WO2005087350A1 - Verfahren zum entfernen von kohlendioxid aus rauchgasen - Google Patents

Verfahren zum entfernen von kohlendioxid aus rauchgasen Download PDF

Info

Publication number
WO2005087350A1
WO2005087350A1 PCT/EP2005/002499 EP2005002499W WO2005087350A1 WO 2005087350 A1 WO2005087350 A1 WO 2005087350A1 EP 2005002499 W EP2005002499 W EP 2005002499W WO 2005087350 A1 WO2005087350 A1 WO 2005087350A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
carbon dioxide
tertiary aliphatic
aliphatic amine
alkyl
Prior art date
Application number
PCT/EP2005/002499
Other languages
English (en)
French (fr)
Inventor
Norbert Asprion
Iven Clausen
Ute Lichtfers
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US10/592,419 priority Critical patent/US20080098892A1/en
Priority to CA002557911A priority patent/CA2557911A1/en
Priority to JP2007502289A priority patent/JP2007527791A/ja
Priority to EP05715884A priority patent/EP1725321A1/de
Publication of WO2005087350A1 publication Critical patent/WO2005087350A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a method for removing carbon dioxide from gas streams with low carbon dioxide partial pressures, in particular for removing carbon dioxide from flue gases.
  • aqueous solutions of organic bases e.g. B. alkanolamines
  • organic bases e.g. B. alkanolamines
  • the absorbent can be regenerated by heating, relaxing to a lower pressure or stripping, the ionic products reacting back to acid gases and / or the acid gases being stripped off using steam. After the regeneration process, the absorbent can be reused.
  • Flue gases have very low carbon dioxide partial pressures, since they usually occur at a pressure close to atmospheric pressure and typically contain 3 to 13% by volume of carbon dioxide.
  • the absorbent In order to achieve an effective removal of carbon dioxide, the absorbent must have a high sour gas affinity, which usually means that the carbon dioxide absorption is highly exothermic. On the other hand, the high amount of enthalpy of absorption causes an increased energy expenditure in the regeneration of the absorbent.
  • EP-A 558 019 describes a process for removing carbon dioxide from combustion gases, in which the gas is mixed with an aqueous solution of a sterically hindered amine, such as 2-amino-2-methyl-1-propanol, 2- (methylamino) at atmospheric pressure.
  • a sterically hindered amine such as 2-amino-2-methyl-1-propanol, 2- (methylamino) at atmospheric pressure.
  • EP-A 558 019 also describes a process in which the gas at atmospheric pressure is mixed with an aqueous solution of an amine such as 2-amino-2-methyl-1, 3-propanediol, 2-amino-2-methyl-1-propanol, 2-amino-2-ethyl-1, 3-propanediol, t-butyldiethanolamine and 2-amino-2-hydroxymethyl-1, 3-propanediol, and an activator such as piperazine, piperidine, morpholine, glycine, 2-methylaminoethanol, 2- Piperidinethanol and 2-ethylaminoethanol, is treated.
  • an amine such as 2-amino-2-methyl-1, 3-propanediol, 2-amino-2-methyl-1-propanol, 2-amino-2-ethyl-1, 3-propanediol, t-butyldiethanolamine and 2-amino-2-hydroxymethyl-1, 3-propanedio
  • EP-A 879 631 discloses a process for removing carbon dioxide from combustion gases, in which the gas is treated with an aqueous solution of a secondary and a tertiary amine at atmospheric pressure.
  • EP-A 647 462 describes a process for removing carbon dioxide from combustion gases, in which the gas at atmospheric pressure is mixed with an aqueous solution of a tertiary alkanolamine and an activator, such as diethylene triamine, triethylene tetramine, tetraethylene pentamine; 2,2-dimethyl-1,3-diaminopropane, hexamethylenediamine, 1,4-diaminobutane, 3,3-iminotrispropylamine, tris (2-aminoethyl) amine, N- (2-aminoethyl) piperazine, 2- (aminoethyl) ethanol, 2- (methylamino) ethanol, 2- (n-butylamino) ethanol, is treated.
  • a tertiary alkanolamine and an activator such as diethylene triamine, triethylene tetramine, tetraethylene pentamine; 2,2-dimethyl-1,3-dia
  • the object is achieved by a method for removing carbon dioxide from a gas stream in which the partial pressure of the carbon dioxide in the gas stream is less than 200 mbar, usually 20 to 150 mbar, the gas stream being brought into contact with a liquid absorbent, which is an aqueous solution
  • R 1 is d-Ce alkyl, preferably C 1 -C 2 alkyl
  • R 2 is C -C 6 alkylene, preferably C 2 -C 3 alkylene.
  • component (A) Mixtures of various tertiary aliphatic airlines can also be used as component (A).
  • Suitable tertiary aliphatic amines are, for. B. triethanolamine (TEA), diethylethanolamine (DEEA) and methyldiethanolamine (MDEA).
  • the tertiary aliphatic amine preferably has a pK a value (measured at 25 ° C.) of 9 to 11, in particular 9.3 to 10.5. In the case of polybasic amines, at least one pK a value is in the range given.
  • the tertiary aliphatic amine is preferably characterized by an amount of the enthalpy of reaction ⁇ R H of the protonation reaction
  • reaction enthalpy of reaction ⁇ R H of the protonation reaction for methyldiethanolamine is approximately - 35 kJ / mol.
  • the reaction enthalpy ⁇ R H can be estimated from the pK values at different temperatures using the following equation:
  • tertiary aliphatic amines with a relatively high amount of the reaction enthalpy ⁇ R H are particularly suitable for the process according to the invention. This is probably due to the fact that the temperature dependence of the equilibrium constants of the protonation reaction is proportional to the reaction enthalpy ⁇ R H. In the case of amines with a high enthalpy of reaction ⁇ R H, the temperature dependence of the position of the protonation equilibrium is more pronounced. Since the regeneration of the absorbent takes place at a higher temperature than the absorption step, it is possible to provide absorbents which allow effective removal of carbon dioxide in the absorption step even at low carbon dioxide partial pressures, but which can be regenerated with relatively little energy input.
  • the tertiary aliphatic amine has the general formula NR a R b R, in which one or two of the radicals R a , R ° and R c , preferably a radical R a , R b or R c , for a C 4 - C 8 alkyl group with ⁇ -branching, a C 2 -C 6 hydroxyalkyl group, -C-C e -alkoxy-C 2 -C 6 -alkyl group, di (C ⁇ -C 6 -alkyl) amino-C 2 -C 6 - alkyl group or di (-CC 6 -alkyl) amino-C 2 -C 6 -alkyloxy-C 2 -C 6 -alkyl group and the remaining radicals R a , R b and R c are unsubstituted C Ce alkyl groups, preferably C 2 -C 6 alkyl groups.
  • the C 4 -C 8 alkyl group with ⁇ -branching is preferably a 2-ethylhexyl or cyclohexylmethyl group.
  • the C 2 -C 6 hydroxyalkyl group is preferably a 2-hydroxyethyl or 3-hydroxypropyl group.
  • the CrC ⁇ -alkoxy-Ca-Ce-alkyl group is preferably a 2-methoxyethyl or 3-methoxypropyl group.
  • the di (-C 6 -alkyl) amino-C 2 -C 6 -alkyl group is preferably a 2-N, N-dimethylaminoethyl or 2- N, N-diethylaminoethyl group.
  • the di (C 1 -C 6 alkyl) amino-C 2 -C 6 alkyloxy-C 2 -C 8 alkyl group is preferably an N, N-dimethylaminoethyloxyethyl or N, N-diethylaminoethyloxyethyl group.
  • Particularly preferred tertiary aliphatic amines are selected from cyclohexylmethyldimethylamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, 2-diisopropylaminoethanol, 3-dimethylaminopropanol, 3-diethylaminopropanol, 3- Methoxypropyldimethylamine, NNN'.N'-tetramethylethylenediamine, NN-diethyl-N'.N'-dimethylethylenediamine, NNN'.N'-tetraethylethylenediamine, N, N, N ', N'-tetramethyl-1,3-propanediamine, NNN'.N'-Tetraethyl-I .S-propanediamine and bis (2-dimethylaminoethyl) ether.
  • a preferred activator is 3-methylaminopropylamine.
  • the concentration of the tertiary aliphatic amine is usually 20 to 60% by weight, preferably 25 to 50% by weight, and the concentration of the activator 1 to 10% by weight, preferably 2 to 8% by weight, based on the Total weight of the absorbent.
  • the aliphatic amines are used in the form of their aqueous solutions.
  • the solutions may additionally contain physical solvents, e.g. B. are selected from cyclotetramethylene sulfone (sulfolane) and its derivatives, aliphatic acid amides (acetylmorpholine, N-formylmorpholine), N-alkylated pyrrolidones and corresponding piperidones, such as N-methylpyrrolidone (NMP), propylene carbonate, methanol, dialkyl ethers of polyethylene glycols and mixtures from that.
  • physical solvents e.g. B. are selected from cyclotetramethylene sulfone (sulfolane) and its derivatives, aliphatic acid amides (acetylmorpholine, N-formylmorpholine), N-alkylated pyrrolidones and corresponding piperidones, such as N-methylpyrrolidone (
  • the absorbent according to the invention can contain further functional constituents, such as stabilizers, in particular antioxidants, cf. z. B. DE 102004011427.
  • acid gases such as e.g. B. HS, SO 2 , CS 2 , HCN, COS, NO 2 , HCl, disulfides or mercaptans, removed from the gas stream.
  • the gas stream is generally a gas stream that is formed in the following way:
  • the oxidation can occur under the appearance of a flame, ie as conventional combustion, or as an oxidation without appearance of a flame, e.g. B. in the form of a catalytic oxidation or partial oxidation.
  • Organic substances that are subjected to combustion are usually fossil fuels such as coal, natural gas, petroleum, petrol, diesel, raffinates or kerosene, biodiesel or waste materials containing organic substances.
  • Oxidation are e.g. As methanol or methane, which can be converted to formic acid or formaldehyde.
  • Waste materials that are subjected to oxidation, composting or storage are typically household waste, plastic waste or packaging waste.
  • the organic substances are mostly burned with air in conventional combustion plants.
  • the composting and storage of waste materials containing organic substances is generally carried out in landfills.
  • the exhaust gas or the exhaust air of such systems can advantageously be treated by the method according to the invention.
