WO2005088850A1 - 位置検出システム、応答器及び質問器、無線通信システム、位置検出方法、位置検出用プログラム及び情報記録媒体 - Google Patents

位置検出システム、応答器及び質問器、無線通信システム、位置検出方法、位置検出用プログラム及び情報記録媒体 Download PDF

Info

Publication number
WO2005088850A1
WO2005088850A1 PCT/JP2005/003786 JP2005003786W WO2005088850A1 WO 2005088850 A1 WO2005088850 A1 WO 2005088850A1 JP 2005003786 W JP2005003786 W JP 2005003786W WO 2005088850 A1 WO2005088850 A1 WO 2005088850A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transponder
interrogator
pulse signal
response signal
Prior art date
Application number
PCT/JP2005/003786
Other languages
English (en)
French (fr)
Inventor
Kazunari Taki
Tsuyoshi Ohashi
Takuya Nagai
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Priority to EP05720058A priority Critical patent/EP1732239A4/en
Publication of WO2005088850A1 publication Critical patent/WO2005088850A1/ja
Priority to US11/532,649 priority patent/US8284027B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio

Definitions

  • Position detection system transponder and interrogator, wireless communication system, position detection method, position detection program, and information recording medium
  • the present invention belongs to the technical field of a position detection system, a transponder and an interrogator, a wireless communication system, a position detection method, a position detection program, and an information recording medium, and more specifically, exchange of information by wireless communication.
  • Positioning system and position detecting method including a transponder (wireless tag) and interrogator for performing position detection by performing a position detection, a wireless communication system including the position detecting system, and a position detecting program used in the position detecting system It belongs to the technical field of an information recording medium on which the position detection program is recorded.
  • the wireless tag including an IC chip having a size of 1 mm square or less, including an antenna for wireless transmission and reception, a memory, and the like, is being put to practical use. More specifically, the wireless tag is affixed to a generally distributed product or the like and is distributed together with the product or the like, and identification information for identifying the product or the like is stored in the memory.
  • a query signal is received from a separately provided interrogator via the antenna, a response signal corresponding to the query signal and including the identification information is generated, and the query signal is generated via the antenna.
  • the product can be identified in the interrogator.
  • the distribution route from the food production area can be confirmed at the time of purchase of the food, or the usage status of additives and pesticides during the production of the food can be checked. It can be confirmed by consumers.
  • UWB Ultra Wide Band
  • UWB Ultra Wide Band
  • This wireless communication method since a pulse wave having a very short time width is used as described above, an ultra-wide band wireless communication in which the used bandwidth is several gigahertz or more is possible, and a carrier wave is further used.
  • the transmission power is 10 nanowatts by not using It is extremely low, about Z megahertz.
  • the UWB system having such a configuration has the following features and advantages.In the future, indoor communication, security sensors, or high-speed wireless LAN (Local
  • the average power level is 1 milliwatt or less, and transmission over several miles is possible.
  • the present invention can be applied to, for example, vehicle-to-vehicle communication.
  • Patent Documents 1 to 4 described below.
  • Patent Document 1 Japanese Patent Publication No. 10-508725
  • Patent Document 2 JP 2003-189363
  • Patent Document 3 JP-A-2003-124844
  • Patent Document 4 JP 2002-43849
  • Patent Document 5 Patent No. 3395403 FIG. 1 and FIG. 2 etc.
  • the identification system including the conventional wireless tag, the Although it can be distinguished from other products, it was not possible to measure the distance from the wireless tag to the interrogator with sufficient accuracy due to its configuration, so for example, accurate identification of the position of the wireless tag in a room That application was not possible.
  • the distance to the object to be measured can be accurately measured, but the object cannot be distinguished from other objects.
  • a position detection system and method that includes a transponder and interrogator that can specify the distance between objects and the position of the object itself while taking advantage of features such as distance measurement, and position detection
  • An object of the present invention is to provide a wireless communication system including a system, a position detection program used for the position detection system, and an information recording medium on which the position detection program is recorded.
  • the invention according to claim 1 includes a generating unit that generates a response signal using a pulse signal received by a wideband antenna, and a pulse received by the wideband antenna.
  • Transmitting means for transmitting a signal from the wideband antenna to the generating means and transmitting the generated response signal from the generating means to the wideband antenna, the transmitting means having a preset length; and
  • the wideband antenna for receiving a signal and transmitting the response signal.
  • the wideband antenna and the generating means are connected by the transmitting means having a preset length, the transmission mode of the response signal generated from the pulse signal (waveform and transmission timing of the response signal) ) Varies depending on the length of the response signal.
  • the transponder is identified based on the waveform of the response signal, and the distance to the transponder is determined based on the transmission timing. Can be detected.
  • using a broadband antenna Since the response signal is generated by receiving the noise signal, it becomes possible to identify the transponder and detect the distance without using a carrier wave, and to identify the transponder and detect the distance while reducing the size and power consumption. Becomes possible.
  • the invention according to claim 2 is the transponder according to claim 1, wherein the length of the transmission means between the broadband antenna and the generation means is: It is configured to have a length that allows the wideband antenna to transmit the response signal in a transmission mode different from that of the other transponders.
  • the wideband antenna and the generation means are connected by the transmission means having different lengths for each transponder, the response signal generated from the pulse signal received by each transponder is output.
  • Signal transmission mode response signal waveform and transmission timing
  • reception mode of the response signal transmitted from each transponder at the interrogator signal waveform of each response signal and reception timing at the interrogator
  • the length of the transmission means in each transponder for each transponder it becomes different for each transponder.As a result, the response signals from the plural transponders are separated by the difference in the reception timing, The distance from the interrogator to each transponder can be detected while identifying each transponder based on the difference in the signal waveform.
  • the invention according to claim 3 is directed to the transponder according to claim 1 or 2, wherein the transmission means has a characteristic impedance in a predetermined length. It is configured to be constant at a set value.
  • the characteristic impedance is constant over the length of the transmission means, unnecessary reflection components that do not fluctuate the response signal waveform and transmission timing are not generated, so that the transponder can be accurately mounted. It can identify and detect the distance to the transponder.
  • the length of the transmission means is equal to the reception length.
  • the transmission speed of the received pulse signal and the response signal on the transmission means is multiplied by the time corresponding to the pulse width of the received pulse signal, and the length is one half or more.
  • the length of the transmission means is set to be at least half the value obtained by multiplying the propagation speed of each signal on the transmission means by the time corresponding to the pulse width of the pulse signal. Therefore, the signal reflected and radiated from the broadband antenna itself in the transponder in response to the pulse signal and the original response signal can be clearly distinguished to perform transponder identification and distance detection.
  • the invention according to claim 5 is directed to the transponder according to any one of claims 1 to 4, wherein the generating unit includes a step of: It is configured to include reflection control means for controlling a pulse reflection coefficient for the pulse.
  • the transmission mode of the response signal transmitted from each transponder can be changed according to the identification information to be transmitted, and the reflection coefficient can be controlled. More information can be sent than when no information is sent. That is, a multi-bit response signal can be generated and transmitted with a simple configuration.
  • the generation means should have the response signal. It is configured to include a length control unit that controls an effective length of the transmission unit according to a signal mode.
  • the effective length of the transmission means is controlled according to the signal form that the response signal should have, so that the transmission form of the response signal transmitted from each transponder depends on the identification information to be transmitted. It is possible to send more information than when the reflection coefficient is not controlled. That is, a multi-bit response signal can be generated and transmitted with a simple configuration.
  • the invention according to claim 7 is directed to the transponder according to claim 6, wherein the length control means is configured such that the length of the transmission means is equal to the pulse signal and the pulse signal.
  • One half of the multiplied value obtained by multiplying the propagation speed of the response signal on the transmission means by the time corresponding to the pulse width of the pulse signal is NZ4 times the multiplied value (N is 0 or a natural number). It is configured to control the length so that the length becomes a value obtained by adding.
  • the length of the transmission means is N / 2 of the multiplied value, which is one half of the value obtained by multiplying the propagation speed of each signal on the transmission means by the time corresponding to the pulse width of the pulse signal.
  • the length of the transmission means should not be unnecessarily long because In addition, it is possible to reduce the size of the transponder while detecting the transponders while reliably identifying each transponder.
  • an invention according to claim 8 is directed to the transponder according to claim 1, wherein a plurality of the generation means and a pulse signal received by one of the wideband antennas are provided. And a plurality of transmission means for transmitting the generated response signal from each of the generation means to the wideband antenna, respectively. Are configured to be different from each other.
  • the invention according to claim 9 is the transponder according to claim 8, further comprising a shared transmission means having a function as at least a part of each of the transmission means. It is composed.
  • the generation means includes a resonance means capable of resonating at a plurality of resonance frequencies.
  • the generation means includes the resonance means capable of resonating at a plurality of resonance frequencies, it is possible to generate a multi-bit response signal even using a resonance means having a relatively low Q value.
  • an invention according to claim 11 is a transponder including a plurality of the transponders according to any one of claims 1 to 10 as element transponders, At least one of the length of the transmitting means or the load impedance of the transmitting means and the generating means viewed from the broadband antenna is configured to be different for each of the element transponders.
  • a multi-bit response signal can be generated while simplifying the configuration of the transponder.
  • the invention described in claim 12 is based on claims 1 to 11.
  • an invention according to claim 13 is the transponder according to claim 12, wherein the radio wave is a continuous wave.
  • the invention according to claim 14 is the transponder according to claim 12 or 13, wherein the receiving antenna is a narrow band tuned to a preset tuning frequency.
  • an efficient narrow-band antenna can be used as the receiving antenna, and power can be efficiently obtained because the radio wave is a continuous wave.
  • an invention according to claim 15 is the transponder according to claim 12 or 13, wherein the wideband antenna also serves as the reception antenna. .
  • the wideband antenna that transmits the response signal also functions as the receiving antenna, it is possible to reduce the size of the antenna.
  • an invention according to claim 16 transmits the pulse signal to the transponder according to any one of claims 1 to 15, and transmits the pulse signal to the transponder.
  • An interrogator for receiving the response signal of the power supply, the pulse generation means for generating the pulse signal, transmitting the pulse signal to the transponder, and responding to the pulse signal.
  • a broadband antenna that receives the response signal, and an identification unit that identifies the transponder by comparing a previously generated reference signal with the received response signal.
  • the response signal of the transponder power is received by the wideband antenna and compared with the reference signal. Since the transponder is more identified, the transponder can be identified and the distance can be detected, and the use of a carrier wave can reduce the size and power consumption.
  • the invention according to claim 17 is directed to the interrogator according to claim 16, wherein the pulse generation means performs a first modulation process on the clock signal.
  • a first modulated clock signal generating means for generating the first modulated clock signal, generating the pulse signal using the generated first modulated clock signal, and outputting the pulse signal to the wideband antenna.
  • a second modulation clock signal generating means for performing a second modulation process different from the first modulation process on the clock signal to generate a second modulation clock signal, wherein the generated second modulation clock is provided. The signal is used to generate the reference signal and to be correlated with the response signal.
  • the pulse signal is generated by performing the first modulation process corresponding to the clock signal, and the reference signal and the response signal generated based on the second modulation process corresponding to the clock signal are generated. Therefore, the content of the response signal can be accurately detected, and the reception time interval of the pulse signal can be detected.
  • an invention according to claim 18 is directed to the interrogator according to claim 17, wherein the first modulation process and the second modulation process are performed using a pseudo-random code. And a modulation process for delaying the clock signal.
  • the first modulation process and the second modulation process are modulation processes for delaying a clock signal based on a pseudo-random code, occurrence of pulse overlap between response signals from the transponders is reduced. Can be prevented.
  • an invention according to claim 19 is the interrogator according to any one of claims 16 to 18, wherein the response to the pulse signal is received in response to the received pulse signal.
  • a reflected wave detecting means for detecting a reflected wave reflected by the broadband antenna provided in the transponder; a response wave detecting means for detecting a response wave included in the response signal; a reception time of the reflected wave; Response wave interval detection means for detecting a response wave interval that is a time from the reception time of the response wave, wherein the identification means identifies each of the transponders based on the detected response wave interval. It is configured to
  • each transponder is identified based on the detected response wave interval, the corresponding transponder can be accurately determined. Identification can be performed.
  • an invention according to claim 20 is the interrogator according to any one of claims 16 to 19, wherein the response to the pulse signal is received in response to the received pulse signal.
  • Transmission / reception interval detection means for detecting a transmission / reception interval which is a time between a reception time of a reflected wave reflected by the broadband antenna provided in the answering machine and a transmission time of the pulse signal;
  • a distance recognizing means for recognizing a distance between the interrogator and the transponder which has transmitted the reflected wave based on the interval.
  • the distance to the transponder is recognized based on the detected transmission / reception interval, so that the distance can be accurately recognized.
  • an invention according to claim 21 is the interrogator according to any one of claims 16 to 20, wherein the determination means for determining the polarity of the response signal is provided. It is further provided.
  • the content included in the response signal is recognized by determining the polarity of the response signal, the content of the response signal can be accurately recognized with a simple interrogator configuration.
  • an invention according to claim 22 transmits the pulse signal to the transponder described in claim 10 and receives the response signal of the transponder power.
  • An interrogator for generating the pulse signal, a broadband antenna for transmitting the pulse signal to the transponder and receiving the response signal from the transponder corresponding to the pulse signal.
  • Analysis means for sampling the received response signal and analyzing the frequency, and identification means for identifying each of the transponders based on the result of the frequency analysis.
  • the response signal of the transponder power according to claim 10 is received by the wideband antenna, the response signal is sampled, and the transponder is identified based on the result of the frequency analysis. Identification and distance detection become possible, and miniaturization and low power consumption can be achieved by not using a carrier wave.
  • the invention according to claim 23 provides the interrogator according to claim 22, wherein the reference signal generated in advance is superimposed on the received response signal, and the weight is reduced.
  • the superimposing means for generating a tatami signal and the analyzing means are configured to sample and frequency-analyze the generated superimposed signal.
  • the transponder can be accurately identified with a simple configuration.
  • the reference signal is generated using a clock signal generated in advance. It is configured to be a reference signal.
  • the reference signal is generated using the clock signal generated in advance, it is possible to identify the transponder using the unified reference signal for each response signal.
  • an invention according to claim 25 is directed to an interrogator according to any one of claims 16 to 24, wherein the interrogator according to any one of claims 12 to 15 is provided.
  • the apparatus further comprises a radio wave transmitting means for transmitting the radio wave to the transponder described in the above.
  • an invention according to claim 26 includes one or more transponders according to claim 1, a plurality of interrogators according to claim 16, and each interrogator according to claim 16. And a specifying unit configured to specify a position of each of the transponders based on a distance between the transponder and each of the interrogators detected by the transponder.
  • each transponder is specified based on the distance between the transponder and each interrogator detected by each transponder, so that the distance of each transponder force for one or more transponders With the help of S, the position of the transponder can be specified, and each transponder itself can be identified.
  • an invention according to claim 27 includes a plurality of interrogators that transmit a pulse signal as an interrogation wave, the interrogator that receives the pulse signal, and outputs the received pulse signal to the interrogator.
  • a response device that returns a response signal based on the pulse signal transmitted by each of the interrogators, and detects a distance between the interrogators by receiving the pulse signal.
  • 1 Distance detecting means and a second distance detecting device such as a controller for detecting a distance from each interrogator force to the transponder based on the pulse signal and the response signal.
  • a device position detecting means such as a controller for detecting the positions of the interrogators and the transponders in the position detecting system based on the respective detected distances. Is done.
  • the distance between each interrogator and each transponder and the respective positions are detected by exchanging the pulse signal and the response signal, so that the distance detection between each transponder and the interrogator can be performed without using a carrier wave.
  • These positions can be detected, and the distance detection and the position detection can be performed while reducing the size and power consumption.
  • an invention according to claim 28 is the position detection system according to claim 27, further comprising a plurality of the transponders, wherein each of the transponders is based on the response signal. And a transponder identifying means such as a controller for identifying a device, and a distance information transmitting means such as a wideband antenna for transmitting distance information indicating each of the detected distances to each of the interrogators.
  • each of the plurality of transponders is identified and the detected distance information is transmitted to each interrogator, the position of each interrogator is identified while identifying each transponder mutually. It comes out.
  • the other interrogator detected by the other interrogator can be used.
  • the distance S between the interrogator and the transponder can be used to specify the position of the transponder in the single interrogator.
  • an invention according to claim 29 is the transponder capable of specifying a position in the position detection system in the position detection system according to claim 28 in advance.
  • the apparatus further includes a specific transponder such as a marker tag, and further includes third distance detecting means such as a controller for detecting a distance between the specific transponder and each of the interrogators, and the device position detecting means includes: It is configured to detect an absolute position of each of the interrogators and the transponders in the position detection system based on the detected distance.
  • an invention according to claim 30 is the position detection system according to any one of claims 27 to 29, wherein the position detection system responds to the transmitted pulse signal.
  • Receiving means such as a broadband antenna for receiving a reply signal returned from a moving object in the position detection system, and determining whether or not the moving object is the transponder based on the received reply signal.
  • It further comprises a discriminating means such as a controller for discriminating, and a notifying means such as a controller for notifying that the moving body is not the transponder when it is judged that it is not the responder.
  • the moving object is a transponder is determined based on a response signal from the moving object that moves in the position detection system, and a notification is made when the moving object is not a transponder. Even if a transponder or a moving object enters the position detection system, it can be identified and reported.
  • an invention according to claim 31 is the position detection system according to any one of claims 28 to 30, wherein the distance information transmitting means includes a pulse wave. Is used to transmit the distance information to each of the interrogators.
  • the invention according to claim 32 is directed to the position detection system according to any one of claims 27 to 31, wherein the interrogator configuring the position detection system is provided. And an interrogator number detecting means such as a controller for detecting the number of interrogators.
  • an invention according to claim 33 is the transponder included in the position detection system according to any one of claims 27 to 32, wherein the transponder includes: A broadband antenna for receiving the received pulse signal and transmitting the response signal, and a characteristic impedance section for modulating the received pulse signal and generating the response signal. And transmitting means for transmitting the received pulse signal from the wideband antenna to the generating means and transmitting the generated response signal from the generating means to the wideband antenna.
  • the pulse wave from the interrogator is received using the wideband antenna, and the response signal obtained by modulating the pulse wave is returned to the interrogator using the wideband antenna, so that the carrier wave is not used. It is possible to detect the distance between each transponder and each interrogator and their positions, and to perform the distance detection and the position detection while reducing the size and power consumption.
  • an invention according to claim 34 includes a plurality of interrogators that transmit a pulse signal as an interrogation wave, a plurality of interrogators that receives the pulse signal, and outputs the received pulse signal to the interrogator. And a transponder that returns a response signal based on the interrogator, wherein the interrogator receives the pulse signal transmitted by the interrogator.
  • the distance between each interrogator and each transponder and the respective positions are detected by transmitting and receiving the pulse signal and the response signal, so that the distance between each transponder and the interrogator can be detected without using a carrier wave.
  • These positions can be detected, and the distance detection and the position detection can be performed while reducing the size and power consumption.
  • an invention according to claim 35 is the position detection method according to claim 34, wherein the position detection system includes a plurality of the transponders.
  • each of the plurality of transponders is identified and the detected distance information is transmitted to each interrogator, the position of each interrogator is identified while identifying each transponder mutually. It comes out.
  • the detected distance information is transmitted to each interrogator, even if the transponder cannot directly communicate with one interrogator, the other interrogator detected by the other interrogator does not.
  • the distance S between the interrogator and the transponder can be used to specify the position of the transponder in the single interrogator.
  • an invention according to claim 36 includes a plurality of interrogators that transmit a pulse signal as an interrogation wave, the plurality of interrogators receiving the pulse signal, and applying the received pulse signal to the plurality of interrogators. And a transponder that returns a response signal based on the first signal.
  • the first computer detects a distance between the interrogators by receiving the pulse signal transmitted by the interrogator.
  • Distance detecting means, second distance detecting means for detecting a distance from each of the interrogators to the transponder based on the pulse signal and the response signal, and each of the interrogators based on each of the detected distances
  • a device position detecting means for detecting the position of the transponder in the position detecting system.
  • the computer functions to detect the distance between each interrogator and each transponder and the respective positions by transmitting and receiving the pulse signal and the response signal, so that each transponder and the interrogator can be used without using a carrier wave.
  • the distance between them and their positions can be detected, and the distance and position can be detected while miniaturization and low power consumption are achieved.
  • the position detecting program according to claim 36 is recorded so as to be readable by the computer.
  • the computer functions so as to detect the distance between each interrogator and each transponder and the respective positions by transmitting and receiving the pulse signal and the response signal. Therefore, it is possible to detect the distance between the transponders and the interrogator and their positions without using a carrier wave, and it is possible to detect the distance and the position while miniaturizing and reducing power consumption. Become.
  • the broadband antenna and the generation means are connected by the transmission means having a preset length
  • the response signal generated from the pulse signal Transmission mode may vary depending on its length.
  • the transponder can be identified based on the waveform of the response signal, and the distance to the transponder can be detected based on the transmission timing.
  • a response signal is generated by receiving a pulse signal using a wideband antenna, it is possible to identify the transponder and detect the distance, and to identify the transponder and reduce the distance while reducing the size and power consumption. Detection becomes possible.
  • the broadband antenna and the generation means are connected by transmission means having different lengths for each transponder. Therefore, the transmission mode (response signal waveform and transmission timing) of the response signal generated from the pulse signal received by each transponder, in other words, the interrogation of the response signal transmitted from each transponder.
  • the response mode (signal waveform of each response signal and the reception timing at the interrogator) in the transponder differs for each transponder by making the length of the transmission means in each transponder different for each transponder.
  • the response signals from the multiple transponders can be separated from each other based on the reception timing difference, and the interrogator force distance to each transponder can be detected while identifying each transponder based on the signal waveform difference. .
  • the characteristic impedance is constant over the length of the transmission means, so that the response signal waveform and transmission Since unnecessary reflection components that do not fluctuate in timing are not generated, the transponder can be accurately identified and the distance to the transponder can be detected.
  • the length of the transmission means is such that the propagation length of each signal on the transmission means is increased. Since the length is one half or more of the value obtained by multiplying the speed by the time corresponding to the pulse width of the pulse signal, the signal reflected and radiated from the broadband antenna itself in the transponder according to the pulse signal is The response signal can be identified and the distance can be detected by clearly distinguishing the response signal from the original response signal.
  • the invention described in any one of claims 1 to 4 is provided.
  • the transmission mode of the response signal transmitted from each transponder can be changed according to the identification information to be transmitted. More information can be sent than in the case where no is controlled. That is, a multi-bit response signal can be generated and transmitted with a simple configuration.
  • the length of the transmission means is determined by the pulse signal with respect to the propagation speed of each signal on the transmission means.
  • the multiplied value is multiplied by N / 4 times the multiplied value to half the value obtained by multiplying the time corresponding to the pulse width of It is possible to reduce the size, and at the same time, detect the distance while reliably identifying each transponder.
  • a shared transmission unit having a function as at least a part of each transmission unit is further provided. It is possible to realize a transmission unit having a plurality of lengths while reducing the size.
  • the generation means includes the resonance means capable of resonating at a plurality of resonance frequencies, the Q value is relatively low. Even if the resonance means is used, a multi-bit response signal can be generated.
  • power is supplied by a continuous wave different from a pulse signal for information transmission / reception, so that each transponder can efficiently operate. Power can be generated.
  • the receiving antenna is a narrow band antenna and the radio wave is a continuous wave, so that the power is efficiently transmitted. You can get the power.
  • the wideband antenna for transmitting the response signal also serves as the receiving antenna. it can.
  • the transponder since the response signal from the transponder is received by the wideband antenna and the transponder is identified by comparison with the reference signal, the transponder can be identified and the distance can be detected. Thus, miniaturization and low power consumption can be achieved by not using a carrier wave.
  • a first modulation process corresponding to the clock signal is performed to generate a pulse signal, and the clock signal is generated. Since the correlation between the reference signal generated based on the second modulation processing corresponding to the signal and the response signal is taken, it is necessary to accurately detect the content of the response signal and to detect the reception time interval of the pulse signal. Power S can.
  • the first modulation process and the second modulation process delay the clock signal based on the pseudo-random code. Because of the modulation processing, it is possible to prevent pulse overlap between response signals from the transponders.
  • the distance to the transponder is determined based on the detected transmission / reception interval. As a result, the distance can be accurately recognized.
  • the response signal is included in the response signal by determining the polarity of the response signal. Since the contents of the response signal are recognized, it is possible to accurately recognize the contents of the response signal with a simple interrogator configuration.
  • the response signal from the transponder according to claim 10 is received by the wideband antenna, the response signal is sampled, and the response is performed based on the result of frequency analysis. Since the device is identified, the transponder can be identified and the distance can be detected, and the size and power consumption can be reduced without using a carrier wave.
  • a frequency analysis is performed by sampling a superimposed signal obtained by superimposing the reference signal on the response signal.
  • the transponder can be accurately identified with a simple configuration.
  • each response signal is generated.
  • the transponder can be identified using a unified reference signal.
  • each transponder is specified based on the distance between the transponder and each interrogator detected in each interrogator. By knowing the distance from each interrogator to the transponder, the position of that transponder can be specified, and each transponder can be identified. Able to understand itself.
  • the distance between each interrogator and each transponder and the position of each interrogator are detected by transmitting and receiving the pulse signal and the response signal.
  • the distance between interrogators and their positions can be detected, and the distance and position can be detected while miniaturization and low power consumption are achieved.
  • the position of the transponder which is the object of the wireless communication is stored in the position detection system. Can be detected.
  • each of the plurality of transponders is identified, and the detected distance information is transmitted to each interrogator.
  • each transponder can be identified while mutually identifying its position.
  • the other interrogator detected by the other interrogator can be used.
  • the position of the transponder can be specified in the single interrogator, and the position of the transponder existing in a wider range can be specified.
  • the absolute position of each transponder in the position detection system is detected based on the position of the specific transponder. Therefore, it is possible to detect the position of the transponder as an absolute position rather than a relative position with respect to each transponder.
  • distance information is transmitted to each interrogator using a pulse wave.
  • Transport It is possible to specify the location of each transponder by transmitting distance information while reducing the size and power consumption without using waves.
  • the number of interrogators in the position detection system is detected. By detecting the number of each interrogator, it is possible to detect in advance whether or not the position of the transponder in the position detection system is possible.
  • the pulse wave from the interrogator is received using the wideband antenna, and a response signal obtained by modulating the pulse wave is returned to the interrogator using the wideband antenna. Therefore, it is possible to detect the distance between each transponder and each interrogator and the position of each interrogator without using a carrier wave.This enables the distance detection and position detection while reducing the size and power consumption. .
  • the distance between each interrogator and each transponder and the position of each interrogator are detected by transmitting and receiving the pulse signal and the response signal.
  • the distance between interrogators and their positions can be detected, and the distance and position can be detected while miniaturization and low power consumption are achieved.
  • each of the plurality of transponders is identified, and the detected distance information is transmitted to each interrogator.
  • each transponder can be identified while mutually identifying its position.
  • the other interrogator detected by the other interrogator can be used.
  • the position of the transponder can be specified in the single interrogator, and the position of the transponder existing in a wider range can be specified.
  • the computer functions to detect the distance between each interrogator and each transponder and the position of each interrogator by transmitting and receiving the pulse signal and the response signal. Without this, distance detection and position detection between each transponder and interrogator can be performed, and the distance detection and position detection can be performed while reducing the size and power consumption.
  • the position detection program is read by a computer.
  • the computer functions so as to detect the distance between each interrogator and each transponder and the position of each transponder by transmitting and receiving the pulse signal and the response signal.
  • the distance between interrogators and their positions can be detected, and the distance and position can be detected while reducing the size and power consumption.
  • the radio communication using the pulse signal can be utilized while taking advantage of its features such as low power consumption and distance measurement. It becomes possible to detect the position of the transponder which is the object of communication in the position detection system.
  • FIG. 1 is a block diagram showing a schematic configuration of a wireless communication system according to a first embodiment.
  • FIG. 2 is a diagram showing a configuration of a wireless tag according to the first embodiment.
  • FIG. 3 is a block diagram showing a schematic configuration of an interrogator according to the first embodiment.
