WO2005095317A1 - ハロゲン化不飽和カルボニル化合物の製造方法 - Google Patents

ハロゲン化不飽和カルボニル化合物の製造方法 Download PDF

Info

Publication number
WO2005095317A1
WO2005095317A1 PCT/JP2005/006414 JP2005006414W WO2005095317A1 WO 2005095317 A1 WO2005095317 A1 WO 2005095317A1 JP 2005006414 W JP2005006414 W JP 2005006414W WO 2005095317 A1 WO2005095317 A1 WO 2005095317A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
halogenated unsaturated
general formula
saturated hydrocarbon
Prior art date
Application number
PCT/JP2005/006414
Other languages
English (en)
French (fr)
Inventor
Kenichi Koyakumaru
Tatsuhiko Hayashibara
Toshifumi Akiba
Tatsuru Saito
Original Assignee
Kuraray Co., Ltd.
Daiichi Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd., Daiichi Pharmaceutical Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to US10/593,200 priority Critical patent/US20070197836A1/en
Priority to EP05727497A priority patent/EP1731494A4/en
Priority to JP2006511836A priority patent/JPWO2005095317A1/ja
Publication of WO2005095317A1 publication Critical patent/WO2005095317A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/277Unsaturated compounds having —CHO groups bound to acyclic carbon atoms containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/56Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
    • C07C45/57Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom
    • C07C45/59Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom in five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/56Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
    • C07C45/57Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom
    • C07C45/60Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom in six-membered rings

