行わ れる。一方、第 2の状態においては、第 1熱交換器 3が蒸発器として機能する際に吸 着剤に水分を吸着させる吸着動作、第 2熱交換器 5が凝縮器として機能する際に吸 着剤から水分を脱離させる吸着剤の再生動作が行われる。このように、第 1熱交換器 3と第 2熱交 5とにおいて、交互に吸着動作と再生動作とを繰り返すとともに、各 熱交^^ 3, 5を通過して室内外へ供給される空気の流路を切り換えることで、吸着 剤における水分の吸着と放出 (脱離)とを継続して行うことができる。よって、除湿性 能あるいは加湿性能を維持しつつ各種運転を安定して行うことができる。
[0018] また、第 1熱交換器 3および第 2熱交換器 5は、例えば冷房除湿運転を行う場合に おいて、蒸発器として機能する際に、熱交 5を流れる冷媒と熱交 5を 通過する空気との間で熱交換を行って顕熱負荷を処理する。そして、熱交 5 の表面に担持された吸着剤により熱交換器 3, 5を通過する空気に含まれる水分を吸 着して潜熱処理を行う。これにより、第 1の状態または第 2の状態において、 2つの熱 交 5を用いて交互に吸着動作と再生動作とを行うことで、吸着剤による吸着 力を低下させることなぐ安定した状態で顕熱処理および潜熱処理の双方を行うこと ができる。
サーミスタ 3aは、第 1熱交 3に取り付けられており、第 1熱交 3が凝縮器と して機能する第 1の状態と蒸発器として機能する第 2の状態とにおいて、第 1熱交換 器 3の表面温度 (冷媒温度)を測定する。
[0019] 湿度センサ 3bは、後述する空気流路切換機構 (空気流路切換部) 91における空気 の流路の切り換えに応じて、第 1熱交換器 3を通過する前、あるいは通過した後の空 気の湿度を測定する。
温湿度センサ 4は、熱交換器 3, 5を通過する前あるいは後における空気の温度と 湿度とを測定する。
サーミスタ 5aは、第 2熱交 5に取り付けられており、第 2熱交 5が蒸発器と して機能する第 1の状態と凝縮器として機能する第 2の状態とにおいて、第 2熱交換 器 5の表面温度 (冷媒温度)を測定する。
湿度センサ 5bは、空気流路切換機構 91における空気の流路の切り換えに応じて、 第 2熱交換器 5を通過する前、あるいは通過した後の空気の湿度を測定する。
[0020] そして、制御部 80が、温湿度センサ 4、湿度センサ 3b, 5bにおける湿度測定結果 に基づいて、ドレン水の発生を予測する。
第 1ファン 79は、第 1吹出口 23の位置に対応して取り付けられており、ケーシング 1 7の内部力も外部に向力つて空気を送り出す。
第 2ファン 77は、第 2吹出口 25の位置に対応して取り付けられており、ケーシング 1 7の内部力も外部に向力つて空気を送り出す。そして、第 1 ·第 2ファン 77, 79は、後 述する第 1吸込口 19、第 2吸込口 21、第 1吹出口 23、第 2吹出口 25を介して、空気 調和機 10における空気流路を形成する。
ケーシング 17は、略直方体形状の箱であって、後述する冷媒回路 1が収納されて いる。ケーシング 17の左側面板 17aには、室外空気 OAを取り入れる第 1吸込口 19と 、リターン空気である室内空気 RAを取り入れる第 2吸込口 21とが形成されている。一 方、ケーシング 17の右側面板 17bには、排出空気 EAを室外に排出する第 1吹出口 23と、調湿空気 SAを室内に供給する第 2吹出口 25とが形成されている。また、ケー シング 17の内部には、ケーシング 17の内部を仕切る仕切部材として仕切板 27が設 けられている。そして、ケーシング 17は、この仕切板 27によって形成された空気室 2 9aと機器室 29bとを有して 、る。
仕切板 27は、図 1に示すように、ケーシング 17の下端である正面板 17cから上端で ある背面板 17dまで設けられているとともに、ケーシング 17の中央部よりやや右側に 配置されている。さらに、仕切板 27は、ケーシング 17の厚さ方向である垂直方向に 設けられており、図 2および図 3に示すように、ケーシング 17の上端である上面板 17 eから下端である下面板 17fまで設けられている。
空気室 29aには、仕切部材として、第 1端面板 33と第 2端面板 31と中央の区画板 6 7とが設けられている。第 1端面板 33と第 2端面板 31とは、図 1に示すように、ケーシ ング 17の左側面板 17aから仕切板 27まで設けられている。また、第 1端面板 33は、 図 1に示すように、ケーシング 17の中央部よりやや上側に配置され、第 2端面板 31は 、図 1に示すように、ケーシング 17の中央部よりやや下側に配置されている。また、第 1端面板 33と第 2端面板 31とは、図 2および図 3に示すように、ケーシング 17の上面 板 17eから下面板 17fまで設けられている。区画板 67は、図 1に示すように、第 1端面 板 33から第 2端面板 31まで設けられている。 [0022] 機器室 29bには、冷媒回路 1を構成する部材のうち、第 1,第 2熱交翻 3, 5を除く 圧縮機 7等が収納されているとともに、第 1ファン 79と第 2ファン 77とが収納されてい る。
さらに、ケーシング 17は、空気室 29aに、第 1端面板 33と第 2端面板 31と区画板 67 と仕切板 27とによって形成された第 1熱交換室 69と、第 1端面板 33と第 2端面板 31 と区画板 67と左側面板 17aとによって形成された第 2熱交換室 73とを有している。 第 1熱交換室 69には、第 1熱交換器 3が配置され、第 2熱交換室 73には、第 2熱交 5が配置されている。
第 1端面板 33と背面板 17dとの間には、仕切部材である水平板 61が設けられて第 1流入路 63と第 1流出路 65とが形成されている。また、第 2端面板 31と正面板 17cと の間には、仕切部材である水平板 55が設けられて第 2流入路 57と第 2流出路 59と が形成されている。
[0023] 水平板 61, 55は、ケーシング 17の内部空間を仕切っており、図 2に示すように、第 1流入路 63が上面側に、第 1流出路 65が下面側に形成され、図 3に示すように、第 2 流入路 57が上面側に、第 2流出路 59が下面側に形成されている。つまり、第 1流入 路 63と第 1流出路 65とは、第 1熱交換室 69および第 2熱交換室 73の各一面が連続 する厚さ方向の一端面に沿って形成され、かつ第 1熱交換室 69および第 2熱交換室 73の厚さ方向に重畳して配置されて 、る。
また、第 2流入路 57と第 2流出路 59とは、第 1熱交換室 69および第 2熱交換室 73 の各一面が連続する端面で一端面に対向する対向面に沿って形成され、かつ第 1 熱交換室 69および第 2熱交換室 73の厚さ方向に重畳して配置されて 、る。
そして、第 1流入路 63および第 1流出路 65と第 2流入路 57および第 2流出路 59と は、図 1に示すように上下対称に配置され、つまり、第 1熱交換室 69および第 2熱交 換室 73を横断する中央線を基準として面対称に配置されて!、る。
[0024] さらに、第 1流入路 63は、第 1吸込口 19に連通し、第 1流出路 65は、第 1ファン 79 を介して第 1吹出口 23に連通している。また、第 2流入路 57は、第 2吸込口 21に連 通し、第 2流出路 59は、第 2ファン 77を介して第 2吹出口 25に連通している。
第 1端面板 33には、図 2に示すように、 4つの開口 33a— 33dが形成されている。各 開口 33a— 33dには、第 1ダンバ 47、第 2ダンノ 48、第 3ダンバ 49および第 4ダンバ 50 (空気流路切換部)が設けられている。 4つの開口 33a— 33dは、行列方向に近接 して配置されており、つまり、上下左右に 2つずつ升目状に配置され、第 1の開口 33 aと第 3の開口 33cとが第 1熱交換室 69の内部に形成され、第 2の開口 33bと第 4の 開口 33dとが第 2熱交換室 73の内部に形成されている。
第 1の開口 33aは、第 1流入路 63と第 1熱交換室 69とを連通させ、第 3の開口 33c は、第 1流出路 65と第 1熱交換室 69とを連通させている。また、第 2の開口 33bは、 第 1流入路 63と第 2熱交換室 73とを連通させ、第 4の開口 33dは、第 1流出路 65と 第 2熱交換室 73とを連通させて 、る。