  • bacteria decomposition As organic substances for bacterial decomposition, manure, straw, liquid manure, sewage sludge, fermentation residues and the like are usually used. Bacterial decomposition takes place e.g. in common biogas plants. The exhaust air from such systems can advantageously be treated by the method according to the invention.
  • the process is also suitable for the treatment of exhaust gases from fuel cells or chemical synthesis plants that use (partial) oxidation of organic substances.
  • the method according to the invention can of course also be applied to unburned fossil gases, such as natural gas, e.g. B. so-called coal seam gases, d. H. gases produced in the production of coal; that are collected and compressed.
  • unburned fossil gases such as natural gas, e.g. B. so-called coal seam gases, d. H. gases produced in the production of coal; that are collected and compressed.
  • these gas streams contain less than 50 mg / m 3 sulfur dioxide under normal conditions.
  • the output gases can either have the pressure that corresponds approximately to the pressure of the ambient air, that is, for. B. normal pressure or a pressure that deviates from normal pressure by up to 1 bar.
  • Devices suitable for carrying out the process according to the invention comprise at least one washing column, eg. B. packing, packing and tray columns, and / or other absorbers such as membrane contactors, radial flow washers, jet washers, Venturi washers and rotary spray washers.
  • the treatment of the gas stream with the absorbent is preferably carried out in a washing column in countercurrent.
  • the gas stream is generally fed into the lower region and the absorbent into the upper region of the column.
  • Wash columns made of plastic, such as polyolefins or polytetrafluoroethylene, or wash columns whose inner surface is completely or partially lined with plastic or rubber are also suitable for carrying out the process according to the invention.
  • Diaphragm contactors with a plastic housing are also suitable.
  • the temperature of the absorbent in the absorption step is generally about 30 to 70 ° C, when using a column, for example, 30 to 60 ° C at the top of the column and 40 to 70 ° C at the bottom of the column. It is poor in acidic gas components, i. H. a product gas depleted of these components (Beigas) and an absorbent loaded with acidic gas components.
  • acidic gas components i. H. a product gas depleted of these components (Beigas) and an absorbent loaded with acidic gas components.
  • the carbon dioxide can be released from the absorbent loaded with the acidic gas constituents in a regeneration step, a regenerated absorbent being obtained.
  • the regeneration step the loading of the absorbent is reduced and the regenerated absorbent obtained is preferably subsequently returned to the absorption step.
  • the loaded absorbent is regenerated
  • the loaded absorbent is heated for regeneration and the released carbon dioxide is z. B. separated in a desorption column. Before the regenerated absorbent is reintroduced into the absorber, it is cooled to a suitable absorption temperature. In order to utilize the energy contained in the hot regenerated absorbent, it is preferred to preheat the loaded absorbent from the absorber by heat exchange with the hot regenerated absorbent. As a result of the heat exchange, the loaded absorbent is brought to a higher temperature, so that less energy is required in the regeneration step. The heat exchange can also partially regenerate the loaded absorbent with the release of carbon dioxide.
  • the gas-liquid mixed-phase stream obtained is passed into a phase separation vessel from which the carbon dioxide is drawn off; the liquid phase is passed into the desorption column for the complete regeneration of the absorbent.
  • the carbon dioxide released in the desorption column is subsequently compressed and z. B. a pressure tank or sequestration.
  • it may be advantageous to regenerate the absorbent at a higher pressure e.g. B. 2 to 10 bar, preferably 2.5 to 5 bar.
  • the loaded absorbent is compressed to the regeneration pressure by means of a pump and introduced into the desorption column.
  • the carbon dioxide accumulates at a higher pressure level.
  • the pressure difference to the pressure level of the pressure tank is lower and under certain circumstances a compression level can be saved.
  • a higher pressure during regeneration requires a higher regeneration temperature. With a higher regeneration temperature, a lower residual loading of the absorbent can be achieved.
  • the regeneration temperature is usually only limited by the thermal stability of the absorbent.
  • the flue gas is preferably subjected to washing with an aqueous liquid, in particular with water, in order to cool and humidify (quench) the flue gas. Dusts or gaseous contaminants such as sulfur dioxide can also be removed during washing.
  • FIG. 1 is a schematic representation of a plant suitable for carrying out the method according to the invention.
  • a suitably pretreated, carbon dioxide-containing combustion gas in an absorber 3 is brought into contact with the regenerated absorbent, which is supplied via the absorbent line 5, in countercurrent via a feed line 1.
  • the absorbent removes carbon dioxide from the combustion gas by absorption; a clean gas low in carbon dioxide is obtained via an exhaust gas line 7.
  • the absorber 3 can have backwash trays or backwash sections, which are preferably equipped with packings, above the absorption medium inlet (not shown), where absorption medium carried with the aid of water or condensate is separated from the CO 2 -enriched gas.
  • the liquid on the backwash tray is suitably recycled via an external cooler.
  • the absorption medium loaded with carbon dioxide is fed to a desorption column 13 via an absorption medium line 9 and a throttle valve 11.
  • the loaded absorbent is (not shown ) Heater heated and regenerated.
  • the carbon dioxide released thereby leaves the desorption column 13 via the exhaust gas line 15.
  • the desorption column 13 absorber can have backwash trays or backwash sections, which are preferably equipped with packings, above the absorption medium inlet (not shown), where absorption medium carried with the aid of water or condensate the released CO 2 is separated.
  • a heat exchanger with head distributor or condenser can be provided in line 15.
  • the regenerated absorbent is then returned to the absorption column 3 by means of a pump 17 via a heat exchanger 19.
  • a partial stream of the absorption medium withdrawn from the desorption column 13 can be fed to an evaporator, in which difficultly volatile by-products and decomposition products as Residue accumulate and the pure absorbent is drawn off as vapors.
  • the condensed vapors are returned to the absorption medium circuit.
  • a base such as potassium hydroxide can be added to the partial stream, which, for. B. with sulfate or chloride ions forms volatile salts which are withdrawn from the system together with the evaporator residue.
  • DMEA N, N-dimethylethanolamine
  • DEEA N, N-diethylethanolamine
  • TMPDA NNN'.N'-tetramethylpropanediamine
  • MDEA N-methyldiethanolamine
  • MAPA 3-methylaminopropylamine Niax: 1 -dimethylamino-2- dimethylaminoethoxyethane
  • the mass transfer rate was determined in a laminar blasting chamber with water vapor-saturated CO 2 at 1 bar and 50 ° C or 70 ° C, blasting chamber diameter 0.94 mm, beam length 1 to 8 cm, volume flow of the absorbent 1.8 ml / s and is determined as Gas volume in normal cubic meters per surface of the absorbent, pressure and time stated (Nm 3 / m / bar / h).
  • the results are summarized in Table 1 below.
  • the specified in the table CO 2 -Stoffübergangs beau is the CO 2 - based on a comparison absorbent mass transfer rate, but which contains the same tertiary amine in the same amount of N-methylethanolamine as an activator.
  • the amount of carbon dioxide dissolved in the liquid phase was calculated after correcting the gas space for the gas space.
  • the equilibrium measurements for the CO 2 / MDEA / MAPA water system were carried out in the pressure range> 1 bar with a high-pressure equilibrium cell, in the pressure range ⁇ 1 bar the measurements were carried out using headspace chromatography.
  • the capacity of the absorbent was determined (i) from the loading (mol CO 2 per kg solution) at the intersection of the 40 ° equilibrium curve with the line of the constant feed gas-CO 2 partial pressure of 13 kPa (loaded solution at the absorber sump in equilibrium) ; and (ii) determined from the intersection of the 120 ° equilibrium curve with the line of the constant CO 2 partial pressure of 5 kPa (regenerated solution at the desorber sump in equilibrium).
  • the difference between the two loads is the circulating capacity of the respective solvent.
  • a large capacity means that less solvent has to be circulated and therefore the equipment such as pumps, heat exchangers but also the pipes can be dimensioned smaller.
  • the circulation quantity also influences the energy required for regeneration.
  • Another measure of the application properties of an absorbent is the slope of the working line in the McCabe-Thiele diagram (or pX diagram) of the desorber.
  • the working line is usually very close to the equilibrium line, so that the slope of the equilibrium curve can be roughly equated with the slope of the working line. If the liquid load is constant, a smaller amount of stripping steam is required to regenerate an absorbent with a large slope of the equilibrium curve. The energy required to generate the stripping steam contributes significantly to the overall energy requirement of the CO 2 absorption process.
  • absorbents with a tertiary amine whose reaction enthalpy ⁇ R H of the protonation reaction is greater than that of methyldiethanolamin, have a higher capacity and require a lower amount of steam for regeneration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