Definitions

  • the present invention relates to a halogenated unsaturated carboxy useful as a raw material for pharmaceuticals, especially antibacterial agents.
  • the present invention relates to a method for manufacturing a product.
  • RR 2 , R 3 , RR 5 and R 6 are each independently a hydrogen atom, a saturated hydrocarbon group which may have a substituent, an aryl group which may have a substituent, Represents an alkenyl group or an aralkyl group, R 8 represents a saturated hydrocarbon group optionally having a substituent, an aryl group or an aralkyl group optionally having a substituent, and n is 1 or And X represents a halogen atom.
  • Is useful hereinafter, may be abbreviated as halogenated unsaturated carbyl compound (III)).
  • the halogenated unsaturated carbon compound (III) wherein n is 1 is a useful compound which can be a cyclopropane monoacetal useful as an intermediate of a synthetic antibacterial agent.
  • R 7 is a saturated hydrocarbon group which may have a substituent.
  • R 7 represents an aryl group or an aralkyl group which may have a substituent.
  • It may be abbreviated as alkoxy cyclic ether (I). ) With thionyl halide or sulfuryl halide.
  • the halogenated unsaturated carbon compound (III) can be obtained in an excellent yield and economically at a low cost, but it is accompanied by by-products of sulfurous acid gas, sulfurous acid diester, and sulfuric acid ester. There are environmental issues.
  • an object of the present invention is to provide a method for industrially producing a halogenated unsaturated unsaturated compound (III) without environmental problems.
  • the present invention relates to the following manufacturing method.
  • I 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, a saturated hydrocarbon group which may have a substituent, or a substituent.
  • alkoxy cyclic ether represented by the general formula (II) (Wherein, R 9 represents a saturated hydrocarbon group, an aryl group, an aralkyl group or a hydrocarbon oxy group which may have a substituent, and X represents a halogen atom.) Having the general formula (III)
  • halogenation unsaturated-carbon compound (III) can be manufactured industrially advantageously, without environmental problems.
  • R ⁇ R 2, R 3, R 4, R 5, R 6, saturated hydrocarbon radicals R 7 and R 8 represent may be linear, branched or cyclic, and the number of carbon atoms is preferably 1 to 12, More preferably 1 to 6; for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isoptinole group, a tert-butyl group, a hexyl group, an octyl group, a dodecyl group; And a cycloalkyl group such as a pentyl group and a hexyl group.
  • These saturated hydrocarbon groups may have a substituent.
  • Examples of the strong substituent include a C 1-6 alkyl group such as a methyl group and a C 1-6 carbon atom such as a methoxy group.
  • a C 6-10 arylene group such as a phenyl group which may be substituted with a substituent selected from halogen atoms such as an alkoxyl group and a chlorine atom; a methoxy group, an ethoxy group, a propoxy group, Examples thereof include alkoxyl groups having 1 to 6 carbon atoms such as a butoxy group.
  • the aryl group represented by R ⁇ R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, for example, a fuel group, naphthyl And anthracel groups.
  • aryl groups may have a substituent, and examples of such a substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a hexinole group, Linear, branched or cyclic saturated hydrocarbon groups having 1 to 12 carbon atoms, such as octyl group, dodecyl group, cyclopentyl group and cyclohexyl group; phenyl group, tril group, methoxyphenyl group Group, Substituents such as black fuel group, bromophenol group, ethrophenyl group, naphthinole group and anthracel group (C 1-3 alkyl group, C 1-3 alkoxyl group, halogen atom, nitro group, etc. And the aryl group having 6 to 18 carbon atoms which may have
  • Arukeeru groups R ⁇ RRR 4, R 5 and R 6 represents straight-chain or branched, preferably having 2 to 1 2 carbon atoms, more preferably 2-6, such as Ariru group.
  • Ararukiru groups R ⁇ R 2, R 3, R 4, R 5, R 6, R 7 and R 8 represent is preferably 7 carbon atoms 1 8, more preferably 7 to 1 2, for example, base Njiru And the like.
  • the saturated hydrocarbon group represented by R 9 is linear, branched or cyclic, and preferably has 1 to 12 and more preferably 1 to 6, and includes, for example, a methyl group, an ethyl group, and a propyl group.
  • alkyl groups such as isopropyl group, butyl group, isobutyl group, tert-butyl group, hexyl group, octyl group and dodecyl group; and cycloalkyl groups such as pentyl group and cyclohexyl group.
  • the aryl group represented by R 9 preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, and includes, for example, a pheninole group, a naphthyl group, and an anthraceninole group.
  • the aralkyl group represented by R 9 preferably has 7 to 18 carbon atoms, more preferably 7 to 12 carbon atoms, and includes, for example, a benzyl group.
  • These aralkyl groups may have a substituent, and examples of the substituent include a halogen atom such as a chlorine atom, and an alkoxyl group having 1 to 6 carbon atoms such as a methoxy group.
  • the hydrocarbonoxy group represented by R 9 is linear, branched or cyclic, and preferably has 1 to 13 carbon atoms, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, C1-C12 alkoxyl groups such as tert-butoxy, hexyloxy, octynoleoxy and dodecyloxy; C3-C6 cycloalkyloxy such as cyclopentyloxy and cyclohexyloxy A alkenyloxy group having 3 to 6 carbon atoms such as an aryloxy group; an aralkyloxy group having 7 to 13 carbon atoms such as a benzyloxy group.