[0025] 第 2端面板 31には、図 3に示すように、 4つの開口 31a— 31dが形成されている。各 開口 31a— 31dには、第 5ダンバ 35、第 6ダンバ 36、第 7ダンバ 37および第 8ダンバ 38 (空気流路切換部)が設けられている。 4つの開口 31a— 31dは、行列方向に近接 して配置されている。つまり、 4つの開口 31a— 31dは、上下左右に 2つずつ升目状 に配置されている。そして、第 5の開口 31aと第 7の開口 31cとが第 1熱交換室 69の 内部に形成され、第 6の開口 31bと第 8の開口 31dとが第 2熱交換室 73の内部に形 成されている。
第 5の開口 31aは、第 2流入路 57と第 1熱交換室 69とを連通させ、第 7の開口 31c は、第 2流出路 59と第 1熱交換室 69とを連通させている。また、第 6の開口 31bは、 第 2流入路 57と第 2熱交換室 73とを連通させ、第 8の開口 31dは、第 2流出路 59と 第 2熱交換室 73とを連通させて 、る。
[0026] また、第 1一第 8ダンバ 47— 50, 35— 38は、開口 33a— 33dおよび開口 31a— 31 dを開閉する図示しな 、開閉手段 (空気流路切換機構 (空気流路切換部) 91)を有し ており、この開閉手段を用いて、上述した第 1の状態と第 2の状態との切り換え時に空 気の流路を変更する。
本実施形態の空気調和機 10は、内部に、図 11に示す制御部 80を備えている。そ して、制御部 80は、除湿運転と加湿運転とを切り換え可能に制御する。また、制御部 80は、図 11に示すように、温湿度センサ 4、湿度センサ 3b, 5b、水位センサ(ドレン 水認識部) 81、空気流路切換機構 91、四路切換弁 (冷媒流路切換部) 9、膨張弁 11 と接続されている。
温湿度センサ 4、湿度センサ 3b, 5bについては、上述した通りである。
[0027] 水位センサ 81は、図 12に示すように、第 1熱交翻3および第 2熱交翻5の直下 において、第 1熱交換器 3、第 2熱交換器 5が蒸発器として機能する際に発生する可 能性があるドレン水 Wを溜めるドレンパン 83の底面に取り付けられたフロート式の水 位センサである。また、水位センサ 81は、本体部 81a、ステム 81b、フロート 81cを備 えている。本体部 81aは、フロート 81cが所定位置になったときに検出信号を発生す るリミットスィッチ(図示せず)を内部に備えている。ステム 81bは、本体部 81aから下 向きに伸びる円柱状の部材である。フロート 81cは、ステム 81bに対して上下方向に 摺動可能に取り付けられており、内部が中空のドーナツ型の部材である。実際に発 生したドレン水 Wの検知は、図 12に示すように、ドレンパン 83にドレン水 Wが溜まつ てきてステム 81bに沿って所定の高さまで上昇したフロート 81cをリミットスィッチが検 知することで行われる。
[0028] ドレンパン 83は、第 1 ,第 2熱交翻3, 5の直下において、第 1熱交^^ 3、第 2熱 交 5がそれぞれ蒸発器として機能する際に発生する可能性があるドレン水 Wを 溜めるための受け皿となる部材である。なお、本実施形態の空気調和機 10では、水 位センサ 81がドレン水の発生を検知すると、制御部 80が後述する乾燥運転に切り換 えられて、ドレン水の発生を抑制する制御を行うとともに、すでに発生しているドレン 水の蒸発を促進する制御を行うことから、ドレンパン 83は水位センサ 81のフロート 81 cが納まる程度の大きさであればよい。なお、本実施形態における乾燥運転とは、そ の後のドレン水の発生を抑制する運転と、すでに発生したドレン水の蒸発を促す運 転の双方を含むものとする。
空気流路切換機構 91は、第 1一第 4ダンバ 35— 38および第 5—第 8ダンバ 47— 5 0が備えて 、る切換手段であって、制御部 80からの指示によって空気流路を切り換 える。
[0029] 四路切換弁 9は、後述する冷媒回路 1にお!/、て冷媒の流路を切り換える。なお、四 路切換弁 9については、冷媒回路 1について説明する後段にて詳述する。
膨張弁 11は、後述する冷媒回路 1において冷媒の圧力を調整する。 また、制御部 80は、空気調和機 10が除湿運転を行う場合には、第 1熱交 3お よび第 2熱交 5を交互に蒸発器として機能させ、この第 1熱交 3または第 2熱 交換器 5を介して空気調和機 10内を流れる空気に含まれる水分を吸着剤で吸着さ せる。一方、第 2熱交翻5または第 1熱交翻3を凝縮器として機能させ、凝縮熱に より、この第 2熱交換器 5または第 1熱交換器 3を介して空気調和機 10内を流れる空 気に対して吸着剤において吸着した水分を放出して吸着剤を再生させる。そして、 吸着剤によって除湿された空気を室内に供給し、かつ吸着剤から水分が放出された 空気を室外に供給するように冷媒回路 1の冷媒循環および第 1一第 8ダンバ 47— 50 , 35— 38によって空気流路を切り換える。
[0030] 制御部 80は、加湿運転を行う場合には、蒸発器として機能する第 1熱交換器 3また は第 2熱交換器 5を介して空気調和機 10内を流れる空気に含まれる水分を吸着剤 で吸着する。一方、凝縮器として機能する第 2熱交換器 5または第 1熱交換器 3を介 して空気調和機 10内を流れる空気に対して吸着剤において吸着した水分を放出し て吸着剤を再生する。そして、吸着剤から水分が放出されて加湿された空気を室内 に供給するように冷媒回路 1の冷媒循環およびダンバ 47— 50, 35— 38による空気 流通を切り換える。
具体的には、制御部 80は、全換気モードにおいて冷房除湿運転を行う場合には、 室外空気を取り込み、蒸発器として機能する第 1熱交換器 3または第 2熱交換器 5の 表面に担持された吸着剤において室外空気の水分を吸着し、室外空気を除湿空気 にして室内に供給する。一方、室内空気を取り込み、凝縮器として機能する第 2熱交 5または第 1熱交 3の表面に担持された吸着剤カゝら水分を放出させて吸着 剤を再生し、加湿空気を室外へ放出する。
[0031] また、制御部 80は、循環モードにおいて冷房除湿運転を行う場合には、室内空気 を取り込み、蒸発器として機能する第 1熱交換器 3または第 2熱交換器 5の表面に担 持された吸着剤において室内空気の水分を吸着し、除湿した空気を室内に供給す る。一方、室外空気を取り込み、凝縮器として機能する第 2熱交 5または第 1熱 交 3の表面に担持された吸着剤カゝら水分を放出させて吸着剤を再生し、加湿空 気を室外へ放出することで除湿運転を行う。 一方、制御部 80は、全換気モードにおいて暖房加湿運転を行う場合には、室内空 気を取り込み、蒸発器として機能する第 1熱交 3または第 2熱交 5の表面に 担持された吸着剤において取り込まれた空気に含まれる水分を吸着し、除湿された 空気を室外に排出する。一方、室外空気を取り込み、凝縮器として機能する第 2熱交 5または第 1熱交 3の表面に担持された吸着剤カゝら水分を放出させて吸着 剤を再生し、加湿された空気を室内に供給する。
[0032] また、制御部 80は、循環モードにお 、て暖房加湿運転を行う場合には、室外空気 を取り込み、蒸発器として機能する第 1熱交換器 3または第 2熱交換器 5の表面に担 持された吸着剤において取り込まれた空気に含まれる水分を吸着し、除湿された空 気を屋外へ放出する。一方、室内空気を取り込み、凝縮器として機能する第 2熱交換 器 5または第 1熱交 3の表面に担持された吸着剤カゝら水分を放出して吸着剤を 再生し、加湿された空気を屋内へ放出する。
〔冷媒回路の構成〕
冷媒回路 1は、図 5に示すように、圧縮機 7と、四路切換弁 9と、第 1熱交換器 3と、 膨張弁 11と、第 2熱交 5とがこの順に冷媒配管を介して接続された閉回路として 形成されている。さらに、冷媒回路 1には冷媒が充填されており、この冷媒が冷媒回 路 1を循環して蒸気圧縮式の冷凍サイクルを形成して!/、る。
[0033] 第 1熱交換器 3は、その一端が四路切換弁 9に接続されており、他端は膨張弁 11を 介して第 2熱交 5の一端に接続されて 、る。
第 2熱交換器 5は、一端が膨張弁 11を介して第 1熱交換器 3に接続されており、他 端が四路切換弁 9に接続されて 、る。
四路切換弁 9は、冷媒の流路切換手段であって、図 6 (a)に示すように、第 1のポー トと第 3のポートとが連通すると同時に第 2のポートと第 4のポートとが連通する状態と 、図 6 (b)に示すように、第 1のポートと第 4のポートとが連通すると同時に第 2のポート と第 3のポートとが連通する状態とに切り換え可能である。そして、この四路切換弁 9 の切り換えにより冷媒回路における冷媒の流路を変更して、第 1熱交換器 3が凝縮器 として機能すると同時に第 2熱交 5が蒸発器として機能する第 1の状態と、第 1熱 交 3が蒸発器として機能すると同時に第 2熱交 5が凝縮器として機能する第 2の状態とを切り換えを行うことができる。
[0034] 〔運転動作〕
