WO2005097989A1 - コムギ内在性dna配列の検出・定量方法 - Google Patents

コムギ内在性dna配列の検出・定量方法 Download PDF

Info

Publication number
WO2005097989A1
WO2005097989A1 PCT/JP2005/006784 JP2005006784W WO2005097989A1 WO 2005097989 A1 WO2005097989 A1 WO 2005097989A1 JP 2005006784 W JP2005006784 W JP 2005006784W WO 2005097989 A1 WO2005097989 A1 WO 2005097989A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
seq
wheat
nucleotide sequence
dna
Prior art date
Application number
PCT/JP2005/006784
Other languages
English (en)
French (fr)
Inventor
Akihiro Hino
Takashi Kodama
Mayu Iida
Hirohito Yamakawa
Satomi Nozaki
Katsuyuki Hayakawa
Original Assignee
Nisshin Seifun Group Inc.
Incorporated Administrative Agency National Agriculture And Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020067020973A priority Critical patent/KR101159866B1/ko
Priority to KR1020117031341A priority patent/KR101154761B1/ko
Application filed by Nisshin Seifun Group Inc., Incorporated Administrative Agency National Agriculture And Food Research Organization filed Critical Nisshin Seifun Group Inc.
Priority to US11/578,107 priority patent/US8030463B2/en
Priority to KR1020117031342A priority patent/KR101154759B1/ko
Priority to KR1020117031339A priority patent/KR101154806B1/ko
Priority to EP05728798A priority patent/EP1736543B1/en
Priority to JP2006512103A priority patent/JP4717807B2/ja
Priority to KR1020117031343A priority patent/KR101154775B1/ko
Priority to AT05728798T priority patent/ATE530646T1/de
Priority to ES05728798T priority patent/ES2374293T3/es
Publication of WO2005097989A1 publication Critical patent/WO2005097989A1/ja
Priority to US13/218,358 priority patent/US8344117B2/en
Priority to US13/218,398 priority patent/US8343724B2/en
Priority to US13/218,385 priority patent/US8722397B2/en
Priority to US13/218,321 priority patent/US8652783B2/en
Priority to US13/710,910 priority patent/US20130115614A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present invention relates to a method for detecting or quantifying an endogenous DNA sequence of wheat in a test sample, which is used particularly in determining the contamination rate of genetically modified wheat contained in food materials and processed foods.
  • the present invention relates to a method for detecting or quantifying wheat endogenous DNA.
  • GMO genetically modified agricultural crops
  • GMOs and non-GMOs may be cultivated together, and the possibility of contamination can not be denied even in the distribution process after harvest.
  • food manufacturers, etc. often consign manufacturing of processed food to manufacturers, and even if it is contracted to use non-GMO, the case where GMO is also used at the factory of the manufacturer. In some cases, this GMO may be incorporated into processed foods in small quantities. Therefore, in order to comply with the labeling requirements, food manufacturers etc. are required to inspect and analyze whether or not GMO is not mixed in finished finished foods.
  • PCR polymerase chain reaction
  • Non-patent literature 1 JAS analysis test handbook genetically modified food inspection 'analysis manual revision 2nd edition (independent administrative corporation agriculture and forestry fisheries consumption technology center)
  • non-wheat hereinafter referred to as “wheat” t
  • wheat GMO non-wheat
  • a method for detecting and quantifying wheat endogenous DNA and development of a primer pair for PCR used therefor are required.
  • barley, barley and barley having high homology to the genome structure and the base sequence of the encoded gene in the same grain for example, barley, rye and oat wheat.
  • durum wheat In addition to common wheat (bread wheat), there are durum wheat.
  • durum wheat has the genome (AA, BB) of the genome (AA, BB, DD) possessed by bread wheat, so it is highly likely that the homology with bread wheat is very high and false detection is made. For this reason, it is possible to specifically detect only the endogenous DNA of the corn flour without misdetecting DNA from other crops such as durum wheat and other wheats, that is, not cross-matching with other crops. Is required.
  • the endogenous DNA region amplified by the PCR method is multicopy, wheat in the test sample can not be accurately quantified, and the contamination rate of GMO wheat in the test sample can be accurately quantified.
  • the region of endogenous DNA that is amplified is a single copy in the genome.
  • the present invention identifies a partial region of wheat DNA (genome) that can specifically detect wheat in single copy and without crossover with other plants in PCR, and amplifies this partial region. And suitable detection of endogenous DNA using these primers
  • the purpose is to provide a method.
  • the present invention aims to provide a standard substance in which a region that can be amplified by a specific primer pair targeting wheat endogenous DNA and recombinant DNA is linked onto circular DNA.
  • the present inventors have found that, in the genomic DNA of wheat, the nontranscriptional region of WaxyD gene, the region of TaSUTID gene encoding sucrose transporter, carboxypeptidase
  • the region of the CbpIII gene that encodes III, the GSS (Genome Survey Sequence) sequence, and the Lrl gene (Leaf rust resistance gene) region are single copies and have no cross reactivity with other plants in the PCR reaction.
  • the present invention has been accomplished by finding that there is a partial region which can specifically detect or quantify the wheat endogenous DNA sequence by amplifying S.
  • a method for detecting or quantifying wheat endogenous DNA in a test sample by PCR wherein the nucleic acid in the test sample or the nucleic acid extracted from the test sample is a template, and SEQ ID NO: Amplifying the nucleic acid of said region using a primer pair capable of amplifying at least 80% or more of the region of the base sequence described in any one of 1 to 7, and detecting or quantifying said amplified nucleic acid
  • Methods including
  • a primer pair comprising: (i) a nucleic acid containing the nucleotide sequence of SEQ ID NO: 8 and a nucleic acid containing the nucleotide sequence of SEQ ID NO: 9; (ii) the nucleotide of SEQ ID NO: 10 ( M ) a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 12 and a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 13; (Iv) a primer pair consisting of a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 14 or 16 and a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 15 or 17, (V) A primer pair consisting of a nucleic acid containing the nucleotide sequence of SEQ ID NO: 19 and a nucleic acid containing the nucleotide sequence of SEQ ID NO: 19; (vi) a nucleic acid containing the nucleo
  • a primer pair for detecting or quantifying wheat in a test sample by PCR which can amplify a region containing at least 80% of the base sequence described in any one of SEQ ID NOs: 1 to 7
  • nucleotide sequence of SEQ ID NO: 8 (a primer pair consisting of a nucleic acid containing the nucleotide sequence of SEQ ID NO: 8 and a nucleic acid containing the nucleotide sequence of SEQ ID NO: 9, (ii) a nucleic acid containing the nucleotide sequence of SEQ ID NO: 10 and a sequence (Iii) a primer pair comprising a nucleic acid comprising the nucleotide sequence according to SEQ ID NO: 12 and a nucleic acid comprising the nucleotide sequence according to SEQ ID NO: 13, (iii) iv) a primer sheet comprising a nucleic acid containing the nucleotide sequence of SEQ ID NO: 14 or 16 and a nucleic acid containing the nucleotide sequence of SEQ ID NO: 15 or 17, (V) the nucleotide sequence of SEQ ID NO: 18
  • a kit for detecting or quantifying a wheat endogenous DNA sequence from a test sample by PCR comprising the primer pair according to the above-mentioned [4] or [5];
  • a circular DNA comprising a DNA consisting of a nucleotide sequence having at least 80% homology with the nucleotide sequence described in any one of SEQ ID NOs: 1 to 7;
  • cyclic DNA according to the above [9] or [10], which comprises one or more DNAs having sequence strength specific to each strain of genetically modified wheat;
  • a method for determining the contamination rate of genetically modified wheat in a test sample comprising: the circular DNA according to any one of the above [7] to [10]; The quantitative PCR is performed with the template as a template, and the calibration PCR for determining the number of molecules of the template DNA is prepared using the results of the above-mentioned quantitative PCR for cyclic DNA, and the above-mentioned quantification for the test sample is performed.
  • the number of molecules of a partial region of a wheat endogenous DNA sequence contained in the test sample, and a DNA sequence specific to at least one type of transgenic wheat The ratio of A obtained by dividing the number of molecules of the partial region of the DNA sequence specific to the transgenic wheat by the number of molecules of the partial region of the wheat endogenous DNA sequence A method, including asking;
  • a molecule of a partial region of a DNA sequence specific to each line of genetically modified wheat which is obtained by performing quantitative PCR using the above ratio A and standard seed power of genetically modified wheat as a template.
  • the ratio B obtained by dividing the number by the number of molecules of the partial region of the wheat endogenous DNA sequence, the formula 100 XAZB is calculated to determine the mixing ratio of the genetically modified wheat in the test sample.
  • the method of the present invention provides accurate information on the presence and amount of wheat in test samples such as food materials and food products, and therefore, for PCR used in the method of the present invention
  • the primer pair specifically detects wheat, and crops other than wheat, such as rice, wheat, rye, rye, oat wheat, minnow, corn, soybean, potato, tomato, eggplant, rice, millet, buckwheat, rapeseed, etc., cross over It is necessary not to react.
  • the region of endogenous DNA to be amplified by the primer pair of the present invention is preferably single copy.
  • a method and a method capable of specifically detecting or quantifying wheat endogenous DNA from test samples such as food materials and processed foods without crossing with other crops are provided.
  • the method detects or quantifies by PCR a specific partial region of a wheat endogenous DNA sequence that has low homology with grains other than wheat and is single copy on genome.
  • the term “wheat” means bread wheat unless otherwise specified.
  • Waxy gene is known to exist in total 3 sets of each of the 4A, 7A, and 7D chromosomes of wheat S (see JP-A 2003-284598, Ainsworth, C. et al: Plant)
  • the present inventors determined the nucleotide sequence (SEQ ID NO: 22) of the non-transcribed region of the WaxyD gene, It was found that there was a single copy region which was present only in genome D in that region, and a portion of lOlbp was made a WxOll region (SEQ ID NO: 2). In addition, the 102 bp portion was defined as the Wx012 region (SEQ ID NO: 1).
  • the Waxy D gene is detected and quantified by PCR amplification of a region containing at least 80% of the WxOl region or Wx012 region.
  • the TaSUT gene is known as a sucrose transporter gene, and it has been reported that there is a single copy of the TaSUT gene, which has very high nucleotide sequence homology to each of wheat 8, B and D chromosomes (Aoki, N. et al: Plant Molecular Biology 50: 453-462, 2002)
  • the sutOl region SEQ ID NO: 3
  • the sut02 region SEQ ID NO: 4
  • the present invention also relates to a method for the detection / quantification of the TaSUTID gene by amplifying in the PCR the region comprising at least 80% of the sutO1 region (SEQ ID NO: 3) and the Z or sut02 region (SEQ ID NO: 4).
  • the present invention relates to a method for detecting and quantifying a CbpIII gene by PCR amplification of a region containing at least 80% of the CbpIII014 region (SEQ ID NO: 5).
  • Wheat GSS region refers to DNA that plays a role like a promoter for genome analysis.
  • the gssOl region (SEQ ID NO: 6) of l l lbp has little cross reactivity with other plant varieties in qualitative PCR that is highly likely to be a single copy.
  • the present invention relates to a method for detecting and quantifying a gssOl region by PCR amplification of a region containing at least 80% of the gssOl (SEQ ID NO: 6) region.
  • the 11 bp LrlOl region (SEQ ID NO: 7) is almost likely to cross with other plant species in qualitative PCR likely to be a single copy. It was confirmed that there was not. Therefore, the present invention detects the Lrl gene by PCR amplification of a region containing at least 80% of the LrlOl (SEQ ID NO: 7) region. It relates to the method of quantifying.