  • FIG. 4 is a diagram showing a signal reception mode in the interrogator according to the first embodiment, where (A) is a diagram showing the waveform of each received pulse wave, and (B) is a diagram showing the response signal at the time of content determination.
  • FIG. 4 is a diagram illustrating a correlation.
  • FIG. 5 is a diagram for explaining a mechanism of wireless tag identification in the wireless communication system according to the first embodiment
  • A is a diagram (I) showing a configuration of a wireless tag included in the wireless communication system
  • B is a waveform diagram showing the identification of the wireless tag
  • C is a diagram (II) showing the configuration of the wireless tag included in the wireless communication system
  • D is a diagram showing the configuration of the wireless tag included in the wireless communication system.
  • FIG. 3 is a diagram (III) illustrating a configuration of a wireless tag.
  • FIG. 6 is a circuit diagram showing a detailed configuration of the wireless tag according to the first embodiment.
  • FIG. 7 is a diagram illustrating a transmission waveform in the wireless communication system according to the first embodiment.
  • FIG. 8 is a waveform diagram illustrating power supply according to the first embodiment.
  • FIG. 9 is a circuit diagram showing a schematic configuration of a wireless tag according to a second embodiment.
  • FIG. 10 is a diagram illustrating a mechanism of wireless tag identification in the wireless communication system according to the second embodiment, where (A) is a waveform diagram (I) and (B) is a waveform diagram (II).
  • FIG. 11 is a view showing a wireless tag according to a first modification of the first and second embodiments;
  • (A), (B) and (D) are circuit diagrams showing a schematic configuration of a wireless tag according to the first modification, and
  • (C) is a diagram showing reception of a signal in an interrogator according to the first modification. It is a figure which shows an aspect.
  • Garden 12 is a circuit diagram showing a schematic configuration of another wireless tag according to a first modification of the first and second embodiments.
  • FIGS. 14A and 14B are waveform diagrams illustrating a wireless tag identification mechanism according to a second modification of the first and second embodiments.
  • FIG. 14A is a first waveform diagram
  • FIG. FIG. 7C is a third waveform diagram.
  • FIG. 15 is a detailed configuration diagram showing a further modification of the wireless tag.
  • FIG. 16 is a block diagram showing a schematic configuration of a wireless communication system according to a third embodiment.
  • FIG. 17 is a block diagram showing a schematic configuration of an interrogator according to a third embodiment.
  • FIG. 20 is a conceptual diagram illustrating a position detection process according to a third embodiment, where (a) is a conceptual diagram illustrating a first stage of the position detection process, and (b) is a conceptual diagram illustrating a second stage of the position detection process.
  • FIG. 7C is a conceptual diagram showing a third stage of the position detection process.
  • each wireless tag and each interrogator are identified by UWB wireless communication, and the distance between the interrogators of each wireless tag and the distance between each interrogator are detected.
  • wireless communication systems that specify the position of wireless tags and interrogators This is an embodiment in which the present invention is applied.
  • FIG. 1 is a block diagram showing a schematic configuration of the wireless communication system according to the first embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration of the wireless tag according to the first embodiment.
  • FIG. 4 is a block diagram showing a schematic configuration of the interrogator according to the first embodiment,
  • FIG. 4 is a waveform diagram showing operations of the transponder and the interrogator according to the first embodiment, and
  • FIG. FIG. 6 is a diagram showing the operation of the transponder and the interrogator in more detail
  • FIG. 6 is a circuit diagram showing a detailed configuration of the wireless tag according to the first embodiment
  • FIG. 7 is an interrogator according to the first embodiment.
  • FIG. 8 is a diagram illustrating a waveform of a pulse signal transmitted by force
  • FIG. 8 is a diagram illustrating a waveform of a pulse signal and a power signal transmitted from the interrogator according to the first embodiment.
  • the radio communication system S is an interrogator PC1, PC2, PC3,..., PCn each having an antenna ANT, and is a target of distance measurement. It consists of wireless tags TG1, TG2, TG3,..., And TGn as transponders attached to products and the like.
  • each interrogator PCn transmits a pulse signal according to the UWB method to each wireless tag TGn.
  • the pulse signal is transmitted from a later-described broadband antenna provided in the interrogator PCn, and is received by a later-described broadband antenna provided in each wireless tag TGn.
  • the pulse signal received by each wireless tag TGn is reflected by a load impedance unit described later in each wireless tag TGn, and is again returned from the broadband antenna provided in the wireless tag TGn (the received signal described above). It is transmitted (returned) to each interrogator PCn as a response signal corresponding to the pulse signal) according to the UWB method.
  • each interrogator PCn receives the response signal by the wideband antenna and detects the content. Then, based on the content of the detected response signal, each interrogator PCn identifies each wireless tag TGn with each other, and furthermore, includes the packet included in the received response signal. The distance to each wireless tag TGn is detected based on the mode of the wave.
  • each wireless tag TGn a control unit described later in one wireless tag TGn so that the load impedance of the load impedance unit has a different load impedance between the wireless tags TGn. Is controlled by As a result, since the load impedance differs between the wireless tags TGn, the polarity of the pulse wave included in the response signal differs between the wireless tags TGn, and as a result, each interrogator It is possible for PCn to identify each wireless tag itself.
  • each wireless tag TGn includes a pair of broadband antennas 1 made of, for example, a thin-film metal and the like, and a transmission line 2 as a transmission unit made of parallel lines. As shown in the figure, it is composed of a load impedance section 3 as a generating means including a switching element and the like, a control section 4, a power supply section 5, and a pair of narrow band antennas 6 for obtaining power.
  • the narrow-band antenna 6 receives a power signal that is a continuous wave transmitted from a narrow-band antenna described later in the interrogator PCn, and uses a current induced by the power signal as a received current as a power supply unit 5. Output to
  • the power supply unit 5 is driven by the received current, generates a control signal Sc for controlling the load impedance constituted by the load impedance unit 3 and the transmission path 2, and generates the control signal Sc.
  • the pair of wideband antennas 1 are wideband antennas capable of performing wireless communication according to the UWB method, and are electrically connected to the load impedance unit 3 via the transmission path 2, respectively.
  • the transmission line 2 is formed by a parallel line having a constant characteristic impedance, and connects the pair of broadband antennas 1 and the load impedance unit 3.
  • the other part of the received current not used for direct reflection in broadband antenna 1 propagates in transmission line 2 and is reflected in load impedance section 3, and returns as a response signal to broadband antenna 1 again. Propagating toward. Then, the response signal reaching the broadband antenna 1 is radiated from the broadband antenna 1 and transmitted to the interrogator PCn. At this time, since the transmission line 2 has a constant characteristic impedance, unnecessary reflection does not occur in the middle of the transmission line.
  • the length L of one transmission path 2 is equal to the length of the reflected wave and the pulse wave constituting the response signal
  • the length is set to be longer and different for each wireless tag TGn.
  • the propagation speed of the response signal is the propagation speed when the pulse propagates through the transmission path 2.
  • the interrogator PCn includes identification means, reflected wave detection means, response wave detection means, response wave interval detection means, transmission / reception interval detection means, and distance recognition means.
  • Controller 10 delay units 11 and 13, a clock signal generator 12, a pulse generator 14 as pulse generation means, and a wideband antenna 15 (pulse signal) having the same configuration as the wideband antenna 1 in the wireless tag TGn.
  • Transmission a template pulse generator 16, a correlator 17, a broadband antenna 18 having the same configuration as the wideband antenna 15 (for receiving a response signal from the radio tag TGn), a decoder 19, and an oscillator 20.
  • the oscillator 20, the modulator 21, the amplifier 22, and the narrow-band antenna 23 constitute a power supply unit B for transmitting a radio wave composed of a continuous wave to the narrow-band antenna 6 of the wireless tag TGn. .
  • the clock signal generator 12 when transmitting the pulse signal to the wireless tag TGn, the clock signal generator 12 generates a clock signal Scl of a predetermined constant frequency and outputs it to the delay units 11 and 13, respectively.
  • the delay unit 11 delays the clock signal Scl based on the control signal Scdl from the controller 10, and outputs the delayed clock signal Scl to the pulse generator 14 as a delayed clock signal Sdl.
  • the delay amount of the clock signal Scl in the delay unit 11 is given a random delay for each of the noise signals by, for example, a so-called pseudo-random code. More specifically, as the pseudo-random code, for example, a so-called M-system system (MaximaHength
  • Gold sequences are suitable.
  • the pulse generator 14 generates a pulse signal Sout from the delayed clock signal Sdl by a preset pulse generation process according to the UWB method, and sends the pulse signal Sout to the wireless tag TGn via the broadband antenna 15. Send to.
  • the response signal from each wireless tag TGn is received by wideband antenna 18 and output to correlator 17 as response signal Sin.
  • the clock signal generator 12 outputs the clock signal Scl to the delay unit 13, and the delay unit 13 outputs the clock signal Scl based on the control signal Scd2 from the controller 10. And outputs the same to the template pulse generator 16 as a delayed clock signal Sd2.
  • the delay amount in the delay unit 11 and the delay amount in the delay unit 13 are different from each other.
  • the template pulse generator 16 uses the delayed clock signal Sd2 to generate a later-described reference (template) signal Stp used for analyzing the content of the received response signal Sin.
  • the correlator 17 compares the received response signal Sin with the reference signal Stp, particularly according to the delay amount in the delay unit 13, and displays the correlation signal indicating the degree of mutual correlation (similarity).
  • the decoder 19 decodes and decodes the content of the response signal Sin based on the correlation signal Scm, and outputs the result to the controller 10 as a decoded signal Sdc.
  • the controller 10 converts the received response signal Sin based on the decoded signal Sdc.
  • the transmitted wireless tag TGn is identified from other wireless tags TGn as described later, and the distance of the transmitted wireless tag TGn from the interrogator PCn that has received the response signal Sin is determined as described later.
  • the oscillator 20 in the power supply unit B generates an oscillation signal S indicating the preset frequency of the continuous wave, and outputs it to the modulator 21.
  • the modulator 21 modulates the oscillation signal Sf with a preset modulation process (more specifically, for example, the identification number information for each wireless tag TGn. And the like in the case where the above continuous wave is transmitted as a carrier wave, amplitude modulation processing corresponding to the contents of the identification number information, etc.), and outputs the modulated signal Se to the amplifier 22.
  • a preset modulation process more specifically, for example, the identification number information for each wireless tag TGn.
  • the above continuous wave is transmitted as a carrier wave, amplitude modulation processing corresponding to the contents of the identification number information, etc.
  • the amplifier 22 performs a predetermined amplification process on the modulation signal Se, and supplies the power signal Sbb to the narrow band antenna 6 of each wireless tag TGn via the narrow band antenna 23. Send to.
  • the pulse waveform before the radiation of the pulse signal Sout from the wideband antenna 15 is the pulse wave P shown at the top of FIG. 4A, the pulse waveform in the pulse signal immediately after being radiated from the broadband antenna 15 is Because of the differential characteristics of the pulse wave P, a waveform obtained by differentiating the pulse wave P once, such as the pulse wave Pout shown in the second stage from the top in FIG.
  • the pulse waveform of the pulse signal is also Because of the differential characteristics of the above, the pulse wave Pout becomes a waveform that is differentiated once more, such as the pulse wave Prv shown in the third row from the top in Fig. 4 (A).
  • the noise signal reflected at the load impedance section 3 (that is, The pulse waveform of the pulse signal immediately after the response signal) is emitted from the broadband antenna 1 has the above-described differential characteristic of the broadband antenna 1, and the pulse wave Ptout shown in the fourth row from the top in FIG. It becomes a waveform obtained by differentiating the pulse wave Prv once.
  • the pulse waveform is similarly Because of the differential characteristic of 18, the waveform becomes a waveform obtained by differentiating the pulse wave Ptout once more, such as the pulse wave Pin shown at the bottom of FIG.
  • the reference signal Stp output from the template pulse generator 16 is used to identify a pulse signal having the same waveform as the pulse signal transmitted from the wideband antenna 15 and to perform radio ranging for distance measurement.
  • a radio signal which is differentiated by the required number of times so as to have the same or correlated waveform as the response signal Sin transmitted and received from the tag TGn, or their phase-inverted waveforms. This is a reference signal obtained by delaying the time from the reception of the pulse signal to the transmission of the response signal on the transmission path 2 in the tag TGn.
  • the correlator 17 compares the reference signal Stp (see the waveform of the pulse Prv in Fig. 4) with the response signal Sin actually input from the wideband antenna 18. Accordingly, when the correlation (phase correlation) between the response signal Sin and the reference signal Stp is positive as shown in FIG. 4B, the content of the response signal Sin is determined to be “1” by the decoder 19. On the other hand, when the correlation between the response signal Sin and the reference signal Stp is negative as shown in the lower part of FIG. 4 (B), the content of the response signal Sin is determined to be ⁇ 0 '' by the decoder 19, and these determination values are The controller outputs the decoded signal Sdc corresponding to the above to the controller 10.
  • Fig. 5 (A) is a diagram showing the configuration of the broadband antenna 1, the transmission line 2, and the load impedance unit 3 in multiple wireless tags TGn
  • Fig. 5 (B) is shown in Fig. 5 (A).
  • 6 is a timing chart showing a pulse signal and a response signal transmitted and received between each wireless tag TGn.
  • Fig. 5 (A In) the control unit 4, the power supply unit 5, and the narrow band antenna 6 in the wireless tag TGn are not shown.
  • the load impedance unit 3 is configured only by the switching element controlled by the control unit 4, and the wireless tag TG3 has the same length as the wireless tag TG1.
  • a resistor 3R for load matching is connected in series.
  • FIG. 5 (B) the timing chart showing the waveform of pulse signal P immediately before being radiated from broadband antenna 15 of interrogator PCn is shown at the top, and the above pulse signal S out is output from broadband antenna 15. Is received by the wireless tag TG1 and returned by the wireless tag TG1, and the corresponding response signal Sin is received immediately by the broadband antenna 18 of the interrogator PCn.
  • the chart above is also shown in the second row, and the above-mentioned noise signal Sout is input to the wideband antenna 15, and the pulse wave transmitted from the wideband antenna 15 is received by the wireless tag TG2, returned and the corresponding response signal Sin is sent to the interrogator.
  • the timing chart of the response signal Sin immediately after being received by the PCn broadband antenna 18 is shown in the third row from the top, and the pulse signal Sout is a wideband antenna. 15 is a timing chart of the response signal Sin immediately after the response wave Sin received by the wireless tag TG3 and the corresponding response signal Sin is received by the broadband antenna 18 of the interrogator PCn. Is shown at the bottom.
  • each wireless tag TGn included in the wireless communication system S of the first embodiment includes the transmission line 2 and the load impedance unit 3 having different lengths in principle. Therefore, the time required for the pulse signal transmitted from the interrogator PCn to be received by the broadband antenna 1 of each wireless tag TGn, reflected by the load impedance unit 3 and transmitted again as a force response signal by the broadband antenna 1 is determined for each wireless tag. Will be different for each TGn
  • a pulse signal Sout from the interrogator PCn is shown in the upper left of FIG. 5B.
  • a noise wave P shown a waveform before transmission; the same applies hereinafter
  • the transmitted pulse wave is directly received by the wideband antenna 18 in the interrogator PCn, and A received pulse wave Pinl corresponding to the directly received pulse wave is generated as shown in the second stage left from the top in FIG. 5 (B).
  • the pulse wave transmitted from the broadband antenna 15 is reflected by the broadband antenna 1 of the wireless tag TG1
  • the reflected wave from the broadband antenna 1 is correspondingly reflected in two steps from the top in FIG. 5 (B).
  • the interrogator PCn receives the reflected wave Pin2.
  • the time interval for receiving the received pulse wave Pinl and the reflected wave Pin2 depends on the distance between the interrogator PCn and the wireless tag TG1, and the distance can be obtained by multiplying this time interval by the pulse wave speed.
  • the pulse signal received by the wideband antenna 1 is reflected by the load impedance unit 3 and is transmitted again as a response signal from the wideband antenna 1, and the transmitted response is returned.
  • the signal is received by the broadband antenna 18 of the interrogator PCn, and the corresponding reception noise wave Pin3 is generated as shown in the second stage left from the top of FIG. 5 (B).
  • the reflected wave Pin2 has the same waveform as the pulse wave Pin shown at the bottom of FIG. Also, since the load impedance section 3 of the received pulse wave Pin3 is open, a pulse wave having the same waveform as the reflected wave Pin2 is received by the interrogator PCn after being delayed by the round-trip time T1 of the transmission line 2. Is done. When the reference signal Stp illustrated in FIG. 4B is used, the content of the received pulse wave Pin3 indicates “1”.
  • FIG. 5 (B) Explanation will be made using the top left and the third left from the top.
  • the pulse wave P shown at the top left of Fig. 5 (B) is input to the broadband antenna 15 as a pulse signal Sout from the interrogator PCn. Then, as in the case of the wireless tag TG1, a received pulse wave Pinl corresponding to the pulse wave directly received by the wideband antenna 18 is generated as shown in the third row from the top in Fig. 5 (B), as in the case of the wireless tag TG1. You. Next, when the pulse wave transmitted from the wideband antenna 15 is reflected by the wideband antenna 1 of the wireless tag TG2, the reflected wave Pin2 from the wideband antenna 1 is correspondingly changed from the upper side of FIG.
  • the pulse signal received by the wideband antenna 1 is reflected by the load impedance section 3 and transmitted again as a response signal from the wideband antenna 1, and the transmitted response signal is interrogated.
  • the corresponding received pulse wave Pin3 which is received by the broadband antenna 18 of the device PCn, is generated as shown in the third left from the top in FIG. 5 (B).
  • the load impedance section 3 is open in the reception pulse wave Pin3
  • the pulse wave having the same waveform as the reflection wave Pin2 is transmitted to the transmission line 2 of the wireless tag TG2 (the transmission line of the wireless tag TG1).
  • the interrogator PC n receives the reflected wave Pin2.
  • the pulse signal received by the wideband antenna 1 is reflected by the load impedance unit 3, and is transmitted again as a response signal from the wideband antenna 1.
  • the received pulse wave Pin3 received by the broadband antenna 18 of the interrogator PCn is generated as shown in the lower left part of FIG. 5B.
  • the received pulse wave Pin3 is not affected by the presence of the resistor 3R because the load impedance part 3 is open, so that a pulse wave having the same waveform as the reflected wave Pin2 is generated in the wireless tag TG3.
  • the reference signal Stp illustrated in FIG. 4B is used, the content of the received pulse wave Pin3 indicates “1”.
  • the pulse wave P shown in the upper right of FIG. 5B, the received pulse wave P inl corresponding to the pulse wave P directly received by the wideband antenna 18 is shown on the right and left two steps from the top in FIG. Is generated as follows.
  • the pulse wave transmitted from the wideband antenna 15 is reflected by the wideband antenna 1 of the wireless tag TG1
  • the reflected wave Pin2 from the wideband antenna 1 is correspondingly changed as shown in FIG. )
  • the interrogator PCn As shown in the second right from the top, received by the interrogator PCn.
  • the noise signal received by the broadband antenna 1 is reflected by the load impedance unit 3 and is transmitted again as a response signal from the broadband antenna 1, so that the transmitted signal is transmitted.
  • the response signal is received by the broadband antenna 18 of the interrogator PCn, and the corresponding reception noise wave Pin3 is generated as shown in the second right from the top of FIG. 5 (B).
  • the reflected wave Pin2 has the same waveform as the pulse wave Pin shown at the bottom of FIG. Since the load impedance section 3 is short-circuited in the reception pulse wave Pin3, the pulse wave whose polarity is inverted with respect to the reflection wave Pin2 is delayed by the round-trip time T1 of the transmission line 2 and interrogated. Received at PCn. When the reference signal Stp illustrated in FIG. 4B is used, the content of the received pulse wave Pin3 indicates “0”.
  • the reflected wave Pin2 from the wideband antenna 1 is correspondingly shown in FIG. 5 (B). From the third step, as shown on the right, it is received by the interrogator PCn. Next, following the reflected wave Pin2, the noise signal received by the broadband antenna 1 is reflected by the load impedance unit 3 and transmitted again as a response signal from the broadband antenna 1, and the transmitted response signal Is received by the broadband antenna 18 of the interrogator PCn, and the corresponding received pulse wave Pin3 is generated as shown in the third right from the top of FIG. 5 (B).
  • the reception noise wave Pin3 is a pulse wave whose polarity is inverted with respect to the reflection wave Pin2, and the time T2 of the round trip of the transmission line 2 in the wireless tag TG2 is T2. It is received by the interrogator PCn with a delay of (> time T1).
  • the reference signal Stp illustrated in FIG. 4B is used, the content of the received pulse wave Pin3 indicates “0”.
  • the pulse signal received by the wideband antenna 1 is not reflected by the load impedance unit 3 and is not transmitted as a response signal from the wideband antenna 1, so that the transmitted response
  • the signal is not received by the wideband antenna 18 of the interrogator PCn, and the corresponding received pulse wave Pin3 is not generated as shown in the lower right of FIG. 5 (B). That is, in the reception pulse wave Pin3, since the load impedance section 3 is short-circuited and the resistor 3R functions as a resistor having a load matching function, the pulse signal is not reflected by the load impedance section 3.
  • the response signal from the wireless tag TG3 is not transmitted, so that the received pulse wave corresponding to the received pulse wave Pin3 in the wireless tag TG1 or TG2 is not received by the interrogator PCn.
  • the interrogator is used.
  • the reception timing or waveform of the reception pulse wave Pin3 in PCn, or the presence or absence of the reception pulse wave Pin3 is different between the wireless tags TG1 to TG3, and the interrogator PCn can identify the wireless tags TG1 to TG3 from each other. It is possible.
  • the load impedance unit 3 in the wireless tag TGn of the first embodiment includes a diode 30 (which is connected in series to the transmission line 2) that functions as a switching element shown in FIG. And two coils (or inductance elements) 31 connected between each of the two terminals of the diode 30 and the control unit 3.
  • diode 30 is controlled by DC bias based on control from control unit 4.
  • a DC bias is applied, a short circuit occurs, and when the application of the DC bias is stopped, the DC bias is released, thereby functioning as the switching element.
  • the coil 31 prevents components other than the DC bias from being applied to the diode 30, prevents the noise signal propagating through the transmission line 2 from flowing to the control unit 4, and applies the DC bias.
  • the load impedance unit 3 has a function of opening the pulse signal when stopped.
  • the power supply unit 5 of the wireless tag TGn includes a rectifier circuit 32 and a matching circuit 33.
  • the rectifier circuit 32 further includes capacitors 40 and 41 and diodes 42 and 43. It is configured.
  • matching circuit 33 matches the power signal received by narrow-band antenna 6 composed of two antenna elements between the antenna elements, and has been carried by the power signal. The power is output to the rectifier circuit 32.
  • the rectifier circuit 32 converts the power signal, which is an AC signal, into a DC signal by the functions of the capacitors 40 and 41 and the diodes 42 and 43, and drives the control unit 4 with the DC signal.
  • the diode 30 forming the load impedance unit 3 may be configured by an FET (Field Effect Transistor). Further, matching circuit 33 may be omitted, or matching circuit 33 itself may be formed integrally with narrowband antenna 6.
  • a single-pulse pulse wave P that forms a pulse signal Sout generated in the interrogator PCn has a predetermined length of time on the time axis. Only one in the lot TS is sent from the interrogator PCn. At this time, the timing at which the noise wave P is transmitted in one time slot TS is determined by, for example, the pseudo random code (more specifically, for example, a so-called M sequence or Gold sequence). ), The pulse wave P is transmitted at a randomized timing within one time slot TS. Therefore, the clock signal Scl is delayed by the pseudo random code in the delay unit 11 described above.
  • the pseudo random code more specifically, for example, a so-called M sequence or Gold sequence
  • the interval at which the pulse wave P is transmitted from the interrogator PCn is such that the interval is the longest of the transmission paths 2 of each wireless tag TGn, and the length of the transmission path 2 is the pulse received by the wireless tag TGn.
  • the time is set longer than the time obtained by dividing the signal and the response signal by the propagation speed when propagating through the transmission path 2.
  • the activation of the switching element in the wireless tag TGn is performed, for example, in synchronization with the start timing of the time slot TS in the interrogator PCn.
  • the activation of the switching element is defined for every five time slots TS. Therefore, it is necessary that the clock signal Scl, which is a reference of the switching timing of the time slot TS in each interrogator PCn, and the clock signal, which is a reference of the activation of the switching element, are synchronized.
  • a pulse wave Pout and a power signal Sbb corresponding to the above-described pulse signal are transmitted in a time-division manner.
  • the reception by the band antenna 6 charges the wireless tag TGn, and the interrogator PCn receives the response signal in the time following the transmission of the pulse wave Pout.
  • power signal time slot CT for transmitting power signal Sbb from narrowband antenna 23 ends that is, power sufficient to charge wireless tag TGn is supplied.
  • the pulse signal time slot PT for transmitting the above-mentioned noise wave Pout from the broadband antenna 15 is started.
  • a blank time slot BT according to the UWB method for separating the pulse signal time slot PT from the power signal time slot CT is started.
  • the interrogator PCn receives the above-described response signal using the blank slot BT. Further, when the blank time slot BT ends, the next power signal time slot CT starts.
  • the power signal Sbb may be transmitted using a so-called frequency hopping technique.
  • information such as identification information such as ID for identifying the wireless tag TGn is transmitted to the wireless tag TGn.
  • ID for identifying the wireless tag TGn is transmitted to the wireless tag TGn.
  • the interrogator PCn may be configured to receive the radio waves as the power signal Sbb by the wireless tag TGn.
  • the transmission path 2 having a preset length is connected to the broadband antenna 1 and the load. Since the impedance unit 3 is connected, the transmission mode (response signal waveform and transmission timing) of the response signal generated from the pulse signal changes depending on its length and load impedance, and as a result, While identifying the wireless tag TGn based on the waveform of the response signal, the distance to the wireless tag TGn can be detected based on the transmission timing.
  • identification and distance detection of the wireless tag TGn can be performed without using a carrier wave, and miniaturization and low power consumption can be achieved. This enables identification and distance detection of the wireless tag TGn.
  • the wireless tags TG1 and TG2 are generated from the noise signals received by the wireless tags TGn.
  • the transmission mode of the response signal in other words, the reception mode (signal waveform of each response signal and the reception timing at the interrogator) of the response signal transmitted from each wireless tag TGn by the interrogator PCn depends on the transmission mode at each wireless tag TGn.
  • each wireless tag TGn is identified by the difference in the signal waveform, and each wireless tag is determined by the difference in the reception timing. Interrogator to tag TGn The distance from PCn can be detected.
  • the characteristic impedance is constant over the length of the transmission path 2, unnecessary reflection from the middle of the transmission path 2 does not occur without fluctuation of the response signal waveform and transmission timing. It can identify the wireless tag TGn and detect the distance to the wireless tag TGn with high accuracy.
  • the length of the transmission line 2 is a length of one half or more of a value obtained by multiplying a propagation speed of each signal on the transmission line 2 by a time corresponding to a pulse width of the noise signal. Therefore, it is reflected from the broadband antenna 1 itself in the wireless tag TGn according to the pulse signal. The emitted reflected wave and the original response signal can be clearly identified to identify the RFID tag TGn and detect the distance.
  • the transmission mode of the response signal transmitted from each wireless tag TGn is determined according to the information to be received. It can be changed later, and a multi-bit response signal can be generated and transmitted.
  • the power is obtained by receiving the power signal Sbb, which is a continuous wave, at the wireless tag TGn, an external power source such as a battery is not required, and the wireless tag TGn can be further downsized and the operating cost can be reduced. .
  • the response signal from each wireless tag TGn is received by the wideband antenna 18 and the wireless tag TGn is identified by comparison with the reference signal Stp, so that the identification and distance detection of the wireless tag TGn are performed.
  • the reference signal Stp By using no carrier wave, miniaturization and low power consumption can be achieved.
  • a clock signal Scl is delayed in delay unit 11 to generate a noise signal
  • clock signal Scl is delayed in delay unit 13 by a delay time different from that of delay unit 11. Since the correlation between the generated reference signal Stp and the response signal Sin is obtained, it is possible to accurately detect the content of the response signal Sin and to detect the time interval of each of the reflected signal and the response signal.
  • the clock signal Scl is delayed based on the pseudo-random code according to the timing of each delay, it is possible to prevent occurrence of noise overlap between response signals from the wireless tags TGn.
  • the continuous pulse signal is reflected by the load impedance unit 3 having either the short circuit function or the open function, and the response signal is received by the interrogator PCn.
  • the signal-to-noise ratio of the decoded signal Sdc output from the decoder 19 is improved as compared with the case where information is transmitted and received using only the pulse signal of, and the communication distance between the interrogator PCn and the wireless tag TGn is extended. It is possible to do.
  • each wireless tag TGn is identified based on the interval between the detected response signals, the identification can be performed accurately.
  • the content included in the response signal is recognized by determining the polarity of the response signal in the interrogator PCn, the content of the response signal is accurately recognized with a simple configuration of the interrogator PCn. be able to.
  • FIG. 9 is a diagram illustrating a detailed configuration of the wireless tag according to the second embodiment
  • FIG. 10 is a diagram illustrating a correlation of response signals from the wireless tag.
  • the same members as those of the wireless tag TGn according to the first embodiment illustrated in FIG. 2 are denoted by the same member numbers, and detailed description thereof is omitted.
  • the wireless tag TGGn according to the second embodiment has the same broadband antenna 1, transmission path 2, narrowband antenna 6, matching circuit as the wireless tag TGn according to the first embodiment. 33 and a rectifier circuit 32, a detection circuit 35, a control unit 34 as length control means, five coils (or inductance elements) 44 to 48, four capacitors 50 to 53, and a resistor 54 And four diodes 55 to 58.
  • the length of the transmission path 2 is similar to the wireless tag TGn according to the first embodiment,
  • the propagation speed of the response signal is the propagation speed when the pulse propagates through the transmission path 2.
  • the coils 44 to 48 apply only a DC bias to each of the diodes 55 to 58 in the same manner as the wireless tag TGn according to the first embodiment, and at the same time, prevent the pulse wave from flowing to the control unit 34.
  • Capacitors 50 to 53 serve as filters, and serve as DC (DC component) cuts that pass the pulse wave as it is and simultaneously separate each DC bias. It is preferable that the ends of the 2 are load-matched by the resistor 54 in order to prevent unnecessary reflection.
  • one of the diodes is short-circuited by the control unit 34 and the other.
  • one wireless tag TG Gn has four types (specifically, length L, length (L + L), length (L + 2L), or length (
  • the reception mode of the response signal in the interrogator PCn is controlled by switching in the control unit 34 so that only one diode is sequentially shorted from the diode 55 in the wireless tag TGGn to the diode 58 in FIG.
  • the response signal Sin shifted by 1Z2 of the pulse width T of the pulse signal is received.
  • the correlator 17 takes a correlation, thereby changing the content of each response signal Sin to either ⁇ 1 '' or ⁇ 0 ''. Can be determined.
  • the wireless tag TGGn in addition to the effect of the wireless communication system S according to the first embodiment, there is a response signal from the wireless tag TGGn. Since the effective length of the transmission path is controlled according to the signal form to be transmitted, the transmission form of the response signal transmitted from each wireless tag TGGn can be changed according to the information to be transmitted, and the multi-bit A response signal can be generated and transmitted.
  • the length of the transmission path is N / 4 times the multiplied value, which is 1/2 of the value obtained by multiplying the propagation speed of each signal on the transmission path by the time corresponding to the pulse width of the pulse signal. Therefore, the distance can be detected while reliably identifying each wireless tag TGGn.
  • a wireless tag is replaced with a wireless tag TGV1 shown in FIG. 11 ( ⁇ ) or a wireless tag TGV1 shown in FIG. 11 ( ⁇ ). It can be configured like the wireless tag TGV2 shown.
  • the wireless tag TGV1 includes, in addition to the broadband antenna 1 and the transmission line 2 similar to the wireless tag TGn according to the first embodiment, transmission lines 60 to 60 formed of parallel lines and having mutually different lengths. It has 62. Each transmission path is electrically connected to a center of the transmission path 2 opposite to the end opposite to the broadband antenna 1. With this configuration, the wireless tag TGV1 is connected to three transmission paths, namely, the first transmission path including the transmission path 2 and the transmission path 60, the second transmission path including the transmission path 2 and the transmission path 61, and the transmission path 2. Three transmission paths, ie, a third transmission path including the transmission path 62, are provided.
  • the wireless tag TGV1 does not include a circuit element that requires power, such as the switching element in the wireless tag TGn according to the first embodiment, and transmits the response signal to the interrogator PCn. What is done is always constant. Note that the contents to be included in the response signal between the wireless tags TGV1 can be made different by opening or shorting the transmission lines 60 to 62 or by using a matched load.
  • the wireless tag TGV2 has, in addition to the configuration of the above-described wireless tag TGV1, a transmission line 63 to 65 which is formed of a parallel line and has different lengths at the end of the transmission line 61.
  • the wireless tag TGV1 has five transmission paths, that is, a first transmission path that also has power with the transmission path 2 and the transmission path 60, a second transmission path that includes the transmission path 2, the transmission path 61, and the transmission path 63; A third transmission path including the transmission path 2, the transmission path 62, and the transmission path 64, a fourth transmission path including the transmission path 2, the transmission path 61, and the transmission path 64, and a fourth transmission path including the transmission path 2 and the transmission path 62.
  • Five transmission paths are provided.
  • the wireless tag TGV2 does not include a circuit element requiring power, and the content transmitted to the interrogator PCn as a response signal is always constant.