次に、上述した空気調和機 10の運転動作について説明する。空気調和機 10は、 第 1空気と第 2空気とを取り込み、除湿運転と加湿運転とを切り換えて行う。また、空 気調和機は、第 1の状態と第 2の状態とを交互に繰り返すことにより、除湿運転および 加湿運転を連続的に行う。また、空気調和機 10は、全換気モードの除湿運転および 加湿運転と、循環モードの除湿運転および加湿運転とを行う。以下で、各運転モード における制御内容について詳しく説明する。
全換気モードの冷房除湿運転
空気調和機 10にお ヽて全換気モードの冷房除湿運転を行う場合には、制御部 80 は、室外空気 OAとして取り込んだ第 1空気を空調空気 SAとして室内に供給する一 方、室内空気 RAとして取り込んだ第 2空気を排出空気 EAとして室外に排出するよう に各部を制御する。
[0035] 《第 1動作》
第 1ファン 79および第 2ファン 77を駆動した第 1動作では、第 2熱交翻 5において 吸着動作、第 1熱交翻 3において再生 (脱離)動作が行われる。つまり、第 1動作で は、図 6 (a)および図 7に示すように、第 2熱交換器 5に第 1空気として取り込んだ室外 空気 OA中の水分が吸着され、第 1熱交 3の表面に担持された吸着剤力 脱離 した水分が第 2空気に付与される。
また、四路切換弁 9は、図 6 (a)に示すように、第 1ポートと第 3ポートとが接続され、 第 2ポートと第 4ポートとが接続された状態に切り換えられる。その結果、冷媒回路 1 の第 1熱交換器 3が凝縮器として機能し、第 2熱交換器 5が蒸発器として機能する。 つまり、圧縮機 7から吐出された高温高圧の冷媒は、加熱用の熱媒体として第 1熱 交換器 3に流れる。この第 1熱交換器 3において、冷媒によってフィン 13および伝熱 管 15の外表面に担持された吸着剤が加熱されて、吸着剤から水分が脱離して吸着 剤が再生される。
[0036] 一方、第 1熱交換器 3において凝縮した冷媒は、膨張弁 11で減圧される。減圧後 の冷媒は、冷却用の熱媒体として第 2熱交換器 5に流れる。第 2熱交換器 5において は、フィン 13および伝熱管 15の外表面に担持された吸着剤が水分を吸着する際に 吸着熱が発生する。第 2熱交換器 5の冷媒は、この吸着熱を吸熱して蒸発する。蒸発 した冷媒は、圧縮機 7に戻り、循環が繰り返される。
また、第 1ファン 79および第 2ファン 77の駆動により、第 2吸込口 21より第 2空気とし て流入した室内空気 RAは、第 2流入路 57を流れ、第 5の開口 31aから第 1熱交換室 69に流れる。この第 1熱交換室 69において、第 2空気は、第 1熱交換器 3の吸着剤よ り脱離した水分が放出されて加湿される。この加湿された第 2空気は、第 1熱交換室 6 9から第 3の開口 33cを経て第 1流出路 65を流れ、第 1ファン 79を経て第 1吹出口 23 力 排出空気 EAとして室外に排出される。
[0037] 一方、第 1吸込口 19より流入した室外空気 OAは、第 1空気として第 1流入路 63を 流れ、第 2の開口 33bから第 2熱交換室 73に流れる。この第 2熱交換室 73において 、第 1空気は、水分が第 2熱交 5の吸着剤に吸着されて除湿される。さらに、第 1 空気は、第 2熱交換器 5における冷媒の蒸発熱によって顕熱を奪われる。このように 冷房除湿された第 1空気は、第 2熱交換室 73から第 8の開口 31dを経て第 2流出路 5 9を流れ、第 2ファン 77を経て第 2吹出口 25から、空調空気 S Aとして室内に供給さ れる。
この第 1動作を所定のバッチ切換時間が経過するまで行った後、第 2動作を行う。 《第 2動作》
第 1ファン 79および第 2ファン 77を駆動した第 2動作では、図 6 (b)に示すように、 第 1熱交換器 3での吸着動作と、第 2熱交換器 5での再生動作とが行われる。つまり、 第 2動作では、図 6 (b)および図 8に示すように、第 1熱交換器 3に第 1空気として取り 込まれた室外空気 OA中の水分が吸着され、第 2熱交 5の表面に担持された吸 着剤から脱離した水分が第 1空気に付与されて、室内空気 SAとして室内に供給され る。
[0038] また、四路切換弁 9は、図 6 (b)に示すように、第 1ポートと第 4ポートとが接続され、 第 2ポートと第 3ポートとが接続された状態に切り換えられる。その結果、冷媒回路 1 では、第 2熱交 5が凝縮器として機能し、第 1熱交 3が蒸発器として機能する つまり、圧縮機 7から吐出された高温高圧の冷媒は、加熱用の熱媒体として第 2熱 交換器 5に流れる。この第 2熱交換器 5において、冷媒によってフィン 13および伝熱 管 15の外表面に担持された吸着剤が加熱されて吸着剤カゝら水分が脱離して吸着剤 が再生される。
一方、第 2熱交換器 5で凝縮した冷媒は、膨張弁 11で減圧される。減圧後の冷媒 は、冷却用の熱媒体として第 1熱交換器 3に流れる。この第 1熱交換器 3において、フ イン 13および伝熱管 15の外表面に担持された吸着剤が水分を吸着する際に吸着熱 が発生する。第 1熱交換器 3の冷媒は、この吸着熱を吸熱して蒸発する。蒸発した冷 媒は、圧縮機 7に戻り、冷媒はこの循環を繰り返す。
[0039] また、第 1ファン 79および第 2ファン 77の駆動により、第 2吸込口 21より室内空気 R Aとして流入した第 2空気は、第 2流入路 57を流れ、第 6の開口 31bから第 2熱交換 室 73に流れる。この第 2熱交換室 73において、第 2空気は、第 2熱交翻5の吸着 剤より脱離した水分が放出されて加湿される。この加湿された第 2空気は、第 2熱交 換室 73から第 4の開口 33dを経て第 1流出路 65を流れ、第 1ファン 79を経て第 1吹 出口 23から、排出空気 EAとして室外に排出される。
一方、第 1吸込口 19より室外空気 OAとして流入した第 1空気は、第 1流入路 63を 流れ、第 1の開口 33aから第 1熱交換室 69に流れる。この第 1熱交換室 69において 、第 1空気は、水分が第 1熱交 3の吸着剤に吸着されて除湿される。さらに、第 1 空気は、第 1熱交換器 3における冷媒の蒸発熱によって顕熱を奪われる。このように 冷房除湿された第 1空気は、第 1熱交換室 69から第 7の開口 31cを経て第 2流出路 5 9を流れ、第 2ファン 77を経て第 2吹出口 25から、空調空気 S Aとして室内に供給さ れる。
[0040] この第 2動作を所定のバッチ切換時間が経過するまで行った後、再び第 1動作を行 う。そして、この第 1動作と第 2動作とを所定のバッチ切換時間が経過する毎に繰り返 すことで室内空間における除湿を連続的に行う。
全換気モードの暖房加湿運転
空気調和機 10にお 、て全換気モードの暖房加湿運転を行う場合には、制御部 80 力 室内空気 RAとして取り込んだ第 1空気を室外空気 EAとして室外に排出し、室外 空気 OAとして取り込んだ第 2空気を室内空気 SAとして室内に供給するように各部を 制御する。
《第 1動作》
第 1ファン 79および第 2ファン 77を駆動した第 1動作では、第 2熱交翻5での吸着 動作と、第 1熱交換器 3での再生動作とが行われる。つまり、第 1動作では、図 6 (a) および図 9に示すように、第 2熱交換器 5に第 1空気として取り込まれた室内空気 RA 中の水分が吸着され、第 1熱交 3の表面に担持された吸着剤力 脱離した水分 力 SOAとして取り込まれた第 2空気に付与される。
[0041] また、四路切換弁 9は、図 6 (a)に示すように、第 1ポートと第 3ポートとが接続され、 第 2ポートと第 4ポートとが接続された状態に切り換えられる。その結果、冷媒回路 1 の第 1熱交換器 3が凝縮器として機能し、第 2熱交換器 5が蒸発器として機能する。 つまり、圧縮機 7から吐出された高温高圧の冷媒は、加熱用の熱媒体として第 1熱 交換器 3に流れる。この第 1熱交換器 3において、冷媒によってフィン 13および伝熱 管 15の外表面に担持された吸着剤が加熱されて吸着剤カゝら水分が脱離して吸着剤 が再生される。
一方、第 1熱交 3において凝縮した冷媒は、膨張弁 11で減圧される。減圧後 の冷媒は、冷却用の熱媒体として第 2熱交換器 5に流れる。この第 2熱交換器 5にお いて、フィン 13および伝熱管 15の外表面に担持された吸着剤が水分を吸着する際 に吸着熱が発生する。第 2熱交換器 5の冷媒は、この吸着熱を吸熱して蒸発する。蒸 発した冷媒は、圧縮機 7に戻り、冷媒はこの循環を繰り返す。