Beschrieben wird ein Verfahren zum Entfernen von Kohlendioxid aus einem Gasstrom, in dem der Partialdruck des Kohlendioxids im Gasstrom weniger als 200 mbar beträgt, wobei man den Gasstrom mit einem flüssigen Absorptionsmittel in Kontakt bringt, das eine wässrige Lösung (A) eines tertiären aliphatischen Amins und (B) eines Aktivators der allgemeinen Formel R1-NH-R2-NH2 umfasst, worin R1 für C1-C6-Alkyl steht und R2 für C2-C6-Alkylen steht. Das Verfahren eignet sich besonders zur Behandlung von Rauchgasen. Die Erfindung betrifft auch ein Absorptionsmittel.

Description

Verfahren zum Entfernen von Kohlendioxid aus Rauchgasen
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zum Entfernen von Kohlendioxid aus Gasströmen mit niedrigen Kohlendioxid-Partialdrücken, insbesondere zum Entfernen von Kohlendioxid aus Rauchgasen.
Die Entfernung von Kohlendioxid aus Rauchgasen ist aus verschiedenen Gründen wünschenswert, insbesondere aber zur Verminderung der Emission von Kohlendioxid, die als Hauptursache für den so genannten Treibhauseffekt angesehen wird.
Im industriellen Maßstab werden zur Entfernung von Sauergasen, wie Kohlendioxid, aus Fluidströmen häufig wässrige Lösungen organischer Basen, z. B. Alkanolamine, als Absorptionsmittel eingesetzt. Beim Lösen von Sauergasen bilden sich dabei aus der Base und den Sauergasbestandteilen ionische Produkte. Das Absorptionsmittel kann durch Erwärmen, Entspannen auf einen niedrigeren Druck oder Strippen regeneriert werden, wobei die ionischen Produkte zu Sauergasen zurück reagieren und/oder die Sauergase mittels Dampf abgestrippt werden. Nach dem Regenerationsprozess kann das Absorptionsmittel wiederverwendet werden.
Rauchgase weisen sehr geringe Kohlendioxid-Partialdrücke auf, da sie in der Regel bei einem Druck nahe dem Atmosphärendruck anfallen und typischerweise 3 bis 13 Vol.-% Kohlendioxid enthalten. Um eine wirksame Entfernung von Kohlendioxid zu erreichen, muss das Absorptionsmittel eine hohe Sauergas-Affinität aufweisen, was in der Regel bedeutet, dass die Kohlendioxid-Absorption stark exotherm verläuft. Andererseits bedingt der hohe Betrag der Absorptionsreaktionsenthalpie einen erhöhten Energieaufwand bei der Regeneration des Absorptionsmittels.
Dan G. Chapel et al. empfehlen daher in ihrem Vortrag "Recovery of CO2 from Flue Gases: Commercial Trends" (vorgetragen beim Jahrestreffen der Canadian Society of Chemical Engineers, 4-6. Oktober, 1999, Saskatoon, Saskatchewan, Kanada), zur Minimierung der erforderlichen Regenerationsenergie ein Absorptionsmittel mit relativ niedriger Reaktionsenthalpie auszuwählen.
Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren anzugeben, das eine weitgehende Entfernung von Kohlendioxid aus Gasströmen mit niedrigem Kohlendioxid- Partialdrücken gestattet und bei dem die Regeneration des Absorptionsmittels mit vergleichsweise geringem Energieaufwand möglich ist. Die EP-A 558 019 beschreibt ein Verfahren zur Entfernung von Kohlendioxid aus Verbrennungsgasen, bei dem das Gas bei Atmosphärendruck mit einer wässrigen Lösung eines sterisch gehinderten Amins, wie 2-Amino-2-methyl-1-propanol, 2-(Methylamino)- ethanol, 2-(Ethylamino)-ethanol, 2-(Diethylamino)-ethanol und 2-(2-Hydroxyethyl)- piperidin, behandelt wird. Die EP-A 558 019 beschreibt außerdem ein Verfahren, bei dem das Gas bei Atmosphärendruck mit einer wässrigen Lösung eines Amins wie 2- Amino-2-methyl-1 ,3-propandiol, 2-Amino-2-methyl-1-propanol, 2-Amino-2-ethyl-1 ,3- propandiol, t-Butyldiethanolamin und 2-Amino-2-hydroxymethyl-1 ,3-propandiol, und eines Aktivators wie Piperazin, Piperidin, Morpholin, Glycin, 2-Methylaminoethanol, 2- Piperidinethanol und 2-Ethylaminoethanol, behandelt wird.
Die EP-A 879 631 offenbart ein Verfahren zur Entfernung von Kohlendioxid aus Verbrennungsgasen, bei dem das Gas bei Atmosphärendruck mit einer wässrigen Lösung eines eines sekundären und eines tertiären Amins behandelt wird.
Die EP-A 647 462 beschreibt ein Verfahren zur Entfernung von Kohlendioxid aus Verbrennungsgasen, bei dem das Gas bei Atmosphärendruck mit einer wässrigen Lösung eines tertiären Alkanolamins und eines Aktivators, wie Diethylentriamin, Triethylen- tetramin, Tetraethylenpentamin; 2,2-Dimethyl-1 ,3-diaminopropan, Hexamethylen- diamin, 1 ,4-Diaminobutan, 3,3-lminotrispropylamin, Tris(2-aminoethyl)amin, N-(2- Aminoethyl)piperazin, 2-(Aminoethyl)ethanol, 2-(Methylamino)ethanol, 2-(n-Butyl- amino)ethanol, behandelt wird.
Die Aufgabe wird gelöst durch ein Verfahren zum Entfernen von Kohlendioxid aus ei- nem Gasstrom, in dem der Partialdruck des Kohlendioxids im Gasstrom weniger als 200 mbar, meist 20 bis 150 mbar, beträgt, wobei man den Gasstrom mit einem flüssigen Absorptionsmittel in Kontakt bringt, das eine wässrige Lösung
(A) eines tertiären aliphatischen Amins und (B) eines Aktivators der allgemeinen Formel
R1-NH-R2-NH2
umfasst, worin R1 für d-Ce-Alkyl, vorzugsweise C1-C2-Alkyl, steht und R2 für C -C6- Alkylen, vorzugsweise C2-C3-Alkylen, steht.
Als Komponente (A) können auch Gemische verschiedener tertiärer aliphatischer Airline verwendet werden.
Als tertiäre aliphatische Amine eignen sich z. B. Triethanolamin (TEA), Diethyl- ethanolamin (DEEA) und Methyldiethanolamin (MDEA). Vorzugsweise weist das tertiäre aliphatische Amin einen pKa-Wert (gemessen bei 25 °C) von 9 bis 11, insbesondere 9,3 bis 10,5, auf. Bei mehrbasischen Aminen liegt wenigstens ein pKa-Wert im angegebenen Bereich.
Weiterhin ist das tertiäre aliphatische Amin vorzugsweise gekennzeichnet durch einen Betrag der Reaktionsenthalpie ΔRH der Protonierungsreaktion
A + H+ → AH+
(worin A für das tertiäre aliphatische Amin steht), der größer ist als derjenige von Me- thyldiethanolamin (bei 25 °C, 1013 mbar). Die Reaktionsenthalpie ΔRH der Protonierungsreaktion für Methyldiethanolamin beträgt etwa - 35 kJ/mol. Die Reaktionsenthalpie ΔRH lässt sich nach der folgenden Gleichung mit guter Näherung aus den pK-Werten bei unterschiedlichen Temperaturen abschätzen:
ΔRH « R*(pK1-pK2)/(1/T1-1/T2)*ln(10) Eine Zusammenstellung der nach der obigen Gleichung berechneten ΔRH-Werte verschiedener tertiärer Amine findet sich in der nachstehenden Tabelle:
Figure imgf000004_0001
Figure imgf000005_0001
Überraschenderweise eignen sich für das erfindungsgemäße Verfahren besonders tertiäre aliphatische Amine mit einem relativ hohen Betrag der Reaktionsenthalpie ΔRH. Dies ist vermutlich darauf zurückzuführen, dass die Temperaturabhängigkeit der Gleichgewichtskonstanten der Protonierungsreaktion proportional zur Reaktionsenthalpie ΔRH ist. Bei Aminen mit hoher Reaktionsenthalpie ΔRH ist die Temperaturabhängigkeit der Lage des Protonierungsgleichgewichts stärker ausgeprägt. Da die Regeneration des Absorptionsmittels bei höherer Temperatur erfolgt als der Absorptionsschritt, gelingt die Bereitstellung von Absorptionsmitteln, die im Absorptionsschritt eine wirksame Entfernung von Kohlendioxid selbst bei geringen Kohlendioxid- Partialdrücken erlauben, aber mit relativ geringem Energieeinsatz regeneriert werden können.
In bevorzugten Ausführungsformen weist das tertiäre aliphatische Amin die allgemeine Formel NRaRbR auf, worin einer oder zwei der Reste Ra, R°und Rc, vorzugsweise ein Rest Ra, Rboder Rc, für eine C4-C8-Alkylgruppe mit ß-Verzweigung, eine C2-C6-Hydroxyalkylgruppe, Cι-Ce-Alkoxy-C2-C6-alkylgruppe, Di(Cι-C6-alkyl)amino-C2-C6-alkylgruppe oder Di(Cι-C6-alkyl)amino-C2-C6-alkyloxy-C2-C6-alkylgruppe stehen und die übrigen Reste Ra, Rb und Rc für unsubstituierte C Ce-Alkylgruppen, vorzugsweise C2-C6-Alkylgruppen, stehen.
Die C4-C8-Alkylgruppe mit ß-Verzweigung ist vorzugsweise eine 2-Ethylhexyl- oder Cyclohexylmethylgrυppe.
Die C2-C6-Hydroxyalkylgruppe ist vorzugsweise eine 2-Hydroxyethyl- oder 3-Hydroxy- propylgruppe. Die CrCβ-Alkoxy-Ca-Ce-alkylgruppe ist vorzugsweise eine 2-Methoxyethyl- oder 3- Methoxypropylgruppe.
Die Di(Cι-C6-alkyl)amino-C2-C6-alkylgruppe ist vorzugsweise eine 2-N,N-Dimethyl- aminoethyl- oder 2- N,N-Diethylaminoethylgruppe.
Die Di(C1-C6-alkyl)amino-C2-C6-alkyloxy-C2-C8-alkylgruppe ist vorzugsweise eine N,N- Dimethylaminoethyloxyethyl- oder N,N-Diethylaminoethyloxyethylgruppe.
