WO2005085964A1 - Prozesssteuersystem - Google Patents

Prozesssteuersystem Download PDF

Info

Publication number
WO2005085964A1
WO2005085964A1 PCT/EP2005/002257 EP2005002257W WO2005085964A1 WO 2005085964 A1 WO2005085964 A1 WO 2005085964A1 EP 2005002257 W EP2005002257 W EP 2005002257W WO 2005085964 A1 WO2005085964 A1 WO 2005085964A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
actual
variable
control
control system
Prior art date
Application number
PCT/EP2005/002257
Other languages
English (en)
French (fr)
Inventor
Gerd Krämer
Heiko Konrad
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to DE502005003987T priority Critical patent/DE502005003987D1/de
Priority to EP05707698A priority patent/EP1725915B1/de
Priority to JP2007501219A priority patent/JP4599394B2/ja
Publication of WO2005085964A1 publication Critical patent/WO2005085964A1/de
Priority to US11/514,078 priority patent/US7477980B2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/142Controller structures or design using different types of control law in combination, e.g. adaptive combined with PID and sliding mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1434Inverse model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits

Definitions

  • the invention relates to a process control system according to the preamble of claim 1.
  • Process control systems according to FIG. 1 are already known (for example process control system for filling the combustion chamber of an internal combustion engine cylinder in a vehicle of the current BMW 520i series, model year 2004), in which a process - for example filling the combustion chamber of an internal combustion engine with a desired air / gas mixture - using a Process model or based on individual sub-process models.
  • a process - for example filling the combustion chamber of an internal combustion engine with a desired air / gas mixture - using a Process model or based on individual sub-process models.
  • target manipulated variables for controlling individual load actuators are determined on the basis of a target filling specified by the driver.
  • an actual filling of the combustion chamber is calculated using a second process model PM2 in the form of a load detection, based on actual manipulated variables of the load actuators determined from the process, and the actual filling is measured in parallel with the calculation of this actual filling via sensors, for example an HFM sensor.
  • the measured and calculated actual fillings are then compared with one another and the difference between the actual fillings is passed to a mass flow controller, which in turn reacts to the two process models via its output signal. Since a model must be invertible to observe a process, the process models PM1 and PM2 must be invertible - PM1 must therefore be convertible or convertible to PM2 and vice versa. In order to guarantee this invertibility at any time, only very simplified and therefore mostly very inaccurate process models are used.
  • the invention has for its object to provide a process control system of increased accuracy. According to the invention, the object of the invention is achieved by the entirety of the features of claim 1, while advantageous developments of the invention are described in the subclaims.
  • a process control system comprises a first process model for the control of at least one process control element such that at least one process control control variable for controlling the at least one process control element is generated from at least one process control variable supplied to the first process model. Furthermore, there is a second process model which generates an actual process variable from at least one process actual manipulated variable of the at least one process actuator, the first process model being able to be mapped (converted into this) by inverting the second process model. Furthermore, according to the invention, there is a third process model which is used to generate a comparison process actual value, which essentially corresponds to the actual process variable generated via the second process model.
  • the third process model is of significantly higher accuracy and has at least one non-invertible component such that the third process model as a whole cannot be converted into the first process model by inversion. Furthermore, according to the invention, a process actual variable difference is formed from the process actual variable and the comparison process actual variable, and this is traced back to the first and second process models via a first control unit.
  • means are provided for measuring a comparison process actual variable, a further process actual variable difference formed from the measured comparison process actual variable and the process actual variable determined via the third process model via a further control unit is traced back to the third process model.
  • a particularly preferred application of the invention can be found in load detection and in load control for the internal combustion engine of a motor vehicle.
  • the exact knowledge of the air mass flowing into the combustion chambers of the cylinders per work cycle - which is also referred to as a load - is of great importance, since on the basis of the load the calculation of the injection time for the fuel and the calculation of the ignition point for the air-fuel mixture in the combustion chamber. Any inaccuracies in the load signal usually lead to adverse behavior in terms of emissions, driveability and consumption when regulating / controlling the process.
  • a direct detection of the air mass flow at the inlet valve - which is essential for the process control control - is not possible for technical reasons.
  • a first process model for load detection is designed to be invertible so that the process model for feedforward control (load control) can be inferred from this - while a second process model for load detection is not designed to be invertible in order to achieve increased accuracy for load detection ,
  • the process model used for load control should be invertible, since the control of the load actuators must be based on the inverted air mass model.
  • the use of an inverted or invertible process model in the feedforward control (load control) ensures that the load setpoints and the actual load values are the same at stationary operating points and thus the functioning of the so-called torque structure of the control is guaranteed.
  • Other embodiments of the invention are described in the subclaims.
  • FIG. 1 shows the schematic representation of a process control system according to the prior art
  • Figure 2 the schematic representation of a process control system according to the invention
  • Figure 3 an exemplary embodiment of a process control system according to the invention for filling the combustion chamber of a motor vehicle.
  • Figure 2 shows a process control system according to the invention with a first process model PM1 for pilot control of a process P, a second, invertible process model PM2 (inverted pilot control) for process control, a third, non-invertible process model PM3 for very accurate replication of the process to be controlled and a first Control unit R1, which is the difference between the actual values, which are derived from the two process models PM2, PM3 Process control are generated, a manipulated variable for feedback to the two invertible process models PM1, PM2 is generated.
  • the desired process actual value is measured virtually stationary by means of a measuring device ME, compared with the actual process value determined via the non-invertible process model and the comparison difference fed back to the non-invertible process model PM3 via a second control unit R2.
  • FIG. 3 analogously to FIG. 2 and its application is illustrated using the example of process P for filling the combustion chamber of a cylinder of an internal combustion engine.
  • a simple (invertible) process model PM1, PM2 is used for air mass pilot control (load control), the main component of which is a load map, in which an actual process value of the load signal is spanned over the actual value of the intake valve lift and the engine speed (lift pilot map).
  • ) is only valid for exactly one reference combination of valve inlet and valve outlet control times in each map point. If the valve inlet / valve outlet control times deviate from this reference combination, the process model is adapted to this deviation.
  • the load map is applied in such a way that the load signal always increases monotonically with the setpoint of the intake valve lift.
  • This stroke pilot control map thus has the input variables Setpoint of the load and engine speed as well as the setpoint for the intake valve lift as an output variable.
  • the air mass actually flowing into the cylinders of the internal combustion engine is calculated using a very precise (non-invertible) dynamic process model PM3.
  • the exact process model PM3 comprises sub-models for at least the essential components of the intake system that influence the filling of a cylinder combustion chamber.
  • the exact process model PM3 (viewed in the flow direction of the air) includes an air filter model for simulating the air mass flow in the air filter unit, a throttle valve model for simulating the air mass flow in the area in front of and behind the throttle valve, a container model for the intake manifold for simulating the air mass flow in the intake manifold and a Intake valve model for simulating the air mass flow in the area of the intake valve.
  • the throttle valve mass flow results from the pressure ratio across the throttle valve and the current actual value of the throttle valve angle.
  • the mass flow through the intake valve is modeled depending on the intake manifold pressure, the exhaust gas back pressure, and the actual values of intake valve lift, intake control time and exhaust control time.
  • a non-linear static model is used for this, which maps the mass flow as a function of the input variables mentioned (so-called swallowing characteristics).
  • the pressure change in the intake manifold is modeled by balancing the throttle valve and intake valve mass flow and applying the gas equation.
  • the absolute value of the intake manifold pressure is calculated by integration, which is then again the input variable for the mass flow models on the throttle valve and intake valve.
  • the exact dynamic process model PM3 and the simple static process model PM2 are compared using the model comparison.
  • the adjustment is carried out by means of a control unit R1 in the form of a model adjustment controller, which is designed in particular as a PI controller.
  • the input of the model adjustment controller is the difference between the exact dynamic Process model PM3 and the static process model PM2.
  • the output variable of the mass flow controller is a correction variable with which the simple static process model PM1, PM2 is adapted. This correction of the simple static process model PM1, PM2 takes place both in the feedforward control (process model PM1) and in the inverted path (process model PM2), so that the simple static process model PM2 remains invertible despite the model adjustment.
  • the model comparison is so slow that dynamic effects, which are mapped in the dynamic exact process model PM3, but which cannot be taken into account in principle in the simple static process model PM2, are not corrected. Instead, only the stationary values of the two process models PM3, PM2 / PM1 are compared. After the model has been compared, the load of the simple static process model PM2 thus corresponds to that of the dynamic exact process model PM3. In addition, due to the still existing inversion of the simple static process model PM2, the load target and actual load values are the same.
  • the real inflowing air mass is quasi stationary in a very precise manner by means of a measuring device ME - e.g. by means of an HFM sensor at the intake manifold inlet or by means of a lambda probe in the exhaust system - measured and used for the comparison of the exact dynamic model.
  • the adjustment is carried out using a further control unit R2 - e.g. a mass flow controller, which is also advantageously designed as a PI controller and with an additional adaptive neural network.
  • the input variable of the mass flow controller is the difference between the real air mass and the model air mass flow from the exact dynamic process model PM3.
  • the output variable of the mass flow controller is a correction variable with which the exact dynamic process model PM3 is adapted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Feedback Control In General (AREA)