  • the nitrogen atom represented by X is a chlorine atom, a fluorine atom, a bromine atom, or an iodine atom, and among them, a chlorine atom is preferable.
  • the alkoxy cyclic ether (I) can be produced by a conventional method.
  • an alkoxy cyclic ether (I) in which R 1 and R 2 are hydrogen atoms is prepared by converting the corresponding 2,3-dihydrofuran into a Lewis acid It can be easily obtained by reacting with orthoformate below.
  • Specific examples of the acid halide (II) include acyl halides such as acetyl chloride, propionyl chloride, petyryl chloride, and benzoyl chloride; methyl methyl carbonate, ethyl ethyl carbonate, and carbonic acid carbonate.
  • esters examples include propyl carbonate, isopyl chlorocarbonate, butyl chlorocarbonate, and isoptyl chlorocarbonate.
  • acetyl chloride, propioelk-based ride, benzoyl-capped ride, methyl-peroxide methyl carbonate, and methyl-perfluorocarbonate are preferred.
  • the amount of the acid nodrogen compound (II) used in the present invention is preferably 0.8 to 5 times, and more preferably 1 to 3 times the mole of the starting alkoxycyclic ether (I). Is more preferred.
  • the addition time of the acid halide (II) is usually in the range of 0.5 to 24 hours, and more preferably in the range of 1 to 10 hours from the viewpoint of production efficiency.
  • This reaction is preferably performed in the presence of a solvent.
  • the solvent that can be used is not particularly limited as long as it does not adversely affect the reaction.
  • aromatic hydrocarbons such as benzene, toluene, xylene, and benzene
  • fats such as pentane, hexane, cyclohexane, and octane Group hydrocarbons
  • halogenated hydrocarbons such as dichloromethane, chloroform, and dichloroethane
  • esters such as methyl acetate, ethyl acetate, n-propyl acetate, and n-butyl ethyl diacid
  • the amount of the solvent to be used is not particularly limited, but is preferably in the range of 0.5 to 50 times, more preferably 1 to 10 times, the mass of the alkoxycyclic ether (I) from the viewpoint of economy.
  • the reaction temperature between the alkoxy cyclic ether (I) and the acid halide (II) is preferably in the range of 0 to 150 ° C, more preferably in the range of 40 to 120 ° C.
  • the reaction time is It usually varies within 1 to 24 hours after addition of the acid halide (II), depending on the temperature.
  • the halogenated unsaturated carbonyl compound (III) can be obtained by mixing the alkoxy cyclic ether (I), the acid halide (II) and the solvent.
  • the acid nodogen compound (II) By adding the acid nodogen compound (II) to the mixture of the cyclic ether (I) and the solvent, preferably by dropping, the halogenated unsaturated unsaturated compound (III) can be obtained.
  • a catalyst may be added according to the type of the acid halide (II) used.
  • the catalyst that can be used include an organic base such as pyridine and an alcohol such as ethanol. In this case, the amount is preferably in the range of 0.1 to 20 mol%, more preferably in the range of 1 to 5 mol 0 /., Based on the alkoxy cyclic ether (I).
  • Halogenated unsaturated carboel compounds (111), particularly compounds where n is 1, are useful compounds that can lead to cyclopropane monoacetal, which is a synthetic antibacterial agent raw material.
  • n is 1
  • X is a chlorine atom
  • I 1 , R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen atoms
  • R 8 is an ethyl group.
  • Compound (III) (4-chloromethyl-2-ethoxymethylidene) can be converted to 1- (diethoxymethyl) cyclopropanecarbaldehyde by reacting it with an alcoholate such as an alkali metal ethoxide. It has been clarified by the research of the present inventors that the 11- (diethoxymethyl) cyclopropanecarbaldehyde is a synthetic antibacterial agent in WO02 / 14278 pamphlet. It is used as a starting material for the amino-substituted azaspiren algin.
  • the reaction solution (halogenated unsaturated force reporter) obtained in the present invention is used.
  • Carbonyl compounds (II) can be used as they are without removing the halogenated unsaturated carbonyl compounds (II).
  • the reaction mixture was analyzed by gas chromatography to find that 1837 g (8.42 mol) of 3-((ethoxymethoxylinole) _2-ethoxytetrahydrofuran was produced.
  • the yield based on 2,3-dihydrofuran was 93.7%.
  • the reaction solution was transferred to a flask equipped with a distillation column (2.5 cm ID, 30 cm height) packed with ceramic Raschig rings, and subjected to vacuum distillation to obtain a reduced pressure of 0.67 kPa (5 mmHg).
  • Example 3 The same operation as in Example 3 was carried out except that the amount of ethyl ethyl carbonate used was 1.3 mol times the amount of the raw material, and the conversion of 3- (diethoxymethyl) -12-ethoxytetrahydrofuran was 97.1. %, Yield 90.5%, yielding 4-chloro-2-ethoxymethylidendanthal.
  • halogenated unsaturated carbonyl compound which can be produced by the method of the present invention is useful as a raw material for cyclopropane monoacetal, which is a compound useful as a synthetic antibacterial agent raw material.
  • This application is based on a patent application No. 2004-104866 filed in Japan, the contents of which are incorporated in full herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

