WO2005085616A1 - 多気筒内燃機関の吸気制御装置 - Google Patents

多気筒内燃機関の吸気制御装置 Download PDF

Info

Publication number
WO2005085616A1
WO2005085616A1 PCT/JP2004/003019 JP2004003019W WO2005085616A1 WO 2005085616 A1 WO2005085616 A1 WO 2005085616A1 JP 2004003019 W JP2004003019 W JP 2004003019W WO 2005085616 A1 WO2005085616 A1 WO 2005085616A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
intake
amount
air
air amount
Prior art date
Application number
PCT/JP2004/003019
Other languages
English (en)
French (fr)
Inventor
Takanobu Ichihara
Kozo Katogi
Minoru Osuga
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2006519082A priority Critical patent/JPWO2005085616A1/ja
Priority to PCT/JP2004/003019 priority patent/WO2005085616A1/ja
Publication of WO2005085616A1 publication Critical patent/WO2005085616A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment

Definitions

  • the present invention relates to an intake control apparatus for an internal combustion engine provided with a mechanism for adjusting a lift amount of an intake valve, and more particularly to an intake control apparatus for a multi-cylinder internal combustion engine adapted to suppress variations in intake air amount between cylinders.
  • an intake control apparatus for an internal combustion engine provided with a mechanism for adjusting a lift amount of an intake valve
  • an intake control apparatus for a multi-cylinder internal combustion engine adapted to suppress variations in intake air amount between cylinders.
  • throttle loss of the throttle valve at low load caused a reduction in fuel efficiency.
  • an internal combustion engine equipped with a mechanism that can change the lift amount of the intake valve changing the lift amount of the intake valve Since the amount of intake air can be adjusted, throttle loss at the throttle valve can be reduced, and fuel efficiency can be improved.
  • the lift amount of the intake valve changes as shown in Fig. 22, but the lift amount at low load is 1 . Very small, less than 5 mm.
  • the opening area (gap) between the intake valve and the intake port is extremely small, and the variation in the opening area due to the dimensional variation in the components of the lift amount adjustment mechanism provided for each cylinder is the opening area.
  • the variation in the amount of air taken into each cylinder increases, causing a non-negligible difference in the torque generated in each cylinder, and the torque fluctuation increases.
  • the engine fluctuates in rotation, vibrates, etc., and the drivability deteriorates.
  • the air-fuel ratio varies from cylinder to cylinder, so that a large amount of exhaust gas components such as HC and NOX are exhausted, and the exhaust emission characteristics deteriorate.
  • the amount of air taken into each cylinder also varies due to aging due to wear and the like, and the same problem occurs.
  • the above problem can be alleviated to some extent, for example, by increasing the precision by strictly controlling the dimensions of the components of the lift amount adjusting mechanism at the time of manufacture, but increasing the dimensional accuracy significantly increases the cost, resulting in mass production. The property is low.
  • the present invention has been made in order to solve the conventional problems as described above, and an object of the present invention is to provide a multi-cylinder internal combustion engine having an intake valve lift adjustment mechanism, a component of the lift adjustment mechanism. Effectively suppresses the variation in intake air volume between cylinders due to aging due to dimensional variation and wear during manufacturing, reducing torque variation, vibration and air-fuel ratio variation among cylinders, and improving operability and exhaust emissions.
  • the intake of a multi-cylinder internal combustion engine has been improved so that its characteristics can be improved, and it is also possible to eliminate post-adjustment of the lift amount, reduce costs by relaxing the required component accuracy, and improve mass productivity. It is to provide a control device. Disclosure of the invention
  • the intake valve lift amount adjusting means for adjusting the lift amount of the intake valve;
  • Inter-cylinder air amount deviation detecting means for detecting an inter-cylinder air amount difference to be detected, and an inter-cylinder air amount deviation for each cylinder based on the inter-cylinder air amount deviation detected by the detecting means.
  • Cylinder-by-cylinder intake air correction amount calculating means for calculating the correction amount of the intake air amount for each cylinder; and adjusting the intake air amount of each cylinder according to the correction amount of each cylinder calculated by the correction amount calculating means.
  • a means for adjusting the intake air amount for each cylinder is adjusting the intake air amount for each cylinder.
  • a storage unit that stores the correction amount of each cylinder calculated by the cylinder-by-cylinder intake air correction amount calculation unit, and whether or not the correction amount is stored in the storage unit.
  • a learning state determining means for determining, wherein the intake valve lift amount adjusting means determines the intake valve lift amount when the learning state determining means determines that the correction amount is not stored. It is set to be larger than the minimum value of the movable range of the lift amount.
  • the intake valve lift amount adjusting means sets the intake valve lift amount to be larger than a minimum value of a movable range of the intake valve lift amount, and
  • the cylinder-by-cylinder intake air amount correction unit calculates a correction amount of the intake air amount of each cylinder, and the cylinder-by-cylinder intake air amount adjustment unit calculates by the correction unit
  • the intake air amount of each cylinder is adjusted based on the corrected amount of each cylinder thus obtained, and the intake valve lift amount adjusting means is configured to gradually reduce the intake valve lift amount.
  • the intake valve lift amount adjusting means for adjusting the lift amount of the intake valve, the intake air amount detecting means, and the cylinder-by-cylinder intake air amount adjusting means for adjusting the intake air amount of each cylinder.
  • the cylinder-by-cylinder intake air amount adjustment means compares the detected air amount detected by the intake air amount detection means with a target air amount set in advance according to an intake valve lift amount. When the detected air amount is smaller than the target air amount, the cylinder intake air amount is increased, and when the detected air amount is larger than the target air amount, the cylinder intake air amount is decreased.
  • the cylinder-by-cylinder intake air amount adjusting means preferably bypasses the throttle valve and the Z provided in an intake passage for guiding external air to each cylinder or a main intake passage portion of the intake passage, and bypasses the intake passage.
  • a bypass air passage connected to a branch passage portion forming a downstream portion; and a bypass air control valve provided in the bypass air passage. They are changed in synchronization with the process.
  • the cylinder-by-cylinder intake air amount adjusting means is configured such that, as the total intake air amount taken into the cylinder decreases, the proportion of the air amount taken into the cylinder via the bypass air passage increases.
  • the degree of opening of the bypass air control valve is set.
  • the bypass air passage preferably has a downstream portion formed in the cylinder head.
  • the bypass air passage is formed such that a downstream end thereof is directed toward an umbrella valve body portion of the intake valve.
  • the cylinder-by-cylinder intake air amount adjusting means is provided in a throttle valve provided in an intake passage for guiding external air to each cylinder or a branch passage portion forming a downstream portion of the intake passage.
  • An air control valve, the throttle valve or the air The opening of the control valve is changed in synchronization with the intake stroke of each cylinder.
  • the intake control apparatus for a multi-cylinder internal combustion engine according to the present invention having the above-described configuration is used for an internal combustion engine having an intake valve lift amount adjustment mechanism.
  • Mission characteristics can be improved, and further, there is no need for post-adjustment of the lift amount, cost reduction by relaxing required component accuracy, and improvement in mass productivity.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of an intake control device according to the present invention, together with a main part of an internal combustion engine to which the intake control device is applied.
  • FIG. 2 is a diagram showing a configuration example of a bypass air passage provided in the internal combustion engine shown in FIG.
  • FIG. 3 is an internal configuration diagram of the control unit shown in FIG.
  • FIG. 4 is a functional block diagram for explaining the content of air amount control executed by the control unit according to the first embodiment.
  • FIG. 5 is a time chart for explaining the operation, operation, and effect of the first embodiment.
  • FIG. 6 is a diagram provided for explanation of the mounting position of the air-fuel ratio sensor according to the first embodiment.
  • FIG. 7 is a diagram illustrating an example of a detection signal obtained from the air-fuel ratio sensor.
  • FIG. 8 is a diagram showing an example of sharing the amount of air between the intake passage and the bypass air passage.
  • FIG. 9 is a schematic configuration diagram showing a downstream portion of an intake passage of an internal combustion engine to which the second embodiment of the intake control device according to the present invention is applied.
  • FIG. 10 is a time chart for explaining the operation, operation, and effect of the embodiment.