  • the length of the transmission lines 60 to 65 is a natural number times the length of the shortest transmission line 60.
  • the length of the transmission line 60 is different between the wireless tags TGV1 or TGV2.
  • each transmission path corresponds to a transmission unit in the present invention.
  • FIG. 11 (C) a waveform when the response signal from the wireless tag TGV1 is received by the interrogator PCn will be described using FIG. 11 (C).
  • the length of the transmission line 60 in the tag TGV 1 is L
  • the length of the transmission line 61 is L
  • the length of the transmission line 62 is the same.
  • pulse wave P shown in FIG.
  • the signal is input to 1 and transmitted, first, the same received pulse wave Pinl and reflected wave Pin2 as in the case of FIG. 5B are received. Next, reception pulse waves Pin4 to Pin6 are received with a time difference as a response signal from the wireless tag TGV1. At this time, the received pulse wave Pin4 is transmitted via the above-described first transmission path, that is, the length corresponding to the length (L + L) obtained by adding the transmission path 60 to the transmission path 2 of the wireless tag TGV1. Is transmitted through the transmission path of
  • the received pulse wave Pin5 is transmitted through the second transmission path, that is, has a length (L + L) corresponding to the length of the transmission path 61 added to the transmission path 2 of the wireless tag TGV1.
  • the signal transmitted through the transmission path, and the received pulse wave Pin6 is the signal transmitted through the third transmission path, that is, the length (L) obtained by adding the transmission path 62 to the transmission path 2 of the wireless tag TGV1.
  • + L) is transmitted via a transmission path having a length corresponding to (L).
  • each transmission path ((transmission path 2 + transmission path 60), (transmission path 2 + transmission path 61) And (transmission path 2 + transmission path 62)), each of which has a different length, and by opening or short-circuiting the end of each transmission path, receiving one pulse signal and returning a multi-bit response signal I will trust you.
  • Loose waves Pin4 to Pin6 may be partially overlapped with each other.By taking correlation using reference signals Stp4 to Stp6 generated separately, each received pulse wave Pin4 to Pin6 is separated from each other. The content as the response signal can be detected.
  • the reference signal Stp4 is a reference signal corresponding to the reception pulse signal Sin4
  • the reference signal Stp5 is a reference signal corresponding to the reception noise signal Sin5
  • the reference signal Stp6 is a reference signal corresponding to the reception noise signal Sin6. Signal.
  • the wireless tag TGV1 includes a transmission path 2 and the wireless tag TGV2 includes a transmission path 2 and a transmission path 61, each of which has a function as at least a part of each transmission path having a different length
  • the wireless tag TGV1 Alternatively, it is possible to realize a transmission path having a plurality of lengths while reducing the size of the TGV2.
  • the wireless communication system can also be configured using a wireless tag TGV3 including element wireless tags TTG1 to TTG4 to which are respectively connected 70 and 72.
  • the lengths of the transmission lines 2 and 70 to 72 are different from each other, and the ends of the transmission lines 2 and 70 to 72 are opened or short-circuited, so that the wireless tag TGV3 Although its size is somewhat large, it can generate a multi-bit response signal from one pulse signal and send it to the interrogator PCn with an extremely simple configuration.
  • a broadband antenna 1 and a transmission path 2 according to the first embodiment are provided like a wireless tag TGR shown in FIG. 13 (A).
  • a plurality of resonance circuits 75 to 78 each including a coil (or an inductance element) and a capacitor are connected in series with the transmission line 2 so that the resonance circuits 75 to 78 resonate at different resonance frequencies.
  • the received pulse signal can be configured to be deformed. Note that, in order to identify each wireless tag TGR from each other, it is necessary to configure the wireless tags TGR so as to have different resonance frequencies.
  • the wireless tag TGR since an ultra-wide band frequency is used as the UWB method, a multi-bit response signal can be generated even when a so-called resonant circuit having a relatively low Q value is used. That is, all of the resonance circuits 75 to 78, the broadband antenna 1 and the transmission path 2 can be formed by thinning or thickening by a printing technique or the like. In this case, it is desirable to form so-called microstrip lines or parallel lines other than the broadband antenna 1 to suppress reflection.
  • the interrogator to be included in the wireless communication system including the wireless tag TGR has a configuration as shown in FIG. 13 (B).
  • the interrogator PCC includes a controller 10, delay units 11 and 13, and a clock signal similar to the interrogator PCn according to the first embodiment.
  • generator 12 pulse generator 14, broadband antennas 15 and 18, template pulse generator 16, correlator 17, and power supply B, synthesizer 82, sampler 81, and FFT as analysis means (Fast
  • interrogator PCC having this configuration receives response signal Sin from wireless tag TGR, first, reference signal Stp generated by template pulse generator 16 and response signal Sin are synthesized by synthesizer 82 The sampling signal 81 is sampled by the sampling unit 81 while shifting the timing of a large number of pulse waves included in the synthesized signal Sm to generate a sampling signal Ssp. Then, FFT processing is performed on the sampling signal Ssp by the FFT unit 80 to generate an FFT signal Sffl and output it to the controller 10. [0269] Thus, the controller 10 can identify the wireless tag TGR by determining which frequency component is changing based on the FFT signal Sffi. Further, the distance from the interrogator PCC to the wireless tag TGR can be detected based on the content of the correlation signal Scm from the correlator 17.
  • the load impedance characteristic of the wireless tag TGR takes the maximum value at each of the resonance frequencies of the resonance circuits 75 to 78.
  • the response signal generated by reflecting the pulse signal received in each of the resonance circuits 75 to 78 has a frequency at which the load impedance is larger than the characteristic impedance of the transmission line 2.
  • the pulse signal has the same polarity as the received pulse signal.
  • the load impedance is lower than the characteristic impedance of the transmission line 2
  • the short-circuit of the wireless tag TGn is short.
  • the pulse signal is transmitted from the wideband antenna 1 with a polarity opposite to that of the received pulse signal.
  • the response signal generated in this way is received by the interrogator PCC, and the reference signal whose frequency characteristic has signal strength over a wide frequency band as shown in FIG. 14 (B)
  • the response signal Sin and the reference signal Stp cancel each other out in the frequency component of the polarity opposite to that of the pulse signal, and as a result, the frequency characteristic of the response signal is reduced as shown in Fig. 14 (C). It can be read by FFT processing. Therefore, since the intensity distribution is the same between the waveform shown in FIG. 14 (C) and the waveform shown in FIG. 14 (A), each radio tag TGR can be identified by the interrogator PCC.
  • the RFID tag TGR since the RFID tag TGR includes the resonance circuits 75 to 78 that can resonate at a plurality of resonance frequencies, the Q value is relatively low. Even if a low resonance circuit is used, a multi-bit response signal can be generated.
  • the response signal from the wireless tag TGR is received by the wideband antenna 18, the response signal Sin is sampled, and the wireless tag TGR is identified based on the result of frequency analysis. Therefore, the identification and the distance detection of the wireless tag TGR become possible, and miniaturization and low power consumption can be achieved by not using a carrier wave.
  • the wireless tag TGR can be accurately identified with a simple configuration.
  • the wireless tag TGR can be identified using the reference signal Stp unified with each response signal Sin. .
  • the length L of the transmission path 2 is set so that each pulse wave can be sufficiently separated compared to the communication range.
  • power can be supplied to the wireless tag TGn and the like using, for example, a solar cell.
  • the narrow-band antenna 6 shown in FIG. 6 is not required, so that the configuration can be simplified and the size can be reduced.
  • FIG. 16 is a block diagram showing a schematic configuration of a wireless communication system according to the third embodiment
  • FIG. 17 is a schematic diagram of an interrogator according to the third embodiment
  • FIG. 3 is a block diagram showing a configuration.
  • the overall configuration and operation of the wireless communication system according to the third embodiment are the same as those of the wireless communication system according to the first or second embodiment. A detailed description is omitted by attaching a member number.
  • the wireless communication system SS includes interrogators PC1, PC2, PC3,..., PCn each having an antenna ANT (n is a natural number; the same applies hereinafter). , And wireless tags TG1, TG2,..., TGn as transponders attached to products or the like to be measured.
  • each interrogator PCn transmits a pulse signal according to the UWB method to each wireless tag TGn.
  • the pulse signal is transmitted from a later-described broadband antenna provided in the interrogator PCn, and is received by a later-described broadband antenna provided in each wireless tag TGn.
  • the pulse signal received by each wireless tag TGn is reflected by a load impedance unit described later in each wireless tag TGn, and is again returned from a wideband antenna provided in the wireless tag TGn by the response signal (the received It is transmitted (replyed) to each interrogator PCn as a response signal corresponding to the pulse signal).
  • each interrogator PCn receives the response signal by the wideband antenna and detects the content. Then, based on the contents of the detected response signal, each interrogator PCn identifies each wireless tag TGn, and determines the transmission time of the pulse signal transmitted from each interrogator PCn to each wireless tag TGn. The time between the corresponding response signal and the reception time at each interrogator PCn is detected, and based on the detected time, the linear distance between each interrogator PCn and the wireless tag TGn is determined at each interrogator PCn. To detect.
  • each wireless tag TGn the load impedance of the load impedance section is set to be different from each other between the wireless tags TGn (or the time of the load impedance in each wireless tag TGn).
  • the wireless tag TGn is controlled by a control unit to be described later so that the dynamic change differs from each other).
  • each interrogator PCn is connected to another interrogator PCm (m is a natural number and n ⁇ m.
  • interrogator and “other When the interrogator is distinguished from the interrogator, a pulse signal conforming to the UWB method is transmitted for multiple bits to the "interrogator PCn" and “other interrogator PCm” as above. . At this time, the pulse signal is transmitted from the broadband antenna for transmission provided in interrogator PCn as described above, and is received by the wideband antenna for reception provided in another interrogator PCm. .
  • a pulse signal for a plurality of bits is similarly generated from a transmission broadband antenna provided in the other interrogator PCm according to the UWB method. Is sent (replyed) to the original interrogator PCn.
  • each interrogator PCn receives the returned pulse signal from the broadband antenna, detects the content thereof, and sends it to each interrogator PCn based on the content of the detected pulse signal. Then, the other interrogator PCm is identified, and the distance to the other interrogator PCm is detected based on the form of the pulse wave included in the received pulse signal.
  • the time from when the pulse signal from the original interrogator PCn is received to the time when the corresponding reply pulse signal is transmitted to the original interrogator PCn is obtained.
  • the time is detected, the time information is added to the above-mentioned reply signal, and the signal is transmitted to the original interrogator PCn.
  • a corresponding reply pulse signal from the time at which the pulse signal was first transmitted to the other interrogator PCm is returned together with the time information of the other interrogator PCm.
  • the space between the original interrogator PCn and the other interrogator PCm can be read by the pulse signal or The time at which the corresponding reply pulse signal is transmitted is detected, and the linear distance between the original interrogator PCn and another interrogator PCm is detected based on the detected time at the original interrogator PCn.
  • the use of a pulse signal of a plurality of bits for mutual recognition and distance detection between interrogators PCn is different from that of interrogators PCn in radio communication conforming to the UWB method in the wireless tag TGn. Because a simple reflection function based on the transmission line and load is not used, it is necessary to perform wireless communication by distinguishing between pulse signals transmitted and received for device recognition and pulse signals transmitted and received for distance detection. .
  • each wireless tag TGn according to the third embodiment is the same as the configuration of each wireless tag TGn according to the first embodiment described using FIG. Description is omitted.
  • the interrogator PCn includes first distance detecting means, second distance detecting means, device position detecting means, transponder identifying means, third distance detecting means, determining means, A controller 10 as a notification means and an interrogator number detection means, delay units 11 and 13, a clock signal generator 12, a pulse generator 14, and a broadband having the same configuration as the wideband antenna 1 in the wireless tag TGn.
  • Antenna 15 for transmitting pulse signals
  • template pulse generator 16 correlator 17, and wideband antenna 18 (for receiving a response signal from wireless tag TGn) having the same configuration as wideband antenna 15
  • Demodulator 26, and Configured Rereru At this time, the oscillator 20, the modulator 21, the amplifier 22, the narrow-band antenna 23, the transmission / reception switch 24, the low-noise amplifier 25, and the demodulator 26 transmit the radio wave composed of the continuous wave to the narrow-band antenna of the wireless tag TGn.
  • the power supply unit B of the interrogator PCn transmits and receives information to and from another interrogator PCm (information using a pulse signal described later) in addition to the power supply function for the wireless tag TGn.
  • Wireless LAN Local Area Network
  • each interrogator PCn with the wireless tag TGn
  • the clock signal generator 12 when transmitting the pulse signal to the wireless tag TGn, the clock signal generator 12 generates a clock signal Scl of a predetermined constant frequency and outputs it to the delay units 11 and 13, respectively.
  • the delay unit 11 delays the clock signal Scl based on the control signal Scdl from the controller 10, and outputs the delayed clock signal Scl to the pulse generator 14 as a delayed clock signal Sdl.
  • the delay amount of the clock signal Scl in the delay unit 11 is given a random delay for each pulse signal by, for example, a so-called pseudo random code. More specifically, as the pseudo-random code, for example, a so-called M-system system (MaximaHength
  • Gold sequences are suitable.
  • the pulse generator 14 generates a pulse signal Sout from the delayed clock signal Sdl by a preset pulse generation process in accordance with the UWB method, and sends the pulse signal Sout to the wireless tag TGn via the broadband antenna 15. Send to.
  • the response signal from each wireless tag TGn is received by the wideband antenna 18 and output to the correlator 17 as a response signal Sin.
  • the clock signal generator 12 outputs the clock signal Scl to the delay unit 13, and the delay unit 13 outputs the clock signal Scl based on the control signal Scd2 from the controller 10. And outputs the same to the template pulse generator 16 as a delayed clock signal Sd2.
  • the delay amount in the delay unit 11 and the delay amount in the delay unit 13 are different from each other.
  • template pulse generator 16 generates a reference (template) signal Stp used for analyzing the content of the received response signal Sin using the delayed clock signal Sd2, and outputs the signal to correlator 17.
  • the correlator 17 compares the received response signal Sin and the reference signal Stp, particularly with their respective phases, to generate a correlation signal Scm indicating the degree of mutual correlation (similarity). Output to decoder 19.
  • the decoder 19 decodes and decodes the content of the response signal Sin based on the correlation signal Scm, and outputs the result to the controller 10 as a decoded signal Sdc.
  • the controller 10 identifies the wireless tag TGn that has transmitted the received response signal Sin from other wireless tags TGn, as described later, based on the decoded signal Sdc, and also determines the transmitted wireless tag TGn. The distance from the interrogator PCn that has received the response signal Sin of the tag TGn is determined as described later.
  • the oscillator 20 in the power supply unit B when supplying power to the wireless tag TGn from the interrogator PCn, the oscillator 20 in the power supply unit B generates an oscillation signal Sf3 ⁇ 4r indicating the frequency of the preset continuous wave and modulates it. Output to the container 21.
  • the modulator 21 performs a preset modulation process on the oscillation signal Sf (more specifically, for example, the identification number information for each wireless tag TGn. And the like in the case where the above continuous wave is transmitted as a carrier wave, amplitude modulation processing corresponding to the contents of the identification number information and the like) is performed, and the modulated signal Se is output to the power amplifier 22.
  • power amplifier 22 performs a predetermined amplification process on modulated signal Se, and outputs the result to transmission / reception switch 24 as transmission signal Str.
  • the transmission / reception switch 24 transmits the transmission signal Str as the power signal Sbb to the narrow band antenna 6 of each wireless tag TGn via the narrow band antenna 23 at a preset transmission timing. Send.
  • the oscillation signal Sf from the oscillator 20 is demodulated by the demodulator 26 together with the power amplifier 22. Is also output.
  • the functions of the modulator 21, the power amplifier 22, the transmission / reception switch 24, and the narrowband antenna 23 carry information to be transmitted in the same manner as when power is supplied to the wireless tag TGn described above.
  • the transmitted continuous wave signal is transmitted to the other interrogator PCm of the transmission destination.
  • the continuous wave signal for reply from the other interrogator PCm is received by narrow-band antenna 23, and is received as low-noise signal from duplexer 24 as received signal Srv at a predetermined reception timing. Transmitted to amplifier 25. Then, the signal is amplified by the low-noise amplifier 25 at a preset amplification factor, and output to the demodulator 26 as an amplified reception signal Saw. As a result, the demodulator 26 detects the content of the amplified reception signal Saw using the oscillation signal Sf Sr, generates a detection signal Sdd indicating the content, and outputs the detection signal Sdd to the controller 10.
  • controller 10 recognizes the content of received signal Srv based on the content included in detection signal Sdd.
  • the interpretation of the content of the response signal which is performed mainly by the correlator 17 after receiving the response signal from the wireless tag TGn, is also performed in the first embodiment described with reference to FIG. 4 (B). This is the same as the interpretation of the content of the response signal executed mainly by the correlator 17 after the response signal is received from the wireless tag TGn in the embodiment, and thus the detailed description is omitted.
  • a mechanism for mutually identifying a plurality of wireless tags TGn in the wireless communication system SS according to the third embodiment is also described in the first embodiment described with reference to FIGS. 5 (A) and 5 (B).
  • the details are omitted because it is the same as the mechanism for mutually identifying the plurality of wireless tags TGn, and the detailed configuration of the wireless tag TGn according to the third embodiment may be omitted. Since the detailed configuration of the wireless tag TGn according to the first embodiment described with reference to FIG.
  • the timing of the transmission of the pulse signal from the interrogator PCn is the same as the timing of the switching of the switching element according to the first embodiment and the transmission of the pulse signal from the interrogator PCn described with reference to FIG. Detailed description is omitted,
  • the relationship between the transmission of the pulse signal from the wideband antenna 15 and the transmission of the power signal from the narrowband antenna 23 in the interrogator PCn according to the third embodiment is also described with reference to FIG. Since the relationship between the transmission of the pulse signal from broadband antenna 15 and the transmission of the power signal from narrowband antenna 23 in interrogator PCn according to the embodiment is the same as that of interrogator PCn, detailed description will be omitted.
  • FIGS. 18 and 19 are flowcharts showing the position specifying process according to the third embodiment
  • FIG. 20 is a conceptual diagram showing the procedure of the position detecting process according to the third embodiment.
  • the interrogators PC1 to PC4 and the wireless tags TG1 and TG2 each having the above-described configuration are provided.
  • each position in the room R is specified in advance, and the position information indicating each position is input in advance in each of the interrogators PC1 to PC4. It is installed at the four corners of the room R.
  • terminal indicates any interrogator PCn
  • responder indicates any wireless tag TGn.
  • 18 and 19 are flowcharts illustrating a case where the position detection process according to the embodiment is performed by one interrogator PCn (in the following description, an interrogator PC1 is used as an example).
  • step S1 when the position detection processing according to the embodiment is executed in the interrogator PC1, first, besides the interrogator PC1, the power is turned on and the wireless communication according to the UWB method is mutually performed. It is confirmed whether there is another interrogator PCm with which communication is possible (step S1). Specifically, the process of step S1 is executed by transmitting a pulse signal indicating that distance detection is to be performed and then confirming whether or not a corresponding return pulse signal has been returned.
  • Step SI; N If no pulse signal is returned (Step SI; N), it means that the position detection process according to the embodiment cannot be executed, so that another interrogator PCm capable of wireless communication is output.
  • step S1 After detecting the distance from another interrogator PCm that can communicate mainly with the interrogator PC1, it is checked whether a pulse signal to detect the distance of the other interrogator PCm has been transmitted (step S2). ), If not transmitted (step S2; N), the process directly proceeds to step S5 described later, while a pulse signal for performing distance detection is transmitted from another interrogator PCm. If it has come (step S2; Y), then the other interrogator PCm confirms that interrogator PC1 is in a standby state to respond to the noise signal from the other interrogator PCm. (Step S3).
  • step S4 In response to the transmission indicating that the apparatus is in a standby state, a pulse signal for distance detection is transmitted from the other interrogator PCm, and a pulse signal for distance detection for responding to the pulse signal in interrogator PC1. Is confirmed (step S4). If the response has not been completed yet (step S4; N), the operation of step S3 is repeated until the response is completed, while the transmission of the pulse signal for the response has been completed. (Step S4; Y), and then, after transmission of the pulse signal for the response, between the other interrogator PCm, which is the transmission destination, and the interrogator PC1 detected using the pulse signal for the response. It is confirmed whether or not the distance information indicating the distance has been transmitted from the other interrogator PCm as a pulse signal (step S5).
  • step S5 when the detected distance information is transmitted (step S5; Y), the distance indicated by the transmitted distance information is transmitted to the controller 10 in the interrogator PC1 by the other query. Registered as the distance between the interrogator PCm or the distance between the other interrogators PCm or the distance between the wireless tag TGn detected by the other interrogator PCm and the other interrogator PCm ( Step S6), and proceed to the next step S7.
  • step S5 the distance information from the other interrogator PCm is not transmitted in the determination in step S5 (step S5; N)
  • step S5 the distance from all other interrogators PCm to interrogator PC1 is Since there is a possibility that the distance has already been detected (in this case, the distance is not newly detected, the distance information described above will not be transmitted)
  • step S7 it is checked whether or not the detected distance is registered and whether there is any other interrogator PCm.
  • step S7 If there is another interrogator PCm whose distance has not been registered (step S7; Y), the interrogator PC1 transmits a pulse signal for a distance detection request (step S8), and the transmitted pulse signal
  • the other interrogator of the transmission destination (the other interrogator whose distance is not registered) responds to, and determines whether or not a pulse signal (see step S3 above) is returned from PCn indicating that it is in the standby state for distance detection. Confirm (step S9).
  • step S9 a pulse signal indicating that the apparatus is in the standby state is transmitted. If not (step S9; N), the process of step S8 is repeated as it is, while if it is transmitted (step S9; Y), another pulse signal indicating that it is in the standby state is transmitted.
  • a pulse signal for distance detection is transmitted to the interrogator PCm, and a corresponding return pulse signal is received to detect the distance to the other interrogator PCm (step S10). Then, the detected distance is registered as the distance between the interrogator PC1 and the other interrogator PCm in the controller 10 in the interrogator PC1 (step S11), and the distance information indicating the registered distance is registered.
  • step S12 A reply is sent to the other interrogator PCm (step S12), and further transmitted to the other interrogator PCm within the communicable range to complete the distance detection with the other interrogator PCm. Then, the process returns to step S2 to detect the distance to the next interrogator PCn. In the process shown in step S12, the distance notified by the other interrogator PCm is also transmitted (transmitted). Thereafter, steps S2 to S12 are repeated until there is no interrogator PCn whose distance has not been registered (step S7; N).
  • step S7 if there is no other interrogator PCm whose distance has not been registered in the determination in the above step S7 (step S7; N), then another interrogator PC whose distance has been registered up to that time m, but check if there is any interrogator PCn (indicated as ⁇ end terminal '' in Fig. 18) that could no longer function as an interrogator PCn, for example, because the power switch was turned off. (Step S13). In this confirmation processing, for example, when a pulse signal including some information is transmitted but there is no corresponding response, the interrogator PCn is recognized as an end terminal.
  • step S13; N If there is no other interrogator PCm recognized as the end terminal (step S13; N), the process proceeds to step S15 described later, while the other interrogator PCm recognized as the end terminal is If there is (Step S13; Y), the interrogator PC1 deletes the distance between the interrogator PCn and the interrogator PC1 that are the end terminals of the interrogator PC1 (Step S14). In step S15, it is checked whether the number of “semi-fixed terminals” is equal to or more than the number required to detect the position of the wireless tag TGn (specifically, three).
  • step S15; Y When the number of interrogators PCn is sufficient (step S15; Y), the processing shifts to the processing of step S23 and thereafter, while when the number of semi-fixed interrogators PCn is insufficient (step S15; N)
  • step S16 In order to perform necessary position detection processing using a mobile terminal having a function as an interrogator, it is determined whether or not the mobile terminal is present in the room R. Check (step S16). Then, if there is no mobile terminal (step S16; N), the process returns to step S2 again and repeats the processing described above.
  • step S16 If there is the mobile terminal (step S16; Y), Next, a pulse signal for a distance detection request is transmitted from the interrogator PC1 to the mobile terminal (step S17), and in response to the transmitted pulse signal, the power of the mobile terminal at the destination is detected. It is checked whether or not a pulse signal (see step S3) indicating that the apparatus is in the standby state is returned (step S18).
  • step S18 if the pulse signal indicating that the standby state has not been transmitted (step S18; N), the process of step S17 is repeated as it is, while Transmits a pulse signal for distance detection to the mobile terminal that has transmitted the pulse signal indicating that it is in the standby state (step S18; Y), receives a corresponding return pulse signal, and The distance to the mobile terminal is detected (step S19). Then, the detected distance is registered as a distance between the interrogator PC1 and the mobile terminal in the controller 10 in the interrogator PC1 (step S20), and distance information indicating the registered distance is stored. Is returned to the mobile terminal and also sent to another interrogator PCm (step S21), and the distance detection with the mobile terminal is completed.
  • the number of interrogators PCn including the number of mobile terminals described above is determined as to whether or not the number required to detect the position of the wireless tag TGn (specifically, three) is equal to or more than three. Confirm (Step S22). Then, when the number of the interrogators PCn and the like is sufficient (Step S22; Y), the processing shifts to the processing of Step S23 and later described later, while when the number of the interrogators PCn and the like is still insufficient (Step S22; N), returning to step S2 again and repeating the processing described above.
  • each interrogator PCn transmits a pulse signal as an interrogation pulse for position detection to each wireless tag TG1 and TG2, and receives a corresponding response signal. (Step S23).
  • step S24 it is determined whether or not the response signal has an intensity equal to or higher than a preset intensity (step S24), and the radio tag TGn that has returned the response signal having the intensity equal to or higher than the intensity is determined. Or, when there is no other reflected object (step S24), it is confirmed on the interrogator PC1 whether or not to end the detection of the response signal from the wireless tag TGn as the end of the position detection processing for one cycle (step S24). (S34) If the process is to be ended, the process proceeds to step S38 described later. If the detection of the response signal is not to be ended (step S34; Y), the process returns to step S24.
  • step S24 determines whether there is a wireless tag TGn or another reflective object that has returned a response signal having an intensity equal to or higher than the set intensity (step S24; Y). It is determined whether it is a wireless tag TGn or a pulse signal reflected by a tag other than the wireless tag TGn (step S25). If the tag is a wireless tag TGn (step S25; Y), then It is checked whether it is any of the marker tags MTn (Step S26; Y).
  • step S26; N If it is not the marker tag MTn (step S26; N), the process proceeds to step S29 described later, and the distance to the wireless tag TGn is detected (step S29). On the other hand, if the tag is a marker tag MTn (step S26; Y), it is checked whether or not the marker tag is already registered in the interrogator PC1 (step S27), and the marker tag is not a registered marker tag MTn. (Step S27; N), the process proceeds to step S29 described later, and if the marker tag is a registered marker tag MTn (step S27; Y), it is determined whether or not the registered content is changed by the response signal and a step described later. In S41, it is confirmed based on the data input in advance (step S28), and if there is no change in the registered contents (step S28; N), the process returns to step S24 and repeats the above-described processing.
  • step S28 when there is a change in the registered content (step S28;
  • step S29 the distance is detected for the marker tag MTn whose registered content has been changed in accordance with the principle described above (step S29).
  • step S30 The detected distance is registered in the controller 10 in the interrogator PCI (step S30), and the detected distance to the interrogator PC1 is notified to the other interrogators PCm (step S31).
  • step S31 the notification of the distance from the other interrogator PCm to the wireless tag TGn is received from the other interrogator PCm in the processing of step S38 described below, the information is also sent to the other interrogator PCm. Notify (transmit).
  • step S32 the distance between each wireless tag TGn or marker tag MTn notified from each other interrogator PCn and the other interrogator PCm is registered in the interrogator PC1, so that each radio in the room R is registered.
  • step S33 The position of the tag TGn is determined in the interrogator PC 1 (step S32), and it is further confirmed whether or not an operation to end the position detection of the wireless tag TGn is performed in the interrogator PC 1 (step S33). If the operation has been performed (step S33; Y), the position detection processing of the embodiment is completed as it is, while if the operation for terminating has not been performed (step S33; N), the step SI And the above-described processing is repeated.
  • step S25 if it is determined in step S25 that the identification signal as the wireless tag TGn has not been received and the response signal has not been transmitted for the wireless tag TGn (step S25; N), Next, it is checked whether or not the content of the response signal (or the distance detected from the response signal) has changed the distance to the transmission source of the response signal detected so far (step S35). ), If it has changed, if not (step S35; N), the process proceeds to step S37 described later, while if it has changed (step S35; Y), it is determined that the transmission source is an unknown moving object. The judgment is made and the effect is notified on the interrogator PC 1 (step S36).
  • step S37 the content of the response signal from another wireless tag TGn other than the one notified as the mobile body is registered in the controller 10 in the interrogator PC 1 (step S37), and the other interrogators PCm are registered. It is checked whether or not the distance to each wireless tag TGn detected in the above has been notified from the other interrogator PCm (step S38). If not notified (step S38; N), the processing in step S40 described later Then, when notified (step S38; Y), the notified distance is registered in the interrogator PC1 as the distance between another interrogator PCm and each wireless tag TGn (step S39).
  • step S40 it is confirmed whether or not the registered content as the marker tag MTn has been changed based on the registered content, the input content to the interrogator PC1, or the like. If (step S40; N), the process proceeds to step S32, and if it has been changed (step S40; Y), the registered content of marker tag MTn in the interrogator PCI (position Has been changed or newly installed, etc.) (step S41), and the changed registration contents are notified to the other interrogators PCm (step S42).
  • step S32 the position is determined as the position of the wireless tag TGn in the room R, and the position detection process of the embodiment ends.
  • the interrogator PCn is placed between the wireless tag TGn and the distance between them (FIG. 20 (c ), "I" to "k” are detected and registered in each interrogator PCn.
  • the absolute position of each wireless tag TGn in the room R can be determined.
  • the marker tag MTn is not used, the positional relationship between each interrogator PCn and the wireless tag TGn is only relatively determined, and one of the two types of positional relationship symmetrical to each other is actually used. Only the positional relationship is determined.
  • the distance between each interrogator PCn and each wireless tag TGn and the position of each wireless tag TGn are transmitted and received by transmitting and receiving the Norse signal and the response signal. Therefore, the distance between each wireless tag TGn and the interrogator PCn and their position can be detected without using a carrier wave, and the distance and position can be detected while reducing the size and power consumption. Become.
  • each interrogator PCn identifies each wireless tag TGn while identifying each other. These positions can be specified.
  • the moving object is a wireless tag TGn based on a response signal from the moving object moving in the room R, and a notification is made when the moving object is not the wireless tag TGn. Therefore, even if a wireless tag TGn or a mobile object enters the room R, it can be identified and reported to that effect.
  • the distance information is transmitted to each interrogator PCn using a pulse wave, the distance information is transmitted while reducing the size and power consumption without using a carrier wave, and the position of each wireless tag TGn is determined. Can be specified.
  • a pulse signal from interrogator PCn is received using broadband antenna 1, and a response signal obtained by modulating the pulse signal is returned to interrogator PCn using broadband antenna 1, It is possible to detect the distance between each wireless tag TGn and each interrogator PCn and to detect their position without using a carrier wave. This enables the distance detection and position detection while reducing the size and power consumption.
  • each interrogator PCn itself is configured to detect the position of the wireless tag TGn in the room R, but in addition to this, each interrogator PCn is used as a terminal.
  • the wireless tag TGn obtained from them can be transmitted to an external computer or the like, and the external computer can be configured to detect the position of the wireless tag TGn in the room R.
  • a program corresponding to the flowcharts shown in Figs. 18 and 19 is recorded on an information recording medium such as a flexible disk or a hard disk, or obtained via a network such as the Internet.
  • an information recording medium such as a flexible disk or a hard disk
  • a network such as the Internet.
  • the present invention can be used in the field of wireless tag identification and distance measurement in a wireless communication system.
  • an interrogator is provided in a general personal computer,
  • a remarkable effect can be obtained if the present invention is applied to the field of specifying the position of a wireless tag in a room provided with the personal computer.