ハロゲン化不飽和カルボニル化合物を、環境上問題なく、工業的に有利に製造する方法を提供する。一般式(I)で示されるアルコキシ環状エーテルを、一般式(II)で示される酸ハロゲン化物と反応させることを特徴とする、一般式(III)で示されるハロゲン化不飽和カルボニル化合物の製造方法。 (式中、各記号は明細書中の定義のとおりである。)

Description

明細書
ハロゲン化不飽和カルボエル化合物の製造方法
Figure imgf000003_0001
本発明は医薬品、 特に抗菌剤の原料として有用なハロゲン化不飽和カルボ
物の製造方法に関する。
背景技術
医薬品、 特に抗菌剤の原料として、
Figure imgf000003_0002
(式中、 R R2、 R3、 R R 5および R 6は、 それぞれ独立して水素原子、 置換 基を有していてもよい飽和炭化水素基、 置換基を有していてもよいァリール基、 アル ケニル基またはァラルキル基を表し、 R8は、 置換基を有していてもよい飽和炭化水 素基、 置換基を有していてもよいァリール基またはァラルキル基を表し、 nは 1また は 2を表し、 Xはハロゲン原子を表す。 ) で示されるハロゲン化不飽和カルボエル化 合物 (以下、 ハロゲンィ匕不飽和カルボュル化合物 (I I I) と略称することがあ る。 ) は有用である。 特に、 nが 1であるハロゲン化不飽和カルボ-ル化合物 (I I I) は、 合成抗菌剤の中間体として有用なシクロプロパンモノァセタールになり得る 有用な化合物である。
本発明者らはすでに、 ハロゲン化不飽和カルボ-ル化合物 (I I I) 力 一般式 (I)
Figure imgf000003_0003
(式中、 R R2、 R3、 R4、 R5、 R6、 R8および nは前記定義のとおりであり、 R7は、 置換基を有していてもよい飽和炭ィヒ水素基、 置換基を有していてもよいァリ ール基またはァラルキル基を表す。 ) で示されるアルコキシ環状エーテル (以下、 了 ルコキシ環状エーテル (I) と略称することがある。 ) とハロゲン化チォニルまたは ハロゲン化スルフリルを反応させることにより得られることを見出している。
上記した反応では、 収率に優れ、 経済的にも安価に、 ハロゲン化不飽和カルボ-ル 化合物 (I I I) を得ることができるが、 亜硫酸ガス、 亜硫酸ジエステル、 硫酸ジェ ステルの副生を伴うという環境上の問題がある。
発明の開示
し力 して、 本発明の目的は、 ハロゲン化不飽和力ルポ-ルイ匕合物 (I I I) を、 環 境上問題なく、 工業的に有利に製造する方法を提供することにある。
本発明者らは鋭意研究した結果、 アルコキシ環状エーテル (I) と後述する一般式 (I I) で示される酸ハロゲン化物 (以下、 酸ハロゲン化物 (I I) と略称すること がある。 ) を反応させることにより、 亜硫酸ガス、 亜硫酸ジエステル、 硫酸ジエステ ルの副生を伴うことなく、 目的のハロゲン化不飽和カルボ-ル化合物 ( I I I) を製 造できることを見出し、 本発明の完成に至った。
すなわち、 本発明は、 以下の製造方法に関する。
[1] 一般式 (I)
Figure imgf000004_0001
(式中、 I 1、 R2、 R3、 R4、 R 5および R 6は、 それぞれ独立して水素原子、 置換 基を有していてもよい飽和炭化水素基、 置換基を有していてもよいァリール基、 アル ケエル基またはァラルキル基を表し、 R7および R8は、 それぞれ独立して置換基を 有していてもょ 、飽和炭化水素基、 置換基を有していてもよいァリ一ル基またはァラ ルキル基を表し、 nは 1または 2を表す。 ) で示されるアルコキシ環状エーテルを、 一般式 (I I)
Figure imgf000004_0002
(式中、 R9は、 飽和炭化水素基、 ァリール基、 置換基を有していてもよいァラルキ ル基または炭化水素ォキシ基を表し、 Xはハロゲン原子を表す。 ) で示される酸ハロ ゲン化物と反応させることを特徴とする、 一般式 (I I I)
Figure imgf000005_0001
(式中、 I 1、 R R3、 R R。、 R6、 R8、 Xおよび nは前記定義のとおりで ある。 ) で示されるハロゲン化不飽和カルボ-ル化合物の製造方法。
本発明によれば、 ハロゲン化不飽和カルボ-ル化合物 (I I I) を、 環境上問題な く、 工業的に有利に製造することができる。
発明を実施するための最良の形態
R\ R2、 R3、 R4、 R5、 R6、 R 7および R 8が表す飽和炭化水素基は、 直鎖状、 分岐状または環状で、 その炭素数は好ましくは 1〜12、 より好ましくは 1〜6であ り、 例えばメチル基、 ェチル基、 プロピル基、 イソプロピル基、 プチル基、 イソプチ ノレ基、 t e r t—プチル基、 へキシル基、 ォクチル基、 ドデシル基などのアルキル 基;シク口ペンチル基、 シク口へキシル基などのシクロアルキル基などが挙げられる。 これらの飽和炭化水素基は置換基を有していてもよく、 力かる置換基としては、 例え ば、 メチル基などの炭素数 1〜6のアルキル基、 メ トキシ基などの炭素数 1〜 6のァ ルコキシル基および塩素原子などのハ口ゲン原子から選ばれる置換基で置換されてい てもよいフエ二ノレ基などの炭素数 6〜10のァリーノレ基;メ トキシ基、 エトキシ基、 プロポキシ基、 プトキシ基などの炭素数 1〜 6のアルコキシノレ基などが挙げられる。
R\ R2、 R3、 R4、 R5、 R6、 R 7および R 8が表すァリール基は、 好ましくは 炭素数 6〜14、 より好ましくは 6〜10であり、 例えばフエエル基、 ナフチル基、 アントラセ-ル基などが挙げられる。 これらのァリール基は置換基を有していてもよ く、 かかる置換基としては、 例えばメチル基、 ェチル基、 プロピル基、 イソプロピル 基、 プチノレ基、 イソブチル基、 t e r t一プチノレ基、 へキシノレ基、 ォクチル基、 ドデ シル基、 シクロペンチル基、 シクロへキシル基などの直鎖状、 分岐状または環状の炭 素数が 1〜 12である飽和炭化水素基;フエ-ル基、 トリル基、 メトキシフエ二ル基、 クロ口フエエル基、 ブロモフエ-ノレ基、 エトロフエ二ノレ基、 ナフチノレ基、 アントラセ エル基などの置換基 (炭素数 1〜 3のアルキル基、 炭素数 1〜 3のアルコキシル基、 ハロゲン原子、 ニトロ基など) を有していてもよい炭素数 6〜1 8のァリール基など が挙げられる。
