WO2005091396A2 - Element galvanique - Google Patents

Element galvanique Download PDF

Info

Publication number
WO2005091396A2
WO2005091396A2 PCT/EP2005/002864 EP2005002864W WO2005091396A2 WO 2005091396 A2 WO2005091396 A2 WO 2005091396A2 EP 2005002864 W EP2005002864 W EP 2005002864W WO 2005091396 A2 WO2005091396 A2 WO 2005091396A2
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
collector
galvanic element
positive electrode
coating
Prior art date
Application number
PCT/EP2005/002864
Other languages
German (de)
English (en)
Other versions
WO2005091396A3 (fr
Inventor
Thomas Wöhrle
Claudia Rathmann
Fatima Birke-Salam
Peter Haug
Peter Birke
Arno Perner
Rainer Hald
Dejan Ilic
Original Assignee
Varta Microbattery Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varta Microbattery Gmbh filed Critical Varta Microbattery Gmbh
Priority to DE112005000540T priority Critical patent/DE112005000540A5/de
Publication of WO2005091396A2 publication Critical patent/WO2005091396A2/fr
Publication of WO2005091396A3 publication Critical patent/WO2005091396A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a galvanic element with at least one lithium intercalating electrode, the positive electrode of which has a collector consisting essentially of aluminum, and a method for producing the element.
  • the documents DE 101 14 232 C2 and DE 34 12 234 A1 describe an adhesion promoter which is made electrically conductive by the addition of metallic particles.
  • the adhesion-promoting component is a plastic.
  • the electrically conductive component is metallic.
  • the most common method for pretreating aluminum collectors is coating with a so-called primer.
  • the primer consists in the case of an organic adhesion promoter, electrical conductive material (in particular conductive carbon black, conductive graphite or mixtures of these) and optionally a dispersant. These components are dissolved or suspended in a carrier solvent.
  • An example of an application in a lithium polymer battery is given in the publication DE 100 30 571 C1.
  • Free acid groups (-COOH) are present in the adhesion promoter used there. These polyacids build chemical bonding forces to the aluminum surface and cause adhesion.
  • the positive electrode material is bonded to the organic bonding agent in the primer by means of a direct coating or hot lamination.
  • the presence of electrically highly conductive components in the primer apparently lowers the breakdown voltage between aluminum and positive electrode through the aluminum oxide layer and thus significantly reduces the contact resistance. The result is low impedances and a high load capacity for the cell despite the presence of this oxide layer.
  • collectors with adhesion promoters are the possibility to use special low-adhesion electrode formulations. Examples of this are highly binder-reduced recipes.
  • the problem often arises when using metal-coated or etched aluminum collectors that there is insufficient adhesion to such a positive electrode (based on a strongly reduced formulation).
  • a known problem when using organically based adhesion promoters is their electrochemical instability at high temperatures (e.g. 80 ° C) and maximum permissible cell voltages (approx. 4.2 V). This produces gaseous reaction products in an irreversible process, and the cell swells as a result. This is particularly true in flexible softpack packaging made of aluminum composite film good to see. In addition, the impedance rises sharply when stored at 80 ° C, and the capacity that can still be used decreases. Overall, the cell is irreversibly damaged.
  • the invention has for its object to provide an adhesion promoter that does not decompose under the storage conditions described (4.2 V, 80 ° C).
  • the aluminum collector of the positive electrode is coated with an adhesive which contains a polar modified polyvinylidene difluoride (PVDF) and an electrical conductivity improver.
  • PVDF polyvinylidene difluoride
  • the adhesion promoter preferably contains only these two components.
  • the conductivity improver preferably consists of carbon black and / or graphite. If necessary, other components can also be included. However, the conductivity improver particularly preferably has only a mixture of conductive carbon black and graphite.
  • Organofluorine polymers such as polytetrafluoroethylene (PTFE), polyvinylidene difluoride (PVDF) and the polyvinylidene difluoride-hexafluoropropylene copolymer (PVDF-HFP) are very stable electrochemically under the conditions in galvanic elements of the type mentioned. Because of their remarkable electrochemical resistance, these polymers are used as binders for the electrode materials in 4 V cells. Basically, polymers of this type are electrical insulators.
  • polar modified PVDF polymers can be used as a primer component. They combine electrochemical stability with good adhesive properties.
  • the polar group is also a free acid group (-COOH).
  • the primer is preferably prepared from a mixture of a polar modified fluorinated PVDF, a carrier solvent, for example N-methyl-2-pyrrolidone (NMP), and from portions of a conductivity improver.
  • NMP N-methyl-2-pyrrolidone
  • carbon black or graphite can be used as conductivity improvers.
  • a mixture of carbon blacks and graphites is added to the polar-modified PVDF polymers as conductivity improvers.
  • Such mixtures are particularly preferred as conductivity improvers.
  • Galvanic elements according to the invention with these coated aluminum collectors show very low internal resistances (impedances) due to their excellent mechanical adhesion and good electrical connection.
  • the coating thickness is between 1 and 10 ⁇ m, preferably between 1 and 3 ⁇ m.
  • the coating can be produced by spraying or rolling.
  • the connection between the adhesion promoter and the positive electrode is preferably carried out in a lamination. Direct wet coating is also possible.
  • the carrier solvent is then removed by drying.
  • the aluminum Collector foil can be, for example, an expanded metal or a perforated foil.