  • a region containing at least 80% of the base sequence described in any one of SEQ ID NOs: 1 to 7 means any one of SEQ ID NOs: 1 to 7).
  • the base sequence described in any one of SEQ ID NO: 1 to 7 or a shorter, region containing a continuous base sequence of at least 80% of the base sequence and further 5 ′ and Z or 3 ′ on the genome A longer region comprising a nucleotide sequence, and at least 80% of the total length occupying the nucleotide sequence set forth in any one of SEQ ID NOs: 1 to 7, is meant.
  • the region to be covered includes at least 80% of the single copy region, it is predicted by selecting an appropriate primer pair even if the region is shorter or longer than the nucleotide sequences set forth in SEQ ID NOs: 1 to 7.
  • a PCR product of length is obtained which allows the detection and Z or quantitation of wheat endogenous DNA.
  • the primer pair used in the PCR method in the present invention is a primer capable of amplifying at least 80% of any region of WxOl region, Wx012 region, sut01, sut02 region, CbpIII014 region, gssOl region, LrlOl region. It is not particularly limited as long as it is a pair, and based on the base sequence of the region to be amplified, it can be designed in compliance with the basic rules of primer preparation. At that time, keep in mind that the Tm value of each primer will be unified.
  • the length of each primer is usually 15 to 40 bp, preferably 15 to 30 bp.
  • the method of the present invention provides accurate information on the presence and amount of wheat in test samples such as food materials and food products, and therefore, for PCR used in the method of the present invention
  • the primer pair specifically detects wheat, and crops other than wheat, such as rice, wheat, wheat, rye, rye, oat wheat, oat wheat, corn, soybean, potato, tomato, eggplant, oats, millet, buckwheat, rapeseed It is necessary that etc. do not cross react.
  • a primer pair for example, (i) a primer pair consisting of a nucleic acid containing the base sequence of SEQ ID NO: 8 and a nucleic acid containing the base sequence of SEQ ID NO: 9; (ii) SEQ ID NO: 10 A primer pair consisting of a nucleic acid containing the nucleotide sequence of SEQ ID NO: 11 and a nucleic acid containing the nucleotide sequence of SEQ ID NO: 11, (iii) a nucleic acid containing the nucleotide sequence of SEQ ID NO: 12 and the nucleotide sequence of SEQ ID NO: 13 (Iv) a primer pair consisting of a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 14 or 16 and a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 15 or 17, (V) A primer pair consisting of a nucleic acid comprising the nucleotide sequence of SEQ ID NO:
  • primer pairs can specifically amplify any of the WxOl l region, Wx012 region, sut01, sut02 region, CbpIIIO14 region, gssOl region, and LrlOl region without crossing with other crops.
  • the “primer consisting of a nucleic acid containing at least 80% of the continuous base sequence of the base sequence of each primer” refers to a continuous base sequence of at least 80% of the base sequences shown in SEQ ID NOs: 8 to 21. It means a primer which is short, long or exactly the same in total length, which is optionally shifted 5 'and Z or 3' in the nucleotide sequence of the genome. Therefore, in the primer pair of (vii) above, among the nucleic acid primers consisting of the nucleotide sequences of SEQ ID NOS: 8 to 21, the forward primer, the backward primer or both of them can be modified according to the conditions described above.
  • Test samples used in the present invention are food materials and processed foods that contain or may contain wheat, and for example, food raw materials such as raw seeds of wheat, dried seeds, flour and mixed flour, and the like It includes processed intermediate materials, processed foods such as breads and potatoes. Also, the food material or food includes not only human food but also pet food and feed. Furthermore, crops other than wheat mean all crops used as food materials and food materials, for example, the above-mentioned crops.
  • Such a sample may be subjected to, for example, as it is or after being crushed and subjected to nucleic acid extraction, washed and dried, and then crushed and subjected to nucleic acid extraction.
  • the nucleic acid used for analysis by extracting the test sample is usually DNA.
  • DNA may be extracted by any known method, a number of DNA extraction kits are commercially available at present and can be extracted using them. For example, using the DNeasy Plant Maxi Kit (manufactured by QIAGEN), the test sample is prepared according to the method described in the JAS analysis test handbook, genetically modified food inspection, analysis manual revision 2nd edition (independent administrative agency, Agriculture, Forestry and Fisheries Consumption Technology Center) Extract your DNA.
  • the concentration of the extracted DNA is determined by measuring the absorbance, etc., and it is preferable to use it diluted to a concentration suitable for PCR.
  • PCR can be carried out according to a conventional method in consideration of the primers used and DNA polymerase. At that time, test with PCR buffer, dNTP, MgCl etc.
  • the two drugs may be prepared or a commercially available PCR kit may be used.
  • the PCR primers may use one or more of the above primer pairs.
  • PCR conditions are, for example, 40 cycles of 95 ° C. for 30 seconds, 63 ° C. for 30 seconds, 72 ° C. for 30 seconds, and finally a condition for 72 ° C. for 7 minutes as the termination reaction.
  • the length can be appropriately changed in consideration of the length of the region to be formed, the concentration of template DNA and the like.
  • Detection of the amplified nucleic acid can be carried out by any method capable of identifying a specific DNA fragment. Specifically, agarose gel electrophoresis, acrylamide gel electrophoresis, capillary electrophoresis, capillary hybridization, no. It can be carried out using zession, immunological methods and the like. Generally, the PCR product is electrophoresed and confirmed by its electrophoretic pattern, for example, electrophoresis on a 0.8% agarose gel containing a heterodimer is used to confirm the bands by detection. Can. [0041] The present invention includes a primer pair used in the above-described detection or quantification method, and a kit including the primer pair. The primer can be produced according to a conventional method. In addition, the kit contains other reagents such as dNTP, MgCl, TaqDNA
  • a polymerase such as a polymerase, buffer (eg Tris-HC1), glycerol, DMSO, DNA for positive control, DNA for negative control, distilled water, etc. may be included.
  • buffer eg Tris-HC1
  • glycerol e.g. Tris-HC1
  • DMSO e.g. Tris-HC1
  • DNA for positive control DNA for negative control
  • distilled water e.g., distilled water, etc.
  • reagents may be provided separately as packaged in the kit, or may be provided as a mixture of two or more reagents. There are no particular limitations on the concentration of each reagent in the kit, as long as it is possible to carry out the PCR of the present invention.
  • information such as suitable PCR conditions may be further attached to the kit, or only the primer reagent may be attached.
  • the present invention also provides a standard substance that is useful in measuring the contamination rate of GMO wheat by quantitative PCR.
  • This standard substance is obtained by linking endogenous DNA carried by Non-GMO wheat and GMO wheat together with one or more GMO wheat specific DNAs on one cyclic DNA.
  • the standard substance according to the present invention contains, for example, as the endogenous DNA, a DNA having a base sequence having a homology of at least 80% with the base sequence described in SEQ ID NO: 1 to 7; It may be circular DNA! /.
  • a primer pair consisting of a nucleic acid containing the nucleotide sequence of SEQ ID NO: 8 and a nucleic acid containing the nucleotide sequence of SEQ ID NO: 9 (ii) a nucleotide sequence of SEQ ID NO: 10 A primer pair comprising the nucleic acid comprising the nucleic acid and the nucleic acid comprising the nucleotide sequence of SEQ ID NO: 11, (iii) a primer comprising the nucleic acid comprising the nucleotide sequence of SEQ ID NO: 12 and the nucleic acid comprising the nucleotide sequence of SEQ ID NO: 13
  • Iv a primer pair consisting of a nucleic acid containing the nucleotide sequence of SEQ ID NO: 14 or 16 and a nucleic acid containing the nucleotide sequence of SEQ ID NO: 15 or 17,
  • V the nucleotide sequence of SEQ ID NO: 18 A primer pair comprising the nucleic
  • the cyclic DNA used as a standard substance is not particularly limited as long as it can insert endogenous DNA and strain specific DNA of GMO wheat, and for example, pBR-based vectors (eg, pBR322, pBR328, etc.), pUC It is possible to use a system vector (pUC19, pUC18 etc.), a ⁇ phage system vector (gt1O, gtl1 etc.), a commercially available vector modified with these, etc.
  • the primers for detecting GMO strain-specific sequences need to be primers capable of amplifying the region including the foreign DNA sequence inserted into GMO wheat of each strain and the upstream and downstream endogenous sequences thereof. .
  • Such primers may be prepared , for example, from the literature reported for soybean (Wurz, A. et al; 2 ⁇ Status report. BgW, BgW-Heft, 1/199797, 118, or Kopell, E. et al .; Mitt. füre Levensm. , Hyg., 88, 164, etc.) or a method analogous thereto.
  • a DNA sequence which can be amplified by such a primer is selected.
  • PCR using the common wheat genome or the GMO wheat genome as a template is performed to obtain the endogenous DNA and the GMO wheat specific DNA.
  • the cloned DNA fragment can be ligated to the cleaved site of the circular DNA by cleaving the cloned DNA fragment and the cloned site of the circular DNA with the same restriction enzymes.
  • restriction enzymes known enzymes can be appropriately selected and used, and, for example, EcoRI, Spel, EcoRV, Smal, Sacl, NotI, HindIII, Xhol and the like are used.
  • the standard substance of the present invention can also be used as a positive control of wheat endogenous DNA sequence or GMO specific DNA sequence in qualitative PCR.
  • the present invention encompasses a method of determining the contamination rate of GMO comb in a test sample by PCR using the above-mentioned standard substance.
  • Ct values are obtained as data.
  • the Ct value is the number of cycles (threshold Cycle) that results in a constant amount of amplification product where amplification occurs exponentially when changes in the amount of amplification product of quantitative PCR are taken over time.
  • the above calibration curve can be used to convert this Ct value into the initial number of molecules of DNA (the number of molecules of template DNA) contained in the test sample before performing PCR.
  • the calibration curve can be prepared, for example, according to a known method or a method based on the Ct value on the vertical axis and the logarithm of the number of molecules of the standard substance contained in the dilution series on the horizontal axis. For example, it is possible to prepare dilution series containing the above-mentioned standard substances at various concentrations, and determine and generate each Ct value after performing quantitative PCR for a fixed time.
  • the number of initial molecules of the partial region of the wheat endogenous DNA sequence and the number of molecules of the partial region of the DNA sequence specific to genetically modified wheat contained in the test sample are the test From the results of quantitative PCR performed on the sample, that is, the Ct value, it can be determined using the above-mentioned calibration curve.
  • the ratio A obtained by dividing the number of molecules of the partial region of the DNA sequence specific to the obtained recombinant wheat by the number of molecules of the partial region of the wheat endogenous DNA sequence is determined to obtain a gene
  • the number of molecules of the partial region of the DNA sequence specific to each GMO wheat line determined by quantitative PCR using standard seeds of recombinant wheat is divided by the number of molecules of the partial region of wheat endogenous DNA sequence.
  • the formula 100 XAZB can be calculated to determine the contamination rate of genetically modified wheat in the test sample.
  • the above ratio B is a non-patent statement It is referred to as "the internal standard ratio" and is the ratio of (recombinant gene) Z (endogenous gene) in the DNA extracted from the seeds of pure GM lines.
  • the internal standard ratio shows a constant ratio in each recombinant seed.
  • each PCR step to be carried out can be carried out simultaneously or separately.