R \ R R R 4、 R 5および R 6が表すアルケエル基は、 直鎖状または分岐状 で、 好ましくは炭素数 2〜1 2、 より好ましくは 2〜6であり、 例えばァリル基など が挙げられる。
R \ R 2、 R 3、 R 4、 R 5、 R 6、 R 7および R 8が表すァラルキル基は、 好ましく は炭素数 7〜 1 8、 より好ましくは 7〜 1 2であり、 例えばべンジル基などが挙げら れる。
R 9が表す飽和炭化水素基は、 直鎖状、 分岐状または環状で、 その炭素数は好まし くは 1〜 1 2、 より好ましくは 1〜 6であり、 例えばメチル基、 ェチル基、 プロピル 基、 イソプロピル基、 プチル基、 イソブチル基、 t e r t一プチノレ基、 へキシル基、 ォクチル基、 ドデシル基などのアルキル基;シク口ペンチル基、 シク口へキシル基な どのシクロアルキル基などが挙げられる。
R 9が表すァリール基は、 好ましくは炭素数 6〜 1 4、 より好ましくは 6〜 1 0で あり、 例えばフエ二ノレ基、 ナフチル基、 アントラセニノレ基などが挙げられる。
R 9が表すァラルキル基は、 好ましくは炭素数 7〜1 8、 より好ましくは 7 ~ 1 2 であり、 例えばべンジル基などが挙げられる。 これらのァラルキル基は置換基を有し ていてもよく、 かかる置換基としては、 例えば、 塩素原子などのハロゲン原子、 メ ト キシ基などの炭素数 1〜 6のアルコキシル基などが挙げられる。
R 9が表す炭化水素ォキシ基は直鎖状、 分岐状または環状の、 好ましくは炭素数 1 〜1 3であり、 例えばメトキシ基、 エトキシ基、 プロポキシ基、 イソプロポキシ基、 ブトキシ基、 イソブトキシ基、 t e r t—プトキシ基、 へキシルォキシ基、 ォクチノレ ォキシ基、 ドデシルォキシ基などの炭素数 1〜 1 2のアルコキシル基;シク口ペンチ ルォキシ基、 シク口へキシルォキシ基などの炭素数 3〜 6のシクロアルキルォキシ 基;ァリルォキシ基などの炭素数 3〜 6のアルケニルォキシ基;ベンジルォキシ基な どの炭素数 7〜 1 3のァラルキルォキシ基などが挙げられる。 Xが表すノヽロゲン原子は、 塩素原子、 フッ素原子、 臭素原子、 ヨウ素原子であり、 なかでも塩素原子が好ましい。
以下に、 本発明の詳細を述べる。
アルコキシ環状エーテル (I ) は、 従来の方法により製造することができる。 例え ば、 R 1および R 2が水素原子であるアルコキシ環状エーテル (I ) は、 特開平 8— 1 3 3 9 9 7号公報の方法に従って、 対応する 2, 3—ジヒドロフランを、 ルイス酸 存在下にオルト蟻酸エステルと反応させることにより容易に得ることができる。 酸ハロゲン化物 (I I ) の具体例としては、 例えばァセチルクロライド、 プロピオ ニルクロライド、 プチリルクロライド、 ベンゾイルク口ライドなどのハロゲン化ァシ ル;クロ口炭酸メチル、 クロ口炭酸ェチル、 クロ口炭酸プロピル、 クロ口炭酸イソプ 口ピル、 クロ口炭酸プチル、 クロ口炭酸ィソプチルなどのハ口ゲン化炭酸エステルな どが挙げられる。 これらの中でも、 ァセチルクロライド、 プロピオエルク口ライド、 ベンゾイルク口ライド、 クロ口炭酸メチル、 クロ口炭酸ェチルが好ましい。
本発明において使用する酸ノヽロゲン化物 (I I ) の使用量は、 原料のアルコキシ環 状エーテル (I ) に対して、 0 . 8〜 5倍モルの範囲が好ましく、 1〜 3倍モルの範 囲がより好ましい。 酸ハロゲン化物 (I I ) の添加時間は通常 0 . 5〜 2 4時間の範 囲であり、 製造効率の観点からは 1〜 1 0時間の範囲がより好ましい。
本反応は、 溶媒の存在下に行うことが好ましい。 使用できる溶媒としては、 反応に 悪影響を及ぼさない限り特に限定されず、 例えばベンゼン、 トルエン、 キシレン、 ク 口口ベンゼンなどの芳香族炭化水素;ペンタン、 へキサン、 シクロへキサン、 ォクタ ンなどの脂肪族炭化水素;ジクロロメタン、 クロ口ホルム、 ジクロロェタンなどのハ ロゲン化炭化水素;酢酸メチル、 酢酸ェチル、 酢酸 n—プロピル、 齚酸 n—プチルな どのエステルなどが挙げられる。 溶媒の使用量は特に限定されないが、 アルコキシ環 状エーテル ( I ) に対して 0 . 5〜 5 0倍質量の範囲が好ましく、 1〜 1 0倍質量の 範囲が経済的観点からより好ましい。
アルコキシ環状エーテル (I ) と酸ハロゲン化物 (I I ) との反応温度は、 0〜1 5 0 °Cの範囲が好ましく、 4 0〜 1 2 0 °Cの範囲がより好ましい。 反応時間は、 反応 温度によっても異なるが、 通常、 酸ハロゲン化物 (I I) を添加後 1〜24時間以内 の範囲である。
本反応は、 アルコキシ環状エ^ "テル (I) 、 酸ハロゲン化物 (I I) および溶媒を 混合することにより、 ハロゲン化不飽和カルボニル化合物 (I I I) を得ることがで きる。 具体的には、 アルコキシ環状エーテル (I) と溶媒の混合物に、 酸ノヽロゲン化 物 ( I I ) を添加、 好ましくは滴下することにより、 ハロゲン化不飽和力ルポ二ルイ匕 合物 (I I I) を得ることができる。 なお、 使用する酸ハロゲン化物 (I I) の種類 に応じて触媒を添加してもよい。 ここで用いることのできる触媒としては、 ピリジン などの有機塩基や、 エタノールなどのアルコールが挙げられる。 触媒を添加する場合、 その量は、 アルコキシ環状エーテル (I) に対して、 0. 1〜20モル%の範囲が好 ましく、 1〜 5モル0 /。の範囲がより好ましい。