  • FIG. 11 is a schematic configuration diagram showing a downstream portion of an intake passage of an internal combustion engine to which another example of the intake control device according to the present invention is applied.
  • FIG. 12 is a time chart for explaining the operation, operation, and effect of the example shown in FIG.
  • FIG. 13 is a functional block diagram for explaining the details of the air amount control executed by the control unit according to the third embodiment.
  • FIG. 14 is a time chart used for describing the operation, operation, and effects of the third embodiment.
  • FIG. 15 is a diagram showing the air-fuel ratio of each cylinder at the time of low lift.
  • FIG. 16 is a diagram showing the air-fuel ratio of each cylinder at the time of high lift.
  • FIG. 17 is a diagram showing the air-fuel ratio correction coefficient.
  • FIG. 18 is a time chart for explaining a method of calculating a cylinder intake air amount deviation in the third embodiment.
  • FIG. 19 is a flowchart showing an intake air amount control routine executed by the control unit in the third embodiment.
  • FIG. 20 is a diagram showing characteristics of the intake air amount with respect to the intake valve lift amount.
  • FIG. 21 is a flowchart showing a part of an intake air amount control routine executed by the control unit in the fourth embodiment.
  • FIG. 22 is a diagram which is used for describing the lift amount of the intake valve. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of an intake control device according to the present invention, together with main parts (only one cylinder portion) of an example of a multi-cylinder internal combustion engine to which the intake control device is applied.
  • the illustrated internal combustion engine 1 has a main body composed of a cylinder header 1A and a cylinder block 1B provided with, for example, six cylinders # 1, # 2, # 3, # 4, # 5, and # 6.
  • a combustion chamber 9 is defined above a piston 7 which is a six-cylinder internal combustion engine (see also FIG. 2), which is slidably inserted into each of cylinders # 1 to # 6.
  • a spark plug 13 is provided in the combustion chamber 9.
  • the air used for fuel combustion is taken in from an air cleaner 4 provided at the start end of the main intake passage 2A of the intake passage 2, passes through an air flow sensor 19, and is sucked through an electronically controlled throttle valve 3.
  • Each cylinder enters a collector 22 provided with a pressure sensor 17, and flows from the collector 22 via a branch passage 2 B, an intake port 2 C, and an intake valve 8 which forms a downstream portion of the intake passage 2. It is sucked into the combustion chambers 9 of # 1 to # 6.
  • a throttle opening sensor 26 for detecting the throttle opening is arranged near the throttle valve 3. Further, a fuel injection valve 5 is provided in the branch passage portion 2B of the intake passage 2.
  • a mixture of air sucked into the combustion chamber 9 and fuel injected from the fuel injection valve 5 is ignited by a spark plug 13 to explode and burn, and the combustion waste gas (exhaust) is discharged to the combustion chamber 9.
  • the exhaust gas is discharged into the exhaust passage 18 via the exhaust valve 28, then flows into the exhaust purification catalyst (not shown), is purified, and is then discharged outside.
  • an air-fuel ratio sensor 14 is disposed in an exhaust gas collecting portion 18B upstream of the catalyst in the exhaust passage 18 and downstream of the individual exhaust passage portion 18A. .
  • the air-fuel ratio sensor 14 has a linear output characteristic with respect to the concentration of oxygen contained in the exhaust gas.
  • the relationship between the oxygen concentration in the exhaust gas and the air-fuel ratio is almost linear, and therefore, the air-fuel ratio in the exhaust collecting section 18B is linearly measured by the air-fuel ratio sensor 14 that detects the oxygen concentration. It is possible to ask.
  • the output signal of the air-fuel ratio sensor 14 is used not only for air-fuel ratio control but also for detection of an air amount deviation between cylinders (described later).
  • a lift adjustment mechanism 11 for opening and closing the intake valve 8 and adjusting the lift is provided.
  • the lift adjusting mechanism 11 includes a motor 11A, and adjusts the lift of the intake valve 8 via the link mechanism 12 by the angular displacement of the motor 11A.
  • the structure of the link mechanism section 12 is described in detail, for example, in Japanese Patent Application Laid-Open No. 2003-41495, and the detailed description thereof is omitted here.
  • the opening area (gap) between the intake valve 8 and the intake port 2C changes, and the amount of air drawn into (combustion chamber 9 of) each cylinder # 1 to # 6. It is adjusted.
  • one motor 11 is provided for an in-line cylinder engine, and one motor is provided for each bank in a V-type cylinder engine.
  • a link mechanism that adjusts the amount of lift of the intake valve 8 for each cylinder # 1 to # 6
  • the part 12 is provided for each cylinder, and the lift amount varies for each cylinder due to the dimensional variation of the components constituting the link mechanism part 12.
  • the link mechanism 12 since the link mechanism 12 has a portion that comes into contact with the camshaft and other movable portions, the lift amount also varies due to aging of parts dimensions due to wear and the like.
  • the variation in the lift amount for each cylinder can be corrected by correcting the variation in the cylinder intake air amount by changing the displacement angle of the motor 11 A for each intake stroke of each of the cylinders #i to # 6.
  • the intake air amount can be adjusted by changing the lift amount of the intake valve 8
  • the EGR is performed, and the evaporative gas from the fuel tank is removed. Since it is necessary to generate a negative pressure in the intake passage 2 in order to suck into the engine intake system, the intake passage 2 is provided with the throttle valve 3 as described above.
  • bypass air passage 20 includes a main passage portion (collecting passage portion) 2 OA, a puncture distribution passage portion 20 B branched from the main passage portion 2 OA, and a puncture distribution passage portion 20 B.
  • the puncture distribution passage portion 20B and the cylinder distribution passage portion 20C are formed in the cylinder head 1A, and are downstream of the cylinder distribution passage portion 20C.
  • the end (cylinder distribution passage portion 20 C) is directed to the umbrella valve portion 8 a of the intake valve 8 in order to minimize interference with the fuel spray injected from the fuel injection valve 5. .
  • the puncture distribution passage portion 20B and the cylinder distribution passage portion 20C may be formed as independent pipes outside the cylinder head 1A. Further, the bypass air control valve 16 may be provided for each bank, that is, for each of the bank distribution passage sections 20B.
  • the temperature is kept constant.
  • the intake control device of the present embodiment is provided with a control unit 100 having a built-in microcomputer for performing various controls of the internal combustion engine 1.
  • the control unit 100 basically includes, as shown in FIG. 3, an input circuit 210, an AD converter 220, a central processing unit (CPU) 230, a read-only memory ROM 240,
  • the configuration includes a RAMI 60 as a possible memory and an output circuit 260.
  • the signals input to the input circuit 210 are signals from the air flow sensor 19, the crank angle sensor 27, the intake pressure sensor 17, the air-fuel ratio sensor 14, and the like. And outputs the result to the A / D converter 220.
  • the A / D converter 220 converts the signal from the input circuit 210 into a digital signal, Output to
  • the central processing unit 230 takes in the results of the A / D conversion by the A / D conversion unit 220 and executes a predetermined program stored in the ROM 240 to perform various controls (intake to each cylinder). Control of air flow, intake valve lift control, fuel injection control, fuel injection timing control, ignition timing control, etc.).
  • the calculation result and the A / D conversion result are stored in the RAM 160, and the calculation result is output as a control output signal through the output circuit 260 as a motor for controlling the valve lift amount 11A, the bypass air control valve. Supplied to 16, throttle valve 3, fuel injection valve 5, etc.
  • FIG. 4 is a functional block diagram of the air amount control means 10OA which controls the intake air amount.
  • the air amount control means 100 A includes a throttle opening degree control means 110 for controlling the opening degree of the electronically controlled throttle valve 3, and a control of the intake valve lift amount by the intake valve lift amount adjustment mechanism 11.
  • Intake-air-valve-amount control means 130 which performs the following operations; and cylinder-to-cylinder air-amount deviation detecting means 140, which detects a cylinder-to-cylinder difference in the amount of intake air taken into each cylinder # 1 to # 6.