  • the PCR step is performed separately, it is preferable to perform the PCR under the condition that the amplification efficiency of the nucleic acid is substantially the same as the PCR performed to obtain the calibration curve.
  • Such conditions include, for example, conditions under which the temperature and cycle of PCR performed to generate a standard curve are identical.
  • the primers were designed by the primer design software Primer Express (Applied Biosystems). In designing primers, follow the basic rules for primer preparation, and try to unify the Tm value of each primer, and in view of detection from food that DNA is fragmented, the amplification product by PCR is about 100 to 150 bp In addition, the number of bases of the primers was adjusted to 18 to 25 bp. As a result, 5 'primer WxOl 1-5' (SEQ ID NO: 8) and 3, primer WxOl 1-3, (SEQ ID NO: 9), and 5, primer Wx012-5, (SEQ ID NO: 10) and 3 'primer Wx012- The 3 '(SEQ ID NO: 11) was obtained.
  • DNA extracted from two wheat stocks (1 CW, WW) 4 varieties (including N61) and commercially available wheat flour ("Power Merilla” manufactured by Nisshin Seifun Co., Ltd.) is used as a wheat sample.
  • wheat, corn, rice, millet, sono, omugi 2 varieties, rye, oat wheat, soybean, rapeseed, tomato, eggplant, durum wheat 4 varieties (hereinafter referred to as "durum varieties A to D"), 1 DNA extracted from a brand name (CAD) was used.
  • PCR reaction solution was prepared as follows. That is, PCR buffer (PCR bufferll, Applied Biosystems), 200 ⁇ mol / L dNTP, 1.5 mmol / L MgCl 2, 0.5 ⁇
  • the reaction conditions were set as follows using GeneAmp PCR System 9600 (Applied Biosystems) as a PCR amplification apparatus. The reaction was first maintained at 95 ° C. for 10 minutes, and then 40 cycles of PCR amplification were carried out with one cycle of 95 ° C. for 30 seconds, 63 ° C. for 30 seconds and 72 ° C. for 30 seconds. Finally, the reaction mixture was kept at 72 ° C. for 7 minutes as a termination reaction, and then stored at 4 ° C.
  • the PCR amplification reaction solution was subjected to 0.8% agarose gel electrophoresis containing ethidium bromide.
  • the results of WxOl 1-5 and WxOl 3 are shown in the figure: U shows the results of WxO 12-5 '/ WxO 12-3'. Show.
  • any of the primer pairs WxO 11-5, / WxO 11-3, WxO 12-5, / WxO 12-3, for wheat samples (lanes 1 to 4) has the expected size A single band was detected, and no band was observed in lanes other than wheat. From this, the primer pair WxOl-5 'ZWxOl-3' or the bowl Wx012-5 'ZWx012-3' is used, so that the wheat endogenous DNA that crosses with other crops, WxOl 1 It was confirmed that the area or Wx012 area could be detected.
  • Table 1 shows the results for wheat and durum wheat when using primer pairs Wx012-5 and ZWx012-3. Primer pair Wx012-5, ZW x 012 It was confirmed that wheat and durum wheat could also be detected without cross reactivity if -3 'was used [0059] [Table 1]
  • the size of the probe which can obtain good sensitivity to Southern blot hybridization using the kit is said to be 300 bp or more.
  • the Wx012 is 102 bp, which is small as a probe for Southern hybridization.
  • the 444 bp probe WxSOl including the Wx012 region was designed, and the 5 ′ primer WxS01—5 ′ (sequence Using No. 23) and 3 'primer Wx012-3' (SEQ ID NO: 11), it was prepared by PCR and used as a probe.
  • Primers for obtaining WxSOl were designed using Genetyx Win., And the basic rules for primer preparation were observed, and the Tm values of the respective primers were standardized. Professional An outline of the design of the
  • Restriction enzymes were enzymes that did not cut the target region and were not affected by methyl epsilon, and were selected on the condition that the position of the cleavage site containing the target was known. As a result, we selected MboI, Mval, and EcoT14I, which can cleave both sides of the target region in a single enzyme reaction.
  • the respective restriction enzyme cleavage sites and cleavage fragment sizes are shown in FIG.
  • the restriction enzyme site in FIG. 3 is the position in the nucleotide sequence set forth in SEQ ID NO: 22.
  • the DNA was reacted with each of the restriction enzymes described above at 37 ° C. for 15 hours. After the reaction, the phenol was treated with chloroform, subjected to ethanol precipitation, and then dissolved in a TE solution. The obtained DNA solution was subjected to electrophoresis using 1.6% agarose gel (L03, TaKaRa Bio) as a electrophoresis solution using TAE solution. Next, the DNA in the gel was transferred to a membrane (HyperBondN +, Amersham Amersham) using a 20 ⁇ SSC solution overnight.
  • Wx012 fulfills the requirements as an endogenous sequence for detection also in detection by quantitative PCR.
  • durum wheat 4 As template DNA samples for PCR, 12 kinds of plants other than wheat (eg corn, corn, millet, sono, wheat, rye, oat wheat, soybean, rape seed, gulbanzo, green beans), durum wheat 4 The DNA extracted from 19 varieties representative of varieties, and strong, moderate and light wheat was used.
  • wheat eg corn, corn, millet, sono, wheat, rye, oat wheat, soybean, rape seed, gulbanzo, green beans
  • durum wheat 4 The DNA extracted from 19 varieties representative of varieties, and strong, moderate and light wheat was used.
  • the wheat and other plant samples were washed with 1% SDS (Wako Pure Chemical Industries, Ltd.), rinsed with distilled water, dried well, and then finely ground using MultiBeath 'and Shocker (Yasui Kikai).
  • the ground samples of the obtained cereals were subjected to DNeasy Plant Maxi kit (Qiagen), and DNA was extracted according to the corn DNA extraction protocol described in the official method.
  • DNeasy Plant Maxi kit Qiagen
  • DNA was extracted according to the corn DNA extraction protocol described in the official method.
  • 4 varieties of each cultivar are selected at random, and one grain of each grain is extracted using the DNeasy Plant Mini Kit (QIAGEN) according to the protocol of the kit.
  • Quantitative PCR was performed using ABI 7700 (manufactured by Applied Biosystems).
  • the reaction solution for PCR was prepared as follows. First dilute the solutions of Taq Man probe, 5'-primer and 3'-primer to 2 volumes, 5 volumes and 5 volumes respectively with pure water, and mix these with pure water 1: 1
  • the solution mixed at a ratio of 1: 1 was used as a Primer 'Probe Mix solution.
  • the master mix is a combination of TaqMan Universal Master Mix (Applied Systems) and
  • the necessary amount was adjusted by mixing the Primer-Probe Mix solution at a ratio of 1.25: 1.
  • the master mix was dispensed in 72 L aliquots of the number of template DNA, and 8 L of template DNA adjusted to 20 ng Z mL was added to each, and mixed well.
  • the mixture was dispensed in 25 ⁇ l aliquots into designated wells of a 96-well plate, 3 wells per sample.
  • the reaction conditions were set as follows. Hold at 50 ° C for 2 minutes, hold at 95 ° C for 10 minutes, start the reaction, perform 40 cycles of amplification reaction with one cycle of 95 ° C for 30 seconds, 59 ° C for 1 minute, and then keep at 50 ° C for 4 minutes.
  • DNA of 19 varieties of wheat and other 12 kinds of plants, DNA extracted from 4 varieties of durum wheat, and DNA extracted from 12 varieties of plants other than wheat are used as template for 3 wells per sample. Applied and quantitative PCR was performed.
  • the obtained calibration curve is shown in FIG.
  • wheat DNA adjusted to 1 to 300 8 8 / / ⁇ L and 0.1 to 75 ⁇ 8 / / ⁇ L as a standard template DNA, it is possible to draw a linear high-dose line. It has been shown that it can be used for quantitative tests.
  • sutOl region (SEQ ID NO: 3) in the TaSUTID gene and the sut02 region (SEQ ID NO: 4) as shown in the nucleotide sequence were amplified by PCR.
  • the primer pair is designed as in the case of the above-mentioned WaxyD, and is a 5 'primer sutOl.
  • the primer pair was designed in the same manner as in the above-mentioned Waxy D, and the 5 'primer cbp 014-5, (SEQ ID NO: 16) and the 3' primer cbp 0 14-3 '(SEQ ID NO: 17) were used for PCR experiments. The results are shown in Figure 7. In wheat samples (lanes 1 to 4), single bands (lOlbp) of the predicted size were detected, and no bands were detected in lanes other than wheat. It was confirmed that the use of the primer pair cbp014-5'Zcbp014-1 'can detect wheat endogenous DNA (Cbp gene) without crossing with other crops.
  • the gssOl region (SEQ ID NO: 6), the gss02 region (SEQ ID NO: 30) and the gss03 region (SEQ ID NO: 31) in the GSS sequence were amplified by PCR.
  • the primer pair is designed as in the case of the above-mentioned WaxyD, and the pair described in gssOl-5 '(SEQ ID NO: 18) and gssOl-03' (SEQ ID NO: 19) as primers for gssOl region
  • the pair described in gss02—5 ′ (SEQ ID NO: 34) and gss02—3 ′ (SEQ ID NO: 35) for gss03 region
  • gss03—5 ′ SEQ ID NO: 36
  • gss03—3 ′ sequence PCR was performed using the pair described in No. 37.
  • Table 3 The results are shown in Table 3.
  • NTC No Template Control (water) All primer pair force A single band of the expected size was detected for wheat.
  • the gss02 and gss03 primers were found to cross with durum wheat and corn, but the g SS 01 primers did not show cross reactivity with them, and the gssOl primer detected the wheat endogenous gene It has been confirmed that it can be used for
  • the LrlOl region (SEQ ID NO: 7), the Lrl02 region (SEQ ID NO: 32) and the Lrl03 region (SEQ ID NO: 33) in the Lrl sequence were amplified by PCR.
  • the primer pair is designed in the same manner as in the case of the above-mentioned WaxyD, and the pair described in SEQ ID NOS: 20 and 21 as a primer for LrlOl region, and SEQ ID NO: 3 as a primer for Lrl02 region.
  • NTC No Template Control (water) All primer pair force A single band of the expected size was detected for wheat.
  • the primer pair for Lrl02 and the primer pair for Lrl03 showed cross reactivity with durum wheat, but the primer for LrlOl did not show cross reactivity with these, and the primer for L rlOl was for detection of wheat endogenous gene It was confirmed that it could be used.
  • PCR was carried out to detect wheat endogenous DNA. Extraction of DNA, PCR, electrophoresis and the like were performed according to the above-mentioned Examples.
  • FIG. 1 A result of wheat specificity of primer pair WxOl 1-5 '/ 3' is shown.
  • Each lane is M: 100 bp ladder marker, 1: wheat brand (1 CW), 2: wheat brand (WW), 3: wheat brand (N61), 4: flour, 5: rice, 6: wheat. 7: Corn, 8: Dice, 9: Potato, 10: Tomato, 11: Eggplant, 12: Rye, 13: Minolimus, 14: Miso, 15:
  • FIG. 2 The results of wheat specificity of primer pair WxOl 2-5, Z 3 are shown.
  • Each lane is M: 100 bp ladder car, 1: wheat brand (1 CW), 2: wheat brand (WW), 3: wheat brand (N61), 4: wheat flour, 5: rice, 6: wheat. 7: Corn, 8: Soybean, 9: Potato, 10: Tomato, 11: Eggplant, 12: Rye, 13: Mint moth 14: Oat wheat, 15: Fat, 16: Millet, 17: Buckwheat, 18: Rape, 19 : Indicates No Template Control (water).
  • FIG. 3 A drawing showing a design of a probe WxSOl in a Southern blot algorithm for copy number estimation of Wx012. A indicates a nontranscriptional region and B indicates a probe.
  • FIG. 4 The cleavage site of the control enzyme of the probe WxS 01 is shown.
  • FIG. 5 shows the results of Southern blots hybridization probed with WxSOl of wheat.
  • 1 cut WW cultivar ⁇ with Mbol
  • 2 cut WW cultivar ⁇ with M val
  • 3 WW cultivar cut with EcoT 14 I
  • 4 HRS cultivar ⁇ Mbol
  • 5 cutting HRS variety ⁇ with Mval
  • 6 showing the result of cutting HRS variety ⁇ with EcoT14I
  • P Positive Conrol (WxSOl: 30 Og).
  • FIG. 6 The results of Southern blotch and hybridization of durum wheat are shown. Each lane shows the results of 1: cutting durum variety ⁇ with Mbol, 2: cutting durum variety ⁇ with Mval, and 3: cutting durum variety ⁇ with EcoT14I.
  • FIG. 7 The result of the confirmation experiment of the wheat specificity of primer pair CbpOl 4-5V3 is shown.
  • Each lane is M: lOObp Lada 1 marker, 1: wheat brand (1 CW), 2: wheat brand (WW), 3: wheat meal (N61), 4: wheat flour, 5: rice, 6: wheat, 7 : Corn ⁇ ⁇ ⁇ ⁇ ⁇ 8: soybean, 9: potato, 10: tomato, 11: eggplant, 12: rye, 13: minley berry, 14: ⁇ ⁇ ⁇ , 15: ⁇ , 16: kihi ,,, 17: sono, 18: Rape, 19: Indicates No Template Control (water).
  • FIG. 8 This is a calibration curve prepared from the results of quantitative PCR using wheat DNA of various concentrations as a template.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、シングルコピーで、かつPCRにおいて他の植物との交叉性なくコムギを特異的に検出できるコムギ内在性DNA(ゲノム)の部分領域を特定し、この部分領域を増幅するためのプライマーと、これらを用いた内在性DNAの好適な検出・定量方法とを提供することを目的とする。本発明は、被検試料中のコムギ内在性DNA配列を、ポリメラーゼ連鎖反応によって検出または定量する方法において、前記被検試料中の核酸または前記被検試料から抽出した核酸を鋳型とし、配列番号1から7のいずれか1つに記載の塩基配列の少なくとも80%を含む領域を増幅可能なプライマーペアを用いて前記領域の核酸を増幅する工程、および前記増幅された核酸を検出または定量する工程を含む方法を提供する。