[0042] また、第 1ファン 79および第 2ファン 77の駆動により、第 2吸込口 21より室内空気 R Αとして流入した第 1空気は、第 2流入路 57を流れ、第 6の開口 31bから第 2熱交換 室 73に流れる。この第 2熱交換室 73において、第 1空気に含まれる水分が第 2熱交 5の吸着剤に吸着されて除湿される。この除湿された第 1空気は、排出空気 EA となり、第 2熱交換室 73から第 4の開口 33dを経て第 1流出路 65を流れ、第 1ファン 7 9を経て第 1吹出口 23より室外に排出される。
一方、第 1吸込口 19より室外空気 OAとして流入した第 2空気は、第 1流入路 63を 流れ、第 1の開口 33aから第 1熱交換室 69に流れる。第 2空気は、この第 1熱交換室 69において、第 1熱交換器 3の吸着剤より脱離した水分が放出されて加湿される。さ らに、第 2空気は、第 1熱交 3における冷媒の凝縮熱によって顕熱を与えられる。 このように暖房加湿された第 2空気は、第 1熱交換室 69から第 7の開口 31cを経て第 2流出路 59を流れ、第 2ファン 77を経て第 2吹出口 25から調湿空気 SAとして室内に 供給される。
[0043] この第 1動作を所定のバッチ切換時間が経過するまで行った後、第 2動作を行う。
《第 2動作》
第 1ファン 79および第 2ファン 77を駆動した第 2動作では、第 1熱交翻3での吸着 動作と、第 2熱交換器 5での再生動作とが行われる。つまり、第 2動作では、図 6 (b) および図 10に示すように、第 1熱交換器 3に室内空気 RAとして取り込まれた第 1空 気中の水分が吸着され、第 2熱交 5から脱離した水分が室外空気 OAとして取り 込まれた第 2空気に付与される。
また、上記四路切換弁 9は、図 6 (b)に示すように、第 1ポートと第 4ポートとが接続さ れ、第 2ポートと第 3ポートとが接続された状態に切り換えられる。その結果、冷媒回 路 1では、第 2熱交 5が凝縮器として機能し、第 1熱交 3が蒸発器として機能 する。
[0044] つまり、圧縮機 7から吐出された高温高圧の冷媒は、加熱用の熱媒体として第 2熱 交換器 5に流れる。この第 2熱交換器 5において、冷媒によってフィン 13および伝熱 管 15の外表面に担持された吸着剤が加熱されて吸着剤カゝら水分が脱離して吸着剤 が再生される。
一方、上記第 2熱交換器 5で凝縮した冷媒は、膨張弁 11で減圧される。減圧後の 冷媒は、冷却用の熱媒体として第 1熱交換器 3に流れる。この第 1熱交換器 3におい て、フィン 13および伝熱管 15の外表面に担持された吸着剤が水分を吸着する際に 吸着熱が発生する。第 1熱交換器 3の冷媒は、この吸着熱を吸熱して蒸発する。蒸発 した冷媒は、圧縮機 7に戻り、冷媒はこの循環を繰り返す。
また、第 1ファン 79および第 2ファン 77の駆動により、第 2吸込口 21より室内空気 R Αとして流入した第 1空気は、第 2流入路 57を流れ、第 5の開口 31aから第 1熱交換 室 69に流れる。この第 1熱交換室 69において、第 1空気に含まれる水分が第 1熱交 3の吸着剤に吸着されて除湿される。さらに、第 1空気は、第 1熱交 3におけ る冷媒の蒸発熱によって顕熱を奪われる。このように、冷房除湿された第 1空気は、 第 1熱交換室 69から第 3の開口 33cを経て第 1流出路 65を流れ、第 1ファン 79を経 て第 1吹出口 23から排出空気 EAとして室内に排出される。
[0045] 一方、第 1吸込口 19より室外空気 OAとして流入した第 2空気は、第 1流入路 63を 流れ、第 2の開口 33bから第 2熱交換室 73に流れる。第 2空気には、第 2熱交換室 7 3において、第 2熱交換器 5の吸着剤より脱離した水分が放出されて加湿される。この 加湿された第 2空気は、第 2熱交換室 73から第 8の開口 31dを経て第 2流出路 59を 流れ、第 2ファン 77を経て第 2吹出口 25から調湿空気 SAとして室外に供給される。 この第 2動作を所定のバッチ切換時間が経過するまで行った後、再び第 1動作を行 う。そして、この第 1動作と第 2動作とを所定のバッチ切換時間が経過する毎に繰り返 して室内空間に対して加湿を連続的に行う。
循環モードの冷房除湿運転
空気調和機 10において循環モードの冷房除湿運転を行う場合には、制御部 80が 、室内空気 RAを取り込んで第 1空気として室内に供給する一方、室外空気 OAを第 2空気として取り込み室外に排出するように各部を制御する。なお、冷媒回路 1の冷 媒循環については、上述した全換気モードと同様である。
[0046] 《第 1動作》
第 1動作では、第 2熱交換器 5での吸着動作と、第 1熱交換器 3での再生 (脱離)動 作とが行われる。つまり、第 1動作では、第 2熱交 5に室内空気 RAとして取り込ま れた第 1空気中の水分が吸着され、第 1熱交 3の表面に担持された吸着剤から 脱離した水分が室外空気 OAとして取り込まれた第 2空気に付与される。
第 1吸込口 19より室外空気 OAとして流入した第 2空気は、第 1流入路 63を流れ、 第 1の開口 33aから第 1熱交換室 69に流れる。この第 1熱交換室 69において、第 2空 気は、第 1熱交換器 3の吸着剤より脱離した水分が放出されて加湿される。この加湿 された第 2空気は、第 1熱交換室 69から第 3の開口 33cを経て第 1流出路 65を流れ、 第 1ファン 79を経て第 1吹出口 23から、排出空気 EAとして室外に排出される。
[0047] 一方、第 2吸込口 21より室内空気 RAとして流入した第 1空気は、第 2流入路 57を 流れ、第 6の開口 31bから第 2熱交換室 73に流れる。この第 2熱交換室 73において 、第 2空気に含まれる水分が第 2熱交 5の吸着剤に吸着されて除湿される。さら に、第 2空気は、第 2熱交換器 5において冷媒の蒸発熱によって顕熱を奪われる。こ のように冷房除湿された第 2空気は、第 2熱交換室 73から第 8の開口 31dを経て第 2 流出路 59を流れ、第 2ファン 77を経て第 2吹出口 25から空調空気 SAとして室内に 供給される。
この第 1動作を所定のバッチ切換時間が経過するまで行った後、第 2動作を行う。 《第 2動作》
第 2動作では、第 1熱交換器 3での吸着動作と、第 2熱交換器 5での再生動作とが 行われる。つまり、第 2動作では、第 1熱交換器 3に室内空気 RAとして取り込まれた 第 1空気中の水分が吸着され、第 2熱交 5の表面に担持された吸着剤力 脱離 した水分が第 2空気に付与される。
[0048] 第 1吸込口 19より室外空気 OAとして流入した第 2空気は、第 1流入路 63を流れ、 第 2の開口 33bから第 2熱交換室 73に流れる。この第 2熱交換室 73において、第 2 空気は、第 2熱交換器 5の吸着剤より脱離した水分が放出されて加湿される。この加 湿された第 2空気は、第 2熱交換室 73から第 4の開口 33dを経て第 1流出路 65を流 れ、第 1ファン 79を経て第 1吹出口 23から排出空気 EAとして室外に排出される。 一方、第 2吸込口 21より室内空気 RAとして流入した第 1空気は、第 2流入路 57を 流れ、第 5の開口 31aから第 1熱交換室 69に流れる。この第 1熱交換室 69において 、第 1空気に含まれる水分が第 1熱交 3の吸着剤に吸着されて除湿される。さら に、第 1空気は、第 2熱交換器 5において冷媒の蒸発熱によって顕熱を奪われる。こ のように、冷房除湿された第 1空気は、第 1熱交換室 69から第 7の開口 31cを経て第 2流出路 59を流れ、第 2ファン 77を経て第 2吹出口 25から空調空気 SAとして室内に 供給される。
[0049] この第 2動作を所定のバッチ切換時間が経過するまで行った後、再び第 1動作を行 う。そして、この第 1動作と第 2動作とを所定のバッチ切換時間が経過する毎に繰り返 して室内空間における除湿を連続的に行う。
-循環モードの暖房加湿運転 - 空気調和機 10にお 、て循環モードの暖房加湿運転を行う場合には、制御部 80が 、室外空気 OAとして取り込んだ第 1空気を室外に排出し、室内空気 RAとして取り込 んだ第 2空気を室内に供給するように各部を制御する。なお、冷媒回路 1の冷媒循環 については、上述した全換気モードと同様である。
《第 1動作》
第 1動作では、第 2熱交換器 5での吸着動作と、第 1熱交換器 3での再生動作とが 行われる。つまり、第 1動作では、第 2熱交換器 5に室外空気 OAとして取り込んだ第 1空気中の水分が吸着され、第 1熱交 3の表面に担持された吸着剤力 脱離し た水分が室内空気 RAとして取り込んだ第 2空気に付与される。