Besonders bevorzugte tertiäre aliphatische Amine sind ausgewählt unter Cyclohexyl- methyldimethylamin, 2-Dimethylaminoethanol, 2-Diethylaminoethanol, 2-Diisopropyl- aminoethanol, 3-Dimethylaminopropanol, 3-Diethylaminopropanol, 3- Methoxypropyldimethylamin, N.N.N'.N'-Tetramethylethylendiamin, N.N-Diethyl-N'.N'- dimethylethylendiamin, N.N.N'.N'-Tetraethylethylendiamin, N,N,N',N'-Tetramethyl-1 ,3- propandiamin, N.N.N'.N'-Tetraethyl-I .S-propandiamin und Bis-(2- dimethylaminoethyl)ether.
Ein bevorzugter Aktivator ist 3-Methylaminopropylamin.
Üblicherweise beträgt die Konzentration des tertiären aliphatischen Amins 20 bis 60 Gew.-%, vorzugsweise 25 bis 50 Gew.-%, und die Konzentration des Aktivators 1 bis 10 Gew.-%, vorzugsweise 2 bis 8 Gew.-%, bezogen auf das Gesamtgewicht des Absorptionsmittels.
Die aliphatischen Amine werden in Form ihrer wässrigen Lösungen eingesetzt. Die Lösungen können zusätzlich physikalische Lösungsmittel enthalten, die z. B. aus- gewählt sind unter Cyclotetramethylensulfon (Sulfolan) und dessen Derivaten, aliphatischen Säureamiden (Acetylmorpholin, N-Formylmorpholin), N-alkylierten Pyrrolidonen und entsprechenden Piperidonen, wie N-Methylpyrrolidon (NMP), Propylencarbonat, Methanol, Dialkylethem von Polyethylenglykolen und Gemischen davon.
Das erfindungsgemäße Absorptionsmittel kann weitere funktionelle Bestandteile enthalten, wie Stabilisatoren, insbesondere Antioxidantien, vgl. z. B. die DE 102004011427.
Sofern vorhanden, werden beim erfindungsgemäßen Verfahren neben Kohlendioxid üblicherweise auch andere Sauergase, wie z. B. H S, SO2, CS2, HCN, COS, NO2, HCI, Disulfide oder Mercaptane, aus dem Gasstrom entfernt.
Bei dem Gasstrom handelt es sich im Allgemeinen um einen Gasstrom, der auf folgende Weise gebildet wird:
a) Oxidation organischer Substanzen z. B. Rauchgase (flue gas), b) Kompostierung und Lagerung organische Substanzen enthaltender Abfallstoffe, oder c) bakterielle Zersetzung organischer Substanzen.
Die Oxidation kann unter Flammenerscheinung, d. h. als herkömmliche Verbrennung, oder als Oxidation ohne Flammenerscheinung, z. B. in Form einer katalytischen Oxidation oder Partialoxidation, durchgeführt werden. Organische Substanzen, die der Verbrennung unterworfen werden, sind üblicherweise fossile Brennstoffe wie Kohle, Erdgas, Erdöl, Benzin, Diesel, Raffinate oder Kerosin, Biodiesel oder Abfallstoffe mit einem Gehalt an organischen Substanzen. Ausgangsstoffe der katalytischen (Partial-) D
Oxidation sind z. B. Methanol oder Methan, das zu Ameisensäure oder Formaldehyd umgesetzt werden kann.
Abfallstoffe, die der Oxidation, der Kompostierung oder Lagerung unterzogen werden, sind typischerweise Hausmüll, Kunststoffabfälle oder Verpackungsmüll.
Die Verbrennung der organische Substanzen erfolgt meistens in üblichen Verbrennungsanlagen mit Luft. Die Kompostierung und Lagerung organischer Substanzen enthaltender Abfallstoffe erfolgt im Allgemeinen auf Mülldeponien. Das Abgas bzw. die Abluft derartiger Anlagen kann vorteilhaft nach dem erfindungsgemäßen Verfahren behandelt werden.
Als organische Substanzen für bakterielle Zersetzung werden üblicherweise Stalldung, Stroh, Jauche, Klärschlamm, Fermentationsrückstände und dergleichen verwendet. Die bakterielle Zersetzung erfolgt z.B. in üblichen Biogasanlagen. Die Abluft derartiger Anlagen kann vorteilhaft nach dem erfindungsgemäßen Verfahren behandelt werden.
Das Verfahren eignet sich auch zur Behandlung der Abgase von Brennstoffzellen oder chemischer Syntheseanlagen, die sich einer (Partial-) Oxidation organischer Substan- zen bedienen.
Daneben kann das erfindungsgemäße Verfahren natürlich auch angewendet werden, um unverbrannte fossile Gase, wie Erdgas, z. B. so genannte Coal-seam-Gase, d. h. bei der Förderung von Kohle anfallende Gase; die gesammelt und komprimiert werden, zu behandeln.
Im Allgemeinen enthalten diese Gasströme bei Normalbedingungen weniger als 50 mg/m3 Schwefeldioxid.
Die Ausgangsgase können entweder den Druck aufweisen, der etwa dem Druck der Umgebungsluft entspricht, also z. B. Normaldruck oder einen Druck, der vom Normaldruck um bis zu 1 bar davon abweicht.
Zur Durchführung des erfindungsgemäßen Verfahrens geeignete Vorrichtungen um- fassen wenigstens eine Waschkolonne, z. B. Füllkörper, Packungs- und Bodenkolonnen, und/oder andere Absorber wie Membrankontaktoren, Radialstromwäscher, Strahlwäscher, Venturi-Wäscher und Rotations-Sprühwäscher. Die Behandlung des Gasstroms mit dem Absorptionsmittel erfolgt dabei bevorzugt in einer Waschkolonne im Gegenstrom. Der Gasstrom wird dabei im Allgemeinen in den unteren Bereich und das Absorptionsmittel in den oberen Bereich der Kolonne eingespeist. Geeignet zur Durchführung des erfindungsgemäßen Verfahrens sind auch Waschkolonnen aus Kunststoff, wie Polyolefinen oder Polytetrafluorethylen, oder Waschkolonnen, deren innere Oberfläche ganz oder teilweise mit Kunststoff oder Gummi ausge- kleidet ist. Weiterhin eignen sich Membrankontaktoren mit Kunststoffgehäuse.
Die Temperatur des Absorptionsmittels beträgt im Absorptionsschritt im Allgemeinen etwa 30 bis 70°C, bei Verwendung einer Kolonne beispielsweise 30 bis 60°C am Kopf der Kolonne und 40 bis 70°C am Boden der Kolonne. Es wird ein an sauren Gasbest- anteilen armes, d. h. ein an diesen Bestandteilen abgereichertes Produktgas (Beigas) und ein mit sauren Gasbestandteilen beladenes Absorptionsmittel erhalten.
Aus dem mit den sauren Gasbestandteilen beladenen Absorptionsmittel kann das Kohlendioxid in einem Regenerationsschritt freigesetzt werden, wobei ein regeneriertes Absorptionsmittel erhalten wird. Im Regenerationsschritt wird die Beladung des Absorptionsmittels verringert und das erhaltene regenerierte Absorptionsmittel wird vorzugsweise anschließend in den Absorptionsschritt zurückgeführt.
Im Allgemeinen regeneriert man das beladene Absorptionsmittel durch
a) Erwärmung, z. B. auf 70 bis 110 °C, b) Entspannung, c) Strippen mit einem inerten Fluid
oder eine Kombination zweier oder aller dieser Maßnahmen.
In der Regel wird das beladene Absorptionsmittel zur Regeneration erwärmt und das freigesetzte Kohlendioxid wird z. B. in einer Desorptionskolonne abgetrennt. Bevor das regenerierte Absorptionsmittel wieder in den Absorber eingeführt wird, wird es auf eine geeignete Absorptionstemperatur abgekühlt. Um die im heißen regenerierten Absorptionsmittel enthaltene Energie auszunutzen, ist es bevorzugt, das beladene Absorptionsmittel aus dem Absorber durch Wärmetausch mit dem heißen regenerierten Absorptionsmittel vorzuerwärmen. Durch den Wärmetausch wird das beladene Absorptionsmittel auf eine höhere Temperatur gebracht, so dass im Regenerationsschritt ein geringerer Energieeinsatz erforderlich ist. Durch den Wärmetausch kann auch bereits eine teilweise Regenerierung des beladenen Absorptionsmittels unter Freisetzung von Kohlendioxid erfolgen. Der erhaltene gas-flüssig-gemischtphasige Strom wird in ein Phasentrenngefäß geleitet, aus dem das Kohlendioxid abgezogen wird; die Flüssigphase wird zur vollständigen Regeneration des Absorptionsmittels in die Desorptions- kolonne geleitet. Vielfach wird das in der Desorptionskolonne freigesetzte Kohlendioxid anschließend verdichtet und z. B. einem Drucktank oder einer Sequestrierung zugeführt. In diesen Fällen kann es vorteilhaft sein, die Regeneration des Absorptionsmittels bei einem hö- heren Druck, z. B. 2 bis 10 bar, vorzugsweise 2,5 bis 5. bar durchzuführen. Das beladene Absorptionsmittel wird hierzu mittels einer Pumpe auf den Regenerationsdruck verdichtet und in die Desorptionskolonne eingebracht. Das Kohlendioxid fällt auf diese Weise auf einem höheren Druckniveau an. Die Druckdifferenz zum Druckniveau des Drucktanks ist geringer und man kann unter Umständen eine Kompressionsstufe ein- sparen. Ein höherer Druck bei der Regeneration bedingt eine höhere Regenerationstemperatur. Bei höherer Regenerationstemperatur kann eine geringere Restbeladung des Absorptionsmittel erreicht werden. Die Regenerationstemperatur ist in der Regel nur durch die thermische Stabilität des Absorptionsmittels begrenzt.
Vor der erfindungsgemäßen Absorptionsmittel-Behandlung wird das Rauchgas vorzugsweise einer Wäsche mit einer wässrigen Flüssigkeit, insbesondere mit Wasser, unterzogen, um das Rauchgas abzukühlen und zu befeuchten (quenchen). Bei der Wäsche können auch Stäube oder gasförmige Verunreinigungen wie Schwefeldioxid entfernt werden.