Abstract

 UWB方式の無線通信が有する低消費電力化・測距可能等の特長を活かしつつ、その対象物を相互に識別することが可能な無線通信システムを提供する。  広帯域アンテナ1により受信されたパルス信号を用いて応答信号を生成する特性インピーダンス部3と、広帯域アンテナ1により受信されたパルス信号を広帯域アンテナ1から特性インピーダンス部3に伝送し且つ生成された応答信号を特性インピーダンス部3から広帯域アンテナ1に伝送する伝送路2であって、予め設定された長さを有する伝送路2と、パルス信号を受信し且つ応答信号を送信する広帯域アンテナ1と、を備える無線タグTGnに対し、UWB方式により上記パルス波を送信すると共に、無線タグTGnからの上記応答信号を受信し、その受信波形から無線タグTGnを識別する。

Description

明 細 書
位置検出システム、応答器及び質問器、無線通信システム、位置検出方 法、位置検出用プログラム及び情報記録媒体
技術分野
[0001] 本発明は、位置検出システム、応答器及び質問器、無線通信システム、位置検出 方法、位置検出用プログラム及び情報記録媒体の技術分野に属し、より詳細には、 無線通信により情報の授受を行ってその位置検出を行う応答器 (無線タグ)及び質問 器を含んだ位置検出システム及び位置検出方法並びに当該位置検出システムを含 む無線通信システム、当該位置検出システムに用いられる位置検出用プログラム及 び当該位置検出用プログラムを記録した情報記録媒体の技術分野に属する。
背景技術
[0002] 近年、無線送受信用のアンテナ及びメモリ等を含んで lmm平方以下の大きさの IC チップからなる、いわゆる無線タグが実用化されつつある。この無線タグについてより 詳細には、当該無線タグは一般に流通する商品等に貼り付けられてその商品等と共 に流通するものであり、上記メモリ内にその商品等を識別するための識別情報を記憶 させ、更に上記アンテナを介して別に設けられている質問器からの質問信号を受信 したとき、当該質問信号に対応し且つ上記識別情報を含む応答信号を生成して上記 アンテナを介して上記質問器に送信することで、その質問器において上記商品等を 識別可能にするものである。この無線タグによれば、例えば食料品の生産地からの 流通経路をその食料品の購入時に確認することができたり、或いは、その食料品の 生産時における添加物や農薬の使用状況等をその消費者が確認することができたり することになる。
[0003] 一方、近年、搬送波を用いずに非常に時間幅の小さい(1ナノ秒以下)パルス波を 用いて通信を行う方式である UWB (Ultra Wide Band)方式の無線通信も実用化され つつある。この無線通信方式によれば、上述した如く非常に時間幅の小さいパルス 波を用いるため、結果として使用される帯域幅が数ギガへルツ以上になる超広帯域 な無線通信が可能となり、更に搬送波を用いないことでその送信出力は 10ナノワット Zメガヘルツ程度と極めて低いものとなる。このような構成を有する UWB方式は以下 のような特徴 ·長所を有し、今後は室内通信やセキュリティセンサ、或いは高速無線 L AN (Local
Aria Network)等に対する応用が期待されている。
[0004] (1)電カスペクトノレ密度が極めて低いため、既存の通信システムとの与干渉 ·被干 渉が少なぐそれらとの共存の可能性を有する。
[0005] (2)平均電力レベルが 1ミリワット以下であり、数マイル以上の伝送が可能となる。
[0006] (3)極めて短い(ナノ秒単位)のパルス波を利用しているため、いわゆるマルチパス に強ぐ高いパス分割能力を有し、更にレーダとして高精度の測距 (数センチメートル 単位)が可能となる。
[0007] (4)搬送波が不用でパルス波としての放射時間が極めて短いため、小型'低消費 電力の通信システムを構築可能である。
[0008] (5)ギガへルツレベルの広い帯域を常に占有するため、大容量多元接続'超高速 伝送(く数百メガビット/秒)が可能である。
[0009] (6)通信と測距が同時に可能であるため、例えば車一車間通信などに応用可能で ある。
[0010] なお、上記 UWB方式の無線通信の一般的な構成について開示している文献とし ては、例えば以下のような特許文献 1乃至 4がある。
[0011] 特許文献 1 :特表平 10 - 508725号公報
特許文献 2:特開 2003— 189363
[0012] 特許文献 3 :特開 2003—124844
特許文献 4 :特開 2002 - 43849
[0013] 他方、無線通信により移動体までの距離を検出する技術としては、例えば下記特 許文献 5に記載された技術がある。
特許文献 5 :特許第 3395403号公報 第 1図及び第 2図等
発明の開示
発明が解決しょうとする課題
[0014] し力 ながら、上述した従来の無線タグを含んだ識別システムによれば、商品等の 他の商品等からの識別はできるものの、その構成上、無線タグから質問器までの距 離を十分な精度で測定することは不可能だったので、例えば室内における無線タグ の位置の正確な特定とレ、つた応用も不可能であった。
[0015] 他方、上記した UWB方式の無線通信を用いたレーダでは、測距する対象物まで の距離は正確に測定できるが、その対象物を他の対象物から識別することは不可能 であった。
[0016] また、上記特許文献 5に記載された技術の場合は、搬送波を用いて移動体までの 距離を検出するものであるため、上記 UWB方式の無線通信の如き小型化及び低消 費電力化を実現することは不可能であった。
[0017] そこで、本発明は上記の各問題点に鑑みて為されたもので、その目的は、上記(1) 乃至(6)として述べた UWB方式の無線通信が有する低消費電力ィ匕 '測距可能等の 特長を活かしつつ、その対象物間の距離並びにその対象物自体の位置を特定する ことが可能な応答器及び質問器を含んだ位置検出システム及び位置検出方法並び に当該位置検出システムを含む無線通信システム、当該位置検出システムに用レヽら れる位置検出用プログラム及び当該位置検出用プログラムを記録した情報記録媒体 を提供することにある。
課題を解決するための手段
[0018] 上記の課題を解決するために、請求項 1に記載の発明は、広帯域アンテナにより受 信されたパルス信号を用いて応答信号を生成する生成手段と、前記広帯域アンテナ により受信されたパルス信号を前記広帯域アンテナから前記生成手段に伝送し且つ 前記生成された応答信号を前記生成手段から前記広帯域アンテナに伝送する伝送 手段であって、予め設定された長さを有する伝送手段と、前記パルス信号を受信し 且つ前記応答信号を送信する前記広帯域アンテナと、を備える。
[0019] よって、予め設定された長さを有する伝送手段により広帯域アンテナと生成手段と が接続されてレ、るので、パルス信号から生成される応答信号の送信態様 (応答信号 の波形及び送信タイミング)がその長さに依存して変化することになり、結果として当 該応答信号の波形に基づいてその応答器を識別しつつ、当該送信タイミングに基づ レ、てその応答器までの距離を検出することができる。また、広帯域アンテナを用いて ノ^レス信号を受信することで応答信号を生成するので、搬送波を用いることなく応答 器の識別及び距離検出が可能となり、小型化'低消費電力化を図りつつ応答器の識 別及び距離検出が可能となる。
[0020] 上記の課題を解決するために、請求項 2に記載の発明は、請求項 1に記載の応答 器において、前記広帯域アンテナと前記生成手段との間の前記伝送手段の長さは、 他の前記応答器と異なる送信態様で前記広帯域アンテナ力 前記応答信号を送信 させる長さであるように構成される。
[0021] よって、各応答器毎に異なる長さの伝送手段により広帯域アンテナと生成手段とが 接続されてレ、るので、各応答器にぉレ、て受信したパルス信号から生成される応答信 号の送信態様 (応答信号の波形及び送信タイミング)、換言すれば、各応答器から送 信される当該応答信号の質問器における受信態様 (各応答信号の信号波形及び質 問器における受信タイミング)が、各応答器における伝送手段の長さを各応答器毎に 異ならせることにより各応答器毎に異なることとなり、結果として当該受信タイミングの 相違により複数応答器からの応答信号を夫々分離し、当該信号波形の相違により各 応答器を識別しつつ各応答器までの質問器からの距離を検出することができる。
[0022] 上記の課題を解決するために、請求項 3に記載の発明は、請求項 1又は 2に記載 の応答器において、前記伝送手段は、予め設定された長さにおいて特性インピーダ ンスが予め設定された値で一定であるように構成される。
[0023] よって、伝送手段が有する長さにおいて特性インピーダンスが一定であるので、応 答信号の波形及び送信タイミングが変動することがなぐ不要な反射成分が発生しな いので、精度よく応答器を識別し、また応答器までの距離を検出することができる。
[0024] 上記の課題を解決するために、請求項 4に記載の発明によれば、請求項 1から 3の いずれか一項に記載の応答器において、前記伝送手段の長さは、前記受信された パルス信号及び前記応答信号の当該伝送手段上における伝搬速度に対して前記 受信されたパルス信号のパルス幅に相当する時間を乗じた値の二分の一以上の長 さであるように構成される。
[0025] よって、伝送手段の長さが、当該伝送手段上における各信号の伝搬速度に対して パルス信号のパルス幅に相当する時間を乗じた値の二分の一以上の長さとされてい るので、応答器における広帯域アンテナ自体からパルス信号に応じて反射'放射さ れる信号と、本来の応答信号と、を明確に識別して応答器の識別及び距離検出を行 うことができる。
[0026] 上記の課題を解決するために、請求項 5に記載の発明は、請求項 1から 4のいずれ か一項に記載の応答器において、前記生成手段は、前記受信されたパルス信号に 対するパルス反射係数を制御する反射制御手段を含むように構成される。
[0027] よって、受信されたパルス信号に対するパルス反射係数を制御するので、各応答 器から送信される応答信号の送信態様を送信すべき識別情報に応じて変更すること ができ、反射係数を制御しない場合と比べて多くの情報を送ることができる。すなわ ち、簡易な構成で多ビットの応答信号を生成して送信することができる。
[0028] 上記の課題を解決するために、請求項 6に記載の発明は、請求項 1から 4のいずれ か一項に記載の応答器において、前記生成手段は、前記応答信号が有すべき信号 態様に応じて前記伝送手段の実効的な長さを制御する長さ制御手段を含むように構 成される。
[0029] よって、応答信号が有すべき信号態様に応じて伝送手段の実効的な長さを制御す るので、各応答器から送信される応答信号の送信態様を送信すべき識別情報に応じ て変更することができ、反射係数を制御しない場合と比べて多くの情報を送ることが できる。すなわち、簡易な構成で多ビットの応答信号を生成して送信することができる
[0030] 上記の課題を解決するために、請求項 7に記載の発明は、請求項 6に記載の応答 器において、前記長さ制御手段は、前記伝送手段の長さが、前記パルス信号及び前 記応答信号の当該伝送手段上における伝搬速度に対して前記パルス信号のパルス 幅に相当する時間を乗じて得られる乗算値の二分の一に当該乗算値の NZ4倍 (N は 0又は自然数)を加算した値の長さとなるように当該長さを制御するように構成され る。
[0031] よって、伝送手段の長さが、当該伝送手段上における各信号の伝搬速度に対して パルス信号のパルス幅に相当する時間を乗じた値の二分の一に当該乗算値の N/ 4倍を加算した値の長さとされているので、伝送手段の長さを不必要に長くすることな く小型化を可能とすると同時に各応答器を確実に識別しつつその距離を検出するこ とがでさる。
[0032] 上記の課題を解決するために、請求項 8に記載の発明は、請求項 1に記載の応答 器において、複数の前記生成手段と、一の前記広帯域アンテナにより受信されたパ ルス信号を当該広帯域アンテナから各前記生成手段に夫々伝送し且つ前記生成さ れた応答信号を各前記生成手段から夫々前記広帯域アンテナに伝送する複数の前 記伝送手段と、を備え、各伝送手段の長さが相互に異なっているように構成される。
[0033] よって、一の応答器上に複数種類の長さの伝送手段を備えているので、簡易な構 成で多ビットの応答信号を生成して送信することができる。
[0034] 上記の課題を解決するために、請求項 9に記載の発明は、請求項 8に記載の応答 器において、各前記伝送手段の少なくとも一部としての機能を備える共用伝送手段 を更に備えて構成される。
[0035] よって、各伝送手段の少なくとも一部としての機能を備える共用伝送手段を更に備 えるので、応答器を小型化しつつ複数種類の長さを有する伝送手段を実現すること ができる。
[0036] 上記の課題を解決するために、請求項 10に記載の発明は、請求項 1に記載の応 答器において、前記生成手段は、複数の共振周波数により共振可能な共振手段を 備える。
[0037] よって、複数の共振周波数により共振可能な共振手段を生成手段が備えるので、 比較的 Q値が低い共振手段を用いても多ビットの応答信号を生成することができる。
[0038] 上記の課題を解決するために、請求項 11に記載の発明は、請求項 1から 10のい ずれか一項に記載の応答器を要素応答器として複数備える応答器であって、前記 伝送手段の長さ又は前記広帯域アンテナから見た前記伝送手段及び前記生成手段 の負荷インピーダンスの少なくともいずれか一つが各前記要素応答器毎に異なって いるように構成される。
[0039] よって、相互に異なる応答信号が得られる要素応答器を複数備えているので、応答 器の構成を簡略化しつつ多ビットの応答信号を生成することができる。
[0040] 上記の課題を解決するために、請求項 12に記載の発明は、請求項 1から 11のい ずれか一項に記載の応答器であって、電波を受信する受信アンテナと、前記受信し た電波から電力を抽出して前記生成手段に供給する電力供給手段と、を更に備えて 構成される。
[0041] よって、電波を受信して電力を得るので、電池等の外部電源を不要として応答器を 更に小型化し運用コストを低減することができる。
[0042] 上記の課題を解決するために、請求項 13に記載の発明は、請求項 12に記載の応 答器において、前記電波は連続波であるように構成される。
[0043] よって、情報授受用のノ ルス信号と異なる連続波により電力を供給するので、各応 答器において効率的に電力を発生させることができる。
[0044] 上記の課題を解決するために、請求項 14に記載の発明は、請求項 12又は 13に記 載の応答器において、前記受信アンテナは予め設定されている同調周波数に同調 する狭帯域アンテナであり、前記電波は当該同調周波数を有する連続波であるよう に構成される。
[0045] よって、受信アンテナとして狭帯域アンテナで効率の良いアンテナを用いることがで き、電波が連続波であるので、効率的に電力を取得することができる。
[0046] 上記の課題を解決するために、請求項 15に記載の発明は、請求項 12又は 13に記 載の応答器において、前記広帯域アンテナが、前記受信アンテナを兼ねるように構 成される。
[0047] よって、応答信号を送信する広帯域アンテナが、受信アンテナを兼ねるので、小型 ィ匕すること力 Sできる。
[0048] 上記の課題を解決するために、請求項 16に記載の発明は、請求項 1から 15のい ずれか一項に記載された応答器に対して前記パルス信号を送信し且つ当該応答器 力 の前記応答信号を受信する質問器であって、前記パルス信号を生成するパルス 生成手段と、前記パルス信号を前記応答器に対して送信し且つ当該パルス信号に 対応する前記応答器力 の前記応答信号を受信する広帯域アンテナと、予め生成さ れている参照信号と、前記受信した応答信号と、を比較して前記応答器を識別する 識別手段と、を備えて構成される。
[0049] よって、応答器力 の応答信号を広帯域アンテナで受信して参照信号との比較に より応答器を識別するので、応答器の識別及び距離検出が可能となり、搬送波を用 レ、ないことにより小型化 ·低消費電力化をも図ることができる。
[0050] 上記の課題を解決するために、請求項 17に記載の発明は、請求項 16に記載の質 問器において、前記パルス生成手段は、クロック信号に対して第 1の変調処理を施し て第 1変調クロック信号を生成する第 1変調クロック信号生成手段を備え、当該生成 された第 1変調クロック信号を用いて前記パルス信号を生成して前記広帯域アンテナ に出力し、前記識別手段は、前記クロック信号に対して前記第 1の変調処理とは異な る第 2の変調処理を施して第 2変調クロック信号を生成する第 2変調クロック信号生成 手段を備え、当該生成された第 2変調クロック信号を用いて前記参照信号を生成し 前記応答信号との相関をとるように構成される。
[0051] よって、クロック信号に対応した第 1の変調処理を施してパルス信号を生成して、当 該クロック信号に対応した第 2の変調処理に基づいて生成された参照信号と応答信 号との相関をとるので、正確に応答信号の内容を検出したり、パルス信号の受信時 間間隔を検出することができる。
[0052] 上記の課題を解決するために、請求項 18に記載の発明は、請求項 17に記載の質 問器において、前記第 1の変調処理及び前記第 2の変調処理は、擬似ランダム符号 に基づレ、て前記クロック信号を遅延させる変調処理であるように構成される。
[0053] よって、第 1の変調処理及び第 2の変調処理が擬似ランダム符号に基づいてクロッ ク信号を遅延させる変調処理であるので、各応答器からの応答信号間におけるパル ス重なりの発生を防止できる。
[0054] 上記の課題を解決するために、請求項 19に記載の発明は、請求項 16から 18のい ずれか一項に記載の質問器において、受信した前記パルス信号に対応して前記応 答器に備えられた前記広帯域アンテナにより反射された反射波を検出する反射波検 出手段と、前記応答信号に含まれる応答波を検出する応答波検出手段と、前記反射 波の受信時刻と前記応答波の受信時刻との時間である応答波間隔を検出する応答 波間隔検出手段と、を備え、前記識別手段は、前記検出された応答波間隔に基づ レ、て各前記応答器を識別するように構成される。
[0055] よって、検出された応答波間隔に基づいて各応答器を識別するので、正確に当該 識別を実行することができる。
[0056] 上記の課題を解決するために、請求項 20に記載の発明は、請求項 16から 19のい ずれか一項に記載の質問器において、受信した前記パルス信号に対応して前記応 答器に備えられた前記広帯域アンテナにより反射された反射波の受信時刻と、前記 パルス信号の送信時刻と、の時間である送信受信間隔を検出する送受信間隔検出 手段と、前記検出された送信受信間隔に基づいて、質問器と前記反射波を送信して きた前記応答器との距離を認識する距離認識手段と、を備えて構成される。
[0057] よって、検出された送信受信間隔に基づいて応答器との距離を認識するので、正 確に当該距離を認識することができる。
[0058] 上記の課題を解決するために、請求項 21に記載の発明は、請求項 16から 20のい ずれか一項に記載の質問器において、前記応答信号の極性を判定する判定手段を 更に備えて構成される。
[0059] よって、応答信号の極性を判定することで当該応答信号に含まれている内容を認 識するので、簡易な質問器の構成で正確に応答信号の内容を認識することができる
[0060] 上記の課題を解決するために、請求項 22に記載の発明は、請求項 10に記載され た応答器に対して前記パルス信号を送信し且つ当該応答器力 の前記応答信号を 受信する質問器であって、前記パルス信号を生成する生成手段と、前記パルス信号 を前記応答器に対して送信し且つ当該パルス信号に対応する前記応答器からの前 記応答信号を受信する広帯域アンテナと、前記受信した応答信号をサンプリングし て周波数解析する解析手段と、前記周波数解析の結果に基づレ、て各前記応答器を 識別する識別手段と、を備えて構成される。
[0061] よって、請求項 10に記載の応答器力 の応答信号を広帯域アンテナで受信して当 該応答信号をサンプリングして周波数解析した結果に基づいて応答器を識別するの で、応答器の識別及び距離検出が可能となり、搬送波を用いないことにより小型化- 低消費電力化をも図ることができる。
[0062] 上記の課題を解決するために、請求項 23に記載の発明は、請求項 22に記載の質 問器において、予め生成されている参照信号を前記受信した応答信号に重畳し、重 畳信号を生成する重畳手段と、前記解析手段は、前記生成された重畳信号をサンプ リングして周波数解析するように構成される。
[0063] よって、参照信号を応答信号に重畳して得られる重畳信号をサンプリングして周波 数解析するので、簡易な構成により正確に応答器を識別することができる。
[0064] 上記の課題を解決するために、請求項 24に記載の発明は、請求項 23に記載の質 問器において、前記参照信号は、予め生成されているクロック信号を用いて生成され た参照信号であるように構成される。
[0065] よって、予め生成されているクロック信号を用いて参照信号が生成されているので、 各応答信号につき統一した参照信号を用いて当該応答器を識別することができる。
[0066] 上記の課題を解決するために、請求項 25に記載の発明は、請求項 16から 24のい ずれか一項に記載の質問器において、請求項 12から 15のいずれか一項に記載の 応答器に対して前記電波を送信する電波送信手段を更に備えて構成される。
[0067] よって、各応答器を小型化しつつ当該各応答器に対して効果的に電力を供給する こと力 Sできる。
[0068] 上記の課題を解決するために、請求項 26に記載の発明は、一又は複数の請求項 1に記載の応答器と、複数の請求項 16に記載の質問器と、各前記質問器において 検出された前記応答器と各前記質問器との距離に基づいて各前記応答器の位置を 特定する特定手段と、を備えて構成されている。
[0069] よって、各質問器において検出された応答器と各質問器との距離に基づいて各応 答器の位置を特定するので、一又は複数の応答器についての各質問器力 の距離 力 Sわ力ることでその応答器の位置が特定でき、各応答器自体をも識別することができ る。
[0070] 上記の課題を解決するために、請求項 27に記載の発明は、質問波としてパルス信 号を送信する複数の質問器と、前記パルス信号を受信し且つ当該受信したパルス信 号に基づき応答信号を返信する応答器と、を含む位置検出システムであって、各前 記質問器が送信した前記パルス信号を受信することにより当該各質問器間の距離を 検出する制御器等の第 1距離検出手段と、前記パルス信号及び前記応答信号に基 づいて各前記質問器力ら前記応答器までの距離を検出する制御器等の第 2距離検 出手段と、夫々検出された各前記距離に基づいて各前記質問器及び前記応答器の 前記位置検出システム内における位置を夫々検出する制御器等の機器位置検出手 段と、を備えるように構成される。
[0071] よって、パルス信号及び応答信号の授受により各質問器と各応答器間の距離並び に夫々の位置を検出するので、搬送波を用いることなく各応答器及び質問器間の距 離検出及びそれらの位置検出が可能となり、小型化 ·低消費電力化を図りつつ当該 距離検出及び位置検出が可能となる。
[0072] 上記の課題を解決するために、請求項 28に記載の発明は、請求項 27に記載の位 置検出システムにおいて、前記応答器を複数備え、前記応答信号に基づいて各前 記応答器を識別する制御器等の応答器識別手段と、夫々検出された各前記距離を 示す距離情報を各前記質問器に伝送する広帯域アンテナ等の距離情報伝送手段と 、を更に備える。
[0073] よって、複数の応答器の夫々を識別し、検出された距離情報を各質問器に伝送す るので、各質問器において各応答器を相互に識別しつつそれらの位置を特定するこ とがでさる。
[0074] また、検出された距離情報が各質問器に伝送されるので、一の質問器との間で直 接通信できない応答器であっても、他の質問器において検出された当該他の質問器 と当該応答器までの距離を用いて当該応答器の位置を当該一の質問器において特 定すること力 Sできる。
[0075] 上記の課題を解決するために、請求項 29に記載の発明は、請求項 28に記載の位 置検出システムにおいて、当該位置検出システム内における位置を予め特定可能な 前記応答器であるマーカタグ等の特定応答器を更に含み、前記特定応答器と各前 記質問器との間の距離を検出する制御器等の第 3距離検出手段を更に備え、前記 機器位置検出手段は、各前記検出された距離に基づいて各前記質問器及び各前 記応答器の前記位置検出システム内における絶対位置を検出するように構成される
[0076] よって、特定応答器の位置を基準として各応答器の位置検出システム内における 絶対位置を検出するので、各応答器に関する相対位置ではなく絶対位置としての応 答器の位置を検出することができる。
[0077] 上記の課題を解決するために、請求項 30に記載の発明は、請求項 27から 29のい ずれか一項に記載の位置検出システムにおいて、前記送信されたパルス信号に対 応して当該位置検出システム内にある移動体から返信されてくる返信信号を受信す る広帯域アンテナ等の受信手段と、前記受信した返信信号に基づいて前記移動体 が前記応答器であるか否かを判別する制御器等の判別手段と、前記移動体が前記 応答器でないと判別されたとき、その旨を報知する制御器等の報知手段と、を更に備 える。
[0078] よって、位置検出システム内を移動する移動体からの返信信号に基づいてその移 動体が応答器であるか否力を判別し、その移動体が応答器でないときに報知するの で、位置検出システム内に応答器でなレ、移動体が侵入してレ、た場合でもこれを識別 してその旨を報知することができる。
[0079] 上記の課題を解決するために、請求項 31に記載の発明は、請求項 28から 30のい ずれか一項に記載の位置検出システムにおいて、前記距離情報伝送手段は、パル ス波を用いて前記距離情報を各前記質問器に伝送するように構成される。
[0080] よって、パルス波を用いて距離情報を各質問器に伝送するので、搬送波を用いるこ となく小型化'低消費電力化を図りつつ距離情報を伝送して各応答器の位置を特定 すること力 Sできる。
[0081] 上記の課題を解決するために、請求項 32に記載の発明は、請求項 27から 31のい ずれか一項に記載の位置検出システムにおいて、当該位置検出システムを構成する 前記質問器の数を検出する制御器等の質問器数検出手段を更に備える。
[0082] よって、位置検出システム内にある質問器の数を検出するので、各質問器の数を検 出することでその位置検出システムにおける応答器の位置検出が可能か否かを予め 検出すること力 Sできる。
[0083] 上記の課題を解決するために、請求項 33に記載の発明は、請求項 27から 32のい ずれか一項に記載の位置検出システムに含まれる前記応答器であって、前記送信さ れたパルス信号を受信し且つ前記応答信号を送信する広帯域アンテナと、前記受信 したパルス信号を変調して前記応答信号を生成する特性インピーダンス部等の生成 手段と、前記受信したパルス信号を前記広帯域アンテナから前記生成手段に伝送し 且つ前記生成された応答信号を前記生成手段から前記広帯域アンテナに伝送する 伝送手段と、を備える。
[0084] よって、広帯域アンテナを用いて質問器からのパルス波を受信し当該パルス波を変 調して得られた応答信号を広帯域アンテナを用いて質問器に返信するので、搬送波 を用いることなく各応答器と各質問器間の距離検出及びそれらの位置検出が可能と なり、小型化 ·低消費電力化を図りつつ当該距離検出及び位置検出が可能となる。
[0085] 上記の課題を解決するために、請求項 34に記載の発明は、質問波としてパルス信 号を送信する複数の質問器と、前記パルス信号を受信し且つ当該受信したパルス信 号に基づき応答信号を返信する応答器と、を含む位置検出システムにおレ、て実行さ れる位置検出方法であって、各前記質問器が送信した前記パルス信号を受信するこ とにより当該各質問器間の距離を検出する第 1距離検出工程と、前記ノ^レス信号及 び前記応答信号に基づいて各前記質問器から前記応答器までの距離を検出する第 2距離検出工程と、夫々検出された各前記距離に基づいて各前記質問器及び前記 応答器の前記位置検出システム内における位置を夫々検出する機器位置検出工程 と、を含む。
[0086] よって、パルス信号及び応答信号の授受により各質問器と各応答器間の距離並び に夫々の位置を検出するので、搬送波を用いることなく各応答器及び質問器間の距 離検出及びそれらの位置検出が可能となり、小型化 ·低消費電力化を図りつつ当該 距離検出及び位置検出が可能となる。
[0087] 上記の課題を解決するために、請求項 35に記載の発明は、請求項 34に記載の位 置検出方法において、前記位置検出システム内には複数の前記応答器が備えられ ており、前記応答信号に基づいて各前記応答器を識別する応答器識別工程と、夫 々検出された各前記距離を示す距離情報を各前記質問器に伝送する距離情報伝 送工程と、を更に含む。
[0088] よって、複数の応答器の夫々を識別し、検出された距離情報を各質問器に伝送す るので、各質問器において各応答器を相互に識別しつつそれらの位置を特定するこ とがでさる。 [0089] また、検出された距離情報が各質問器に伝送されるので、一の質問器との間で直 接通信できない応答器であっても、他の質問器において検出された当該他の質問器 と当該応答器までの距離を用いて当該応答器の位置を当該一の質問器において特 定すること力 Sできる。
[0090] 上記の課題を解決するために、請求項 36に記載の発明は、質問波としてパルス信 号を送信する複数の質問器と、前記パルス信号を受信し且つ当該受信したパルス信 号に基づき応答信号を返信する応答器と、を含む位置検出システムに含まれるコン ピュータを、各前記質問器が送信した前記パルス信号を受信することにより当該各質 問器間の距離を検出する第 1距離検出手段、前記パルス信号及び前記応答信号に 基づいて各前記質問器から前記応答器までの距離を検出する第 2距離検出手段、 及び、夫々検出された各前記距離に基づいて各前記質問器及び前記応答器の前 記位置検出システム内における位置を夫々検出する機器位置検出手段、として機能 させる。
[0091] よって、パルス信号及び応答信号の授受により各質問器と各応答器間の距離並び に夫々の位置を検出するようにコンピュータが機能するので、搬送波を用いることなく 各応答器及び質問器間の距離検出及びそれらの位置検出が可能となり、小型化'低 消費電力化を図りつつ当該距離検出及び位置検出が可能となる。
[0092] 上記の課題を解決するために、請求項 37に記載の発明は、請求項 36に記載の位 置検出用プログラムが前記コンピュータで読取可能に記録されている。
[0093] よって、当該位置検出プログラムをコンピュータで読み取って実行することにより、 パルス信号及び応答信号の授受により各質問器と各応答器間の距離並びに夫々の 位置を検出するように当該コンピュータが機能するので、搬送波を用レ、ることなく各 応答器及び質問器間の距離検出及びそれらの位置検出が可能となり、小型化'低消 費電力化を図りつつ当該距離検出及び位置検出が可能となる。
発明の効果
[0094] 請求項 1に記載の発明によれば、予め設定された長さを有する伝送手段により広帯 域アンテナと生成手段とが接続されてレ、るので、パルス信号から生成される応答信号 の送信態様 (応答信号の波形及び送信タイミング)がその長さに依存して変化するこ とになり、結果として当該応答信号の波形に基づいてその応答器を識別しつつ、当 該送信タイミングに基づいてその応答器までの距離を検出することができる。また、広 帯域アンテナを用いてパルス信号を受信することで応答信号を生成するので、応答 器の識別及び距離検出が可能となり、小型化'低消費電力化を図りつつ応答器の識 別及び距離検出が可能となる。
[0095] 従って、パルス信号を用いた無線通信が有する低消費電力化'測距可能等の特長 を活力しつつ、その無線通信の対象物である応答器を相互に識別することが可能と なる。
[0096] 請求項 2に記載の発明によれば、請求項 1に記載の発明の効果に加えて、各応答 器毎に異なる長さの伝送手段により広帯域アンテナと生成手段とが接続されている ので、各応答器にぉレ、て受信したパルス信号から生成される応答信号の送信態様( 応答信号の波形及び送信タイミング)、換言すれば、各応答器から送信される当該応 答信号の質問器における受信態様 (各応答信号の信号波形及び質問器における受 信タイミング)が、各応答器における伝送手段の長さを各応答器毎に異ならせること により各応答器毎に異なることとなり、結果として当該受信タイミングの相違により複 数応答器からの応答信号を夫々分離し、当該信号波形の相違により各応答器を識 別しつつ各応答器までの質問器力 の距離を検出することができる。
[0097] 請求項 3に記載の発明によれば、請求項 1又は 2に記載の発明の効果に加えて、 伝送手段が有する長さにおいて特性インピーダンスが一定であるので、応答信号の 波形及び送信タイミングが変動することがな 不要な反射成分が発生しないので、 精度よく応答器を識別し、また応答器までの距離を検出することができる。
[0098] 請求項 4に記載の発明によれば、請求項 1から 3のいずれか一項に記載の発明の 効果に加えて、伝送手段の長さが、当該伝送手段上における各信号の伝搬速度に 対してパルス信号のパルス幅に相当する時間を乗じた値の二分の一以上の長さとさ れているので、応答器における広帯域アンテナ自体からパルス信号に応じて反射- 放射される信号と、本来の応答信号と、を明確に識別して応答器の識別及び距離検 出を行うことができる。
[0099] 請求項 5に記載の発明によれば、請求項 1から 4のいずれか一項に記載の発明の 効果に加えて、受信されたパルス信号に対するパルス反射係数を制御するので、各 応答器から送信される応答信号の送信態様を送信すべき識別情報に応じて変更す ること力 Sでき、反射係数を制御しない場合を比べて多くの情報を送ることができる。す なわち、簡易な構成で多ビットの応答信号を生成して送信することができる。
[0100] 請求項 6に記載の発明によれば、請求項 1から 4のいずれか一項に記載の発明の 効果に加えて、応答信号が有すべき信号態様に応じて伝送手段の実効的な長さを 制御するので、各応答器から送信される応答信号の送信態様を送信すべき識別情 報に応じて変更することができ、反射係数を制御しない場合を比べて多くの情報を送 ること力 Sできる。すなわち、簡易な構成で多ビットの応答信号を生成して送信すること ができる。
[0101] 請求項 7に記載の発明によれば、請求項 6に記載の発明の効果に加えて、伝送手 段の長さが、当該伝送手段上における各信号の伝搬速度に対してパルス信号のパ ルス幅に相当する時間を乗じた値の二分の一に当該乗算値の N/4倍を加算した値 の長さとされているので、伝送手段の長さを不必要に長くすることなく小型化を可能と すると同時に各応答器を確実に識別しつつその距離を検出することができる。
[0102] 請求項 8に記載の発明によれば、請求項 1に記載の発明の効果に加えて、一の応 答器上に複数種類の長さの伝送手段を備えているので、簡易な構成で多ビットの応 答信号を生成して送信することができる。
[0103] 請求項 9に記載の発明によれば、請求項 8に記載の発明の効果に加えて、各伝送 手段の少なくとも一部としての機能を備える共用伝送手段を更に備えるので、応答器 を小型化しつつ複数種類の長さを有する伝送手段を実現することができる。
[0104] 請求項 10に記載の発明によれば、請求項 1に記載の発明の効果に加えて、複数 の共振周波数により共振可能な共振手段を生成手段が備えるので、比較的 Q値が 低い共振手段を用いても多ビットの応答信号を生成することができる。
[0105] 請求項 11に記載の発明によれば、相互に異なる応答信号が得られる要素応答器 を複数備えているので、応答器の構成を簡略化しつつ多ビットの応答信号を生成す ること力 Sできる。
[0106] 請求項 12に記載の発明によれば、請求項 1から 1 1のいずれか一項に記載の発明 の効果に加えて、電波を受信して電力を得るので、電池等の外部電源を不要として 応答器を更に小型化し運用コストを低減することができる。
[0107] 請求項 13に記載の発明によれば、請求項 12に記載の発明の効果に加えて、情報 授受用のパルス信号と異なる連続波により電力を供給するので、各応答器において 効率的に電力を発生させることができる。