Description

明 細 書
コムギ内在性 DNA配列の検出 ·定量方法
技術分野
[0001] 本発明は、被検試料中のコムギの内在性 DNA配列を検出または定量する方法に 関し、特に食品素材および加工食品に含まれる遺伝子組換えコムギの混入率を決 定する際に用いるコムギ内在性 DNAの検出または定量方法に関する。
背景技術
[0002] 日本では、現在までにトウモロコシ、ダイズ、ジャガイモ等について 50種以上の遺 伝子組換え農作物(以下「GMO」 、う)が安全性審査を経て輸入や販売を認めら れている。これに伴って、 GMO含有食品は、「遺伝子組換えに関する表示に係る加 工食品品質表示基準第 7条第 1項及び生鮮食品品質表示基準第 7条第 1項の規定 に基づく農林水産大臣の定める基準」(平成 12年 3月 31日農林水産省告示第 517 号)、及び「食品衛生法施行規則及び乳及び乳製品の成分規格等に関する省令の 一部を改正する省令等の施行について」(平成 13年 3月 15日厚生労働省食発第 79 号)に基づき、その表示が義務化されている。
[0003] しかし、海外では、一度安全性評価が終了すると GMOと非 GMOが混在する形で 栽培されることもあり、収穫後の流通の過程でも混入の可能性が否定できない。また 、食品メーカ等は、加工食品の製造を製造業者に委託することも多ぐ仮に非 GMO を使用するように指定して委託しても、製造業者の工場で GMOも使用して 、る場合 は、この GMOが加工食品に微量混入してしまうことがある。従って、表示の義務を遵 守するためには、食品メーカ等は、完成したカ卩工食品中にも GMOが混入していない カゝどうか検査分析して確認することが求められる。
[0004] 加工食品およびその原料等の被検試料中の GMOの検出方法としては、ポリメラー ゼ連鎖反応(以下「PCR」と 、う)によって組換え DNA
を検出する方法、 ELISA法によって組換え蛋白質を検出する方法があるが、加工食 品の場合、加熱や加圧によって蛋白質が変性していることが多ぐ ELISA法では正 確な検出ができな!/、ことが多いので、 PCR法により検出が行われる。 [0005] 検査分析する方法として、 JAS分析試験ハンドブック遺伝子組換え食品検査 ·分 析マニュアル改訂第 2版 (非特許文献 1)に記載される方法や、『組換え DNA技術応 用食品の検査方法について (一部改正)』 (平成 15年 6月 18日厚生労働省食発第 0 618002号)に記載される方法がある。これらによれば、 GMOの検査分析において は、被検試料カゝら抽出した DNAで PCR増幅ができることを確認する目的で、各農産 物の内在性 DNAを検知するプライマーペアを用いて PCR法を行い、予想される長 さの PCR産物が得られることを確認する必要があることが記載されている。また、被検 試料中に含まれる GMOを定量する場合には、その農産物が必ず持っている内在性 DNAに対する組換え DNAの存在比率から、組換え体の混入率を相対的に測定す る方法が用いられる。
[0006] 例えばトウモロコシでは、 5系統の承認 GMO品種それぞれに対して特異的な検知 プライマーペアのほか、トウモロコシの内在性 DNAとして SSIIB遺伝子の領域を検 知するプライマーペアが開発されている(非特許文献 1)。このプライマーペアは、組 換え DNAの検出および定量において、内在性 DNA量の基準となるものであるため 、増幅される内在性 DNAの領域はゲノムにお!、てシングルコピーであるとされて!/、る
[0007] 『組換え DNA技術応用食品の検査方法について(一部改正)』(平成 15年 11月 1 3日食安発第 1113001号)では、定量 PCR法を行う際、トウモロコシまたはダイズの 内在性 DNA及び組換え DNAを標的とした特異的プライマー対により増幅された増 幅産物をプラスミド上に連結したものを標準物質として使用している。かかる標準物 質を用いて定量 PCR法を行うことにより、被検試料について一定時間定量 PCRを行 つた場合に組換え DNAのコピー数と内在性 DNAのコピー数との比を正確に求める ことができる。
[0008] トウモロコシのように複数の系統の GMO品種が存在する場合には、各系統に特異 的な DNAと内在性 DNAとを一つの環状 DNAに組み込んだ標準物質を用いれば、 各系統の混入率の測定において共通の標準物質を用いることができ、特に有用であ る。
[0009] また、一般に、各系統に特異的な遺伝子は入手が困難であるが、一度これらを組 み込んで環状 DNAを作製すれば、環状 DNA自体を複製することによって、系統特 異的な DNAを安定して供給することも可能となる。
非特許文献 1: JAS分析試験ハンドブック遺伝子組換え食品検査'分析マニュアル 改訂第 2版 (独立行政法人 農林水産消費技術センター)
発明の開示
発明が解決しょうとする課題
[0010] 一方、ノ ンコムギ(以下「コムギ」 t 、うことがある)につ 、て、現在のところ安全性審 查を経た遺伝子組換え品はないが、近い将来の上巿が予想される。このため、コムギ の GMOが流通した場合に備えて、コムギの内在性 DNAを検出および定量する方 法およびこれに用いる PCR用プライマーペアの開発が求められている。し力し、コム ギの場合には、同じ穀物の中にゲノム構造やコードされる遺伝子の塩基配列につい て相同性の高い麦類、例えばォォムギ、ライムギ、オーツムギなどがある。さらに、一 般的なコムギ(パンコムギ)の他に、デュラムコムギが存在する。特にデュラムコムギは 、パンコムギが有するゲノム(AA、 BB、 DD)のうちのゲノム(AA、 BB)を有するため 、パンコムギとの相同性が非常に高ぐ誤検出してしまう可能性が高い。このため、デ ュラムコムギゃ他のムギ類を始めとする他の作物由来の DNAを誤検出せず、バンコ ムギの内在性 DNAのみを特異的に検出できる、すなわち他の作物と交叉性が無い 方法が求められている。
[0011] また、 PCR法により増幅する内在性 DNA領域がマルチコピーであると、被検試料 中のコムギを正確に定量できず、被検試料中の GMOコムギの混入率を正確に定量 するためには増幅される内在性 DNAの領域はゲノムにおいてシングルコピーである ことが望ましい。
[0012] さらに、定量 PCR法によって GMO混入率を求める場合は、コムギについても、内 在性遺伝子 DNA及び組換え DNAを標的とした特異的プライマー対により増幅可能 な領域を環状 DNA上に連結した標準物質も有用である。
[0013] そこで、本発明は、シングルコピーで、かつ PCRにおいて他の植物との交叉性なく コムギを特異的に検出できるコムギ DNA (ゲノム)の部分領域を特定し、この部分領 域を増幅するためのプライマーと、これらを用いた内在性 DNAの好適な検出 '定量 方法とを提供することを目的とする。
[0014] さらに、本発明は、コムギ内在性 DNA及び組換え DNAを標的とした特異的プライ マー対により増幅可能な領域を環状 DNA上に連結した標準物質を提供することを 目的とする。
課題を解決するための手段
[0015] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、コムギのゲノム DNAにおいて、 WaxyD遺伝子の非転写領域、スクローストランスポーターをコード する TaSUTID遺伝子の領域、カルボキシぺプチダーゼ IIIをコードする CbpIII遺伝 子の領域、 GSS (Genome Survey Sequence)配列、および Lrl遺伝子(Leaf rust resistance gene)領域は、シングルコピーであり、かつ PCR反応において他の植物と の交叉性が無ぐそれを増幅することによってコムギ内在性 DNA配列を特異的に検 出または定量できる部分領域が存在することを見出し、本発明を完成させた。
[0016] 即ち、本発明は、
[1]被検試料中のコムギ内在性 DNAを、 PCRによって検出または定量する方法で あって、前記被検試料中の核酸または前記被検試料カゝら抽出した核酸を铸型とし、 配列番号 1から 7のいずれか 1つに記載の塩基配列の少なくとも 80%以上の領域を 増幅可能なプライマーペアを用いて前記領域の核酸を増幅する工程、および前記 増幅された核酸を検出または定量する工程を含む方法;
[2]前記プライマーペアが、(i)配列番号 8に記載の塩基配列を含む核酸と配列番号 9に記載の塩基配列を含む核酸とからなるプライマーペア、 (ii)配列番号 10に記載 の塩基配列を含む核酸と配列番号 11に記載の塩基配列を含む核酸とからなるブラ イマ一ペア、(m)配列番号 12に記載の塩基配列を含む核酸と配列番号 13に記載の 塩基配列を含む核酸とからなるプライマーペア、 (iv)配列番号 14もしくは 16に記載 の塩基配列を含む核酸と配列番号 15もしくは 17に記載の塩基配列を含む核酸とか らなるプライマーペア、(V)配列番号 18に記載の塩基配列を含む核酸と配列番号 19 に記載の塩基配列を含む核酸とからなるプライマーペア、 (vi)配列番号 20に記載の 塩基配列を含む核酸と配列番号 21に記載の塩基配列を含む核酸とからなるプライ マーペア、および (vii)前記 (i)〜(vi)のプライマーペアのそれぞれにおいて、各核酸 が有する塩基配列の少なくとも 80%の連続した塩基配列を含む核酸のペア力 なる プライマーペア、からなる群力も選択されるプライマーペアである上記 [ 1]記載の方 法;
[3]前記プライマーペアに含まれるプライマーが 15〜40塩基長の核酸である上記 [ 1]または [2]記載の方法;
[4]被検試料中のコムギを PCRによって検出または定量するためのプライマーペア であって、配列番号 1から 7のいずれ力 1つに記載の塩基配列の少なくとも 80%を含 む領域を増幅可能であることを特徴とするプライマーペア;
[5] (0配列番号 8に記載の塩基配列を含む核酸と配列番号 9に記載の塩基配列を 含む核酸とからなるプライマーペア、 (ii)配列番号 10に記載の塩基配列を含む核酸 と配列番号 11に記載の塩基配列を含む核酸とからなるプライマーペア、 (iii)配列番 号 12に記載の塩基配列を含む核酸と配列番号 13に記載の塩基配列を含む核酸と からなるプライマーペア、(iv)配列番号 14もしくは 16に記載の塩基配列を含む核酸 と配列番号 15もしくは 17に記載の塩基配列を含む核酸とで構成されるプライマーべ ァ、 (V)配列番号 18に記載の塩基配列を含む核酸と配列番号 19に記載の塩基配列 を含む核酸とからなるプライマーペア、 (vi)配列番号 20に記載の塩基配列を含む核 酸と配列番号 21に記載の塩基配列を含む核酸とからなるプライマーペア、および( vii)前記 (i)〜 (vi)のプライマーペアのそれぞれにお 、て、各核酸が有する塩基配列 の少なくとも 80%の連続した塩基配列を含む核酸のペア力もなるプライマーペア、か らなる群より選択される上記 [4]記載のプライマーペア;
[6]上記 [4]または [5]に記載のプライマーペアを含む、被検試料から PCRによって コムギ内在性 DNA配列を検出または定量するためのキット;
[7]遺伝子組換えコムギおよび非遺伝子組換えコムギが共通して有する内在性 DN Aと、遺伝子組換えコムギの各系統に特異的な配列力 なる 1以上の遺伝子組換え コムギ特異的 DNAとを含む環状 DNA;
[8]配列番号 1から 7のいずれか 1つに記載の塩基配列と少なくとも 80%の相同性を 有する塩基配列からなる DNAを含む環状 DNA;
[9]上記 [4]または [5]に記載のプライマーペアを用いて PCRにより増幅可能な領域 を含む環状 DNA;
[10]さらに、遺伝子組換えコムギの各系統に特異的な配列力 なる 1以上の DNAを 含む、上記 [9]または [10]に記載の環状 DNA;
[11]被検試料における遺伝子組換えコムギの混入率を決定する方法であって、上 記 [7]から [ 10]のいずれか 1項に記載の環状 DNAと、被検試料力 抽出した DNA とを铸型として定量 PCRを行 、、環状 DNAにつ 、ての前記定量 PCRの結果を用い て、铸型 DNAの分子数を求めるための検量線を作成し、被検試料についての前記 定量 PCRの結果と、前記検量線とを用いて、前記被検試料中に含まれる、コムギ内 在性 DNA配列の部分領域の分子数と、少なくとも一種類の遺伝子組換えコムギに 特異的な DNA配列の部分領域の分子数とを求め、前記遺伝子組換えコムギに特異 的な DNA配列の部分領域の分子数を、前記コムギ内在性 DNA配列の部分領域の 分子数で除して得られる比 Aを求めることを含む、方法;
[12]前記比 Aと、遺伝子組換えコムギの標準種子力 抽出した DNAを铸型として定 量 PCRを行って求められる、遺伝子組換えコムギの各系統に特異的な DNA配列の 部分領域の分子数を、コムギ内在性 DNA配列の部分領域の分子数で除して得られ る比 Bとを用い、式 100 XAZBを計算して、被検試料中の遺伝子組換えコムギの混 入率を決定する工程、をさらに含む、上記 [11]に記載の方法;
[!^コ前記定量!^じ!^こ、上記 [4]または [5]に記載のプライマーペア力 選択される 少なくとも 1つのプライマーペアを用いる、上記 [11]または [12]に記載の方法、に関 する。
[0017] 本発明の方法は、食品素材およびカ卩工食品等の被検試料中のコムギの存在およ びその量の正確な情報を与えるものであり、従って、本発明の方法に用いる PCR用 プライマーペアは、コムギを特異的に検出し、コムギ以外の作物、例えばコメ、ォォム ギ、ライムギ、オーツムギ、ミノリムギ、トウモロコシ、ダイズ、ジャガイモ、トマト、ナス、ァ ヮ、キビ、ソバ、ナタネ等は交叉反応しないことが必要である。また、本発明のプライ マーペアにより増幅すべき内在性 DNAの領域は、シングルコピーであることが望まし い。
[0018] ここで、検査法において、 PCR用プライマーペアがコムギ以外の作物と交叉反応す ると、コムギ検出の偽陽性の可能性が生じるば力りでなぐ被検試料中のコムギ内在 性 DNAの正確な定量は困難である。また、該内在性 DNA領域がマルチコピーであ ると、同様にコムギ内在性 DNAを正確に定量できない。故に、そのような方法および プライマーペアは、正確な GMOコムギの混入率を決定することができな!/、。
発明の効果
[0019] 本発明によれば、食品素材および加工食品等の被検試料から、他の作物と交叉す ることなくコムギ内在性 DNAを特異的に検出または定量することができる方法および 該方法に用いる PCR用プライマーペアが提供される。該方法は、コムギ以外の穀物 と相同性が低ぐかつゲノム上でシングルコピーであるコムギ内在性 DNA配列の特 異的な部分領域を、 PCRによって検出または定量する。
[0020] また、本発明により提供される GMOコムギ検知のための標準物質を用いることによ り、定量 PCR法で、被検試料中の GMOコムギの混入率を GMO系統別に精度良く 求めることが可能となる。
発明を実施するための最良の形態
[0021] 以下に、本明細書において用いる用語の意味等を示し、本発明を詳細に説明する
[0022] 本明細書において、用語「コムギ」は特にことわりがない限りパンコムギを意味する。
[0023] 本発明の方法は、コムギの内在性 DNA配列として、コムギのゲノム上の WaxyD遺 伝子の非転写領域とその 3 '上流領域 (配列番号 16)、 TaSUTID遺伝子(