Die Erfindung wird anhand der beigefügten Figur näher erläutert.
Fig. 1 ist eine schematische Darstellung einer zur Durchführung des erfindungsgemäßen Verfahrens geeigneten Anlage.
Gemäß Fig. 1 wird über eine Zuleitung 1 ein geeignet vorbehandeltes, Kohlendioxid enthaltendes Verbrennungsgas in einem Absorber 3 mit dem regenerierten Absorptionsmittel, das über die Absorptionsmittelleitung 5 zugeführt wird, im Gegenstrom in Kontakt gebracht. Das Absorptionsmittel entfernt Kohlendioxid durch Absorption aus dem Verbrennungsgas; dabei wird über eine Abgasleitung 7 ein an Kohlendioxid armes Reingas gewonnen. Der Absorber 3 kann oberhalb des Absorptionsmitteleintritts Rückwaschböden oder Rückwaschsektionen, die vorzugsweise mit Packungen ausgerüstet sind, aufweisen (nicht dargestellt), wo mit Hilfe von Wasser oder Kondensat mitgeführtes Absorptionsmittel aus dem CO2-abgereicherten Gas abgetrennt wird. Die Flüssigkeit auf dem Rückwaschboden wird geeigneterweise über einen externen Kühler recycliert.
Über eine Absorptionsmittelleitung 9 und ein Drosselventil 11 wird das mit Kohlendioxid beladene Absorptionsmittel einer Desorptionskolonne 13 zugeleitet. Im unteren Teil der Desorptionskolonne 13 wird das beladene Absorptionsmittel mittels eines (nicht darge- stellten) Aufheizers erwärmt und regeneriert. Das dabei freigesetzte Kohlendioxid ver- lässt die Desorptionskolonne 13 über die Abgasleitung 15. Die Desorptionskolonne 13 Absorber kann oberhalb des Absorptionsmitteleintritts Rückwaschböden oder Rückwaschsektionen, die vorzugsweise mit Packungen ausgerüstet sind, aufweisen (nicht dargestellt), wo mit Hilfe von Wasser oder Kondensat mitgeführtes Absorptionsmittel aus dem freigesetzten CO2 abgetrennt wird. In der Leitung 15 kann ein Wärmetauscher mit Kopfverteiler oder Kondensator vorgesehen sein. Das regenerierte Absorptionsmittel wird anschließend mittels einer Pumpe 17 über einen Wärmetauscher 19 der Absorptionskolonne 3 wieder zugeführt. Um die Akkumulierung von absorbierten Sub- stanzen, die bei der Regenerierung nicht oder unvollständig ausgetrieben werden, oder von Zersetzungsprodukten im Absorptionsmittel zu vermeiden, kann man einen Teilstrom des aus der Desorptionskolonne 13 abgezogenen Absorptionsmittels einem Verdampfer zuführen, in dem schwerflüchtige Neben- und Zersetzungsprodukte als Rückstand anfallen und das reine Absorptionsmittel als Brüden abgezogen wird. Die kondensierten Brüden werden wieder dem Absorptionsmittelkreislauf zugeführt.
Zweckmäßigerweise kann man dem Teilstrom eine Base, wie Kaliumhydroxid, zusetzen, welches z. B. mit Sulfat- oder Chloridionen schwerflüchtige Salze bildet, die zusammen mit dem Verdampferrückstand dem System entzogen werden.
Beispiele
In den nachstehenden Beispielen werden folgende Abkürzungen verwendet: DMEA: N,N-Dimethylethanolamin DEEA: N,N-Diethylethanolamin TMPDA N.N.N'.N'-Tetramethylpropandiamin MDEA: N-Methyldiethanolamin MAPA: 3-Methylaminopropylamin Niax: 1 -Dimethylamino-2-dimethylaminoethoxyethan
Alle Angaben in % sind gewichtsbezogen.
Beispiel 1 : CO2-Stoffübergangsgeschwindigkeit
Die Stoffübergangsgeschwindigkeit wurde in einer Laminarstrahlkammer mit wasser- dampfgesättigtem CO2 bei 1 bar und 50°C bzw. 70°C, Strahlkammerdurchmesser 0,94 mm, Strahllänge 1 bis 8 cm, Volumenstrom des Absorptionsmittels 1 ,8 ml/s bestimmt und wird als Gasvolumen in Normalkubikmeter pro Oberfläche des Absorptionsmittels, Druck und Zeit angegeben (Nm3/m /bar/h). Die Ergebnisse sind in der nachstehenden Tabelle 1 zusammengefasst. Die in der Tabelle angegebene CO2-Stoffübergangsgeschwindigkeit ist auf die CO2- Stoffübergangsgeschwindigkeit eines Vergleichsabsorptionsmittels bezogen, das das gleiche tertiäre Amin in gleicher Menge aber N-Methylethanolamin als Aktivator enthält.
Tabelle 1 :
Figure imgf000011_0001
Beispiel 2: CO -Aufnahmekapazität und Regenerations-Energiebedarf
Um die Kapazität verschiedener Absorptionsmittel für die Aufnahme von CO2 zu ermitteln und den Energieverbrauch bei der Regeneration der Absorptionsmittel abzuschätzen, wurden zunächst Messwerte für die CO2-Beladung bei 40 und 120 °C unter Gleichgewichtsbedingungen bestimmt. Diese Messungen wurden für die Systeme CO2/Niax/MAPA/Wasser; CO2/TMPDA/MAPA/Wasser; CO2/DEEA/MAPA/Wasser; CO2/DMEA/MAPA/Wasser in einem Glas-Druckgefäß (Volumen = 110cm3 bzw. 230 cm3) durchgeführt, in dem man eine definierte Menge des Absorptionsmittels vorgelegte, evakuierte und bei konstanter Temperatur Kohlendioxid stufenweise über ein definiertes Gasvolumen zudosierte. Die in der Flüssigphase gelöste Menge Kohlendioxid wurde nach Gasraumkorrektur der Gasphase berechnet. Die Gleichgewichtsmessungen für das System CO2/MDEA/MAPA Wasser wurden im Druckbereich > 1 bar mit einer Hochdruck-Gleichgewichtszelle ausgeführt, im Druckbereich < 1 bar wurden die Messungen mit Hilfe von Headspace-Chromatographie durchgeführt.
Für die Abschätzung der Absorptionsmittel-Kapazität wurden folgende Annahmen gemacht:
Der Absorber wird bei einem Gesamtdruck von einem bar mit einem CO2- haltigen Rauchgas von 0,13 bar CO2-Partialdruck (=13% CO2-Gehalt) beaufschlagt. 2. Im Absorbersumpf herrscht eine Temperatur von 40°C.
3. Bei der Regeneration herrscht im Desorbersumpf eine Temperatur von 120°C.
4. Im Absorbersumpf wird ein Gleichgewichtszustand erreicht, d.h. der Gleich- gewichtspartialdruck ist gleich dem Feedgas-Partialdruck von 13 kPa.
5. Bei der Desorption herrscht ein CO2-Partialdruck von 5 kPa im Desorbersumpf (Die Desorption wird typischerweise bei 200 kPa betrieben. Bei 120°C besitzt reines Wasser einen Partialdruck von etwa 198 kPa. In einer Aminlösung ist der Partialdruck von Wasser etwas geringer, deshalb wird ein CO2- Partialdruck von 5 kPa angenommen).
Bei der Desorption wird ein Gleichgewichtszustand erreicht.
Die Kapazität des Absorptionsmittels wurde (i) aus der Beladung (mol CO2 pro kg Lösung) am Schnittpunkt der 40°-Gleichgewichtskurve mit der Linie des konstanten Feed- gas-CO2-Partialdrucks von 13 kPa (beladene Lösung am Absorbersumpf im Gleichgewicht); und (ii) aus dem Schnittpunkt der 120°-Gleichgewichtskurve mit der Linie des konstanten CO2-Partialdrucks von 5 kPa (regenerierte Lösung am Desorbersumpf im Gleichgewicht) ermittelt. Die Differenz beider Beladungen ist die Kreislaufkapazität des jeweiligen Lösungsmittels. Eine große Kapazität bedeutet, dass weniger Lösungsmittel im Kreis gefahren werden muss und damit die Apparate wie z.B. Pumpen, Wärmetauscher aber auch die Rohrleitungen kleiner dimensioniert werden können. Weiterhin beeinflusst die Umlaufmenge auch die zum Regenerieren notwendige Energie.
Ein weiteres Maß für die Anwendungseigenschaften eines Absorptionsmittels ist die Steigung der Arbeitsgeraden im McCabe-Thiele-Diagramm (bzw. p-X-Diagramm) des Desorbers. Für die Verhältnisse im Sumpf des Desorbers liegt die Arbeitsgerade in der Regel sehr nahe bei der Gleichgewichtslinie, so dass die Steigung der Gleichgewichtskurve näherungsweise der Steigung der Arbeitsgerade gleichgesetzt werden kann. Bei konstanter Flüssigkeitsbelastung ist zur Regeneration eines Absorptionsmittels mit einer großen Steigung der Gleichgewichtskurve eine geringere Strippdampfmenge erforderlich. Der Energiebedarf zur Erzeugung des Strippdampfes trägt wesentlich zum Gesamtenergiebedarf des CO2-Absorptionsprozesses bei.
Zweckmäßigerweise gibt man den Reziprokwert der Steigung an, da dieser direkt proportional zur benötigten Dampfmenge pro Kilogramm Absorptionsmittel ist. Dividiert man den Reziprokwert durch die Kapazität des Absorptionsmittel, so erhält man einen Vergleichswert, der direkt eine relative Aussage über die benötigte Dampfmenge pro absorbierter CO2-Menge ermöglicht.
In der Tabelle 2 sind die Werte der Absorptionsmittel-Kapazität und des Dampfmen- genbedarfs auf das Gemisch von MDEA/MAPA normiert.
Man erkennt, dass Absorptionsmittel mit einem tertiären Amin, dessen Reaktionsenthalpie ΔRH der Protonierungsreaktion größer ist als diejenige von Methyldiethano- lamin, eine höhere Kapazität aufweisen und zur Regeneration eine niedrigere Dampf- menge erfordern.
Tabelle 2
Figure imgf000013_0001