反応終了後、 ハロゲン化不飽和力ルポ-ル化合物 (I I I) は、 蒸留またはカラム クロマトグラフィ一などの一般的な単離精製操作により、 単離精製することができる。 ハロゲン化不飽和カルボエル化合物 (1 1 1) 、 特に nが 1である化合物は、 合成 抗菌剤原料であるシクロプロパンモノァセタールへ導くことできる有用な化合物であ る。 例えば、 nが 1であり、 Xが塩素原子であり、 I 1、 R2、 R3、 R4、 R5および R6が水素原子であり、 R8がェチル基であるハロゲン化不飽和カルボニル化合物 (I I I) (4一クロ口一 2_エトキシメチリデンプタ "一ル) は、 アルカリ金属ェ トキシドなどのアルコラートと反応させることにより、 1一 (ジエトキシメチル) シ クロプロパンカルバルデヒドに導くことができることが本発明者らの研究により明ら かにされている。 なお、 この 1一 (ジエトキシメチル) シクロプロパンカルバルデヒ ドは、 国際公開第 02/14278号パンフレツ トにおいて、 合成抗菌剤原料となる ァミノ置換ァザスピ口アル力ンの出発原料として使用されている。
なお、 ハロゲン化不飽和カルボ-ノレ化合物 (I I I) を、 合成抗菌剤原料であるシ クロプロパンモノァセタールの製造原料として用いる場合、 本発明にて得られた反応 液 (ハロゲン化不飽和力ルポ-ル化合物 (I I) を含む) からハロゲン化不飽和カル ボニル化合物 (I I) を取り出すことなく、 そのまま使用することも可能である。
実施例 以下、 参考例おょぴ実施例によって本発明をさらに詳しく説明するが、 本発明はこ れらの実施例によって何ら限定されるものではない。
参考例 1 3— (ジェトキシメチノレ) 一 2—エトキシテトラヒドロフランの製造 温度計および攪拌装置を備えた容量 3リットルの三つ口フラスコに、 オルト蟻酸ト リエチル 1465 g (9. 89モル) を入れて 10〜 12°Cに冷却し、 ここに触媒と して塩化鉄 1. 172 g (0. 00723モル) を加え、 同温度で 30分攪拌した。 次に、 2, 3—ジヒドロフラン 630 g (8. 99モル) を、 内温を 10〜15°Cに 維持しながら 5時間 30分かけて滴下し、 その後同温度で 1時間攪拌した。 反応液を ガスクロマトグラフィ一にて分析したところ、 1837 g (8. 42モル) の 3— (ジェトキシメチノレ) _ 2 _エトキシテトラヒドロフランが生成していた。 2, 3— ジヒドロフランを基準とした収率は 93. 7%であった。 この反応液を、 セラミック 製ラシヒリングを充填した蒸留塔 (内径 2. 5 cm、 高さ 30 cm) を備えたフラス コに移送し、 減圧蒸留を行うことにより、 0. 67kPa (5mmHg) の減圧度に おいて塔頂温度 93〜 94°Cの留分として 3— (ジェトキシメチノレ) 一 2—エトキシ テトラヒドロフラン 1348. 7 g (純度 99. 7%) を得た。
実施例 1 ァセチノレクロライドによる 4—クロ口一 2 _エトキシメチリデンプタナー ルの製造
温度計、 攪拌装置およびジムロートを備えた容量 100mlの三つ口フラスコに、 参考例 1の方法で得た 3一 (ジェトキシメチル) 一 2—エトキシテトラヒドロフラン 20. 01 g (91. 7ミリモル) 、 トルエン 46. 02 gおよびエタノーノレ 126. 2mg (2. 74ミリモル) を加え、 窒素雰囲気下、 90°Cに加熱した。 ここにァセ チルクロライド 15. 11 g (192. 5ミリモル) を 1時間かけて滴下した。 滴下 終了後、 80でで 6時間反応させた後に反応液をガスクロマトグラフィーにより分析 したところ、 4一クロロー 2—エトキシメチリデンプタナール 13. 8 g (84. 9 ミリモル、 収率 92. 6%) が生成していた。
XH-NMR (CDC 13、 p pm TMS) δ : 1. 40 (t、 3 H、 J = 7H z) 、 2. 65-2. 80 (m、 2H) 、 3. 50— 3. 65 (m、 2H) 、 4. 2 0 (q、 2H、 J = 7Hz) 、 7. 10 (s、 1H) 、 9. 20 (s、 1 H) . 実施例 2 ァセチルクロライドによる 4—クロ口一 2—エトキシメチリデンプタナー ルの製造
ァセチルクロライドの添加時間を 4時間とした以外は、 実施例 1と同一の操作を実 施したところ、 4一クロロー 2—エトキシメチリデンプタナールの収率は 89. 7% であった。
実施例 3 クロ口炭酸ェチルによる 4一クロ口一 2 _エトキシメチリデンプタナール の製造
温度計、 攪拌装置およびジムロートを備えた容量 100m lの三つ口フラスコに、 参考例 1の方法で得た 3 - (ジェトキシメチル) — 2—エトキシテトラヒドロフラン 20. 03 g (91. 8ミリモル) 、 トルエン 46. 0 gおよびピリジン 0. 22 g (2. 8ミリモル) を加え、 窒素雰囲気下、 100〜106°Cに加熱した。 ここにク ロロ炭酸ェチル 19. 92 g (183. 5ミリモル、 3 - (ジェトキシメチル) - 2 —ェトキシテトラヒドロフランに対して 2モル倍) を 1時間かけて滴下した。 滴下終 了後、 6時間、 同温度を維持し、 反応液をガスクロマトグラフィーにより分析したと ころ、 3— (ジェトキシメチル) _ 2—エトキシテトラヒドロフランの転化率 10 0%であり、 4一クロ口 _ 2—エトキシメチリデンプタナーノレ 14. 3 g (87. 9 ミリモル、 収率 95. 8 %) が生成していた。
実施例 4 クロ口炭酸ェチルによる 4一クロロー 2—エトキシメチリデンプタナール の製造
クロ口炭酸ェチルの使用量を原料に対して 1. 3モル倍とした以外は、 実施例 3と 同一の操作を行い、 3— (ジエトキシメチル) 一 2—エトキシテトラヒドロフランの 転化率 97. 1%、 収率 90. 5%で 4一クロロー 2—エトキシメチリデンプタナー ルを得た。
産業上の利用可能性
本発明の方法で製造できるハロゲン化不飽和カルポニル化合物は、 合成抗菌剤原料 として有用な化合物であるシクロプロパンモノァセタールの原料として有用である。 本願は日本で出願された特願 2004-104866を基礎としており、 その内容 は本明細書中に全て包含されるものである。