  • the cylinder-by-cylinder intake air correction amount for calculating the correction amount of the intake air amount for each cylinder to reduce the inter-cylinder air amount deviation of each cylinder
  • Cylinder intake air amount control means 1 for controlling the opening degree of the bypass air control valve 16 according to the calculation means 150 and the correction amount of each cylinder calculated by the correction amount calculation means 150 70 and
  • the intake valve lift amount adjusting mechanism 11 and the intake valve lift amount control means 130 constitute an intake valve lift amount adjustment means 120, and the bypass air control valve 16 and the intake air for each cylinder.
  • the amount control means 170 constitutes the cylinder-specific intake air amount adjusting means 160.
  • the inter-cylinder air amount deviation detecting means 140 detects the inter-cylinder air amount deviation based on, for example, rotation fluctuation, air-fuel ratio, in-cylinder pressure and the like. Hereinafter, a case will be described in which the inter-cylinder air amount deviation is detected based on the air-fuel ratio.
  • the detected air-fuel ratio detected by the air-fuel ratio sensor 14 is Indicates the variation in the amount of intake air (the degree of excess or deficiency).
  • FIG. 7 shows an example of a detection signal obtained from the air-fuel ratio sensor 14. The detection signal of the air-fuel ratio sensor at the exhaust timing of each cylinder # 1 to # 6 corresponds to the excess or deficiency of air in each cylinder.
  • the average air-fuel ratio of all cylinders is calculated, and if the air-fuel ratio at the exhaust timing of a specific cylinder is better than the average air-fuel ratio of all cylinders, the intake air amount of that cylinder is small and conversely lean. It can be determined that the intake air amount of the cylinder is large.
  • the air-fuel ratio sensor 14 for air-fuel ratio control is used as it is.
  • the air-fuel ratio sensor 14 may be provided for each cylinder, that is, for each individual exhaust passage section 18A, instead of the exhaust collecting section 18B as shown in FIG.
  • the variation in the fuel injection amount of the fuel injection valve 5 is slight, it affects the calculation accuracy of the cylinder intake air amount.Therefore, the variation in the fuel injection amount of the fuel injection valve 5 is removed and the cylinder intake is performed. A method for improving the calculation accuracy of the air amount will be described.
  • the dashed line indicates the air-fuel ratio of each cylinder when the fuel injection amount of each cylinder # 1 to # 6 is made uniform, and corresponds to the variation of the cylinder intake air amount.
  • the detected air-fuel ratio becomes as shown by the solid line, and it deviates from the air-fuel ratio corresponding to the variation of the cylinder intake air amount shown by the broken line.
  • the difference between the detected air-fuel ratio of the air-fuel ratio sensor 14 (solid line) and the air-fuel ratio (broken line) corresponding to the intake air amount variation corresponds to the injection amount variation of the fuel injection valve 5 provided for each cylinder.
  • FIG. 16 shows the detected air-fuel ratio of the air-fuel ratio sensor 14 when the intake valve 8 is at a high lift.
  • the opening area (gap) of the intake valve 8_intake port C is large, so the ratio of the opening area variation (difference between cylinders) due to the lift amount variation to the opening area is small, and the cylinder intake air amount variation Influence on the air-fuel ratio is also reduced. Therefore, the variation in the air-fuel ratio of each cylinder during high lift corresponds to the variation in the injection amount of each cylinder.
  • the variation in the injection amount for each cylinder can be obtained from the air-fuel ratio of each cylinder at the time of high lift.
  • the cylinder with lean air-fuel ratio with respect to the average air-fuel ratio of all cylinders has small injection quantity and the cylinder with rich air-fuel ratio has large injection quantity.
  • the deviation of the detected air-fuel ratio from the average air-fuel ratio corresponds to the injection amount variation.
  • the reciprocal of the ratio of the air-fuel ratio to the average air-fuel ratio during high lift is used as the air-fuel ratio correction coefficient, and the air-fuel ratio correction coefficient is reduced by the following equation (2).
  • ⁇ a Air-fuel ratio corresponding to the intake air amount of each cylinder
  • the method of detecting the variation in the amount of intake air of the cylinder described above can be applied to the embodiments described later in common.
  • the inter-cylinder air amount deviation detecting means 140 detects the inter-cylinder air amount deviation, and the cylinder-by-cylinder intake air correction amount calculating means 150 based on the inter-cylinder air amount deviation, The correction amount of the intake air amount is calculated for each cylinder to reduce the cylinder-to-cylinder air amount deviation, and the cylinder-by-cylinder intake air amount control means 170 is calculated by the correction amount calculation means 150.
  • the opening of the bypass air control valve 16 in accordance with the correction amount of the cylinder, the intake air amount of each of the cylinders # 1 to # 6 is made uniform.
  • FIG. 5 shows the intake timing of each cylinder # 1 to # 6 at intervals of 120 ° for convenience.
  • the intake air amount of each cylinder is determined by the dimensional variation of the link mechanism 12 (lift variation).
  • lift variation the intake air amount of each cylinder
  • a variation occurs in the opening area between the intake valve 8 and the intake port 2C of each cylinder
  • a variation occurs in the cylinder intake air amount.
  • the cylinder intake air amount indicates the average value (section average) for each intake stroke of each cylinder.
  • the opening degree of the bypass air control valve 16 is increased for cylinders having a small opening area of the pulp gap due to variations in lift and lift. Then, the intake air amount to the cylinder increases, and the intake pressure at the intake port 2C of the cylinder increases as shown in (c). And the necessary cylinder intake air amount can be obtained as shown in (d).
  • the opening degree of the bypass air control valve 16 is reduced to reduce the intake pressure at the intake port 2C of the cylinder, thereby reducing the cylinder intake air amount.
  • the period of the intake stroke is 180 ° in terms of crank angle, but in the V-type 6-cylinder internal combustion engine, the interval between intakes of each cylinder is 120 °, and intake of cylinders with continuous intake timing
  • the strokes overlap each other, but at low lift, as shown in Fig. 22, the period during which the intake valve 8 opens is short, so there is no overlap during the period when the intake valve 8 opens, and each cylinder has its own intake stroke. It is possible to adjust the cylinder intake air amount by changing the air pressure.
  • the volume of the distribution passages 20 B and 20 C downstream of the bypass air control valve 16 is smaller than that of the main air passage 2 OA, changing the opening degree of the bypass air control valve 16 allows quick operation. The amount of intake air of each cylinder can be adjusted.
  • the throttle valve 3 of the intake passage 2 is throttled to such an extent that a negative pressure required for supplying air from the bypass air passage 20 can be obtained.
  • the required negative pressure is about 13 kPa, and for a normal internal combustion engine without lift adjustment, it is about 15 kPa, so throttle loss is reduced compared to an internal combustion engine without lift adjustment.
  • the opening degree of the bypass air control valve 16 is adjusted for the intake air of the cylinder to be adjusted. Try to change it a little earlier than the process.
  • the opening degree of the bypass air control valve 16 is adjusted in synchronization with the intake stroke of each cylinder so as to reduce the fluctuation of the cylinder intake air amount due to the variation in lift.
  • the variation in the cylinder intake air amount can be reduced.
  • the delay from the bypass air control valve 16 provided in the bypass air passage 20 to the air reaching the intake port 2 C (combustion chamber 9) is large, the controllability (responsiveness) of the cylinder intake air amount deteriorates. Therefore, it is desirable to flow air to the bypass air passage 20 to some extent in order to increase the air flow velocity in the bypass air passage 20.
  • Figure 8 shows the intake passage 2 and the bypass air passage with respect to the intake air amount (total intake air amount). 20 shows the distribution of the intake air amount.
  • the ratio of the intake air amount taken into the cylinders # 1 to # 6 via the bypass air passage 20 increases, and the ratio increases in the idle state where the total intake air amount is small.
  • the air flow velocity in the bypass air passage 20 is ensured. Since the amount of air passing through the bypass air passage 20 is limited, in a state where the total amount of intake air is large, air is also supplied from the intake passage 2 so that the required amount of intake air can be supplied.
  • the bypass air control valve 1 6 In order to improve the responsiveness of the cylinder intake air amount by reducing the delay from when the air reaches the intake port 2 C (combustion chamber 9) from the bypass air control valve 16, the bypass air control valve 1 6 It is desirable that the volume of the downstream distribution passages 10B and 10C be as small as possible.