[0108] 請求項 14に記載の発明によれば、請求項 12又は 13に記載の発明の効果に加え て、受信アンテナが狭帯域アンテナであり、電波が連続波であるので、効率的に電 力を取得することができる。
[0109] 請求項 15に記載の発明によれば、請求項 12又は 13に記載の発明の効果に加え て、応答信号を送信する広帯域アンテナが、受信アンテナを兼ねるので、小型化す ること力 Sできる。
[0110] 請求項 16に記載の発明によれば、応答器からの応答信号を広帯域アンテナで受 信して参照信号との比較により応答器を識別するので、応答器の識別及び距離検出 が可能となり、搬送波を用いないことにより小型化 ·低消費電力化をも図ることができ る。
[0111] 従って、パルス信号を用レ、た無線通信が有する低消費電力化 ·測距可能等の特長 を活力しつつ、その無線通信の対象物である応答器を相互に識別することが可能と なる。
[0112] 請求項 17に記載の発明によれば、請求項 16に記載の発明の効果に加えて、クロッ ク信号に対応した第 1の変調処理を施してパルス信号を生成して、当該クロック信号 に対応した第 2の変調処理に基づいて生成された参照信号と応答信号との相関をと るので、正確に応答信号の内容を検出したり、パルス信号の受信時間間隔を検出す ること力 Sできる。
[0113] 請求項 18に記載の発明によれば、請求項 17に記載の発明の効果に加えて、第 1 の変調処理及び第 2の変調処理が擬似ランダム符号に基づいてクロック信号を遅延 させる変調処理であるので、各応答器からの応答信号間におけるパルス重なりの発 生を防止できる。
[0114] 請求項 19に記載の発明によれば、請求項 16から 18のいずれか一項に記載の発 明の効果に加えて、検出された応答波間隔に基づいて各応答器を識別するので、 正確に当該識別を実行することができる。
[0115] 請求項 20に記載の発明によれば、請求項 16から 19のいずれか一項に記載の発 明の効果に加えて、検出された送信受信間隔に基づいて応答器との距離を認識す るので、正確に当該距離を認識することができる。
[0116] 請求項 21に記載の発明によれば、請求項 16から 20のいずれか一項に記載の発 明の効果に加えて、応答信号の極性を判定することで当該応答信号に含まれている 内容を認識するので、簡易な質問器の構成で正確に応答信号の内容を認識するこ とがでさる。
[0117] 請求項 22に記載の発明によれば、請求項 10に記載の応答器からの応答信号を広 帯域アンテナで受信して当該応答信号をサンプリングして周波数解析した結果に基 づいて応答器を識別するので、応答器の識別及び距離検出が可能となり、搬送波を 用いないことにより小型化 ·低消費電力化をも図ることができる。
[0118] 従って、パルス信号を用いた無線通信が有する低消費電力化'測距可能等の特長 を活力しつつ、その無線通信の対象物である応答器を相互に識別することが可能と なる。
[0119] 請求項 23に記載の発明によれば、請求項 22に記載の発明の効果に加えて、参照 信号を応答信号に重畳して得られる重畳信号をサンプリングして周波数解析するの で、簡易な構成により正確に応答器を識別することができる。
[0120] 請求項 24に記載の発明によれば、請求項 23に記載の発明の効果に加えて、予め 生成されているクロック信号を用いて参照信号が生成されているので、各応答信号に つき統一した参照信号を用いて当該応答器を識別することができる。
[0121] 請求項 25に記載の発明によれば、請求項 16から 24のいずれか一項に記載の発 明の効果に加えて、各応答器を小型化しつつ当該各応答器に対して効果的に電力 を供給することができる。
[0122] 請求項 26に記載の発明によれば、各質問器において検出された応答器と各質問 器との距離に基づレ、て各応答器の位置を特定するので、一又は複数の応答器につ レ、ての各質問器からの距離がわ力ることでその応答器の位置が特定でき、各応答器 自体をも識另リすること力 Sできる。
[0123] 従って、パルス信号を用いた無線通信が有する低消費電力化'測距可能等の特長 を活力しつつ、応答器を識別してその位置を特定することが可能となる。
[0124] 請求項 27に記載の発明によれば、パルス信号及び応答信号の授受により各質問 器と各応答器間の距離並びに夫々の位置を検出するので、搬送波を用いることなく 各応答器及び質問器間の距離検出及びそれらの位置検出が可能となり、小型化'低 消費電力化を図りつつ当該距離検出及び位置検出が可能となる。
[0125] 従って、パルス信号を用いた無線通信が有する低消費電力化 '測距可能等の特長 を活力しつつ、その無線通信の対象物である応答器の位置を位置検出システム内に ぉレ、て検出することが可能となる。
[0126] 請求項 28に記載の発明によれば、請求項 27に記載の発明の効果に加えて、複数 の応答器の夫々を識別し、検出された距離情報を各質問器に伝送するので、各質 問器において各応答器を相互に識別しつつそれらの位置を特定することができる。
[0127] また、検出された距離情報が各質問器に伝送されるので、一の質問器との間で直 接通信できない応答器であっても、他の質問器において検出された当該他の質問器 と当該応答器までの距離を用いて当該応答器の位置を当該一の質問器において特 定することができ、更に広い範囲に存在する応答器の位置を特定することができる。
[0128] 請求項 29に記載の発明によれば、請求項 28に記載の発明の効果に加えて、特定 応答器の位置を基準として各応答器の位置検出システム内における絶対位置を検 出するので、各応答器に関する相対位置ではなく絶対位置としての応答器の位置を 検出すること力 Sできる。
[0129] 請求項 30に記載の発明によれば、請求項 27から 29のいずれか一項に記載の発 明の効果に加えて、位置検出システム内を移動する移動体からの返信信号に基づ レ、てその移動体が応答器であるか否力を判別し、その移動体が応答器でないときに 報知するので、位置検出システム内に応答器でなレ、移動体が侵入してレ、た場合でも これを識別してその旨を報知することができる。
[0130] 請求項 31に記載の発明によれば、請求項 28から 30のいずれか一項に記載の発 明の効果に加えて、パルス波を用いて距離情報を各質問器に伝送するので、搬送 波を用いることなく小型化 ·低消費電力化を図りつつ距離情報を伝送して各応答器 の位置を特定することができる。
[0131] 請求項 32に記載の発明によれば、請求項 27から 31のいずれか一項に記載の発 明の効果に加えて、位置検出システム内にある質問器の数を検出するので、各質問 器の数を検出することでその位置検出システムにおける応答器の位置検出が可能か 否かを予め検出することができる。
[0132] 請求項 33に記載の発明によれば、広帯域アンテナを用いて質問器からのパルス波 を受信し当該パルス波を変調して得られた応答信号を広帯域アンテナを用いて質問 器に返信するので、搬送波を用いることなく各応答器と各質問器間の距離検出及び それらの位置検出が可能となり J、型化 ·低消費電力化を図りつつ当該距離検出及 び位置検出が可能となる。
[0133] 請求項 34に記載の発明によれば、パルス信号及び応答信号の授受により各質問 器と各応答器間の距離並びに夫々の位置を検出するので、搬送波を用いることなく 各応答器及び質問器間の距離検出及びそれらの位置検出が可能となり、小型化'低 消費電力化を図りつつ当該距離検出及び位置検出が可能となる。
[0134] 請求項 35に記載の発明によれば、請求項 34に記載の発明の効果に加えて、複数 の応答器の夫々を識別し、検出された距離情報を各質問器に伝送するので、各質 問器において各応答器を相互に識別しつつそれらの位置を特定することができる。
[0135] また、検出された距離情報が各質問器に伝送されるので、一の質問器との間で直 接通信できない応答器であっても、他の質問器において検出された当該他の質問器 と当該応答器までの距離を用いて当該応答器の位置を当該一の質問器において特 定することができ、更に広い範囲に存在する応答器の位置を特定することができる。
[0136] 請求項 36に記載の発明によれば、パルス信号及び応答信号の授受により各質問 器と各応答器間の距離並びに夫々の位置を検出するようにコンピュータが機能する ので、搬送波を用いることなく各応答器及び質問器間の距離検出及びそれらの位置 検出が可能となり、小型化 ·低消費電力化を図りつつ当該距離検出及び位置検出が 可能となる。
[0137] 請求項 37に記載の発明によれば、当該位置検出プログラムをコンピュータで読み 取って実行することにより、パルス信号及び応答信号の授受により各質問器と各応答 器間の距離並びに夫々の位置を検出するように当該コンピュータが機能するので、 搬送波を用いることなく各応答器及び質問器間の距離検出及びそれらの位置検出 が可能となり、小型化 ·低消費電力化を図りつつ当該距離検出及び位置検出が可能 となる。
[0138] 従って、請求項 33から 37のいずれか一項に記載の発明によれば、パルス信号を 用いた無線通信が有する低消費電力化 '測距可能等の特長を活かしつつ、その無 線通信の対象物である応答器の位置を位置検出システム内において検出することが 可能となる。
図面の簡単な説明
[0139] [図 1]第 1実施形態に係る無線通信システムの概要構成を示すブロック図である。
[図 2]第 1実施形態に係る無線タグの構成を示す図である。
[図 3]第 1実施形態に係る質問器の概要構成を示すブロック図である。
[図 4]第 1実施形態に係る質問器における信号の受信態様を示す図であり、 (A)は各 受信パルス波の波形を示す図であり、 (B)は応答信号の内容判定時における相関を 説明する図である。
[図 5]第 1実施形態に係る無線通信システムにおける無線タグ識別の仕組みを説明 する図であり、 (A)は当該無線通信システムに含まれる無線タグの構成を示す図(I) であり、(B)は当該無線タグ識別を示す波形図であり、(C)は当該無線通信システム に含まれる無線タグの構成を示す図(II)であり、 (D)は当該無線通信システムに含ま れる無線タグの構成を示す図(III)である。
[図 6]第 1実施形態に係る無線タグの細部構成を示す回路図である。
[図 7]第 1実施形態に係る無線通信システムにおける伝送波形を例示する図である。
[図 8]第 1実施形態における電力供給を説明する波形図である。
[図 9]第 2実施形態に係る無線タグの概要構成を示す回路図である。
[図 10]第 2実施形態に係る無線通信システムにおける無線タグ識別の仕組みを説明 する図であり、(A)は波形図(I)であり、(B)は波形図(II)である。
[図 11]第 1及び第 2実施形態に係る第 1の変形形態に係る無線タグを示す図であり、 (A)、(B)及び (D)は当該第 1の変形形態に係る無線タグの概要構成を示す回路図 であり、 (C)は当該第 1の変形形態に係る質問器における信号の受信態様を示す図 である。
園 12]第 1及び第 2実施形態に係る第 1の変形形態に係る他の無線タグの概要構成 を示す回路図である。
園 13]第 1及び第 2実施形態に係る第 2の変形形態に係る無線通信システムの概要 構成を示す図であり、 (A)は当該第 2の変形形態に係る無線タグの構成を示す図で あり、 (B)は当該第 2の変形形態に係る質問器の概要構成を示すブロック図である。 園 14]第 1及び第 2実施形態に係る第 2の変形形態に係る無線タグ識別の仕組みを 説明する波形図であり、(A)は第 1の波形図であり、(B)は第 2の波形図であり、 (C) は第 3の波形図である。
園 15]無線タグの更なる変形形態を示す細部構成図である。
園 16]第 3実施形態に係る無線通信システムの概要構成を示すブロック図である。 園 17]第 3実施形態に係る質問器の概要構成を示すブロック図である。
園 18]第 3実施形態に係る位置検出処理を示すフローチャート (I)である。
園 19]第 3実施形態に係る位置検出処理を示すフローチャート (Π)である。
[図 20]第 3実施形態に係る位置検出処理を説明する概念図であり、 (a)は位置検出 処理の第一段階を示す概念図であり、 (b)は位置検出処理の第二段階を示す概念 図であり、 (c)は位置検出処理の第三段階を示す概念図である。
符号の説明
1、 15、 18 広帯域アンテナ
2、 60、 61、 62、 63、 65、 65、 70、 71、 72 伝送路
3 負荷インピーダンス部
4、 34 制御部
5 電源部
6 狭帯域アンテナ
10 制御器
11、 13 遅延器 12 クロック信号生成器
14 パルス発生器
16 テンプレートパルス発生器
17 相関器
ロロ
19 俱号
20 発振
21 変調器
22 増幅器
22A 電力増幅器
23 狭帯域アンテナ
32 整流回路
33 整合回路
75、 76、 77、 78 共振回路
80 FFT器
81 サンプリング器
82 合成器
90、 91 インタ"クタンス素子
92、 93 コンデンサ
TG1、 TG2、 TG3、 TG4、 TG5、 TGV1、 TGV2、 TGV3、 TGV4、 TGR、 TGS 無線タグ
PC1、 PC2、 PC3、 PC4 質問器
B 電力供給部
s、 ss 無線通信システム
発明を実施するための最良の形態
次に、本発明を実施するための最良の形態について、図面に基づいて説明する。 なお、以下に説明する実施形態は、 UWB方式の無線通信により無線タグ同士及び 質問器同士を識別すると共に各無線タグの質問器力らの距離並びに各質問器間の 距離を検出して当該各無線タグ及び質問器の位置を特定する無線通信システムに 対して本発明を適用した場合の実施形態である。
[0142] (DmiMMMM
始めに、本発明に係る第 1実施形態について、図 1乃至図 8を用いて説明する。
[0143] なお、図 1は第 1実施形態に係る無線通信システムの概要構成を示すブロック図で あり、図 2は第 1実施形態に係る無線タグの概要構成を示すブロック図であり、図 3は 第 1実施形態に係る質問器の概要構成を示すブロック図であり、図 4は第 1実施形態 に係る応答器及び質問器の動作を示す波形図であり、図 5は第 1実施形態に係る応 答器及び質問器の動作をより詳細に示す図であり、図 6は第 1実施形態に係る無線 タグの細部構成を示す回路図であり、図 7は第 1実施形態に係る質問器力 送信さ れるパルス信号の波形を例示する図であり、図 8は第 1実施形態に係る質問器から送 信されるパルス信号及び電力信号の波形を例示する図である。
[0144] 先ず、第 1実施形態に係る無線通信システム全体の構成について、図 1を用いてそ の概要を示す。
[0145] 図 1に示すように、第 1実施形態に係る無線通信システム Sは、夫々にアンテナ AN Tを備える質問器 PC1、 PC2、 PC3、 · · ·、 PCnと、距離測定の対象となる商品等に貼 り付けられている応答器としての無線タグ TG1、 TG2、 TG3、 · · ·、 TGnと、により構成 されている。
[0146] この構成において、各質問器 PCnからは各無線タグ TGnに対して UWB方式に則 つたパルス信号を送信する。このとき、当該パルス信号は、質問器 PCnに備えられた 後述の広帯域アンテナから送信され、これを各無線タグ TGnに備えられた後述する 広帯域アンテナにより受信する。
[0147] そして、各無線タグ TGnにより受信されたパルス信号は、各無線タグ TGn内の後述 する負荷インピーダンス部において反射され再度当該無線タグ TGnに備えられた広 帯域アンテナから応答信号 (上記受信したパルス信号に対応する応答信号)として U WB方式に則って各質問器 PCnに送信 (返信)される。
[0148] これにより、各質問器 PCnは、当該応答信号を広帯域アンテナにより受信してその 内容を検出する。そして、この検出された応答信号の内容により各質問器 PCnにお レ、て各無線タグ TGnが相互に識別され、更に、受信した応答信号に含まれているパ ルス波の態様により各無線タグ TGnまでの距離が検出される。
[0149] ここで、各無線タグ TGnにおいては、上記負荷インピーダンス部が有する負荷イン ピーダンスが、各無線タグ TGn間において相互に異なる負荷インピーダンスとなるよ うに、一の無線タグ TGnにおいて後述する制御部により制御されている。これにより、 各無線タグ TGn間で負荷インピーダンスが異なることにより上記応答信号に含まれて レ、るパルス波の極性等が各無線タグ TGn間で相互に異なることになり、この結果、各 質問器 PCnにおレ、て各無線タグ自体を識別することが可能となるのである。
[0150] 次に、各無線タグ TGnの構成について、図 2を用いて説明する。
図 2に示すように、第 1実施形態に係る各無線タグ TGnは、例えば薄膜金属等から なる一対の広帯域アンテナ 1と、平行線路からなる伝送手段としての伝送路 2と、例え ば図 2に例示する如くスイッチング素子等からなる生成手段としての負荷インピーダ ンス部 3と、制御部 4と、電源部 5と、電力取得用の一対の狭帯域アンテナ 6と、により 構成されている。
[0151] 次に、動作を説明する。
先ず、狭帯域アンテナ 6は、質問器 PCn内の後述する狭帯域アンテナから送信さ れてくる連続波である電力信号を受信し、その電力信号により誘起された電流を受 信電流として電源部 5へ出力する。
[0152] 次に、電源部 5は、当該受信電流により駆動され、負荷インピーダンス部 3及び伝 送路 2により構成される負荷インピーダンスを制御するための制御信号 Scを生成し、 当該負荷インピーダンス部 3へ出力する。
[0153] 一方、一対の広帯域アンテナ 1は、 UWB方式に則った無線通信が可能な広帯域 アンテナであり、伝送路 2を介して夫々負荷インピーダンス部 3へ電気的に接続され ている。
[0154] また、伝送路 2は、一定の特性インピーダンスを持つ平行線路により形成されており 、一対の広帯域アンテナ 1と、負荷インピーダンス部 3とを接続している。
[0155] そして、上記各質問器 PCnから送信されたパルス信号が広帯域アンテナ 1により受 信されると、当該各広帯域アンテナ 1内に受信電流が誘起され、この受信電流の一 部により上記パルス信号が広帯域アンテナ 1自体で直接反射され、その反射された パルス波(当該反射されたパルス波を、以下単に反射波と称する。)が再び質問器 P Cnにおいて受信されることになる。
[0156] 一方、広帯域アンテナ 1における直接反射に用いられなかった上記受信電流の他 の部分は、伝送路 2内を伝搬し、負荷インピーダンス部 3において反射され、上記応 答信号として再び広帯域アンテナ 1に向けて伝搬していく。そして、広帯域アンテナ 1 に到達した当該応答信号が当該広帯域アンテナ 1から放射されて質問器 PCnに向 けて送信される。このとき、伝送路 2が一定の特性インピーダンスを有するので、伝送 路の途中で不要な反射が生じない。
[0157] ここで、一本の伝送路 2の長さ Lは、上記反射波と応答信号を構成するパルス波と
0
が質問器 PCnにおける受信時において重ならず、反射波を用いて質問器 PCnと無 線タグ TGnとの距離を精度良く検出できるように、
[0158] L = (応答信号の伝搬速度)
0
X (受信したノ ルス信号におけるパルス幅) /2
[0159] より長い長さで且つ各無線タグ TGn毎に異なるように設定されている。ここで、応答 信号の伝搬速度は、伝送路 2をパルスが伝搬するときの伝搬速度である。
次に、各質問器 PCnの細部構成について、図 3を用いて説明する。
[0160] 図 3に示すように、第 1実施形態に係る質問器 PCnは、識別手段、反射波検出手段 、応答波検出手段、応答波間隔検出手段、送受信間隔検出手段及び距離認識手 段としての制御器 10と、遅延器 11及び 13と、クロック信号生成器 12と、パルス生成 手段としてのパルス発生器 14と、無線タグ TGnにおける広帯域アンテナ 1と同様の 構成を備える広帯域アンテナ 15 (パルス信号送信用)と、テンプレートパルス発生器 16と、相関器 17と、広帯域アンテナ 15と同様の構成を備える広帯域アンテナ 18 (無 線タグ TGnからの応答信号受信用)と、復号器 19と、発振器 20と、変調器 21と、増 幅器 22と、例えば無線タグ TGnにおける狭帯域アンテナ 6と同様の構成を備える狭 帯域アンテナ 23と、により構成されている。このとき、上記発振器 20、変調器 21、増 幅器 22及び狭帯域アンテナ 23により、連続波による構成される電波を無線タグ TGn の狭帯域アンテナ 6に送信する電力供給部 Bを構成している。
[0161] 次に、動作を説明する。 先ず、上記パルス信号を無線タグ TGnに向けて送信する際には、クロック信号生成 器 12は、予め設定された一定周波数のクロック信号 Sclを生成して遅延器 11及び 13 に夫々出力する。
[0162] そして、遅延器 11は、制御器 10からの制御信号 Scdlに基づいて上記クロック信号 Sclを遅延し、遅延クロック信号 Sdlとしてパルス発生器 14に出力する。ここで、遅延 器 11におけるクロック信号 Sclの遅延量は、例えばレ、わゆる擬似ランダム符号により 各ノ^レス信号毎にランダムな遅延が与えられる。なお、当該擬似ランダム符号として より具体的には、例えば、いわゆる M系歹 lJ (MaximaHength
sequences)又は Gold系列等が適当である。
[0163] 次に、パルス発生器 14は、予め設定された上記 UWB方式に則ったパルス発生処 理により上記遅延クロック信号 Sdlからパルス信号 Soutを生成し、広帯域アンテナ 15 を介して無線タグ TGnに向けて送信する。
[0164] 一方、各無線タグ TGnからの上記応答信号は、広帯域アンテナ 18において受信さ れ、応答信号 Sinとして相関器 17に出力される。
[0165] このとき、クロック信号生成器 12は、上記クロック信号 Sclを遅延器 13に出力してお り、当該遅延器 13は、制御器 10からの制御信号 Scd2に基づいて上記クロック信号 S clを遅延し、遅延クロック信号 Sd2としてテンプレートパルス発生器 16に出力している 。なお、上記遅延器 11における遅延量と遅延器 13における遅延量とは相互に異な らされてレ、る。
[0166] そして、テンプレートパルス発生器 16は、当該遅延クロック信号 Sd2を用いて、受信 した応答信号 Sinの内容の解析に用いる後述の参照(テンプレート)信号 Stpを生成し
、相関器 17に出力する。
[0167] これらにより、相関器 17は、受信した応答信号 Sinと、上記参照信号 Stpとを、特に 遅延器 13における遅延量に応じて比較し、相互の相関度 (類似度)を示す相関信号
Scmを生成して復号器 19へ出力する。
[0168] そして、復号器 19は、当該相関信号 Scmに基づいて応答信号 Sinの内容を判読' 復号し、復号信号 Sdcとして制御器 10へ出力する。
[0169] これにより、制御器 10は、当該復号信号 Sdcに基づいて、受信した応答信号 Sinを 送信した無線タグ TGnを後述するように他の無線タグ TGnから識別し、更に、当該 送信した無線タグ TGnの当該応答信号 Sinを受信した質問器 PCnからの距離を後 述するように判定する。
[0170] 他方、電力供給部 B内の発振器 20は、予め設定された上記連続波の周波数を示 す発振信号 S 生成して変調器 21へ出力する。
[0171] そして、変調器 21は、制御器 10からの制御信号 Secに基づき、発振信号 Sfに対し て予め設定された変調処理(より具体的に、例えば、各無線タグ TGn用の識別番号 情報等を、上記連続波を搬送波として伝送する場合における当該識別番号情報等 の内容に対応した振幅変調処理等)を施し、変調信号 Seとして増幅器 22へ出力する
[0172] これにより、増幅器 22は、上記変調信号 Seに対して予め設定された増幅処理を施 し、上記電力信号 Sbbとして狭帯域アンテナ 23を介して各無線タグ TGnの狭帯域ァ ンテナ 6に向けて送信する。
[0173] 次に、上述した各質問器 PCn及び各無線タグ TGn間において授受される上記パ ルス信号及び応答信号の波形について、具体的に図 4 (A)を用いて説明する。
[0174] 先ず、一般に、広帯域アンテナ 1、 15又は 18は送受信するパルス波に対して微分 特性を有しているため、上記パルス信号 Soutの広帯域アンテナ 15からの放射前の ノ ルス波形(すなわち、 UWB方式に則った一個のノ ルス波形)が図 4 (A)最上段に 示すパルス波 Pだったとすると、広帯域アンテナ 15から放射された直後のパルス信 号におけるパルス波形は、上述した広帯域アンテナ 15が有する微分特性が故に図 4 (A)上から二段目に示すパルス波 Poutの如き、上記パルス波 Pを一回微分した波形 となる。
[0175] 次に、当該パルス波 Poutにより構成されるパルス信号が無線タグ TGn上の広帯域 アンテナ 1において受信された直後(すなわち、伝送路 2上)におけるパルス信号の パルス波形は、やはり広帯域アンテナ 1が有する微分特性が故に図 4 (A)上から三 段目に示すパルス波 Prvの如き、上記パルス波 Poutを更に一回微分した波形となる
[0176] 次に、負荷インピーダンス部 3において反射されたノ ルス信号 (すなわち、上記応 答信号)が広帯域アンテナ 1から放射された直後のパルス信号におけるパルス波形 は、上述した広帯域アンテナ 1が有する微分特性が故に図 4 (A)上から四段目に示 すパルス波 Ptoutの如き、上記パルス波 Prvを一回微分した波形となる。
[0177] そして最後に、上記パルス波 Ptoutにより構成される応答信号が質問器 PCn上の広 帯域アンテナ 18において受信された直後(すなわち、上記応答信号 Sin)におけるパ ルス波形は、同様に広帯域アンテナ 18が有する微分特性が故に図 4 (A)最下段に 示すパルス波 Pinの如き、上記パルス波 Ptoutを更に一回微分した波形となる。
[0178] 次に、応答信号を無線タグ TGnから受信した後に相関器 17を中心として実行され る当該応答信号の内容の判読について、具体的に図 4 (B)を用いて説明する。
[0179] 先ず、テンプレートパルス発生器 16から出力される上記参照信号 Stpは、広帯域ァ ンテナ 15から送信されるパルス信号と同一の波形を有するパルス信号を、識別並び に測距を行おうとする無線タグ TGnから送信されて受信された応答信号 Sinと同一或 いは相関のある波形又はそれらの位相反転波形となるように必要回数だけ微分した ものであり、且つ、その識別等を行おうとする無線タグ TGn内の伝送路 2におけるパ ルス信号受信時から応答信号送信時までの時間だけ遅延させて得られる参照信号 である。
[0180] そして、このような参照信号 Stp (図 4のパルス Prvの波形参照)と、実際に広帯域ァ ンテナ 18から入力されてきた応答信号 Sinとを相関器 17において比較する。これに より、図 4 (B)上に示すように応答信号 Sinと参照信号 Stpとの相関 (位相相関)が正の ときは、応答信号 Sinの内容を「1」と復号器 19において判定し、一方、図 4 (B)下に 示すように応答信号 Sinと参照信号 Stpとの相関が負のときは、応答信号 Sinの内容を 「0」と復号器 19において判定し、これらの判定値に対応する上記復号信号 Sdcを制 御器 10に出力する。
[0181] 次に、第 1実施形態に係る無線通信システム Sにおいて、複数の無線タグ TGnを相 互に識別する仕組みについて、具体的に図 5を用いて説明する。なお、図 5 (A)は複 数の無線タグ TGnにおける広帯域アンテナ 1、伝送路 2及び負荷インビーダンス部 3 の構成を示す図であり、図 5 (B)は図 5 (A)に示す各無線タグ TGnとの間において授 受されるパルス信号及び応答信号等を示すタイミングチャートである。ここで、図 5 (A )においては無線タグ TGnにおける制御部 4、電源部 5及び狭帯域アンテナ 6の図示 は省略している。また、図 5 (A)に示す各無線タグ TG1及び TG2においては負荷ィ ンピーダンス部 3が制御部 4により制御されるスイッチング素子のみにより構成されて おり、無線タグ TG3においては無線タグ TG1と同じ長さの伝送路 2及びスイッチング 素子に加えて負荷整合用の抵抗体 3Rが直列に接続されて構成されている。
[0182] 更に、図 5 (B)においては、質問器 PCnの広帯域アンテナ 15から放射される直前 のパルス信号 Pの波形を示すタイミングチャートを最上段に示し、上記パルス信号 S outが広帯域アンテナ 15に入力され、広帯域アンテナ 15から送信されたノ ルス波が 無線タグ TG1において受信'返信され対応する応答信号 Sinが質問器 PCnの広帯 域アンテナ 18において受信された直後の当該応答信号 Sinのタイミングチャートを上 力も二段目に示し、上記ノ ルス信号 Soutが広帯域アンテナ 15に入力され、広帯域 アンテナ 15から送信されたパルス波が無線タグ TG2において受信 '返信され対応す る応答信号 Sinが質問器 PCnの広帯域アンテナ 18において受信された直後の当該 応答信号 Sinのタイミングチャートを上から三段目に示し、上記パルス信号 Soutが広 帯域アンテナ 15に入力され、広帯域アンテナ 15から送信されたノ レス波が無線タグ TG3において受信され対応する応答信号 Sinが質問器 PCnの広帯域アンテナ 18に おいて受信された直後の当該応答信号 Sinのタイミングチャートを最下段に示す。
[0183] 上述したように、第 1実施形態の無線通信システム Sに含まれる各無線タグ TGnは 、原則として相互に異なる長さの伝送路 2及び負荷インピーダンス部 3を備えている。 従って、質問器 PCnから送信されたパルス信号が各無線タグ TGnにおける広帯域ァ ンテナ 1で受信され、負荷インピーダンス部 3において反射され再度広帯域アンテナ 1力 応答信号として送信されるまでの時間が各無線タグ TGn毎に異なることになる
[0184] より具体的に、先ず質問器 PCnから送信されるパルス信号が無線タグ TG1におい て受信され、対応する応答信号が質問器 PCnにおいて受信される場合について図 5 (B)最上段左及び上から二段目左を用いて説明する。
[0185] 無線タグ TG1における負荷インピーダンス部 3内のスイッチング素子が開放(OFF )とされている場合、質問器 PCnからパルス信号 Soutとして図 5 (B)最上段左に示す ノ^レス波 P (送信前の波形を示す。以下、同様)が広帯域アンテナ 15に入力されると 、最初に当該送信されたパルス波が質問器 PCnにおける広帯域アンテナ 18におい て直接受信され、当該直接受信されたパルス波に対応する受信パルス波 Pinlが図 5 (B)上から二段目左に示すように生成される。次に、広帯域アンテナ 15から送信され たパルス波が無線タグ TG1における広帯域アンテナ 1において反射されると、これに 対応して当該広帯域アンテナ 1からの上記反射波が図 5 (B)上から二段目左に示す ように質問器 PCnにおいて反射波 Pin2として受信される。この受信パルス波 Pinlと反 射波 Pin2を受信する時間間隔は質問器 PCnと無線タグ TG1との距離に依存し、この 時間間隔にパルス波の速度を乗算すれば距離を求めることができる。次に、当該反 射波 Pin2に続いて、広帯域アンテナ 1において受信されたパルス信号が負荷インピ 一ダンス部 3において反射され、応答信号として再び広帯域アンテナ 1から送信され ると、当該送信された応答信号が質問器 PCnの広帯域アンテナ 18において受信さ れ、対応する受信ノ^レス波 Pin3が図 5 (B)上から二段目左に示すように生成される。 このとき、上記反射波 Pin2は図 4 (A)最下段に示すパルス波 Pinと同様の波形を示す ことになる。また、上記受信パルス波 Pin3は、負荷インピーダンス部 3が開放されてい るため、上記反射波 Pin2と同様の波形のパルス波が、伝送路 2の往復の時間 T1だけ 遅延して質問器 PCnにおいて受信される。そして、図 4 (B)に例示する参照信号 Stp を用いる場合、受信パルス波 Pin3の内容は「1」を示すことになる。
[0186] 次に、質問器 PCnから送信されるパルス信号が無線タグ TG2において受信され、 対応する応答信号が質問器 PCnにおレ、て受信される場合にっレ、て図 5 (B)最上段 左及び上から三段目左を用いて説明する。
[0187] 無線タグ TG2における負荷インピーダンス部 3内のスイッチング素子が開放とされ ている場合、質問器 PCnからパルス信号 Soutとして図 5 (B)最上段左に示すパルス 波 Pが広帯域アンテナ 15に入力され送信されると、無線タグ TG1の場合と同様に広 帯域アンテナ 18において直接受信されたパルス波に対応する受信パルス波 Pinlが 図 5 (B)上から三段目左に示すように生成される。次に、広帯域アンテナ 15から送信 されたパルス波が無線タグ TG2における広帯域アンテナ 1において反射されると、こ れに対応して当該広帯域アンテナ 1からの上記反射波 Pin2が図 5 (B)上から三段目 左に示すように質問器 PCnにおいて受信される。次に、当該反射波 Pin2に続いて、 広帯域アンテナ 1において受信されたパルス信号が負荷インピーダンス部 3において 反射され、応答信号として再び広帯域アンテナ 1から送信されると、当該送信された 応答信号が質問器 PCnの広帯域アンテナ 18において受信され、対応する受信パル ス波 Pin3が図 5 (B)上から三段目左に示すように生成される。このとき、上記受信パ ルス波 Pin3は、負荷インピーダンス部 3が開放されているため、上記反射波 Pin2と同 様の波形のパルス波が、無線タグ TG2における伝送路 2 (無線タグ TG1の伝送路 2 よりも長い)の往復の時間 T2 ( >T1)だけ当該反射波 Pin2から遅延して質問器 PCn において受信される。そして、図 4 (B)に例示する参照信号 Stpを用いる場合、受信 パルス波 Pin3の内容は「 1」を示すことになる。
[0188] 最後に、質問器 PCnから送信されるパルス信号が無線タグ TG3において受信され 、対応する応答信号が質問器 PCnにおレ、て受信される場合にっレ、て図 5 (B)最上段 左及び最下段左を用いて説明する。
[0189] 無線タグ TG3における負荷インピーダンス部 3内のスイッチング素子が開放とされ ている場合、抵抗体 3Rによる負荷整合の機能は発揮されないわけであるが、質問器 PCnからパルス信号 Soutとして図 5 (B)最上段左に示すパルス波 Pが広帯域アンテ ナ 15に入力され送信されると、無線タグ TG1又は TG2の場合と同様に広帯域アン テナ 18において直接受信されたパルス波に対応する受信ノ^レス波 Pinlが図 5 (B) 最下段左に示すように生成される。次に、広帯域アンテナ 15から送信されたパルス 波が無線タグ TG3における広帯域アンテナ 1において反射されると、これに対応して 当該広帯域アンテナ 1からの上記反射波が図 5 (B)最下段左に示すように質問器 PC nにおいて反射波 Pin2が受信される。次に、当該反射波 Pin2に続いて、広帯域アン テナ 1において受信されたパルス信号が負荷インピーダンス部 3において反射され、 応答信号として再び広帯域アンテナ 1から送信されると、当該送信された応答信号が 質問器 PCnの広帯域アンテナ 18において受信され、対応する受信パルス波 Pin3が 図 5 (B)最下段左に示すように生成される。このとき、上記受信パルス波 Pin3は、負 荷インピーダンス部 3が開放されており抵抗体 3Rの存在の影響を受けないため、上 記反射波 Pin2と同様の波形のパルス波が、無線タグ TG3における伝送路 2 (無線タ グ TGIの伝送路 2と同じ長さを有する)の往復の時間 T3 ( =時間 Tl)だけ遅延して 質問器 PCnにおいて受信される。そして、図 4 (B)に例示する参照信号 Stpを用いる 場合、受信パルス波 Pin3の内容は「1」を示すことになる。
[0190] 次に、各無線タグ TG1乃至 TG3の負荷インピーダンス部 3内のスイッチング素子が 短絡 (〇N)とされている場合について、図 5 (A)及び図 5 (B)を用いて説明する。