Abstract

Die Erfindung betrifft ein Prozesssteuersystem zur Steuerung von mindestens einem Prozessstellglied mit - einem ersten Prozessmodell für die Ansteuerung des mindestens einen Prozessstellglieds derart, dass aus mindestens einer, dem ersten Prozessmodell zugeführten Prozess-Sollgrösse mindestens eine Prozess-Sollstellgrösse für die Ansteuerung des mindestens einen Prozessstellgliedes generiert wird - einem zweiten Prozessmodell welches aus mindestens einer Prozess-Iststellgrösse des mindestens einen Prozessstellgliedes eine ProzessIstgrösse generiert - einem weiteren Prozesselement zur Generierung einer Vergleichs-Prozess-Istgrösse - wobei das erste Prozessmodell durch Invertierung des zweiten Prozessmodells abbildbar ist und wobei eine aus Prozess-Istgrösse und Vergleichs-Prozess-Istgrösse gebildete Prozess-Istgrössen-Differenz über eine Regeleinheit auf das erste und das zweite Prozessmodell geführt ist. Der Erfindung liegt das Problem zugrunde, die Genauigkeit derartiger Systeme zu verbessern. Das Problem wird gelbst, idem das Prozesselement als drittes Prozessmodell mit erhöhter Nachbildungsgenauigkeit ausgebildet ist und zumindest einen nichtinvertierbaren Prozessbestandteil aufweist.