Accession NO.AF408845)、 CbpIII遺伝子(Accession NO.J02817)、 Lrl遺伝子( Accession NO.S79983)、 GSS配列(Accession NO. AJ440705)の領域の特定部分を 検出するものである。
[0024] Waxy遺伝子は、コムギの 4A、 7A、 7D染色体それぞれに 1セットずつ、計 3セット 存在すること力 S知られている(特開 2003— 284598、 Ainsworth, C. et al: Plant
Mol. Biol. 1993 Apr; 22(l):67-82) 0加工食品中のコムギゲノムから WaxyD遺伝子 の全長を検出するのは困難であり、無作為に短い部分配列を選択すると、その領域 はマルチコピーである可能性がある。
[0025] 本発明者らは、 WaxyD遺伝子の非転写領域の塩基配列 (配列番号 22)を決定し、 その領域中にゲノム Dにのみ存在する、シングルコピーである領域があることを見出 し、そのうちの lOlbpの部分を WxOl l領域とした(配列番号 2)。また、 102bpの部 分を Wx012領域とした (配列番号 1)とした。本発明に係る方法では、 WxOl l領域ま たは Wx012領域の少なくとも 80%を含む領域を PCRで増幅することによって Waxy D遺伝子を検出'定量する。
[0026] TaSUT遺伝子は、スクローストランスポーター遺伝子として知られ、コムギ八、 B、 D 染色体のそれぞれに塩基配列の相同性が非常に高い TaSUT遺伝子が 1コピーず つ存在するとの報告がある(Aoki, N. et al: Plant Moleculer Biology 50:453-462, 2002) oし力し、本発明において、ゲノム Dの TaSUTID遺伝子の領域のうち、 sutOl 領域 (配列番号 3)および sut02領域 (配列番号 4)が D染色体のみに存在するシング ルコピー領域である可能性が見出された。そこで、本発明はまた、 sutOl領域 (配列 番号 3)および Zまたは sut02領域 (配列番号 4)の少なくとも 80%を含む領域を PC Rで増幅することによって TaSUTID遺伝子を検出'定量する方法に関する。
[0027] 本発明にお 、て、ゲノムの CbpIII遺伝子の領域のうち、 lOObpの CbpIII014領域 ( 配列番号 5)がシングルコピーである可能性が高ぐ定性 PCRにおいて他の植物品 種とほとんど交叉性がないことが確認された。そこで、本発明は、 CbpIII014領域 (配 列番号 5)の少なくとも 80%を含む領域を PCRで増幅することによって CbpIII遺伝子 を検出'定量する方法に関する。
[0028] コムギの GSS領域とは、ゲノム解析のプロモーターの様な役割を果たす DNAをい う。本発明において、 GSS領域中、 l l lbpの gssOl領域(配列番号 6)は、シングルコ ピーである可能性が高ぐ定性 PCRにおいて他の植物品種とほとんど交叉性がない ことが確認された。そこで、本発明は、 gssOl (配列番号 6)領域の少なくとも 80%を 含む領域を PCRで増幅することによって gssOl領域を検出 ·定量する方法に関する
[0029] 本発明において、コムギゲノムの Lrl遺伝子の領域のうち、 l l lbpの LrlOl領域( 配列番号 7)は、シングルコピーである可能性が高ぐ定性 PCRにおいて他の植物品 種とほとんど交叉性がないことが確認された。そこで、本発明は LrlOl (配列番号 7) 領域の少なくとも 80%を含む領域を PCRで増幅することによって、 Lrl遺伝子を検 出'定量する方法に関する。
[0030] このように、上記 WxOl l領域、 Wx012領域、 sutOl領域、 sut02領域、 CbpIIIOl 4領域、 gssOl領域、および LrlOl領域は、それぞれ約 100〜130bpと短いため、 D NAが断片化されている可能性のある加工食品等の試料カゝらもコムギ内在性 DNA の検出および定量が可能である。
[0031] 尚、本願明細書において、「配列番号 1から 7のいずれか 1つに記載の塩基配列の 少なくとも 80%を含む領域」とは、配列番号 1から 7のいずれ力 1つに記載の塩基配 列の少なくとも 80%の連続した塩基配列を含むより短 、領域、または配列番号 1から 7のいずれか 1つに記載の塩基配列とさらにゲノム上における 5'側および Zまたは 3 '側の塩基配列を含み、かつ全長の少なくとも 80%が配列番号 1から 7のいずれか 1 つに記載の塩基配列を占めるより長い領域を意味する。力かる領域はシングルコピ 一領域を少なくとも 80%包含するため、配列番号 1から 7に記載の塩基配列より短い 領域あるいは長い領域であっても、適切なプライマーペアを選択することにより、予測 された長さの PCR産物が得られ、これによりコムギ内在性 DNAを検出および Zまた は定量することができる。
[0032] 本発明において PCR法に用いるプライマーペアは、 WxOl l領域、 Wx012領域、 s ut01、 sut02領域、 CbpIII014領域、 gssOl領域、 LrlOl領域のいずれかの領域の 少なくとも 80%の領域を増幅できるプライマーペアであれば特に限定されず、増幅し ようとする領域の塩基配列に基づ 、て、プライマー作成上の基本ルールを遵守して 設計することができる。その際、各プライマーの Tm値の統一を図ることに留意する。 また、各プライマーの長さは、通常は 15〜40bp、好ましくは 15〜30bpとする。
[0033] PCR用プライマーペアがコムギ以外の作物と交叉反応すると、コムギ検出の偽陽性 の可能性が生じるばかりでなく、被検試料中のコムギ内在性 DNA配列の正確な定 量は困難である。また、該内在性 DNA配列がマルチコピーであると、同様にコムギ 内在性 DNA配列を正確に定量できない。故に、そのような方法およびプライマーべ ァは、正確な GMOコムギの混入率を決定することができな!/、。
[0034] 本発明の方法は、食品素材およびカ卩工食品等の被検試料中のコムギの存在およ びその量の正確な情報を与えるものであり、従って、本発明の方法に用いる PCR用 プライマーペアは、コムギを特異的に検出し、コムギ以外の作物、例えばコメ、デユラ ムコムギ、ォォムギ、ライムギ、オーツムギ、ミノリムギ、トウモロコシ、ダイズ、ジャガイ モ、トマト、ナス、ァヮ、キビ、ソバ、ナタネ等は交叉反応しないことが必要である。
[0035] このようなプライマーペアとしては、例えば (i)配列番号 8に記載の塩基配列を含む 核酸と配列番号 9に記載の塩基配列を含む核酸とからなるプライマーペア、 (ii)配列 番号 10に記載の塩基配列を含む核酸と配列番号 11に記載の塩基配列を含む核酸 とからなるプライマーペア、(iii)配列番号 12に記載の塩基配列を含む核酸と配列番 号 13に記載の塩基配列を含む核酸とからなるプライマーペア、 (iv)配列番号 14もし くは 16に記載の塩基配列を含む核酸と配列番号 15もしくは 17に記載の塩基配列を 含む核酸とからなるプライマーペア、(V)配列番号 18に記載の塩基配列を含む核酸 と配列番号 19に記載の塩基配列を含む核酸とからなるプライマーペア、 (vi)配列番 号 20に記載の塩基配列を含む核酸と配列番号 21に記載の塩基配列を含む核酸と からなるプライマーペア、および (vii)前記(i)〜(vi)のプライマーペアのそれぞれに おいて、各核酸が有する塩基配列の少なくとも 80%の連続した塩基配列を含む核酸 のペアからなるプライマーペア等が挙げられる。これらのプライマーペアは、 WxOl l 領域、 Wx012領域、 sut01、 sut02領域、 CbpIII014領域、 gssOl領域、 LrlOl領 域のいずれかの領域を、他の作物と交叉性なぐ特異的に増幅することができる。
[0036] なお、「各プライマーの塩基配列の少なくとも 80%の連続した塩基配列を含む核酸 からなるプライマー」は、配列番号 8〜21に示される塩基配列の少なくとも 80%の連 続した塩基配列を含み、場合によりゲノムの塩基配列において 5'側および Zまたは 3'側にシフトした、全長が短い、長いあるいは全く同じであるプライマーを意味する。 このため、上記 (vii)のプライマーペアでは、配列番号 8〜21に記載の塩基配列から なる核酸プライマーのうち、前方プライマー、後方プライマーまたはその両方を前述 の条件に従って改変することができる。ただし、これらのプライマーは配列番号 8〜2 1の塩基配列を少なくとも 80%包含するため、(i)〜 (vi)のプライマーペアと同様に、 WxOl l領域、 Wx012領域、 sut01、 sut02領域、 CbpIII014領域、 gssOl領域、 Lr 101領域のいずれかの領域を、他の作物と交叉性なぐ特異的に増幅することができ る。 [0037] 本発明で用いられる被検試料は、コムギを含むまたは含む可能性のある食品素材 および加工食品であり、例えばコムギの生の種子、乾燥種子、小麦粉やミックス粉な どの食品原料やその加工中間原料、パン類ゃ麵類などの加工食品が含まれる。また 、食品素材または食品はヒトの食品のみならず、ペットフードや飼料を含む。さらに、 コムギ以外の作物は、食品素材、食品原料として用いられる全ての作物を意味し、例 えば上述した作物である。
[0038] このような試料は、例えばそのまま、または粉砕して核酸抽出に供してもよぐ洗浄 して乾燥させてから破砕して核酸抽出に供してもよい。被検試料カゝら抽出して分析に 用いる核酸は通常は DNAである。 DNAは公知の任意の方法によって抽出してもよ いが、現在は多数の DNA抽出キットが市販されており、これらを用いて抽出すること ができる。例えば DNeasy Plant Maxiキット(QIAGEN社製)を用い、 JAS分析試 験ハンドブック 遺伝子組換え食品検査 ·分析マニュアル改訂第 2版 (独立行政法人 農林水産消費技術センター)に記載された方法に従って被検試料カゝら DNAを抽 出する。抽出した DNAは、吸光度の測定などにより濃度を求め、 PCRに好適な濃度 まで希釈して用いることが好ま U、。
[0039] 本発明の方法において、 PCRは、使用するプライマーや DN Aポリメラーゼを考慮 して常法に従って行うことができる。その際に、 PCR緩衝液、 dNTP, MgCl等の試
2 薬は調製してもよいし、市販の PCRキットを用いてもよい。 PCR〖こは、上記プライマー ペアを一組または二組を以上用いてもよい。また、 PCR条件は、例えば 95°C30秒、 63°C30秒、 72°C30秒を 1サイクルとして 40サイクル行い、最後に終了反応として 72 °C7分間という条件が挙げられる力 用いるプライマーの Tmや増幅すべき領域の長 さ、铸型 DNAの濃度などを考慮して適宜変更することができる。
[0040] 増幅された核酸 (PCR産物)の検出は、特定の DNA断片を同定しうる任意の方法 、具体的にはァガロースゲル電気泳動、アクリルアミドゲル電気泳動、キヤピラリー電 気泳動、ノ、イブリダィゼーシヨン、免疫学的方法などを用いて実施することができる。 一般的には、 PCR産物を電気泳動し、その泳動パターンにより確認するが、例えば ェチジゥムブ口ミドを含む 0. 8%のァガロースゲルによる電気泳動を行い、バンドを確 認すること〖こよって検出することができる。 [0041] 本発明は、上述の検出または定量方法で用いるプライマーペア、およびそれらのプ ライマーペアを含むキットを含む。プライマーは常法に従って製造することができる。 また、キットはプライマーペアのほ力 他の試薬、例えば dNTP、 MgCl、 TaqDNA
2
ポリメラーゼなどのポリメラーゼ、緩衝液(例えば Tris— HC1)、グリセロール、 DMSO 、ポジティブコントロール用 DNA、ネガティブコントロール用 DNA、蒸留水等を包含 してもよい。これらの試薬はキットの中で、それぞれ独立に梱包されて提供されてもよ いし、 2種以上の試薬が混合された形で提供されてもよい。キット中のそれぞれの試 薬の濃度に特に制限はなぐ本発明の PCRを実施するについて可能な範囲であれ ばよい。また、キットには、好適な PCR条件等の情報がさらに添付されていてもよいし 、プライマー試薬のみであってもよい。
[0042] また、本発明は、 GMOコムギの混入率を定量 PCR法によって測定する際に有用 な、標準物質を提供する。この標準物質は、 Non-GMOコムギと GMOコムギとが共 通して有する内在性 DNAと、 1以上の GMOコムギ特異的 DNAとを、 1つの環状 DN A上に連結したものである。
[0043] 本発明に係る標準物質は、例えば、内在性 DNAとして、配列番号 1から 7の 、ずれ 力 1つに記載の塩基配列と少なくとも 80%の相同性を有する塩基配列力 なる DNA を含む環状 DNAであってもよ!/、。
[0044] また、例えば、(0配列番号 8に記載の塩基配列を含む核酸と配列番号 9に記載の 塩基配列を含む核酸とからなるプライマーペア、 (ii)配列番号 10に記載の塩基配列 を含む核酸と配列番号 11に記載の塩基配列を含む核酸とからなるプライマーペア、 (iii)配列番号 12に記載の塩基配列を含む核酸と配列番号 13に記載の塩基配列を 含む核酸とからなるプライマーペア、(iv)配列番号 14もしくは 16に記載の塩基配列 を含む核酸と配列番号 15もしくは 17に記載の塩基配列を含む核酸とからなるプライ マーペア、(V)配列番号 18に記載の塩基配列を含む核酸と配列番号 19に記載の塩 基配列を含む核酸とからなるプライマーペア、 (vi)配列番号 20に記載の塩基配列を 含む核酸と配列番号 21に記載の塩基配列を含む核酸とからなるプライマーペア、お よび、(vii)前記 (i)〜(vi)のプライマーペアのそれぞれにおいて、各核酸が有する塩 基配列の少なくとも 80%の連続した塩基配列を含む核酸のペア力 なるプライマー ペア、力もなる群力も選択されるプライマーペアによって増幅されうる領域を、内在性 DNAとして含む環状 DNAであってもよ!/、。
[0045] 標準物質として用いられる環状 DNAは、内在性 DNAおよび GMOコムギの系統 特異的 DNAを挿入できるものであれば特に限定されず、例えば、 pBR系ベクター( 例; pBR322、 pBR328等)、 pUC系ベクター(pUC19、 pUC18等)、 λファージ系 ベクター( gtlO、 gtl l等)、これらに改変をカ卩えた市販のベクター等を用いること ができる。
[0046] GMOコムギを検出する場合は、遺伝子組換えにより普通コムギゲノムに挿入され た外来 DNA配列のみを増幅して検出するのではなく、外来 DNA配列の上流および 下流の内在性配列を含む領域を増幅する必要がある。他の作物にも、同一の外来 D NA配列を挿入して GMO作物を作製する場合があるため、外来 DNA配列のみ検 出すると、 GMOコムギ由来なの力、他の作物の遺伝子糸且換え体なのかが判別でき ないからである。従って、 GMO系統特異的配列を検出するためのプライマーは、各 系統の GMOコムギに揷入された外来 DNA配列とその上流および下流の内在性配 列を含む領域を増幅できるプライマーである必要がある。かかるプライマーは、例え ばダイズについて報告された文献(Wurz, A. et al; 2ηα Status report. BgW, BgW-Heft, 1/199797,118、または Kopell, E. et al.; Mitt. Gebiete Levensm, Hyg., 88, 164等を参照)に記載の方法またはそれに準じた方法に従って、作製される。上 記標準物質に挿入される GMOコムギの各系統に特異的な配列は、かかるプライマ 一で増幅できる DNA配列が選択される。