[0191] 先ず質問器 PCnから送信されるパルス信号が無線タグ TG1において受信され、対 応する応答信号が質問器 PCnにおレ、て受信される場合にっレ、て図 5 (B)最上段右 を用いて説明する。
[0192] 無線タグ TG1における負荷インピーダンス部 3内のスイッチング素子が短絡とされ ている場合、質問器 PCnからパルス信号 Soutとして図 5 (B)最上段右に示すパルス 波 Pが広帯域アンテナ 15に入力され送信されると、図 5 (B)左に示す場合と同様に 広帯域アンテナ 18において直接受信されたパルス波 Pに対応する受信パルス波 P inlが図 5 (B)上から二段右左に示すように生成される。次に、広帯域アンテナ 15から 送信されたパルス波が無線タグ TG1における広帯域アンテナ 1におレ、て反射される と、これに対応して当該広帯域アンテナ 1からの上記反射波 Pin2が図 5 (B)上から二 段目右に示すように質問器 PCnにおいて受信される。次に、当該反射波 Pin2に続い て、広帯域アンテナ 1において受信されたノ ルス信号が負荷インピーダンス部 3にお いて反射され、応答信号として再び広帯域アンテナ 1から送信されると、当該送信さ れた応答信号が質問器 PCnの広帯域アンテナ 18において受信され、対応する受信 ノ^レス波 Pin3が図 5 (B)上から二段目右に示すように生成される。このとき、上記反 射波 Pin2は図 4 (A)最下段に示すパルス波 Pinと同様の波形を示すことになる。また 、上記受信パルス波 Pin3は、負荷インピーダンス部 3が短絡されているため、上記反 射波 Pin2に対して極性反転されたパルス波が、伝送路 2の往復の時間 T1だけ遅延 して質問器 PCnにおいて受信される。そして、図 4 (B)に例示する参照信号 Stpを用 レ、る場合、受信パルス波 Pin3の内容は「0」を示すことになる。
[0193] 次に、質問器 PCnから送信されるパルス信号が無線タグ TG2において受信され、 対応する応答信号が質問器 PCnにおレ、て受信される場合にっレ、て図 5 (B)最上段 右及び上から三段目右を用いて説明する。 [0194] 無線タグ TG2における負荷インピーダンス部 3内のスイッチング素子が短絡とされ ている場合、質問器 PCnからパルス信号 Soutとして図 5 (B)最上段左に示すパルス 波 Pが広帯域アンテナ 15に入力され送信されると、無線タグ TG1の場合と同様に広 帯域アンテナ 18において直接受信されたパルス波 Pに対応する受信パルス波 Pinl が図 5 (B)上から三段目右に示すように生成される。次に、広帯域アンテナ 15から送 信されたパルス波 Pが無線タグ TG2における広帯域アンテナ 1において反射されると 、これに対応して当該広帯域アンテナ 1からの上記反射波 Pin2が図 5 (B)上から三段 目右に示すように質問器 PCnにおいて受信される。次に、当該反射波 Pin2に続いて 、広帯域アンテナ 1において受信されたノ ルス信号が負荷インピーダンス部 3におい て反射され、応答信号として再び広帯域アンテナ 1から送信されると、当該送信され た応答信号が質問器 PCnの広帯域アンテナ 18において受信され、対応する受信パ ルス波 Pin3が図 5 (B)上から三段目右に示すように生成される。このとき、上記受信 ノ ルス波 Pin3は、負荷インピーダンス部 3が短絡されているため、上記反射波 Pin2に 対して極性反転されたパルス波が、無線タグ TG2における伝送路 2の往復の時間 T 2 ( >時間 T1)だけ遅延して質問器 PCnにおいて受信される。そして、図 4 (B)に例 示する参照信号 Stpを用いる場合、受信パルス波 Pin3の内容は「0」を示すことになる
[0195] 最後に、質問器 PCnから送信されるパルス信号が無線タグ TG3において受信され 、対応する応答信号が質問器 PCnにおレ、て受信される場合にっレ、て図 5 (B)最上段 右及び最下段右を用いて説明する。
[0196] 無線タグ TG3における負荷インピーダンス部 3内のスイッチング素子が短絡とされ ている場合、抵抗体 3Rによる負荷整合の機能は発揮されるのであるが、質問器 PCn 力 パルス信号 Soutとして図 5 (B)最上段右に示すパルス波 Pが広帯域アンテナ 15 に入力され送信されると、無線タグ TG1又は TG2の場合と同様に広帯域アンテナ 1 8において直接受信されたパルス波 Pに対応する受信パルス波 Pinlが図 5 (B)最下 段右に示すように生成される。次に、広帯域アンテナ 15から送信されたパルス波が 無線タグ TG3における広帯域アンテナ 1において反射されると、これに対応して当該 広帯域アンテナ 1からの上記反射波 Pin2が図 5 (B)最下段右に示すように質問器 PC nにおいて受信される。次に、当該反射波 Pin2に続いて、広帯域アンテナ 1において 受信されたパルス信号が負荷インピーダンス部 3においては反射されず、応答信号と しては広帯域アンテナ 1から送信されないので、当該送信された応答信号は質問器 PCnの広帯域アンテナ 18において受信されず、対応する受信パルス波 Pin3は図 5 ( B)最下段右に示すようには生成されなレ、。すなわち、上記受信パルス波 Pin3は、負 荷インピーダンス部 3が短絡されており抵抗体 3Rが負荷整合機能を有する抵抗体と して機能するため、上記パルス信号が負荷インピーダンス部 3においては反射されず 、結果として無線タグ TG3からの応答信号も送信されないので、上記無線タグ TG1 又は TG2における受信パルス波 Pin3に相当する受信ノ ルス波は質問器 PCnにおい ては受信されない。
[0197] なお、図 5 (B)最下段では、受信ノ ルス波 Pin2と同じ極性の受信パルス波 Pin3が用 いられたが、図 5 (C)に示すように無線タグ TG4を構成すれば、受信パルス波 Pin2と 逆極性の受信パルス波 Pin3を用いることができる。更に、図 5 (D)に示すように無線 タグ TG5を構成すれば、受信パルス波 Pin2と同極性、逆極性又は反射信号なしの 三値で通信を行うことができ、伝送容量を増大させることができる。
[0198] 以上夫々説明したように、第 1実施形態に係る無線タグ TG1乃至 TG3によれば、 夫々の伝送路 2の長さ又は負荷インピーダンス部 3の構成が異なっているため、結果 として質問器 PCnにおける受信パルス波 Pin3の受信タイミング又は波形或いはその 有無が各無線タグ TG1乃至 TG3間で相互に異なることになり、当該質問器 PCnに おいて各無線タグ TG1乃至 TG3を相互に識別することが可能となるのである。
[0199] 次に、第 1実施形態に係る無線タグ TGnの細部構成について、具体的に図 6を用 いて説明する。なお、図 6において、図 2と同様の構成部材については、同様の部材 番号を付して細部の説明は省略する。
[0200] 図 6に示すように、第 1実施形態の無線タグ TGnにおける負荷インピーダンス部 3は 、図 2に示すスイッチング素子として機能するダイオード 30 (伝送路 2に対して直列に 接続されている)と、ダイオード 30の二つの端子の夫々と制御部 3との間に接続され た二つのコイル(或いはインダクタンス素子) 31と、により構成されている。
[0201] この構成において、ダイオード 30は、制御部 4からの制御に基づいて直流バイアス が印加されると短絡し、当該直流バイアスの印加が停止すると開放されることで、上 記スイッチング素子として機能するものである。また、コィノレ 31は、上記直流バイアス 以外の成分がダイオード 30に印加されることを防止すると共に、伝送路 2を伝搬する ノ^レス信号が制御部 4へ回り込むのを防止し、直流バイアスの印加停止時に負荷ィ ンピーダンス部 3が、パルス信号に対しては、開放となるようにする機能を備える。
[0202] 一方、無線タグ TGnにおける電源部 5は、整流回路 32と、整合回路 33と、により構 成されており、更に整流回路 32は、コンデンサ 40及び 41と、ダイオード 42及び 43と 、により構成されている。
[0203] このとき、整合回路 33は、二つのアンテナ素子により構成される狭帯域アンテナ 6 において受信された上記電力信号の、当該アンテナ素子間における整合を取り、当 該電力信号により搬送されてきた電力を整流回路 32へ出力する。
[0204] そして、整流回路 32は、各コンデンサ 40及び 41並びにダイオード 42及び 43の機 能により交流信号である電力信号を直流信号に変換し、当該直流信号により制御部 4を駆動する。
[0205] これにより、当該制御部 4の制御の下、負荷インピーダンス部 3内のダイオード 30に 対する直流バイアスの印加を活殺することで、当該ダイオード 30を図 2に示すスイツ チング素子として機能させる。そして、当該スイッチング素子の活殺により、図 4 (B)又 は図 5 (B)に示したように質問器 PCnにおいて受信される応答信号の内容が「1」(ス イッチング素子が開放である場合)又は「0」(スイッチング素子が短絡である場合)に 変化するのである。
[0206] なお、上記した無線タグ TGnの構成において、負荷インピーダンス部 3を構成する ダイオード 30を FET (Field Effect Transistor)により構成しても良レ、。また、整合回路 33を省略しても良いし、整合回路 33自体を狭帯域アンテナ 6と一体的に形成しても 良い。
[0207] 次に、上述したスイッチング素子の切り換えと質問器 PCnからのパルス信号の送信 とのタイミングについて、具体的に図 7を用いて説明する。
[0208] 図 7に示すように、質問器 PCnにおいて生成されるパルス信号 Soutを構成する単 一パルスのパルス波 Pは、時間軸上において予め設定されている一定長さのタイムス ロット TS内で一つのみ質問器 PCnから送信される。このとき、一のタイムスロット TS内 におけるいずれのタイミングでノ^レス波 Pを送信するかは、例えば、上記擬似ランダ ム符号(より具体的には、例えば、いわゆる M系列又は Gold系列等が適当である)に より一つのタイムスロット TS内でランダム化されたタイミングにてパルス波 Pが送信さ れる。このため、上述した遅延器 11においてクロック信号 Sclを擬似ランダム符号によ り遅延させているのである。なお、パルス波 Pを質問器 PCnから送信する間隔は、当 該間隔が各無線タグ TGnの伝送路 2のうち最も長レ、伝送路 2の長さを、無線タグ TG nにおいて受信されたパルス信号及び上記応答信号が伝送路 2を伝搬する際の伝 搬速度で除して得られる時間よりも長く設定される。
[0209] 一方、無線タグ TGnにおける上記スイッチング素子の活殺は、例えば質問器 PCn におけるタイムスロット TSの開始タイミングに併せて行われる。図 7に示す例では、五 つのタイムスロット TS毎にスイッチング素子の活殺が定義されている。このため、各質 問器 PCnにおけるタイムスロット TSの切り換えタイミングの基準となる上記クロック信 号 Sclと、上記スイッチング素子の活殺の基準となるクロック信号とは同期している必 要がある。
[0210] この構成に、例えば図 7に示す例ではスイッチング素子が一回切り換わると少なくと も五つのパルス波 Pに対応するパルス信号が無線タグ TGnに送信されることになり、 これを受信した無線タグ TGnにおレ、て対応する応答信号を五回送信することで、無 線通信システム S以外の外部からの雑音混入があった場合等においても確実に各無 線タグ TGnを識別することができることになる。
[0211] このとき、擬似ランダム符号に応じた相関を求めることにより、相関とは無関係なノィ ズゃ他の信号成分を除去でき、高感度な検出が可能となる。これにより、質問器 PCn と無線タグ TGnとの通信距離を伸ばすことができる。
[0212] また、図 7に示すように無線タグ TGnにおけるスイッチング素子を切り換えれば、連 続したタイミングで合計 4ビットの情報を質問器 PCnに無線タグ TGnから夫々のビット 毎に応答信号として送信することができることになる。なお、図 7に示す場合、質問器 PCnにおいて受信される応答信号の内容は、五つのタイムスロット TS毎の間隔で順 に「1」、「0」、「0」、「1」と変化することになる。 [0213] もちろん、スイッチング素子の切り換えの一周期内に擬似ランダム符号が二回以上 繰り返すようにタイムスロット TSの長さと数を設定すれば、スイッチング素子の切り換 え周期内に必ず一周期以上の擬似ランダム符号が検出できるので、タイムスロット T Sとスイッチング素子の活殺の同期を取る必要がなくなる。
[0214] 次に、質問器 PCnにおける広帯域アンテナ 15からの上記パルス信号の送信と、狭 帯域アンテナ 23からの電力信号の送信との関係について、具体的に図 8を用いて説 明する。
[0215] 第 1実施形態に係る質問器 PCnからは、上記パルス信号に対応するパルス波 Pout と電力信号 Sbbとが時分割的に送信され、電力信号送信時には電力信号 Sbbを無線 タグ TGnの狭帯域アンテナ 6で受信することにより当該無線タグ TGnが充電されるこ とになり、更にパルス波 Poutの送信に続く時間では上記応答信号の質問器 PCnに おける受信が実行される。
[0216] すなわち、図 8に示すように、電力信号 Sbbを狭帯域アンテナ 23から送信すべき電 力信号タイムスロット CTが終了する(すなわち、無線タグ TGnの充電に十分なだけの 電力が供給される)と、続いて上記ノ^レス波 Poutを広帯域アンテナ 15から送信する パルス信号タイムスロット PTが開始される。そして、パルス信号タイムスロット PTが終 了すると、次に、当該パルス信号タイムスロット PTと電力信号タイムスロット CTとの分 離をするための UWB方式に則ったブランクタイムスロット BTが開始される。このとき、 当該ブランクスロット BTを利用して上述した応答信号の質問器 PCnにおける受信が 実行される。そして更に、ブランクタイムスロット BTが終了すると、次の電力信号タイ ムスロット CTが開始されるのである。
[0217] このように、電力信号 Sbbの送信とパルス波 Poutの送信を交互に行うことで、無線タ グ TGnにおいて必要な充電を行いつつパルス波 Poutをタイムスロット TS内で送信す ること力 Sできる。
[0218] なお、上述した質問器 PCnの構成においては、電力信号 Sbbとパルス波 Poutが全 く異なるものであるため、電力信号 Sbbはいわゆる周波数ホッピング技術を用いて送 信してもよレ、。この場合に、電力信号 Sbbである連続波を振幅変調することで、無線タ グ TGnに対して無線タグ TGnを特定する ID等の識別情報等の情報を送信するよう に構成することもできる。
[0219] また、質問器 PCn相互間で情報の授受を無線電波を用いて行う場合のその無線 電波を電力信号 Sbbとする無線タグ TGnに受信させるように構成することもできる。
[0220] 以上夫々説明したように、第 1実施形態の無線通信システム Sの動作によれば、各 無線タグ TGnにおいて、夫々に予め設定された長さを有する伝送路 2により広帯域 アンテナ 1と負荷インピーダンス部 3とが接続されているので、パルス信号から生成さ れる応答信号の送信態様 (応答信号の波形及び送信タイミング)がその長さや負荷ィ ンピーダンスに依存して変化することになり、結果として当該応答信号の波形に基づ レ、てその無線タグ TGnを識別しつつ、当該送信タイミングに基づいてその無線タグ T Gnまでの距離を検出することができる。また、広帯域アンテナ 1を用いてノ ルス信号 を受信することで応答信号を生成するので、搬送波を用いることなく無線タグ TGnの 識別及び距離検出が可能となり、小型化 ·低消費電力化を図りつつ無線タグ TGnの 識別及び距離検出が可能となる。
[0221] また、各無線タグ TG1及び TG2に異なる長さの伝送路 2により広帯域アンテナ 1と 負荷インピーダンス部 3とが接続されているので、各無線タグ TGnにおいて受信した ノ ルス信号から生成される応答信号の送信態様、換言すれば、各無線タグ TGnから 送信される当該応答信号の質問器 PCnにおける受信態様 (各応答信号の信号波形 及び質問器における受信タイミング)が、各無線タグ TGnにおける伝送路 2の長さを 各無線タグ TGn毎に異ならせることにより各無線タグ TGn毎に異なることとなり、結果 として当該信号波形の相違により各無線タグ TGnを識別しつつ当該受信タイミング の相違により各無線タグ TGnまでの質問器 PCnからの距離を検出することができる。
[0222] 更に、伝送路 2が有する長さにおいて特性インピーダンスが一定であるので、応答 信号の波形及び送信タイミングが変動することがなぐ伝送路 2の途中からの不要反 射を生じなレ、ため無線タグ TGnを識別し、また無線タグ TGnまでの距離を高精度で 検出すること力 Sできる。
[0223] 更にまた、伝送路 2の長さが、当該伝送路 2上における各信号の伝搬速度に対して ノ^レス信号のパルス幅に相当する時間を乗じた値の二分の一以上の長さとされてい るので、無線タグ TGnにおける広帯域アンテナ 1自体からパルス信号に応じて反射 · 放射される反射波と、本来の応答信号と、を明確に識別して無線タグ TGnの識別及 び距離検出を行うことができる。
[0224] また、受信されたパルス信号に対するパルス反射係数を制御部 4におレ、て制御す るので、各無線タグ TGnから送信される応答信号の送信態様を、受信すべき情報に 応じて後から変更することができ、多ビットの応答信号を生成して送信することができ る。
[0225] 更に、連続波である電力信号 Sbbを無線タグ TGnにおいて受信して電力を得るの で、電池等の外部電源を不要として無線タグ TGnを更に小型化し運用コストを低減 すること力 Sできる。
[0226] 更にまた、情報授受用のパルス信号と異なる電力信号 Sbbにより電力を供給するの で、各無線タグ TGnにおいて効率的に電力を発生させることができる。
[0227] また、質問器 PCnにおいて、各無線タグ TGnからの応答信号を広帯域アンテナ 18 で受信して参照信号 Stpとの比較により無線タグ TGnを識別するので、無線タグ TG nの識別及び距離検出が可能となり、搬送波を用いないことにより小型化 ·低消費電 カイ匕をも図ること力できる。
[0228] 更に、質問器 PCnにおいて、クロック信号 Sclを遅延器 11において遅延することで ノ ルス信号を生成し、遅延器 13において遅延器 11の場合と異なる遅延時間で当該 クロック信号 Sclを遅延して生成された参照信号 Stpと応答信号 Sinとの相関をとるの で、正確に応答信号 Sinの内容を検出したり反射信号や応答信号夫々の時間間隔を 検出すること力 Sできる。
[0229] 更にまた、上記各遅延のタイミングにっき、擬似ランダム符号に基づいてクロック信 号 Sclを夫々遅延させるので、各無線タグ TGnからの応答信号間におけるノ^レス重 なりの発生を防止できる。
[0230] また、パルス信号の間隔を擬似ランダム符号により変更すると、結果として送信スぺ タトラムに周期的なピークが発生することがなぐ例えば質問器 PCn相互間の通信の 如き他の無線通信に影響を与えないですむことになる。
[0231] 更に、擬似ランダム符号に応じた相関を求めて信号を検出することにより、高感度 な検出が可能となり、通信距離も伸ばすことができる。 [0232] 更にまた、連続するパルス信号を短絡又は開放のいずれか一方の機能を有する負 荷インピーダンス部 3で反射し、その応答信号を質問器 PCnにおレ、て受信することで 、単一のパルス信号のみで情報の授受を行う場合に比して復号器 19から出力される 復号信号 Sdcにおける信号対雑音比が向上するので、質問器 PCnと無線タグ TGnと の間の通信距離を延伸することが可能となる。
[0233] 更に、検出された応答信号の間隔に基づいて各無線タグ TGnを識別するので、正 確に当該識別を実行することができる。
[0234] 更にまた、質問器 PCnにおいて応答信号の極性を判定することで当該応答信号に 含まれている内容を認識するので、簡易な質問器 PCnの構成で正確に応答信号の 内容を認識することができる。
[0235] (Π)第 2実 ¾形髌
次に、本発明に係る他の実施形態である第 2実施形態について、図 9乃至図 10を 用いて説明する。
[0236] なお、図 9は第 2実施形態に係る無線タグの細部構成を示す図であり、図 10は当 該無線タグからの応答信号の相関を示す図である。また、図 9において図 2に示した 第 1実施形態に係る無線タグ TGnと同一の部材については、同一の部材番号を付し て細部の説明は省略する。
[0237] 上述してきた第 1実施形態においては、各無線タグにおける伝送路の長さを一定と する場合について説明した力 これ以外に、いわゆるダイオードスィッチを広帯域ァ ンテナに対して並列に複数並べることで、一の無線タグにおける伝送路の長さを制 御可能とすることができる。
[0238] すなわち、図 9に示すように、第 2実施形態に係る無線タグ TGGnは、第 1実施形態 に係る無線タグ TGnと同様の広帯域アンテナ 1、伝送路 2、狭帯域アンテナ 6、整合 回路 33及び整流回路 32に加えて、検波回路 35と、長さ制御手段としての制御部 34 と、五つのコイル(或いはインダクタンス素子) 44乃至 48と、四つのコンデンサ 50乃 至 53と、抵抗体 54と、四つのダイオード 55乃至 58と、により構成されている。
[0239] このとき、伝送路 2の長さは、第 1実施形態に係る無線タグ TGnと同様に、
L = (応答信号の伝搬速度)
0 X (受信したパルス信号におけるパルス幅) Z2
[0240] より長い長さで各無線タグ TGGn毎に変化させても良レ、が、各ダイオード 55乃至 5
8の伝送路 2の方向と平行な方向の間隔は、
[0241] L = (応答信号の伝搬速度)
1
X (受信したパルス信号におけるパルス幅) Z4
[0242] とされてレ、る。ここで、応答信号の伝搬速度は、伝送路 2をパルスが伝搬するときの 伝搬速度である。
また、コイル 44乃至 48は、第 1実施形態に係る無線タグ TGnと同様に直流バイァ スのみを各ダイオード 55乃至 58に印加すると同時に、パルス波が制御部 34に回り 込むのを防止するためのフィルタの役割をするものであり、また、コンデンサ 50乃至 5 3はパルス波はそのまま通過させると同時に各直流バイアスをそれぞれ分離する DC (直流成分)カットの役割をするものであり、さらに、伝送路 2の終端は、不要な反射を 防止するため抵抗体 54により負荷整合させるのが好ましい。
[0243] そして、検波回路 35からの電力信号 Sbbが伝送される間隙を示す検波信号並びに 無線タグ TGGn自体を示す識別情報の内容に基づいて制御部 34によりいずれか一 つのダイオードを短絡としその他のダイオードを開放とすることで、一の無線タグ TG Gnにおいて四通り(具体的には、長さ L、長さ(L +L )、長さ(L + 2L )又は長さ(
0 0 1 0 1
L + 3L )のいずれかの伝送路の長さを切り換えつつ実現することができるのである
0 1
[0244] この場合、質問器 PCnにおける応答信号の受信態様は、無線タグ TGGnにおける ダイオード 55から順にダイオード 58まで一つずつのみを短絡とするように制御部 34 において切り換え制御することで、図 10 (A)又は(B)に示すように上記パルス信号に おけるパルス幅 Tの 1Z2だけずれた応答信号 Sinが受信される。そして、これらを図
P
10 (A)に示す参照信号 Stpl又は図 10 (B)に示す参照信号 Stp2を用いて相関器 17 において相関を取ることにより、各応答信号 Sinの内容を「1」又は「0」のいずれかで あると判別できる。
[0245] 以上説明したように、第 2実施形態に係る無線タグ TGGnによれば、第 1実施形態 に係る無線通信システム Sの効果に加えて、無線タグ TGGnからの応答信号が有す べき信号態様に応じて伝送路の実効的な長さを制御するので、各無線タグ TGGnか ら送信される応答信号の送信態様を送信すべき情報に応じて変更することができ、 多ビットの応答信号を生成して送信することができる。
[0246] また、伝送路の長さが、当該伝送路上における各信号の伝搬速度に対してパルス 信号のパルス幅に相当する時間を乗じた値の二分の一に当該乗算値の N/4倍を 加算した値の長さとされてレ、るので、各無線タグ TGGnを確実に識別しつつその距 離を検出することができる。
[0247] (III)第 1及び 2 开 に係、る
次に、第 1及び第 2実施形態に係る変形形態について、夫々説明する。
[0248] 先ず、第 1及び第 2実施形態に係る第 1の変形形態として、図 11に示すように、無 線タグを、図 11 (Α)に示す無線タグ TGV1又は図 11 (Β)に示す無線タグ TGV2のよ うに構成することもできる。
[0249] このとき、無線タグ TGV1は、第 1実施形態に係る無線タグ TGnと同様の広帯域ァ ンテナ 1及び伝送路 2に加えて、平行線路よりなり且つ相互に長さが異なる伝送路 60 乃至 62を備えている。そして、各伝送路は、伝送路 2の広帯域アンテナ 1と反対の端 を中心として電気的に接続されている。この構成により、無線タグ TGV1は三つの伝 送経路、すなわち、伝送路 2と伝送路 60とからなる第一伝送経路、伝送路 2と伝送路 61とからなる第二伝送経路及び伝送路 2と伝送路 62とからなる第三伝送経路の三 つの伝送経路を備えることになる。
[0250] また、無線タグ TGV1には、第 1実施形態に係る無線タグ TGnにおけるスィッチン グ素子の如き電力を必要とする回路素子は含まれておらず、また応答信号として質 問器 PCnに送信される内容は常に一定である。なお、伝送路 60乃至 62の終端を開 放又は短絡或いは整合負荷とすることで、各無線タグ TGV1間で応答信号に含ませ るべき内容を異ならせることができる。
[0251] 一方、無線タグ TGV2は、上記無線タグ TGV1の構成に加えて、伝送路 61の終端 に更に平行線路よりなり且つ相互に長さが異なる伝送路 63乃至 65を備えている。こ の構成により、無線タグ TGV1は五つの伝送経路、すなわち、伝送路 2と伝送路 60と 力もなる第一伝送経路、伝送路 2と伝送路 61と伝送路 63とからなる第二伝送経路、 伝送路 2と伝送路 62と伝送路 64とからなる第三伝送経路、伝送路 2と伝送路 61と伝 送路 64とからなる第四伝送経路及び伝送路 2と伝送路 62とからなる第五伝送経路、 の五つの伝送経路を備えることになる。そして、この無線タグ TGV2にも、電力を必 要とする回路素子は含まれておらず、また応答信号として質問器 PCnに送信される 内容は常に一定である。
[0252] ここで、伝送路 60乃至 65の長さにつき、これらは最も短い伝送路 60の長さの自然 数倍とされている。そして、この伝送路 60の長さ力 各無線タグ TGV1又は TGV2間 で相互に異なる長さとされている。
[0253] なお、無線タグ TGV1及び TGV2では、各伝送経路が本発明における伝送手段に 対応している。
[0254] 次に、上記無線タグ TGV1からの応答信号を質問器 PCnにおいて受信した場合の 波形を、図 11 (C)を用いて説明する。なお、以下の説明においては、無産タグ TGV 1における伝送路 60の長さを L、同じく伝送路 61の長さを L、同じく伝送路 62の長
1 2
さを Lとし、
3
[0255] L く L く L
1 2 3
の関係、にあるとする。
[0256] 質問器 PCnからのパルス信号として、図 5 (B)に示すパルス波 Pを広帯域アンテナ
1に入力して送信したとすると、先ず、図 5 (B)の場合と同様の受信パルス波 Pinl及 び反射波 Pin2が受信される。次に、無線タグ TGV1からの応答信号として受信パル ス波 Pin4乃至 Pin6が時間差をもって受信される。このとき、受信パルス波 Pin4は、上 記第一伝送経路を経て送信されたもの、つまり、無線タグ TGV1における伝送路 2に 伝送路 60を加えた長さ(L +L )に相当する長さの伝送路を経て送信されたもので
0 1
あり、受信パルス波 Pin5は、上記第二伝送経路を経て送信されたもの、つまり、無線 タグ TGV1における伝送路 2に伝送路 61をカ卩えた長さ(L +L )に相当する長さの
0 2
伝送路を経て送信されたものであり、受信パルス波 Pin6は、上記第三伝送経路を経 て送信されたもの、つまり、無線タグ TGV1における伝送路 2に伝送路 62を加えた長 さ(L +L )に相当する長さの伝送路を経て送信されたものである。
0 3
[0257] 上記の構成により、各伝送経路((伝送路 2 +伝送路 60)、(伝送路 2 +伝送路 61) 及び (伝送路 2 +伝送路 62) )により夫々長さが異なり、且つ各伝送経路の終端を開 放又は短絡とすることで、一のパルス信号を受信することで多ビットの応答信号を返 信することになる。
[0258] ここで、伝送路 60の長さ Lの値によっては図 11 (C)に最上段に示すように受信パ
1
ルス波 Pin4乃至 Pin6の一部同士が重なる場合もあり得る力 夫々別個に生成された 参照信号 Stp4乃至 Stp6を用いて相関を取ることにより、各受信パルス波 Pin4乃至 P in6を相互に分離して応答信号としての内容を検出することができる。このとき、参照 信号 Stp4は受信パルス信号 Sin4に対応する参照信号であり、参照信号 Stp5は受信 ノ ルス信号 Sin5に対応する参照信号であり、参照信号 Stp6は受信ノ^レス信号 Sin6 に対応する参照信号である。
[0259] 以上説明したように、第 1及び第 2実施形態に係る第 1の変形形態に係る無線タグ TGV1又は TGV2によれば、一の無線タグ TGV1又は TGV2上に複数種類の長さ の伝送経路を備えてレ、るので、簡易な構成で多ビットの応答信号を生成して送信す ること力 Sできる。
[0260] また、長さが異なる各伝送経路の少なくとも一部としての機能を備える、無線タグ T GV1では伝送路 2、無線タグ TGV2では伝送路 2及び伝送路 61を夫々備えるので、 無線タグ TGV1又は TGV2を小型化しつつ複数種類の長さを有する伝送経路を実 現すること力 Sできる。
[0261] なお、上述した第 1及び第 2実施形態に係る第 1の変形形態の更なる変形として、 図 12に示すように、相互に同じ広帯域アンテナ 1に対して異なる長さの伝送路 2及び 70乃至 72が夫々接続された要素無線タグ TTG1乃至 TTG4を含む無線タグ TGV3 を用いて無線通信システムを構成することもできる。
[0262] この場合は、各伝送路 2及び 70乃至 72の長さが相互に異なっており、また、各伝 送路 2及び 70乃至 72の終端を開放又は短絡とすることで、無線タグ TGV3自体の大 きさとしては多少大きくなるものの、極めて簡易な構成で一つのパルス信号から多ビ ットの応答信号を生成して質問器 PCnに送信することができる。
[0263] 更に、各伝送経路に共通の伝送路 2等をもたない図 11 (D)に示す無線タグ TGV4 のような構成としても、同様の効果を奏することができる。 [0264] また、第 1及び第 2実施形態に係る第 2の変形形態として、図 13 (A)に示す無線タ グ TGRのように、第 1実施形態に係る広帯域アンテナ 1及び伝送路 2に加えて、当該 伝送路 2に直列に、夫々にコイル (或いはインダクタンス素子)とコンデンサからなる共 振回路 75乃至 78を複数接続し、各共振回路 75乃至 78において相互に異なる共振 周波数で共振させることで、受信したパルス信号を変形させるように構成することもで きる。なお、各無線タグ TGRを相互に識別するためには、当該無線タグ TGR間で全 て異なる共振周波数となるように構成する必要がある。
[0265] この無線タグ TGRの構成によると、 UWB方式として超広帯域の周波数を用いるの で、いわゆる Q値が比較的低い共振回路を用いても多ビットの応答信号を生成するこ とができることになり、各共振回路 75乃至 78並びに広帯域アンテナ 1及び伝送路 2を 全て印刷技術等により薄膜化又は厚膜ィ匕しつつ形成することができる。なお、この場 合は、反射抑制のために広帯域アンテナ 1以外はいわゆるマイクロストリップラインや 平行線路にて形成することが望ましい。
[0266] 次に、上記無線タグ TGRを備える無線通信システムに含まれるべき質問器は、図 1 3 (B)に示す如き構成を有することになる。
[0267] すなわち、第 1及び第 2実施形態に係る第 2の変形形態に係る質問器 PCCは、第 1 実施形態に係る質問器 PCnと同様の制御器 10、遅延器 11及び 13、クロック信号生 成器 12、パルス発生器 14、広帯域アンテナ 15及び 18、テンプレートパルス発生器 1 6、相関器 17及び電力供給部 Bに加えて、合成器 82と、サンプリング器 81と、解析 手段としての FFT (Fast
Fourier transform)器 80と、を備えて構成されている。
[0268] この構成を備える質問器 PCCにおいて、無線タグ TGRからの応答信号 Sinを受信 した場合、先ずテンプレートパルス発生器 16において生成された参照信号 Stpと応 答信号 Sinとを合成器 82において合成して合成信号 Smとし、これをサンプリング器 8 1において当該合成信号 Sm内に含まれている多数のパルス波を相互にタイミングを ずらしながらサンプリングし、サンプリング信号 Sspを生成する。そして、このサンプリン グ信号 Sspに対して FFT器 80におより FFT処理を施し、 FFT信号 Sfflを生成して制 御器 10に出力する。 [0269] これにより、制御器 10においては、 FFT信号 Sffiに基づいて、いずれの周波数成 分が変化しているかを判別することで無線タグ TGRを識別することができる。また、相 関器 17からの相関信号 Scmの内容により、質問器 PCCから無線タグ TGRまでの距 離を検出することができる。
[0270] 次に、第 1及び第 2実施形態に係る第 2の変形形態に係る無線通信システムにおけ る無線タグ TGR相互缶の識別の仕組みについて、具体的に図 14を用いて説明する
[0271] 先ず、図 14 (A)に示すように、無線タグ TGRにおける負荷インピーダンス特性は、 共振回路 75乃至 78夫々の共振周波数において最大値を取る。そして、共振回路 7 5乃至 78を有する無線タグ TGRでは、各共振回路 75乃至 78において受信したパル ス信号が反射されて生成された応答信号は、負荷インピーダンスが伝送路 2の特性 インピーダンスより大きい周波数では第 1実施形態に係る無線タグ TGnにおける開 放の場合と同様に受信したパルス信号と同極性となり、一方、負荷インピーダンスが 伝送路 2の特性インピーダンスより小さい周波数では当該無線タグ TGnにおける短 絡の場合と同様に受信したパルス信号とは逆極性となって広帯域アンテナ 1から送 信される。
[0272] 従って、このようにして生成された応答信号を質問器 PCCにおいて受信し、更に周 波数特性が、図 14 (B)に示すように広い周波数帯域に渡って信号強度を有する参 照信号 Stpを重畳すると、パルス信号と逆極性の周波数成分では応答信号 Sinと参 照信号 Stpとが相互に打ち消しあうこととなるので、結果として図 14 (C)に示すように 応答信号の周波数特性を FFT処理により判読することができる。よって、この図 14 ( C)に示す波形と図 14 (A)に示す波形とで強度分布が同一となることから、各無線タ グ TGRを質問器 PCCにおいて識別することができるのである。
[0273] 以上説明した第 1及び第 2実施形態に係る第 2の変形形態によれば、複数の共振 周波数により共振可能な共振回路 75乃至 78を無線タグ TGRが備えるので、比較的 Q値が低い共振回路を用いても多ビットの応答信号を生成することができる。
[0274] また、無線タグ TGRからの応答信号を広帯域アンテナ 18で受信して当該応答信 号 Sinをサンプリングして周波数解析した結果に基づいて無線タグ TGRを識別する ので、当該無線タグ TGRの識別及び距離検出が可能となり、搬送波を用いないこと により小型化 ·低消費電力化をも図ることができる。