[0050] 第 2吸込口 21より室内空気 RAとして流入した第 2空気は、第 2流入路 57を流れ、 第 5の開口 31aから第 1熱交換室 69に流れる。この第 1熱交換室 69において、第 2空 気は、第 1熱交換器 3の吸着剤より脱離した水分が放出されて加湿される。さらに、第 2空気は、第 1熱交 3において冷媒の凝縮熱によって顕熱を与えられる。このよう に暖房加湿された第 2空気は、第 1熱交換室 69から第 7の開口 31cを経て第 2流出 路 59を流れ、第 2ファン 77を経て第 2吹出口 25より室内に供給される。
一方、第 1吸込口 19より室外空気 OAとして流入した第 1空気は、第 1流入路 63を 流れ、第 2の開口 33bから第 2熱交換室 73に流れる。この第 2熱交換室 73において 、第 1空気に含まれる水分が第 2熱交 5の吸着剤に吸着されて除湿される。この 除湿された第 1空気は、第 2熱交換室 73から第 4の開口 33dを経て第 1流出路 65を 流れ、第 1ファン 79を経て第 1吹出口 23から排出空気 EAとして室外に排出される。
[0051] この第 1動作を所定のバッチ切換時間が経過するまで行った後、第 2動作を行う。
《第 2動作》
第 2動作では、第 1熱交換器 3での吸着動作と、第 2熱交換器 5での再生動作とが 行われる。つまり、第 2動作では、第 1熱交換器 3に室外空気 OAとして取り込まれた 第 1空気中の水分が吸着され、第 2熱交 5の表面に担持された吸着剤力 脱離 した水分が室内空気 RAとして取り込まれた第 2空気に付与される。
第 2吸込口 21より室内空気 RAとして流入した第 2空気は、第 2流入路 57を流れ、 第 6の開口 31bから第 2熱交換室 73に流れる。この第 2熱交換室 73において、第 2 空気は、第 2熱交換器 5の吸着剤より脱離した水分が放出されて加湿される。さらに、 第 2空気は、第 2熱交 5において冷媒の凝縮熱によって顕熱を与えられる。この ように
暖房加湿された第 2空気は、第 2熱交換室 73から第 8の開口 31dを経て第 2流出路 5 9を流れ、第 2ファン 77を経て第 2吹出口 25から調湿空気 SAとして室内に供給され る。
[0052] 一方、第 1吸込口 19より室外空気 OAとして流入した第 1空気は、第 1流入路 63を 流れ、第 1の開口 33aから第 1熱交換室 69に流れる。この第 1熱交換室 69において 、第 1空気に含まれる水分が第 1熱交 3の吸着剤に吸着されて除湿される。この 除湿された第 1空気は、第 1熱交換室 69から第 3の開口 33cを経て第 1流出路 65を 流れ、第 1ファン 79を経て第 1吹出口 23から排出空気 EAとして室外に排出される。 この第 2動作を所定のバッチ切換時間が経過するまで行った後、再び第 1動作を行 う。そして、この第 1動作と第 2動作とを所定のバッチ切換時間が経過する毎に繰り返 して室内空間に対する加湿を連続的に行う。
[乾燥運転制御]
本実施形態の空気調和機 10は、通常運転時には上述した各運転モードに従って 各種運転を行う一方で、機内におけるドレン水の発生を予測、検知する手段 (水位セ ンサ 81、湿度センサ 3b, 5b等)を備えており、このドレン水予測検知手段によってド レン水の発生が予測、検知された場合には、図 11に示す制御部 80が図 14に示すフ ローチャートに従って乾燥運転を行う。
[0053] ードレン水の発生を検知した場合の制御
空気調和機 10は、上述のように、各熱交翻3, 5の直下にそれぞれ配置されたド レンパン 83と、ドレンパン 83にドレン水 Wが溜まってきたことを検知する水位センサ 8 1とを備えている(図 12参照)。
ここで、本実施形態の空気調和機 10におけるドレン水 Wの発生について説明する 空気調和機 10においては、上述したように表面に吸着剤が担持された 2つの熱交 換器 3, 5が交互に吸着動作と再生動作とを繰り返すことで、継続的に冷房除湿運転 あるいは暖房加湿運転を行う。このとき、蒸発器として機能する熱交 側において は、熱交 5を通過する空気カゝら水分が吸着剤に吸着されて除湿 (潜熱処理) される力 その空気の湿度に対してバッチ切換時間が長 、場合等には吸着剤に吸 着される水分量の限界を超えて熱交換器 3, 5の表面にドレン水が発生する場合があ る。このように、蒸発器として機能する際の熱交換器 3, 5の表面に担持された吸着剤 の吸着容量を越えて発生したドレン水 Wは熱交換器 3, 5の表面をったつてその直下 に配置されたドレンパン 83に溜まっていく。
[0054] また、冷媒回路 1を流れる冷媒の蒸発温度が低すぎる場合にも、熱交換器 3, 5を 通過する空気が露点温度以下に冷やされて熱交換器 3, 5の表面に結露することで ドレン水が発生することがある。
制御部 80は、水位センサ 81がこのドレンパン 83に溜まったドレン水 Wを検知すると 、以下のような制御を行う。
すなわち、制御部 80は、ステップ(以下 Sと示す) 1の通常運転中に、 S2においてド レン水 Wの発生を検知すると、第 1に、例えば、 S4において、それ以降の運転におけ るドレン水 Wの発生を抑えるために、ノ ツチ切換時間を短縮する制御を行う。これに より、熱交 5が蒸発器として機能する 1回あたりの時間を短くすることで、吸着 剤が高い吸着力を維持したまま吸着動作を行うことができる。よって、例えば、吸着剤 で吸着しきれずに熱交換器 3, 5において発生するドレン水 Wの発生を抑えることが できる。
[0055] また、それ以降の運転においてドレン水 Wの発生を抑えるための他の制御方法とし て、 S3において冷媒回路 1を構成する圧縮機 7の容量を落とす制御を行ってもよい。 これにより、冷媒回路 1に流れる冷媒の蒸発温度を空気の露点温度以上に上げて、 蒸発器として機能する各熱交換器 3, 5の温度を上昇させる。この結果、蒸発器として 機能する際の熱交換器 3, 5を空気が通過する際に結露してドレン水 Wが発生するこ とを防止できる。
また、それ以降の運転においてドレン水 Wの発生を抑えるためのさらに他の制御方 法として、 S5において、バッチ切換時間の経過時において、冷媒流路の切り換えタ イミングを空気流路の切り換えタイミングよりも早くするような制御を行ってもよい。これ により、冷媒回路 1の熱容量を処理してから吸着剤において水分の吸着、水分の脱 離 (再生)が行われるため、熱交換器 3, 5を通過する空気に含まれる潜熱負荷の処 理を継続しながら、空気を通過させることで、熱交 5における結露の発生を抑 えることができる。
[0056] ここで、水位センサ 81によるドレン水 Wの検知は、すでにドレン水 Wが発生してドレ ンパン 83に存在して!/、ることを示して!/、る。
本実施形態の空気調和機 10では、上述した検知後にさらなるドレン水の発生を抑 える第 1の制御とともに、第 2の制御として、すでに発生したドレン水 Wを消滅させるよ うな制御も行うことができる。
すなわち、このようなドレン水を消滅させる場合には、 S6において、制御部 80が、 バッチ切換時間を長くする制御を行う。これにより、空気流路切換時間が長くなること で、熱交 を通過した空気に含まれる顕熱負荷を増加させて、すでに発生してい るドレン水の蒸発を促進させることができる。また、冷媒流路切換時間が長くなること で、凝縮熱により顕熱負荷が増大して、すでに発生したドレン水の蒸発を促進するこ とができる。この結果、熱交^^ 3, 5およびドレンパン 83に発生したドレン水を消滅 させることがでさる。
[0057] すでに発生したドレン水を消滅させる他の制御方法として、ドレン水の発生を検知 した場合には、 S7において、制御部 80が一時的に上述した循環モードに運転を切り 換える制御を行ってもよい。
これにより、空気の流路を切り換えて循環運転を行うことで、湿度の低い室内空気 を蒸発器として機能する熱交 5へ送り、湿度の高い外気を凝縮器として機能 する熱交翻3, 5へ送ることができる。この結果、蒸発器として機能する熱交翻3, 5の表面に担持された吸着剤とすでに発生したドレン水を乾燥させることができる。よ つて、空気調和機におけるドレン水の発生を効果的に抑制するとともに、湿度の低い 室内空気によってすでに発生しているドレン水の蒸発を促進することができる。
また、すでに発生したドレン水を消滅させるようなさらに他の制御方法として、図 15 に示すように、発生したドレン水を蒸発させるための熱を与えるヒータ (熱源) 86を備 えており、ドレン水の発生を検知した場合には、 S8において、制御部 80がヒータ 86 の電源を ONする制御であってもよい。これにより、発生したドレン水に熱を与えて蒸 発させることで、機内において発生したドレン水を消滅させることができる。なお、ヒー タ 86の配置は、図 15に示すようにドレンパン 83の下側に限定されるものではなぐド レンパンの上部力 ドレン水を直接加熱するように配置されていてもよい。また、ヒー タ 86から直接ドレン水を加熱するのではなぐ加熱した空気を熱風にしてドレン水に 当てて乾燥させてもよい。