[0047] 標準物質に挿入するコムギ内在性 DNAと、 GMOコムギ特異的 DNAとが決定され たら、普通コムギゲノムまたは GMOコムギゲノムを铸型とした PCRを行って、内在性 DNAおよび GMOコムギ特異的 DNAをクローユングし、クローユングした DNA断片 と上記環状 DNAのクローユングサイトとを同一の制限酵素で切断することにより、該 DNA断片を該環状 DNAの切断された部位に連結することができる。制限酵素は、 公知のものを適宜選択して使用することができ、例えば、 EcoRI、 Spel、 EcoRV、 Smal 、 Sacl、 NotI、 HindIII、 Xhol等が用いられる。
[0048] こうして作製された標準物質を含む溶液について、 2種以上の希釈系列を作り、そ れぞれについて定量的 PCRを行うと、コムギ内在性 DNA配列、 GMO特異的 DNA 配列の部分領域のそれぞれについて、検量線を求めることができる。さらに、本発明 に係る標準物質は、定性 PCRにおけるコムギ内在性 DNA配列または GMO特異的 DNA配列のポジティブコントロールとしても利用することができる。
[0049] 本発明は、上述の標準物質を用いた PCRにより、被検試料中における GMOコム ギの混入率を決定する方法を包含する。
[0050] 該方法では、まず、上述の標準物質と、被検試料力 抽出した DNAとを铸型として 定量 PCRを行い、標準物質についての定量的 PCRの結果を用いて、铸型 DNAの 分子数を求めるための検量線を作成する。
[0051] 定量的 PCRでは、データとして Ct値が得られる。 Ct値とは、定量 PCRの増幅産物 量の変化を経時的にとった場合に、増幅が指数関数的に起こるところで一定の増幅 産物量になるサイクル数 (threshold Cycle)のことである。この Ct値を、被検試料中に PCRを行う前に含まれて 、た DNAの初期分子数 (铸型 DNAの分子数)に変換する ために、上記検量線を利用することができる。
[0052] 検量線は、例えば Ct値を縦軸に、希釈系列に含まれる標準物質の分子数の対数 を横軸にとって、公知の方法またはそれに準ずる方法に従って作成することができる 。例えば、上記標準物質を様々な濃度で含む希釈系列を作成し、一定時間定量的 P CRを行った後のそれぞれの Ct値を求めて、作成することが可能である。
[0053] 一方、前記被検試料中に含まれた、コムギ内在性 DNA配列の部分領域の初期分 子数および、遺伝子組換えコムギに特異的な DNA配列の部分領域の分子数は、被 検試料について行った定量的 PCRの結果、即ち Ct値から、上述の検量線を用いて 求めることができる。
[0054] こうして、得られた遺伝子組換えコムギに特異的な DNA配列の部分領域の分子数 を、コムギ内在性 DNA配列の部分領域の分子数で除して得られる比 Aを求め、遺伝 子組換えコムギの標準種子を用いた定量的 PCRを行って求められる、 GMOコムギ の各系統に特異的な DNA配列の部分領域の分子数を、コムギ内在性 DNA配列の 部分領域の分子数で除して得られる比 Bを用い、式 100 XAZBを計算して、被検試 料中の遺伝子組換えコムギの混入率を決定することができる。上記比 Bは、非特許文 献 1にお 、て「内標比」と呼ばれるものであり、純粋な GM系統毎の種子から抽出した DNA中の(組換え遺伝子) Z (内在性遺伝子)の比率である。内標比は、各組換え 系統種子中で一定の比率を示す。
[0055] 本発明に係る GMOコムギ混入率の決定方法にぉ 、て行われる各 PCR工程は同 時に実施することもできるし、別々に実施してもよい。それぞれ別に PCR工程を行う 場合は、検量線を求めるために行った PCRと、核酸の増幅効率が略同一となる条件 で行うことが好ましい。かかる条件としては、例えば、検量線を作成するために行った PCRの温度およびサイクルを同一とする条件が挙げられる。
実施例 1
[0056] WaxyD遺伝子の検出
WaxyD遺伝子の非転写領域である lOlbpの WxOl l領域(配列番号 2)、 102bp の WxOl 2領域 (配列番号 1)を増幅することにより検出した。
[1]プライマーの設計
プライマーは、プライマー設計ソフト Primer Express (アプライドバイオシステムズ 社)によって設計した。プライマーのデザインに当たっては、プライマー作製上の基本 ルールを遵守し、各プライマーの Tm値の統一を図る他、 DNAが断片化している加 ェ食品からの検知を鑑み PCRによる増幅産物が 100〜150bp程度になるように、ま たプライマーの塩基数が 18〜25bpとなるようにした。その結果、 5'プライマー WxOl 1 - 5 ' (配列番号 8)と 3,プライマー WxOl 1— 3,(配列番号 9)、および 5,プライマー Wx012— 5,(配列番号 10)と 3 'プライマー Wx012— 3' (配列番号 11)を得た。
[2]DNAの抽出
PCRの铸型 DNAサンプルとしては、コムギサンプルとして、コムギ 2銘柄(1CW、 WW) 4品種 (N61を含む)および市販の小麦粉(日清製粉社製『力メリャ』)から抽出 した DNAを用い、比較例として、コメ、トウモロコシ、ァヮ、キビ、ソノ 、ォォムギ 2品種 、ライムギ、オーツムギ、ダイズ、ナタネ、トマト、ナス、デュラムコムギ 4品種 (以下「デ ュラム品種 A〜D」という。)、 1銘柄 (CAD)から抽出した DNAを用いた。
コムギ、その他の植物試料について、 1%SDS (和光純薬)により洗浄、蒸留水によ るすすぎ後、それぞれよく乾燥させ、次にマルチビーズショッカー (安井機械)を用い て微粉砕した。粉砕サンプル lgを DNeasy Plant Maxiキット(QIAGEN)に供し 、上記非特許文献 1に記載されたトウモロコシの DNA抽出のプロトコルに従って DN Aを抽出した。なお、デュラムコムギは各品種 4粒ずつを無作為に選び、穀粒 1粒ず つから該キットを用いて、該キットのプロトコルに従って DNAを抽出した。抽出した D NAは吸光度から濃度を測定した後、その一部を純水で lOngZ w Lに希釈し、これ を PCR反応の铸型 DNA試料液として用いた。
[3]PCR反応と電気泳動
PCR反応液は以下のように調製した。すなわち PCR緩衝液(PCR bufferll,ァプ ライドバイオシステムズ社), 200 μ mol/L dNTP, 1.5mmol/L MgCl , 0.5 ^
2 mol/L 5,および 3,プライマー,および 0.625単位 Taq DNAポリメラーゼ (Am pli Taq Gold,アプライドバイオシステムズ社)を含む液に lOngZ Lに調整した DNA試料液 2.5 μ Lを加え、全量を 25 μ Lとした。
PCR増幅装置として GeneAmp PCR System9600 (アプライドバイオシステム ズ社)を用い、反応条件は次のように設定した。まず 95°Cに 10分間保ち反応を開始 させ、次に 95°C30秒間、 63°C30秒間、 72°C30秒間を 1サイクルとして、 40サイクル の PCRの増幅を行った。最後に終了反応として 72°C7分間保った後 4°Cで保存し、 得られた反応液を PCR増幅反応液とした。
PCR増幅反応液はェチジゥムブ口ミドを含む 0.8%ァガロースゲル電気泳動に供し た。コムギと他の作物の検知試験にっ 、て、 WxOl 1— 5, /WxOl l 3,の結果を 図: Uこ示し、 WxO 12- 5' /WxO 12- 3 'の結果を図 2【こ示す。
[0057] プライマーペア WxO 11— 5, /WxO 11— 3,、 WxO 12— 5, /WxO 12— 3,のいず れでも、コムギサンプル(レーン 1〜4)には、予想されたサイズのシングルバンドを検 出し、コムギ以外のレーンにはバンドが認められな力つた。このことから、プライマー ペア WxOl l— 5' ZWxOl l— 3'また ίま Wx012— 5' ZWx012— 3'を用!ヽれ ίま、、 他の作物と交叉性なぐコムギ内在性 DNAとして WxOl 1領域または Wx012領域を 検出できることが確認された。
[0058] また、プラィマーぺァWx012— 5,ZWx012— 3,を用ぃた場合のコムギとデュラム コムギについての結果を下記の表 1に示す。プライマーペア Wx012— 5,ZWx012 —3'を用いれば、コムギとデュラムコムギも交叉性なく検出できることが確認された [0059] [表 1]
' 検知プライマー
レーン NO. テンプレート DNA wx012 5' /3:
Γ デュラム品種 A —
2 デュラム品種 B —
3 デュラム品種 C
4 デュラム品種 D —
5 デュラム (C A D ) 一
N No template control 、水) 一
P Positive Control (コムギ) +
+ :至適サイズの増幅バンド検出
:増幅バンド検出されず 実施例 2
[0060] WxO 12領域のコピー数の確認
WxO 12領域のコピー数を確認するため、サザンハイブリダィゼーシヨンを以下の条 件で行った。
[0061] コムギ 2品種力も抽出した DNAをサンプルとした。 DNA抽出は実施例 1と同様に 行った。
[0062] ノヽイブリダィゼーシヨン、及び検出には、 Gene Images Alkphos Direct Labeling and Detection System (アマシャムバイオサイエンス社)を用いた。試薬、緩衝液等は全て キットのプロトコル通りのものを使用した。
[0063] 〔1〕プローブの設計
該キットを用いたサザンノヽイブリダィゼーシヨンにぉ 、て、良好な感度が得られるプ ローブの大きさは 300bp以上であるとされている。し力し、 Wx012は 102bpでありサ ザンハイブリダィゼーシヨンのプローブとしては小さい。また、コムギのゲノムサイズは 1. 7 X 101Qbpと大きく、検出感度を十分に高める必要性があるため、 Wx012領域を 含む 444bpのプローブ WxSOlを設計し、 5'プライマー WxS01— 5' (配列番号 23) と 3'プライマー Wx012— 3' (配列番号 11)を用いて PCRにより作成し、プローブとし て用いた。 WxSOlを得るためのプライマーの設計は Genetyx Win.を用い、プライ マー作製上の基本ルールを遵守し、また各プライマーの Tm値の統一を図った。プロ ーブの設計の概略を図 3に示す。
[0064] 〔2〕制限酵素の選択
制限酵素は、 目的の領域を切断せず、メチルイ匕の影響を受けない酵素で、ターゲ ットを含む切断サイトの位置が判っている事を条件として選択した。その結果、単一 酵素反応で目的の領域の両側を切断できる MboI、 Mval、 EcoT14Iを選択した。 それぞれの制限酵素切断部位および切断片サイズを図 4に示す。尚、図 3における 制限酵素部位は、配列番号 22に記載の塩基配列における位置である。
[0065] 〔3〕コムギのサザンハイブリダィゼーシヨン
DNAに上述の各制限酵素を 37°Cで 15時間反応させた。反応後、フ ノール'クロ 口ホルム処理、エタノール沈殿処理を行い、次いで TE溶液に溶解した。得られた D NA溶液を、 1. 6%ァガロースゲル(L03、TaKaRaバイオ社)を用い、泳動液として TAE溶液を使用した電気泳動に供した。次いで、 20 X SSC溶液を用い、一晩かけ てゲル中の DNAをメンブレン(HyperBondN+,アマシャムファノレマシア社)に転写さ せた。
[0066] ノ、イブリダィゼーシヨンは 55°Cで、キットのハイブリダィゼーシヨンバッファーを用い て行った。プローブ WxSOlの濃度は 20ngZmlとなるようにし、 1晚反応させた。洗 浄は 1次洗浄液を用いて 55°Cで 20分間、 2次洗浄液を用いて常温で 10分間行った 。洗浄後、検出酵素反応を開始させたメンブレンを 3分間放置後、検出溶液をよく落 としてサランラップに包んだ。暗室で感光フィルム(Hyper film,アマシャムフアルマ シァ社)に 1時間感光させて現像し、バンドの有無を確認した。
[0067] その結果、 Mbolで切断した場合は 2本、 Mvalで切断した場合は 3本、 EcoT14I で切断した場合は 3本または 6本のバンドが検出された(図 5)。 Waxy遺伝子はゲノ ム Aに 2コピー、ゲノム Dに 1コピーあると報告されていること(Ainsworth, C. et al: Plant Mol. Biol. 1993 Apr; 22(1):67- 82)から、プローブ WxSOlがハイブリダィズする 領域がゲノム Aに 2コピー、ゲノム Dに 1コピー存在することが確認された。
〔4〕デュラムコムギのサザンハイブリダィゼーシヨン
ゲノム Dが存在しないデュラムコムギゲノムを铸型として、上記 [3]と同様にサザンハ イブリダィゼーシヨンを行 ヽつた。 [0068] その結果、 Mbolで切断した場合は 1本、 Mvalでは 2本、また EcoT14I では 3本のバンドが検出された。し力し、 EcoT14Iによる 3本のバンドは、その うちの 1本が他の 2本より太ぐバンド 2本が重合したものであり、本実験ではデュラム コムギカ 検出されるバンドは最大 4本であると判断した(図 6)。この結果は、 WxSO 1がゲノム Aに 2コピー存在するという上記〔3〕と一致する。また、実施例 1で内在性 D NAの WxO 12領域がゲノム Dのみに存在することが確認されている。これらの結果か ら、 WxO 12領域はコムギゲノム中に 1コピーのみ存在することが確認された。
実施例 3
[0069] 定量的 PCRによる WxO 12の適正確認
次に、定量的 PCRによる検知においても、 Wx012が検知用内在性配列としての必 要事項を満たすことを確認した。
[0070] 〔l〕TaqManプローブの設計
プライマー、プローブの設計ソフトウェアである Primer Express(Applied Biosystemsjapan社製)を用いて設計した。ソフトウェアのプロトコルに記載された、プ ローブ選定時の確認事項を確認し、適当なプローブを選択した。設計したプローブ の塩基配列を配列番号 42に記載する。
[0071] 〔2〕供試サンプル
PCRの铸型 DNAサンプルとしては、コムギ以外の 12種類の植物(コ入トウモロコ シ、ァヮ、キビ、ソノ 、ォォムギ、ライムギ、オーツムギ、ダイズ、ナタネ、ガルバンゾー 、インゲン豆)、デュラムコムギ代表的 4品種、及び、強力、中力、薄力コムギの代表 的 19品種から抽出した DNAを用 、た。
[0072] 〔3〕DNAの抽出