Claims

Patentansprüche
1. Verfahren zum Entfernen von Kohlendioxid aus einem Gasstrom, in dem der Partialdruck des Kohlendioxids im Gasstrom weniger als 200 mbar beträgt, wobei man den Gasstrom mit einem flüssigen Absorptionsmittel in Kontakt bringt, das eine wässrige Lösung
(A) eines tertiären aliphatischen Amins und (B) eines Aktivators der allgemeinen Formel
R1-NH-R -NH2 umfasst, worin R1 für C C6-Alkyl steht und R2 für C2-C6-Alkylen steht.
2. Verfahren nach Anspruch 1 , wobei das tertiäre aliphatische Amin einen pKa-Wert von 9 bis 11 aufweist.
3. Verfahren nach Anspruch 1 oder 2, wobei das tertiäre aliphatische Amin A gekennzeichnet ist durch eine Reaktionsenthalpie ΔRH der Protonierungsreaktion
A + H+ → AH+ die größer ist als diejenige von Methyldiethanolamin.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das tertiäre aliphatische Amin die allgemeine Formel NRaRbRc aufweist, worin einer oder zwei der Reste Ra, Rbund Rc für eine C4-C8-Alkylgruppe mit ß-Verzweigung, eine C2-C6-Hydroxyalkylgruppe, C1-C6-Alkoxy-C2-C6-alkylgruppe, Di(C C6-alkyl)- amino-C2-C6-alkylgruppe oder Di(C1-C6-alkyl)amino-C2-C6-alkyloxy-C2-C6-alkyl- gruppe stehen und die übrigen Reste Ra, Rb und Rc für unsubstituierte C Ce- Alkylgruppen stehen.
5. Verfahren nach Anspruch 4, wobei das tertiäre aliphatische Amin ausgewählt ist unter Cyclohexylmethyldimethylamin, 2-Dimethylaminoethanol, 2-Diethylamino- ethanol, 2-Diisopropylaminoethanol, 3-Diethylaminopropanol, 3-Methoxy- propyldimethylamin, N.N.N'.N'-Tetramethylethylendiamin, N,N-Diethyl-N',N'- dimethylethylendiamin, N,N,N',N'-Tetraethylethylendiamin, N.N.N'.N'-Tetra- methyl-1 ,3-propandiamin, N,N,N',N'-Tetraethyl-1 ,3-propandiamin und Bis-(2- dimethylaminoethyl)ether.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei es sich bei dem Aktivator um 3-Methylaminopropylamin handelt.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Konzentration des tertiären aliphatischen Amins 20 bis 60 Gew.-% und die Konzentration des Aktivators 1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht des Absorptionsmittels, beträgt.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Gasstrom a) der Oxidation organischer Substanzen, b) der Kompostierung oder Lagerung organischer Substanzen enthaltender Abfallstoffe, oder c) der bakteriellen Zersetzung organischer Substanzen entstammt.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei man das beladene Absorptionsmittel durch a) Erwärmung, b) Entspannung, c) Strippen mit einem inerten Fluid oder eine Kombination zweier oder aller dieser Maßnahmen regeneriert.
10. Verfahren nach Anspruch 9, wobei man das beladene Absorptionsmittel durch Erwärmen bei einem Druck von 2 bis 10 bar regeneriert.
11. Absorptionsmittel zum Entfernen von Kohlendioxid aus einem Gasstrom, umfassend (A) eines tertiären aliphatischen Amins, das gekennzeichnet ist durch eine Reaktionsenthalpie ΔRH der Protonierungsreaktion A + H+ → AH+ die größer ist als diejenige von Methyldiethanolamin, und (B) eines Aktivators der allgemeinen Formel R1-NH-R2-NH2 umfasst, worin R1 für C C6-Alkyl steht und R2 für C2-C6-Alkylen steht.
PCT/EP2005/002499 2004-03-09 2005-03-09 Verfahren zum entfernen von kohlendioxid aus rauchgasen WO2005087350A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/592,419 US20080098892A1 (en) 2004-03-09 2005-03-09 Method for the Removal of Carbon Dioxide From Flue Gases
CA002557911A CA2557911A1 (en) 2004-03-09 2005-03-09 Method for the removal of carbon dioxide from flue gases
JP2007502289A JP2007527791A (ja) 2004-03-09 2005-03-09 煙道ガスから二酸化炭素を除去するための方法
EP05715884A EP1725321A1 (de) 2004-03-09 2005-03-09 Verfahren zum entfernen von kohlendioxid aus rauchgasen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004011428.5 2004-03-09
DE102004011428A DE102004011428A1 (de) 2004-03-09 2004-03-09 Verfahren zum Entfernen von Kohlendioxid aus Rauchgasen