Claims

請求の範囲
1. 一般式 ( I )
Figure imgf000012_0001
(式中、 R1 R2、 R R4、 R5および R6は、 それぞれ独立して水素原子、 置換 基を有していてもよい飽和炭化水素基、 置換基を有していてもよいァリール基、 アル ケニル基またはァラルキル基を表し、 R7および R8は、 それぞれ独立して置換基を 有していてもょレ、飽和炭化水素基、 置換基を有していてもよいァリ一ル基またはァラ ルキル基を表し、 nは 1または 2を表す。 ) で示されるアル キシ環状エーテルを、 一般式 (I I)
H (")
R9八 X
(式中、 R9は、 飽和炭化水素基、 ァリール基、 置換基を有していてもよいァラルキ ル基または炭化水素ォキシ基を表し、 Xはハロゲン原子を表す。 ) で示される酸ノヽロ ゲン化物と反応させることを特徴とする、 一般式 (I I I)
Figure imgf000012_0002
ある。 ) で示されるハロゲン化不飽和カルボ-ル化合物の製造方法。
PCT/JP2005/006414 2004-03-31 2005-03-25 ハロゲン化不飽和カルボニル化合物の製造方法 WO2005095317A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/593,200 US20070197836A1 (en) 2004-03-31 2005-03-25 Method for producing halogenated unsaturated carbonyl compound
EP05727497A EP1731494A4 (en) 2004-03-31 2005-03-25 METHOD FOR PRODUCING A HALOGENATED UNSATURATED CARBONYL COMPOUND
JP2006511836A JPWO2005095317A1 (ja) 2004-03-31 2005-03-25 ハロゲン化不飽和カルボニル化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-104866 2004-03-31
JP2004104866 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005095317A1 true WO2005095317A1 (ja) 2005-10-13

Family

ID=35063678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006414 WO2005095317A1 (ja) 2004-03-31 2005-03-25 ハロゲン化不飽和カルボニル化合物の製造方法

Country Status (4)