  • Example 1 describes the preparation of a primer suspension and the subsequent coating of an aluminum collector. A galvanic cell with this aluminum collector is checked for its cycle stability and its storage properties.
  • polar-modified fluorinated PVDF MKB212 from ELF ATOFINA
  • NMP magnetic stirrer
  • a yellow-brown solution is formed, which is stirred for an hour.
  • the lead materials are introduced with a dissolver stirrer, namely 1.0 g of carbon black (Super P, manufacturer Timcal Belgium) and 2.0 g of graphite (manufacturer Superior Graphite, type ABG1005), and 20 min. stirred.
  • This primer suspension is sprayed onto the aluminum expanded metal with an airbrush gun.
  • the coated aluminum collector is dried for a few hours at room temperature.
  • the layer thickness of the primer layer is approx. 2 ⁇ m per side.
  • the aluminum collectors thus produced according to the invention are optionally laminated against a positive electrode or coated directly with a positive electrode coating compound.
  • the electrode coating compositions and the electrode film are produced.
  • a binder-reduced electrode that does not adhere to bare aluminum or an alloy coating, for example, can be used as the positive electrode mass.
  • trode mass are used, e.g. from the following components: 4.2% Kynar Powerflex® (ELF ATOFINA), 84.8% lithium cobalt oxide (LiCo0 2 ), 7% di-butyl phthalate (DBP) and 4% conductive graphite. Electrode masses with an even higher proportion of lithium cobalt oxide are also suitable, for example electrodes made of 4.2% Kynar Powerflex® (ELF ATOFINA), 87.8% lithium cobalt oxide (LiCo0 2 ), 7% dibutyl phthalate (DBP) and 1% conductive carbon black.
  • a graphitized carbon modification is used as the electrochemically active material for the negative electrode, as described in EP1235286 (negative electrode made of spheroidal graphite, conductive carbon black, dibutyl phthalate and a PVDF-HFP copolymer as a binder).
  • the positive electrode (cathode) and the negative electrode (anode) are laminated onto the pretreated aluminum or copper collector.
  • the electrodes are punched out and combined to form an element using separators.
  • a three-layer separator with the layer sequence polypropylene / polyethylene / polypropylene is used as the separator, for example.
  • the packaging is carried out in aluminum composite foil and after the electrolyte (preferably an organic carbonate electrolyte with a lithium conductive salt) has been metered in, the formation.
  • Lithium polymer cells were built with the aluminum collector coated according to the invention, and for comparison cells with a collector with a commercially available primer application (EB-012 from Acheson; this primer layer consists of a mixture of carbon black and graphite and an organic binder containing acrylic acid) ).
  • EB-012 from Acheson; this primer layer consists of a mixture of carbon black and graphite and an organic binder containing acrylic acid
  • Polymer cells obtained in this way were cycled at room temperature (in a plant 1) and at 60 ° C. (in a plant 2) and also stored in a fully charged state in a temperature cabinet (4.2 V / 80 ° C./62 h), with the gassing behavior of the cells was observed.
  • a temperature cabinet 4.2 V / 80 ° C./62 h
  • cells with the primer according to the present invention show that the gassing is delayed considerably compared to corresponding cells with a commercially available primer and that the 1 kHz AC alternating current resistance only under these extreme storage conditions increases slightly.
  • Table 1 Gassing behavior of a lithium polymer cell with an aluminum collector coated according to the invention compared to that of a comparison cell when stored at 80 ° C. in a temperature cabinet after 15.5 h, 24 h, 38 h, 42 h, 45 h, 48 h, 62 H. With room temperature cycles, the cycle stability of a galvanic element according to the invention is comparable to that of a cell with a commercially available primer.
  • FIG. 1 shows the discharge capacity as a function of the number of cycles N when cycled at room temperature and 1 C (one-hour current) load. Curve A applies to commercially available primers, curve B to primers according to the invention.
  • Figure 2 shows the same cyclization at 60 ° C.
  • Curve B also describes the behavior of a cell with a primer after the induction. Particularly noteworthy is that compared to polymer cells with hand standard primers outstanding cycle stability at elevated temperature.
  • Example 2 describes the production of an aluminum collector coated with a further primer suspension.
  • a primer suspension was prepared analogously to Example 1.
  • MKB212 from ELF ATOFINA the alternative product MKB272 from ELF ATOFINA was used as the polar modified fluorinated PVDF.
  • Example 1 The treated collector was built into a galvanic cell in the usual way. This was then examined for cycle stability and storage properties, especially at higher temperatures. With regard to storage properties and cycle stability, identical results were obtained as in Example 1 (arrester coated with MKB212).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Elément galvanique qui comporte au moins une électrode d'intercalation de lithium, dont l'électrode positive possède un collecteur constitué essentiellement d'aluminium. Ledit collecteur en aluminium est couvert d'un promoteur d'adhérence contenant un difluorure de polyvinylidène (PVDF) à modification polaire et un agent améliorant la conductivité électrique. L'agent améliorant la conductivité est de préférence de la suie conductrice et / ou du graphite ou un polymère électro-conducteur. Le collecteur contient un revêtement d'une épaisseur de 1 à 10 ñm obtenu par pulvérisation ou application au rouleau, par pelliculage ou par enrobage humide direct.
PCT/EP2005/002864 2004-03-18 2005-03-17 Element galvanique WO2005091396A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005000540T DE112005000540A5 (de) 2004-03-18 2005-03-17 Galvanisches Element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004014383.8 2004-03-18
DE102004014383A DE102004014383A1 (de) 2004-03-18 2004-03-18 Galvanisches Element