Publications (1)

Publication Number Publication Date
WO2005087350A1 true WO2005087350A1 (de) 2005-09-22

Family

ID=34895065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002499 WO2005087350A1 (de) 2004-03-09 2005-03-09 Verfahren zum entfernen von kohlendioxid aus rauchgasen

Country Status (6)

Country Link
US (1) US20080098892A1 (de)
EP (1) EP1725321A1 (de)
JP (1) JP2007527791A (de)
CA (1) CA2557911A1 (de)
DE (1) DE102004011428A1 (de)
WO (1) WO2005087350A1 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144372A1 (de) * 2006-06-13 2007-12-21 Basf Se Entfernung von kohlendioxid aus rauchgasen
FR2909011A1 (fr) * 2006-11-27 2008-05-30 Inst Francais Du Petrole Solution absorbante utilisee dans un procede de capture de dioxyde de carbone contenu dans un effluent gazeux.
WO2008086812A1 (en) * 2007-01-17 2008-07-24 Union Engineering A/S A method for recovery of high purity carbon dioxide
WO2008130244A1 (en) * 2007-04-18 2008-10-30 Aker Clean Carbon As Method and plant for co2 capturing
JP2009512548A (ja) * 2005-10-20 2009-03-26 ビーエーエスエフ ソシエタス・ヨーロピア 吸収剤及びガス流からの二酸化炭素の除去法
WO2009132661A1 (en) 2008-07-29 2009-11-05 Union Engineering A/S A method for recovery of high purity carbon dioxide
FR2938453A1 (fr) * 2008-11-20 2010-05-21 Inst Francais Du Petrole Methode pour reduire la degradation d'une solution absorbante mise en oeuvre dans une installation de desacidification d'un gaz
WO2010149599A1 (de) * 2009-06-22 2010-12-29 Basf Se Entfernung saurer gase mittels eines ein stripphilfsmittel enthaltenden absorptionsmittels
US8034166B2 (en) 2006-05-18 2011-10-11 Basf Se Carbon dioxide absorbent requiring less regeneration energy
WO2012069063A1 (en) 2010-11-26 2012-05-31 Union Engineering A/S Continuous production of high purity carbon dioxide
US8318117B2 (en) 2008-06-23 2012-11-27 Basf Se Absorption medium and method for removing sour gases from fluid streams, in particular from flue gases
WO2012163847A1 (de) 2011-05-27 2012-12-06 Evonik Industries Ag Verfahren und vorrichtung zur abtrennung von kohlendioxid aus gasströmen
US8361426B2 (en) 2008-06-23 2013-01-29 Basf Se Absorption medium and method for removing sour gases from fluid streams, in particular from flue gases
US8361425B2 (en) 2007-03-05 2013-01-29 Aker Clean Carbon As CO2 absorption method
US8388738B2 (en) 2007-11-15 2013-03-05 Basf Se Method for removing carbon dioxide from fluid flows, in particular combustion exhaust gases
US8398749B2 (en) 2005-12-12 2013-03-19 Basf Se Process for the recovery of carbon dioxide
WO2013000953A3 (en) * 2011-06-27 2013-05-10 Advanced Carbon Capture As An amine absorbent and a method for co2 capture

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011429A1 (de) * 2004-03-09 2005-09-29 Basf Ag Verfahren zum Entfernen von Kohlendioxid aus Gasströmen mit niedrigen Kohlendioxid-Partialdrücken
US8147593B2 (en) * 2005-04-04 2012-04-03 Mitsubishi Heavy Industries, Ltd. Absorbing solution, method and device for absorbing CO2 or H2S or both
US7846407B2 (en) * 2006-04-07 2010-12-07 Liang Hu Self-concentrating absorbent for acid gas separation
JP5215595B2 (ja) 2007-06-18 2013-06-19 三菱重工業株式会社 吸収液、吸収液を用いたco2又はh2s除去装置及び方法
DE102008007087A1 (de) 2008-01-31 2009-08-06 Universität Dortmund Verfahren zum Abtrennen von CO2 aus Gasgemischen mit einer extraktiven Regenerationsstufe
AU2010281323B2 (en) 2009-08-04 2015-09-03 Saipem S.P.A. Process for co2 capture using carbonates and biocatalysts
US20120129236A1 (en) * 2009-08-04 2012-05-24 Co2 Solutions Inc. Formulation and process for co2 capture using amino acids and biocatalysts
DE102010004070A1 (de) * 2010-01-05 2011-07-07 Uhde GmbH, 44141 CO2-Entfernung aus Gasen mittels wässriger Amin-Lösung unter Zusatz eines sterisch gehinderten Amins
DE102010004073A1 (de) * 2010-01-05 2011-07-07 Uhde GmbH, 44141 CO2-Entfernung aus Gasen mit niedrigen CO2-Partialdrücken mittels 1,2 Diaminopropan
US8795618B2 (en) 2010-03-26 2014-08-05 Babcock & Wilcox Power Generation Group, Inc. Chemical compounds for the removal of carbon dioxide from gases
DE102010017139A1 (de) 2010-05-28 2011-12-01 Fachhochschule Münster CO2-Absorptionsverfahren mittels Aminlösungen
DE102010017143A1 (de) 2010-05-28 2011-12-01 Fachhochschule Münster CO2-Absorptionsverfahren mittels wäßriger Amidinlösungen
EP2481466A1 (de) * 2011-01-31 2012-08-01 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Aufreinigen eines mit Nitrosamin verunreinigten Produktes einer Prozessanlage
US9429046B2 (en) 2011-03-22 2016-08-30 Climeon Ab Method for conversion of low temperature heat to electricity and cooling, and system therefore
FR2981860B1 (fr) * 2011-10-28 2013-11-08 IFP Energies Nouvelles Solution absorbante a base de monoalcanolamines tertiaires appartenant a la famille des 3-alcoxypropylamines et procede d'elimination de composes acides contenus dans un effluent gazeux
DE102011119327B4 (de) 2011-11-25 2013-11-07 Hermann Büttner Verfahren zum reversiblen Abtrennen von CO2, Verwendung des Verfahrens und Verwendung von 3-(Aminomethyl)-3,5,5-trimethylcyclohexanamin (IDA) zur reversiblen CO2-Absorption
DE102014004304A1 (de) * 2014-03-26 2015-10-01 Hermann Büttner Verfahren zur reversiblen Entschwefelung von Gasen und Dämpfen mittels funktionaler Aminlösungen
JP6658996B1 (ja) * 2018-06-14 2020-03-04 Jfeエンジニアリング株式会社 ガス吸収精製装置
JP2023032195A (ja) * 2021-08-26 2023-03-09 三菱重工エンジニアリング株式会社 複合アミン吸収液、除去装置及び除去方法
BR112023018695A2 (pt) 2022-04-28 2023-12-05 Mitsubishi Heavy Ind Ltd Absorvente de amina composta, unidade de remoção e método de remoção