[0058] そして、このような乾燥運転は、 S9において、制御部が所定の条件 (タイマ設定時 間、所定の湿度に到達等)を満足したことを検知すると、 S10において通常運転へ切 り換えられることで終了する。
ードレン水の発生を予測した場合の制御
空気調和機 10は、図 13に示すように、各熱交翻3, 5を通過する前、あるいは通 過した後の空気の温度、湿度を測定する温湿度センサ 4、湿度センサ 3b, 5bを備え ている。
本実施形態の空気調和機 10では、例えば、上記湿度センサ 3b, 5bを用いて熱交 換器 3, 5を通過した空気の湿度を計測し、制御部 80が、その計測結果が所定の値 以上である場合やその高湿度の状態が一定時間以上継続した場合にドレン水の発 生を予測する。
[0059] これにより、熱交換器 3, 5において実際にドレン水が発生する前にドレン水の発生 を予測して、ドレン水の発生しにくい運転状態に切り換える制御を行うことができる。 また、ドレン水の発生を予測する別の方法として、温湿度センサ 4とサーミスタ 3a, 5 aとを用いてドレン水の発生を予測する方法を採用してもょ 、。
すなわち、本実施形態の空気調和機 10では、熱交換器 3, 5を通過する前の空気 の温度と湿度とを計測する。そして、制御部 80が、温湿度センサ 4による測定結果か ら露点温度を求め、その露点温度に補正値を加えた値が蒸発機として機能する熱交 ^ 3, 5に取り付けられたサーミスタ 3a, 5aによって計測される温度よりも高い場合 には、ドレン水の発生を予測する。
この方法によっても、上記と同様に、熱交換器 3, 5において実際にドレン水が発生 する前にドレン水の発生を予測して、ドレン水の発生しにくい運転状態に切り換える 制御を行うことができる。
[0060] そして、制御部 80は、湿度センサ 3b, 5bにおける計測結果に基づいてドレン水の 発生を予測すると、以下のような制御を行う。
すなわち、制御部 80は、 S2においてドレン水発生を予測すると、それ以降の運転 におけるドレン水の発生を抑えるために、 S4においてバッチ切換時間を短縮する制 御を行う。これにより、熱交換器 3, 5が蒸発器として機能する 1回あたりの時間を短く することで、吸着剤が高い吸着力を維持したまま吸着動作を行うことができるため、吸 着剤で吸着しきれずに発生したドレン水の発生を抑えることができる。
また、他の制御方法として、制御部 80は、 S3において冷媒回路 1を構成する圧縮 機 7の容量を落とす制御を行ってもよい。これにより、冷媒回路 1に流れる冷媒の蒸 発温度を空気の露点温度以上に上げて、蒸発器として機能する各熱交換器 3, 5の 温度を上昇させることができる。この結果、蒸発器として機能する際の熱交 5 を空気が通過する際に結露してドレン水が発生することを防止できる。
[0061] また、さらに他の制御方法として、制御部 80は、 S5においてバッチ切換時間の経 過時にお 、て、冷媒流路の切り換えタイミングを空気流路の切り換えタイミングよりも 早くする制御を行ってもよい。これにより、冷媒回路 1の熱容量を処理してから吸着剤 において水分の吸着、水分の脱離 (再生)が行われるため、熱交換器 3, 5を通過す る空気に含まれる潜熱負荷の量を減らすことなぐ空気を通過させることで、熱交換 器 3, 5におけるドレン水の発生を抑えることができる。
なお、乾燥運転の終了制御については、上記と同様に、 S9において、制御部が所 定の条件 (タイマ設定時間、所定の湿度に到達等)を満足したことを検知すると、 S10 にお 、て通常運転へ切り換えられることで終了する。
[本空気調和機の特徴]
(1)
本実施形態の空気調和機 10は、デシカント式の外調機であって、制御部 80が、ド レン水認識部として機能する水位センサ 81等を用いて、熱交 5のうち、蒸発 器とし機能する側におけるドレン水の発生を検知、あるいは湿度センサ 3b, 5b等を 用いてドレン水の発生を予測すると、それ以降のドレン水の発生を抑制するための乾 燥運転を行う。
[0062] これにより、水位センサ 81等のドレン水認識部におけるドレン水の発生を検知、予 測した後における空気調和機の室内機内におけるドレン水の発生を抑えることがで きる。この結果、例えば、ドレン配管の配管径を小さくしたり、ドレン配管を不要にした りすることができ、ドレン配管の材料費や配管配設工事費用を削減してコストダウンを 図ることができる。
(2)
本実施形態の空気調和機 10は、ドレン水認識部として、水位センサ 81、湿度セン サ 3b, 5b、温湿度センサ 4等を備えている。
これにより、空気調和機 10の室内機内におけるドレン水の発生を検知あるいは予 柳』することができる。
[0063] (3)
本実施形態の空気調和機 10では、制御部 80が、ドレン水の発生を予測あるいは 検知すると、冷媒回路 1を構成する圧縮機 7の容量を抑えて乾燥運転を行う。
これにより、冷媒回路 1内を流れる冷媒の蒸発温度を上昇させて、例えば、熱交換 器 3, 5を通過する空気の露点温度よりも上昇させることができる。この結果、ドレン水 の発生予測、検知後において、蒸発器として機能する熱交換器 3, 5を通過する空気 が熱交^^ 3, 5において結露してドレン水が発生することを効果的に抑制することが できる。
(4)
本実施形態の空気調和機 10では、制御部 80が、 2つの熱交換器 3, 5をそれぞれ 凝縮器、蒸発器として機能させる第 1の状態と、蒸発器、凝縮器として機能させる第 2 の状態とを所定のバッチ切換時間経過毎に交互に切り換えて、各熱交換器 3, 5の 表面に担持された吸着剤における吸着動作、再生動作を繰り返し行わせる。そして、 ドレン水の発生を予測、検知すると、バッチ切換時間を短縮して乾燥運転を行う。
[0064] これにより、分を吸着し過ぎた状態になる前に吸着剤を再生するため、吸着剤が常 に高い吸着力を保持した状態を維持することができるとともに、顕熱負荷の処理能力 が低下する。この結果、潜熱負荷を効率よく処理することが可能になり、ドレン水の発 生を効果的に抑制することができる。また、顕熱負荷があまり処理されていない状態 の空気が熱交換器を通過することになるため、すでに発生したドレン水の乾燥を促進 させることちでさる。
(5)
本実施形態の空気調和機 10では、上述のように、制御部 80が空気流路切換機構 91を制御して全換気モードと循環モードとを切り換える。そして、制御部 80は、ドレン 水の発生を検知すると、一時的に循環モードに切り換えて乾燥運転を行う。
[0065] これにより、湿度の高い外気が蒸発器として機能する熱交 5を通過すること を防止し、かつ湿度の高い外気を凝縮器として機能する熱交 5を通過させる ことで、ドレン水の発生を効果的に抑制することができる。さらに、蒸発器として機能 する熱交換器 3, 5側には、比較的湿度の低い室内空気が通過するため、すでに発 生したドレン水の乾燥を促進させることができる。
(6)
本実施形態の空気調和機 10では、制御部 80が、 2つの熱交換器 3, 5を凝縮器、 蒸発器として機能させる第 1の状態と、蒸発器、凝縮器として機能させる第 2の状態と を所定のバッチ切換時間経過毎に交互に切り換えて、各熱交換器 3, 5の表面に担 持された吸着剤における吸着動作、再生動作を繰り返し行わせる。さらに、制御部 8 0は、実際にドレン水が発生したことを検知すると、上記バッチ切換時間を検知等す る前の運転よりも長くして乾燥運転を行う。
[0066] これにより、空気流路切換時間が長くなることで、熱交換器 3, 5を通過した空気に 含まれる顕熱の処理量が減少して空気に顕熱負荷が多く残され、ドレン水を蒸発さ せやすい状態にすることができる。また、冷媒流路切換時間が長くなることで、凝縮 熱が増大してドレン水を蒸発させやすい状態にすることができる。この結果、ドレン水 の発生を効果的に抑制することができる。
(7)
本実施形態の空気調和機 10の制御方法では、上述のように、ドレン水認識部とし て機能する水位センサ 81等を用いて、吸着剤が表面に担持された熱交 5の うち、蒸発器とし機能する側におけるドレン水の発生を検知、あるいは湿度センサ 3b , 5b等を用いてドレン水の発生を予測すると、それ以降のドレン水の発生を抑制する ための乾燥運転を行う。
[0067] これにより、水位センサ 81等のドレン水認識部におけるドレン水の発生を検知、予 測した後における空気調和機の室内機内におけるドレン水の発生を抑えることがで きる。この結果、例えば、ドレン配管の配管径を小さくしたり、ドレン配管を不要にした りすることができ、ドレン配管の材料費や配管配設工事費用を削減してコストダウンを 図ることができる。