  • FIG. 1 As means for adjusting the intake air amount of each of the cylinders # 1 to # 6, instead of the bypass air control valve 16 provided in the bypass air passage 20, FIG.
  • a port air control valve 36 is provided for each cylinder in the branch passage portion 2B of the intake passage 2.
  • the port air control valves 36 of the respective cylinders are mounted on a common rotating shaft so that they can be driven simultaneously by the motor 37.
  • the motor 37 may be provided for each cylinder (each control valve 36), but in order to simplify the configuration, one motor drives the port air control valves of multiple cylinders. .
  • the throttle valve 3 may be omitted.
  • the cylinder-to-cylinder air amount deviation is detected by the cylinder-to-cylinder air amount deviation detection means 140 in the same manner as in the first embodiment, and the cylinder-by-cylinder intake air correction amount calculating means 150 Based on the inter-cylinder air amount deviation, the inter-cylinder air amount deviation is reduced.In addition, a correction amount of the intake air amount is calculated for each cylinder. By controlling the opening degree of the port air control valve 36 according to the correction amount of each cylinder calculated by the collection amount calculation means 150, the intake air amount of each cylinder # 1 to # 6 is uniform. Be converted to
  • FIG. 10 shows the adjustment of the cylinder intake air amount by the port air control valve 36.
  • (B) shows the opening of the port air control valve 36 (the cylinder driven by the same motor 37 is common).
  • the opening of the port air control valve 36 is increased, and as shown in (c), the cylinder intake required by increasing the intake pressure at the intake port 2C is increased. Be able to obtain air volume.
  • the opening degree of the port air control valve 36 is reduced to reduce the intake pressure at the intake port 2C, thereby limiting the cylinder intake air amount.
  • the intake air amount of each of the cylinders # 1 to # 6 can be made uniform.
  • the port air control valve 36 is provided in an internal combustion engine having a small branch passage portion 2B (including the surge tank 23) downstream of the throttle valve 3 in the intake passage 2, the port air control valve 36 is provided.
  • the opening of the throttle valve 3 may be changed in accordance with the intake stroke of each cylinder to compensate for variations in the amount of intake air of the cylinder.
  • FIG. 11 shows the cylinder intake air amount when the correction of the cylinder intake air amount is not performed, and (b) shows the opening of the throttle valve 3.
  • the throttle valve 3 is driven by a motor. Due to the variation in lift, the opening of the throttle valve 3 is increased at the intake timing of a cylinder with a small amount of intake air, and the required cylinder intake is achieved by increasing the intake pressure at the intake port 2C as shown in (c). Make sure that the air volume can be obtained.
  • the opening degree of the throttle valve 3 is reduced and the intake pressure at the intake port 2C is reduced, thereby limiting the cylinder intake air amount. Thereby, as shown in (d), the intake air amount of each cylinder can be made uniform.
  • the opening of the throttle valve 3 is adjusted according to the intake stroke of the cylinder to be adjusted. Change it a little earlier to allow for a time delay.
  • FIG. 13 is a functional block diagram of the air amount control means 100B which controls the intake air amount in the third embodiment.
  • the air amount control means 100 B is provided with a throttle opening for controlling the opening of the electronically controlled throttle valve 3 as in the first embodiment (see FIG. 4).
  • An inter-cylinder air amount deviation detecting means for detecting an air amount difference between the cylinders, and an inter-cylinder air amount deviation for each cylinder based on the inter-cylinder air amount deviation detected by the detecting means.
  • Cylinder-based intake air correction amount calculating means 150 for calculating the correction amount of the intake air amount for each cylinder to be reduced, and according to the correction amount of each cylinder calculated by the correction amount calculating means 150 And a cylinder-by-cylinder intake air amount control means 170 for controlling the opening degree of the bypass air control valve 16.
  • the intake valve lift amount adjusting mechanism 11 and the intake valve lift amount control means 130 constitute an intake valve lift amount adjustment means 120, and the bypass air control valve 16 and the cylinder-specific intake air
  • the amount control means 170 constitutes the cylinder-specific intake air amount adjusting means 160.
  • storage means 180 for storing the correction amount of the cylinder intake air amount (the air control valve opening correction amount or the air control valve opening degree for each cylinder);
  • a learning state determining means 190 for determining whether or not the amount is stored in the storage means 180 is provided.
  • the storage means 180 is constituted by a non-volatile memory capable of holding stored data even with a power supply OFF.
  • the cylinder-by-cylinder intake air correction amount calculating means 150 adjusts the correction amount of the cylinder intake air amount (opening of the air control valve) in the low lift control state based on the intake air amount detected by the air flow sensor 4.
  • the correction amount (learning correction amount) is stored in the storage unit 180.
  • the learning state determination means 190 determines whether or not the learning correction amount has been written in the storage means 180. Then, when the low-lift control state is entered again next time, the cylinder-by-cylinder intake air correction amount calculating means 150 immediately reads the learning correction amount stored in the storage means 180, and reads out the learning correction amount. Based on the learned correction amount, the cylinder-by-cylinder intake air amount control means 120 sets the control amount (opening of the air control valve).
  • the lift amount of the intake valve 8 is set to a high lift as in (i) of (e) and (e). This is because at high lift, the opening area between the intake valve 8 and the intake port 2C is large, so that the variation in the opening area due to the variation in the lift amount occupies a small proportion of the opening area, and the variation rate of the torque and air-fuel ratio also decreases. As a result, deterioration of drivability and exhaust emission characteristics can be prevented.
  • the air control valve is the bypass air control valve 16 in the first embodiment, and refers to the port air control valve 36 or the throttle valve 3 in the second embodiment.
  • the case where the present invention is applied to the internal combustion engine 1 having the same configuration as that of the embodiment (FIG. 1) (with the bypass air control valve 16) will be described.
  • the throttle valve 3 is provided. However, when the load is low and the lift is high, the throttle valve 3 is throttled or fully closed as shown in (b). In such an extremely low load state such as at the time of idling, the intake air is mainly supplied from the bypass air passage 20. This is to improve the responsiveness of the correction control by increasing the flow velocity in the bypass air passage 20 when correcting the variation in the cylinder intake air amount as described above.
  • the high lift state where the influence of the variation of the cylinder intake air amount is small is set. Since the lift amount of the intake valve is gradually reduced while correcting the variation in the intake air amount of the cylinder, the lift can be reduced without increasing the cylinder air variation width as shown in (f).
  • the correction control will be described with reference to the timing chart of FIG.
  • the cylinder variation learning state shown in (g) is checked to determine whether the cylinder-by-cylinder correction amount (learning correction amount) of the air control valve is stored in the storage unit 180 (whether learning is completed). Is not completed?).
  • the cylinder variation learning state will be described later.
  • the air-fuel ratio of each cylinder in the high lift state may be detected by the air-fuel ratio sensor 14 to determine the variation of the fuel injection valve 5 of each cylinder in advance.
  • the air-fuel ratio correction is performed based on the air-fuel ratio of each cylinder in the high lift state in order to remove the influence of the variation of the fuel injection valve 5 of each cylinder.
  • the variation of the intake air amount of the cylinder may be determined with high accuracy by calculating the coefficient and multiplying by the detected air-fuel ratio of each cylinder.
  • Cylinder variation learning conditions include As a condition under which the cylinder variation correction amount can be accurately calculated without being affected by disturbances, etc. The number and load are almost constant (idle or constant speed).
  • the cylinder variation learning correction amount and the flag indicating the learning state are retained in the storage unit 180 even in the engine stop state (power supply OFF).
  • the cylinder variation learning condition is not satisfied, and the learning correction amount is not stored. If the vehicle is traveling with a low lift at that time, the learned value of the cylinder variation correction amount stored before that is used as the opening degree of the air control valve.
  • the required negative pressure is obtained at the intake port 2C so that air can be introduced from the bypass air passage 20 to perform cylinder variation correction during low-lift operation as shown in (b).
  • the opening of the throttle valve 3 is controlled to an appropriate degree.
  • the influence of the cylinder variation of the lift amount decreases, and in the configuration of the first embodiment, when the negative pressure decreases, the air flow velocity in the bypass air passage 20 decreases. Since the control responsiveness decreases due to the decrease, the cylinder variation correction may be stopped.