コムギ、その他の植物試料について、 1%SDS (和光純薬)により洗浄、蒸留水によ るすすぎ後、それぞれよく乾燥させ、次にマルチビース'、ショッカー (安井機械)を用 いて微粉砕した。得られた穀類の粉砕サンプル lgを DNeasy Plant Maxi kit(Qiagen) に供し、公定法に記載されたトウモロコシの DNA抽出プロトコルに従って DNAを抽出 した。なお、デュラムコムギは各品種 4粒ずつを無作為に選び、穀粒 1粒ずつを DNeasy Plant Mini Kit(QIAGEN)をキットのプロトコル通り用いて DNAの抽出を行つ た。また、コムギ 4品種については、公定法に記載されているプロトコルに従って Genomic- tip 20/G (QIAGEN)、及び CTAB法による抽出を行い、更に、 Dneasy Plant Mini kit(QIAGEN)による抽出も、キットに付録されているプロトコルに従って行 つた。抽出された DNAは吸光度の測定により濃度を求めた後、その一部を純水によ つて 20ngZ w Lに希釈し、これを PCR反応の铸型 DNA試料液として用いた。
[0073] 〔4〕定量的 PCR反応
定量的 PCRは、 ABI7700 (アプライドバイオシステムズ社製)を用いて行った。
[0074] 分析は、各資料について 2点、または 3点並行で行った。 1つのゥエル当たり 25 μ L の系で反応を行った。
[0075] PCRの反応液は次のように調整した。まず Taq Man probe, 5'-プライマー、 3'プライ マーの溶液を、それぞれ 2 Μ、 5 Μ、 5 Μに純水で希釈し、これらと純水を 1: 1
: 1: 1の割合で混合した溶液を Primer 'Probe Mix溶液とした。
[0076] マスターミックスは、 TaqMan Universal Master Mix (アプライドバイォシステムズ社)と
、 Primer -Probe Mix溶液を 1.25 : 1の割合で混合して必要量調整した。マスターミック スをテンプレート DNAの数だけ、 72 Lずつ分注し、それぞれに 20ngZmLに調整 した铸型 DNAを 8 Lずつ加え、よく混合した。この混合液を 96穴プレートの指定ゥ エルに 25 μ Lずつ、 1サンプルあたり 3ゥエルに分注した。
[0077] 反応条件は次のように設定した。 50°Cで 2分間保った後 95°Cで 10分間保ち反応 を開始させ、 95°C30秒間、 59°C1分間を 1サイクルとして 40サイクルの増幅反応を 行い、その後 50°Cで 4分間保った。
[0078] 〔5〕コムギ特異性の確認
19品種のコムギ、及び他の 12種類の植物の DNA、 4品種のデュラムコムギから抽 出した DNA、及びコムギ以外の 12種類植物カゝら抽出した DNAを铸型として 1サン プルにつき 3ゥエルにアプライして定量 PCRを行った。
[0079] Wx012- 5'/3'プライマー及び TaqManプローブ Wx012— Tによる定量 PCRの結果、
NTCに対しては増幅曲線が検出されず、 19品種のコムギ DNAに対して良好な増 幅曲線が検出された。コムギ以外の 12種の植物 DNA及び 4品種のデュラムコムギ D
NAに対しては増幅が検出されな力つた。 [0080] 〔6〕検量線の直線性の確認
=fムギの DNAを 300ng/ μ 150ng/ μ ^5 μ 30 μ 10ng/ μ 4ng/ μ lng/ /z L、 O.lng/ L、に調整しこれらを、スタンダードの铸型として定量 PCRを行った 。得られた結果から、 JAS分析法ノ、ンドブックに従って検量線を求め、相関係数を確 した 0
[0081] 得られた検量線を図 8に示す。 1〜300η8/ /ζ L、及び 0. 1〜75η8/ /ζ Lに調整し たコムギ DNAをスタンダードの铸型 DNAとしてアプライした結果、直線性の高 ヽ検 量線をひくことができ、定量試験に使用可能であることが示された。
実施例 4
[0082] TaSUTID遺伝子の検出
TaSUTID遺伝子中の sutOl領域 (配列番号 3)およびに記載の塩基配列力 な る sut02領域 (配列番号 4)を PCRにより増幅した。
[0083] プライマーペアは上記 WaxyDの場合と同様に設計し、 5'プライマーである sutOl
- 5' (配列番号 12)と 3'プライマーである sutOl— 3' (配列番号 13)、および 5'プライ マーである sut02— 5' (配列番号 14)と 3'プライマー sut02— 3' (配列番号 15)を P CR実験に用いた。その結果を表 2に示す。
[0084] [表 2]
TaSUT検知プライマー
テンプレート DNA
sut01-5' /3, sut02-5' /3,
コムギ + +
コメ
トゥモロコシ
ダイズ
ライムギ
オーツムギ
ォォムギ
ナタネ
キビ
ァヮ - デュラム銘柄 E
NTC (水) - ―
+ :至適サイス"の増幅'、'ンド検出
:増幅ハ'ンド検出されず
NTC: No Template Control (水)
V、ずれのプライマーペアを用いた場合も、コムギに対しては予測されたサイズのシ ングルバンド (それぞれ 13 lbp、 lOlbp)が検出され、他の穀類およびデュラムコムギ (ゲノム構成 AaBb)に対してはバンドが検出されなかった。なお、コムギについては 複数の品種について同様の試験の行ったところ、すべてにおいて予測されたサイズ のシングルバンドが検出された。
[0085] また、これらのプライマーペアを設計した領域 (Accession NO.AF408845、
3924-4397 ;474bp)力 ゲノム A、 B、 Dにそれぞれ 1コピーあることが既に示されてい る。さらに、 sut01— 5,/3,および sut02— 5,/3,の増幅領域 sutOlおよび sut02 は、定性 PCRの場合コムギ(ゲノム構成 AaBbDd)に特異的で、デュラムコムギ(ゲノ ム構成 AaBb)力 検出されなかったため、 sutOl領域および sut02領域はゲノム D のみに 1コピー存在する可能性の高いことが確認された。このこと力ら、プライマーべ ァ sutOl— 5,Z3,または sut02— 5,Z3,を用いれば、他の作物と交叉せず、コムギ 内在性 DNA(TaSUTlD遺伝子)を検出できることが確認された。
実施例 5
[0086] CbpIII遺伝子の検出 CbpIII遺伝子中の CbpIII014領域(配列番号 5)を PCRにより増幅した。
[0087] プライマーペアは上記 WaxyDの場合と同様に設計し、 5'プライマー cbp014— 5, ( 配列番号 16)と 3'プライマー cbp014— 3' (配列番号 17)を PCR実験に用いた。結 果を図 7に示す。コムギサンプル(レーン 1〜4)には、予測されたサイズのシングルバ ンド(lOlbp)が検出され、コムギ以外のレーンにはバンドが検出されなかった。この こと力 、プライマーペア cbp014— 5' Zcbp014— 3'を用いれば、他の作物と交叉 せず、コムギ内在性 DNA(Cbp遺伝子)を検出できることが確認された。
実施例 6
[0088] GSS配列の検出
GSS配列中の gssOl領域 (配列番号 6)、 gss02領域 (配列番号 30)、 gss03領域( 配列番号 31)を PCRにより増幅した。
[0089] プライマーペアは上記 WaxyDの場合と同様に設計し、 gssOl領域用プライマーと して gssOl— 5' (配列番号 18)及び gssOl— 03' (配列番号 19)に記載のペアを、 gss 02領域用プライマーとして gss02— 5' (配列番号 34)および gss02— 3' (配列番号 3 5)に記載のペアを、 gss03領域用として gss03— 5' (配列番号 36)および gss03— 3' (配列番号 37)に記載のペアを利用して、 PCRを行った。結果を表 3に示す。
[0090] [表 3]
表 3 _ GSS検知プライマーの特異性確認
GSS検知プライマー
テンプレート DNA g s s Ol-5' /3' g s s 02-5' /3' g s s 03-5' /3' コムギ + + + デュラムコムギ 一 Extra 十
ゴメ 一 一 一 ォォムギ 一 一 一 トウモロコシ
ダイズ 一 — ― ソバ 一 一 — ォ一ツムギ 一
ライムギ 一
キビ 一
ァヮ 一
ナタネ 一
NTC — — 一
+ :至適サイス"の増幅/、"ンド検出
一 :増幅/、'ンド検出されず
Extra:至適サイズと異なるサイズのバンドを検出。
NTC: No Template Control (水) すべてのプライマーペア力 コムギに対して予想されたサイズのシングルバンドを検 出した。 gss02用プライマーおよび gss03用プライマーは、デュラムコムギおよびトウ モロコシと交叉性が認められたが、 gSS01用プライマーはこれらとの交叉性が認めら れず、 gssOl用プライマーは、コムギ内在性遺伝子の検出に用いることができること が確認された。
実施例 7
[0091] Lrl配列中の LrlOl領域 (配列番号 7)、 Lrl02領域 (配列番号 32)、 Lrl03領域( 配列番号 33)を PCRにより増幅した。
[0092] プライマーペアは上記 WaxyDの場合と同様に設計し、 LrlOl領域用プライマーと して配列番号 20よび 21に記載のペアを、 Lrl02領域用プライマーとして配列番号 3
8および 39に記載のペアを、 Lr 103領域用として配列番号 40および 41に記載のぺ ァを利用して、 PCRを行った。結果を表 4に示す。
[0093] [表 4] 表 4 —Lrl検知プライマーの特異性確認
Lrl検知プライマー
テンプレート DNA L r 101-5' /3' Lr 102-5' /3' Lrl03_5, /3' コムギ + + + デュラムコムギ 一 + Extra
コメ 一
ォォムギ 一
トウモロコシ 一
ダイズ 一
ソバ 一
オーツムギ 一
ライムギ 一
キビ 一
ァヮ 一
ナタネ 一
NTC 一
+:至適サイス"の増幅ハ'ンド検出
-:増幅/、"ンド検出されず
Extra:至適サイズと異なるサイズのバンドを検出,
NTC: No Template Control (水) すべてのプライマーペア力 コムギに対して予想されたサイズのシングルバンドを検 出した。 Lrl02用プライマーペアおよび Lrl03用プライマーペアは、デュラムコムギと の交叉性が認められたが、 LrlOl用プライマーはこれらとの交叉性が認められず、 L rlOl用プライマーは、コムギ内在性遺伝子の検出に用いることができることが確認さ れた。
比較例
(l) CbpIII遺伝子の塩基配列に基づいて設計された、 5'プライマー Cbp013— 5' ( 配列番号 24) Ζ3'プライマー Cbp013— 3' (配列番号 25)のプライマーペア、(2)Tt hV遺伝子(Castagnaro A. et al: J. Mol. Biol. 1992 A
pr 20;224(4): 1003-9)の塩基配列に基づ!/、て設計された 5'プライマー TthVOl 1— 5 ,(配列番号 26) Z3'プライマー TthVOl l— 3' (配列番号 27)のプライマーペア、ま たは(3)同様に TthV遺伝子の塩基配列に基づ 、て設計された
5'プライマー TthV012— 5' (配列番号 28) Ζ3'プライマー TthV012— 3' (配列番 号 29)のプライマーペアを用いて、 PCRをコムギ内在性 DNAの検知実験を行った。 [0095] DNAの抽出、 PCRおよび電気泳動等は上記実施例に従って行った。
[0096] 上記(1)のプライマ一^ ^ァを用いた結果、コムギに対しては予測されたサイズのシ ングルバンドを検出したが、コメ、才'才ムギ、トウモロコシ、ライムギ、ォォムギ(ミノリム ギ)、オーツムギ、ァヮにもバンドが検出され、複数の作物との交叉性が認められた。 ( 2)の結果、コムギに対しては予測されたサイズのシングルバンドを検出した力 ォォ ムギに交叉性が認められた。(3)の結果、コムギに対しては予想されたナイズのシン ダルバンドを検出した力 ライムギとォォムギの一種であるミノリムギとに交叉性が認 められた。これらの結果を下記の表 5に示す。
[0097] [表 5]
Figure imgf000028_0001
+:至適サイ の増幅 ンド検出
-:增幅ハ'; "検出されず
NTC: No Template Control (水)
空欄:未試験 図面の簡単な説明
[図 1]プライマーペア WxOl 1-5'/3'のコムギ特異性の結果を示す。各レーンはそ れぞれ、 M:100bpラダーマーカー、 1:コムギ銘柄(1CW)、 2:コムギ銘柄 (WW)、 3 :コムギ銘柄(N61)、4:小麦粉、 5:コメ、 6:ォォムギ、 7:トウモロコシ、 8:ダイス、、 9: ジャガイモ、 10:トマト、 11:ナス、 12:ライムギ、 13:ミノリムギ、 14:ォーゾムギ、 15:
差替え用紙 (規則 26) ァヮ、 16:キビ、 17:ソパ、 18:ナタネ、 19: No Template Control (水)を示す。
[図 2]プライマーペア WxOl 2— 5, Z3,のコムギ特異性の結果を示す。各レーンはそ れぞれ、 M:100bpラダー ーカー、 1:コムギ銘柄(1CW)、 2:コムギ銘柄 (WW)、 3 :コムギ銘柄(N61)、4:小麦粉、 5:コメ、 6:ォォムギ、 7:トウモロコシ、 8:ダイズ、 9: ジャガイモ、 10:トマト、 11:ナス、 12:ライムギ、 13:ミノリムギヽ 14:オーツムギ、 15: ァヮ、 16:キビ、 17:ソバ、 18:ナタネ、 19:No Template Control (水)を示す。
[図 3]Wx012のコピー数推定のためのサザンノヽイブリダィゼーシヨンにおけるプロ一 ブ WxSOlの設計を示す図である。 Aは非転写領域を、 Bはプローブを示す。
[図 4]プローブ WxS 01の制 艮酵素の切断部位を示す。
[図 5]コムギの WxSOlをプローブとしたサザンノヽイブリダィゼーシヨンの結果を示す。 各レーンは、それぞれ、 1:WWの品種△△を Mbolで切断、 2:WWの品種△△を M valで切断、 3:WWの品種 を EcoT14Iで切断、 4:HRSの品種□□を Mbolで 切断、 5:HRSの品種□□を Mvalで切断、 6:HRSの品種□□を EcoT14I、 P:Pos itive Conrol (WxSOl: 30 Og)で切断した結果を示す。
[図 6]デュラムコムギのサザンノ、イブリダィゼーシヨンの結果を示す。各レーンは、それ ぞれ、 1:デュラム品種▽▽を Mbolで切断、 2:デュラム品種▽▽を Mvalで切断、 3: デュラム品種▽▽を EcoT14Iで切断した結果を示す。
[図 7]プライマーペア CbpOl 4-5V3'のコムギ特異性の確認実験の結果を示す。 各レーンはそれぞれ、 M: lOObpラダ一マーカー、 1:コムギ銘柄(1CW)、 2:コムギ 銘柄(WW)、 3:コムギ銘抦(N61)、4:小麦粉、 5:コメ、 6:ォォムギ、 7:トウモロコシ ヽ 8:ダイズ、 9:ジャガイモ、 10:トマト、 11:ナス、 12:ライムギ、 13:ミノリムギ、 14:ォ 一ツムギ、 15:ァヮ、 16:キヒ、、、 17:ソノ 、 18:ナタネ、 19:No Template Control (水)を示す。
[図 8]各種濃度のコムギ DNAを铸型として定量 PCRを行った結果から作成した検量 線である。
差替え用紙(規則 26)