Publications (2)

Publication Number Publication Date
WO2005091396A2 true WO2005091396A2 (fr) 2005-09-29
WO2005091396A3 WO2005091396A3 (fr) 2006-04-06

Family

ID=34980729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002864 WO2005091396A2 (fr) 2004-03-18 2005-03-17 Element galvanique

Country Status (2)

Country Link
DE (1) DE102004014383A1 (fr)
WO (1) WO2005091396A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7443082B2 (en) 2006-03-03 2008-10-28 Basf Corporation Piezoelectric polymer composite article and system
DE102012112186A1 (de) 2012-12-12 2014-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Materialverbund, Verfahren zu dessen Herstellung, daraus hergestelltes System und Anwendung desselben
DE102022112020A1 (de) 2022-05-13 2023-11-16 Bayerische Motoren Werke Aktiengesellschaft Lithiumionenbatterie, Kathode für eine Lithiumionenbatterie sowie Verfahren zum Herstellen einer Kathode für eine Lithiumionenbatterie

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19807192A1 (de) * 1997-02-21 1998-08-27 Samsung Display Devices Co Ltd Stromabnehmer für Lithium-Ionen-Batterie
EP1198022A2 (fr) * 2000-10-11 2002-04-17 Matsushita Electric Industrial Co., Ltd. Batterie au lithium à polymère et son procédé de fabrication
US6409867B1 (en) * 1997-07-23 2002-06-25 Accentus Plc Extrusion of polymer-based cell components
EP1261048A2 (fr) * 2001-05-25 2002-11-27 Microbatterie GmbH Méthode de fabrication de feuilles d'électrodes pour éléments galvaniques
WO2003099715A1 (fr) * 2002-05-17 2003-12-04 Valence Technology, Inc. Synthese de composes metalliques utilises comme materiaux actifs cathodiques
EP1381097A1 (fr) * 2001-04-10 2004-01-14 Mitsubishi Materials Corporation Batterie secondaire polymere ion lithium, son electrode et procede pour synthetiser un compose polymere dans un liant utilise dans une couche d'adhesion de celle-ci

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824120A (en) * 1996-04-10 1998-10-20 Valence Technology, Inc. Electrically conductive adhesion promoters for current collectors
DE10232379B4 (de) * 2002-07-17 2006-09-14 Dilo Trading Ag Elektrisch leitfähiger Haftvermittler, Elektrode, Verfahren zu deren Herstellung sowie Sekundärbatterie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19807192A1 (de) * 1997-02-21 1998-08-27 Samsung Display Devices Co Ltd Stromabnehmer für Lithium-Ionen-Batterie
US6409867B1 (en) * 1997-07-23 2002-06-25 Accentus Plc Extrusion of polymer-based cell components
EP1198022A2 (fr) * 2000-10-11 2002-04-17 Matsushita Electric Industrial Co., Ltd. Batterie au lithium à polymère et son procédé de fabrication
EP1381097A1 (fr) * 2001-04-10 2004-01-14 Mitsubishi Materials Corporation Batterie secondaire polymere ion lithium, son electrode et procede pour synthetiser un compose polymere dans un liant utilise dans une couche d'adhesion de celle-ci
EP1261048A2 (fr) * 2001-05-25 2002-11-27 Microbatterie GmbH Méthode de fabrication de feuilles d'électrodes pour éléments galvaniques
WO2003099715A1 (fr) * 2002-05-17 2003-12-04 Valence Technology, Inc. Synthese de composes metalliques utilises comme materiaux actifs cathodiques

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7443082B2 (en) 2006-03-03 2008-10-28 Basf Corporation Piezoelectric polymer composite article and system
DE102012112186A1 (de) 2012-12-12 2014-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Materialverbund, Verfahren zu dessen Herstellung, daraus hergestelltes System und Anwendung desselben
DE102022112020A1 (de) 2022-05-13 2023-11-16 Bayerische Motoren Werke Aktiengesellschaft Lithiumionenbatterie, Kathode für eine Lithiumionenbatterie sowie Verfahren zum Herstellen einer Kathode für eine Lithiumionenbatterie

Also Published As

Publication number Publication date
DE102004014383A1 (de) 2005-10-06
WO2005091396A3 (fr) 2006-04-06

Similar Documents

Publication Publication Date Title
EP1359637B1 (fr) Procédé de fabrication d' un élément galvanique
EP1261048B1 (fr) Électrode/séparateur laminé pour éléments galvaniques et et son procédé de fabrication
DE102013225734A1 (de) Lithiumpulveranode und galvanisches Element, das eine Lithiumpulveranode enthält
EP1922776A1 (fr) Piles lithium-polymere particulieres, ensembles particuliers de telles piles et procede pour leur production
WO2008080507A1 (fr) Elément galvanique avec une liaison collée formée par des électrodes et un séparateur
EP3050143A1 (fr) Procédé de fabrication d'éléments électrochimiques d'une batterie solide
DE10104988A1 (de) Verfahren zur Herstellung von Elektrodenfolien
EP1058327B1 (fr) Electrode négative pour cellule lithium ion à énergie élevée et procédé de fabrication
DE10150227A1 (de) Verfahren zur Herstellung eines Elektroden-/Separatorverbundes für galvanische Elemente
DE102010027950A1 (de) Kathodenzusammensetzung für Lithium-Schwefel-Zellen
WO2005091396A2 (fr) Element galvanique
WO2004008561A1 (fr) Agent adhesif electro-conducteur
DE102004012476B4 (de) Verfahren zur Herstellung einer Lithium-Polymer-Zelle und einer Lithium-Polymer-Batterie
DE102016217397A1 (de) Elektrodenstapel mit Randbeschichtung
DE102016217383A1 (de) Verfahren zur Herstellung von Elektroden mit verbesserter Stromsammlerstruktur
DE102019001737A1 (de) Lithium Batterie, Lithium Batterie Multistack sowie Verfahren zur Herstellung derselben
EP1261046B1 (fr) Méthode de fabrication d'un assemblage électrode/séparateur pour éléments galvaniques
DE10107384B4 (de) Verwendung einer speziellen Polymers als Haftvermittler und Lithium-Polymer-Batterie
DE10251194B4 (de) Verfahren zur Herstellung eines Lithium-Polymer-Batterievorläufers und Verwendung des Verfahrens
DE10328572B4 (de) Lithium-Polymer-Batterie-Systeme und Verfahren zur Herstellung
EP0977291B1 (fr) Electrode positive d'une pile au lithium pour une utilisation à forte charge
DE102004044478B4 (de) Lithium-Sekundär-Batterie und Verfahren zur Herstellung einer Lithium-Sekundär-Batterie
WO2012100983A1 (fr) Électrodes pour batteries lithium-ion et leur fabrication
DE10115210B4 (de) Verwendung spezieller Polymere als Haftvermittler für Lithium-Batterien und Lithium-Polymer-Batterie
DE102006007220B4 (de) Verfahren zum Herstellen von Lithium-Polymer-Energiespeichern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050005402

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REF Corresponds to

Ref document number: 112005000540

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607