  • the learning state flag is checked, and if it is set (after the learning is completed), the state becomes the idle state as shown in ( e ) and the opening of the air control valve 16 is immediately changed.
  • the cylinder variation correction amount stored in the storage unit 180 is set. As a result, once the correction amount of the cylinder intake air amount is stored, the subsequent calculation of the correction amount becomes unnecessary, and the lift can be immediately reduced, so that the fuel efficiency can be improved.
  • the learning value of the cylinder variation correction amount is updated so that it can cope with a temporal change in the lift amount due to wear and the like.
  • step 300 an air-fuel ratio sensor 14, an intake air amount sensor 19, an intake air pressure sensor 17, a throttle valve 3, and a link mechanism 12 necessary for this control are set. A check is made to see if a failure has been detected in the lift amount adjustment mechanism 11 composed of the motor 11A and the like. It is assumed that failure detection of these components is performed separately. If no failure is detected, it is determined in step 310 whether the cylinder air variation learning has been completed (whether a learning end flag described later has been set).
  • step 320 it is determined in step 320 whether the correction condition for cylinder air variation is satisfied.
  • the conditions under which the cylinder air variation is corrected include when the load is low and the intake valve 8 has a low lift.
  • the controllability of the cylinder air variation correction may be degraded at the start because the rotation changes suddenly, so that the condition for executing the cylinder air variation correction may not be satisfied at the start. If the conditions for correcting cylinder air variation are not satisfied, the lift amount is set according to the operating state at that time.
  • the condition for performing the cylinder air variation correction it is necessary to introduce air from the bypass air passage 20 to perform the cylinder air variation correction.
  • the opening of the throttle valve 3 is set, for example, as a function of the amount of intake air, and the opening of the throttle valve 3 is adjusted so that the pressure difference between the detected pressure of the intake pressure sensor 17 and the atmospheric pressure becomes a predetermined value. Is corrected for the feed pack.
  • step 340 it is determined whether or not the control is the first control after the condition for executing the correction of the cylinder air variation is satisfied.
  • the learning correction amount of the cylinder air variation stored in the storage unit 180 is set as the opening of the air control valve 16.
  • step 360 operation is performed with the lift amount of the intake valve set to a low lift amount.
  • Step 3 9 0 to 400 is a cylinder air variation correction unit that sequentially corrects the cylinder air variation based on the detected cylinder air-fuel ratio so as to be able to cope with the aging of the lift amount due to wear and the like.
  • step 390 the air-fuel ratio of the relevant cylinder is compared with the average air-fuel ratio of all cylinders. If the air-fuel ratio of the relevant cylinder is large and lean, the amount of intake air in the relevant cylinder is large, so step 400 Then, the opening of the air control valve 16 of the corresponding cylinder is reduced to reduce the intake air amount of the cylinder. If the air-fuel ratio of the corresponding cylinder is smaller than the average air-fuel ratio in step 390, the amount of intake air in the corresponding cylinder is small, so in step 395 the air control valve of the relevant cylinder is opened in step 16. To increase the intake air amount of the cylinder.
  • the opening control of the air control valve 16 is performed at a timing that allows for a delay in air inflow from the air control valve 16 to the cylinder.
  • step 430 it is determined whether the learning condition of cylinder air variation is satisfied.
  • the conditions for learning the cylinder air variation are such that the cylinder variation can be accurately calculated without regard to external disturbances, etc. Or when the engine speed and load are almost constant.
  • the opening degree of the air control valve 16 at that time is stored in the storage means 180 as the learning correction amount of the cylinder variation at step 44.