[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は実施形態に限定される ものではなぐ発明の要旨を逸脱しない範囲で種々の変更が可能である。
(A)
上記実施形態では、ドレン水の発生を検知する手段として、水位センサ 81を用いる 例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
[0068] 例えば、図 16に示すように、第 1熱交換器 3または第 2熱交換器 5の側面における 上部に設けられたサーミスタ 3c, 5cと、最下部に設けられたサーミスタ 3d, 5dと、を 用いてドレン水の発生を検知してもよ 、。
このような構成を備えた空気調和機では、蒸発器として機能する熱交換器 3, 5にお いてドレン水が発生すると、熱交換器 3, 5の側面をったつて最下部に取り付けられた サーミスタ 3d, 5dに接触する。そして、バッチ切換時間の経過後に空気および冷媒 の流路が切り換えられると、熱交 5が凝縮器として機能し、サーミスタの温度 が上昇する。このとき、ドレン水が発生している場合には、最下部のサーミスタ 3d, 5d はドレン水と接触しているため、ドレン水と接触していない上部のサーミスタ 3c, 5cと の間で温度上昇に差が生じる。この結果、熱交換器 3, 5の上部と最下部とにそれぞ れ取り付けられたサーミスタ 3c, 5cおよびサーミスタ 3d, 5dにおける、熱交^^ 3, 5 が凝縮器として機能する際の温度上昇に差が生じたことを検知することで、制御部 8 0はドレン水の発生を検知することができる。
[0069] なお、図 16では、サーミスタが熱交^^ 3, 5の双方に取り付けられている力 熱交 换器 3, 5に対して、サーミスタ 3c, 3dあるいはサーミスタ 5c, 5dのいずれか一方のみ が取り付けられて 、る構成であってもよ 、。
(B)
上記実施形態では、ドレン水の発生を検知する手段として、フロート式の水位セン サ 81を例に挙げて説明した。しかし、本発明はこれに限定されるものではない。 例えば、同じ水位センサであっても、図 17に示すように、ドレンパン 83の底面に配 置されたサーミスタ(ドレン水認識部) 85であってもよい。このサーミスタ 85を用いた 水位センサでは、吸着動作を行う蒸発器として機能する熱交翻側において発生し たドレン水がドレンパン 83に配置されたサーミスタ 85に接触すると温度測定値が空 気温度からドレン水の温度まで下降することを検知してドレン水の発生を検知するこ とがでさる。
[0070] (C)
上記実施形態では、空気調和機 10が 2つの熱交換器 (第 1熱交換器 3、第 2熱交 換器)を備えており、バッチ式制御を行う例を挙げて説明した。しかし、本発明はこれ に限定されるものではない。
例えば、単一の熱交換器を用いて吸着剤を担持した調湿ユニットを回転させる等の 方法により吸着動作と再生動作とを行うフロー式の空気調和機であってもよい (特開 2001— 208374号公報参照)。このようなフロー式空気調和機であっても、上記実施 形態の空気調和機 10と同様に乾燥制御運転を行うことができる。
さらに、本発明の空気調和機は、換気機能を備えた上記実施形態のデシカント式 外調機に対して、換気機能を備えて 、な 、デシカント式調湿機であってもよ!、。
[0071] (D)
上記実施形態では、空気調和機 10が、 2つの熱交換器 (第 1熱交換器 3、第 2熱交 5)を備えている例を挙げて説明した。しかし、本発明はこれに限定されるもので はない。
例えば、 3つ以上の熱交換器を備えており、所定の数の熱交換器が吸着動作、そ の他の熱交換器が再生動作を行う第 1の状態と、上記所定の数の熱交換器が再生 動作、その他の熱交換器が吸着動作を行う第 2の状態とを切り換えるようにバッチ式 制御が行われる空気調和機 10であってもよ 、。 (E)
上記実施形態では、第 1熱交 3および第 2熱交 5がクロスフィン式のフィン •アンド'チューブ型熱交換器である例を挙げて説明した。しかし、本発明はこれに限 定されるものではない。
[0072] 例えば、コルゲートフィン式の熱交換器等の他の形式の熱交換器であってもよい。
(F)
上記実施形態では、吸着剤を、ディップ成形によって各フィン 13および伝熱管 15 の外表面に担持している例を挙げて説明した。しかし、本発明はこれに限定されるも のではない。
例えば、吸着剤としての性能を損なわない限り、他のいかなる方法でその外表面に 吸着剤を担持してもよい。
(G)
上記実施形態では、室内空間における温度および湿度を測定する温湿度センサ 4 と、湿度を測定する湿度センサ 3b, 5bとを備えている例を挙げて説明した。しかし、 本発明はこれに限定されるものではない。
[0073] 例えば、温湿度センサ 4、湿度センサ 3b, 5bのうち、いずれか一方を備えている構 成であってもよい。ただし、この場合には、温度と湿度の両面からドレン水の発生を予 測、検知することができないため、正確な制御を行いたい場合には上記実施形態の ように室内空間における気温および湿度を測定する温湿度センサ 4と、湿度を測定 する湿度センサ 3b, 5bとを両方備えて 、ることがより好ま 、。
なお、湿度センサ 3b, 5bおよび温湿度センサ 4は、 2つずつ設けられている力 熱 交^ ^3, 5の!、ずれか一方に 1つずつ設けられて!/、ればよ!/、。
産業上の利用可能性
[0074] 本発明の空気調和機は、機内におけるドレン水の発生を効果的に抑制できるという 効果を奏することから、デシカント式の調湿機や外調機等の空気調和機に広く適用 可能である。

Claims

請求の範囲
[1] 蒸気圧縮式の冷凍サイクル運転を行うことによって、室内空間における顕熱負荷お よび潜熱負荷を処理する空気調和機(10)であって、
空気中の水分を吸着する吸着剤と、
前記冷凍サイクルにおける冷媒の蒸発器として機能して前記吸着剤に水分を吸着 させる吸着動作と、凝縮器として機能して前記吸着剤から水分を脱離させる再生動 作とを行う熱交翻 (3, 5)と、
前記熱交換器(3, 5)におけるドレン水の発生を予測あるいは検知するドレン水認 識部(3b, 3c, 3d, 4, 5b, 5c, 5d, 81, 85)と、
前記ドレン水認識咅 (3b, 3c, 3d, 4, 5b, 5c, 5d, 81, 85)における予 S'Jあるいは 検知結果に基づ!/、て、前記ドレン水の発生を抑制する乾燥運転を行う制御部(80)と を備えている空気調和機( 10)。
[2] 前記ドレン水認識部(3b, 3c, 3d, 4, 5b, 5c, 5d, 81, 85)は、前記熱交換器(3 , 5)の下部に配置されたドレンパン (83)に取り付けられた水位センサ(81)を有して いる、
請求項 1に記載の空気調和機( 10)。
[3] 前記ドレン水認識部(3b, 3c, 3d, 4, 5b, 5c, 5d, 81, 85)は、前記蒸発器として 機能する前記熱交換器 (3, 5)を通過した空気の温度および湿度の少なくとも一方を 検知するセンサ(3b, 4, 5b)を有している、
請求項 1に記載の空気調和機( 10)。
[4] 前記ドレン水認識部(3b, 3c, 3d, 4, 5b, 5c, 5d, 81, 85)は、前記熱交換器(3
, 5)の上部と下部とにそれぞれ設けられた温度センサ(3c, 5c, 3d, 5d)を有してい る、
請求項 1に記載の空気調和機( 10)。
[5] 前記冷凍サイクルにおいて流れる冷媒を加圧する圧縮機(7)をさらに備えており、 前記制御部(80)は、前記圧縮機 (7)の容量を抑えて前記乾燥運転を行う、 請求項 1から 4の 、ずれか 1項に記載の空気調和機(10)。
[6] 前記制御部(80)は、前記熱交換器 (3, 5)における前記再生動作と前記吸着動作 とを、所定のバッチ切換時間が経過するたびに交互に切り換えながら運転を行うとと もに、前記バッチ切換時間を長くして前記乾燥運転を行う、
請求項 1から 4の 、ずれか 1項に記載の空気調和機(10)。
[7] 前記制御部(80)は、前記熱交換器 (3, 5)における前記再生動作と前記吸着動作 とを、所定のバッチ切換時間が経過するたびに交互に切り換えながら運転を行うとと もに、前記バッチ切換時間を短くして前記乾燥運転を行う、
請求項 1から 4の 、ずれか 1項に記載の空気調和機(10)。
[8] 前記制御部(80)は、前記室内空間から取り込んだ空気に対して前記潜熱負荷の 処理を行い、前記処理された空気を室内空間へ排出するとともに、室外から取り込ん だ空気に対して前記潜熱負荷を供給して室外へ放出する循環運転に切り換えて前 記乾燥運転を行う、
請求項 1から 4の 、ずれか 1項に記載の空気調和機(10)。