Description

Prozesssteuersystem
Die Erfindung betrifft ein Prozesssteuersystem gemäß dem Oberbegriff des Anspruchs 1.
Es sind bereits Prozesssteuersysteme gemäß Figur 1 bekannt ( z.B. Prozesssteuersystem zur Befüllung des Brennraumes eines Brennkraftmaschinenzylinders bei einem Fahrzeug der aktuellen Baureihe BMW 520i, Modelljahr 2004), bei denen ein Prozess - beispielsweise die Befüllung des Brennraumes einer Brennkraftmaschine mit einem gewünschten Luft Gasgemisch - anhand eines Prozessmodells bzw. anhand einzelner Teilprozessmodelle realisiert wird. Dabei werden beispielsweise mittels einem ersten Prozessmodellteil PM1 in Form einer Laststeuerung, aufgrund einer durch den Fahrer vorgegebenen Sollfüllung Sollstellgrößen zur Ansteuerung einzelner Laststellglieder ermittelt.
Ferner wird mittels einem zweiten Prozessmodell PM2 in Form einer Lasterfassung, aufgrund aus dem Prozess ermittelter Iststellgrößen der Laststellglieder eine Istfüllung des Brennraums berechnet und parallel zur Berechnung dieser Istfüllung über Sensoren, beispielsweise einen HFM-Sensor, die Istfüllung gemessen. Die gemessene und die berechnete Istfüllung werden anschließend miteinander verglichen und die Differenz der Istfüllungen auf .einen Massenstromregler geführt, der wiederum über sein Ausgangssignal auf die beiden Prozessmodelle zurückwirkt. Da ein Modell zur Beobachtung eines Prozesses invertierbar sein muss, müssen die Prozessmodelle PM1 und PM2 invertierbar sein - PM1 muss demnach in PM2 umrechenbar bzw. überführbar sein und umgekehrt. Um diese Invertierbarkeit jederzeit gewährleisten zu können, sind nur sehr vereinfachte und daher zumeist auch nur sehr ungenaue Prozessmodelle im Einsatz. Der Erfindung liegt die Aufgabe zugrunde, ein Prozesssteuersystem erhöhter Genauigkeit zu schaffen. Erfindungsgemäß wird die Aufgabe der Erfindung durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst, während vorteilhafte Weiterbildungen der Erfindung in den Unteransprüchen beschrieben sind.
Ein Prozesssteuersystem gemäß der Erfindung umfasst ein erstes Prozessmodell für die Ansteuerung zumindest eines Prozessstellglieds derart, dass aus mindestens einer, dem ersten Prozessmodell zugeführten Prozess-Sollgröße mindestens eine Prozess-Sollstellgröße für die Ansteuerung des mindestens einen Prozessstellgliedes generiert wird. Weiterhin ist ein zweites Prozessmodell vorhanden, welches aus mindestens einer Prozess-Iststellgröße des mindestens einen Prozessstellgliedes eine Prozess-Istgröße generiert, wobei das erste Prozessmodell durch Invertierung des zweiten Prozessmodells abbildbar (in dieses überführbar) ist. Ferner ist gemäß der Erfindung ein drittes Prozessmodell vorhanden, welches zur Generierung einer - im wesentlichen der über das zweite Prozessmodell generierten Prozess-Istgröße entsprechenden - Vergleichs-Prozess- Istgröße dient. Das dritte Prozessmodell ist dabei von deutlich höherer Genauigkeit und weist zumindest einen nicht invertierbaren Bestandteil auf derart, dass das dritte Prozessmodell insgesamt nicht durch Invertierung in das erste Prozessmodell überführbar ist. Des Weiteren wird gemäß Erfindung aus der Prozess-Istgröße und der Vergleichs-Prozess-Istgröße eine Prozess-Istgrößen-Differenz gebildet und diese über eine erste Regeleinheit auf das erste und das zweite Prozessmodell zurückgeführt.
In einer bevorzugten Weiterbildung der Erfindung sind Mittel zur messtechnischen Erfassung einer Vergleichs-Prozess-Istgröße vorhanden, wobei eine aus der gemessenen Vergleichs-Prozess-Istgröße und der über das dritte Prozessmodell ermittelten Prozess-Istgröße gebildete weitere Prozess-Istgrößen-Differenz über eine weitere Regeleinheit auf das dritte Prozessmodell zurückgeführt ist.
Eine besonders bevorzugte Anwendung der Erfindung findet sich in der Lasterfassung und in der Laststeuerung für den Verbrennungsmotor eines Kraftfahrzeugs. Für die Steuerung von Brennkraftmaschinen, ist die exakte Kenntnis der pro Arbeitsspiel in die Brennräume der Zylinder einströmenden Luftmasse - die auch als Last bezeichnet wird - von großer Bedeutung, da auf der Basis der Last die Berechnung der Einspritzzeit für den Kraftstoff und die Berechnung des Zündzeitpunktes für das im Brennraum befindliche Luft-Kraftstoffgemisch erfolgt. Etwa vorhandene Ungenauigkeiten im Lastsignal führen bei der Regelung/Steuerung des Prozesses in der Regel zu einem nachteiligen Verhalten bezüglich Emissionen, Fahrbarkeit und Verbrauch. Eine direkte Erfassung des Luftmassenstroms am Einlassventil - der für die ProzesssteuerungAregelung unabdingbar ist - ist aus technischen Gründen nicht möglich. Aus diesem Grund müssen für die Steuerung/Regelung der Brennkraftmaschine genaue mathematische Modeile zur Berechnung der am Einlassventil vorliegenden Verhältnisse des Luftmassenstroms angewendet werden. Dies erfolgt beispielsweise auf der Basis von Drucksensoren, Massenstromsensoren am Eingang der Sauganlage (z.B. HFM-Sensoren) oder anhand von Istgrößen der Stellglieder (z.B. der Drosselklappe). Diese modellbasierte Berechnung der Last wird als Lasterfassung bezeichnet. Zusätzlich zur Lasterfassung muss in der Steuerung der Brennkraftmaschine eine Laststeuerung realisiert werden. Hierfür ist der Last-Sollwert, der aus dem Momentenwunsch des Fahrers resultiert, in die Sollwerte für die Laststellglieder umzurechnen. Bei einem Motor mit verstellbarem Ventilhub und/oder verstellbaren Ventilsteuerzeiten (z.B. Valvetronicmotor) kommen als zu berechnende Lastsollwerte (Lasterfassung) insbesondere folgende Größen in Betracht: Drosselklappenstellung, Einlassventilhub, Auslassventilhub, Einlasssteuerzeit, Auslasssteuerzeit.
Auch für die Laststeuerung müssen Berechnungsmodelle in der Steuerung/Regelung abgelegt sein, in denen der Zusammenhang zwischen der Last und den Positionen bzw. Werten der Laststellglieder abgebildet ist. Die beiden über Prozessmodelle nachzubildenden Steuerungsfunktionen Laststeuerung und Lasterfassung unterscheiden sich bezüglich der Anforderungen, die an die jeweiligen Luftmassenmodelle gestellt werden grundsätzlich: Zum Einen sollte das für die Lasterfassung verwendete Prozessmodell möglichst genau den nachzubildenden Prozess abbilden. Da für die Lasterfassung eine Invertierbarkeit nicht zwingend erforderlich ist, eine erhöhte Genauigkeit aber gewünscht ist, wird hierfür ein insgesamt nicht invertierbares Prozessmodell verwendet. Dabei ist ein erstes Prozessmodell für die Lasterfassung invertierbar ausgebildet um hieraus durch Invertierung auf das Prozessmodell für die Vorsteuerung (Laststeuerung) schließen zu können - während ein zweites Prozessmodells für die Lasterfassung nicht invertierbar ausgebildet ist um hierdurch ggf. eine erhöhte Genauigkeit für die Lasterfassung zu erreichen.
Zum Anderen sollte das für die Laststeuerung verwendete Prozessmodell invertierbar sein, da die Ansteuerung der Laststellglieder auf dem invertierten Luftmassenmodell basieren muss. Durch die Verwendung eines invertierten bzw. invertierbaren Prozessmodells in der Vorsteuerung (Laststeuerung) wird gewährleistet, dass in stationären Betriebspunkten die Last-Sollwerte und die Last- Istwerte gleich sind und somit das Funktionieren der sogenannten Momentenstruktur der Steuerung gewährleistet wird. Andere Ausführungen der Erfindung sind in den Unteransprüchen beschrieben.
Im Folgenden wird die Erfindung anhand von Figuren näher erläutert. Es zeigen: .Figur 1 : die schematische Darstellung eines Prozesssteuersystems gemäß dem Stand der Technik,
Figur 2: die schematische Darstellung eines Prozesssteuersystems gemäß der Erfindung und
Figur 3: eine beispielhafte Ausführungsform eines erfindungsgemäßen Prozesssteuersystems zur Befüllung des Brennraums eines Kraftfahrzeugs.
Figur 2 zeigt ein Prozesssteuersystem gemäß der Erfindung mit einem ersten Prozessmodell PM1 zur Vorsteuerung eines Prozesses P, einem zweiten, invertierbaren Prozessmodell PM2 (invertierte Vorsteuerung) zur Prozesssteuerung, einem dritten, nicht invertierbaren Prozessmodell PM3 zur sehr genauen Nachbildung des zu steuernden Prozesses und einer ersten Regeleinheit R1 , die aus der Differenz der Istwerte, die aus den beiden Prozessmodellen PM2, PM3 zur Prozesssteuerung generiert werden, eine Stellgröße zur Rückführung auf die beiden invertierbaren Prozessmodelle PM1 , PM2 generiert. Auf diese Weise wird ein einfaches Prozessmodell (invertierbares Prozessmodell) mit einem möglichst genauen Prozessmodell (nicht invertierbares Prozessmodell) kombiniert und hierdurch zum Einen die Forderung der Invertierbarkeit des zu steuernden Prozesses und zum Anderen die Forderung nach einer ausreichend genauen Nachbildung des zu steuernden Prozesses erfüllt.
In einer bevorzugten Weiterbildung der Erfindung, wird zusätzlich zur modeilgestützten Nachbildung eines Prozess-Istwertes durch das nicht invertierbare Prozessmodell PM3 der gewünschte Prozess-Istwert mittels einer Messeinrichtung ME quasi stationär gemessen, mit dem über das nicht invertierbare Prozessmodell ermittelten Prozess-Istwert verglichen und die Vergleichsdifferenz über eine zweite Regeleinheit R2 auf das nicht invertierbare Prozessmodell PM3 zurückgeführt.
In der Figur 3 ist das erfindungsgemäße Prozesssteuersystem analog zu Figur 2 dargestellt und in seiner Anwendung am Beispiel des Prozesses P zur Befüllung des Brennraums eines Zylinders einer Brennkraftmaschine veranschaulicht.
Zur Luftmassenvorsteuerung (Laststeuerung) findet hier ein einfaches (invertierbares) Prozessmodell PM1 , PM2 Anwendung, dessen Hauptbestandteil ein Lastkennfeld ist, in dem ein Prozess-Istwert des Lastsignals über dem Istwert des Einlassventilhubes und der Motordrehzahl aufgespannt ist (Hubvorsteuerkennfeld). Der im Lastkennfeld abgelegte Prozess-Istwert (Lastwert P|) ist in jedem Kennfeldpunkt jeweils nur für genau eine Referenzkombination von Ventileiniass- und Ventilauslasssteuerzeiten gültig. Weichen die Ventileinlass- /Ventilauslasssteuerzeiten von dieser Referenzkombination ab, so wird das Prozessmodell an diese Abweichung angepasst. Das Lastkennfeld ist derart appliziert, dass das Lastsignal stets monoton mit dem Sollwert des Einlassventilhubs steigt. Dadurch kann mit dem einfachen statischen Modell durch einfache Invertierung des Kennfeldes ein Kennfeld zur Vorsteuerung des Einlassventilhubs berechnet werden, welches exakt invers zum einfachen statischen Lastmodell ist. Dieses Hubvorsteuerkennfeld hat somit als Eingangsgrößen den Sollwert der Last und die Motordrehzahl sowie als Ausgangsgröße den Sollwert für den Einlassventilhub.
Die Berechnung der tatsächlich in die Zylinder der Brennkraftmaschine einströmenden Luftmasse (Lasterfassung) erfolgt erfindungsgemäß anhand eines sehr genauen (nicht invertierbaren) dynamischen Prozessmodells PM3. Das genaue Prozessmodell PM3 umfasst dabei Teilmodelle für zumindest die wesentlichen, die Befüllung eines Zylinderbrennraums beeinflussenden Komponenten der Sauganlage. Insbesondere umfasst das genaue Prozessmodell PM3 (in Fließrichtung der Luft betrachtet) ein Luftfiltermodell zur Nachbildung des Luftmassenstroms in der Luftfiltereinheit, ein Drosselklappenmodell zur Nachbildung des Luftmassenstroms im Bereich vor und hinter der Drosselklappe, ein Behältermodell für das Saugrohr zur Nachbildung des Luftmassenstroms im Saugrohr und ein Einlassventilmodell zur Nachbildung des Luftmassenstroms im Bereich des Einlassventils. Wesentlich für das genaue dynamische Prozessmodell ist, dass die über die Drosselklappe zu- und über die Einlassventile abfließenden Luftmassenströme modelliert werden. Der Drosselklappenmassenstrom ergibt sich aus dem Druckverhältnis über der Drosselklappe und dem aktuellen Istwert des Drosselklappenwinkels. Der Massenstrom über das Einlassventil wird in Abhängigkeit des Saugrohrdruckes, des Abgasgegendruckes, sowie der Istwerte von Einlassventilhub, Einlasssteuerzeit und Auslasssteuerzeit modelliert. Hierfür wird ein nichtlineares statisches Modell verwendet, das den Massenstrom in Abhängigkeit von den genannten Eingangsgrößen abbildet (sogenannte Schluckkennlinien). Durch Bilanzierung von Drosselklappen- und Einlassventilmassenstrom und Anwendung der Gasgleichung wird die Druckänderung im Saugrohr modelliert. Durch Integration wird der Absolutwert des Saugrohrdruckes berechnet, der dann wieder Eingangsgröße für die Massenstrommodellierungen an Drosselklappe und Einlassventil ist.
Mittels des Modellabgleichs werden das genaue dynamische Prozessmodell PM3 und das einfache statische Prozessmodell PM2 abgeglichen. Der Abgleich erfolgt mittels einer Regeleinheit R1 in Form eines Modellabgleichreglers, der insbesondere als Pl-Regler ausgeführt ist. Eingangsgröße des Modellabgleichreglers ist die Differenz zwischen dem genauen dynamischen Prozessmodell PM3 und dem statischen Prozessmodell PM2. Ausgangsgröße des Massenstrom reg lers ist eine Korrekturgröße, mit der das einfache statische Prozessmodell PM1 , PM2 angepasst wird. Diese Korrektur des einfachen statischen Prozessmodells PM1 , PM2 erfolgt sowohl in der Vorsteuerung (Prozessmodell PM1) als auch im invertierten Pfad (Prozessmodell PM2), so dass das einfache statische Prozessmodell PM2 auch noch trotz des Modellabgleichs invertierbar bleibt. Der Modellabgleich erfolgt so langsam, dass dynamische Effekte, die im dynamischen genauen Prozessmodell PM3 abgebildet werden, die aber im einfachen statischen Prozessmodell PM2 prinzipbedingt nicht berücksichtigt werden können, nicht ausgeregelt werden. Stattdessen werden lediglich die Stationärwerte der beiden Prozessmodelle PM3, PM2/PM1 aufeinander abgeglichen. Nach erfolgtem Modellabgleich entspricht die Last des einfachen statischen Prozessmodells PM2 also der des dynamischen genauen Prozessmodells PM3. Zusätzlich sind wegen der immer noch vorhandenen Inversion des einfachen statischen Prozessmodells PM2 die Last-Soll- und Lastistwerte gleich.
Da trotz der sehr hohen Genauigkeit des genauen dynamischen Prozessmodells PM3 noch Modellfehler gegenüber der real in die Zylinder einströmenden Luftmasse auftreten, wird in einer Weiterbildung der Erfindung die real einströmende Luftmasse quasi stationär sehr genau mittels einer Messeinrichtung ME - z.B. mittels eines HFM-Sensors am Saugrohreingang oder mittels einer Lambdasonde im Abgastrakt - gemessen und für den Abgleich des genauen dynamischen Modells verwendet. Der Abgleich erfolgt mittels einer weiteren Regeleinheit R2 - z.B. einem Massenstromregler, der mit Vorteil ebenfalls als Pl-Regler und mit einem zusätzlichen adaptiven neuronalen Netz ausgeführt ist. Eingangsgröße des Massenstromreglers ist die Differenz zwischen der realen Luftmasse und dem Modell-Luftmassenstrom aus dem genauen dynamischen Prozessmodell PM3 . Ausgangsgröße des Massenstromreglers ist eine Korrekturgröße, mit der das genaue dynamische Prozessmodell PM3 angepasst wird.