Country Link
US (1) US20070197836A1 (ja)
EP (1) EP1731494A4 (ja)
JP (1) JPWO2005095317A1 (ja)
WO (1) WO2005095317A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800933B2 (ja) * 2004-03-31 2011-10-26 株式会社クラレ シクロプロパンモノアセタール誘導体の製造方法およびその中間体
WO2012007375A1 (en) 2010-07-13 2012-01-19 F. Hoffmann-La Roche Ag Pyrazolo [1, 5a] pyrimidine and thieno [3, 2b] pyrimidine derivatives as irak4 modulators

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394772B2 (en) 2009-10-20 2013-03-12 Novartis Ag Glycoside derivative and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162729A (en) * 1979-06-04 1980-12-18 Sumitomo Chem Co Ltd Alpha-hydroxyaldehyde and its preparation
JPS61238752A (ja) * 1985-04-17 1986-10-24 バスフ アクチェン ゲゼルシャフト 4−オキサアルデヒドの製法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337346A (en) * 1978-11-02 1982-06-29 Sumitomo Chemical Company, Limited α-Hydroxyaldehyde and a process for preparing the same
US4377346A (en) * 1981-06-04 1983-03-22 Honeywell Inc. Thermostatic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162729A (en) * 1979-06-04 1980-12-18 Sumitomo Chem Co Ltd Alpha-hydroxyaldehyde and its preparation
JPS61238752A (ja) * 1985-04-17 1986-10-24 バスフ アクチェン ゲゼルシャフト 4−オキサアルデヒドの製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1731494A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800933B2 (ja) * 2004-03-31 2011-10-26 株式会社クラレ シクロプロパンモノアセタール誘導体の製造方法およびその中間体
WO2012007375A1 (en) 2010-07-13 2012-01-19 F. Hoffmann-La Roche Ag Pyrazolo [1, 5a] pyrimidine and thieno [3, 2b] pyrimidine derivatives as irak4 modulators
EP3252054A1 (en) 2010-07-13 2017-12-06 F. Hoffmann-La Roche AG Pyrazolo[1,5a]pyrimidine derivatives as irak4 modulators

Also Published As

Publication number Publication date
US20070197836A1 (en) 2007-08-23
JPWO2005095317A1 (ja) 2008-02-21
EP1731494A1 (en) 2006-12-13
EP1731494A4 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
EP2134673A1 (en) Improved process for preparing o-chloromethylphenylglyoxylic esters, improved process for preparing (e)-2-(2-chloromethylphenyl)-2-alkoximinoacetic esters, and novel intermediates for their preparation
WO2005095317A1 (ja) ハロゲン化不飽和カルボニル化合物の製造方法
US10562834B2 (en) Process for preparing substituted crotonic acids
JP2006213617A (ja) アセチレンアルデヒドおよびその製造方法、アセチレンアルデヒドアセタールおよびその製造方法
JP4667589B2 (ja) 2,4−ジヒドロキシピリジンの製造方法
JP4800933B2 (ja) シクロプロパンモノアセタール誘導体の製造方法およびその中間体
JP2001302658A (ja) 3−イソクロマノン類の製造方法
WO2008009674A1 (en) Process for the synthesis of olefinically unsaturated carboxylic acid esters
JP5170987B2 (ja) 新規な含フッ素不飽和シリルエーテル化合物及び該化合物を中間体とする含フッ素不飽和アルコール誘導体の製造方法
JP3826987B2 (ja) エステルシラン化合物のエステル交換法
EP0936207B1 (en) Process for the preparation of cyclopropylacetylene derivatives
US20060276653A1 (en) Process for producing quinoline compound
JP2000344722A (ja) 4−ヒドロキシメチル−1−アミノシクロペント−2−エン誘導体の製造方法
JP4663105B2 (ja) 2−スルホニル−4−オキシピリジン誘導体の製造方法
US6291696B2 (en) Preparation of tris (trimethylsilyl) silylethyl esters
CN117886777A (zh) 一种合成1-环丙基哌嗪的方法
JP5476549B2 (ja) 2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体の製造方法、及びそれに用いられる新規化合物
JPH11322636A (ja) シクロプロピルアセチレン誘導体の製造方法
WO2013038931A1 (ja) 2-オキソ-2H-シクロヘプタ[b]フラン類縁体の製造方法
JP2008150301A (ja) 4−ヒドロキシメチルテトラヒドロピラン化合物の製法
JPH0662473B2 (ja) アルコキシプロピルクロリドの製造法
JP2000198761A (ja) 2―アルキリデン―4―ブロモアセト酢酸エステル類の製造方法
JPH09100285A (ja) 光学活性な5−ヒドロキシ−3−オキソ−6−ヘプチン酸エステル誘導体の製造方法
JPH08208618A (ja) 4a−アリ−ルデカヒドロイソキノリン類の製造法
JP2004244373A (ja) 2−置換−テトラヒドロピラン−4−オールの製法及びその中間体並びにその製法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511836

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10593200

Country of ref document: US

Ref document number: 2007197836

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005727497

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005727497

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10593200

Country of ref document: US