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331788A1 (de) * 1987-02-05 1989-09-13 Uop Absorptionsmittel aus tertiärem Alkanolamin mit einem Äthylenamin-Aktivator und Verfahren zu seiner Verwendung
DE4201921A1 (de) * 1991-01-24 1992-07-30 Snam Progetti Verfahren zur umfassenden entfernung von sauren gasen aus gasgemischen
WO2002009849A2 (en) * 2000-07-27 2002-02-07 Continental Engineering B.V. Method and installation for the recovery of pure co2 from flue gas
US20040036055A1 (en) * 2000-07-25 2004-02-26 Norbert Asprion Method for neutralising a stream of fluid, and washing liquid for use in one such method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405811A (en) * 1982-01-18 1983-09-20 Exxon Research And Engineering Co. Severely sterically hindered tertiary amino compounds
US5373048A (en) * 1993-07-30 1994-12-13 Eastman Chemical Company Aqueous coating composition
DE102004011427A1 (de) * 2004-03-09 2005-09-29 Basf Ag Absorptionsmittel mit verbesserter Oxidationsbeständigkeit und Verfahren zum Entsäuern von Fluidströmen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331788A1 (de) * 1987-02-05 1989-09-13 Uop Absorptionsmittel aus tertiärem Alkanolamin mit einem Äthylenamin-Aktivator und Verfahren zu seiner Verwendung
DE4201921A1 (de) * 1991-01-24 1992-07-30 Snam Progetti Verfahren zur umfassenden entfernung von sauren gasen aus gasgemischen
US20040036055A1 (en) * 2000-07-25 2004-02-26 Norbert Asprion Method for neutralising a stream of fluid, and washing liquid for use in one such method
WO2002009849A2 (en) * 2000-07-27 2002-02-07 Continental Engineering B.V. Method and installation for the recovery of pure co2 from flue gas

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512548A (ja) * 2005-10-20 2009-03-26 ビーエーエスエフ ソシエタス・ヨーロピア 吸収剤及びガス流からの二酸化炭素の除去法
US8075673B2 (en) 2005-10-20 2011-12-13 Basf Se Absorption medium and method for removing carbon dioxide from gas streams
JP4691164B2 (ja) * 2005-10-20 2011-06-01 ビーエーエスエフ ソシエタス・ヨーロピア 吸収剤及びガス流からの二酸化炭素の除去法
US8398749B2 (en) 2005-12-12 2013-03-19 Basf Se Process for the recovery of carbon dioxide
US8034166B2 (en) 2006-05-18 2011-10-11 Basf Se Carbon dioxide absorbent requiring less regeneration energy
WO2007144372A1 (de) * 2006-06-13 2007-12-21 Basf Se Entfernung von kohlendioxid aus rauchgasen
JP2009539595A (ja) * 2006-06-13 2009-11-19 ビーエーエスエフ ソシエタス・ヨーロピア 煙道ガスからの二酸化炭素の除去
JP4909408B2 (ja) * 2006-06-13 2012-04-04 ビーエーエスエフ ソシエタス・ヨーロピア 煙道ガスからの二酸化炭素の除去
US7887620B2 (en) 2006-06-13 2011-02-15 Basf Se Removal of carbon dioxide from flue gases
WO2008068410A3 (fr) * 2006-11-27 2008-07-31 Inst Francais Du Petrole Solution absorbante utilisee dans un procede de capture de dioxyde de carbone contenu dans un effluent gazeux
WO2008068410A2 (fr) * 2006-11-27 2008-06-12 Ifp Solution absorbante utilisee dans un procede de capture de dioxyde de carbone contenu dans un effluent gazeux
FR2909011A1 (fr) * 2006-11-27 2008-05-30 Inst Francais Du Petrole Solution absorbante utilisee dans un procede de capture de dioxyde de carbone contenu dans un effluent gazeux.
US8652236B2 (en) 2007-01-17 2014-02-18 Union Engineering A/S Method for recovery of high purity carbon dioxide
EA016189B1 (ru) * 2007-01-17 2012-03-30 Юнион Инджиниринг А/С Способ выделения высокочистого диоксида углерода
WO2008086812A1 (en) * 2007-01-17 2008-07-24 Union Engineering A/S A method for recovery of high purity carbon dioxide
US8361425B2 (en) 2007-03-05 2013-01-29 Aker Clean Carbon As CO2 absorption method
US8641994B2 (en) 2007-04-18 2014-02-04 Aker Clean Carbon As Method and plant for CO2 capturing
WO2008130244A1 (en) * 2007-04-18 2008-10-30 Aker Clean Carbon As Method and plant for co2 capturing
US8388738B2 (en) 2007-11-15 2013-03-05 Basf Se Method for removing carbon dioxide from fluid flows, in particular combustion exhaust gases
US8318117B2 (en) 2008-06-23 2012-11-27 Basf Se Absorption medium and method for removing sour gases from fluid streams, in particular from flue gases
US8361426B2 (en) 2008-06-23 2013-01-29 Basf Se Absorption medium and method for removing sour gases from fluid streams, in particular from flue gases
US9545595B2 (en) 2008-07-29 2017-01-17 Union Engineering A/S Method for the removal of contaminants from a carbon dioxide feeding liquid stream
WO2009132661A1 (en) 2008-07-29 2009-11-05 Union Engineering A/S A method for recovery of high purity carbon dioxide
FR2938453A1 (fr) * 2008-11-20 2010-05-21 Inst Francais Du Petrole Methode pour reduire la degradation d'une solution absorbante mise en oeuvre dans une installation de desacidification d'un gaz
US8523979B2 (en) 2009-06-22 2013-09-03 Basf Se Removal of acid gases by means of an absorbent comprising a stripping aid
WO2010149599A1 (de) * 2009-06-22 2010-12-29 Basf Se Entfernung saurer gase mittels eines ein stripphilfsmittel enthaltenden absorptionsmittels
WO2012069063A1 (en) 2010-11-26 2012-05-31 Union Engineering A/S Continuous production of high purity carbon dioxide
WO2012163847A1 (de) 2011-05-27 2012-12-06 Evonik Industries Ag Verfahren und vorrichtung zur abtrennung von kohlendioxid aus gasströmen
WO2013000953A3 (en) * 2011-06-27 2013-05-10 Advanced Carbon Capture As An amine absorbent and a method for co2 capture

Also Published As

Publication number Publication date
JP2007527791A (ja) 2007-10-04
US20080098892A1 (en) 2008-05-01
EP1725321A1 (de) 2006-11-29
CA2557911A1 (en) 2005-09-22
DE102004011428A1 (de) 2005-09-29

Similar Documents

Publication Publication Date Title
EP1725320B1 (de) Verfahren zum entfernen von kohlendioxid aus gasströmen mit niedrigen kohlendioxid-partialdrücken
WO2005087350A1 (de) Verfahren zum entfernen von kohlendioxid aus rauchgasen
EP2026896B1 (de) Kohlendioxid-absorptionsmittel mit verringertem regenerations-energiebedarf
EP1940534B1 (de) Absorptionsmittel und verfahren zum entfernen von kohlendioxid aus gasströmen
EP2391435B1 (de) Zyklische amine enthaltendes absorptionsmittel zum entfernen saurer gase
EP2300127B1 (de) Absorptionsmittel und verfahren zur entfernung von sauergasen aus fluidströmen, insbesondere aus rauchgasen
EP2032234B1 (de) Entfernung von kohlendioxid aus rauchgasen
EP2059327B1 (de) Entfernung von kohlendioxid aus verbrennungsabgasen
EP2892633B1 (de) Verfahren zur abtrennung von sauergasen aus einem wasserhaltigen fluidstrom
WO2010149599A1 (de) Entfernung saurer gase mittels eines ein stripphilfsmittel enthaltenden absorptionsmittels
WO2009156273A1 (de) Absorptionsmittel und verfahren zur entfernung von sauergasen aus fluidströmen, insbesondere aus rauchgasen
EP3186222B1 (de) Diamin mit tert-alkylamino- und primärer aminogruppe zur verwendung in der gaswäsche
WO2008145658A1 (de) Absorptionsmittel zum entfernen von sauren gasen, umfassend eine basische aminocarbonsäure
EP1637210A1 (de) Verfahren zur Reinigung von Gasen und dazu geeignete Absorptionsflüssigkeit
EP3185989B1 (de) Entfernung von schwefelwasserstoff und kohlendioxid aus einem fluidstrom
EP3185990B1 (de) Entfernung von kohlendioxid aus einem fluidstrom mit einem tert-butylamin und einem aktivator
WO2017055192A2 (de) Verfahren zur selektiven entfernung von schwefelwasserstoff
EP2691163A1 (de) Rückhaltung von aminen bei der entfernung saurer gase mittels amin-absorptionsmitteln
EP3628393B1 (de) Verfahren zur abtrennung von kohlenmonoxid und sauergasen aus einem kohlenmonoxidhaltigem fluidstrom

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2557911

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005715884

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007502289

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005715884

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10592419

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10592419

Country of ref document: US