[0275] 更に、参照信号 Stpを応答信号 Sinに重畳して得られる重畳信号 Smをサンプリング して周波数解析するので、簡易な構成により正確に無線タグ TGRを識別することが できる。
[0276] 更にまた、予め生成されているクロック信号 Sclを用いて参照信号 Stpが生成されて いるので、各応答信号 Sinにっき統一した参照信号 Stpを用いて当該無線タグ TGR を識別することができる。
[0277] なお、上述した第 1及び第 2実施形態に係る各変形形態のほかに、例えば、通信範 囲に比して各パルス波を十分に分離可能に伝送路 2の長さ Lを設定する必要がある
0
ことから、遅延線を用いて実効的にその長さ Lを長くするように構成することもできる
0
。この場合は、質問器 PCnに対して近距離力 の不要反射がなくなったタイミングで 応答信号が受信されるように構成する必要がある。
[0278] また、無線タグ TGn等への電力の供給は、例えば太陽電池を用いて供給すること も可能である。
[0279] 更に、図 15 (図 6に示した無線タグ TGと同一の部材については同一の部材番号を 付して細部の説明は省略する)に示す無線タグ TGSのように、インダクタンス素子 90 及び 91とコンデンサ 92及び 93とを夫々直列に接続した直列共振回路を用いて特定 周波数の信号のみを広帯域アンテナ 1から整合回路 33に入力し、電力の供給を行う ように構成することちでさる。
[0280] この場合には、例えば図 6に示した狭帯域アンテナ 6が不要となり、構成が簡単に なると共に小型化することができる。
[0281] (IV)第 3実施形態
次に、本発明に係る他の実施形態である第 3実施形態について、図 16乃至図 20 を用いて説明する。
[0282] 初めに、第 3実施形態に係る無線通信システムの全体構成及び動作等について、 図 16及び図 17を用いて説明する。なお、図 16は第 3実施形態に係る無線通信シス テムの概要構成を示すブロック図であり、図 17は第 3実施形態に係る質問器の概要 構成を示すブロック図である。
[0283] また、第 3実施形態に係る無線通信システムの全体構成及び動作等であって、第 1 又は第 2実施形態に係る無線通信システムの全体構成及び動作等と同様のものは、 同様の部材番号を付して細部の説明は省略する。
[0284] 先ず、第 3実施形態に係る無線通信システム全体の構成について、図 16を用いて その概要を示す。
[0285] 図 16に示すように、第 3実施形態に係る無線通信システム SSは、夫々にアンテナ ANTを備える質問器 PC1、 PC2、 PC3、 · · ·、 PCn (nは自然数。以下、同様)と、距 離測定の対象となる商品等に貼り付けられている応答器としての無線タグ TG1、 TG 2、…ゝ TGnと、により構成されている。
[0286] この構成において、各質問器 PCnからは各無線タグ TGnに対して UWB方式に則 つたパルス信号を送信する。このとき、当該パルス信号は、質問器 PCnに備えられた 後述の広帯域アンテナから送信され、これを各無線タグ TGnに備えられた後述する 広帯域アンテナにより受信する。
[0287] そして、各無線タグ TGnにより受信されたパルス信号は、各無線タグ TGn内の後述 する負荷インピーダンス部において反射され再度当該無線タグ TGnに備えられた広 帯域アンテナから応答信号 (上記受信したパルス信号に対応する応答信号)として各 質問器 PCnに送信 (返信)される。
[0288] これにより、各質問器 PCnは、当該応答信号を広帯域アンテナにより受信してその 内容を検出する。そして、この検出された応答信号の内容により各質問器 PCnにお レ、て各無線タグ TGnが相互に識別されると共に、各質問器 PCnから各無線タグ TGn に送信したパルス信号の送信時刻と対応する応答信号の各質問器 PCnにおける受 信時刻との間の時間を検出し、この検出した時間に基づいて各質問器 PCnと無線タ グ TGnと間の直線距離を当該各質問器 PCnにおいて検出する。
[0289] ここで、各無線タグ TGnにおいては、上記負荷インピーダンス部が有する負荷イン ピーダンスが、各無線タグ TGn間において相互に異なるインピーダンスとなるように( 或いは、各無線タグ TGnにおける負荷インピーダンスの時間的な変化が相互に異な るように)、一の無線タグ TGnにおいて後述する制御部により制御されている。これに より、各無線タグ TGn間で負荷インピーダンスが異なることにより上記応答信号に含 まれているパルス波のタイミング等が各無線タグ TGn間で相互に異なることになり、こ の結果、各質問器 PCnにおいて各無線タグ自体を識別することが可能となるのであ る。
[0290] 一方、本実施形態においては、各質問器 PCnからは他の質問器 PCm (mは自然 数であり且つ n≠m。なお、以下の説明においては、「質問器」と「他の質問器」とを区 別する場合、「質問器 PCn」に対して「他の質問器 PCm」と示す)に対しても、上記と 同様に UWB方式に則ったパルス信号を複数ビット分送信する。このとき、当該パル ス信号は、上述したように質問器 PCnに備えられた送信用の広帯域アンテナから送 信され、これを他の質問器 PCmに備えられた受信用の広帯域アンテナにより受信す る。
[0291] そして、他の質問器 PCmにより受信されたパルス信号に基づき、当該他の質問器 PCmに備えられた送信用の広帯域アンテナから同様に複数ビット分のパルス信号と して UWB方式に則って元の質問器 PCnに送信(返信)される。
[0292] これにより、各質問器 PCnは、返信されてくる当該パルス信号を広帯域アンテナに より受信してその内容を検出し、当該検出されたパルス信号の内容により各質問器 P Cnにおレ、て他の質問器 PCmが識別されると共に、受信したパルス信号に含まれて レ、るパルス波の態様により他の質問器 PCmまでの距離が検出される。
[0293] ここで、他の質問器 PCmにおいては、元の質問器 PCnからのパルス信号を受信し た時刻から対応する返信用のパルス信号を元の質問器 PCnに対して送信した時刻 までの時間を検出し、上記返信用のノ^レス信号にその時間情報を付加して元の質 問器 PCnに送信する。そして、元の質問器 PCnにおいては、最初に他の質問器 PC mに対してパルス信号を送信した時刻から対応する返信用のパルス信号が当該他の 質問器 PCm力も上記時間情報と共に返信されてきた時刻までの時間を検出し、当 該検出した時間から上記時間情報として送信されてきた時間を差し引くことで、元の 質問器 PCnと他の質問器 PCmとの間の空間を上記パルス信号又は対応する返信 用のパルス信号が伝送される時間を検出し、この検出した時間に基づいて元の質問 器 PCnと他の質問器 PCmと間の直線距離を当該元の質問器 PCnにおいて検出す る。
[0294] また、質問器 PCn同士での相互認識及び距離検出に複数ビット分のパルス信号を 使用するのは、質問器 PCn同士における UWB方式に則った無線通信においては、 当該無線タグ TGn内の伝送路及び負荷による単純な反射機能を用いないため、機 器認識用に授受されるパルス信号と、距離検出用に授受されるパルス信号と、を区 別して無線通信を行う必要があるからである。
[0295] なお、第 3実施形態に係る各無線タグ TGnの構成については、上記図 2を用いて 説明された第 1実施形態に係る各無線タグ TGnの構成と同様であるので、細部の説 明は省略する。
[0296] 次に、第 3実施形態に係る各質問器 PCnの細部構成について、図 17を用いて説 明する。
図 17に示すように、第 3実施形態に係る質問器 PCnは、第 1距離検出手段、第 2距 離検出手段、機器位置検出手段、応答器識別手段、第 3距離検出手段、判別手段、 報知手段及び質問器数検出手段としての制御器 10と、遅延器 11及び 13と、クロック 信号生成器 12と、パルス発生器 14と、無線タグ TGnにおける広帯域アンテナ 1と同 様の構成を備える広帯域アンテナ 15 (パルス信号送信用)と、テンプレートパルス発 生器 16と、相関器 17と、広帯域アンテナ 15と同様の構成を備える広帯域アンテナ 1 8 (無線タグ TGnからの応答信号受信用)と、復号器 19と、発振器 20と、変調器 21と 、電力増幅器 22と、例えば無線タグ TGnにおける狭帯域アンテナ 6と同様の構成を 備える狭帯域アンテナ 23と、送受切換器 24と、低雑音増幅器 25と、復調器 26と、に より構成されてレヽる。このとき、上記発振器 20、変調器 21、増幅器 22、狭帯域アンテ ナ 23、送受切換器 24、低雑音増幅器 25及び復調器 26により、連続波により構成さ れる電波を無線タグ TGnの狭帯域アンテナ 6に送信する電力供給部 Bを構成してい る。なお、実施形態に係る質問器 PCnの電力供給部 Bは、無線タグ TGnに対する電 力供給機能に加えて、他の質問器 PCmとの間における情報の授受(後述するパル ス信号を用いた情報の授受とは異なる、例えばいわゆる無線 LAN (Local
Aria Network)規格に則った情報の授受)に供することも可能となるような構成となつ ている。 [0297] 次に、無線タグ TGnとの間における各質問器 PCnの通信動作について説明する。 先ず、上記パルス信号を無線タグ TGnに向けて送信する際には、クロック信号生成 器 12は、予め設定された一定周波数のクロック信号 Sclを生成して遅延器 11及び 13 に夫々出力する。
[0298] そして、遅延器 11は、制御器 10からの制御信号 Scdlに基づいて上記クロック信号 Sclを遅延し、遅延クロック信号 Sdlとしてパルス発生器 14に出力する。ここで、遅延 器 11におけるクロック信号 Sclの遅延量は、例えばレ、わゆる擬似ランダム符号により 各ノ ルス信号毎にランダムな遅延が与えられる。なお、当該擬似ランダム符号として より具体的には、例えば、いわゆる M系歹 lJ (MaximaHength
sequences)又は Gold系列等が適当である。
[0299] 次に、パルス発生器 14は、予め設定された上記 UWB方式に則ったパルス発生処 理により上記遅延クロック信号 Sdlからパルス信号 Soutを生成し、広帯域アンテナ 15 を介して無線タグ TGnに向けて送信する。
[0300] 一方、各無線タグ TGnからの上記応答信号は、広帯域アンテナ 18において受信さ れ、応答信号 Sinとして相関器 17に出力される。
[0301] このとき、クロック信号生成器 12は、上記クロック信号 Sclを遅延器 13に出力してお り、当該遅延器 13は、制御器 10からの制御信号 Scd2に基づいて上記クロック信号 S clを遅延し、遅延クロック信号 Sd2としてテンプレートパルス発生器 16に出力している 。なお、上記遅延器 11における遅延量と遅延器 13における遅延量とは相互に異な らされてレ、る。
[0302] そして、テンプレートパルス発生器 16は、当該遅延クロック信号 Sd2を用いて、受信 した応答信号 Sinの内容の解析に用いる参照(テンプレート)信号 Stpを生成し、相関 器 17に出力する。
[0303] これらにより、相関器 17は、受信した応答信号 Sinと、上記参照信号 Stpとを、特に 夫々の位相に比較し、相互の相関度 (類似度)を示す相関信号 Scmを生成して復号 器 19へ出力する。
[0304] そして、復号器 19は、当該相関信号 Scmに基づいて応答信号 Sinの内容を判読' 復号し、復号信号 Sdcとして制御器 10へ出力する。 [0305] これにより、制御器 10は、当該復号信号 Sdcに基づいて、受信した応答信号 Sinを 送信した無線タグ TGnを後述するように他の無線タグ TGnから識別すると共に、当 該送信した無線タグ TGnの当該応答信号 Sinを受信した質問器 PCnからの距離を 後述するように判定する。
[0306] 他方、質問器 PCnからの無線タグ TGnに対して電力供給を行う場合、電力供給部 B内の発振器 20は、予め設定された上記連続波の周波数を示す発振信号 Sf¾r生成 して変調器 21へ出力する。
[0307] そして、変調器 21は、制御器 10からの制御信号 Secに基づき、発振信号 Sfに対し て予め設定された変調処理(より具体的に、例えば、各無線タグ TGn用の識別番号 情報等を、上記連続波を搬送波として伝送する場合における当該識別番号情報等 の内容に対応した振幅変調処理等)を施し、変調信号 Seとして電力増幅器 22へ出 力する。
[0308] これにより、電力増幅器 22は、上記変調信号 Seに対して予め設定された増幅処理 を施し、送信信号 Strとして送受切換器 24へ出力する。
[0309] これにより、送受切換器 24は、予め設定されている送信タイミングにおいて送信信 号 Strを上記電力信号 Sbbとして狭帯域アンテナ 23を介して各無線タグ TGnの狭帯 域アンテナ 6に向けて送信する。
[0310] なお、電力供給部 Bを用いて他の質問器 PCmとの間で連続波を用いた情報の授 受を行う場合、上記発振器 20からの発振信号 Sfは電力増幅器 22と共に復調器 26 にも出力されている。
[0311] そして、上記変調器 21、電力増幅器 22、送受切換器 24及び狭帯域アンテナ 23の 機能により、上述した無線タグ TGnに対して電力供給を行う場合と同様にして送信す べき情報を担持した連続波の信号が送信先の他の質問器 PCmに送信される。
[0312] その後、当該他の質問器 PCmからの返信用の連続波の信号は、狭帯域アンテナ 2 3において受信され、予め設定されている受信タイミングにおいて受信信号 Srvとして 送受切換器 24から低雑音増幅器 25に送信される。そして、低雑音増幅器 25におい て予め設定されている増幅率により増幅され、増幅受信信号 Sawとして復調器 26へ 出力される。 [0313] これにより、復調器 26は、当該増幅受信信号 Sawの内容を上記発振信号 Sf¾r用い て検出し、その内容を示す検出信号 Sddを生成して制御器 10へ出力する。
[0314] そして、制御器 10は、当該検出信号 Sddに含まれている内容に基づいて受信信号 Srvの内容を認識する。
[0315] なお、上述した第 3実施形態に係る各質問器 PCn及び各無線タグ TGn間において 授受される上記パルス信号及び応答信号の波形は、上記図 4 (A)を用いて説明され た第 1実施形態に係る各質問器 PCn及び各無線タグ TGn間において授受される上 記パルス信号及び応答信号の波形と同様であるので、細部の説明は省略する。
[0316] 更に、応答信号を無線タグ TGnから受信した後に相関器 17を中心として実行され る当該応答信号の内容の判読についても、上記図 4 (B)を用いて説明された第 1実 施形態における応答信号を無線タグ TGnから受信した後に相関器 17を中心として 実行される当該応答信号の内容の判読と同様であるので、細部の説明は省略する。
[0317] 更にまた、第 3実施形態に係る無線通信システム SSにおいて複数の無線タグ TGn を相互に識別する仕組みも、上記図 5 (A)及び (B)を用いて説明された第 1実施形 態に係る無線通信システム Sにおいて複数の無線タグ TGnを相互に識別する仕組 みと同様であるので細部の説明は省略し、第 3実施形態に係る無線タグ TGnの細部 構成にっレ、ても、上記図 6を用レ、て説明された第 1実施形態に係る無線タグ TGnの 細部構成と同様であるので細部の説明は省略し、第 3実施形態に係るスイッチング 素子の切り換えと質問器 PCnからのパルス信号の送信とのタイミングについても、上 記図 7を用いて説明された第 1実施形態に係るスイッチング素子の切り換えと質問器 PCnからのパルス信号の送信とのタイミングと同様であるので細部の説明は省略し、 第 3実施形態に係る質問器 PCnにおける広帯域アンテナ 15からの上記パルス信号 の送信と狭帯域アンテナ 23からの電力信号の送信との関係についても、上記図 8を 用レ、て説明された第 1実施形態に係る質問器 PCnにおける広帯域アンテナ 15から の上記パルス信号の送信と、狭帯域アンテナ 23からの電力信号の送信との関係と同 様であるので細部の説明は省略する。
[0318] (V)第 3実施形熊に係る位置検出処理の実施形態
次に、上述した全体構成及び動作を行う無線通信システム SSにおレ、て実行される 、第 3実施形態に係る位置特定処理について、具体的に図 18乃至図 20を用いて説 明する。なお、図 18及び図 19は第 3実施形態に係る位置特定処理を示すフローチ ヤートであり、図 20は第 3実施形態に係る位置検出処理の手順を示す概念図である
[0319] 先ず、第 3実施形態に係る位置検出処理の前提としては、図 20 (a)に示すように、 上述してきた構成を夫々に備える質問器 PC1乃至 PC4及び無線タグ TG1及び TG2 がーつの部屋 R内にあるとする。そして、当該部屋 R内における夫々の位置が予め特 定されていると共に夫々の位置を示す位置情報が各質問器 PC1乃至 PC4において 予め入力'設定されている特定応答器としてのマーカタグ MT1乃至 MT4力 当該部 屋 Rの四隅に設置されている。
[0320] また、図 18及び図 19において、「端末」とはいずれかの質問器 PCnを示し、「応答 器」とはいずれかの無線タグ TGnを示している。更に、図 18及び図 19は、実施形態 に係る位置検出処理が一つの質問器 PCn (以下の説明では、その例として質問器 P C1を用いる)において行われる場合を説明するフローチャートである。
[0321] 図 18に示すように、実施形態に係る位置検出処理を質問器 PC1において実行す る場合、先ず、当該質問器 PC1以外に、電源が投入されて相互に UWB方式に則つ た無線通信が可能な他の質問器 PCmがあるか否かが確認される (ステップ S1)。こ のステップ S1の処理は、具体的には、距離検出を行う旨のパルス信号を送信した後 それに対応する返信用のパルス信号が返信されてきたか否力を確認することにより 実行される。
[0322] そして、パルス信号の返信がないときは (ステップ SI ; N)、実施形態に係る位置検 出処理が実行不可能であることになるので、無線通信可能な他の質問器 PCmが出 現するまでステップ S1の処理を繰り返し、一方、パルス信号の返信があって無線通 信可能な他の質問器 PCmがあることは判ったときは (ステップ S1 ;Y)、次に、当該質 問器 PC1が主体となって通信可能な他の質問器 PCmとの距離検出を行う前に、他 の質問器 PCm力 距離検出を行う旨のパルス信号が送信されていないかを確認し( ステップ S2)、送信されていないときは(ステップ S2 ; N)そのまま後述するステップ S5 に移行し、一方、他の質問器 PCmから距離検出を行う旨のパルス信号が送信されて 来ているときは (ステップ S2 ;Y)、次に、質問器 PC1が当該他の質問器 PCmからの ノ^レス信号に応答するための待機状態に入っていることを当該他の質問器 PCmに 対して送信する (ステップ S3)。
[0323] その後、当該待機している旨の送信に対して当該他の質問器 PCmから距離検出 用のパルス信号が送信され、質問器 PC1においてこれに応答するための距離検出 のためのパルス信号を返信したか否かを確認する(ステップ S4)。そして、未だその 応答が完了していないときは(ステップ S4; N)その応答が完了するまで上記ステップ S3の動作を繰り返し、一方、当該応答のためのパルス信号の送信が完了していると きは (ステップ S4 ;Y)、次に、その応答のためのパルス信号の送信後に送信先である 他の質問器 PCmにおいて当該応答のためのパルス信号を用いて検出された質問器 PC1との間の距離を示す距離情報が、当該他の質問器 PCmからパルス信号として 送信されてきたか否かが確認される(ステップ S 5)。
[0324] そして、検出された距離情報の送信があつたときは (ステップ S5; Y)、その送信され た距離情報により示される距離を、質問器 PC1内の制御器 10において当該他の質 問器 PCmとの間の距離、又は他の質問器 PCm間相互の距離、或いは他の質問器 PCmが検出した無線タグ TGnと当該他の質問器 PCmとの間の距離であるとして登 録し (ステップ S6)、次のステップ S7に移行する。
[0325] 他方、上記ステップ S5の判定において、当該他の質問器 PCmからの距離情報の 送信がないときは (ステップ S5 ; N)、全ての他の質問器 PCmにおいて質問器 PC1と の距離が既に検出済みである(この場合は、新たに距離が検出されることがないので 、上記した距離情報の送信はないことになる)可能性があるので、次に、今度は質問 器 PC1におレ、て未だ検出された距離が登録されてレ、なレ、他の質問器 PCmがあるか 否かを確認する (ステップ S7)。そして、距離が未登録である他の質問器 PCmがある ときは (ステップ S7 ;Y)、質問器 PC1から距離検出要求のためのパルス信号を送信 し (ステップ S8)、その送信されたパルス信号に対応して送信先の他の質問器 (距離 が未登録である他の質問器) PCnから距離検出の待機状態である旨のパルス信号( 上記ステップ S3参照)が返信されてきたか否かを確認する(ステップ S9)。
[0326] ステップ S9の判定において、当該待機状態である旨のパルス信号が送信されてき ていないときは(ステップ S9 ; N)、そのまま上記ステップ S8の処理を繰り返し、一方、 送信されてきたときは (ステップ S9; Y)、その待機状態である旨のパルス信号を送信 してきた他の質問器 PCmに対して距離検出用のパルス信号を送信し、対応する返 信用のパルス信号を受信して当該他の質問器 PCmとの距離を検出する(ステップ S 10)。そして、その検出した距離を質問器 PC1と当該他の質問器 PCmとの間の距離 として当該質問器 PC1内の制御器 10において登録すると共に (ステップ S11)、その 登録した距離を示す距離情報を当該他の質問器 PCmに対して返信し (ステップ S12 )、更に通信可能範囲に存在している他の質問器 PCmにも送信し、当該他の質問器 PCmとの間での距離検出を完了し、次の質問器 PCnとの間の距離検出を実行すベ く上記ステップ S2に戻る。なお、上記ステップ S12に示す処理においては、他の質 問器 PCm力ら通知された距離も合わせて送信 (伝送)する。この後、距離が未登録 である質問器 PCnがなくなる(ステップ S7 ; N)まで上記ステップ S2乃至 12を繰り返 す。
[0327] 他方、上記ステップ S7の判定において、距離が未登録である他の質問器 PCmが ないときは(ステップ S7 ; N)、次に、それまで距離が登録されていた他の質問器 PC mであるが、例えばその電源スィッチがオフとされたこと等により質問器 PCnとしての 機能を発揮し得なくなった質問器 PCn (図 18において「終了端末」と示す)があるか 否かを確認する(ステップ S 13)。この確認処理は、例えば、何らかの情報を含むパル ス信号を送信したが対応する応答がない場合にその質問器 PCnを終了端末と認識 する。
[0328] そして、終了端末と認識された他の質問器 PCmがないときは(ステップ S13 ; N)後 述するステップ S 15に移行し、一方、終了端末と認識された他の質問器 PCmがある ときは (ステップ S13 ;Y)、その終了端末となった質問器 PCnと質問器 PC1との距離 を質問器 PC1において削除し (ステップ S14)、次に、実施形態における質問器 PCn (図 18において「半固定端末」と示す)の数が、無線タグ TGnの位置を検出するため に必要な数 (具体的には三つ)以上あるか否かを確認する(ステップ S15)。そして、 質問器 PCnの数が十分であるときは (ステップ S15; Y)後述するステップ S23以降の 処理に移行し、一方、半固定の質問器 PCnの数が不足であるときは (ステップ S15 ; N)、次に、質問器としての機能を有する移動式の端末を用いて必要な位置検出処 理を行うべく、当該移動式の端末が部屋 R内に存在してレ、るか否かを確認する (ステ ップ S16)。そして、移動式の端末すらないときは (ステップ S16 ; N)、再度上記ステツ プ S2に戻って上述してきた処理を繰り返し、一方、当該移動式の端末があるときは( ステップ S16 ;Y)、次に、質問器 PC1から距離検出要求のためのパルス信号を当該 移動式の端末に送信し (ステップ S 17)、その送信されたパルス信号に対応して送信 先の移動式の端末力 距離検出の待機状態である旨のパルス信号 (上記ステップ S 3参照)が返信されてきたか否かを確認する(ステップ S 18)。
[0329] ステップ S18の判定において、当該待機状態である旨のパルス信号が送信されて きていないときは(ステップ S18 ; N)、そのまま上記ステップ S17の処理を繰り返し、 一方、送信されてきたときは (ステップ S18 ;Y)、その待機状態である旨のパルス信号 を送信してきた移動式の端末に対して距離検出用のパルス信号を送信し、対応する 返信用のパルス信号を受信して当該移動式の端末との距離を検出する (ステップ S1 9)。そして、その検出した距離を質問器 PC1と当該移動式の端末との間の距離とし て当該質問器 PC1内の制御器 10において登録すると共に (ステップ S20)、その登 録した距離を示す距離情報を当該移動式の端末に対して返信すると共に他の質問 器 PCmにも送信し (ステップ S21)、当該移動式の端末との間での距離検出を完了 する。
[0330] 次に、上記移動式の端末の数を含めた質問器 PCnの数力 無線タグ TGnの位置 を検出するために必要な数 (具体的には、三つ)以上あるか否かを確認する(ステツ プ S22)。そして、質問器 PCn等の数が十分であるときは (ステップ S22 ;Y)後述する ステップ S23以降の処理に移行し、一方、質問器 PCn等の数がなお不足であるとき は (ステップ S22 ; N)、再度上記ステップ S2に戻って上述してきた処理を繰り返す。
[0331] 以上説明してきた処理が完了した後には、図 20 (b)に示すように、各質問器 PCn 同士の間におレ、て、それらの距離(図 20 (b)におレ、て「c」乃至「h」と示す)が検出さ れ、各質問器 PCnにおいて夫々登録される。
[0332] 次に、無線タグ TG1及び TG2との間の距離検出に移行する。
各無線タグ TG1及び TG2の位置を特定するために必要な数の質問器 PCn等があ るときは (ステップ S15 ;Y又はステップ S22 ;Y)、各質問器 PCnから位置検出のため の質問パルスとしてのパルス信号を各無線タグ TG1及び TG2に送信し、対応する応 答信号を受信する (ステップ S23)。
[0333] そして、その応答信号が予め設定されている強度以上の強度を有するものであるか 否力を判定し (ステップ S24)、当該強度以上の強度を有する応答信号を返信した無 線タグ TGn又はその他の反射物がないときは (ステップ S24)、一サイクル分の位置 検出処理の終了としての無線タグ TGnからの応答信号の検出を終了するか否かを 質問器 PC1上で確認し (ステップ S34)、終了するときは後述するステップ S38に移 行し、一方、応答信号の検出を終了しないときは (ステップ S34 ;Y)、再度上記ステツ プ S 24に移行する。
[0334] 一方、ステップ S24の判定において、上記設定された強度以上の強度を有する応 答信号を返信してきた無線タグ TGn又は他の反射物があるときは (ステップ S24 ;Y) 、次に、それが無線タグ TGnである力、或いは当該無線タグ TGn以外でパルス信号 を反射したものであるかを判別し (ステップ S25)、無線タグ TGnであるときは (ステツ プ S25 ;Y)、次にそれがいずれかのマーカタグ MTnであるか否かを確認する(ステツ プ S26 ;Y)。
[0335] そして、マーカタグ MTnでないときは(ステップ S26 ; N)後述するステップ S29に移 行し、無線タグ TGnについてそれまでの距離を検出する(ステップ S29)。一方、マー 力タグ MTnであるときは (ステップ S26; Y)、既に質問器 PC1において登録済みのマ 一力タグ ΜΤηであるか否かを確認し(ステップ S27)、登録済みのマーカタグ MTnで ないときは(ステップ S27; N)後述するステップ S29に移行し、登録済みのマーカタグ MTnであるときは (ステップ S27 ;Y)、その登録内容の変更があるか否かを上記応答 信号及び後述するステップ S41において予め入力されているデータに基づいて確認 し (ステップ S28)、登録内容の変更がないときは (ステップ S28 ; N)上記ステップ S2 4に戻って上述してきた処理を繰り返す。
[0336] 一方、ステップ S28の処理において、登録内容に変更があるときは(ステップ S28 ;
Y)、上述してきた原理に則ってその登録内容の変更があったマーカタグ MTnにつ いて距離を検出する(ステップ S29)。次に、当該ステップ S29の処理において検出 した距離を質問器 PC I内の制御器 10において登録し (ステップ S30)、更に当該検 出した質問器 PC 1との距離を他の質問器 PCmに通知する(ステップ S31)。このとき 、後述するステップ S38の処理において、他の質問器 PCmから無線タグ TGnまでの 距離の通知が当該他の質問器 PCm力 あった場合は、その情報も合わせて他の質 問器 PCmへ通知(伝送)する。
[0337] そして、他の各質問器 PCnから通知された各無線タグ TGn又はマーカタグ MTnと 当該他の質問器 PCmとの距離を質問器 PC 1内において登録することで部屋 Rにお ける各無線タグ TGnの位置を質問器 PC 1において決定し (ステップ S32)、更に質問 器 PC 1において無線タグ TGnの位置検出を終了する旨の操作が為されたか否かを 確認して(ステップ S33)、その操作が為されているときは(ステップ S33; Y)そのまま 実施形態の位置検出処理を完了し、一方、終了する旨の操作が為されていないとき は(ステップ S33 ; N)、上記ステップ S Iに戻って上述してきた処理を繰り返す。
[0338] 他方、上記ステップ S25の判定において、無線タグ TGnとしての識別情報が受信さ れなレ、等の理由により応答信号を送信したのが無線タグ TGnでないときは (ステップ S25 ; N)、次に、その応答信号の内容(又はその応答信号から検出される距離)が、 それまでに検出されているその応答信号の送信元までの距離が変化しているか否か を確認し (ステップ S35)、変化してレ、ないときは(ステップ S35; N)後述するステップ S37に移行し、一方、変化しているときは(ステップ S35 ; Y)、その送信元が未知の移 動体であると判定してその旨を質問器 PC 1上において報知する(ステップ S36)。
[0339] そして、移動体としての報知されたもの以外の他の無線タグ TGnからの応答信号の 内容を質問器 PC 1内の制御器 10において登録し (ステップ S37)、更に他の質問器 PCmにおいて検出された各無線タグ TGnとの距離が当該他の質問器 PCmから通 知されたか否かを確認し(ステップ S 38)、通知されないときは(ステップ S38; N)後述 するステップ S40の処理に移行し、通知されたときは(ステップ S38 ; Y)、その通知さ れた距離を他の質問器 PCmと各無線タグ TGnとの距離として質問器 PC 1において 登録する(ステップ S39)。
[0340] そして、その登録内容又は質問器 PC 1への入力内容等に基づいてマーカタグ MT nとしての登録内容が変更されたか否かを確認し (ステップ S40)、変更されていない ときは(ステップ S40 ; N)上記ステップ S32の処理に移行し、変更されているときは( ステップ S40 ;Y)、その変更後の内容で質問器 PCI内におけるマーカタグ MTnの 登録内容 (位置が変更されたこと又は新規に設置されたこと等)を変更し (ステップ S4 1)、更にその変更した登録内容を他の質問器 PCmに通知する(ステップ S42)。
[0341] この後は上記ステップ S32の処理に移行して無線タグ TGnの部屋 R内における位 置と決定し、実施形態の位置検出処理を終了する。
[0342] 以上説明してきた処理が完了した後には、図 20 (c)に示すように、各質問器 PCnと 無線タグ TGnとの間におレ、て、それら同士の距離(図 20 (c)におレ、て「i」乃至「k」と 示す)が検出され、各質問器 PCnにおいて夫々登録される。
[0343] また、各マーカタグ MTnと質問器 PCnとの間における距離も検出されている(図 20
(b)及び(c)において「a」及び「b」と示す)ので、部屋 R内における各無線タグ TGnの 絶対的な位置が確定できることになる。なお、マーカタグ MTnを用いない場合は、各 質問器 PCn及び無線タグ TGnの位置関係は相対的に確定されるに過ぎず、相互に 線対称となる二通りの位置関係のいずれか一方が実際の位置関係であることのみが 確定されることになる。
[0344] 以上夫々説明したように、第 3実施形態の無線通信システム SSの動作によれば、 ノルス信号及び応答信号の授受により各質問器 PCnと各無線タグ TGn間の距離並 びに夫々の位置を検出するので、搬送波を用いることなく各無線タグ TGn及び質問 器 PCn間の距離検出及びそれらの位置検出が可能となり、小型化 ·低消費電力化を 図りつつ当該距離検出及び位置検出が可能となる。
[0345] また、複数の、無線タグ TGnの夫々を識別し、検出された距離情報を各質問器 PC nに伝送するので、各質問器 PCnにおいて各無線タグ TGnを相互に識別しつつそ れらの位置を特定することができる。
[0346] 更に、マーカタグ MTnの位置を基準として各無線タグ TGnの部屋 R内における絶 対位置を検出するので、各無線タグ TGnに関する相対位置ではなく絶対位置として の無線タグ TGnの位置を検出することができる。
[0347] 更にまた、部屋 R内を移動する移動体からの応答信号に基づいてその移動体が無 線タグ TGnであるか否かを判別し、その移動体が無線タグ TGnでないときに報知す るので、部屋 R内に無線タグ TGnでなレ、移動体が侵入してレ、た場合でもこれを識別 してその旨を報知することができる。
[0348] また、パルス波を用いて距離情報を各質問器 PCnに伝送するので、搬送波を用い ることなく小型化 ·低消費電力化を図りつつ距離情報を伝送して各無線タグ TGnの 位置を特定することができる。
[0349] 更に、部屋 R内にある質問器 PCnの数を検出するので、各質問器 PCnの数を検出 することでその部屋 Rにおける無線タグ TGnの位置検出が可能か否かを予め検出す ること力 Sできる。
[0350] 更にまた、広帯域アンテナ 1を用いて質問器 PCnからのパルス信号を受信し当該 ノ ルス信号を変調して得られた応答信号を広帯域アンテナ 1を用いて質問器 PCnに 返信するので、搬送波を用いることなく各無線タグ TGnと各質問器 PCn間の距離検 出及びそれらの位置検出が可能となり J、型化 ·低消費電力化を図りつつ当該距離 検出及び位置検出が可能となる。
[0351] なお、上述した第 3実施形態においては、各質問器 PCn自体で部屋 R内の無線タ グ TGnの位置を検出する構成としたが、これ以外に、各質問器 PCnを端末として用 レ、、これらから得られる無線タグ TGnの位置情報を外部のコンピュータ等に伝送し、 当該外部のコンピュータにおいて部屋 R内の無線タグ TGnの位置検出を行うように 構成することもできる。
[0352] 更に、図 18及び図 19に示すフローチャートに対応するプログラムをフレキシブルデ イスク又はハードディスク等の情報記録媒体に記録しておき、或いはインターネット等 のネットワークを介して取得しておき、これらを汎用のマイクロコンピュータで読み出し て実行することにより、当該マイクロコンピュータを実施形態に係る制御器 10として機 肯させることち可肯である。
産業上の利用可能性
[0353] 以上夫々説明したように、本発明は、無線通信システムにおける無線タグの識別及 び距離測定の分野に利用することが可能であり、特に質問器を一般のパーソナルコ ンピュータに備えれば、そのパーソナルコンピュータが備えられている室内における 無線タグの位置特定の分野に適用すれば特に顕著な効果が得られる。