  • a learning end flag indicating that learning has been completed is set. If the learning of the cylinder air variation has not been completed in step 310, it is determined in step 410 that the engine is operating in a steady state with the engine speed and load constant, and that the air-fuel ratio sensor 14 is active. Is determined, the lift amount of the intake valve 8 is gradually reduced. At this time, the cylinder air variation correction control in steps 390 to 400 is simultaneously performed to suppress an increase in the variation in the cylinder intake air amount.
  • step 420 the lift of the intake valve is fixed to a high lift that is less affected by cylinder air variation. Carry out operation.
  • the control of the engine intake air amount is performed by the throttle valve 3 in the first embodiment, and by the port air control valve 36 or the throttle valve 3 in the second embodiment.
  • the variation in the amount of intake air of the cylinder is corrected.
  • FIG. As shown by 0, the characteristic of the cylinder intake air amount with respect to the intake valve lift amount deviates from the ideal linear characteristic, causing a problem that the drivability is deteriorated.
  • the opening degree of the air control valve 16 is adjusted based on the amount of air detected by the air flow sensor 19, so that the characteristic of the cylinder intake air amount with respect to the intake valve lift amount becomes linear, so that the drivability is improved. To prevent the decline.
  • the cylinder air variation correction control indicated by the broken line in FIG. 20 is performed according to the flowchart shown in FIG.
  • Steps 390 to 400 are the same as the flow chart shown in FIG. 19, except that the detected value of the intake air amount (detected air amount) and the intake valve 8
  • the target value (target air amount) of the intake air amount is determined in advance according to the lift amount, and if the detected value of the intake air amount is larger than the target value. Decrease valve 16 opening. If the detected value of the intake air amount is smaller than the target value, the opening of the air control valves 16 of all cylinders is increased in step 470. As a result, the cylinder intake air amount can be set to the target value, so that a torque corresponding to the lift amount can be generated, and the drivability at a low lift is improved.
  • the opening degree of the air control valve 16 when the cylinder intake air amount becomes almost close to the target value is stored in the storage means 180 as table data for the lift amount, and then the same operation state Since the opening degree of the air control valve 16 stored at the time of becomes can be set immediately, the responsiveness of the correction control is improved, and the operability can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

吸気弁のリフト量を調節するための吸気弁リフト量調節手段と、各気筒に吸入される吸入空気量の気筒間差を検出する気筒間空気量偏差検出手段と、該検出手段により検出された気筒間空気量偏差に基づいて、各気筒の気筒間空気量偏差を減少させるべく各気筒毎に吸入空気量の補正量を算出する気筒別吸入空気補正量算出手段と、該補正量算出手段により算出された各気筒の補正量に応じて各気筒の吸入空気量を調節する気筒別吸入空気量調節手段と、を具備して構成される。これにより、リフト量調節機構の構成部品の製造時の寸法ばらつきや磨耗等による経年変化に起因する吸入空気量の気筒間ばらつきを効果的に抑えることができて、トルク変動や振動及び空燃比の気筒間ばらつきを低減し得、運転性や排気エミッション特性を向上でき、さらには、リフト量の後調整レス化、部品要求精度緩和によるコスト低減、量産性の向上等をも図ることもできる。

Description

多気筒内燃機関の吸気制御装置 技術分野
本発明は、 吸気弁のリフト量調節機構を備えた内燃機関の吸気制御装置に係り、 特に、 気筒間における吸入空気量のばらつきを抑えることができるようにされた 多気筒内燃機関の吸気制御装置に関する。
背景技術
近年、 吸気弁のリフト量を可変とする機構書を備えた内燃機関が実用化されてい る (例えば、 特開 2 0 0 3— 4 1 9 5 4号公報等を参照) 。
従来の内燃機関では、 低負荷時にスロットル弁の絞り損失が燃費の低下を招い ていたが、 吸気弁のリフト量を変更できる機構を備えた内燃機関では、 吸気弁の リフト量を変更することで吸入空気量を調節できるので、 スロットル弁での絞り 損失を低減でき、 燃費の向上等を図ることができる。
ここで、 吸気弁のリフト量を変更することで吸入空気量の調節を行う場合、 図 2 2に示される如くに、 吸気弁のリフト量が変化するが、 低負荷時でのリフト量 は 1 . 5 mm以下と非常に小さくなる。 このような低リフト時では吸気弁一吸気 ポート間の開口面積 (間隙) は極めて小さくなるため、 気筒毎に設けられるリフ ト量調節機構の構成部品の寸法ばらつきによる開口面積のばらつき分が開口面積 に対して大きくなり、 各気筒に吸入される空気量のばらつきが大きくなることに よって、 各気筒の発生トルクに無視できない差が生じ、 トルク変動が大きくなる。 その結果、 エンジンに回転変動や振動等が発生し、 運転性が悪化する。 また、 吸 入空気量の気筒間ばらつきにより、 空燃比が気筒毎にばらつくので H Cや N O X 等の排気ガス成分が多く排出され、 排気エミッシヨン特性も悪化してしまう。
さらに、 リフト量調節機構の製造時の寸法ばらつき以外に、 磨耗等による経年 変化によっても各気筒に吸入される空気量にばらつきを生じ、 同様の問題が発生 する。 前記問題は、 例えば、 リフ ト量調節機構の構成部品の製造時における寸法管理 を厳しくしてその精度を上げることによりある程度は改善されるが、 寸法精度を 高くするとコストが大幅にアップし、 量産性も低くなる。
本発明は、 前記した如くの従来の問題を解消すべくなされたもので、 その目的 とするところは、 吸気弁リフト量調節機構を備えた多気筒内燃機関において、 リ フト量調節機構の構成部品の製造時の寸法ばらつきや磨耗等による経年変化に起 因する吸入空気量の気筒間ばらつきを効果的に抑えて、 トルク変動や振動及び空 燃比の気筒間ばらつきを低減し、 運転性や排気エミッション特性を向上できるよ うにされ、 さらには、 リフ ト量の後調整レス化、 部品要求精度緩和によるコス ト 低減、 量産性の向上等をも図ることもできるようにされた多気筒内燃機関の吸気 制御装置を提供することにある。 発明の開示
前記目的を達成すべく、 本発明に係る多気筒内燃機関の吸気制御装置の好まし い態様では、 吸気弁のリフ ト量を調節するための吸気弁リフ ト量調節手段と、 各 気筒に吸入される吸入空気量の気筒間差を検出する気筒間空気量偏差検出手段と、 該検出手段により検出された気筒間空気量偏差に基づいて、 各気筒の気筒間空気 量偏差を減少させるベく各気筒毎に吸入空気量の補正量を算出する気筒別吸入空 気補正量算出手段と、 該補正量算出手段により算出された各気筒の補正量に応じ て各気筒の吸入空気量を調節する気筒別吸入空気量調節手段と、 を具備して構成 される。
より好ましい態様では、 上記構成に加え、 前記気筒別吸入空気補正量算出手段 により算出された各気筒の補正量を記憶する記憶手段と、 該記憶手段に前記補正 量が記憶されているか否かを判定する学習状態判定手段と、 を備え、 前記吸気弁 リフト量調節手段は、 前記学習状態判定手段により前記補正量が記憶されていな いと判定されたとき、 吸気弁リフ ト量を、 該吸気弁リ フ ト量の可動範囲の最小値 より大きく設定するようにされる。
他の好ましい態様では、 前記吸気弁リフト量調節手段が、 吸気弁リフト量を、 該吸気弁リフト量の可動範囲の最小値より大きく設定しているもとで、 所定の気 筒吸入空気量補正条件が成立したとき、 前記気筒別吸入空気量補正手段は、 各気 筒の吸入空気量の補正量を算出し、 前記気筒別吸入空気量調節手段は、 前記補正 手段により算出された各気筒の補正量に基づいて、 各気筒の吸入空気量を調節す るとともに、 前記吸気弁リフト量調節手段は、 吸気弁リフト量を徐々に減少させ るようにされる。
他の別の好ましい態様では、 吸気弁のリフト量を調節するための吸気弁リフト 量調節手段と、 吸入空気量検出手段と、 各気筒の吸入空気量を調節する気筒別吸 入空気量調節手段と、 を備え、 前記気筒別吸入空気量調節手段は、 前記吸入空気 量検出手段により検出された検出空気量と吸気弁リフト量に応じて予め設定され た目標空気量とを比較して、 前記検出空気量が前記目標空気量より小さい場合は 気筒吸入空気量を大きくし、 前記検出空気量が前記目標空気量より大きい場合は 気筒吸入空気量を小さくするようにされる。
前記気筒別吸入空気量調節手段は、 好ましくは、 外部の空気を各気筒に導く吸 気通路に設けられたスロットル弁及び Z又は前記吸気通路の主吸気通路部をパイ パスして前記吸気通路の下流部分を形成する分岐通路部に接続されるパイパス空 気通路と、 該バイパス空気通路に設けられたバイパス空気制御弁と、 を有し、 該 パイパス空気制御弁の開度を、 各気筒の吸気行程に同期させて変更するようにさ れる。
前記気筒別吸入空気量調節手段は、 好ましくは、 気筒に吸入される総吸入空気 量が小さくなるにしたがって前記パイパス空気通路を介して気筒に吸入される空 気量の割合が大きくなるように、 前記パイパス空気制御弁の開度を設定するよう にされる。
前記パイパス空気通路は、 好ましくは、 その下流部分がシリンダヘッド内に形 成される。
前記パイパス空気通路は、 好ましくは、 その下流端が吸気弁の傘状弁体部分を 指向するように形成される。
前記気筒別吸入空気量調節手段は、 他の好ましい態様では、 外部の空気を各気 筒に導く吸気通路に設けられたスロットル弁又は前記吸気通路の下流部分を形成 する分岐通路部に設けられた空気制御弁を有し、 前記スロッ トル弁又は前記空気 制御弁の開度を、 各気筒の吸気行程に同期させて変更するようにされる。
このような構成とされた本発明に係る多気筒内燃機関の吸気制御装置は、 吸気 弁リフト量調節機構を備えた内燃機関において、 リフト量調節機構の構成部品の 製造時の寸法ばらつきや磨耗等による経年変化に起因する吸入空気量の気筒間ば らっきを効果的に抑えることができて、 トルク変動や振動及び空燃比の気筒間ば らっきを低減し得、 運転性や排気ェミ ッション特性を向上でき、 さらには、 リ フ ト量の後調整レス化、 部品要求精度緩和によるコスト低減、 量産性の向上等をも 図ることもできる。 図面の簡単な説明
図 1は、 本発明に係る吸気制御装置の第 1実施形態をそれが適用された内燃機 関の主要部と共に示す概略構成図である。
図 2は、 図 1に示される内燃機関に設けられるパイパス空気通路の構成例を示 す図である。
図 3は、 図 1に示されるコントロールュニットの内部構成図である。
図 4は、 第 1実施形態におけるコントロ一ルュニットが実行する空気量制御内 容の説明に供される機能プロック図である。
図 5は、 第 1実施形態の動作、 作用、 効果の説明に供されるタイムチャートで ある。
図 6は、 第 1実施形態における空燃比センサの取付位置等の説明に供される図 である。
図 7は、 空燃比センサから得られる検出信号の例を示す図である。
図 8は、 吸気通路とパイパス空気通路の空気量分担例を示す図である。
図 9は、 本発明に係る吸気制御装置の第 2実施形態が適用された内燃機関の吸 気通路下流部分を示す概略構成図である。
図 1 0は、 第実施形態の動作、 作用、 効果の説明に供されるタイムチャートで ある。
図 1 1は、 本発明に係る吸気制御装置の他の例が適用された内燃機関の吸気通 路下流部分を示す概略構成図である。 図 1 2は、 図 1 1に示される例の動作、 作用、 効果の説明に供されるタイムチ ヤートである。
図 1 3は、 第 3実施形態におけるコントロールュニットが実行する空気量制御 内容の説明に供される機能プロック図である。
図 1 4は、 第 3実施形態の動作、 作用、 効果の説明に供されるタイムチャート である。
図 1 5は、 低リフト時における各気筒の空燃比を示す図である。
図 1 6は、 高リフト時における各気筒の空燃比を示す図である。
図 1 7は、 空燃比補正係数を示す図である。
図 1 8は、 第 3実施形態における気筒吸入空気量偏差の算出方法の説明に供さ れるタイムチャートである。
図 1 9は、 第 3実施形態においてコントロ一ルュニットが実行する吸気量制御 ルーチンを示すフローチヤ一トである。
図 2 0は、 吸気弁リフト量に対する吸入空気量の特性を示す図である。
図 2 1は、 第 4実施形態ににおいてコントロールュニットが実行する吸気量制 御ルーチンの一部を示すフローチヤ一トである。
図 2 2は、 吸気弁のリフト量の説明に供される図である。 発明を実施するための最良の形態
以下、 本発明の多気筒内燃機関の吸気制御装置のいくつかの実施形態を図面を 参照しながら説明する。
[第 1実施形態]
図 1は、 本発明に係る吸気制御装置の第 1実施形態を、 それが適用された多気 筒内燃機関の一例の主要部 (一気筒部分のみ) と共に示す概略構成図である。 図示の内燃機関 1は、 シリンダヘッダ 1 Aとシリンダブ口ック 1 Bとからなる 本体部に例えば 6つの気筒 # 1、 # 2、 # 3、 # 4、 # 5、 # 6が設けられた V 形 6気筒内燃機関 (図 2も参照) であって、 各気筒 # 1〜# 6内に摺動自在に嵌 挿されたピストン 7上方には燃焼室 9が画成される。 燃焼室 9には、 点火プラグ 1 3が臨設されている。 燃料の燃焼に供せられる空気は、 吸気通路 2の主吸気通路部 2 Aの始端部に設 けられたエアクリーナ 4から取り入れられ、 エアフローセンサ 1 9を通り、 電制 スロットル弁 3を通って吸気圧センサ 1 7が設けられたコレクタ 2 2に入り、 こ のコレクタ 2 2から前記吸気通路 2の下流部分を形成する分岐通路部 2 B、 吸気 ポート 2 C、 及び吸気弁 8を介して各気筒 # 1〜# 6の燃焼室 9に吸入される。 スロットル弁 3の近傍には、 スロットル開度を検出するためのスロットル開度セ ンサ 2 6が配在されている。 また、 吸気通路 2の分岐通路部 2 Bには、 燃料噴射 弁 5が臨設されている。
燃焼室 9に吸入された空気と燃料噴射弁 5から嘖射された燃料との混合気は、 点火プラグ 1 3により点火されて爆発燃焼せしめられ、 その燃焼廃ガス (排気) は、 燃焼室 9から排気弁 2 8を介して排気通路 1 8に排出され、 その後、 図示さ れていない排気浄化用触媒に流入して浄化された後、 外部に排出される。
また、 図 6に示される如くに、 排気通路 1 8における触媒より上流側で個別排 気通路部 1 8 Aより下流の排気集合部 1 8 Bには空燃比センサ 1 4が配在されて いる。
前記空燃比センサ 1 4は、 排気中に含まれる酸素の濃度に対して線形の出力特 性を持つ。 排気中の酸素濃度と空燃比の関係はほぼ線形になっており、 したがつ て、 酸素濃度を検出する空燃比センサ 1 4により、 前記排気集合部 1 8 Bにおけ る空燃比をリニヤに求めることが可能となる。 この空燃比センサ 1 4の出力信号 は、 空燃比制御だけでなく、 気筒間空気量偏差の検出にも利用される (後述) 。 そして、 本実施形態では、 前記吸気弁 8の開閉及びリフト量の調節を行うため のリフト量調節機構 1 1が備えられている。 リフト量調節機構 1 1は、 モータ 1 1 Aを備え、 該モータ 1 1 Aの角度変位によりリンク機構部 1 2を介して、 吸気 弁 8のリフト量を調節するようになっている。 リンク機構部 1 2の構造について は、 例えば特開 2 0 0 3 _ 4 1 9 5 4号公報等に詳述されているので、 ここでは その詳細な説明は省略する。
吸気弁 8のリフト量が変化することで吸気弁 8—吸気ポート 2 C間の開口面積 (間隙) が変化し、 各気筒 # 1〜# 6 (の燃焼室 9 ) に吸入される空気量が調節 される。 なお、 モータ 1 1は一般に直列気筒エンジンでは 1個、 V型気筒エンジンでは 各バンク毎に 1個ずつ設けられるが、 各気筒 # 1〜# 6の吸気弁 8のリ フト量を 調節するリンク機構部 1 2は気筒毎に設けられ、 リンク機構部 1 2を構成する部 品の寸法ばらつきにより、 気筒毎にリフト量のばらつきを生じる。
また、 リンク機構部 1 2には、 カムシャフトと接触する部位や、 その他可動部 位があるので、 磨耗等による部品寸法の経年変化によってもリフト量のばらつき が生じる。
ここで、 気筒毎のリフト量のばらつきを、 前述のモータ 1 1 Aの変位角を各気 筒 # i〜# 6の吸気行程毎に変更して気筒吸入空気量のばらつきを捕正すること が考えられるが、 一般にモータおよびリンク機構によるリフト量の調節には 5 0 0〜6 0 0 m s程度の時間を要するため応答性を満足できず、 気筒毎にリフト量 を捕正することは難しい。