Claims

Patentansprüche
1. Prozesssteuersystem zur Steuerung von mindestens einem Prozessstellglied (PSG1 ,...., PSGn) mit - einem ersten Prozessmodell (PM1) für die Ansteuerung des mindestens einen Prozessstellglieds (PSG1 ,...., PSGn) derart, dass aus mindestens einer, dem ersten Prozessmodell (PM1) zugeführten Prozess-Sollgröße (PSo) mindestens eine Prozess-Sollstellgröße (PS0St) für die Ansteuerung des mindestens einen Prozessstellgliedes (PSG1 ,...., PSGn) generiert wird, - einem zweiten Prozessmodell (PM2) welches aus mindestens einer Prozess-Iststellgröße (P|St) des mindestens einen Prozessstellgliedes (PSG 1 ,...., PSGn) eine Prozess-Istgröße (P|) generiert, - einem weiteren Prozesselement (PE) zur Generierung einer Vergleichs- Prozess-Istgröße (P|'), - wobei das erste Prozessmodell (PM2) durch Invertierung des zweiten Prozessmodells (PM2) abbildbar ist, - und wobei eine aus Prozess-Istgröße (P|) und Vergleichs-Prozess-Istgröße (Pι') gebildete Prozess-Istgrößen-Differenz (ΔP|) über eine Regeleinheit (R1) auf das erste und das zweite Prozessmodell (PM1 ; PM2) geführt ist, dadurch gekennzeichnet, dass - das Prozesselement (PE) als drittes Prozessmodell (PM3) mit erhöhter Nachbildungsgenauigkeit ausgebildet ist und zumindest einen nichtinvertierbaren Prozessbestandteil aufweist.
2. Prozesssteuersystem nach Anspruch 1 , gekennzeichnet durch Mittel (ME) zur messtechnischen Erfassung einer Vergleichs-Prozess-Istgröße (P|"), wobei eine aus der gemessenen Vergleichs-Prozess-Istgröße (P") und der über das dritte Prozessmodell (PM3) ermittelten Prozess-Istgröße (P|') gebildete weitere Prozess- Istgrößen-Differenz (ΔP|2) über eine weitere Regeleinheit (R2) auf das dritte Prozessmodell (PM3) geführt ist.
3. Prozessteuersystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das dritte Prozessmodell (PM3) eine Mehrzahl einzelner Teilprozessmodelle umfasst - insbesondere umfasst das dritte Prozessmodell (PM3) ein Luftfiltermodell zur Nachbildung des Luftmassenstroms im Bereich der Luftfiltereinheit, ein Drosselklappenmodell zur Nachbildung des Luftmassenstroms im Bereich der Drosselklappenanordnung, ein Saugrohr-Behältermodell zur Nachbildung der Druckverhältnisse innerhalb des Saugrohres und ein Einlassventilmodell zu Nachbildung des Einlassventil-Luftmassenstroms im Bereich der Einlassventilanordnung.
4. Prozessteuersystem nach Anspruch 3, dadurch gekennzeichnet, dass das Drosselklappenmodell derart ausgebildet ist, dass es anhand der ermittelten Größen von zumindest: - aktuelles Druckverhältnis über der jeweiligen Drosselklappe und dem - jeweils zugehörigen Drosselklappenwinkel den Luftmassenstroms im Bereich der bzw. jeder Drosselklappe generiert.
5. Prozessteuersystem nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Einlassventilmodell derart ausgebildet ist, dass es anhand der ermittelten Größen von zumindest: - Saurohrdruck, - Abgasgegendruck, - Istwert des Einlassventilhubs, - Istwert der Einlasssteuerzeit und dem - Istwert der Auslasssteuerzeit den Luftmassenstrom im Bereich des bzw. jedes Einlassventils generiert
6. Prozessteuersystem nach Anspruch 5, dadurch gekennzeichnet, dass das Einlassventilmodell zur Generierung des Luftmassenstroms im Bereich des Einlassventils nichtlineare Schluckkennlinien umfasst.
PCT/EP2005/002257 2004-03-04 2005-03-03 Prozesssteuersystem WO2005085964A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE502005003987T DE502005003987D1 (de) 2004-03-04 2005-03-03 Prozesssteuersystem
EP05707698A EP1725915B1 (de) 2004-03-04 2005-03-03 Prozesssteuersystem
JP2007501219A JP4599394B2 (ja) 2004-03-04 2005-03-03 プロセス制御システム
US11/514,078 US7477980B2 (en) 2004-03-04 2006-09-01 Process control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004011236A DE102004011236A1 (de) 2004-03-04 2004-03-04 Prozesssteuersystem
DE102004011236.3 2004-03-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/514,078 Continuation US7477980B2 (en) 2004-03-04 2006-09-01 Process control system