Claims

請求の範囲
[1] 広帯域アンテナにより受信されたパルス信号を用いて応答信号を生成する生成手 段と、
前記広帯域アンテナにより受信されたパルス信号を前記広帯域アンテナから前記 生成手段に伝送し且つ前記生成された応答信号を前記生成手段から前記広帯域ァ ンテナに伝送する伝送手段であって、予め設定された長さを有する伝送手段と、 前記パルス信号を受信し且つ前記応答信号を送信する前記広帯域アンテナと、 を備えることを特徴とする応答器。
[2] 請求項 1に記載の応答器において、
前記広帯域アンテナと前記生成手段との間の前記伝送手段の長さは、他の前記応 答器と異なる送信態様で前記広帯域アンテナから前記応答信号を送信させる長さで あることを特徴とする応答器。
[3] 請求項 1又は 2に記載の応答器において、
前記伝送手段は、予め設定された長さにおいて特性インピーダンスが予め設定さ れた値で一定であることを特徴とする応答器。
[4] 請求項 1から 3のいずれか一項に記載の応答器において、
前記伝送手段の長さは、前記受信されたパルス信号及び前記応答信号の当該伝 送手段上における伝搬速度に対して前記受信されたパルス信号のパルス幅に相当 する時間を乗じた値の二分の一以上の長さであることを特徴とする応答器。
[5] 請求項 1から 4のいずれか一項に記載の応答器において、
前記生成手段は、前記受信されたパルス信号に対するパルス反射係数を制御する 反射制御手段を含むことを特徴とする応答器。
[6] 請求項 1から 4のいずれか一項に記載の応答器において、
前記生成手段は、前記応答信号が有すべき信号態様に応じて前記伝送手段の実 効的な長さを制御する長さ制御手段を含むことを特徴とする応答器。
[7] 請求項 6に記載の応答器において、
前記長さ制御手段は、前記伝送手段の長さが、前記パルス信号及び前記応答信 号の当該伝送手段上における伝搬速度に対して前記パルス信号のパルス幅に相当 する時間を乗じて得られる乗算値の二分の一に当該乗算値の NZ4倍 (Nは 0又は 自然数)を加算した値の長さとなるように当該長さを制御することを特徴とする応答器
[8] 請求項 1に記載の応答器において、
複数の前記生成手段と、
一の前記広帯域アンテナにより受信されたパルス信号を当該広帯域アンテナから 各前記生成手段に夫々伝送し且つ前記生成された応答信号を各前記生成手段から 夫々前記広帯域アンテナに伝送する複数の前記伝送手段と、
を備え、各伝送手段の長さが相互に異なっていることを特徴とする応答器。
[9] 請求項 8に記載の応答器において、
各前記伝送手段の少なくとも一部としての機能を備える共用伝送手段を更に備え ることを特徴とする応答器。
[10] 請求項 1に記載の応答器において、
前記生成手段は、複数の共振周波数により共振可能な共振手段を備えることを特 徴とする応答器。
[11] 請求項 1から 10のいずれか一項に記載の応答器を要素応答器として複数備える応 答器であって、
前記伝送手段の長さ又は前記広帯域アンテナから見た前記伝送手段及び前記生 成手段の負荷インピーダンスの少なくともいずれか一つが各前記要素応答器毎に異 なってレ、ることを特徴とする応答器。
[12] 請求項 1から 11のレ、ずれか一項に記載の応答器であって、
電波を受信する受信アンテナと、
前記受信した電波を電力に変換して前記生成手段に供給する電力供給手段と、 を更に備えることを特徴とする応答器。
[13] 請求項 12に記載の応答器において、
前記電波は連続波であることを特徴とする応答器。
[14] 請求項 12又は 13に記載の応答器において、
前記受信アンテナは予め設定されている同調周波数に同調する狭帯域アンテナで あり、
前記電波は当該同調周波数を有する連続波であることを特徴とする応答器。
[15] 請求項 12又は 13に記載の応答器において、
前記広帯域アンテナが、前記受信アンテナを兼ねることを特徴とする応答器。
[16] 請求項 1から 15のいずれか一項に記載された応答器に対して前記パルス信号を送 信し且つ当該応答器力 の前記応答信号を受信する質問器であって、
前記パルス信号を生成するパルス生成手段と、
前記パルス信号を前記応答器に対して送信し且つ当該パルス信号に対応する前 記応答器からの前記応答信号を受信する広帯域アンテナと、
予め生成されている参照信号と、前記受信した応答信号と、を比較して前記応答器 を識別する識別手段と、
を備えることを特徴とする質問器。
[17] 請求項 16に記載の質問器において、
前記パルス生成手段は、
クロック信号に対して第 1の変調処理を施して第 1変調クロック信号を生成する第 1 変調クロック信号生成手段を備え、当該生成された第 1変調クロック信号を用いて前 記パルス信号を生成して前記広帯域アンテナに出力し、
前記識別手段は、
前記クロック信号に対して前記第 1の変調処理とは異なる第 2の変調処理を施して 第 2変調クロック信号を生成する第 2変調クロック信号生成手段を備え、当該生成さ れた第 2変調クロック信号を用いて前記参照信号を生成し前記応答信号との相関を とることを特徴とする質問器。
[18] 請求項 17に記載の質問器において、
前記第 1の変調処理及び前記第 2の変調処理は、擬似ランダム符号に基づいて前 記クロック信号を遅延させる変調処理であることを特徴とする質問器。
[19] 請求項 16から 18のいずれか一項に記載の質問器において、
受信した前記パルス信号に対応して前記応答器に備えられた前記広帯域アンテナ により反射された反射波を検出する反射波検出手段と、 前記応答信号に含まれる応答波を検出する応答波検出手段と、 前記反射波の受信時刻と前記応答波の受信時刻との時間である応答波間隔を検 出する応答波間隔検出手段と、
を備え、
前記識別手段は、前記検出された応答波間隔に基づいて各前記応答器を識別す ることを特徴とする質問器。
[20] 請求項 16から 19のいずれか一項に記載の質問器において、
受信した前記パルス信号に対応して前記応答器に備えられた前記広帯域アンテナ により反射された反射波の受信時刻と、前記パルス信号の送信時刻と、の時間であ る送信受信間隔を検出する送受信間隔検出手段と、
前記検出された送信受信間隔に基づいて、質問器と前記反射波を送信してきた前 記応答器との距離を認識する距離認識手段と、
を備えることを特徴とする質問器。
[21] 請求項 16から 20のいずれか一項に記載の質問器において、
前記応答信号の極性を判定する判定手段を更に備えることを特徴とする質問器。
[22] 請求項 10に記載された応答器に対して前記パルス信号を送信し且つ当該応答器 力 の前記応答信号を受信する質問器であって、
前記パルス信号を生成する生成手段と、
前記パルス信号を前記応答器に対して送信し且つ当該パルス信号に対応する前 記応答器からの前記応答信号を受信する広帯域アンテナと、
前記受信した応答信号をサンプリングして周波数解析する解析手段と、 前記周波数解析の結果に基づいて各前記応答器を識別する識別手段と、 を備えることを特徴とする質問器。
[23] 請求項 22に記載の質問器において、
予め生成されている参照信号を前記受信した応答信号に重畳し、重畳信号を生成 する重畳手段と、
前記解析手段は、前記生成された重畳信号をサンプリングして周波数解析すること を特徴とする質問器。
[24] 請求項 23に記載の質問器において、
前記参照信号は、予め生成されているクロック信号を用いて生成された参照信号で あることを特徴とする質問器。
[25] 請求項 16から 24のいずれか一項に記載の質問器において、
請求項 12から 15のいずれか一項に記載の応答器に対して前記電波を送信する電 波送信手段を更に備えることを特徴とする質問器。
[26] 一又は複数の請求項 1に記載の応答器と、
複数の請求項 16に記載の質問器と、
各前記質問器において検出された前記応答器と各前記質問器との距離に基づい て各前記応答器の位置を特定する特定手段と、
により構成されることを特徴とする無線通信システム。
[27] 質問波としてパルス信号を送信する複数の質問器と、前記パルス信号を受信し且 つ当該受信したパルス信号に基づき応答信号を返信する応答器と、を含む位置検 出システムであって、
各前記質問器が送信した前記パルス信号を受信することにより当該各質問器間の 距離を検出する第 1距離検出手段と、
前記パルス信号及び前記応答信号に基づいて各前記質問器から前記応答器まで の距離を検出する第 2距離検出手段と、
夫々検出された各前記距離に基づいて各前記質問器及び前記応答器の前記位 置検出システム内における位置を夫々検出する機器位置検出手段と、
を備えることを特徴とする位置検出システム。
[28] 請求項 27に記載の位置検出システムにおいて、
前記応答器を複数備え、
前記応答信号に基づいて各前記応答器を識別する応答器識別手段と、 夫々検出された各前記距離を示す距離情報を各前記質問器に伝送する距離情報 伝送手段と、
を更に備えることを特徴とする位置検出システム。
[29] 請求項 28に記載の位置検出システムにおいて、 当該位置検出システム内における位置を予め特定可能な前記応答器である特定 応答器を更に含み、
前記特定応答器と各前記質問器との間の距離を検出する第 3距離検出手段を更 に備え、
前記機器位置検出手段は、各前記検出された距離に基づいて各前記質問器及び 各前記応答器の前記位置検出システム内における絶対位置を検出することを特徴と する位置検出システム。
[30] 請求項 27から 29のいずれか一項に記載の位置検出システムにおいて、
前記送信されたパルス信号に対応して当該位置検出システム内にある移動体から 返信されてくる返信信号を受信する受信手段と、
前記受信した返信信号に基づいて前記移動体が前記応答器であるか否かを判別 する判別手段と、
前記移動体が前記応答器でないと判別されたとき、その旨を報知する報知手段と、 を更に備えることを特徴とする位置検出システム。
[31] 請求項 28から 30のいずれか一項に記載の位置検出システムにおいて、
前記距離情報伝送手段は、パルス波を用いて前記距離情報を各前記質問器に伝 送することを特徴とする位置検出システム。
[32] 請求項 27から 31のいずれか一項に記載の位置検出システムにおいて、
当該位置検出システムを構成する前記質問器の数を検出する質問器数検出手段 を更に備えることを特徴とする位置検出システム。
[33] 請求項 27から 32のいずれか一項に記載の位置検出システムに含まれる前記応答 器であって、
前記送信されたパルス信号を受信し且つ前記応答信号を送信する広帯域アンテ ナと、
前記受信したパルス信号を変調して前記応答信号を生成する生成手段と、 前記受信したパルス信号を前記広帯域アンテナから前記生成手段に伝送し且つ 前記生成された応答信号を前記生成手段から前記広帯域アンテナに伝送する伝送 手段と、 を備えることを特徴とする応答器。
[34] 質問波としてパルス信号を送信する複数の質問器と、前記パルス信号を受信し且 つ当該受信したパルス信号に基づき応答信号を返信する応答器と、を含む位置検 出システムにおいて実行される位置検出方法であって、
各前記質問器が送信した前記パルス信号を受信することにより当該各質問器間の 距離を検出する第 1距離検出工程と、
前記パルス信号及び前記応答信号に基づいて各前記質問器から前記応答器まで の距離を検出する第 2距離検出工程と、
夫々検出された各前記距離に基づいて各前記質問器及び前記応答器の前記位 置検出システム内における位置を夫々検出する機器位置検出工程と、
を含むことを特徴とする位置検出方法。
[35] 請求項 34に記載の位置検出方法において、
前記位置検出システム内には複数の前記応答器が備えられており、
前記応答信号に基づいて各前記応答器を識別する応答器識別工程と、 夫々検出された各前記距離を示す距離情報を各前記質問器に伝送する距離情報 伝送工程と、
を更に含むことを特徴とする位置検出方法。
[36] 質問波としてパルス信号を送信する複数の質問器と、前記パルス信号を受信し且 つ当該受信したパルス信号に基づき応答信号を返信する応答器と、を含む位置検 出システムに含まれるコンピュータを、
各前記質問器が送信した前記パルス信号を受信することにより当該各質問器間の 距離を検出する第 1距離検出手段、
前記パルス信号及び前記応答信号に基づいて各前記質問器から前記応答器まで の距離を検出する第 2距離検出手段、及び、
夫々検出された各前記距離に基づいて各前記質問器及び前記応答器の前記位 置検出システム内における位置を夫々検出する機器位置検出手段、
として機能させることを特徴とする位置検出用プログラム。
[37] 請求項 36に記載の位置検出用プログラムが前記コンピュータで読取可能に記録さ れてレ、ることを特徴とする情報記録媒体。
PCT/JP2005/003786 2004-03-17 2005-03-04 位置検出システム、応答器及び質問器、無線通信システム、位置検出方法、位置検出用プログラム及び情報記録媒体 WO2005088850A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05720058A EP1732239A4 (en) 2004-03-17 2005-03-04 POSITION DETECTION SYSTEM, RESPONSE DEVICE AND INTERROGATION DEVICE, RADIO COMMUNICATION SYSTEM, POSITION DETECTION METHOD, POSITION DETECTION PROGRAM, AND INFORMATION RECORDING MEDIUM
US11/532,649 US8284027B2 (en) 2004-03-17 2006-09-18 Position detecting system, responder and interrogator, wireless communication system, position detecting method, position detecting program, and information recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004076548 2004-03-17
JP2004-076548 2004-03-17
JP2004-096252 2004-03-29
JP2004096252 2004-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/532,649 Continuation-In-Part US8284027B2 (en) 2004-03-17 2006-09-18 Position detecting system, responder and interrogator, wireless communication system, position detecting method, position detecting program, and information recording medium

Publications (1)

Publication Number Publication Date
WO2005088850A1 true WO2005088850A1 (ja) 2005-09-22

Family

ID=34975935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003786 WO2005088850A1 (ja) 2004-03-17 2005-03-04 位置検出システム、応答器及び質問器、無線通信システム、位置検出方法、位置検出用プログラム及び情報記録媒体

Country Status (3)

Country Link
US (1) US8284027B2 (ja)
EP (1) EP1732239A4 (ja)
WO (1) WO2005088850A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284027B2 (en) 2004-03-17 2012-10-09 Brother Kogyo Kabushiki Kaisha Position detecting system, responder and interrogator, wireless communication system, position detecting method, position detecting program, and information recording medium

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327802B2 (en) * 2004-03-19 2008-02-05 Sirit Technologies Inc. Method and apparatus for canceling the transmitted signal in a homodyne duplex transceiver
WO2007127948A2 (en) 2006-04-27 2007-11-08 Sirit Technologies Inc. Adjusting parameters associated with leakage signals
EP1850267B1 (en) * 2006-04-28 2011-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and position detecting method using the semiconductor device
EP1881338B1 (en) * 2006-07-20 2011-09-07 Semiconductor Energy Laboratory Co., Ltd. Position information detection system and position information detection method
EP2098978A1 (en) * 2006-11-28 2009-09-09 Brother Kogyo Kabushiki Kaisha Radio tag information system
US20080191845A1 (en) * 2007-02-09 2008-08-14 Symbol Technologies, Inc. Location-Based Power Management in RFID Applications
WO2008120196A2 (en) * 2007-03-29 2008-10-09 Sandlinks Systems Ltd. Active virtual fence using mesh networked rf tags
US8248212B2 (en) 2007-05-24 2012-08-21 Sirit Inc. Pipelining processes in a RF reader
US8285222B2 (en) * 2007-09-12 2012-10-09 Raytheon Company System and method for identification of communication devices
US9262912B2 (en) * 2008-02-25 2016-02-16 Checkpoint Systems, Inc. Localizing tagged assets using modulated backscatter
US8427316B2 (en) 2008-03-20 2013-04-23 3M Innovative Properties Company Detecting tampered with radio frequency identification tags
US8446256B2 (en) * 2008-05-19 2013-05-21 Sirit Technologies Inc. Multiplexing radio frequency signals
US7973660B2 (en) * 2008-07-23 2011-07-05 Sensormatic Electronics, LLC Electronic article surveillance deactivator with multiple label detection and method thereof
WO2010041463A1 (ja) * 2008-10-09 2010-04-15 パナソニック株式会社 基地局装置及び測距方法
US8188863B2 (en) * 2008-11-26 2012-05-29 Symbol Technologies, Inc. Detecting loading and unloading of material
US9805222B2 (en) * 2009-01-08 2017-10-31 Zest Labs, Inc. RFID reader discipline
US8169312B2 (en) * 2009-01-09 2012-05-01 Sirit Inc. Determining speeds of radio frequency tags
WO2010130080A1 (zh) * 2009-05-11 2010-11-18 华为技术有限公司 一种共享射频接收单元的方法、装置及系统
US20100289623A1 (en) * 2009-05-13 2010-11-18 Roesner Bruce B Interrogating radio frequency identification (rfid) tags
US8416079B2 (en) * 2009-06-02 2013-04-09 3M Innovative Properties Company Switching radio frequency identification (RFID) tags
KR101706616B1 (ko) * 2009-11-09 2017-02-14 삼성전자주식회사 로드 임피던스 결정 장치, 무선 전력 전송 장치 및 그 방법
US20110205025A1 (en) * 2010-02-23 2011-08-25 Sirit Technologies Inc. Converting between different radio frequencies
FI122310B (fi) * 2010-04-09 2011-11-30 Teknologian Tutkimuskeskus Vtt Menetelmä, järjestelmä ja tietokoneohjelmatuote RFID-tunnisteiden etäisyysmittaukseen
JP2012023565A (ja) * 2010-07-14 2012-02-02 Sony Corp 通信システム並びに通信装置
US10062025B2 (en) 2012-03-09 2018-08-28 Neology, Inc. Switchable RFID tag
JP6250918B2 (ja) 2012-06-13 2017-12-20 京セラ株式会社 携帯電子機器、位置確認方法、及び位置確認プログラム
US10571591B2 (en) 2016-04-28 2020-02-25 Fluke Corporation RF in-wall image registration using optically-sensed markers
US10209357B2 (en) * 2016-04-28 2019-02-19 Fluke Corporation RF in-wall image registration using position indicating markers
US10564116B2 (en) 2016-04-28 2020-02-18 Fluke Corporation Optical image capture with position registration and RF in-wall composite image
US10254398B2 (en) 2016-04-28 2019-04-09 Fluke Corporation Manipulation of 3-D RF imagery and on-wall marking of detected structure
US10585203B2 (en) 2016-04-28 2020-03-10 Fluke Corporation RF in-wall image visualization
US10302793B2 (en) 2016-08-04 2019-05-28 Fluke Corporation Blending and display of RF in wall imagery with data from other sensors
GB2571873B (en) * 2016-11-29 2022-02-16 Walmart Apollo Llc Systems and methods for determining label positions
US10444344B2 (en) 2016-12-19 2019-10-15 Fluke Corporation Optical sensor-based position sensing of a radio frequency imaging device
CN106686549A (zh) * 2017-03-08 2017-05-17 天津乾丰机电设备有限公司 一种基于无线定位基站的共享单车停车场系统
JP7018448B2 (ja) * 2017-09-05 2022-02-10 古野電気株式会社 レーダ装置、及びトランスポンダ応答遅延の取得方法
US11126905B2 (en) * 2018-11-16 2021-09-21 Georgia Tech Research Corporation Antenna-less RFID tag
US20220120893A1 (en) * 2019-03-01 2022-04-21 Lg Electronics Inc. Joint frequency-and-phase modulation for multi-antenna backscatter vehicular position
JP7194292B2 (ja) * 2019-04-17 2022-12-21 アップル インコーポレイテッド 無線位置特定可能タグ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236166A (ja) * 2001-02-07 2002-08-23 Nippon Telegr & Teleph Corp <Ntt> 位置検出システム
JP2003189353A (ja) * 2001-10-09 2003-07-04 General Electric Co <Ge> 超広帯域伝送基準cdma通信システムの送信器の位置探索
JP2004024551A (ja) * 2002-06-26 2004-01-29 Renesas Technology Corp センサシステム用半導体装置
JP2004503125A (ja) * 2000-07-04 2004-01-29 クレディパス カンパニー リミテッド 受動トランスポンダ認識システム及びクレジットカード式トランスポンダ

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US43931A (en) * 1864-08-23 Improvement in toilet-combs
US2347A (en) * 1841-11-10 peters
US189975A (en) * 1877-04-24 Improvement in wagon-loaders
US69025A (en) * 1867-09-17 Improved furnace foe smelting obes of silver
US58963A (en) * 1866-10-16 Improvement in machinery for forging pipe-joints and other similar articles
US3969725A (en) * 1974-06-12 1976-07-13 The United States Of America As Represented By The Secretary Of Transportation Distance measuring equipment
US4069472A (en) * 1975-12-25 1978-01-17 Tokyo Shibaura Electric Co., Ltd. Foreground subject-identifying apparatus
JP3100716B2 (ja) * 1991-01-04 2000-10-23 シーエスアイアール 識別装置
US5519400A (en) * 1993-04-12 1996-05-21 The Regents Of The University Of California Phase coded, micro-power impulse radar motion sensor
US5523760A (en) * 1993-04-12 1996-06-04 The Regents Of The University Of California Ultra-wideband receiver
US5345471A (en) * 1993-04-12 1994-09-06 The Regents Of The University Of California Ultra-wideband receiver
US5774091A (en) * 1993-04-12 1998-06-30 The Regents Of The University Of California Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities
US5510800A (en) * 1993-04-12 1996-04-23 The Regents Of The University Of California Time-of-flight radio location system
US5517198A (en) * 1993-04-12 1996-05-14 The Regents Of The University Of California Ultra-wideband directional sampler
US5757320A (en) * 1993-04-12 1998-05-26 The Regents Of The University Of California Short range, ultra-wideband radar with high resolution swept range gate
US5661490A (en) * 1993-04-12 1997-08-26 The Regents Of The University Of California Time-of-flight radio location system
US5457394A (en) * 1993-04-12 1995-10-10 The Regents Of The University Of California Impulse radar studfinder
US5767953A (en) * 1993-04-12 1998-06-16 The Regents Of The University Of California Light beam range finder
US5361070B1 (en) 1993-04-12 2000-05-16 Univ California Ultra-wideband radar motion sensor
DE59509359D1 (de) * 1994-04-15 2001-08-02 Siemens Ag Sensorsystem
US5589838A (en) * 1994-09-06 1996-12-31 The Regents Of The University Of California Short range radio locator system
US5576627A (en) 1994-09-06 1996-11-19 The Regents Of The University Of California Narrow field electromagnetic sensor system and method
US7321611B2 (en) 1994-09-20 2008-01-22 Alereen, Inc. Method and transceiver for full duplex communication of ultra wideband signals
JP3395403B2 (ja) 1994-09-20 2003-04-14 株式会社デンソー 移動体識別装置およびその移動体判定方法
US5832035A (en) * 1994-09-20 1998-11-03 Time Domain Corporation Fast locking mechanism for channelized ultrawide-band communications
US5687169A (en) * 1995-04-27 1997-11-11 Time Domain Systems, Inc. Full duplex ultrawide-band communication system and method
US5677927A (en) * 1994-09-20 1997-10-14 Pulson Communications Corporation Ultrawide-band communication system and method
US5649296A (en) * 1995-06-19 1997-07-15 Lucent Technologies Inc. Full duplex modulated backscatter system
US5933079A (en) * 1995-09-01 1999-08-03 Remote Data Systems, Inc. Signal discriminator and positioning system
US5952922A (en) * 1996-12-31 1999-09-14 Lucent Technologies Inc. In-building modulated backscatter system
US6114971A (en) * 1997-08-18 2000-09-05 X-Cyte, Inc. Frequency hopping spread spectrum passive acoustic wave identification device
EP1296280A1 (en) * 1997-09-11 2003-03-26 Precision Dynamics Corporation Rf-id tag with integrated circuit consisting of organic materials
US6177872B1 (en) * 1998-03-13 2001-01-23 Intermec Ip Corp. Distributed impedance matching circuit for high reflection coefficient load
US6501807B1 (en) * 1998-02-06 2002-12-31 Intermec Ip Corp. Data recovery system for radio frequency identification interrogator
DE60006370T2 (de) * 1999-03-26 2004-09-09 Isis Innovation Ltd., Summertown Transpondern
WO2001006401A1 (en) * 1999-07-15 2001-01-25 Pinpoint Corporation Method and apparatus for mobile tag reading
DE19957557A1 (de) * 1999-11-30 2001-06-07 Siemens Ag Identifikationssystem, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben des Identifikationssystems
CA2408488C (en) * 2000-05-08 2010-03-09 Checkpoint Systems, Inc. Radio frequency detection and identification system
US6668008B1 (en) * 2000-06-06 2003-12-23 Texas Instruments Incorporated Ultra-wide band communication system and method
EP1299743A2 (en) * 2000-07-03 2003-04-09 Ecole Polytechnique Federale De Lausanne (Epfl) Method and wireless terminal for generating and maintaining a relative positioning system
US6717516B2 (en) * 2001-03-08 2004-04-06 Symbol Technologies, Inc. Hybrid bluetooth/RFID based real time location tracking
EP1298812B1 (fr) 2001-09-27 2015-03-11 STMicroelectronics S.A. Procédé et dispositif de décodage d'un signal incident impulsionnel du type à bande ultra large, en particulier pour un système de communication sans fil.
US7005964B2 (en) * 2002-04-08 2006-02-28 P. J. Edmonson Ltd. Dual track surface acoustic wave RFID/sensor
US7511604B2 (en) * 2002-05-16 2009-03-31 Sandlinks Systems Ltd. Method and system for distance determination of RF tags
US7042388B2 (en) * 2003-07-15 2006-05-09 Farrokh Mohamadi Beacon-on-demand radar transponder
JP2007504537A (ja) * 2003-08-29 2007-03-01 シンボル テクノロジーズ インコーポレイテッド 選択可能なバックスキャッタパラメータを持つrfidシステム
WO2005088850A1 (ja) 2004-03-17 2005-09-22 Brother Kogyo Kabushiki Kaisha 位置検出システム、応答器及び質問器、無線通信システム、位置検出方法、位置検出用プログラム及び情報記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503125A (ja) * 2000-07-04 2004-01-29 クレディパス カンパニー リミテッド 受動トランスポンダ認識システム及びクレジットカード式トランスポンダ
JP2002236166A (ja) * 2001-02-07 2002-08-23 Nippon Telegr & Teleph Corp <Ntt> 位置検出システム
JP2003189353A (ja) * 2001-10-09 2003-07-04 General Electric Co <Ge> 超広帯域伝送基準cdma通信システムの送信器の位置探索
JP2004024551A (ja) * 2002-06-26 2004-01-29 Renesas Technology Corp センサシステム用半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1732239A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284027B2 (en) 2004-03-17 2012-10-09 Brother Kogyo Kabushiki Kaisha Position detecting system, responder and interrogator, wireless communication system, position detecting method, position detecting program, and information recording medium

Also Published As

Publication number Publication date
EP1732239A1 (en) 2006-12-13
EP1732239A4 (en) 2007-12-26
US8284027B2 (en) 2012-10-09
US20070018792A1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
WO2005088850A1 (ja) 位置検出システム、応答器及び質問器、無線通信システム、位置検出方法、位置検出用プログラム及び情報記録媒体
EP1832004B1 (en) Ultra wideband radio frequency identification techniques
US9183418B2 (en) Half bit correlator combining for data demodulation
JP4265686B2 (ja) 距離測定装置、距離測定方法、反射体、および通信システム
US7385511B2 (en) Carrierless RFID system
US20060145853A1 (en) System and method for detecting objects and communicating information
JP4609123B2 (ja) 応答器及び質問器並びに無線通信システム
JP4650053B2 (ja) 質問器、応答器、位置検出方法および位置検出用プログラム
Guidi et al. Passive millimeter-wave RFID using backscattered signals
US20090267745A1 (en) Reader for wireless identification ic tag and wireless identification ic tag system
KR100807109B1 (ko) 무선 주파수 인식 시스템의 리더 및 그 제어 방법
Koswatta et al. Development of digital control section of RFID reader for multi-bit chipless RFID tag reading
KR101136160B1 (ko) 이중 대역 rfid 태그
KR101114158B1 (ko) Tdr 구조의 rfid 트랜시버
WO2007072563A1 (ja) Rfidシステム及びrfid読み取り装置
JP2011145196A (ja) 距離測定装置
Jeoti et al. Wireless RFID/sensor network using SAW (WiRSeNS): A feasibility study
Boaventura Efficient Wireless Power Transfer and Radio Frequency Identification Systems
d Millimetre et al. Analysis and Design of U
KR20090029834A (ko) 무선 인식 ic 태그용 리더 및 무선 인식 ic 태그 시스템
Guidi Study of ultra wide band modulated backscattering based RFID systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11532649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005720058

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005720058

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11532649

Country of ref document: US