Claims

請求の範囲
[1] 被検試料中のコムギ内在性 DNAを、 PCRによって検出または定量する方法であ つて、前記被検試料中の核酸または前記被検試料カゝら抽出した核酸を铸型とし、配 列番号 1から 7のいずれか 1つに記載の塩基配列の少なくとも 80%以上の領域を増 幅可能なプライマーペアを用いて前記領域の核酸を増幅する工程、および前記増 幅された核酸を検出または定量する工程を含む方法。
[2] 前記プライマーペアが、
( 配列番号 8に記載の塩基配列を含む核酸と配列番号 9に記載の塩基配列を含 む核酸と力 なるプライマーペア、
(ii)配列番号 10に記載の塩基配列を含む核酸と配列番号 11に記載の塩基配列を 含む核酸とからなるプライマーペア、
(iii)配列番号 12に記載の塩基配列を含む核酸と配列番号 13に記載の塩基配列 を含む核酸とからなるプライマーペア、
(iv)配列番号 14もしくは 16に記載の塩基配列を含む核酸と配列番号 15もしくは 1 7に記載の塩基配列を含む核酸とからなるプライマーペア、
(V)配列番号 18に記載の塩基配列を含む核酸と配列番号 19に記載の塩基配列を 含む核酸とからなるプライマーペア、
(vi)配列番号 20に記載の塩基配列を含む核酸と配列番号 21に記載の塩基配列 を含む核酸とからなるプライマーペア、および
(vii)前記 (i)〜 (vi)のプライマーペアのそれぞれにお 、て、各核酸が有する塩基配 列の少なくとも 80%の連続した塩基配列を含む核酸のペア力 なるプライマーペア、 力 なる群力 選択されるプライマーペアである請求項 1記載の方法。
[3] 前記プライマーペアに含まれるプライマーが 15〜40塩基長の核酸である請求項 1 または 2記載の方法。
[4] 被検試料中のコムギを PCRによって検出または定量するためのプライマーペアで あって、配列番号 1から 7のいずれか 1つに記載の塩基配列の少なくとも 80%を含む 領域を増幅可能であることを特徴とするプライマーペア。
[5] (i)配列番号 8に記載の塩基配列を含む核酸と配列番号 9に記載の塩基配列を含 む核酸と力 なるプライマーペア、
(ii)配列番号 10に記載の塩基配列を含む核酸と配列番号 11に記載の塩基配列を 含む核酸とからなるプライマーペア、
(iii)配列番号 12に記載の塩基配列を含む核酸と配列番号 13に記載の塩基配列 を含む核酸とからなるプライマーペア、
(iv)配列番号 14もしくは 16に記載の塩基配列を含む核酸と配列番号 15もしくは 1 7に記載の塩基配列を含む核酸とで構成されるプライマーペア、
(V)配列番号 18に記載の塩基配列を含む核酸と配列番号 19に記載の塩基配列を 含む核酸とからなるプライマーペア、
(vi)配列番号 20に記載の塩基配列を含む核酸と配列番号 21に記載の塩基配列 を含む核酸とからなるプライマーペア、および
(vii)前記 (i)〜 (vi)のプライマーペアのそれぞれにお 、て、各核酸が有する塩基配 列の少なくとも 80%の連続した塩基配列を含む核酸のペア力 なるプライマーペア、 力 なる群より選択される請求項 4記載のプライマーペア。
[6] 請求項 4または 5に記載のプライマーペアを含む、被検試料力も PCRによってコム ギ内在性 DNA配列を検出または定量するためのキット。
[7] 遺伝子組換えコムギおよび非遺伝子組換えコムギが共通して有する内在性 DNAと
、遺伝子組換えコムギの各系統に特異的な配列力 なる 1以上の遺伝子組換えコム ギ特異的 DNAとを含む環状 DNA。
[8] 配列番号 1から 7のいずれ力 1つに記載の塩基配列と少なくとも 80%の相同性を有 する塩基配列からなる DNAを含む環状 DNA。
[9] 請求項 4または 5に記載のプライマーペアを用いて PCRにより増幅可能な領域を含 む環状 DNA。
[10] さらに、遺伝子組換えコムギの各系統に特異的な配列力もなる 1以上の DNAを含 む、請求項 9または 10に記載の環状 DNA。
[11] 被検試料における遺伝子組換えコムギの混入率を決定する方法であって、
請求項 7から 10のいずれ力 1項に記載の環状 DNAと、被検試料力も抽出した DN
Aとを铸型として定量 PCRを行 、、 環状 DNAにつ 、ての前記定量 PCRの結果を用いて、铸型 DNAの分子数を求め るための検量線を作成し、
被検試料についての前記定量 PCRの結果と、前記検量線とを用いて、前記被検 試料中に含まれる、コムギ内在性 DNA配列の部分領域の分子数と、少なくとも一種 類の遺伝子組換えコムギに特異的な DNA配列の部分領域の分子数とを求め、 前記遺伝子組換えコムギに特異的な DNA配列の部分領域の分子数を、前記コム ギ内在性 DNA配列の部分領域の分子数で除して得られる比 Aを求めることを含む、 方法。
[12] 前記比 Aと、
遺伝子組換えコムギの標準種子カゝら抽出した DNAを铸型として定量 PCRを行って 求められる、遺伝子組換えコムギの各系統に特異的な DNA配列の部分領域の分子 数を、コムギ内在性 DNA配列の部分領域の分子数で除して得られる比 Bとを用い、 式 100 X AZBを計算して、被検試料中の遺伝子組換えコムギの混入率を決定す る工程、をさらに含む、請求項 11に記載の方法。
[13] 前記定量 PCRに、請求項 4または 5に記載のプライマーペア力 選択される少なく とも 1つのプライマーペアを用 、る、請求項 11または 12に記載の方法。
PCT/JP2005/006784 2004-04-09 2005-04-06 コムギ内在性dna配列の検出・定量方法 WO2005097989A1 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
AT05728798T ATE530646T1 (de) 2004-04-09 2005-04-06 Verfahren zum nachweis und zur quantifizierung von endogener weizen-dna-sequenz
KR1020117031343A KR101154775B1 (ko) 2004-04-09 2005-04-06 소맥 내재성 dna 서열의 검출 및 정량 방법
US11/578,107 US8030463B2 (en) 2004-04-09 2005-04-06 Method for detecting and quantifying endogenous wheat DNA sequence
KR1020117031341A KR101154761B1 (ko) 2004-04-09 2005-04-06 소맥 내재성 dna 서열의 검출 및 정량 방법
KR1020117031339A KR101154806B1 (ko) 2004-04-09 2005-04-06 소맥 내재성 dna 서열의 검출 및 정량 방법
EP05728798A EP1736543B1 (en) 2004-04-09 2005-04-06 Method of detecting and quantifying wheat endogenous dna sequence
ES05728798T ES2374293T3 (es) 2004-04-09 2005-04-06 Método para detectar y cuantificar una secuencia de adn de trigo endógeno.
KR1020067020973A KR101159866B1 (ko) 2004-04-09 2005-04-06 소맥 내재성 dna 서열의 검출 및 정량 방법
KR1020117031342A KR101154759B1 (ko) 2004-04-09 2005-04-06 소맥 내재성 dna 서열의 검출 및 정량 방법
JP2006512103A JP4717807B2 (ja) 2004-04-09 2005-04-06 コムギ内在性dna配列の検出・定量方法
US13/218,358 US8344117B2 (en) 2004-04-09 2011-08-25 Method for detecting and quantifying endogenous wheat DNA sequence
US13/218,398 US8343724B2 (en) 2004-04-09 2011-08-25 Method for detecting and quantifying endogenous wheat DNA sequence
US13/218,385 US8722397B2 (en) 2004-04-09 2011-08-25 Method for detecting and quantifying endogenous wheat DNA sequence
US13/218,321 US8652783B2 (en) 2004-04-09 2011-08-25 Method for detecting and quantifying endogenous wheat DNA sequence
US13/710,910 US20130115614A1 (en) 2004-04-09 2012-12-11 Method for detecting and quantifying endogenous wheat dna sequence

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-115687 2004-04-09
JP2004115687 2004-04-09

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US11/578,107 A-371-Of-International US8030463B2 (en) 2004-04-09 2005-04-06 Method for detecting and quantifying endogenous wheat DNA sequence
US13/218,385 Division US8722397B2 (en) 2004-04-09 2011-08-25 Method for detecting and quantifying endogenous wheat DNA sequence
US13/218,398 Division US8343724B2 (en) 2004-04-09 2011-08-25 Method for detecting and quantifying endogenous wheat DNA sequence
US13/218,321 Division US8652783B2 (en) 2004-04-09 2011-08-25 Method for detecting and quantifying endogenous wheat DNA sequence
US13/218,358 Division US8344117B2 (en) 2004-04-09 2011-08-25 Method for detecting and quantifying endogenous wheat DNA sequence

Publications (1)

Publication Number Publication Date
WO2005097989A1 true WO2005097989A1 (ja) 2005-10-20

Family

ID=35125073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006784 WO2005097989A1 (ja) 2004-04-09 2005-04-06 コムギ内在性dna配列の検出・定量方法

Country Status (7)

Country Link
US (6) US8030463B2 (ja)
EP (3) EP2180051B1 (ja)
JP (1) JP4717807B2 (ja)
KR (5) KR101154775B1 (ja)
AT (3) ATE547520T1 (ja)
ES (3) ES2382869T3 (ja)
WO (1) WO2005097989A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132760A1 (ja) 2006-05-15 2007-11-22 Nisshin Seifun Group Inc. コムギ内在性dnaの検出・定量法、および被検試料における遺伝子組換えコムギの混入率の決定方法
JP2011125306A (ja) * 2009-12-21 2011-06-30 National Agriculture & Food Research Organization コムギ内在性遺伝子の検出及び定量方法
US8030463B2 (en) 2004-04-09 2011-10-04 Nisshin Seifun Group Inc. Method for detecting and quantifying endogenous wheat DNA sequence
CN113774164A (zh) * 2021-08-26 2021-12-10 北京市农林科学院 一种用于扩增甜瓜内源病毒的引物对及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10240211B2 (en) * 2014-08-29 2019-03-26 Pioneer Hi-Bred International, Inc. Systems and methods for pericarp genotyping
US10438577B2 (en) * 2015-10-16 2019-10-08 Sony Corporation Information processing device and information processing system
RU2615449C1 (ru) * 2015-12-14 2017-04-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Биологический днк-маркер для определения примеси муки мягкой пшеницы в муке твердой пшеницы и продуктах ее переработки

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125669A (ja) * 1992-10-15 1994-05-10 Norin Suisansyo Tohoku Nogyo Shikenjo Wx遺伝子発現の確認方法およびモチコムギの作出方法
WO2003068989A1 (fr) * 2002-02-15 2003-08-21 Nisshin Seifun Group Inc. Procédé de détection de blé
JP2003284598A (ja) 2002-03-29 2003-10-07 Nisshin Seifun Group Inc 部分的モチコムギの検出方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9005772D0 (en) 1990-03-14 1990-05-09 Cambridge Advanced Tech Plant promoter
GB9615679D0 (en) 1996-07-25 1996-09-04 Mini Agriculture & Fisheries Detection means
EP2180051B1 (en) 2004-04-09 2011-11-16 Nisshin Seifun Group Inc. Method for detecting and quantifying endogenous wheat DNA sequence
ES2452819T3 (es) 2006-05-15 2014-04-02 Nisshin Seifun Group Inc. Método para detectar o cuantificar ADN de trigo endógeno y método para determinar el índice de contaminación del trigo modificado genéticamente en una muestra de ensayo
JP5212860B2 (ja) 2007-09-14 2013-06-19 ハウス食品株式会社 コムギの検出方法
US9012723B2 (en) 2009-01-16 2015-04-21 Monsanto Technology Llc Isolated novel acid and protein molecules from soy and methods of using those molecules to generate transgene plants with enhanced agronomic traits
JP5917788B2 (ja) 2009-12-21 2016-05-18 国立研究開発法人農業・食品産業技術総合研究機構 コムギ内在性遺伝子の検出及び定量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125669A (ja) * 1992-10-15 1994-05-10 Norin Suisansyo Tohoku Nogyo Shikenjo Wx遺伝子発現の確認方法およびモチコムギの作出方法
WO2003068989A1 (fr) * 2002-02-15 2003-08-21 Nisshin Seifun Group Inc. Procédé de détection de blé
JP2003284598A (ja) 2002-03-29 2003-10-07 Nisshin Seifun Group Inc 部分的モチコムギの検出方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AINSWORTH, C. ET AL., PLANT MOL. BIOL., no. 1, 22 April 1993 (1993-04-22), pages 67 - 82
AOKI, N. ET AL., PLANT MOLECULAR BIOLOGY, vol. 50, 2002, pages 453 - 462
CASTAGNARO A. ET AL., J. MOL. BIOL., vol. 224, no. 4, 20 April 1992 (1992-04-20), pages 1003 - 9
MURAI J. ET AL: "Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat", GENE, vol. 234, no. 1, 1999, pages 71 - 79, XP004176890 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8343724B2 (en) 2004-04-09 2013-01-01 Nisshin Seifun Group Inc. Method for detecting and quantifying endogenous wheat DNA sequence
US8722397B2 (en) 2004-04-09 2014-05-13 Nisshin Seifun Group Inc. Method for detecting and quantifying endogenous wheat DNA sequence
US8652783B2 (en) 2004-04-09 2014-02-18 Nisshin Seifun Group Inc. Method for detecting and quantifying endogenous wheat DNA sequence
US8030463B2 (en) 2004-04-09 2011-10-04 Nisshin Seifun Group Inc. Method for detecting and quantifying endogenous wheat DNA sequence
US8344117B2 (en) 2004-04-09 2013-01-01 Nisshin Seifun Group Inc. Method for detecting and quantifying endogenous wheat DNA sequence
US8173400B2 (en) 2006-05-15 2012-05-08 Nisshin Seifun Group Inc. Method of detecting or quantitating endogenous wheat DNA and method of determining contamination rate of genetically modified wheat in test sample
JP5100644B2 (ja) * 2006-05-15 2012-12-19 株式会社日清製粉グループ本社 コムギ内在性dnaの検出・定量法、および被検試料における遺伝子組換えコムギの混入率の決定方法
WO2007132760A1 (ja) 2006-05-15 2007-11-22 Nisshin Seifun Group Inc. コムギ内在性dnaの検出・定量法、および被検試料における遺伝子組換えコムギの混入率の決定方法
KR101426573B1 (ko) 2006-05-15 2014-08-13 가부시키가이샤 닛신 세이분 구루프 혼샤 소맥 내재성 dna의 검출·정량법 및 피검 시료에 있어서의 유전자 재조합 소맥의 혼입율의 결정 방법
WO2011078094A1 (ja) 2009-12-21 2011-06-30 独立行政法人農業・食品産業技術総合研究機構 コムギ内在性遺伝子の検出及び定量方法
JP2011125306A (ja) * 2009-12-21 2011-06-30 National Agriculture & Food Research Organization コムギ内在性遺伝子の検出及び定量方法
US9273362B2 (en) 2009-12-21 2016-03-01 Nisshin Seifun Group Inc. Method for detecting and quantifying wheat endogenous gene
US9447475B2 (en) 2009-12-21 2016-09-20 Nisshin Seifun Group Inc. Method for detecting and quantifying wheat endogenous gene
US9453263B2 (en) 2009-12-21 2016-09-27 Nisshin Seifun Group Inc. Method for detecting and quantifying wheat endogenous gene
KR101762985B1 (ko) 2009-12-21 2017-07-28 가부시키가이샤 닛신 세이분 구루프 혼샤 밀 내재성 유전자의 검출 및 정량 방법
CN113774164A (zh) * 2021-08-26 2021-12-10 北京市农林科学院 一种用于扩增甜瓜内源病毒的引物对及其应用

Also Published As

Publication number Publication date
US8030463B2 (en) 2011-10-04
US8343724B2 (en) 2013-01-01
US20130115614A1 (en) 2013-05-09
EP1736543B1 (en) 2011-10-26
KR101154761B1 (ko) 2012-06-18
JPWO2005097989A1 (ja) 2008-07-31
ES2374293T3 (es) 2012-02-15
ATE533847T1 (de) 2011-12-15
KR20120005058A (ko) 2012-01-13
US8652783B2 (en) 2014-02-18
US20120009586A1 (en) 2012-01-12
EP2180051A3 (en) 2010-05-12
US20120009584A1 (en) 2012-01-12
EP2180051B1 (en) 2011-11-16
ATE530646T1 (de) 2011-11-15
KR101154775B1 (ko) 2012-06-18
EP1736543A4 (en) 2009-05-13
KR101154759B1 (ko) 2012-06-18
KR20120005059A (ko) 2012-01-13
KR20120005057A (ko) 2012-01-13
EP2180051A2 (en) 2010-04-28
US8722397B2 (en) 2014-05-13
ATE547520T1 (de) 2012-03-15
US20120040862A1 (en) 2012-02-16
ES2376300T3 (es) 2012-03-12
KR20120003984A (ko) 2012-01-11
ES2382869T3 (es) 2012-06-14
EP2186895A1 (en) 2010-05-19
KR20070011368A (ko) 2007-01-24
US8344117B2 (en) 2013-01-01
JP4717807B2 (ja) 2011-07-06
EP2186895B1 (en) 2012-02-29
KR101154806B1 (ko) 2012-06-18
KR101159866B1 (ko) 2012-06-28
EP1736543A1 (en) 2006-12-27
US20120009585A1 (en) 2012-01-12
US20090011411A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
EP2518146B1 (en) Method for detection and quantification of wheat endogenous gene
US8344117B2 (en) Method for detecting and quantifying endogenous wheat DNA sequence
JP5100644B2 (ja) コムギ内在性dnaの検出・定量法、および被検試料における遺伝子組換えコムギの混入率の決定方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512103

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067020973

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005728798

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005728798

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020973

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11578107

Country of ref document: US