[9] 前記熱交^^の近傍に配置された熱源 (86)をさらに備えており、
前記制御部は、前記ドレン水認識部(3b, 3c, 3d, 4, 5b, 5c, 5d, 81, 85)にお いてドレン水の発生が予測あるいは検知された場合には、前記熱源(86)からドレン 水に対して顕熱を与える、
請求項 1から 4の 、ずれか 1項に記載の空気調和機(10)。
[10] 前記制御部(80)は、前記熱交換器 (3, 5)における前記再生動作と前記吸着動作 とを、所定のバッチ切換時間が経過するたびに交互に切り換えながら運転を行うとと もに、
前記バッチ切換時間の経過時にお!、て、前記冷媒の流路を切り換える冷媒流路切 換部(9)と、空気の流路を切り換える空気流路切換部(35— 38, 47— 50)とをさらに 備えており、
前記冷媒流路切換部 (9)における前記冷媒の流路切り換えを前記空気流路切換 部(35— 38, 47— 50)における空気の流路を切り換えるタイミングよりも早くして前記 乾燥運転を行う、
請求項 1から 4の 、ずれか 1項に記載の空気調和機(10)。 蒸気圧縮式の冷凍サイクル運転を行うことによって、室内空間における顕熱負荷お よび潜熱負荷を処理するとともに、空気中の水分を吸着する吸着剤と、前記冷凍サイ クルにおける冷媒の蒸発器として機能して前記吸着剤に水分を吸着させる吸着動作 と凝縮器として機能して前記吸着剤カゝら水分を脱離させる再生動作とを行う熱交換 器(3, 5)と、機内におけるドレン水の発生を予測あるいは検知するドレン水認識部( 3b, 3c, 3d, 4, 5b, 5c, 5d, 81, 85)と、を備えた空気調和機(10)の制御方法で あって、
前記ドレン水認識咅 (3b, 3c, 3d, 4, 5b, 5c, 5d, 81, 85)における予 S'Jあるいは 検知結果に基づいて、前記ドレン水の発生を抑制する乾燥運転を行う、
空気調和機(10)の制御方法。
PCT/JP2005/005318 2004-03-31 2005-03-24 空気調和機およびその制御方法 WO2005095865A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004104764A JP3797367B2 (ja) 2004-03-31 2004-03-31 空気調和機
JP2004-104764 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005095865A1 true WO2005095865A1 (ja) 2005-10-13

Family

ID=35063862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005318 WO2005095865A1 (ja) 2004-03-31 2005-03-24 空気調和機およびその制御方法

Country Status (2)

Country Link
JP (1) JP3797367B2 (ja)
WO (1) WO2005095865A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2013544A2 (en) * 2006-05-02 2009-01-14 LG Electronics, Inc. Dehumidifier
CN104197472A (zh) * 2014-09-19 2014-12-10 珠海格力电器股份有限公司 一种除湿机内动力装置的控制方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092647B2 (ja) * 2007-09-25 2012-12-05 パナソニック株式会社 換気空調装置
JP2011220561A (ja) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp 熱交換換気装置
KR102498130B1 (ko) * 2016-03-25 2023-02-09 엘지이노텍 주식회사 습기센서를 포함하는 컨버터
JP6785842B2 (ja) * 2016-04-07 2020-11-18 三菱電機株式会社 空気調和装置
JP6443402B2 (ja) * 2016-06-21 2018-12-26 ダイキン工業株式会社 調湿装置
JP6917190B2 (ja) * 2017-05-15 2021-08-11 株式会社竹中工務店 空調システム
KR101973648B1 (ko) * 2017-08-07 2019-04-29 엘지전자 주식회사 환기장치의 제어방법
KR101973646B1 (ko) * 2017-08-07 2019-04-29 엘지전자 주식회사 공기조화장치 및 그 제어방법
EP3460349B1 (en) * 2017-09-21 2021-08-11 Siemens Schweiz AG Latent heat reduction
JP7013990B2 (ja) * 2018-03-23 2022-02-01 株式会社デンソー 車両用空調装置
WO2023248560A1 (ja) * 2022-06-21 2023-12-28 シャープ株式会社 全熱交換素子及び換気装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101894A (ja) * 1992-09-08 1994-04-12 Hitachi Ltd 空気調和システム
JPH06221596A (ja) * 1993-01-26 1994-08-09 Mitsubishi Electric Corp 空気調和機のドレンポンプ制御装置
JP2003161465A (ja) * 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101894A (ja) * 1992-09-08 1994-04-12 Hitachi Ltd 空気調和システム
JPH06221596A (ja) * 1993-01-26 1994-08-09 Mitsubishi Electric Corp 空気調和機のドレンポンプ制御装置
JP2003161465A (ja) * 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2013544A2 (en) * 2006-05-02 2009-01-14 LG Electronics, Inc. Dehumidifier
EP2013544A4 (en) * 2006-05-02 2012-03-21 Lg Electronics Inc DRY
CN104197472A (zh) * 2014-09-19 2014-12-10 珠海格力电器股份有限公司 一种除湿机内动力装置的控制方法及系统
CN104197472B (zh) * 2014-09-19 2017-01-11 珠海格力电器股份有限公司 一种除湿机内动力装置的控制方法及系统

Also Published As

Publication number Publication date
JP3797367B2 (ja) 2006-07-19
JP2005291571A (ja) 2005-10-20

Similar Documents

Publication Publication Date Title
EP1757872B1 (en) Air conditioner and method of controlling the same
WO2005095865A1 (ja) 空気調和機およびその制御方法
KR100781501B1 (ko) 공기 조화기 및 공기 조화기의 제어 방법
JP3864982B2 (ja) 空調システム
JP3624910B2 (ja) 調湿装置
JP3668785B2 (ja) 空気調和装置
JP3596549B2 (ja) 調湿装置
JP3992051B2 (ja) 空調システム
CN101163923A (zh) 湿度调节装置
JP2005291569A (ja) 空気調和機およびその制御方法
WO2005103577A1 (ja) 調湿装置
WO2007004559A1 (ja) 調湿装置
KR100645292B1 (ko) 조습장치
JP4792829B2 (ja) 調湿装置
JP2005140372A (ja) 空気調和装置
JP3712001B2 (ja) 空気調和機および空気調和機の制御方法
JP2005164220A (ja) 空気調和装置
JP2006349326A (ja) 調湿装置
JP4529530B2 (ja) 調湿装置
JP4569150B2 (ja) 調湿装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP