WO2005091022A1 - 円偏光板、光学フィルムおよび画像表示装置 - Google Patents

円偏光板、光学フィルムおよび画像表示装置 Download PDF

Info

Publication number
WO2005091022A1
WO2005091022A1 PCT/JP2005/004784 JP2005004784W WO2005091022A1 WO 2005091022 A1 WO2005091022 A1 WO 2005091022A1 JP 2005004784 W JP2005004784 W JP 2005004784W WO 2005091022 A1 WO2005091022 A1 WO 2005091022A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
circularly polarizing
film
polarizer
refractive index
Prior art date
Application number
PCT/JP2005/004784
Other languages
English (en)
French (fr)
Inventor
Minoru Miyatake
Kazunori Futamura
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US10/593,736 priority Critical patent/US20070206282A1/en
Publication of WO2005091022A1 publication Critical patent/WO2005091022A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • Circularly polarizing plate, optical film and image display device
  • the present invention relates to a circularly polarizing plate. Further, the present invention relates to an optical film using the circularly polarizing plate.
  • the present invention relates to an image display device such as a liquid crystal display device, an organic EL display device, a CRT, and a PDP using the circularly polarizing plate and the optical film.
  • Liquid crystal display devices are rapidly expanding to markets such as watches, mobile phones, PDAs, notebook computers, monitors for personal computers, DVD players, and TVs.
  • the liquid crystal display device visualizes a change in polarization state due to switching of liquid crystal, and uses a display principle of a polarizer.
  • displays with higher brightness and higher contrast are required for applications such as TV, and polarizers with higher brightness (high transmittance) and higher contrast (high polarization) have been developed and introduced. Have been.
  • a circularly polarizing plate is used as an antireflection filter for a liquid crystal display device and various display devices.
  • the use of a circular polarizer is more and more expected in the liquid crystal mode using multi-domain alignment from the viewpoint of improving brightness.
  • the circularly polarizing plate is usually formed by laminating a dichroic absorption linear polarizing plate and a 1Z4 wavelength plate so that their optical axes intersect at 45 ° or 135 °.
  • the 1Z4 wavelength plate for example, a stretched film is used.
  • the stretched film generally has a retardation that can be exactly 1Z4 wavelength for a certain wavelength due to wavelength dispersion having a different refractive index for each wavelength, but deviates from the retardation wavelength at other wavelengths. .
  • one stretched film does not function as a 1Z 4 wavelength plate in a wide wavelength range.
  • a circular polarizer using a powerful 1Z4 wavelength plate will not function as a perfect circular polarizer over the entire visible light range. Therefore, for example, when functioning as a 1Z4 wavelength plate for green light of 550 nm, it is difficult to completely prevent reflection of longer wavelength, red light, shorter wavelength, and blue light. .
  • blue light with large chromatic dispersion has a large phase shift, so that there is a problem that the reflected color becomes blueish.
  • Patent Documents 1 and 2 As a means for improving the wavelength dependence of such a 1Z4 wave plate, it has been proposed to form a 1Z4 wave plate by a laminated wave plate in which two retardation plates having different phase differences are laminated ( Patent Documents 1 and 2).
  • a 1Z4 wave plate using a powerful laminated wave plate can improve the wavelength dependence of the phase difference, and can function as a 1Z4 wave plate in the entire visible light wavelength region.
  • a 1Z4 wavelength plate comprising a transparent support, a liquid crystal compound layer, and a birefringent film layer is known (see Patent Document 3).
  • Patent Document 4 Patent Document 5
  • Patent Documents 6, 7 Patent Documents 6, 7
  • a dichroic absorption polarizer for example, an iodine-based polarizer having a structure in which iodine is adsorbed to polybutyl alcohol and stretched is widely used because it has a high transmittance and a high degree of polarization.
  • iodine-based polarizer has a relatively low degree of polarization on the short wavelength side, it has problems on the hue such as blue spots in black display and yellowish in white display on the short wavelength side.
  • an iodine-based polarizer tends to have unevenness when adsorbing iodine. For this reason, particularly in the case of black display, there is a problem that the unevenness of the transmittance is detected and the visibility is reduced.
  • a method of increasing the amount of iodine adsorbed on the iodine-based polarizer to increase the intensity tl so that the transmittance at the time of black display is equal to or less than the human eye's perception limit, or a method of unevenness A method that employs a stretching process that does not easily generate the same has been proposed.
  • the former has a problem that the transmittance of white display is reduced at the same time as the transmittance of black display, and the display itself is darkened. In the latter case, it is necessary to replace the process itself, and there is a problem that productivity is deteriorated.
  • Patent Document 1 JP-A-5-27118
  • Patent Document 2 JP-A-5-100114
  • Patent Document 3 JP-A-13-4837
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2000-137116
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2001-249222
  • Patent Document 6 JP 2001-91743 A
  • Patent Document 7 JP-A-2003-332068
  • Patent Document 8 JP 2001-296427 A
  • the present invention is a circularly polarizing plate in which an absorption polarizer and a 1Z4 wavelength plate are laminated, and has a high transmittance and a high degree of polarization, and reduces unevenness in transmittance during black display.
  • An object is to provide a circularly polarizing plate that can be suppressed.
  • Another object of the present invention is to provide an optical film using at least one circularly polarizing plate, and further provide an image display device using the circularly polarizing plate and the optical film. I do.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above object can be achieved by the circularly polarizing plate described below, and have completed the present invention.
  • the present invention provides a scattering monochromatic dichroic absorption composite polarizer having a film structure in which microscopic regions are dispersed in a matrix formed of a translucent resin containing an iodine light absorber. And a 1Z4 wavelength plate configured with one or more retardation plate forces.
  • the minute region of the composite absorption polarizer is formed of an oriented birefringent material.
  • the birefringent material preferably exhibits liquid crystallinity at least at the time of the alignment treatment.
  • a polarizer formed of a translucent resin and an iodine-based light absorber is used as a matrix, and minute regions are dispersed in the matrix. It is preferable that the micro domains are formed of an oriented birefringent material. It is preferably formed by materials.
  • the scattering performance of anisotropic scattering is caused by the difference in the refractive index between the matrix and the minute region. If the material forming the minute region is, for example, a liquid crystalline material, the wavelength dispersion of ⁇ is higher than that of the translucent resin of the matrix, so that the refractive index difference of the scattering axis becomes larger on the shorter wavelength side. The shorter the wavelength, the greater the amount of scattering. Therefore, the shorter the wavelength, the greater the effect of improving the polarization performance. The relatively low polarization performance of the iodine-based polarizer on the short wavelength side can be compensated for, and a polarizer with high polarization and hue and neutral can be realized.
  • the birefringence of a minute region of the composite absorption polarizer is 0.02 or more.
  • a material having the above-described birefringence that obtains a larger anisotropic scattering function is preferably used.
  • a birefringent material forming a minute region of the absorption composite polarizer and a translucent resin have a difference in refractive index in each optical axis direction.
  • the refractive index difference ( ⁇ 1 ) in the axial direction showing the maximum value is 0.03 or more;
  • the difference in the refractive index ( ⁇ 2 ) in two axial directions orthogonal to the ⁇ 1 direction is 50% or less of the ⁇ 1 .
  • the refractive index difference (An 1 ) in the ⁇ 1 direction should be 0.03 or more, preferably Is preferably 0.05 or more, particularly preferably 0.10 or more.
  • the difference in refractive index ( ⁇ ) between two directions orthogonal to the ⁇ 1 direction is preferably 50% or less, more preferably 30% or less of ⁇ 1 .
  • an iodine based light absorbing material of the complex type absorbing polarizer, absorption Osamujiku of the material is preferably oriented in the .DELTA..eta 1 direction.
  • the iodine based light absorbing material in the matrix by the absorption axis of the material is oriented to be parallel to the .DELTA..eta 1 direction, selectively absorb the .DELTA..eta 1 direction of linearly polarized light is scattered polarization direction Can be done.
  • linearly polarized light component .DELTA..eta 2 direction of the incident light is transmitted without being same immediately scattered with conventional iodine based polarizers without anisotropic scattering performance.
  • linearly polarized light component in .DELTA..eta 1 direction is scattered, and is absorbed by the iodine based light absorbing material.
  • the absorption is determined by the absorption coefficient and the thickness.
  • the optical path length is significantly longer than when there is no scattering.
  • the polarization component in the ⁇ 1 direction is absorbed more than the conventional iodine polarizer. In other words, a higher degree of polarization can be obtained with the same transmittance.
  • the second main transmittance k (the transmittance in the minimum direction 2 !! linear polarization transmittance in one direction))
  • the parallel transmittance and the degree of polarization are respectively:
  • the degree of polarization (k k) Z (k + k).
  • the polarization in the ⁇ 1 direction is scattered, and it is assumed that the average optical path length is ⁇ (> 1) times, and the depolarization due to the scattering is negligible.
  • the parallel transmittance and the degree of polarization in this case are:
  • the degree of polarization (kk ') / (k + k').
  • the above is a calculation, and of course the function is somewhat reduced due to the effects of depolarization due to scattering, surface reflection and backscattering.
  • the higher the ⁇ the better the dichroic ratio of the iodine-based light-absorbing material can be expected.
  • the scattering anisotropy function should be made as high as possible and the polarized light in the ⁇ 1 direction should be selectively and strongly scattered.
  • the ratio of the backscattering intensity to the incident light intensity is preferably 30% or less, and more preferably 20% or less.
  • a circularly polarizing plate produced by stretching a film used as an absorption composite polarizer can be suitably used.
  • dispersed minute domains have the length of .DELTA..eta 2 direction 0. 05-500 ⁇ m, preferably 0.5-100 m. Scattering may not fully provided the .DELTA..eta 2 length of the minute domains is too short a compared with wavelengths.
  • the length of the minute region in the direction of ⁇ 2 is too long, there is a possibility that a problem such as a decrease in film strength or a problem that the liquid crystalline material forming the minute region is not sufficiently oriented in the minute region.
  • the retardation plate constituting the 1Z4 wavelength plate can be formed by a stretched film of a transparent polymer film and an orientation-solidified layer of a liquid crystal or a liquid crystalline compound.
  • At least one retardation plate constituting the 1Z4 wavelength plate has an in-plane maximum refractive index of ⁇ and a refractive index in a direction orthogonal to the direction having the in-plane maximum refractive index of n.
  • y is the refractive index in the thickness direction and nz, it is preferable to satisfy 0 ⁇ (nx-nz) / (nx-ny) ⁇ 1.
  • the absorption complex type polarizer has an observation angle from a direction perpendicular to the plane due to anisotropic scattering. Is also easily affected by the incident light from an oblique direction. Therefore, when the display element to be used is already optically compensated by another retardation film or when the display element itself is optically compensated, the 1Z4 wavelength plate used for the circularly polarizing plate alone has a wide viewing angle. Here, it is preferable to have a phase difference of 1Z4 wavelength. Therefore, it is preferable that the 1Z4 wavelength plate used in the present invention has a wide and wide viewing angle and a phase difference of 1Z4 wavelength.
  • the retardation plate constituting the 1Z4 wavelength plate has an inverse wavelength dispersion characteristic, and has a maximum in-plane refractive index of nx and a direction having a maximum in-plane refractive index.
  • the refractive index in the direction perpendicular to the above is ny and the refractive index in the thickness direction is nz, it is preferable to satisfy 1.2 ⁇ ( ⁇ ) / (nx-ny) ⁇ 2.0.
  • the retardation obtained by combining the liquid crystal layer with the 1Z4 wavelength plate used for the circularly polarizing plate is used. It is preferred that the material has a wide and wide viewing angle and a phase difference of 1Z4 wavelength. Specifically, the retardation plate constituting the 1Z4 wavelength plate has reverse wavelength dispersion characteristics, and satisfies 1.2 ⁇ (nx-nz) / ( ⁇ -ny) ⁇ 2.0 Is preferred.
  • the lamination of the composite absorption polarizer and the 1Z4 wavelength plate is fixedly laminated via an acrylic transparent pressure-sensitive adhesive. It is difficult to stack the absorption complex polarizer and the 1Z4 wave plate without gaps simply by placing them on top of each other. Therefore, it is preferable to attach them with a translucent adhesive or pressure-sensitive adhesive. Acrylic adhesives are preferred from the viewpoints of transparency, adhesive properties, weather resistance, and heat resistance, which are preferred by adhesives from the viewpoint of easy bonding.
  • the composite absorption polarizer has a transmittance of 80% or more for linearly polarized light in the transmission direction and a haze value of 5% or less, and a haze value for linearly polarized light in the absorption direction. Is preferably 30% or more.
  • the composite absorption polarizer of the present invention having the transmittance and the haze value has a straight line in the transmission direction. It has high transmittance and good visibility for polarized light, and has strong light diffusion for linearly polarized light in the absorption direction. Therefore, it has a high transmittance and a high degree of polarization without sacrificing other optical characteristics, and can suppress unevenness in the transmittance during black display by a simple method.
  • the composite absorption polarizer of the present invention has as high a transmittance as possible for linearly polarized light in the transmission direction, that is, linearly polarized light in a direction orthogonal to the maximum absorption direction of the iodine-based light absorber. It is preferable that the light-transmitting material preferably has a light transmittance of 80% or more when the light intensity of the linearly polarized light which is preferably incident is 100. The light transmittance is more preferably 85% or more, and further preferably the light transmittance is 88% or more.
  • the light transmittance corresponds to the Y value calculated based on the CIE1931 XYZ color system from the spectral transmittance between 380 nm and 780 nm measured using a spectrophotometer with an integrating sphere. Since about 8% to 10% is reflected by the air interface on the front and back of the polarizer, the ideal limit is 100% minus this surface reflection.
  • the linearly polarized light in the transmission direction is not scattered from the viewpoint of clarity of the visibility of the displayed image. Therefore, the haze value for linearly polarized light in the transmission direction is preferably 5% or less, more preferably 3% or less.
  • linearly polarized light in the absorption direction that is, linearly polarized light in the maximum absorption direction of the iodine-based light absorber, is more strongly scattered from the viewpoint of concealing unevenness due to local transmittance variation by scattering. desirable.
  • the haze value for linearly polarized light in the absorption direction is preferably 30% or more. It is more preferably at least 40%, further preferably at least 50%. Note that the haze value is a value measured based on JIS K 7136 (a method for finding ⁇ of a plastic-transparent material).
  • optical characteristics are caused by the fact that the function of scattering anisotropy is combined with the function of absorption dichroism of the polarizer.
  • the present invention also relates to an optical film characterized in that at least one circularly polarizing plate is laminated.
  • the present invention relates to an image display device characterized by using the circularly polarizing plate or the optical film.
  • FIG. 1 is a conceptual diagram showing an example of the polarizer of the present invention.
  • FIG. 2 is a graph showing polarized light absorption spectra of polarizers of Example 1 and Comparative Example 1.
  • the optical film of the present invention has a scattering monochromatic dichroic absorption composite polarizer and a 1Z4 wavelength plate laminated.
  • FIG. 1 is a conceptual diagram of an absorption complex type polarizer of the present invention, in which a film is formed by a translucent resin 1 containing an iodine-based light absorber 2, and the film is used as a matrix to form a fine region 3.
  • a translucent resin 1 containing an iodine-based light absorber 2 has a dispersed structure.
  • the iodine-based light-absorbing material 2 exists in the translucent thermoplastic resin 1 that forms a film serving as a matrix. Also, it is better to make it exist to the extent that it does not affect optically.
  • FIG. 1 shows a case where the iodine-based light absorber 2 is oriented in the axial direction (the direction of ⁇ 1 ) at which the refractive index difference between the minute region 3 and the translucent resin 1 shows the maximum value. It is an example.
  • the polarization component in the ⁇ 1 direction is scattered.
  • the ⁇ 1 direction in one direction in the film plane is the absorption axis.
  • .DELTA..eta 2 directions within the film plane, Nio, Te perpendicular to .DELTA..eta 1 direction and the transmission axis It has become.
  • the other ⁇ direction orthogonal to the ⁇ 1 direction is the thickness direction.
  • the translucent resin 1 has translucency in the visible light region, and can be used without particular limitation as one that disperses and adsorbs an iodine-based light absorber.
  • Examples of the translucent resin 1 include a translucent water-soluble resin.
  • polybutyl alcohol or a derivative thereof conventionally used for a polarizer can be mentioned.
  • Derivatives of polybutyl alcohol include polybutylformal, polybutylacetal, etc., and other olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, alkyl esters thereof, and acrylamide. And those modified with.
  • the translucent resin 1 includes, for example, polyvinylpyrrolidone-based resin, amylose-based resin and the like.
  • the translucent resin 1 may be an isotropic one that does not easily cause alignment birefringence due to molding distortion or the like, or may have an anisotropy that easily generates alignment birefringence.
  • Examples of the translucent resin 1 include polyester resins such as polyethylene terephthalate and polyethylene naphthalate; styrene resins such as polystyrene and acrylonitrile.
  • Styrene copolymer ( ⁇ S resin) examples include polypropylene, polyolefin having a cyclo- or norbornene structure, and olefin-based resins such as ethylene-propylene copolymer.
  • Shii-Dani-Bull resin cellulose resin, acrylic resin, amide resin, imide resin, sulfone polymer, polyethersulfone resin, polyetheretherketone resin polymer And polyphenylene sulfide resin, salted vinylidene resin, vinyl butyral resin, arylate resin, polyoxymethylene resin, silicone resin, urethane resin and the like.
  • a thermosetting or ultraviolet curable resin such as a phenolic, melamine, acrylic, urethane, acrylic urethane, epoxy, or silicone resin can also be used.
  • the material forming the minute region 3 is not particularly limited as to whether it is isotropic or has birefringence, but a birefringent material is preferable.
  • a birefringent material a material exhibiting liquid crystallinity at least at the time of alignment treatment (hereinafter, referred to as liquid crystalline material) is preferably used. That is, as long as the liquid crystalline material exhibits liquid crystallinity at the time of the alignment treatment, it may exhibit liquid crystallinity in the formed minute region 3 or may lose liquid crystallinity.
  • the material forming the minute region 3 may be a birefringent material (liquid crystal material), which may be nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal, or lyotropic liquid crystal. Further, the birefringent material may be formed by a polymerization of a liquid crystalline monomer which may be a liquid crystalline thermoplastic resin.
  • the liquid crystal material is a liquid crystal thermoplastic resin
  • those having a high glass transition temperature are preferred from the viewpoint of the heat resistance of the finally obtained structure. It is preferable to use one that is in a glassy state at least at room temperature.
  • the liquid crystalline thermoplastic resin is usually oriented by heating, fixed by cooling, and forms the microscopic region 3 while maintaining the liquid crystallinity. After the compounding of the liquid crystal monomer, the microscopic region 3 can be formed in a state of being fixed by polymerization, cross-linking, or the like. However, the formed microscopic region 3 may lose liquid crystallinity.
  • liquid crystalline thermoplastic resin polymers having various skeletons of a main chain type, a side chain type or a composite type thereof can be used without any particular limitation.
  • the main chain type liquid crystal polymer include a condensation type polymer having a structure in which a mesogen group having an aromatic unit is bonded, for example, a polymer such as a polyester type, a polyamide type, a polycarbonate type, and a polyesternoimide type.
  • aromatic unit serving as a mesogen group include a phenolic unit, a biphenyl-based unit, and a naphthalene-based unit. These aromatic units include a cyano group, an alkyl group, an alkoxy group, and a halogen group. It may have a substituent.
  • Examples of the side chain type liquid crystal polymer include a polyatalylate type, a polymethacrylate type, a poly halo atalylate type, a poly- ⁇ -nitrosanoacrylate type, a polyacrylamide type, a polysiloxane type, and a polymalonate type.
  • Having a mesogen group comprising a cyclic unit or the like in the side chain.
  • Examples of the cyclic unit to be a mesogen group include biphenyl, phenylbenzoate, phenylcyclohexane, azoxybenzene, azomethine, azobenzene, phenylpyrimidine, and diphenylacetylene.
  • diphenyl-benzobenzoates bicyclohexanes, cyclohexinolesbenzenes and terphenyls.
  • the terminals of these cyclic units may have a substituent such as a cyano group, an alkyl group, an alkenyl group, an alkoxy group, a halogen group, a haloalkyl group, a haloalkoxy group, a haloalkenyl group, and the like.
  • the mesogen group those having a halogen group can be used.
  • the mesogen group of the misaligned liquid crystal polymer may be bonded via a part of the spacer that imparts flexibility.
  • the spacer examples include a polymethylene chain and a polyoxymethylene chain.
  • the number of repeating structural units that form part of the spacer is appropriately determined according to the chemical structure of the mesogenic moiety, but the repeating units of the polymethylene chain are 0 to 20, preferably 2 to 12, and the number of repeating polyoxymethylene chains.
  • the unit is 0-10, preferably 1-3.
  • the liquid crystalline thermoplastic resin preferably has a glass transition temperature of 50 ° C or higher, more preferably 80 ° C or higher. Further, those having a weight average molecular weight of about 21 to 100,000 are preferred.
  • liquid crystalline monomer those having a polymerizable functional group such as an atalyloyl group or a methacryloyl group at the terminal, and having a mesogen group having the above-mentioned cyclic unit isotropy and a part of a spacer are exemplified.
  • a polymerizable functional group such as an atalyloyl group or a methacryloyl group at the terminal
  • mesogen group having the above-mentioned cyclic unit isotropy and a part of a spacer
  • the durability can be improved by introducing a crosslinked structure by using a polymerizable functional group having two or more atalyloyl groups and methacryloyl groups.
  • the material for forming the minute regions 3 is not limited to the above-mentioned liquid crystalline material.
  • Non-liquid crystalline resin can be used as long as the material is different from the matrix material.
  • the resin include polybutyl alcohol and its derivatives, polyolefin, polyarylate, polymethacrylate, polyacrylamide, polyethylene terephthalate, and acrylic styrene copolymer.
  • particles having no birefringence can be used as a material for forming the minute regions 3.
  • the fine particles include, for example, resins such as polyatalylate and acrylic styrene copolymer.
  • the size of the fine particles is not particularly limited, but a particle having a particle diameter of 0.05 to 500 m, preferably 0.5 to 100 m is used.
  • the material forming the fine / J and region 3 is preferably the above-mentioned liquid crystalline material, but the liquid crystalline material may be used by mixing a non-liquid crystalline material. Further, a non-liquid crystal material can be used alone as a material for forming the minute regions 3.
  • the iodine-based light absorber refers to a species that absorbs visible light, i.e., an iodine force, and generally includes a light-transmitting water-soluble resin (particularly, a polyvinyl alcohol-based resin) and a polyiodide ion (II). ⁇
  • the iodine-based light absorber is also called an iodine complex. It is believed that polyiodide ions are formed from iodine and iodide ions.
  • An iodine-based light absorber has an absorption region in a wavelength band of at least 400 to 700 nm. Is preferably used.
  • Examples of the dichroic absorption material that can be used in place of the iodine-based light absorber include absorption dichroic dyes and pigments.
  • an iodine-based light absorbing material as the dichroic absorbing material.
  • the iodine-based light-absorbing body also preferably has a high degree of polarization and a high transmission point power.
  • the absorption dichroic dye a dye having heat resistance and not losing dichroism due to decomposition or deterioration even when the liquid crystal material of the birefringent material is heated to be oriented is preferably used. It is.
  • the absorption dichroic dye is preferably a dye having at least one absorption band having a dichroic ratio of 3 or more in a visible light wavelength region.
  • a measure for evaluating the dichroic ratio for example, a liquid crystal cell having a homogenous orientation is prepared using an appropriate liquid crystal material in which a dye is dissolved, and the absorption maximum wave in a polarization absorption spectrum measured using the cell is prepared. The absorption dichroic ratio at long is used. In this evaluation method, for example, when E-7 manufactured by Merck is used as the standard liquid crystal, the standard value of the dichroic ratio at the absorption wavelength is 3 or more, preferably 6 or more, and more preferably the dye used. Is 9 or more.
  • the dye having a strong high dichroic ratio is preferably used for a dye-based polarizer, and includes azo, perylene, and anthraquinone dyes. These dyes include mixed dyes and the like. Can be used. These dyes are described in detail in, for example, JP-A-54-76171.
  • a dye having an absorption wavelength suitable for the characteristics can be used.
  • a neutral gray polarizer two or more dyes are appropriately mixed and used so that absorption occurs in the entire visible light region.
  • the scattering-dichroic absorption composite polarizer of the present invention produces a film in which a matrix is formed by a translucent resin 1 containing an iodine-based light absorber 2, and a microscopic film is formed in the matrix.
  • Region 3 eg, an oriented birefringent material formed of a liquid crystalline material
  • the .DELTA..eta 1 direction refractive index difference (!! 1) controls so .DELTA..eta 2 directions of refractive index difference (.DELTA..eta 2) is within the above range.
  • the production process of the absorbing composite polarizer of the present invention is not particularly limited.
  • a material forming a minute region is used for a light-transmitting resin serving as a matrix (hereinafter, a case where a liquid crystal material is used as a material forming a minute region will be described as a representative example.
  • a mixed solution is prepared by dispersing a liquid crystal material to be a minute region in a light-transmitting resin for forming a matrix.
  • the method for preparing the mixed solution is not particularly limited, and examples thereof include a method utilizing a phase separation phenomenon between the matrix component (light-transmitting resin) and a liquid crystal material.
  • a material that is hardly compatible with the matrix component is selected as the liquid crystal material, and a solution of the material forming the liquid crystal material is dispersed in an aqueous solution of the matrix component through a dispersant such as a surfactant. .
  • a dispersant may not be added depending on a combination of a light-transmitting material forming a matrix and a liquid crystal material forming a minute region.
  • the amount of the liquid crystal material dispersed in the matrix is not particularly limited, but the liquid crystal material is used in an amount of 0.01 to 100 parts by weight, preferably 0.1 to 10 parts by weight, per 100 parts by weight of the translucent resin. Department.
  • the liquid crystalline material is used with or without being dissolved in a solvent.
  • the solvent examples include water, toluene, xylene, hexane, cyclohexane, dichloromethane, trichloromethane, dichloroethane, trichloroethane, tetrachloroethane, trichloroethylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclohexanone and cyclohexane. Pentanone, tetrahydrofuran, ethyl acetate and the like.
  • the solvent for the matrix component and the solvent for the liquid crystal material may be the same or different.
  • the liquid crystalline material forming the minute region is dissolved in the preparation of the mixed solution. It is preferable not to use a solvent for the reaction.
  • a solvent for the reaction.
  • a liquid crystal material is directly added to an aqueous solution of a translucent material that forms matrix, and the liquid crystal material is added.
  • a method of heating and dispersing at a temperature not lower than the liquid crystal temperature range in order to uniformly disperse the liquid crystal in a smaller size is exemplified.
  • the solution of the matrix component, the solution of the liquid crystal material, or the mixed solution contains a dispersant, a surfactant, an ultraviolet absorber, a flame retardant, an antioxidant, a plasticizer, a release agent, a lubricant, Various additives such as a coloring agent can be contained as long as the object of the present invention is not impaired.
  • the mixed solution is heated and dried to remove the solvent, thereby producing a film in which microscopic regions are dispersed in a matrix.
  • a method for forming the film various methods such as a casting method, an extrusion molding method, an injection molding method, a roll molding method, and a casting method can be adopted.
  • the film forming to control so that the size force finally .DELTA..eta 2 direction of the minute regions in the fill beam becomes 0. 05- 500 m.
  • a mixed solution of a high-viscosity translucent resin that forms a matrix and high-viscosity translucent resin and a liquid crystal material that is a microscopic region is dispersed by a stirrer such as a homomixer while heating to above the liquid crystal temperature range. By doing so, it is possible to disperse the minute region more tightly.
  • the step (3) of orienting the film can be performed by stretching the film.
  • the stretching may be, for example, uniaxial stretching, biaxial stretching, or oblique stretching. Usually, uniaxial stretching is performed.
  • the stretching method may be either dry stretching in air or wet stretching in an aqueous bath. When wet stretching is employed, additives (boron compounds such as boric acid, alkali metal iodides, etc.) can be appropriately contained in the aqueous bath.
  • the stretching ratio is not particularly limited, but is usually preferably about 2 to 10 times.
  • the iodine-based light absorber can be oriented in the stretching axis direction.
  • the liquid crystalline material that becomes a birefringent material in the minute region is oriented in the stretching direction in the minute region by the above stretching, and develops birefringence.
  • the minute region be deformed in accordance with the stretching.
  • the stretching temperature is near the glass transition temperature of the resin, and when the microscopic region is a liquid crystalline material, the liquid crystal material is in a liquid crystal state such as a nematic phase or a smectic phase at the temperature during stretching. It is desirable to select the temperature at which the quadrature state is reached. If the orientation is insufficient at the time of stretching, a step such as a heating orientation treatment may be separately performed.
  • an external field such as an electric field or a magnetic field may be used in addition to the above stretching.
  • a liquid crystal material mixed with a photoreactive substance such as azobenzene, or a liquid crystal material having a photoreactive group such as a cinnamoyl group introduced therein which can be aligned by an alignment treatment such as light irradiation.
  • an alignment treatment such as light irradiation.
  • the stretching treatment and the orientation treatment described above can be used in combination.
  • the liquid crystalline material is a liquid crystalline thermoplastic resin
  • the orientation is fixed at the time of stretching and then cooled to room temperature, whereby the orientation is fixed and stabilized. If the liquid crystal monomer is oriented, the desired optical properties will be exhibited, so it is not always necessary to cure! / ⁇ .
  • liquid crystalline monomer having a low isotropic transition temperature is brought into an isotropic state by a slight temperature increase.
  • anisotropic scattering is eliminated and, conversely, polarization performance is not degraded.
  • curing is preferable.
  • many liquid crystalline monomers crystallize when left at room temperature, which eliminates anisotropic scattering and, conversely, does not deteriorate the polarization performance. . From a powerful viewpoint, it is preferable to cure the liquid crystalline monomer in order to stably exist the alignment state under any conditions.
  • the curing of the liquid crystalline monomer is carried out, for example, by mixing with a photopolymerization initiator, dispersing in a matrix component solution, and after alignment, at any timing (before or after dyeing with an iodine-based absorber). It cures by irradiating ultraviolet rays etc. to stabilize the orientation. Desirably, before dyeing with an iodine-based light absorber.
  • step (4) of dispersing an iodine-based light absorber in the translucent resin serving as the matrix generally, iodine is dissolved together with an auxiliary agent such as an alkali metal iodide such as potassium iodide.
  • an auxiliary agent such as an alkali metal iodide such as potassium iodide.
  • a method of immersing the film in an aqueous bath As described above, the interaction between iodine dispersed in the matrix and the matrix resin forms an iodine-based light absorber. The immersion may be performed before or after the stretching step (3).
  • the iodine-based light-absorbing material is generally formed remarkably by going through a stretching step.
  • the concentration of the aqueous bath containing iodine and the ratio of auxiliary agents such as alkali metal iodide are not particularly limited, and a general iodine dyeing method can be adopted, and the concentration and the like can be arbitrarily changed.
  • the ratio of iodine in the obtained polarizer is not particularly limited, but the translucent resin and iodine may be used. It is preferable to control the proportion of iodine to be about 0.05 to 50 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the translucent resin.
  • the ratio of the absorbing dichroic dye in the obtained polarizer is not particularly limited, but the translucent thermoplastic resin and the absorbing dichroic dye may be used.
  • the ratio of the color dye is controlled so that the absorption dichroic dye is about 0.01 to 100 parts by weight, and more preferably 0.05 to 50 parts by weight, based on 100 parts by weight of the translucent thermoplastic resin. It is preferable to do so.
  • a step (5) for various purposes can be performed in addition to the steps (1) to (4).
  • the step (5) includes, for example, a step of immersing the film in a water bath to swell, mainly for the purpose of improving the iodine dyeing efficiency of the film.
  • a step of immersing in a water bath in which an arbitrary additive is dissolved and the like can be mentioned.
  • the step of immersing the film in an aqueous solution containing an additive such as boric acid or borax is mainly used for crosslinking the water-soluble resin (matrix).
  • the process of immersing the film in an aqueous solution containing an additive such as an alkali metal iodide is mainly for the purpose of adjusting the amount balance of the dispersed iodine-based light absorber and adjusting the hue. It is.
  • the step (3) of orienting (stretching) and stretching the film, the step (4) of disperse-staining an iodine-based light-absorbing material on the matrix resin and the above step (5) are the steps (3) and (4).
  • the number of steps, order, and conditions bath temperature ⁇ immersion time, etc.
  • each step may be performed separately or a plurality of steps may be performed simultaneously.
  • the crosslinking step (5) and the stretching step (3) may be performed simultaneously!
  • step (2) a method of adding an arbitrary kind and amount before or after preparing the mixed solution and before forming the film in step (2) can be adopted. Also, both methods may be used in combination.
  • step (3) when it is necessary to raise the temperature (for example, 80 ° C or more) during stretching or the like, and the iodine-based light absorber degrades at that temperature, Preferably, the step (4) of disperse dyeing the body is performed after the step (3).
  • the film subjected to the above treatment be dried under appropriate conditions. Drying is performed according to a conventional method.
  • the thickness of the obtained polarizer (film) is not particularly limited, but is usually 1 ⁇ m to 3 mm, preferably 5 ⁇ m to 1 mm, and more preferably 10-500 ⁇ m.
  • Two vertical direction orthogonal to the stretching axis is a .DELTA..eta 2 direction, Ru.
  • the stretching direction of the iodine-based light absorber is the direction showing the maximum absorption, and it is a polarizer that maximizes the effect of absorption and scattering.
  • the obtained polarizer can be formed into a polarizing plate having a light-transmitting layer provided with a light-transmitting protective layer on at least one surface according to a conventional method.
  • the transparent protective layer can be provided as a coating layer of a polymer or as a laminate layer of a film.
  • the transparent polymer or film material for forming the transparent protective layer an appropriate transparent material can be used, but a material having excellent transparency, mechanical strength, heat stability, moisture barrier property and the like is preferably used.
  • the material for forming the transparent protective layer include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as cellulose diacetate and cellulose triacetate, and acrylic polymers such as polymethyl methacrylate.
  • Examples include styrene-based polymers such as polystyrene and acrylonitrile-styrene copolymer (AS resin), and polycarbonate-based polymers.
  • AS resin acrylonitrile-styrene copolymer
  • polycarbonate-based polymers examples include polyethylene, polypropylene, polyolefin having a cyclo- or norbornene structure, polyolefin-based polymer such as ethylene-propylene copolymer, butyl-based polymer, amide-based polymer such as nylon or aromatic polyamide, imide-based polymer, etc.
  • Sunolefon polymer polyethenoresenollefone polymer, polyethenolethenoleketone polymer, polyphenylene sulfide polymer, bul alcohol polymer, bi-lidene chloride polymer, butyl butyral polymer, arylate polymer, Polyoxymethylene-based polymers, epoxy-based polymers, blends of the above-mentioned polymers, and the like are also examples of the polymer that forms the transparent protective layer.
  • a polymer film described in JP-A-2001-343529 (WO01Z37007), for example, (A) a thermoplastic resin having a substituted and Z or non-substituted group in the side chain, and (B) a thermoplastic resin having a substituted and Z or non-substituted file and -tolyl group in the side chain.
  • a fat composition containing fat is included.
  • Specific examples include a resin composition film containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile-styrene copolymer.
  • a strong film such as a mixed extruded product of a resin composition can be used.
  • the transparent protective layer that can be particularly preferably used from the viewpoint of polarization characteristics and durability is a triacetyl cellulose film whose surface is saponified with an alkali or the like.
  • the thickness of the transparent protective layer is arbitrary, but is generally 500 m or less, more preferably 1.1 to 300 / ⁇ , particularly preferably 5 to 300 / z m for the purpose of reducing the thickness of the polarizing plate.
  • a transparent protective layer is provided on both sides of the polarizer, a protective film having different polymer strengths on both sides can be used.
  • a protective film having a retardation value in the thickness direction of 90 nm- + 75 nm is preferably used.
  • the thickness direction retardation value (Rth) is more preferably -80 nm- "h60 nm, particularly -70 nm-" h45 nm.
  • the surface of the protective film on which the polarizer is not adhered may be subjected to a hard coat layer, an anti-reflection treatment, a treatment for preventing sticking, and a treatment for diffusion or anti-glare.
  • the hard coat treatment is performed for the purpose of preventing scratches on the polarizing plate surface and the like.
  • a suitable UV-curable resin such as an acrylic or silicone resin is used to cure with excellent hardness and sliding properties.
  • the film can be formed by a method of adding a film to the surface of the protective film.
  • the anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art.
  • stick The anti-aging treatment is performed for the purpose of preventing adhesion to an adjacent layer.
  • the anti-glare treatment is performed for the purpose of, for example, preventing external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate.
  • the protective film can be formed by giving a fine uneven structure to the surface of the protective film by an appropriate method such as a surface roughening method or a method of blending transparent fine particles.
  • Examples of the fine particles to be included in the formation of the surface fine unevenness include silica, alumina, titanium, zirconia, tin oxide, indium oxide, cadmium oxide, and acid oxide having an average particle diameter of 0.5 to 50 m.
  • Transparent fine particles such as inorganic fine particles which may have conductive properties such as antimony, and organic fine particles which also have strong properties such as crosslinked or uncrosslinked polymers are used.
  • the amount of the fine particles is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight, per 100 parts by weight of the transparent resin forming the fine surface unevenness structure.
  • the anti-glare layer may also serve as a diffusion layer (such as a viewing angle expansion function) for diffusing light transmitted through the polarizing plate to increase the viewing angle.
  • the anti-reflection layer, anti-staking layer, diffusion layer, anti-glare layer and the like can be provided on the protective film itself, or separately provided as an optical layer separately from the transparent protective layer. You can also.
  • An adhesive is used for the bonding treatment between the polarizer and the protective film.
  • the adhesive include an isocyanate-based adhesive, a polybutyl alcohol-based adhesive, a gelatin-based adhesive, a vinyl latex-based adhesive, and a water-based polyester.
  • the adhesive is usually used as an adhesive which also has an aqueous solution strength, and usually contains a solid content of 0.5 to 60% by weight.
  • the protective film and the polarizer are bonded together using the adhesive.
  • the application of the adhesive may be performed on either the protective film or the polarizer, or may be performed on both.
  • a drying step is performed to form an adhesive layer composed of a coating and drying layer.
  • the bonding of the polarizer and the protective film can be performed using a roll laminator or the like.
  • the thickness of the adhesive layer is not particularly limited, but is usually about 0.1 to 5 m.
  • the circularly polarizing plate of the present invention is a combination of the above-mentioned absorption complex type polarizer (the absorption complex type polarizer can be used as an absorption complex type polarizing plate obtained by laminating the protective film or the like) and a 1Z4 wavelength plate. It is a combination.
  • the retardation plate constituting the 1Z4 wavelength plate can be formed by a stretched (orientated) film of a transparent polymer film or an orientation-solidified layer of a liquid crystalline compound.
  • the thickness of the retardation plate is not particularly limited, but is preferably about 0.5 to 500 m.
  • Materials for the polymer film include polycarbonate, polybutyl alcohol, polystyrene, polymethyl methacrylate, polypropylene and other polyolefins, polyarylates, polyamides, polyesters, polysulfones, polyether sulfones, cellulose acetate, and polychloride. And dangling bur.
  • the stretched film can be obtained by uniaxially or biaxially stretching a polymer film.
  • a stretched film having a controlled refractive index in the thickness direction can be obtained, for example, by bonding a heat-shrinkable film to a polymer film and subjecting the polymer film to a stretching treatment or a Z-shrinking treatment under the action of the shrinkage force caused by heating. it can.
  • Examples of the solidified alignment layer of the liquid crystalline compound include an alignment film of a liquid crystal polymer, and an alignment layer of a liquid crystal polymer supported by a transparent film.
  • a liquid crystal polymer is obliquely oriented by controlling the refractive index in the thickness direction.
  • the 1Z4 wavelength plate may be composed of one retardation plate having a phase difference of 1Z4 wavelength.
  • two or more retardation plates may be laminated so as to have a phase difference of 1Z4 wavelength.
  • a laminated wave plate whose characteristics are controlled may be used.
  • the laminated wave plate can function as a 1Z4 wave plate in a wide wavelength range such as a visible light castle by reducing the wavelength dependence of the phase difference.
  • a laminated wave plate is a method in which a phase difference plate functioning as a 1Z4 wave plate and a phase difference plate exhibiting other phase difference characteristics, such as a phase difference plate functioning as a 1Z2 wave plate, are superimposed on monochromatic light.
  • the laminated wave plate uses two or more retardation plates that function as 1Z4 wave plates for monochromatic light, and controls the axis angle at which these are laminated so that a phase difference of 1/4 wavelength can be obtained. Can be obtained by controlling
  • a retardation plate having reverse wavelength dispersion is preferably used.
  • the retardation plate having reverse wavelength dispersion is a blend polymer composed of a polymer having a positive refractive index anisotropy and a polymer having a negative refractive index anisotropy, and has a positive refractive index anisotropy. It can be obtained from an oriented film of a copolymer comprising a monomer unit of a polymer and a monomer unit of a polymer having a negative refractive index anisotropy.
  • a retardation plate with strong reverse wavelength dispersion is for example, as described in JP-A-2003-315550, a combination of a bisphenol having a positive optical anisotropy and a bisphenol having a fluorene ring having a negative optical anisotropy is preferable. . Further, as described in JP-A-2000-137116, an oriented film of a cellulose film having a predetermined degree of acetylation can be mentioned.
  • the above-mentioned composite absorption polarizer (or composite absorption type polarizing plate) and the 1Z4 wavelength plate may be laminated only, but from the viewpoint of workability and light use efficiency. More preferably, each layer is laminated without an air gap using an adhesive or a pressure-sensitive adhesive.
  • the adhesive and the pressure-sensitive adhesive are not particularly limited.
  • acrylic polymers silicone polymers, polyesters, polyurethanes, polyamides, polybutyl ether, butyl acetate
  • a polymer having a base polymer such as Z-Shidani Bull copolymer, modified polyolefin, epoxy-based, fluorine-based, natural rubber, or synthetic rubber can be appropriately selected and used.
  • those having excellent optical transparency, exhibiting appropriate wettability, cohesiveness and adhesive adhesive properties and having excellent weather resistance and heat resistance can be preferably used.
  • the adhesive or the pressure-sensitive adhesive is transparent, has no absorption in the visible light region, and has a refractive index as close as possible to the refractive index of each layer from the viewpoint of suppressing surface reflection.
  • an acrylic pressure-sensitive adhesive can be preferably used.
  • the adhesive or pressure-sensitive adhesive may contain a crosslinking agent according to the base polymer.
  • Adhesives include, for example, natural and synthetic resins, especially tackifying resins, and fillers, pigments, and coloring agents such as glass fibers, glass beads, metal powders, and other inorganic powders. And an additive such as an antioxidant.
  • An adhesive layer containing fine particles and exhibiting light diffusivity may be used.
  • a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, and a nickel complex salt compound are formed on each of the optical element and the like and the adhesive layer and the like.
  • those having an ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorbent are formed on each of the optical element and the like and the adhesive layer and the like.
  • the adhesive and the pressure-sensitive adhesive are usually used as an adhesive solution having a solid content concentration of about 10 to 50% by weight in which a base polymer or a composition thereof is dissolved or dispersed in a solvent.
  • a solvent use an organic solvent such as toluene or ethyl acetate, or a solvent corresponding to the type of adhesive such as water. They can be appropriately selected and used.
  • the pressure-sensitive adhesive layer and the adhesive layer may be provided on one or both sides of a polarizing plate or an optical film as a superposed layer of different compositions or types.
  • the thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use, adhesive strength, and the like, and is generally 1 to 500 m, preferably 5 to 200 m, and particularly preferably 10 to 100 m.
  • the circularly polarizing plate of the present invention may be provided with an adhesive layer or an adhesive layer.
  • the adhesive layer can be used for attaching to a liquid crystal cell and also for laminating an optical layer.
  • their optical axes can be set at an appropriate arrangement angle according to the target retardation characteristics and the like.
  • a separator is temporarily attached to the exposed surface of the adhesive layer or the like for the purpose of preventing contamination or the like until it is put to practical use, and covered. This can prevent the adhesive layer from coming into contact with the adhesive layer in a normal handling state.
  • a suitable thin leaf such as a plastic film, a rubber sheet, paper, cloth, nonwoven fabric, a net, a foamed sheet, a metal foil, or a laminate thereof may be used as a separator, if necessary, and a silicone-based separator.
  • Any suitable material according to the related art such as a material coated with a suitable release agent such as a long mirror alkyl-based or fluorine-based molybdenum sulfide, or the like can be used.
  • the circularly polarizing plate of the present invention is applied to a liquid crystal display device according to a conventional method.
  • a liquid crystal display device polarizing plates are arranged on both sides of a liquid crystal cell, and various optical layers and the like are appropriately used.
  • the light plate is applied to at least one side of the liquid crystal cell.
  • the formation of the liquid crystal display device can be performed according to a conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell and an optical element and, if necessary, an illumination system and incorporating a drive circuit. Except for the point of use, no particular limitation can be applied to the conventional method.
  • the liquid crystal cell any type such as TN type, STN type, and ⁇ type can be used.
  • liquid crystal display device when forming the liquid crystal display device, appropriate components such as a diffusion plate, an antiglare layer, an antireflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, and a knock light are appropriately formed.
  • a diffusion plate an antiglare layer, an antireflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, and a knock light
  • a diffusion plate an antiglare layer
  • an antireflection film e.g., a protection plate
  • prism array e.g., a prism array
  • lens array sheet e.g., a lens array sheet
  • a light diffusion plate e.g., a light diffusion plate, and a knock light.
  • the circularly polarizing plate may be sequentially and separately laminated in a manufacturing process of a liquid crystal display device or the like. Although they can be formed, those laminated in advance have an advantage that they are excellent in quality stability and assembling work, and can improve a manufacturing process of a liquid crystal display device or the like.
  • Appropriate bonding means such as an adhesive layer can be used for lamination.
  • the optical layer to be laminated in practical use is not particularly limited.
  • an optical layer which may be used for forming a liquid crystal display device such as a reflection plate, a semi-transmission plate, and a viewing angle compensation film is used.
  • One or more layers can be used.
  • a brightness enhancement film can be laminated and used.
  • a reflective polarizing plate is a polarizing plate provided with a reflective layer, and is used to form a liquid crystal display device or the like that reflects and reflects incident light from the viewing side (display side).
  • a built-in light source such as a backlight can be omitted, and the liquid crystal display device can be easily made thin.
  • the reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer having a strength such as a metal is provided on one surface of the polarizing plate via a transparent protective layer or the like as necessary.
  • the transflective polarizing plate can be obtained by forming a transflective reflective layer such as a half mirror that reflects and transmits light with the reflective layer in the above.
  • liquid crystal display device or the like when the liquid crystal display device or the like is used in a relatively bright atmosphere, the image is displayed by reflecting the incident light from the viewing side (display side), and relatively Depending on the atmosphere, a liquid crystal display device or the like that is built in the back side of a transflective polarizing plate and displays an image using a built-in light source such as a backlight can be formed.
  • the viewing angle compensation film is a film for widening the viewing angle so that the image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed in a direction not perpendicular to the screen but slightly oblique.
  • a viewing angle compensating retardation plate includes, for example, a retardation film, an alignment film such as a liquid crystal polymer, and a transparent substrate on which an alignment layer such as a liquid crystal polymer is supported.
  • a normal retardation plate uses a birefringent polymer film uniaxially stretched in the plane direction, whereas a retardation plate used as a viewing angle compensation film has a surface retardation plate.
  • a bidirectionally stretched film such as a film is used.
  • the obliquely oriented film include a film obtained by bonding a heat shrinkable film to a polymer film and subjecting the polymer film to a stretching treatment or a Z-shrinkage treatment under the action of its shrinkage by heating, or a film obtained by obliquely aligning a liquid crystal polymer And the like.
  • the same polymer as that described for the retardation plate is used to prevent coloring etc. due to a change in the viewing angle based on the phase difference due to the liquid crystal cell and to enlarge the viewing angle for good visibility.
  • Appropriate ones for the purpose can be used.
  • the triacetyl cellulose film supports the liquid crystal polymer alignment layer, particularly the optically anisotropic layer composed of the discotic liquid crystal polymer inclined alignment layer, because it achieves a wide viewing angle with good visibility.
  • An optically-compensated phase difference plate can be preferably used.
  • a polarizing plate obtained by laminating a polarizing plate and a brightness enhancement film is usually used by being provided on the back side of a liquid crystal cell.
  • Brightness-enhancing films exhibit the property of reflecting linearly polarized light with a predetermined polarization axis or circularly polarized light in a predetermined direction when natural light enters due to reflection from the backlight or the back side of a liquid crystal display device, etc., and transmitting other light.
  • the polarizing plate in which the brightness enhancement film is laminated with the polarizing plate receives light from a light source such as a backlight to obtain transmitted light of a predetermined polarization state and reflects light other than the predetermined polarization state without transmitting the light. Is done.
  • the light reflected on the surface of the brightness enhancement film is further inverted through a reflection layer or the like provided on the rear side thereof and re-entered on the brightness enhancement film, and a part or all of the light is transmitted as light of a predetermined polarization state.
  • the brightness can be improved. is there.
  • Examples of the brightness enhancement film include, for example, a multilayer thin film of a dielectric thin film or a multilayer laminate of thin films having different refractive index anisotropies, and other light that transmits linearly polarized light having a predetermined polarization axis. Reflects either left-handed or right-handed circularly polarized light, and transmits other light, such as those exhibiting reflective characteristics, such as an alignment film of cholesteric liquid crystal polymer and an alignment liquid crystal layer supported on a film substrate. Any suitable material such as one exhibiting the characteristic described above can be used.
  • the polarizing plate may be formed by laminating a polarizing plate such as the above-mentioned polarized light separating type polarizing plate and two or three or more optical layers. Therefore, a reflective elliptically polarizing plate or a transflective elliptically polarizing plate obtained by combining the above-mentioned reflective polarizing plate, transflective polarizing plate and retardation plate may be used.
  • organic electroluminescent device organic EL display device
  • a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially stacked on a transparent substrate to form a light emitting body (organic electroluminescent light emitting body).
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer of a fluorescent organic solid force such as anthracene, or A structure having various combinations such as a laminate of such a light-emitting layer and an electron injection layer having a perylene derivative or a hole injection layer, a light-emitting layer, and an electron injection layer. Is known.
  • an organic EL display device including an organic electroluminescent luminous body having a transparent electrode on the front side of an organic luminescent layer that emits light by application of a voltage and a metal electrode on the back side of the organic luminescent layer,
  • a polarizing plate can be provided on the surface side of the electrode, and a retardation plate can be provided between the transparent electrode and the polarizing plate.
  • the polarizing effect has an effect of preventing the mirror surface of the metal electrode from being visually recognized from the outside. is there.
  • the retardation plate is composed of a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the retardation plate is adjusted to ⁇ Z4, the mirror surface of the metal electrode can be completely shielded.
  • linearly polarized light components of the external light incident on the organic EL display device are transmitted by the polarizing plate.
  • This linearly polarized light is generally converted into elliptically polarized light by a retardation plate.
  • the phase difference plate is a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the retardation plate is ⁇ ⁇ 4, it becomes circularly polarized light. .
  • This circularly polarized light transmits through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, passes through the organic thin film, the transparent electrode, and the transparent substrate again, and is again converted into linearly polarized light by the retardation plate. Become. Since this linearly polarized light is orthogonal to the polarization direction of the polarizing plate, it cannot pass through the polarizing plate. Yes. As a result, the mirror surface of the metal electrode can be completely shielded.
  • Parts means parts by weight.
  • Polymerization degree 2400 a liquid crystal having a poly Bulle alcohol solution of Keni ⁇ 98.5% of poly Bulle solids 13 weight dissolved alcohol ⁇ 0/0, one by one Atariroi Le groups at both ends of the mesogen group
  • the mixture was heated above the range and stirred with a homomixer to obtain a mixed solution. Air bubbles present in the mixed solution were removed by leaving them at room temperature (23 ° C), then applied by a cast method, dried, and then mixed with a cloudy thickness of 70 m. A film was obtained. This mixed film was heat-treated at 130 ° C for 10 minutes.
  • a triacetyl cellulose film (thickness: 80 m) was laminated on both sides of the above-mentioned absorption complex type polarizer using a polyurethane-based adhesive to prepare an absorption complex type polarizer.
  • the value of (nx-nz) Z (nx-ny) of the phase difference plate is shown below as Nz.
  • the phase difference and Nz were measured using a spectroscopic ellipsometer M-220 manufactured by JASCO Corporation, and the three-dimensional refractive index was determined by measuring the phase difference incident angle dependence of the sample. In this case, a refractive index spheroid was assumed for the refractive index anisotropy of the sample.
  • the average refractive index required for the calculation was the average refractive index for light having a wavelength of 589 nm, which was separately measured using an Abbe refractometer.
  • a 100-m-thick cyclic polyolefin film (ARTON, manufactured by JSR Corporation) is stretched at 175 ° C under the adhesion of a heat-shrinkable film to give a phase difference of 1Z4 to 550 nm light. 1.7 1Z4 wave plate was fabricated.
  • a commercially available photocrosslinkable liquid crystal trade name: UCL 001, manufactured by Dainippon Ink and Chemicals, Inc.
  • the liquid crystal was promptly irradiated with ultraviolet rays at room temperature in an atmosphere replaced with nitrogen to fix the liquid crystal in nematic alignment.
  • the scattering monochromatic dichroic absorption composite polarizing plate obtained above and a retardation plate 3 (1Z4 wavelength plate) were bonded together via an acrylic adhesive to obtain a circular polarizing plate.
  • the stretching axis of the absorption-combination polarizing plate and the stretching axis of the 1Z4 wavelength plate were bonded at an angle of 45 °.
  • Example 2 In Example 1, a circularly polarizing plate was obtained in the same manner as in Example 1 except that the retardation plate 4 (1Z4 wavelength plate) was used instead of the retardation plate 3 (1Z4 wavelength plate).
  • Example 1 a circularly polarizing plate was obtained in the same manner as in Example 1, except that the retardation plate 5 (1Z4 wavelength plate) was used instead of the retardation plate 3 (1Z4 wavelength plate).
  • Example 1 a circularly polarizing plate was obtained in the same manner as in Example 1, except that the retardation plate 6 (1Z4 wavelength plate) was used instead of the retardation plate 3 (1Z4 wavelength plate).
  • the scattering-dichroic absorption composite polarizing plate obtained above, the retardation plate 1 (1Z2 wavelength plate) and the retardation plate 3 (1Z4 wavelength plate) are bonded together via an acrylic adhesive to form a circularly polarizing plate.
  • the crossing angle between the absorption complex type polarizing plate, the 1Z2 wavelength plate and the 1Z4 wavelength plate is such that the 1Z2 wave plate is 17.5 ° and the 1Z4 wavelength plate is 80 ° with respect to the stretching axis of the absorption complex type polarizing plate. I combined.
  • a circularly polarizing plate was obtained in the same manner as in Example 1 except that a phase difference plate 2 (1Z2 wavelength plate) was used instead of the phase difference plate 1 (1Z2 wavelength plate).
  • a polarizer was produced in the same manner as described above except that a liquid crystalline monomer was not used in the production of the combined scattering-dichroic absorption polarizer. Using the polarizer, a polarizing plate was produced by the same operation as described above. A circularly polarizing plate was obtained in the same manner as in Example 1 except that the polarizing plate was used.
  • the optical characteristics of the polarizing plates used in Examples and Comparative Examples were measured with a spectrophotometer equipped with an integrating sphere (U-4100 manufactured by Hitachi, Ltd.).
  • the transmittance for each linearly polarized light was measured with 100% of the completely polarized light obtained through a Glan-Thompson prism polarizer. Note that the transmittance was represented by a Y value corrected for visibility, calculated based on the CIE1931 color system. k is the maximum transparency
  • FIG. 2 shows the polarized light absorption spectra of the polarizers used in the examples and comparative examples.
  • the “MD polarized light” in Fig. 2 (a) is the absorption spectrum of polarized light when the polarized light has a vibration plane parallel to the stretching axis
  • the “TD polarized light” in Fig. 2 (b) is the vibration plane perpendicular to the stretching axis. This is the polarized light absorption spectrum when polarized light having
  • the absorbance of the polarizer of Example 1 exceeded the absorbance of the polarizer of Comparative Example 1.
  • it exceeded the short wavelength side. That is, it shows that the polarization performance of the polarizer of Example 1 was higher than that of Comparative Example 1.
  • Example 1 and Comparative Example 1 since the conditions such as stretching and dyeing are all the same, it is considered that the degree of orientation of the iodine-based light absorber is also equal. Therefore, the increase in the absorbance of the polarizer of Example 1 with MD polarization indicates that the polarization performance has been improved by the effect of the addition of the anisotropic scattering effect on the absorption by iodine as described above.
  • a haze value with respect to linearly polarized light in the direction of maximum transmittance and a haze value with respect to linearly polarized light in the absorption direction (the direction orthogonal thereto) were measured.
  • the haze value was measured using a haze meter (HM-150 manufactured by Murakami Color Research Laboratory) in accordance with JIS K 7136 (How to find ⁇ one of plastic-transparent materials) using a commercially available polarizing plate (Nitto).
  • DPF NPF-SEG122 4DU single transmittance 43%, degree of polarization 99.96%) was placed on the sample measurement light incident surface side, and the stretching direction of the commercially available polarizing plate and the sample (polarizing plate) was adjusted.
  • the haze value when measured perpendicularly is shown.
  • the light intensity at the time of orthogonality is less than the sensitivity limit of the detector, so that the light of a separately provided high-intensity halogen lamp is input using an optical fiber and the detection sensitivity is increased. After that, the shutter was manually opened and closed, and the haze value was calculated.
  • the polarizing characteristics of Examples and Comparative Examples have good polarization characteristics such as substantially single transmittance and degree of polarization.
  • the polarizing plate used in the examples uses a polarizer having a structure in which microscopic regions are dispersed in a matrix formed of a translucent water-soluble resin containing an iodine-based light absorber. It can be seen that, when using a normal polarizer, the haze value of the transmissivity at the time of orthogonality is higher than that of the polarizing plate of the comparative example, and the unevenness due to the variation is concealed by scattering and cannot be confirmed. [0152] Next, the contrast (brightness and coloring) and the unevenness of each of the circularly polarizing plates of the example and the comparative example were evaluated. Table 2 shows the results.
  • the evaluations of contrast and unevenness are as follows.
  • a circularly polarizing plate that gives reverse circularly polarized light was prepared (the laminating angle of the wave plate was shifted by 90 ° with respect to the intersection angle of the example and the comparative example), and the circularly polarizing plate of the example and the comparative example was compared.
  • Samples were prepared in a state where the wave plates were overlapped so that they were inside each other. This sample was placed on the upper surface of a backlight used for a liquid crystal display, and observation of leakage light from above vertically and unevenness were confirmed. Observation of leakage light was performed by measuring brightness (cdZcm 2 ) using BM-5 manufactured by Topcon Corporation. Further, the degree of coloring and the amount of light were visually checked. In the evaluation of unevenness, the level at which unevenness was visually observed was “X”, and the level at which unevenness was not visually observed was “ ⁇ ”.
  • Example 4 and Comparative Example 1 were mounted side by side by replacing with polarizers of a commercially available VA mode liquid crystal panel.
  • the parts that have been reattached are significantly larger in both the examples and comparative examples.
  • the brightness when white was displayed was increased.
  • the black level was displayed in a dark room and the level of unevenness was checked, no unevenness was observed at all in the portion where the circularly polarizing plate of the example was mounted, and the visibility was very high, as compared with the circularly polarizing plate of the comparative example. It was good.
  • the portion where the circularly polarizing plate of the example was mounted was wide and had good visibility at a viewing angle.
  • JP-A-2002-207118 discloses a liquid crystalline birefringent material and an absorption dichroic material in a resin matrix. Dispersion of a mixed phase with a conductive material is disclosed. The effect is the same as that of the present invention.
  • the absorption dichroic material is present in the matrix layer as in the present invention as compared with the case where the absorption dichroic material is present in the dispersed phase as in JP-A-2002-207118.
  • the scattered polarized light passes through the absorption layer, but the optical path length becomes longer, so that more scattered light can be absorbed. Therefore, the effect of improving the polarization performance is much higher in the present invention. Also, the manufacturing process is simple.
  • Japanese Patent Application Laid-Open No. 2000-506990 discloses an optical body in which a dichroic dye is added to either a continuous phase or a dispersed phase. It is characterized in that wavelength plates are laminated, and in particular, it is characterized in that iodine is used as a dichroic absorption material of an absorption composite polarizer.
  • iodine is used instead of a dichroic dye, there are the following advantages. (1) The absorption dichroism developed by iodine is higher than that of dichroic dyes. Therefore, the polarization characteristics of the obtained polarizer are higher when iodine is used.
  • Iodine does not exhibit absorption dichroism before being added to the continuous phase (matrix phase), and after being dispersed in the matrix, is stretched to form an iodine-based light-absorbing material that exhibits dichroism. Is done. This is a point different from a dichroic dye having dichroism before being added to the continuous phase. That is, when iodine is dispersed in the matrix, it remains iodine. In this case, the diffusivity into the matrix is generally much better than the dichroic dyes. As a result, the iodine-based light absorber is dispersed to every corner of the film rather than the dichroic dye. Therefore, the effect of increasing the optical path length due to scattering anisotropy can be maximized, and the polarization function can be increased.
  • the background of the invention described in JP-T-2000-506990 describes, by Aphonin, the optical properties of a stretched film in which liquid crystal droplets are arranged in a polymer matrix. Is stated. However, Aphonin et al. Did not use dichroic dyes. It refers to an optical film consisting of a matrix phase and a dispersed phase (liquid crystal component). The liquid crystal component is not a liquid crystal polymer or a polymer of a liquid crystal monomer. Is typically temperature dependent and sensitive.
  • the present invention provides a polarizer having a film strength of a structure in which minute regions are dispersed in a matrix formed of a light-transmitting water-soluble resin containing an iodine-based light absorber.
  • the liquid crystal material of the present invention is oriented in a liquid crystal temperature range for a liquid crystal polymer, and then cooled to room temperature to fix the orientation. Similarly, for a liquid crystal monomer, the orientation is fixed by ultraviolet curing or the like. The birefringence of a minute region formed of a liquid crystalline material does not change with temperature.
  • the circularly polarizing plate of the present invention or the optical film using the same is suitably used for liquid crystal display devices, organic EL display devices, and image display devices such as CRTs and PDPs.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の円偏光板は、ヨウ素系吸光体を含有する透光性樹脂により形成されるマトリクス中に、微小領域が分散された構造のフィルムからなる散乱−二色性吸収複合型偏光子と1つまたは複数の位相差板から構成された1/4波長板とが積層されている。かかる円偏光板は、高透過率、かつ高偏光度を有し、黒表示の際の透過率のムラを抑えることができる。

Description

明 細 書
円偏光板、光学フィルムおよび画像表示装置
技術分野
[0001] 本発明は、円偏光板に関する。また当該円偏光板を用いた光学フィルムに関する。
さらには当該円偏光板、光学フィルムを用いた液晶表示装置、有機 EL表示装置、 C RT、 PDP等の画像表示装置に関する。
背景技術
[0002] 時計、携帯電話、 PDA,ノートパソコン、パソコン用モニタ、 DVDプレイヤー、 TVな どでは液晶表示装置が急速に市場展開している。液晶表示装置は、液晶のスィッチ ングによる偏光状態変化を可視化させたものであり、その表示原理力 偏光子が用 いられている。特に、 TV等の用途にはますます高輝度かつ高コントラストな表示が求 められ、偏光子にも、より明るく(高透過率)、より高コントラスト (高偏光度)のものが開 発され導入されている。
[0003] また液晶表示装置および、各種表示装置の反射防止フィルタ一として円偏光板が 用いられている。特に、マルチドメイン配向を利用した液晶モードには円偏光板の利 用は輝度向上の観点よりますます期待される。前記円偏光板は、通常、二色性吸収 型直線偏光板と 1Z4波長板とを、それらの光軸が 45° または 135° で交差するよう に積層して形成される。 1Z4波長板としては、例えば、延伸フィルムが用いられる。 当該延伸フィルムは、一般的に屈折率が波長毎に異なる波長分散に起因して、その 位相差はある波長に対しては丁度 1Z4波長となり得るが、他の波長ではその位相差 力 波長からずれる。そのため当該延伸フィルム 1枚では広波長域において 1Z 4波長板として機能しないことになる。その結果、力かる 1Z4波長板を使用した円偏 光板は、可視光全域に亘つて完全な円偏光板として機能しないことになる。従って、 例えば、 550nmの緑色の光に対して 1Z4波長板として機能する場合、それより波長 の長 、赤色の光や、波長の短 、青色の光の反射を完全に防止することが困難になる 。特に、波長分散の大きい青色の光については位相差のずれが大きいため、反射色 が青色がかったものとなってしまうという問題がある。 [0004] このような 1Z4波長板の波長依存性を改良する手段として、位相差の異なる 2枚の 位相差板を積層した積層波長板により 1Z4波長板を形成することが提案されて ヽる (特許文献 1、特許文献 2参照)。力かる積層波長板を用いた 1Z4波長板は、位相差 の波長依存性を改良でき、全可視光波長領域において 1Z4波長板として機能し得 る。また、透明支持体と液晶化合物層と複屈折フィルム層を積層してなる 1Z4波長 板が知られて ヽる(特許文献 3参照)。
[0005] また、短波長ほど位相差が小さい 1枚の高分子配向フィルムから、可視光波長領域 において波長に依存しない 1Z4波長板を得ることが提案されている(特許文献 4、特 許文献 5参照)。さらに、これら 1Z4波長板を構成する位相差板の 3次元方向の複屈 折特性を制御し広い視野角で円偏光板の特性を維持したものも知られている (特許 文献 6、特許文献 7参照)。
[0006] 二色性吸収型偏光子としては、たとえば、ポリビュルアルコールにヨウ素を吸着させ 、延伸した構造のヨウ素系偏光子が高透過率、高偏光度を有することから広く用いら れている(たとえば、特許文献 8参照)。しかし、ヨウ素系偏光子は短波長側の偏光度 が相対的に低いため、短波長側では黒表示での青抜け、白表示での黄色みなどの 色相上の問題点を有する。
[0007] またヨウ素系偏光子は、ヨウ素吸着の際にムラが発生しやすい。そのため、特に黒 表示の際には、透過率のムラとして検出され、視認性を低下させるという問題があつ た。この問題を解決する方法としては、たとえば、ヨウ素系偏光子に吸着させるヨウ素 の吸着量を増力 tlさせて、黒表示の際の透過率を人間の目の感知限界以下にする方 法や、ムラそのものを発生しにくい延伸プロセスを採用する方法などが提案されてい る。し力しながら、前者は、黒表示の透過率と同時に、白表示の際の透過率も低下さ せてしまい、表示そのものが暗くなつてしまう問題がある。また、後者は、プロセスその ものを置き換える必要があり、生産性を悪くしてしまう問題があった。
[0008] 特に先述した円偏光モードのマルチドメインパネルなど、円偏光板を透過フィルタ 一として用いる用途においては、ますます高透過率、かつ高偏光度の円偏光板が必 要であり、前記ムラが一層顕著に視認される問題があった。
特許文献 1 :特開平 5 - 27118号公報 特許文献 2:特開平 5—100114号
特許文献 3 :特開平 13 - 4837号公報
特許文献 4:特開 2000 - 137116号公報
特許文献 5:特開 2001— 249222号公報
特許文献 6 :特開 2001— 91743号公報
特許文献 7:特開平 2003 - 332068号公報
特許文献 8:特開 2001—296427号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、吸収型偏光子と 1Z4波長板とが積層されている円偏光板であって、高 透過率、かつ高偏光度を有し、黒表示の際の透過率のムラを抑えることができる円偏 光板を提供することを目的とする。
[0010] また本発明は、当該円偏光板を少なくと 1枚用いた光学フィルムを提供すること、さ らには当該円偏光板、光学フィルムを用いた画像表示装置を提供することを目的と する。
課題を解決するための手段
[0011] 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す円偏光 板により前記目的を達成できることを見出し、本発明を完成するに至った。
[0012] すなわち本発明は、ヨウ素系吸光体を含有する透光性榭脂により形成されるマトリ タス中に、微小領域が分散された構造のフィルム力 なる散乱一二色性吸収複合型 偏光子と 1つまたは複数の位相差板力 構成された 1Z4波長板とが積層されている ことを特徴とする円偏光板、に関する。
[0013] 前記吸収複合型偏光子の微小領域は、配向された複屈折材料により形成されてい ることが好ましい。また前記複屈折材料は、少なくとも配向処理時点で液晶性を示す ことが好ましい。
[0014] 上記本発明の偏光子は、透光性榭脂とヨウ素系吸光体で形成される偏光子をマトリ タスとし、また前記マトリクス中に、微小領域を分散させている。微小領域は配向され た複屈折材料により形成されていることが好ましぐ特に微小領域は液晶性を示す材 料により形成されて 、ることが好ま 、。このようにヨウ素系吸光体による吸収二色性 の機能に加えて、散乱異方性の機能を合わせ持たせることにより、 2つの機能の相乗 効果によって偏光性能が向上し、透過率と偏光度を両立した視認性の良好な偏光 子を得ている。
[0015] 異方散乱の散乱性能は、マトリクスと微小領域の屈折率差に起因する。微小領域を 形成する材料が、たとえば、液晶性材料であれば、マトリクスの透光性榭脂に比べて 、 Δηの波長分散が高いため、散乱する軸の屈折率差が短波長側ほど大きくなり、短 波長ほど散乱量が多い。そのため、短波長ほど偏光性能の向上効果が大きくなり、ョ ゥ素系偏光子のもつ短波長側の偏光性能の相対的低さを補って、高偏光かつ色相 カ ユートラルな偏光子を実現できる。
[0016] 力かる散乱一二色性吸収複合型偏光子と 1Z4波長板とを組み合わせることにより、 高透過率、かつ高偏光度を有し、黒表示の際の透過率のムラを抑えることができる円 偏光板が得られる。
[0017] 前記円偏光板において、吸収複合型偏光子の微小領域の複屈折が 0. 02以上で あることが好ましい。微小領域に用いる材料は、より大きい異方散乱機能を獲得する 、う観点力 前記複屈折を有するものが好ましく用いられる。
[0018] 前記円偏光板において、吸収複合型偏光子の微小領域を形成する複屈折材料と 、透光性榭脂との各光軸方向に対する屈折率差は、
最大値を示す軸方向における屈折率差(Δη1)が 0. 03以上であり、
かつ Δη1方向と直交する二方向の軸方向における屈折率差(Δη2)が、前記 Δη1 の 50%以下であることが好ましい。
[0019] 各光軸方向に対する前記屈折率差(Δη1)、 (Δη )を、前記範囲に制御することで 、米国特許第 2123902号明細書で提案されるような、 Δη1方向の直線偏光のみを 選択的に散乱させた機能を有する散乱異方性フィルムとすることができる。すなわち 、 Δη1方向では屈折率差が大きいため、直線偏光を散乱させ、一方、 Δη2方向では 屈折率差が小さいため、直線偏光を透過させることができる。なお、 Δη1方向と直交 する二方向の軸方向における屈折率差(Δη2)はともに等し 、ことが好まし 、。
[0020] 散乱異方性を高くするには、 Δη1方向の屈折率差(An1)を、 0. 03以上、好ましく は 0.05以上、特に好ましくは 0. 10以上とするのが好ましい。また Δη1方向と直交す る二方向の屈折率差(Δη)は、前記 Δη1の 50%以下、さらには 30%以下であるの が好ましい。
[0021] 前記円偏光板において、吸収複合型偏光子のヨウ素系吸光体は、当該材料の吸 収軸が、 Δη1方向に配向していることが好ましい。
[0022] マトリクス中のヨウ素系吸光体を、その材料の吸収軸が前記 Δη1方向に平行になる ように配向させることにより、散乱偏光方向である Δη1方向の直線偏光を選択的に吸 収させることができる。その結果、入射光のうち Δη2方向の直線偏光成分は、異方散 乱性能を有しない従来型のヨウ素系偏光子と同じぐ散乱されることなく透過する。一 方、 Δη1方向の直線偏光成分は散乱され、かつヨウ素系吸光体によって吸収される 。通常、吸収は、吸収係数と厚みによって決定される。このように光が散乱された場 合、散乱がない場合に比べて光路長が飛躍的に長くなる。結果として Δη1方向の偏 光成分は従来のヨウ素偏光子と比べ、余分に吸収される。つまり同じ透過率でより高 い偏光度が得られる。
[0023] 以下、理想的なモデルについて詳細に説明する。一般に直線偏光子に用いられる 二つの主透過率 (第 1主透過率 k (透過率最大方位 = Δη2方向の直線偏光透過率)
1
、第 2主透過率 k (透過率最小方向二 !!1方向の直線偏光透過率))を用いて以下
2
aiffrnTヲる。
[0024] 市販のヨウ素系偏光子ではヨウ素系吸光体が一方向に配向しているとすれば、平 行透過率、偏光度はそれぞれ、
平行透過率 =0. 5X ((k)2+(k)2)、
1 2
偏光度 = (k k ) Z (k + k )、で表される。
1 2 1 2
[0025] 一方、本発明の偏光子では Δη1方向の偏光は散乱され、平均光路長は α (>1) 倍になっていると仮定し、散乱による偏光解消は無視できると仮定すると、その場合 の主透過率はそれぞれ、 k、 k ' = 10χ (但し、 χは a logkである)、で表される。
1 2 2
[0026] つまり、この場合の平行透過率、偏光度は、
平行透過率 =0. 5X ((k)2+(k,)2)、
1 2
偏光度 =(k k ')/(k +k ')、で表される。 [0027] 例えば、市販のヨウ素系偏光子(平行透過率 0. 385,偏光度 0. 965 :k =0. 877
1
, k =0. 016)と同条件 (染色量、作製手順が同じ)で本発明の偏光子を作成したと
2
すると、計算上では αが 2倍の時、 k =0. 0003まで低くなり、結果として平行透過率
2
は 0. 385のまま、偏光度は 0. 999に向上する。上記は、計算上であり、もちろん散 乱による偏光解消や表面反射および後方散乱の影響などにより幾分機能が低下す る。上式力も分力るように αが高い程良ぐヨウ素系吸光体の二色比が高いほど高機 能が期待できる。 αを高くするには、散乱異方性機能をできるだけ高くし、 Δη1方向 の偏光を選択的に強く散乱させればよい。また、後方散乱は少ない方が良ぐ入射 光強度に対する後方散乱強度の比率は 30%以下が好ましぐさらには 20%以下が 好ましい。
[0028] 前記円偏光板において、吸収複合型偏光子として用いるフィルム力 延伸によって 製造されたものを好適に用いることができる。
[0029] 前記円偏光板において、吸収複合型偏光子の微小領域は、 Δη2方向の長さが 0.
05— 500 μ mであることが好ましい。
[0030] 可視光領域の波長のうち、振動面を Δη1方向に有する直線偏光を強く散乱させる ためには、分散分布している微小領域は、 Δη2方向の長さが 0. 05-500 ^ m,好ま しくは 0. 5— 100 mとなるように制御されることが好ましい。微小領域の Δη2方向の 長さが波長に比べて短すぎると十分に散乱が起こらない。一方、微小領域の Δη2方 向の長さが長すぎるとフィルム強度が低下したり、微小領域を形成する液晶性材料が 、微小領域中で十分に配向しないなどの問題が生じるおそれがある。
[0031] 前記円偏光板において、 1Z4波長板を構成する位相差板は、透明なポリマーフィ ルムの延伸フィルムおよび Ζまたは液晶性ィ匕合物の配向固化層により形成すること ができる。
[0032] 前記円偏光板において、 1Z4波長板を構成する少なくとも 1つの位相差板が、面 内の最大屈折率を ηχ、面内の最大屈折率を有する方向に直交する方向の屈折率を ny、厚み方向の屈折率を nzとしたとき、 0< (nx-nz) / (nx-ny) < 1を満足すること が好ましい。
[0033] 前記吸収複合型偏光子は、異方性散乱によって面に垂直な方向からの観察角度 においても斜めから入射光の影響を受けやすい。したがって、用いる表示素子が既 に他の位相差フィルムにより光学補償されて ヽる場合や表示素子自体が光学補償し て 、る場合には、円偏光板に用いる 1Z4波長板単独で広 、視野角にお 、て 1Z4 波長の位相差を有するものであることが好ましい。そのため、本発明に用いる 1Z4波 長板は広 、視野角にお 、て 1Z4波長の位相差を有するものであることが好ま 、。 具体的には、前記 1Z4波長板を構成する位相差板のなかの少なくとも 1つの位相差 板力 0< (nx-nz) / (nx-ny) < 1を満足することが好ましい。さらには、 0. 2く (nx -nz) / (nx-ny) < 0. 8であることが好ましい。特に、 1Z4波長板を構成する位相差 板は、全てが上記 (nx-nz) / (nx-ny)の範囲を満たすことが好まし ヽ。
[0034] 前記円偏光板において、前記 1Z4波長板を構成する位相差板は、逆波長分散特 性を有するものであり、面内の最大屈折率を nx、面内の最大屈折率を有する方向に 直交する方向の屈折率を ny、厚み方向の屈折率を nzとしたとき、 1. 2< (ηχ-ηζ) / (nx-ny) < 2. 0を満足することが好ましい。
[0035] 用いる表示素子がマルチドメインの VA液晶モードである場合や他の位相差フィル ムで光学補償されていない場合には、円偏光板に用いる 1Z4波長板と液晶層を合 わせた位相差が広 、視野角にお 、て 1Z4波長の位相差を有するものであることが 好ましい。具体的には、 1 Z4波長板を構成する位相差板が逆波長分散特性を有す るものであり、 1. 2< (nx-nz) / (ηχ-ny) < 2. 0を満足することが好ましい。
[0036] 前記吸収複合型偏光子と 1Z4波長板との積層は、アクリル系透明粘着剤を介して 固定積層されていることが好ましい。吸収複合型偏光子と 1Z4波長板とを、ただ重 ね置いただけでは間隙なく積層することは難しい。したがって、これらは透光性の接 着剤や粘着剤によって貼り合わせることが好ましい。貼り合わせの簡便性の観点より 粘着剤が好ましぐ透明性、粘着特性、耐候性、耐熱性の観点カゝらアクリル系粘着剤 が好ましい。
[0037] 前記円偏光板において、吸収複合型偏光子は、透過方向の直線偏光に対する透 過率が 80%以上、かつヘイズ値が 5%以下であり、吸収方向の直線偏光に対するへ ィズ値が 30%以上であることが好まし 、。
[0038] 前記透過率、ヘイズ値を有する本発明の吸収複合型偏光子は、透過方向の直線 偏光に対しては高い透過率と良好な視認性を保有し、かつ吸収方向の直線偏光に 対しては強い光拡散性を有している。したがって、簡便な方法にて、他の光学特性を 犠牲にすることなぐ高透過率、かつ高偏光度を有し、黒表示の際の透過率のムラを 抑えることができる。
[0039] 本発明の吸収複合型偏光子は、透過方向の直線偏光、すなわち前記ヨウ素系吸 光体の最大吸収方向とは直交する方向の直線偏光に対しては、可及的に高い透過 率を有するものが好ましぐ入射した直線偏光の光強度を 100としたとき 80%以上の 光線透過率を有することが好ましい。光線透過率は 85%以上がより好ましぐさらに は光線透過率 88%以上であるのが好ましい。ここで光線透過率は、積分球付き分光 光度計を用いて測定された 380nm— 780nmの分光透過率より CIE1931 XYZ表 色系に基づき算出した Y値に相当する。なお、偏光子の表裏面の空気界面により約 8%— 10%が反射されるため、理想的極限は 100%からこの表面反射分を差し引い たものとなる。
[0040] また本発明の吸収複合型偏光子は透過方向の直線偏光は表示画像の視認性の 明瞭性の観点より散乱されないことが望ましい。そのため、透過方向の直線偏光に対 するヘイズ値は、好ましくは 5%以下、さらに好ましくは 3%以下である。一方、吸収複 合型偏光子は吸収方向の直線偏光、すなわち前記ヨウ素系吸光体の最大吸収方向 の直線偏光は局所的な透過率バラツキによるムラを散乱により隠蔽する観点より強く 散乱されることが望ましい。そのため、吸収方向の直線偏光に対するヘイズ値は 30 %以上であることが好ましい。より好ましくは 40%以上、さらに好ましくは 50%以上で ある。なお、ヘイズ値は、 JIS K 7136 (プラスチック一透明材料の^ ^一ズの求め方 )に基づいて測定した値である。
[0041] 前記光学特性は、偏光子の吸収二色性の機能に加えて、散乱異方性の機能が複 合ィ匕されたことによって引き起こされるものである。同様のことが、米国特許第 21239 02号明細書や、特開平 9— 274108号公報ゃ特開平 9— 297204号公報に記載され ている、直線偏光のみを選択的に散乱させる機能を有した散乱異方性フィルムと、二 色性吸収型偏光子とを散乱最大の軸と吸収最大の軸が平行となるような軸配置にて 重畳することによつても達成可能と考えられる。しかし、これらは、別途、散乱異方性 フィルムを形成する必要性があることや、重畳の際の軸合わせ精度が問題となること 、さらに単に、重ね置いた場合は、前述した吸収される偏光の光路長増大効果が期 待できず、高透過、高偏光度が達成されにくい。
[0042] また本発明は、円偏光板が、少なくとも 1枚積層されていることを特徴とする光学フ イルム、に関する。
[0043] さらに本発明は、前記円偏光板または光学フィルムが用いられていることを特徴と する画像表示装置、に関する。
図面の簡単な説明
[0044] [図 1]本発明の偏光子の一例を示す概念図である。
[図 2]実施例 1と比較例 1の偏光子の偏光吸光スペクトルを表すグラフである。
符号の説明
[0045] 1 透光性榭脂
2 ヨウ素系吸光体
3 微小領域
発明を実施するための最良の形態
[0046] 本発明の光学フィルムは、散乱一二色性吸収複合型偏光子と、 1Z4波長板とが積 層されている。
[0047] まず本発明の散乱一二色性吸収複合型偏光子を図面を参照しながら説明する。図 1は、本発明の吸収複合型偏光子の概念図であり、ヨウ素系吸光体 2を含有する透 光性榭脂 1によりフィルムが形成されており、当該フィルムをマトリクスとして、微小領 域 3が分散された構造を有する。このように本発明の吸収複合型偏光子は、ヨウ素系 吸光体 2が、マトリクスであるフィルムを形成する透光性熱可塑性榭脂 1中により存在 するが、ヨウ素系吸光体 2は、微小領域 3にも光学的に影響を及ぼさない程度に存在 させることちでさる。
[0048] 図 1は、微小領域 3と、透光性榭脂 1との屈折率差が最大値を示す軸方向(Δη1方 向)に、ヨウ素系吸光体 2が配向している場合の例である。微小領域 3では、 Δη1方向 の偏光成分は散乱している。図 1では、フィルム面内の一方向にある Δη1方向は吸 収軸となって 、る。フィルム面内にぉ 、て Δη1方向に直交する Δη2方向は透過軸と なっている。なお、 Δη1方向に直交するもう一つの Δη方向は厚み方向である。
[0049] 透光性榭脂 1は、可視光領域において透光性を有し、ヨウ素系吸光体を分散吸着 するものを特に制限なく使用できる。透光性榭脂 1としては、透光性の水溶性榭脂が あげられる。たとえば、従来より偏光子に用いられているポリビュルアルコールまたは その誘導体があげられる。ポリビュルアルコールの誘導体としては、ポリビュルホルマ ール、ポリビュルァセタール等があげられる他、エチレン、プロピレン等のォレフィン、 アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸そのアルキルエステル、ァ クリルアミド等で変性したものがあげられる。また透光性榭脂 1としては、例えばポリビ -ルピロリドン系榭脂、アミロース系榭脂等があげられる。前記透光性榭脂 1は、成形 歪み等による配向複屈折を生じにくい等方性を有するものでもよぐ配向複屈折を生 じやす 、異方性を有するものでもよ 、。
[0050] また透光性榭脂 1としては、例えばポリエチレンテレフタレートやポリエチレンナフタ レート等のポリエステル系榭脂;ポリスチレンやアクリロニトリル.スチレン共重合体 (Α S榭脂)等のスチレン系榭脂;ポリエチレン、ポリプロピレン、シクロ系ないしはノルボ ルネン構造を有するポリオレフイン、エチレン ·プロピレン共重合体等のォレフィン系 榭脂等があげられる。さらには、塩ィ匕ビュル系榭脂、セルロース系榭脂、アクリル系榭 脂、アミド系榭脂、イミド系榭脂、スルホン系ポリマー、ポリエーテルスルホン系榭脂、 ポリエーテルエーテルケトン系榭脂ポリマー、ポリフエ二レンスルフイド系榭脂、塩ィ匕ビ ニリデン系榭脂、ビニルプチラール系榭脂、ァリレート系榭脂、ポリオキシメチレン系 榭脂、シリコーン系榭脂、ウレタン系榭脂等があげられる。これらは 1種または 2種以 上を組み合わせることができる。また、フエノール系、メラミン系、アクリル系、ウレタン 系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型または紫外線硬化型 の榭脂の硬化物を用いることもできる。
[0051] 微小領域 3を形成する材料は、等方性か複屈折を有するかは特に限定されるもの ではないが、複屈折材料が好ましい。また複屈折材料は、少なくとも配向処理時点で 液晶性を示すもの(以下、液晶性材料という)が好ましく用いられる。すなわち、液晶 性材料は、配向処理時点で液晶性を示していれば、形成された微小領域 3において は液晶性を示して 、てもよく、液晶性を喪失して 、てもよ 、。 [0052] 微小領域 3を形成する材料は複屈折材料 (液晶性材料)は、ネマチック液晶性、ス メタチック液晶性、コレステリック液晶性のいずれでもよぐまたリオトロピック液晶性の ものでもよい。また、複屈折材料は、液晶性熱可塑樹脂でもよぐ液晶性単量体の重 合により形成されていてもよい。液晶性材料が液晶性熱可塑樹脂の場合には、最終 的に得られる構造体の耐熱性の観点から、ガラス転移温度の高 、ものが好ま 、。 少なくとも室温ではガラス状態であるものを用いるのが好まし 、。液晶性熱可塑性榭 脂は、通常、加熱により配向し、冷却して固定させて、液晶性を維持したまま微小領 域 3を形成する。液晶性単量体は配合後に、重合、架橋等により固定した状態で微 小領域 3を形成させることができるが、形成した微小領域 3では液晶性が喪失されて しまうものがある。
[0053] 前記液晶性熱可塑性榭脂としては、主鎖型、側鎖型またはこれらの複合型の各種 骨格のポリマーを特に制限なく使用できる。主鎖型の液晶ポリマーとしては、芳香族 単位等力 なるメソゲン基を結合した構造を有する縮合系のポリマー、たとえば、ポリ エステル系、ポリアミド系、ポリカーボネート系、ポリエステノレイミド系などのポリマーが あげられる。メソゲン基となる前記芳香族単位としては、フエ-ル系、ビフエ-ル系、ナ フタレン系のものがあげられ、これら芳香族単位は、シァノ基、アルキル基、アルコキ シ基、ハロゲン基等の置換基を有していてもよい。
[0054] 側鎖型の液晶ポリマーとしては、ポリアタリレート系、ポリメタタリレート系、ポリ ひー ハローアタリレート系、ポリ α—ノヽローシァノアクリレート系、ポリアクリルアミド系、ポリシ ロキサン系、ポリマロネート系の主鎖を骨格とし、側鎖に環状単位等からなるメソゲン 基を有するものがあげられる。メソゲン基となる前記環状単位としては、たとえば、ビフ ェ-ル系、フエ-ルペンゾエート系、フエ-ルシクロへキサン系、ァゾキシベンゼン系 、ァゾメチン系、ァゾベンゼン系、フエ-ルピリミジン系、ジフエ-ルアセチレン系、ジ フエ-ノレベンゾエート系、ビシクロへキサン系、シクロへキシノレベンゼン系、ターフェ -ル系等があげられる。なお、これら環状単位の末端は、たとえば、シァノ基、アルキ ル基、アルケニル基、アルコキシ基、ハロゲン基、ハロアルキル基、ハロアルコキシ基 、ハロアルケ-ル基等の置換基を有していてもよい。またメソゲン基のフエ-ル基は、 ハロゲン基を有するものを用いることができる。 [0055] また、 、ずれの液晶ポリマーのメソゲン基も屈曲性を付与するスぺーサ一部を介し て結合していてもよい。スぺーサ一部としては、ポリメチレン鎖、ポリオキシメチレン鎖 等があげられる。スぺーサ一部を形成する構造単位の繰り返し数は、メソゲン部の化 学構造により適宜に決定されるがポリメチレン鎖の繰り返し単位は 0— 20、好ましくは 2— 12、ポリオキシメチレン鎖の繰り返し単位は 0— 10、好ましくは 1一 3である。
[0056] 前記液晶性熱可塑樹脂は、ガラス転移温度 50°C以上、さらには 80°C以上であるこ とが好ましい。また、重量平均分子量が 2千一 10万程度のものが好ましい。
[0057] 液晶性単量体としては、末端にアタリロイル基、メタクリロイル基等の重合性官能基 を有し、これに前記環状単位等力 なるメソゲン基、スぺーサ一部を有するものがあ げられる。また重合性官能基として、アタリロイル基、メタクリロイル基等を 2つ以上有 するものを用いて架橋構造を導入して耐久性を向上させることもできる。
[0058] 微小領域 3を形成する材料は、前記液晶性材料に全てが限定されるものではなぐ マトリクス材料と異なる素材であれば、非液晶性の榭脂を用いることができる。榭脂と しては、ポリビュルアルコールとその誘導体、ポリオレフイン、ポリアリレート、ポリメタク リレート、ポリアクリルアミド、ポリエチレンテレフタレート、アクリルスチレン共重合体な どがあげられる。また微小領域 3を形成する材料としては、複屈折を持たない粒子な どを用いることができる。当該微粒子としては、たとえば、ポリアタリレート、アクリルス チレン共重合体などの樹脂があげられる。微粒子のサイズは特に制限されないが、 0 . 05— 500 m、好ましくは 0. 5— 100 mの粒子径のもの力用いられる。微 /J、領域 3を形成する材料は、前記液晶性材料が好ましいが、前記液晶性材料には非液晶性 材料を混入して用いることができる。さらには微小領域 3を形成する材料にて、非液 晶性材料を単独で使用することもできる。
[0059] ヨウ素系吸光体は、ヨウ素力 なる、可視光を吸収する種のことを意味し、一般には 、透光性の水溶性榭脂 (特にポリビニルアルコール系榭脂)とポリヨウ素イオン (I I―
3 5 等)との相互作用によって生じると考えられている。ヨウ素系吸光体はヨウ素錯体とも いわれる。ポリヨウ素イオンは、ヨウ素とヨウ化物イオンから生成させると考えられてい る。
[0060] ヨウ素系吸光体は、少なくとも 400— 700nmの波長帯域に吸収領域を有するもの が好適に用いられる。
[0061] ヨウ素系吸光体の代わりに用いることができる二色性吸収材料としては吸収二色性 染料や顔料等があげられる。本発明では二色性吸収材料としてヨウ素系吸光体を用 V、ることが好まし 、。特にマトリクス材料である透光性榭脂 1としてポリビュルアルコー ル等の透光性の水溶性榭脂を用いる場合には、ヨウ素系吸光体が高偏光度、高透 過率の点力も好ましい。
[0062] 吸収二色性染料としては、耐熱性を有し、複屈折材料の前記液晶性材料を加熱し て配向させる場合にも、分解や変質により二色性を喪失しないものが好ましく用いら れる。前記の通り、吸収二色性染料は、可視光波長領域に二色比 3以上の吸収帯を 少なくとも 1箇所以上有する染料であることが好ましい。二色比を評価する尺度として は、たとえば、染料を溶解させた適当な液晶材料を用いてホモジ-ァス配向の液晶 セルを作成し、そのセルを用いて測定した偏光吸収スペクトルにおける吸収極大波 長での吸収二色比が用いられる。当該評価法において、例えば標準液晶としてメル ク社製の E— 7を使用した場合には、用いる染料としては、吸収波長での二色比の目 安値は 3以上、好ましくは 6以上、さらに好ましくは 9以上である。
[0063] 力かる高二色比を有する染料としては、染料系偏光子に好ましく用いられて 、るァ ゾ系、ペリレン系、アントラキノン系の染料があげられる、これら染料は混合系染料な どがとして用いることができる。これら染料は、例えば、特開昭 54— 76171号公報等 に詳しい。
[0064] なお、カラー偏光子を形成する場合には、その特性に見合った吸収波長を有する 染料を用いることができる。また、ニュートラルグレーの偏光子を形成する場合には、 可視光全域に吸収が起こるように、二種類以上の染料を適宜混合して用いる。
[0065] 本発明の散乱 -二色性吸収複合型偏光子は、ヨウ素系吸光体 2を含有する透光性 榭脂 1によりマトリクスを形成したフィルムを作製するとともに、当該マトリクス中に、微 小領域 3 (たとえば、液晶性材料により形成された、配向された複屈折材料)を分散さ せる。また、フィルム中において、前記 Δη1方向の屈折率差( !!1)、 Δη2方向の屈折 率差(Δη2)が前記範囲になるように制御する。
[0066] 力かる本発明の吸収複合型偏光子の製造工程は、特に制限されないが、たとえば (1)マトリクスとなる透光性榭脂に、微小領域となる材料 (以下、微小領域となる材料 として液晶性材料を用いた場合を代表例として説明する。他の材料の場合も液晶性 材料に準ずる。)が分散された混合溶液を製造する工程、
(2)前記(1)の混合溶液をフィルム化する工程、
(3)前記(2)で得られたフィルムを配向(延伸)する工程、
(4)前記マトリクスとなる透光性榭脂に、ヨウ素系吸光体を分散させる (染色する)ェ 程、
を施すことにより得られる。なお、工程(1)乃至 (4)の順序は適宜に決定できる。
[0067] 前記工程(1)では、まず、マトリクスを形成する透光性榭脂に、微小領域となる液晶 性材料を分散した混合溶液を調製する。当該混合溶液の調製法は、特に制限され ないが、前記マトリクス成分 (透光性榭脂)と液晶性材料の相分離現象を利用する方 法があげられる。たとえば、液晶性材料としてマトリクス成分とは相溶しにくい材料を 選択し、マトリクス成分の水溶液に液晶性材料を形成する材料の溶液を界面活性剤 などの分散剤を介して分散させる方法などあげられる。前記混合溶液の調製にぉ ヽ て、マトリクスを形成する透光性材料と微小領域となる液晶材料の組み合わせによつ ては分散剤を入れなくてもよい。マトリクス中に分散させる液晶性材料の使用量は、 特に制限されないが、透光性榭脂 100重量部に対して、液晶性材料を 0. 01— 100 重量部、好ましくは 0. 1— 10重量部である。液晶性材料は溶媒に溶解し、または溶 解することなく用いられる。溶媒としては、たとえば、水、トルエン、キシレン、へキサン 、シクロへキサン、ジクロロメタン、トリクロロメタン、ジクロロエタン、トリクロロェタン、テト ラクロロェタン、トリクロロエチレン、メチルェチルケトン、メチルイソブチルケトン、シク 口へキサノン、シクロペンタノン、テトラヒドロフラン、酢酸ェチル等があげられる。マトリ タス成分の溶媒と、液晶性材料の溶媒とは同一でもよく異種でもよい。
[0068] 前記工程 (2)にお 、て、フィルム形成後の乾燥工程で発泡を低減させるためには、 工程(1)における混合溶液の調製において、微小領域を形成する液晶性材料を溶 解するための溶媒を用いない方が好ましい。たとえば、溶媒を用いない場合には、マ トリタスを形成する透光性材料の水溶液に液晶性材料を直接添加し、液晶性材料を より小さく均一に分散させるために液晶温度範囲以上で加熱し分散させる方法等な どがあげられる。
[0069] なお、マトリクス成分の溶液、液晶性材料の溶液、または混合溶液中には、分散剤 、界面活性剤、紫外線吸収剤、難燃剤、酸化防止剤、可塑剤、離型剤、滑剤、着色 剤等の各種の添加剤を本発明の目的を阻害しない範囲で含有させることができる。
[0070] 前記混合溶液をフィルム化する工程 (2)では、前記混合溶液を加熱乾燥し、溶媒 を除去することにより、マトリクス中に微小領域が分散されたフィルムを作製する。フィ ルムの形成方法としては、キャスティング法、押出成形法、射出成形法、ロール成形 法、流延成形法などの各種の方法を採用できる。フィルム成形にあたっては、フィル ム中の微小領域のサイズ力 最終的に Δη2方向が 0. 05— 500 mになるように制 御する。混合溶液の粘度、混合溶液の溶媒の選択、組み合わせ、分散剤、混合溶媒 の熱プロセス (冷却速度)、乾燥速度を調整することにより、微小領域の大きさや分散 性を制御することができる。たとえば、マトリクスを形成する高せん断力の力かるような 高粘度の透光性榭脂と微小領域となる液晶性材料の混合溶液を液晶温度範囲以上 に加熱しながらホモミキサー等の撹拌機により分散させることによって微小領域を、よ り/ Jヽさく分散させることができる。
[0071] 前記フィルムを配向する工程(3)は、フィルムを延伸することにより行うことができる。
延伸は、一軸延伸、二軸延伸、斜め延伸などがあげられるが、通常、一軸延伸を行 なう。延伸方法は、空気中での乾式延伸、水系浴中での湿式延伸のいずれでもよい 。湿式延伸を採用する場合には、水系浴中に、適宜に添加剤(ホウ酸等のホウ素化 合物,アルカリ金属のヨウ化物等)を含有させることができる。延伸倍率は特に制限さ れないが、通常、 2— 10倍程度とするのが好ましい。
[0072] 力かる延伸により、ヨウ素系吸光体を延伸軸方向に配向させることができる。また、 微小領域にぉ 、て複屈折材料となる液晶性材料は、上記延伸により微小領域中で 延伸方向に配向され複屈折を発現させる。
[0073] 微小領域は延伸に応じて変形することが望ま 、。微小領域が非液晶性材料の場 合は延伸温度が榭脂のガラス転移温度付近、微小領域が液晶性材料の場合は延伸 時の温度で液晶性材料がネマチック相またはスメクチック相等の液晶状態または等 方相状態になる温度を選択するのが望ましい。延伸時点で配向が不十分な場合に は、別途、加熱配向処理などの工程をカ卩えてもよい。
[0074] 液晶性材料の配向には上記延伸に加え、電場や磁場などの外場を用いてもょ ヽ。
また液晶性材料にァゾベンゼンなどの光反応性物質を混合したり、液晶性材料にシ ンナモイル基等の光反応性基を導入したものを用い、これを光照射などの配向処理 によって配向させてもよい。さらには延伸処理と以上に述べた配向処理を併用するこ ともできる。液晶性材料が、液晶性熱可塑樹脂の場合には、延伸時に配向させた後 、室温に冷却させることにより配向が固定化され安定化される。液晶性単量体は、配 向して 、れば目的の光学特性が発揮されるため、必ずしも硬化して!/、る必要はな!/ヽ 。だたし、液晶性単量体で等方転移温度が低いものは、少し温度が力かることにより 等方状態になってしまう。こうなると異方散乱でなくなって、逆に偏光性能が悪くなく ので、このような場合には硬化させるのが好ましい。また液晶性単量体には室温で放 置すると結晶化するものが多くあり、こうなると異方散乱でなくなって、逆に偏光性能 が悪くなくので、このような場合にも硬化させるのが好ましい。力かる観点からすれば 、配向状態をどのような条件下においても安定に存在させるためには、液晶性単量 体を硬化することが好ましい。液晶性単量体の硬化は、たとえば、光重合開始剤と混 合してマトリクス成分の溶液中に分散し、配向後、いずれかのタイミング (ヨウ素系吸 光体による染色前、染色後)において紫外線等を照射して硬化し、配向を安定化さ せる。望ましくは、ヨウ素系吸光体による染色前である。
[0075] 前記マトリクスとなる透光性榭脂に、ヨウ素系吸光体を分散させる工程 (4)は、一般 には、ヨウ素をヨウ化カリウム等のアルカリ金属のヨウ化物等の助剤とともに溶解させ た水系浴に前記フィルムを浸漬する方法があげられる。前述したように、マトリクス中 に分散されたヨウ素とマトリクス榭脂との相互作用によりヨウ素系吸光体が形成される 。浸漬させるタイミングとしては、前記延伸工程 (3)の前でも後でもよい。なお、ヨウ素 系吸光体は、一般に延伸工程を経ることによって著しく形成される。ヨウ素を含有する 水系浴の濃度、アルカリ金属のヨウ化物などの助剤の割合は特に制限されず、一般 的なヨウ素染色法を採用でき、前記濃度等は任意に変更することができる。
[0076] 得られる偏光子中におけるヨウ素の割合は特に制限されないが、透光性榭脂とヨウ 素の割合が、透光性榭脂 100重量部に対して、ヨウ素が 0. 05— 50重量部程度、さ らには 0. 1— 10重量部となるように制御するのが好ましい。
[0077] なお、二色性吸収材料として吸収二色性染料を用いる場合、得られる偏光子中に おける吸収二色性染料の割合は特に制限されないが、透光性熱可塑性榭脂と吸収 二色性染料の割合が、透光性熱可塑性榭脂 100重量部に対して、吸収二色性染料 が 0. 01— 100重量部程度、さらには 0. 05— 50重量部となるように制御するのが好 ましい。
[0078] 吸収複合型偏光子の作製にあたっては、前記工程(1)乃至 (4)の他に、様々な目 的のための工程(5)を施すことができる。工程(5)としては、たとえば、主にフィルムの ヨウ素染色効率を向上させる目的として、水浴にフィルムを浸漬して膨潤させる工程 力あげられる。また、任意の添加物を溶解させた水浴に浸漬する工程等があげられ る。主に水溶性榭脂(マトリクス)に架橋を施す目的のため、ホウ酸、ホウ砂などの添 加剤を含有する水溶液にフィルムを浸漬する工程があげられる。なお、主に、分散し たヨウ素系吸光体の量バランスを調節し、色相を調節することを目的として、アルカリ 金属のヨウ化物などの添加剤を含有する水溶液にフィルムを浸漬する工程があげら れる。
[0079] 前記フィルムを配向(延伸)延伸する工程 (3)、マトリクス榭脂にヨウ素系吸光体を分 散染色する工程 (4)および上記工程 (5)は、工程 (3)、 (4)が少なくとも 1回ずつあれ ば、工程の回数、順序、条件 (浴温度ゃ浸漬時間など)は任意に選択でき、各工程 は別々に行ってもよぐ複数の工程を同時に行ってもよい。例えば、工程(5)の架橋 工程と延伸工程 (3)を同時に行ってもよ!ヽ。
[0080] また、染色に用いるヨウ素系吸光体や、架橋に用いるホウ酸などは、上記のようにフ イルムを水溶液への浸漬させることによって、フィルム中へ浸透させる方法の代わりに 、工程(1)において混合溶液を調製前または調製後で、工程 (2)のフィルム化前に 任意の種類、量を添加する方法を採用することもできる。また両方法を併用してもよ い。ただし、工程(3)において、延伸時等に高温 (例えば 80°C以上)にする必要があ る場合であって、ヨウ素系吸光体が該温度で劣化してしまう場合には、ヨウ素系吸光 体を分散染色する工程 (4)は工程 (3)の後にするのが望ま 、。 [0081] 以上の処理をしたフィルムは、適当な条件で乾燥されることが望ましい。乾燥は常 法に従って行われる。
[0082] 得られた偏光子(フィルム)の厚さは特に制限されないが、通常、 1 μ mから 3mm、 好ましくは 5 μ mから lmm、さらに好ましくは 10— 500 μ mである。
[0083] このようにして得られた偏光子は、通常、延伸方向において、微小領域を形成する 複屈折材料の屈折率とマトリクス榭脂の屈折率の大小関係は特になぐ延伸方向が △n1方向になって 、る。延伸軸と直交する二つの垂直方向は Δη2方向となって 、る 。また、ヨウ素系吸光体は延伸方向が、最大吸収を示す方向になっており、吸収 +散 乱の効果が最大限発現された偏光子になっている。
[0084] 得られた偏光子は、常法に従って、その少なくとも片面に、前記透光性層として透 明保護層を設けた偏光板とすることができる。透明保護層はポリマーによる塗布層と して、またはフィルムのラミネート層等として設けることができる。透明保護層を形成す る、透明ポリマーまたはフィルム材料としては、適宜な透明材料を用いうるが、透明性 や機械的強度、熱安定性や水分遮断性などに優れるものが好ましく用いられる。前 記透明保護層を形成する材料としては、例えばポリエチレンテレフタレートやポリェチ レンナフタレート等のポリエステル系ポリマー、二酢酸セルロースや三酢酸セルロー ス等のセルロース系ポリマー、ポリメチルメタタリレート等のアクリル系ポリマー、ポリス チレンやアクリロニトリル 'スチレン共重合体 (AS榭脂)等のスチレン系ポリマー、ポリ カーボネート系ポリマーなどがあげられる。また、ポリエチレン、ポリプロピレン、シクロ 系な 、しはノルボルネン構造を有するポリオレフイン、エチレン ·プロピレン共重合体 の如きポリオレフイン系ポリマー、塩化ビュル系ポリマー、ナイロンや芳香族ポリアミド 等のアミド系ポリマー、イミド系ポリマー、スノレホン系ポリマー、ポリエーテノレスノレホン 系ポリマー、ポリエーテノレエーテノレケトン系ポリマー、ポリフエ二レンスルフイド系ポリ マー、ビュルアルコール系ポリマー、塩化ビ-リデン系ポリマー、ビュルプチラール系 ポリマー、ァリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、 あるいは前記ポリマーのブレンド物なども前記透明保護層を形成するポリマーの例と してあげられる。
[0085] また、特開 2001— 343529号公報(WO01Z37007)に記載のポリマーフィルム、 たとえば、(A)側鎖に置換および Zまたは非置^ミド基を有する熱可塑性榭脂と、 (B)側鎖に置換および Zまたは非置換フ -ルならびに-トリル基を有する熱可塑 性榭脂を含有する榭脂組成物があげられる。具体例としてはイソブチレンと N—メチ ルマレイミドからなる交互共重合体とアクリロニトリル 'スチレン共重合体とを含有する 榭脂組成物のフィルムがあげられる。フィルムは榭脂組成物の混合押出品など力ゝらな るフィルムを用いることができる。
[0086] 偏光特性や耐久性などの点より、特に好ましく用いることができる透明保護層は、表 面をアルカリなどでケン化処理したトリァセチルセルロースフィルムである。透明保護 層の厚さは、任意であるが一般には偏光板の薄型化などを目的に 500 m以下、さ らには 1一 300 /ζ πι、特に 5— 300 /z mが好ましい。なお、偏光子の両側に透明保護 層を設ける場合は、その表裏で異なるポリマー等力もなる保護フィルムを用いることが できる。
[0087] また、保護フィルムは、できるだけ色付きがな 、ことが好まし 、。したがって、 Rth=
[ (nx+ny) /2-nz] . d (ただし、 nx、 nyはフィルム平面内の主屈折率、 nzはフィル ム厚方向の屈折率、 dはフィルム厚みである)で表されるフィルム厚み方向の位相差 値カ 90nm— + 75nmである保護フィルムが好ましく用いられる。かかる厚み方向 の位相差値 (Rth)カ 90nm— + 75nmのものを使用することにより、保護フィルムに 起因する偏光板の着色 (光学的な着色)をほぼ解消することができる。厚み方向位相 差値 (Rth)は、さらに好ましくは— 80nm—" h60nm、特に— 70nm—" h45nmが好ま しい。
[0088] 前記保護フィルムの偏光子を接着させない面には、ハードコート層や反射防止処 理、ステイツキング防止や、拡散ないしアンチグレアを目的とした処理を施したもので あってもよい。
[0089] ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例 えばアクリル系、シリコーン系などの適宜な紫外線硬化型榭脂による硬度や滑り特性 等に優れる硬化皮膜を保護フィルムの表面に付加する方式などにて形成することが できる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであ り、従来に準じた反射防止膜などの形成により達成することができる。また、スティツキ ング防止処理は隣接層との密着防止を目的に施される。
[0090] またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式ゃェン ボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて保 護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記 表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が 0. 5-5 0 mのシリカ、アルミナ、チタ-ァ、ジルコユア、酸化錫、酸化インジウム、酸化カドミ ゥム、酸ィ匕アンチモン等力 なる導電性のこともある無機系微粒子、架橋又は未架橋 のポリマー等力もなる有機系微粒子などの透明微粒子が用いられる。表面微細凹凸 構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明榭脂 100重量部に対して一般的に 2— 50重量部程度であり、 5— 25重量部が好ましい。 アンチグレア層は偏光板透過光を拡散して視角などを拡大するための拡散層(視角 拡大機能など)を兼ねるものであってもよ 、。
[0091] なお、前記反射防止層、ステイツキング防止層、拡散層やアンチグレア層等は、保 護フィルムそのものに設けることができるほか、別途光学層として透明保護層とは別 体のものとして設けることもできる。
[0092] 前記偏光子と保護フィルムとの接着処理には、接着剤が用いられる。接着剤として は、イソシァネート系接着剤、ポリビュルアルコール系接着剤、ゼラチン系接着剤、ビ -ル系ラテックス系、水系ポリエステル等を例示できる。前記接着剤は、通常、水溶 液力もなる接着剤として用いられ、通常、 0. 5— 60重量%の固形分を含有してなる。
[0093] 前記保護フィルムと偏光子とは、前記接着剤を用いて貼り合わせる。接着剤の塗布 は、保護フィルム、偏光子のいずれに行ってもよぐ両者に行ってもよい。貼り合わせ 後には、乾燥工程を施し、塗布乾燥層からなる接着層を形成する。偏光子と保護フィ ルムの貼り合わせは、ロールラミネーター等により行うことができる。接着層の厚さは、 特に制限されないが、通常 0. 1— 5 m程度である。
[0094] 本発明の円偏光板は、上記吸収複合型偏光子 (吸収複合型偏光子は前記保護フ イルム等を積層した吸収複合型偏光板として用いることができる)と 1Z4波長板を組 み合わせたものである。 [0095] 前記 1Z4波長板を構成する位相差板は、透明なポリマーフィルムの延伸(配向)フ イルム、液晶性ィ匕合物の配向固化層により形成することができる。位相差板の厚さは 特に制限されないが、 0. 5— 500 m程度であるのが好ましい。
[0096] ポリマーフィルムの材料としては、ポリカーボネート、ポリビュルアルコール、ポリスチ レン、ポリメチルメタタリレート、ポリプロピレンやその他のポリオレフイン、ポリアリレート 、ポリアミド、ポリエステル、ポリスルホン、ポリエーテルスルホン、酢酸セルロース、ポリ 塩ィ匕ビュルなどがあげられる。延伸フィルムは、ポリマーフィルムを 1軸または 2軸等 の延伸により得ることができる。また厚み方向の屈折率を制御した延伸フィルムは、例 えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下に ポリマーフィルムを延伸処理又は Z及び収縮処理することにより得ることができる。
[0097] 液晶性ィ匕合物の配向固化層は、液晶ポリマーの配向フィルム、液晶ポリマーの配 向層を透明フィルムにて支持したものなどがあげられる。また厚み方向の屈折率を制 御して、液晶ポリマーを斜め配向させたものなどがあげられる。
[0098] 前記 1Z4波長板は、 1Z4波長の位相差を有する 1枚の位相差板により構成されて もよぐ 2枚以上の位相差板を積層して 1Z4波長の位相差を有するように光学特性 を制御した積層波長板であってもよい。積層波長板は、位相差の波長依存性を小さ くして可視光城等の広い波長範囲で 1Z4波長板として機能させることができる。例え ば積層波長板は、単色光に対して 1Z4波長板として機能する位相差板と他の位相 差特性を示す位相差板、例えば 1Z2波長板として機能する位相差板とを重畳する 方式などにより得ることができる。また、積層波長板は単色光に対して 1Z4波長板と して機能する位相差板を 2枚以上用い、これらを積層する軸角度を制御して、 1/4 波長の位相差が得られるように制御することにより得ることができる。
[0099] また 1Z4波長板としては、逆波長分散性を有する位相差板が好適に用いられる。
逆波長分散性を有する位相差板は、位相差が短波長ほど小さくなるものである。逆 波長分散性を有する位相差板は、正の屈折率異方性を有する高分子と負の屈折率 異方性を有する高分子とからなるブレンド高分子、正の屈折率異方性を有する高分 子のモノマー単位と負の屈折率異方性を有する高分子のモノマー単位とからなる共 重合体の配向フィルムにより得られる。力かる逆波長分散性を有する位相差板は、た とえば、特開 2003— 315550号公報に記載されているように、正の光学異方性を有 するビスフエノールと負の光学異方性を有するフルオレン環を持つビスフエノールの 組み合わせが好適である。また特開 2000-137116号公報に記載されて 、るように 、所定のァセチル化度を有するセルロースフィルムの配向フィルムがあげられる。
[0100] 本発明の円偏光板における、上記吸収複合型偏光子 (または吸収複合型偏光板) と 1Z4波長板の積層は、重ね置いただけでも良いが、作業性や、光の利用効率の 観点より各層を接着剤や粘着剤を用いて空気間隙なく積層することが望ましい。
[0101] 接着剤や粘着剤としては特に制限されない。例えばアクリル系重合体、シリコーン 系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビュルエーテル、酢酸ビュル
Z塩ィ匕ビュルコポリマー、変性ポリオレフイン、エポキシ系、フッ素系、天然ゴム、合成 ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いるこ とができる。特に、光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特 性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。
[0102] 前記接着剤または粘着剤は透明で、可視光領域に吸収を有さず、屈折率は、各層 の屈折率と可及的に近いことが表面反射の抑制の観点より望ましい。かかる観点より 、例えば、アクリル系粘着剤などが好ましく用いうる。
[0103] 前記接着剤や粘着剤にはベースポリマーに応じた架橋剤を含有させることができる 。また接着剤には、例えば天然物や合成物の榭脂類、特に、粘着性付与榭脂や、ガ ラス繊維、ガラスビーズ、金属粉、その他の無機粉末等力 なる充填剤や顔料、着色 剤、酸ィ匕防止剤などの添加剤を含有していてもよい。また微粒子を含有して光拡散 性を示す接着剤層などであってもよ ヽ。
[0104] なお本発明において、上記光学素子等、また粘着層などの各層には、例えばサリ チル酸エステル系化合物やべンゾフエノール系化合物、ベンゾトリアゾール系化合物 ゃシァノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理す る方式などの方式により紫外線吸収能をもたせたものなどであってもよい。
[0105] 接着剤や粘着剤は、通常、ベースポリマーまたはその組成物を溶剤に溶解又は分 散させた固形分濃度が 10— 50重量%程度の接着剤溶液として用いられる。溶剤と しては、トルエンや酢酸ェチル等の有機溶剤や水等の接着剤の種類に応じたものを 適宜に選択して用いることができる。
[0106] 粘着層や接着層は、異なる組成又は種類等のものの重畳層として偏光板や光学フ イルムの片面又は両面に設けることもできる。粘着層の厚さは、使用目的や接着力な どに応じて適宜に決定でき、一般には 1一 500 mであり、 5— 200 m力 子ましく、 特に 10— 100 mが好ましい。
[0107] 本発明の円偏光板には、粘着層または接着層を設けることもできる。粘着層は、液 晶セルへの貼着に用いることができる他、光学層の積層に用いられる。前記光学フィ ルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配 置角度とすることができる。
[0108] 粘着層等の露出面に対しては、実用に供するまでの間、その汚染防止等を目的に セパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触 することを防止できる。セパレータとしては、上記厚さ条件を除き、例えばプラスチック フィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネー ト体等の適宜な薄葉体を、必要に応じシリコーン系や長鏡アルキル系、フッ素系ゃ硫 化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なも のを用いうる。
[0109] 上記本発明の円偏光板は、常法に従って、液晶表示装置に適用される。液晶表示 装置には、液晶セルの両側に偏光板が配置され、各種の光学層等が適宜に用いら れる。上記円光板は、液晶セルの少なくとも一方の側に適用される。液晶表示装置 の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと光 学素子、及び必要に応じての照明システム等の構成部品を適宜に組立てて駆動回 路を組込むことなどにより形成されるが、本発明の光学フィルムを用いる点を除いて 特に限定はなぐ従来に準じうる。液晶セルについても、例えば TN型や STN型、 π 型などの任意なタイプのものを用いうる。
[0110] さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防 止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、ノ ックライトなどの適 宜な部品を適宜な位置に 1層又は 2層以上配置することができる。
[0111] 前記円偏光板は、液晶表示装置等の製造過程で順次別個に積層する方式にても 形成することができるが、予め積層したものは、品質の安定性や組立作業等に優れ ていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層等 の適宜な接着手段を用いうる。前記の円偏光板やその他の光学フィルムの接着に際 し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすること ができる。
[0112] 前記のほか実用に際して積層される光学層については特に限定はないが、例えば 反射板や半透過板、視角補償フィルムなどの液晶表示装置等の形成に用いられるこ とのある光学層を 1層または 2層以上用いることができる。また輝度向上フィルムを積 層して用いることができる。
[0113] 反射型偏光板は、偏光板に反射層を設けたもので、視認側 (表示側)からの入射光 を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バッ クライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利 点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の 片面に金属等力 なる反射層を付設する方式などの適宜な方式にて行うことができ る。
[0114] なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハー フミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は
、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使 用する場合には、視認側 (表示側)からの入射光を反射させて画像を表示し、比較的 喑 、雰囲気にぉ 、ては、半透過型偏光板のバックサイドに内蔵されて 、るバックライ ト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる
[0115] 視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向 力 見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフィルム である。このような視角補償位相差板としては、例えば位相差フィルム、液晶ポリマー 等の配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したものなどから なる。通常の位相差板は、その面方向に一軸に延伸された複屈折を有するポリマー フィルムが用いられるのに対し、視角補償フィルムとして用いられる位相差板には、面 方向に二軸に延伸された複屈折を有するポリマーフィルムとか、面方向に一軸に延 伸され厚さ方向にも延伸された厚さ方向の屈折率を制御した複屈折を有するポリマ 一や傾斜配向フィルムのような二方向延伸フィルムなどが用いられる。傾斜配向フィ ルムとしては、例えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収 縮力の作用下にポリマーフィルムを延伸処理又は Z及び収縮処理したものや、液晶 ポリマーを斜め配向させたものなどが挙げられる。位相差板の素材原料ポリマーは、 先の位相差板で説明したポリマーと同様のものが用いられ、液晶セルによる位相差 に基づく視認角の変化による着色等の防止や良視認の視野角の拡大などを目的と した適宜なものを用いうる。
[0116] また良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にディ スコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセル ロースフィルムにて支持した光学補償位相差板が好ましく用いうる。
[0117] 偏光板と輝度向上フィルムを貼り合わせた偏光板は、通常液晶セルの裏側サイドに 設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏 側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向 の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光 板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の 透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝 度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転 させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態の光とし て透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収さ せにくい偏光を供給して液晶表示画像表示等に利用しうる光量の増大を図ることに より輝度を向上させうるものである。
[0118] 前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相 違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光 は反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向 液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方 の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。 [0119] また偏光板は、上記の偏光分離型偏光板の如ぐ偏光板と 2層又は 3層以上の光 学層とを積層したものからなっていてもよい。従って、上記の反射型偏光板や半透過 型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板な どであってもよい。
[0120] 次 、で有機エレクトロルミネセンス装置 (有機 EL表示装置)につ 、て説明する。一 般に、有機 EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順 に積層して発光体 (有機エレクトロルミネセンス発光体)を形成している。ここで、有機 発光層は、種々の有機薄膜の積層体であり、例えばトリフ ニルァミン誘導体等から なる正孔注入層と、アントラセン等の蛍光性の有機固体力 なる発光層との積層体や 、あるいはこのような発光層とペリレン誘導体等力 なる電子注入層の積層体や、ま たあるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組 み合わせをもった構成が知られて 、る。
[0121] 電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、 有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を 含む有機 EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これ ら透明電極と偏光板との間に位相差板を設けることができる。
[0122] 位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光す る作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させな いという効果がある。特に、位相差板を 1Z4波長板で構成し、かつ偏光板と位相差 板との偏光方向のなす角を π Z4に調整すれば、金属電極の鏡面を完全に遮蔽す ることがでさる。
[0123] すなわち、この有機 EL表示装置に入射する外部光は、偏光板により直線偏光成分 のみが透過する。この直線偏光は位相差板により一般に楕円偏光となるが、とく〖こ位 相差板が 1Z4波長板でし力も偏光板と位相差板との偏光方向のなす角が π Ζ4の ときには円偏光となる。
[0124] この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再 び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そ して、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できな い。その結果、金属電極の鏡面を完全に遮蔽することができる。
実施例
[0125] 以下に、この発明の実施例を記載してより具体的に説明する。なお、以下において
、部とあるのは重量部を意味する。
[0126] <散乱一二色性吸収複合型偏光板の作製 >
(散乱 -二色性吸収複合型偏光子)
重合度 2400、ケンィ匕度 98. 5%のポリビュルアルコール榭脂を溶解した固形分 13 重量0 /0のポリビュルアルコール水溶液と、メソゲン基の両末端に一つずつアタリロイ ル基を有する液晶性単量体 (ネマチック液晶温度範囲が 40— 70°C)とグリセリンとを 、ポリビュルアルコール:液晶性単量体:グリセリン = 100: 5 : 15 (重量比)になるよう に混合し、液晶温度範囲以上に加熱してホモミキサーにて撹拌して混合溶液を得た 。当該混合溶液中に存在して!/ヽる気泡を室温(23°C)で放置することにより脱泡した 後に、キャスト法にて塗工、続いて乾燥後に、白濁した厚さ 70 mの混合フィルムを 得た。この混合フィルムを 130°Cで 10分間熱処理した。
[0127] 上記混合フィルムを 30°Cの水浴に浸漬して膨潤させたのち、 30°Cのヨウ素:ヨウィ匕 カリウム = 1 : 7 (重量比)の水溶液 (染色浴:濃度 0. 32重量%)に浸漬しながら約 3倍 に延伸し、その後、 50°Cのホウ酸 3重量%水溶液 (架橋浴)に浸漬しながら総延伸倍 率が約 6倍になるように延伸した後、さらに 50°Cのホウ酸 4重量%水溶液 (架橋浴)に 浸漬した。さらに、 30°Cのヨウ化カリウム 5重量%水溶液浴に 10秒間浸漬して色相調 節を行なった。続いて水洗し、 50°Cにて 4分間乾燥し、本発明の偏光子を得た。
[0128] (異方散乱発現の確認と屈折率の測定)
また得られた偏光子を偏光顕微鏡観察したところ、ポリビュルアルコールマトリクス 中に無数に分散された液晶性単量体の微小領域が形成されて 、ることが確認できた 。この液晶性単量体は延伸方向に配向しており、微小領域の延伸方向(Δη1方向) の平均サイズは 5— 10 mであった。また、延伸方向と直交する方向(Δη2方向)の 平均サイズは 0. 5— 3 mであった。
[0129] マトリクスと微小領域の屈折率については、各々別々に測定した。測定は 20°Cで行 なった。まず、同一延伸条件で延伸したポリビュルアルコールフィルム単独の屈折率 をアッベ屈折計 (測定光 589nm)で測定したところ、延伸方向(Δη1方向)の屈折率 = 1. 54, Δη2方向の屈折率 = 1. 52であった。また液晶性単量体の屈折率 (ne :異 常光屈折率および no :常光屈折率)を測定した。 noは、垂直配向処理を施した高屈 折率ガラス上に液晶性単量体を配向塗設し、アッベ屈折計 (測定光 589nm)で測定 した。一方、水平配向処理した液晶セルに液晶性単量体を注入し、自動複屈折測定 装置 (王子計測機器株式会社製, 自動複屈折計 KOBRA21ADH)にて位相差( Δ n X d)を測定し、また別途、光干渉法によりセルギャップを (d)を測定し、位相差 Zセ ルギャップから Δ ηを算出し、この Δ ηと noの和を neとした。 ne An1方向の屈折率に 相当) = 1. 64、 ηο (Δη2方向の屈折率に相当) = 1. 52,であった。従って、 Δη = 1. 64-1. 54 = 0. 10、 Δη = 1. 52—1. 52 = 0. 00と算出された。以上力ら所望の 異方散乱が発現して 、ることが確認できた。
[0130] (偏光板)
上記吸収複合型偏光子の両面にトリァセチルセルロースフィルム (厚み 80 m)を 、ポリウレタン系接着剤を用いて積層して吸収複合型偏光板を作製した。
[0131] <位相差板の作製 >
位相差板の(nx— nz)Z(nx— ny)の値は Nzとして以下に示す。位相差、 Nzの測定 には日本分光社製の分光エリプソメータ M— 220を用い、サンプルの位相差入射角 度依存性を測定することにより、三次元屈折率を求めた。その際、サンプルの屈折率 異方性に対しては屈折率回転楕円体を仮定した。また、計算の際に必要な、平均屈 折率は別途 Abbe屈折率計を用いて測定した 589nmの波長の光に対する平均屈折 率を使用した。
[0132] (位相差板 1)
厚み 50 μ mのポリカーボネートフィルムを、熱収縮性フィルムの接着下において 15 0°Cで延伸処理し、波長 550nmの光に対して 1Z2波長の位相差を与える Nz = 0. 5 の 1Z2波長板を作製した。
[0133] (位相差板 2)
厚み 50 mのポリカーボネートフィルムを、 150°Cで延伸処理し、波長 550nmの 光に対して 1Z2波長の位相差を与える Nz= 1 (つまり、 ny=nz)の 1Z2波長板を作 製した。
[0134] (位相差板 3)
厚み 50 mのポリカーボネートフィルムを、 150°Cで延伸処理し、波長 550nmの 光に対して 1Z4波長の位相差を与える Nz = 1の 1Z4波長板を作製した。
[0135] (位相差板 4)
厚み 100 mの環状ポリオレフインフィルム (JSR社製, ARTON)を、熱収縮性フィ ルムの接着下において 175°Cで延伸処理し、波長 550nmの光に対して 1Z4波長の 位相差を与える Nz = 0. 7の 1Z4波長板を作製した。
[0136] (位相差板 5)
ポリビュルアルコール (重合度 500,完全ケン化,クラレネ土製)の 0. 5重量0 /0水溶液 をトリアセチルセルロースフィルム(40 μ m)に乾燥後の膜厚で 20nmになるよう塗布 、乾燥した。続いて、その塗布面をラビング布(レーヨン製)で一方向ヘラビング処理 を施して、配向処理済みフィルムを作成した。次に市販の光架橋性液晶(商品名 UC L 001,大日本インキ化学工業社製) 25重量部をシクロへキサノン 75重量部に溶 解した溶液を、配向処理済みフィルムにスピンコーティングによって塗布した。次に、 130°Cで 1分間加熱した後、速やかに窒素置換した雰囲気中、室温で紫外線照射し 、前記液晶をネマチック配向固定した。得られた位相差板は 550nmの光に対して 1 Z4波長の位相差であり Nz= 1であった。
[0137] (位相差板 6)
特開 2000— 137116号公報の実施例 1を参考にしてァセチル化度 2. 66のセル口 ースアセテートフィルム (厚み 110 m)を作成し、 170°Cで 2軸延伸し、測定波長が 短波長ほど位相差が小さ!/、逆波長分散の位相差板を得た。得られた位相差板は 55 Onmに対して 1Z4波長の位相差であり、 Nz= l. 6であった。
[0138] 実施例 1
上記で得られた散乱一二色性吸収複合型偏光板と位相差板 3 (1Z4波長板)とをァ クリル系粘着剤を介して貼り合せて円偏光板を得た。前記吸収複合型偏光板の延伸 軸と 1Z4波長板の延伸軸は 45° で交差する角度で貼り合わせた。
[0139] 実施例 2 実施例 1にお ヽて、位相差板 3 (1Z4波長板)の代わりに位相差板 4 (1Z4波長板 )を用いたこと以外は実施例 1に準じて円偏光板を得た。
[0140] 実施例 3
実施例 1にお ヽて、位相差板 3 (1Z4波長板)の代わりに位相差板 5 (1Z4波長板 )を用いたこと以外は実施例 1に準じて円偏光板を得た。
[0141] 実施例 4
実施例 1にお ヽて、位相差板 3 (1Z4波長板)の代わりに位相差板 6 (1Z4波長板 )を用いたこと以外は実施例 1に準じて円偏光板を得た。
[0142] 実施例 5
上記で得られた散乱 -二色性吸収複合型偏光板と位相差板 1 (1Z2波長板)と位 相差板 3 (1Z4波長板)とをアクリル系粘着剤を介して貼り合せて円偏光板を得た。 前記吸収複合型偏光板と 1Z2波長板と 1Z4波長板の交差角は、吸収複合型偏光 板の延伸軸に対して 1Z2波長板が 17. 5° 、 1Z4波長板が 80° となるように貼り合 わせた。
[0143] 実施例 6
実施例 1において、位相差板 1 (1Z2波長板)の代わりに位相差板 2(1Z2波長板 )を用いたこと以外は実施例 1に準じて円偏光板を得た。
[0144] 比較例 1
散乱-二色性吸収複合型偏光子の作製にぉ 、て、液晶性単量体を用いなかったこ と以外は同様の操作により偏光子を作製した。当該偏光子を用いて、前記同様の操 作により偏光板を作製した。また当該偏光板を用いたこと以外は実施例 1と同様にし て円偏光板を得た。
[0145] (光学特性評価)
実施例及び比較例で用いた偏光板の光学特性を、積分球付き分光光度計(日立 製作所製の U— 4100)にて測定した。各直線偏光に対する透過率はグラントムソンプ リズム偏光子を通して得られた完全偏光を 100%として測定した。なお、透過率は、 CIE1931表色系に基づいて算出した、視感度補正した Y値で示した。 kは最大透
1 過率方向の直線偏光の透過率、 kはその直交方向の直線偏光の透過率を表す。結 果を表 1に示す。
[0146] 偏光度 Pは、 P= { (k— k )Z(k +k ) } X 100、で算出した。単体透過率 Tは、 Τ=
1 2 1 2
(k +k ) Z2、で算出した。
1 2
[0147] さらに実施例および比較例で用いた偏光子については偏光吸光スペクトルの測定 をグラントムソンプリズムを備えた分光光度計((株)日立製作所製, U4100)により行 なった。実施例および比較例で用いた偏光子の偏光吸光スペクトルを図 2に示す。 図 2 (a)の「MD偏光」は、延伸軸と平行な振動面を持つ偏光を入射した場合の偏光 吸光スペクトル、図 2 (b)の「TD偏光」は、延伸軸に垂直な振動面を持つ偏光を入射 した場合の偏光吸光スペクトルである。
[0148] TD偏光(=偏光子の透過軸)については、実施例 1および比較例 1の偏光子の吸 光度は可視域全域でほぼ等しいのに対し、 MD偏光(=偏光子の吸収 +散乱軸)に ついては、実施例 1の偏光子の吸光度が比較例 1の偏光子の吸光度を上回った。特 に短波長側において上回った。つまり、実施例 1の偏光子の偏光性能が比較例 1の 偏光子を上回ったことを示す。実施例 1と比較例 1では延伸、染色などの条件はすべ て等しいので、ヨウ素系吸光体の配向度も等しいと考えられる。ゆえに、実施例 1の偏 光子の MD偏光での吸光度の上昇は、前述の通り、ヨウ素による吸収に異方散乱の 効果が加わったことによる効果によって偏光性能が向上したことを示すものである。
[0149] ヘイズ値は、最大透過率方向の直線偏光に対するヘイズ値および吸収方向(その 直交方向)の直線偏光に対するヘイズ値を測定した。ヘイズ値の測定は、 JIS K 7 136 (プラスチック一透明材料の^ ^一ズの求め方)に従って、ヘイズメーター(村上色 彩研究所製の HM-150)を用いて、市販の偏光板(日東電工社製 NPF-SEG122 4DU :単体透過率 43%,偏光度 99. 96%)を、サンプルの測定光の入射面側に配 置し、市販の偏光板とサンプル (偏光板)の延伸方向を直交させて測定した時のヘイ ズ値を示す。ただし、市販のヘイズメーターの光源では直交時の光量が検出器の感 度限界以下となってしまうため、別途設けた高光強度のハロゲンランプの光を光ファ ィバーを用いて入光させ、検出感度内とした後、手動にてシャッター開閉を行い、へ ィズ値を算出した。
[0150] [表 1] d
直線偏ズ光透率値過()()イの°/%ヘo
単体偏光度透率過
偏光子直交方向最大透方向過 ( ())%%直交方向最大透方向過 ( ()k2
実施例 031 435305 820 00... CO
Ό
較例比 1 9990 o.
Figure imgf000034_0001
Figure imgf000034_0002
ο ο
o ο
r-
00 00
上記表 1に示す通り、実施例と比較例の偏光板では、略単体透過率、偏光度等の 偏光特性は良好である。しかし、実施例で用いた偏光板では、ヨウ素系吸光体を含 有する透光性の水溶性榭脂により形成されるマトリクス中に、微小領域が分散された 構造の偏光子を用いて 、るため、通常の偏光子を用いて 、る比較例の偏光板よりも 、直交時の透過率のヘイズ値が高くバラツキによるムラが、散乱によって隠蔽され確 認できなくなつていることが分かる。 [0152] 次いで、実施例、比較例の円偏光板それぞれに対してコントラスト (輝度、着色)、ム ラを評価した。結果を表 2に示す。
[0153] コントラスト、ムラの評価は以下の通りである。逆円偏光を与える円偏光板を作成し( 波長板の積層角度を実施例、比較例の交差角に対して 90° ずらして積層したもの) 、実施例、比較例の円偏光板に対して波長板側をお互いに内側になるように重ねお V、た状態のサンプルを作製した。このサンプルを液晶ディスプレイに用いられるバッ クライトの上面に配置し、鉛直上方からのもれ光の観察およびムラを確認した。もれ光 の観察はトプコン社製の BM— 5を用いて輝度 (cdZcm2)を測定した。さらに目視に て、色付きの程度および光量を確認した。ムラの評価は、目視にてムラが確認できる レベルを「 X」、目視にてムラが確認できな 、レベルを「〇」とした。
[0154] [表 2]
Figure imgf000035_0001
[0155] 液晶表示素子での黒表示を想定した上記実験の結果、比較例 (通常の円偏光板) に比べ、実施例では透過率のバラツキによるムラが散乱によって隠蔽され確認できな くなつていることが分かる。さらに、実施例 1と実施例 2および実施例 5と実施例 6を比 較すると Nz係数の効果により、もれ光が実施例 2、 5の円偏光板の方が少ないことが 分かる。また、実施例 4、 5、 6では広い波長において 1Z4波長板として機能するため にもれ光の色付きの程度が低 、ことが分かる。
[0156] 次に、実施例 4および比較例 1の円偏光板を、市販の VAモードの液晶パネルの偏 光板と取り替えて並べて実装した。貼り変えた部分は実施例、比較例いずれも大幅 に白表示した時の輝度が上昇していた。また、暗室にて黒表示してムラのレベルを確 認したところ、比較例の円偏光板に比べて、実施例の円偏光板を実装した部分では まったくムラを確認できず視認性は非常に良好であった。更に、実施例の円偏光板 を実装した部分は広 、視野角にて良好の視認性を有して 、た。
[0157] 本発明の散乱一二色性吸収複合型偏光子の構造と類似する偏光子として、特開 2 002-207118号公報には、榭脂マトリクス中に液晶性複屈折材料と吸収二色性材 料との混合相を分散させたものが開示されている。その効果は本発明と同種類のも のである。しかし、特開 2002-207118号公報のように分散相に吸収二色性材料が 存在して!/ヽる場合に比較して、本発明のようにマトリクス層に吸収二色性材料が存在 する方が、散乱した偏光が吸収層を通過するが光路長が長くなるため、より散乱した 光を吸収することができる。ゆえに、本発明のほうが偏光性能の向上の効果がはるか に高い。また製造工程が簡単である。
[0158] また特表 2000— 506990号公報には、連続相または分散相のいずれかに二色性 染料が添加された光学体が開示されているが、本発明は吸収複合型偏光子に 1Z4 波長板を積層させる点に特徴があり、特に吸収複合型偏光子の二色性吸収材料とし てヨウ素を用いる点に特徴がある。二色性染料ではなくヨウ素を用いる場合には以下 の利点がある。(1)ヨウ素によって発現する吸収二色性は二色性染料よりも高い。し たがって、得られる偏光子に偏光特性もヨウ素を用いた方が高くなる。(2)ヨウ素は、 連続相(マトリクス相)に添加される前は吸収二色性を示しておらず、マトリクスに分散 された後、延伸することによって二色性を示すヨウ素系吸光体が形成される。この点 は連続相に添加される前から二色性を有している二色性染料と相違する点である。 つまり、ヨウ素はマトリクスへ分散されるときは、ヨウ素のままである。この場合、マトリク スへの拡散性は一般に二色性染料に比べて遥かに良い。結果として、ヨウ素系吸光 体は二色性染料よりもフィルムの隅々まで分散される。ゆえに、散乱異方性による光 路長増大効果を最大限活用することができ偏光機能が増大する。
[0159] また特表 2000— 506990号公報に記載の発明の背景には、 Aphoninによって、液 晶液滴をポリマーマトリクス中に配置してなる延伸フィルムの光学特性にっ 、て記載 されていることが述べられている。しかし、 Aphoninらは、二色性染料を用いることな くマトリクス相と分散相(液晶成分)とからなる光学フィルムに言及したものであって、 液晶成分は液晶ポリマーまたは液晶モノマーの重合物ではな!/、ため、当該フィルム 中の液晶成分の複屈折は典型的に温度に依存し敏感である。一方、本発明はヨウ素 系吸光体を含有する透光性の水溶性榭脂により形成されるマトリクス中に、微小領域 が分散された構造のフィルム力もなる偏光子を提供するものであり、さらには本発明 の液晶性材料は、液晶ポリマーでは液晶温度範囲で配向させた後、室温に冷却して 配向が固定され、液晶モノマーでは同様に配向させた後、紫外線硬化等によって配 向が固定されるものであり、液晶性材料により形成された微小領域の複屈折は温度 によって変化するものではな 、。
産業上の利用可能性
本発明の円偏光板、またはこれを用いた光学フィルムは、液晶表示装置、有機 EL 表示装置、 CRT, PDP等の画像表示装置に好適に用いられる。

Claims

請求の範囲
[1] ヨウ素系吸光体を含有する透光性榭脂により形成されるマトリクス中に、微小領域 が分散された構造のフィルム力もなる散乱一二色性吸収複合型偏光子と 1つまたは 複数の位相差板カゝら構成された 1Z4波長板とが積層されていることを特徴とする円 偏光板。
[2] 吸収複合型偏光子の微小領域は、配向された複屈折材料により形成されているこ とを特徴とする請求項 1記載の円偏光板。
[3] 複屈折材料は、少なくとも配向処理時点で液晶性を示すことを特徴とする請求項 2 記載の円偏光板。
[4] 吸収複合型偏光子の微小領域の複屈折が 0. 02以上であることを特徴とする請求 項 2記載の円偏光板。
[5] 吸収複合型偏光子の微小領域を形成する複屈折材料と、透光性榭脂との各光軸 方向に対する屈折率差は、
最大値を示す軸方向における屈折率差(Δη1)が 0. 03以上であり、
かつ Δη1方向と直交する二方向の軸方向における屈折率差(Δη2)が、前記 Δη1 の 50%以下であることを特徴とする請求項 2記載の円偏光板。
[6] 吸収複合型偏光子のヨウ素系吸光体は、その吸収軸が、 Δη1方向に配向している ことを特徴とする請求項 5記載の円偏光板。
[7] 吸収複合型偏光子として用いられるフィルム力 延伸によって製造されたものであ ることを特徴とする請求項 1記載の円偏光板。
[8] 吸収複合型偏光子の微小領域は、 Δη2方向の長さが 0. 05— 500 μ mであること を特徴とする請求項 5記載の円偏光板。
[9] 前記 1Z4波長板を構成する位相差板が透明なポリマーフィルムの延伸フィルムお よび Zまたは液晶性ィ匕合物の配向固化層であることを特徴とする請求項 1記載の円 偏光板。
[10] 前記 1Z4波長板を構成する少なくとも 1つの位相差板力 面内の最大屈折率を nx 、面内の最大屈折率を有する方向に直交する方向の屈折率を ny、厚み方向の屈折 率を nzとしたとき、 0< (nx-nz) / (nx-ny) < 1を満足することを特徴とする請求項 1 記載の円偏光板。
[11] 前記 1Z4波長板を構成する位相差板が、逆波長分散特性を有するものであり、面 内の最大屈折率を nx、面内の最大屈折率を有する方向に直交する方向の屈折率を ny、厚み方向の屈折率を nzとしたとき、 1. 2< (nx-nz) / (nx-ny) < 2. 0を満足 することを特徴とする請求項 1記載の円偏光板。
[12] 吸収複合型偏光子と 1Z4波長板とが、アクリル系透明粘着剤を介して固定積層さ れていることを特徴とする請求項 1記載の円偏光板。
[13] 吸収複合型偏光子は、透過方向の直線偏光に対する透過率が 80%以上、かつへ ィズ値が 5%以下であり、吸収方向の直線偏光に対するヘイズ値が 30%以上である ことを特徴とする請求項 1記載の円偏光板。
[14] 請求項 1記載の円偏光板が、少なくとも 1枚積層されていることを特徴とする光学フ イノレム。
[15] 請求項 1記載の円偏光板、または請求項 14記載の光学フィルムが用いられている ことを特徴とする画像表示装置。
PCT/JP2005/004784 2004-03-22 2005-03-17 円偏光板、光学フィルムおよび画像表示装置 WO2005091022A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/593,736 US20070206282A1 (en) 2004-03-22 2005-03-17 Circularly Polarizing Plate, Optical Film and Image Display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004082889A JP2005266696A (ja) 2004-03-22 2004-03-22 円偏光板、光学フィルムおよび画像表示装置
JP2004-082889 2004-03-22

Publications (1)

Publication Number Publication Date
WO2005091022A1 true WO2005091022A1 (ja) 2005-09-29

Family

ID=34993844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004784 WO2005091022A1 (ja) 2004-03-22 2005-03-17 円偏光板、光学フィルムおよび画像表示装置

Country Status (6)

Country Link
US (1) US20070206282A1 (ja)
JP (1) JP2005266696A (ja)
KR (1) KR20070004045A (ja)
CN (1) CN1934468A (ja)
TW (1) TW200602696A (ja)
WO (1) WO2005091022A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045485A1 (en) * 2003-11-06 2005-05-19 Koninklijke Philips Electronics N.V. Dichroic guest-host polarizer comprising an oriented polymer film
JP2008134270A (ja) * 2006-10-27 2008-06-12 Nitto Denko Corp 液晶パネル、及び液晶表示装置
JP4751312B2 (ja) * 2006-12-22 2011-08-17 日東電工株式会社 光学フィルム、偏光板、および画像表示装置
US9230462B2 (en) * 2007-03-07 2016-01-05 Nec Corporation Image display device
US20100309552A1 (en) * 2008-02-12 2010-12-09 Konica Minolta Opto, Inc. Retardation film
US20110097557A1 (en) * 2009-10-26 2011-04-28 Merck Patent Gesellschaft Mit Beschrankter Haftung Alignment layer for planar alignment of a polymerizable liquid crystalline or mesogenic material
EP2320268A1 (en) * 2009-10-26 2011-05-11 Merck Patent GmbH Alignment layer for planar alignment of a polymerizable liquid crystalline or mesogenic material
KR101158423B1 (ko) * 2010-05-26 2012-06-22 주식회사 케피코 차량의 자동변속기용 유압 솔레노이드 밸브
US8804067B2 (en) * 2011-05-02 2014-08-12 Au Optronics Corporation Display device
TWI465805B (zh) * 2012-04-24 2014-12-21 Au Optronics Corp 顯示裝置
JP6171276B2 (ja) * 2011-07-12 2017-08-02 住友化学株式会社 偏光子及びその製造方法
CN103797388B (zh) * 2011-09-16 2016-01-20 柯尼卡美能达株式会社 圆偏振片及立体图像显示装置
KR101916948B1 (ko) * 2011-12-12 2018-11-08 엘지디스플레이 주식회사 표시장치
JP6268730B2 (ja) * 2012-03-30 2018-01-31 住友化学株式会社 円偏光板及びその製造方法
KR20140118595A (ko) * 2013-03-29 2014-10-08 제일모직주식회사 Oled용 편광판 및 이를 포함하는 광학표시장치
JP6404036B2 (ja) * 2014-03-05 2018-10-10 富士フイルム株式会社 偏光板の製造方法
KR102426386B1 (ko) * 2014-04-18 2022-07-27 스미또모 가가꾸 가부시키가이샤 패턴 편광 필름 및 그의 제조 방법
JP6471162B2 (ja) * 2014-07-15 2019-02-13 富士フイルム株式会社 検知システムおよび検知方法
US20160231487A1 (en) * 2015-02-06 2016-08-11 Moxtek, Inc. High Contrast Inverse Polarizer
WO2017154695A1 (ja) * 2016-03-08 2017-09-14 富士フイルム株式会社 着色組成物、光吸収異方性膜、積層体および画像表示装置
CN106933020A (zh) * 2017-03-20 2017-07-07 明基材料有限公司 投影幕及包括此投影幕的投影系统
CN111051936B (zh) * 2017-09-26 2022-03-08 株式会社Lg化学 光学膜、光学元件和成像装置
JP7059035B2 (ja) * 2018-02-14 2022-04-25 住友化学株式会社 垂直配向液晶硬化膜
JP7561763B2 (ja) * 2019-11-26 2024-10-04 富士フイルム株式会社 画像表示装置
WO2021166907A1 (ja) * 2020-02-17 2021-08-26 日本化薬株式会社 光学システム及びそれを備えた光学装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006139A (ja) * 2000-01-27 2002-01-09 Fuji Photo Film Co Ltd 偏光板、光散乱型偏光素子の製造方法および液晶表示装置
JP2002502503A (ja) * 1996-02-29 2002-01-22 ミネソタ マイニング アンド マニュファクチャリング カンパニー 輝度増強フィルム
JP2002521728A (ja) * 1998-07-31 2002-07-16 スリーエム イノベイティブ プロパティズ カンパニー 連続相/分散相の光学体の二次成形方法
JP2002207118A (ja) * 2001-01-05 2002-07-26 Nitto Denko Corp 偏光フィルム及び液晶表示装置
JP2003332068A (ja) * 2002-05-15 2003-11-21 Nitto Denko Corp エレクトロルミネッセンス素子
JP2004037988A (ja) * 2002-07-05 2004-02-05 Sumitomo Chem Co Ltd 積層偏光フィルム及びそれの光学装置への適用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807140B1 (ko) * 2000-01-27 2008-02-27 후지필름 가부시키가이샤 광산란형 편광소자 및 광흡수형 편광소자가 적층된 편광판

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502503A (ja) * 1996-02-29 2002-01-22 ミネソタ マイニング アンド マニュファクチャリング カンパニー 輝度増強フィルム
JP2002521728A (ja) * 1998-07-31 2002-07-16 スリーエム イノベイティブ プロパティズ カンパニー 連続相/分散相の光学体の二次成形方法
JP2002006139A (ja) * 2000-01-27 2002-01-09 Fuji Photo Film Co Ltd 偏光板、光散乱型偏光素子の製造方法および液晶表示装置
JP2002207118A (ja) * 2001-01-05 2002-07-26 Nitto Denko Corp 偏光フィルム及び液晶表示装置
JP2003332068A (ja) * 2002-05-15 2003-11-21 Nitto Denko Corp エレクトロルミネッセンス素子
JP2004037988A (ja) * 2002-07-05 2004-02-05 Sumitomo Chem Co Ltd 積層偏光フィルム及びそれの光学装置への適用

Also Published As

Publication number Publication date
US20070206282A1 (en) 2007-09-06
KR20070004045A (ko) 2007-01-05
TW200602696A (en) 2006-01-16
JP2005266696A (ja) 2005-09-29
CN1934468A (zh) 2007-03-21

Similar Documents

Publication Publication Date Title
WO2005091022A1 (ja) 円偏光板、光学フィルムおよび画像表示装置
JP4583982B2 (ja) 偏光板、光学フィルムおよび画像表示装置
KR100849873B1 (ko) 편광판, 광학 필름 및 화상 표시 장치
WO2005093473A1 (ja) 楕円偏光板、光学フィルムおよび画像表示装置
WO2004023173A1 (ja) 偏光子、光学フィルムおよび画像表示装置
WO2005098488A1 (ja) 光学フィルムおよび画像表示装置
WO2005093501A1 (ja) 光学フィルムおよび液晶表示装置
WO2005093474A1 (ja) 光学フィルムおよび画像表示装置
JP3724801B2 (ja) 偏光子、光学フィルムおよび画像表示装置
WO2005098489A1 (ja) 偏光子、偏光板、光学フィルムおよび画像表示装置
JP2007140127A (ja) 偏光子、その製造方法、光学フィルムおよび画像表示装置
JP4907134B2 (ja) 偏光子の製造方法および偏光板の製造方法
JP2005037890A (ja) 偏光子の製造方法、偏光子、光学フィルムおよび画像表示装置
JP3779723B2 (ja) 偏光子、光学フィルムおよび画像表示装置
KR100822688B1 (ko) 편광자, 편광판, 광학 필름, 화상 표시장치, 및 편광자의 제조 방법
WO2005062087A1 (ja) 偏光板、光学フィルムおよび画像表示装置
JP2007025089A (ja) 透光性フィルム、その製造方法、偏光子、その製造方法、偏光板、光学フィルムおよび画像表示装置
JP4335618B2 (ja) 偏光子、光学フィルムおよび画像表示装置
JP2005202368A (ja) 偏光板、光学フィルムおよび画像表示装置
JP4233443B2 (ja) 光学フィルムおよび画像表示装置
JP2005202146A (ja) 偏光子の製造方法、偏光板の製造方法、積層光学フィルムの製造方法、偏光子、偏光板、積層光学フィルムおよび画像表示装置
JP2005202367A (ja) 偏光子、光学フィルムおよび画像表示装置
JP2005242044A (ja) 偏光子の製造方法、偏光子、光学フィルムおよび画像表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580008957.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10593736

Country of ref document: US

Ref document number: 2007206282

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067021714

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067021714

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10593736

Country of ref document: US