Publications (1)

Publication Number Publication Date
WO2005085964A1 true WO2005085964A1 (de) 2005-09-15

Family

ID=34895035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002257 WO2005085964A1 (de) 2004-03-04 2005-03-03 Prozesssteuersystem

Country Status (5)

Country Link
US (1) US7477980B2 (de)
EP (1) EP1725915B1 (de)
JP (1) JP4599394B2 (de)
DE (2) DE102004011236A1 (de)
WO (1) WO2005085964A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929995A1 (fr) * 2008-04-09 2009-10-16 Bosch Gmbh Robert Procede et appareil de commande d'un moteur a combustion interne

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005048703B3 (de) * 2005-10-11 2007-04-05 Siemens Ag Verfahren zur Steuerung einer Brennkraftmaschine mit Ventilhubumschaltung
DE102007023850B3 (de) * 2007-05-23 2008-08-21 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007051873B4 (de) * 2007-10-30 2023-08-10 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102014000397A1 (de) * 2014-01-17 2015-07-23 Fev Gmbh Modellbasierte Zylinderfüllungserfassung für eine Brennkraftmaschine
FR3057297B1 (fr) * 2016-10-10 2018-11-09 Peugeot Citroen Automobiles Sa Procede de pilotage d'une levee de soupapes d'un moteur a combustion interne a levee de soupapes variable
JP7135719B2 (ja) * 2018-10-24 2022-09-13 トヨタ自動車株式会社 スロットル制御装置
CN112363409B (zh) * 2020-11-10 2022-02-11 中国核动力研究设计院 一种核电厂安全级仪控仿真系统的工况回溯与重演系统
DE102021202351A1 (de) 2021-03-11 2022-09-15 Psa Automobiles Sa Verfahren zum Steuern einer Drosselklappe, Drosselklappensteuerung und Kraftfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539638A (en) * 1993-08-05 1996-07-23 Pavilion Technologies, Inc. Virtual emissions monitor for automobile
US5598329A (en) * 1994-01-17 1997-01-28 Siemens Aktiengesellschaft Method and device for controlling a process
US6256575B1 (en) * 1998-09-08 2001-07-03 Siemens Automotive S.A. Process for controlling an internal combustion engine
US20030078684A1 (en) * 1996-05-06 2003-04-24 Martin Gregory D. Method and apparatus for modeling dynamic and steady-state processes for prediction, control and optimization
US20030208287A1 (en) * 2000-11-30 2003-11-06 Matthias Kurz Method and device for calculating process variables of an industrial process
US20030221669A1 (en) * 2002-05-31 2003-12-04 Michael Henn Method for regulating the fuel injection of an internal combustion engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094213A (en) * 1991-02-12 1992-03-10 General Motors Corporation Method for predicting R-step ahead engine state measurements
JPH0588900A (ja) * 1991-09-30 1993-04-09 Hitachi Ltd 学習型フアジイ制御装置および制御方法
JPH05265512A (ja) * 1992-03-17 1993-10-15 Hitachi Ltd 学習型制御装置およびファジィ推論装置
JP2771929B2 (ja) * 1992-10-06 1998-07-02 インターナショナル・ビジネス・マシーンズ・コーポレイション ディジタル・サーボ制御システム
JPH06242836A (ja) * 1993-02-19 1994-09-02 Mitsubishi Electric Corp 車両走行制御装置
JP3105694B2 (ja) * 1993-04-26 2000-11-06 三洋電機株式会社 マニピュレータ制御方法
WO1994028504A1 (en) * 1993-05-21 1994-12-08 Arris Pharmaceutical A machine-learning approach to modeling biological activity for molecular design and to modeling other characteristics
US5735584A (en) * 1994-11-25 1998-04-07 Itt Automotive Europe Gmbh Process for driving stability control with control via pressure gradients
US5729462A (en) * 1995-08-25 1998-03-17 Northrop Grumman Corporation Method and apparatus for constructing a complex tool surface for use in an age forming process
DE19906707A1 (de) * 1999-02-18 2000-08-24 Bayerische Motoren Werke Ag Verfahren zur Bestimmung der Zylinderbefüllung bei ungedrosselten Verbrennungsmotoren
DE10021132A1 (de) * 2000-04-29 2001-11-29 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur elekronischen Steuerung von Aktuatoren einer Brennkraftmaschine mit variabler Gaswechselsteuerung
US6859739B2 (en) * 2001-01-19 2005-02-22 Smartsignal Corporation Global state change indicator for empirical modeling in condition based monitoring
JP2002312004A (ja) * 2001-04-18 2002-10-25 Nagoya Industrial Science Research Inst サーボ制御システム
JP2003022134A (ja) * 2001-07-06 2003-01-24 Mitsubishi Heavy Ind Ltd 浮体位置制御システム及び浮体位置制御シミュレータ
DE10227466B4 (de) * 2002-06-20 2004-06-09 Bayerische Motoren Werke Ag Verfahren zum Bestimmen der Zylinderbeladung bei einer Brennkraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539638A (en) * 1993-08-05 1996-07-23 Pavilion Technologies, Inc. Virtual emissions monitor for automobile
US5598329A (en) * 1994-01-17 1997-01-28 Siemens Aktiengesellschaft Method and device for controlling a process
US20030078684A1 (en) * 1996-05-06 2003-04-24 Martin Gregory D. Method and apparatus for modeling dynamic and steady-state processes for prediction, control and optimization
US6256575B1 (en) * 1998-09-08 2001-07-03 Siemens Automotive S.A. Process for controlling an internal combustion engine
US20030208287A1 (en) * 2000-11-30 2003-11-06 Matthias Kurz Method and device for calculating process variables of an industrial process
US20030221669A1 (en) * 2002-05-31 2003-12-04 Michael Henn Method for regulating the fuel injection of an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929995A1 (fr) * 2008-04-09 2009-10-16 Bosch Gmbh Robert Procede et appareil de commande d'un moteur a combustion interne

Also Published As

Publication number Publication date
JP4599394B2 (ja) 2010-12-15
US20070203588A1 (en) 2007-08-30
DE102004011236A1 (de) 2005-09-29
US7477980B2 (en) 2009-01-13
JP2007526568A (ja) 2007-09-13
EP1725915A1 (de) 2006-11-29
DE502005003987D1 (de) 2008-06-19
EP1725915B1 (de) 2008-05-07

Similar Documents

Publication Publication Date Title
EP1725915B1 (de) Prozesssteuersystem
DE102007025432B4 (de) Steuervorrichtung für einen Verbrennungsmotor
DE10362028B4 (de) Verfahren zur Bestimmung einer Frischgasmenge
WO2006069853A1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19756619A1 (de) System zum Betreiben einer Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE102015211808A1 (de) Steuervorrichtung für Verbrennungskraftmaschine
DE19740916A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1789665A1 (de) Verfahren zur modellbasierten bestimmung der während einer ansaugphase in die zylinderbrennkammer einer brennkraftmaschine einstr\menden frischluftmasse
DE102007039691A1 (de) Modellierungsverfahren und Steuergerät für einen Verbrennungsmotor
WO2016198299A1 (de) Luftfüllungsbestimmung, motorsteuergerät und verbrennungskraftmaschine
DE102014000397A1 (de) Modellbasierte Zylinderfüllungserfassung für eine Brennkraftmaschine
DE102005010029A1 (de) Motorsteuerungssystem für eine Brennkraftmaschine mit mehreren Zylindern
DE10224213C1 (de) Verfahren zur Füllungsregelung einer Brennkraftmaschine
WO2007036377A1 (de) Verfahren zum erfassen des umgebungsdrucks in einer brennkraftmaschine
WO2011076551A1 (de) Verfahren und vorrichtung zur durchführung einer onboard-diagnose
DE10356713A1 (de) Verfahren zur Regelung bzw. Steuerung einer in einem Kreisprozess arbeitenden Brennkraftmaschine
DE102006043887B4 (de) Steuervorrichtung für einen Verbrennungsmotor
DE10025495B4 (de) Verfahren zum Betrieb einer Brennkraftmaschine
EP1506348B1 (de) Verfahren und vorrichtung zur steuerung der einzuspritzenden kraftstoffmenge einer selbstzündenden brennkraftmaschine
EP0719383B1 (de) Verfahren und vorrichtung zum berechnen des durch ein ventil an einem verbrennungsmotor strömenden gasvolumens
DE102014000395A1 (de) Verfahren zur Steuerung einer Verbrennungskraftmaschine
DE112018002483T5 (de) Steuervorrichtung für einen verbrennungsmotor
DE10220141B4 (de) Verfahren zum Steuern der Verbrennung einer Brennkraftmaschine mit mindestens zwei Zylinderbänken
DE102008054933A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Abweichungsinformation für eine gemessene oder modellierte Größe eines Luftsystems eines Verbrennungsmotors
DE102007021414A1 (de) Verfahren zur Einstellung der Füllung einer Verbrennungskraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11514078

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007501219

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005707698

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005707698

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11514078

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005707698

Country of ref document: EP