なお、 吸入空気量の調節を吸気弁 8のリフト量を変更することにより行うこと ができるようにされた本実施形態の内燃機関 1においても、 E G Rを実施したり、 燃料タンクからの蒸発ガスを機関吸気系に吸入するために吸気通路 2に負圧を発 生させる必要があるので、 前記のように吸気通路 2には、 スロットル弁 3が設け られている。
上記構成に加えて、 本実施形態では、 吸気通路 2に設けられたスロッ トル弁 3 (及び主吸気通路部 2 A) をパイパスして前記吸気通路 2の下流部分を形成する 分岐通路部 2 Bに接続されるパイパス空気通路 2 0が設けられている。 このバイ パス空気通路 2 0は、 主通路部 (集合通路部) 2 O Aと、 該主通路部 2 O Aから 二股に分岐するパンク分配通路部 2 0 Bと、 該パンク分配通路部 2 0 Bから分岐 する気筒分配通路部 2 0 Cと、 からなつており、 前記パンク分配通路部 2 0 B及 び気筒分配通路部 2 0 Cはシリンダへッド 1 A内に形成されるとともに、 その下 流端 (気筒分配通路部 2 0 C) は、 前記燃料噴射弁 5から噴射された燃料噴霧と の干渉を極力避けるため、 吸気弁 8の傘状弁体部分 8 aを指向するようになって いる。
なお、 前記パンク分配通路部 2 0 B及び気筒分配通路部 2 0 Cをシリンダへッ ド 1 Aの外側に、 独立配管として形成してもよい。 また、 バイパス空気制御弁 1 6は、 バンク毎に、 つまり、 前記バンク分配通路 部 20 Bにそれぞれ設けてもよい。
ここで、 吸気弁 8—吸気ポート 2 C間の開口面積 (間隙) と各気筒 # 1〜# 6 (の燃焼室 9) に吸入される気筒吸入空気量との関係は、 下記の式 (1) で表さ れる。 ·
Qc = kA Pm - Pc 式(1)
なお、 式 (1) において、
Q c :気筒吸入空気量 (g s )
A :吸気弁一吸気ポート間の開口面積
Pm:吸入空気の圧力
P c :筒内圧
k :定数
である。 また、 温度は一定の状態とする。
式 (1) から、 吸入空気の圧力を調節することにより各気筒の吸入空気量を調 節することが可能であることが理解されよう。
そして、 本実施形態の吸気制御装置においては、 内燃機関 1の種々の制御を行 うため、 マイクロコンピュータを内蔵するコントロールュニット 1 00が備えら れている。
コントロールユニット 100は、 基本的には、 図 3に示される如くに、 入力回 路 21 0と、 A D変換部 220と、 中央演算部 (CPU) 230と、 読出し専 用メモリである ROM240と、 書き換え可能なメモリである RAMI 60と、 出力回路 260と、 を含んだ構成となっている。
入力回路 210へ入力される信号は、 エアフローセンサ 1 9、 クランク角セン サ 27, 吸気圧センサ 1 7、 空燃比センサ 14等からの信号であって、 かかる入 力信号からノイズ成分の除去等を行い、 Aノ D変換部 220に出力する。 A/D 変換部 220は、 入力回路 21 0からの信号を A/D変換し、 中央演算部 230 に出力する。 中央演算部 2 3 0は、 A/D変換部 2 2 0による A/ D変換結果を 取り込み、 R O M 2 4 0に記憶された所定のプログラムを実行することによって、 各種の制御 (各気筒に吸入される空気量制御、 吸気弁リフト量制御、 燃料噴射量 制御、 燃料噴射時期制御、 点火時期制御等) を行う。
なお、 演算結果及び Aノ D変換結果は、 R AM I 6 0に記憶されるとともに、 演算結果は出力回路 2 6 0を通じて制御出力信号として、 パルブリフト量調節用 モータ 1 1 A、 バイパス空気制御弁 1 6、 スロッ トル弁 3、 燃料噴射弁 5等に供 給される。
以下、 本発明に係る吸気制御装置の実施形態の特徴部分である、 コントロール ユニット 1 0 0が実行する吸入空気量制御について述べる。 図 4は、 吸入空気量 制御を司る空気量制御手段 1 0 O Aの機能ブロック図である。 空気量制御手段 1 0 0 Aは、 前記電制ス口ットル弁 3の開度制御を行うスロットル開度制御手段 1 1 0と、 前記吸気弁リフト量調節機構 1 1による吸気弁リフト量の制御を行う吸 気弁リフト量制御手段 1 3 0と、 各気筒 # 1〜# 6に吸入される吸入空気量の気 筒間差を検出する気筒間空気量偏差検出手段 1 4 0と、 該検出手段 1 4 0により 検出された気筒間空気量偏差に基づいて、 各気筒の気筒間空気量偏差を減少させ るべく各気筒毎に吸入空気量の捕正量を算出する気筒別吸入空気補正量算出手段 1 5 0と、 該補正量算出手段 1 5 0により算出された各気筒の捕正量に応じて前 記パイパス空気制御弁 1 6の開度を制御する気筒別吸入空気量制御手段 1 7 0と、 を備える。
なお、 前記吸気弁リフト量調節機構 1 1と吸気弁リフト量制御手段 1 3 0とで 吸気弁リフト量調節手段 1 2 0が構成され、 また、 前記バイパス空気制御弁 1 6 と気筒別吸入空気量制御手段 1 7 0とで気筒別吸入空気量調節手段 1 6 0が構成 される。
前記気筒間空気量偏差検出手段 1 4 0は、 気筒間空気量偏差を、 例えば回転変 動、 空燃比、 筒内圧等に基づいて検出する。 以下、 空燃比に基づいて気筒間空気 量偏差を検出する場合について説明する。
各気筒 # 1〜 # 6に設けられる燃料噴射弁 5の燃料噴射量はほぼ均一とみなす ことができるので、 空燃比センサ 1 4により検出された検出空燃比は、 気筒間の 吸入空気量のばらつき (過不足の度合い) をあらわす。 図 7に空燃比センサ 1 4 から得られる検出信号の例を示す。 各気筒 # 1〜# 6の排気タイミングでの空燃 比センサの検出信号が各気筒の空気の過不足量に対応する。 全気筒の平均空燃比 を求め、 特定気筒の排気タイミングでの空燃比が全気筒の平均空燃比に比ベリッ チとなっていればその気筒の吸入空気量が少なく、 逆にリーンとなっていればそ の気筒の吸入空気量が多いと判定できる。 本例では、 空燃比制御用の空燃比セン サ 1 4がそのまま利用されている。 なお、 空燃比センサ 1 4は、 図 6に示される 如くの排気集合部 1 8 Bではなく、 気筒毎に、 つまり、 個別排気通路部 1 8 Aに それぞれ設けてもよい。
ここで、 燃料噴射弁 5の燃料嘖射量のばらつき分はわずかであるが、 気筒吸入 空気量の算出精度に影響があるので、 燃料噴射弁 5の燃料噴射量のばらつき分を 除去し気筒吸入空気量の算出精度を向上する方法について説明する。
図 1 5において、 破線は各気筒 # 1〜# 6の燃料噴射量を均一とした場合の各 気筒の空燃比.を示しており、 気筒吸入空気量のばらつき分に対応する。 これに対 し各気筒の嘖射量ばらつきがあると検出空燃比は実線のようになり、 破線の気筒 吸入空気量のばらつき分に対応した空燃比とはずれを生じる。 ここで空燃比セン サ 1 4の検出空燃比 (実線) と吸入空気量ばらつきに対応する空燃比 (破線) の 差分が各気筒毎に設けられる燃料噴射弁 5の噴射量ばらつき分に対応する。
図 1 6に、 吸気弁 8の高リフト時の空燃比センサ 1 4の検出空燃比を示す。 高 リフト時には、 吸気弁 8 _吸気ポート Cの開口面積 (間隙) が大きいのでリフト 量ばらつきによる開口面積ばらつき分 (気筒間差) が開口面積に占める割合が小 さくなり、 気筒吸入空気量のばらつきによる空燃比への影響度も小さくなる。 よ つて、 高リフト時での各気筒の空燃比のばらつきは各気筒の噴射量ばらつきに対 応する。 高リフト時での各気筒の空燃比により気筒毎の噴射量ばらつきを求める ことができる。 図 1 6において全気筒の平均空燃比に対しリーンとなる気筒は嘖 射量が小さく、 リッチとなる気筒は噴射量が多いと考えられる。 検出空燃比の平 均空燃比からのずれが噴射量ばらつき量に対応する。
よって、 図 1 7に示される如くに、 高リフト時の空燃比の平均空燃比に対する 比率の逆数を空燃比補正係数とし、 下記の式 (2 ) により空燃比補正係数を低リ フト時の空燃比センサ 1 4の検出空燃比に掛ければ気筒毎の噴射量のばらつきに よらず各気筒の吸入空気量ばらつき分を精度良く求めることができる。
l a = k c X ^ d · · · · ( 2 ) なお、 式 (2 ) において、
λ a : 各気筒の吸入空気量相当空燃比
λ d : 各気筒の空燃比センサによる検出空燃比
k c : 各気筒の空燃比補正係数
とする。
ここでは、 低リフト時と高リフト時で嘖射量ばらつきの影響度合いは近似的に ほぼ等しいとしている。
以上に説明した気筒吸入空気量のばらつき検出の方法は、 後述する実施形態に おいても共通に適用できる。
前記の如くにして、 気筒間空気量偏差検出手段 1 4 0により気筒間空気量偏差 を検出し、 気筒別吸入空気補正量算出手段 1 5 0がその気筒間空気量偏差に基づ いて、 各気筒の気筒間空気量偏差を減少させるベく各気筒毎に吸入空気量の補正 量を算出するとともに、 気筒別吸入空気量制御手段 1 7 0が補正量算出手段 1 5 0により算出された各気筒の補正量に応じて前記バイパス空気制御弁 1 6の開度 を制御することにより、 各気筒 # 1〜# 6の吸入空気量が均一化される。
これを、 図 5を参照して説明する。
図 5は、 各気筒 # 1〜# 6の吸入タイミングを 1 2 0 ° 間隔で便宜的に示した ものである。 前記の如くの気筒別吸入空気量の制御を実施しない場合は、 (a ) に示される如くに、 各気筒の吸入空気量は、 リンク機構 1 2の部品の寸法ばらつ き (リフトばらつき) により、 各気筒の吸気弁 8 _吸気ポート 2 C間の開口面積 にばらつきを生じ、 気筒吸入空気量にばらつきが発生する。 なお、 気筒吸入空気 量は各気筒の吸気行程毎の平均値 (区間平均) を示している。
これに対し、 本発明第 1実施形態の構成では、 (b ) に示される如く ίこ、 リフ トばらつきにより、 パルプ間隙の開口面積が小さい気筒についてはパイパス空気 制御弁 1 6の開度を大きくすると、 その気筒への吸入空気量が増大しその気筒の 吸気ポート 2 Cの吸気圧が (c ) に示される如くに高くなるので気筒吸入空気量 を増やすことができ、 (d ) に示される如くに、 必要な気筒吸入空気量を得るこ とができる。
同様に前記開口面積が大きい気筒についてはバイパス空気制御弁 1 6の開度を 小さくしてその気筒の吸気ポート 2 Cの吸気圧を低くすることによって気筒吸入 空気量を減少させる。
ここで、 吸気行程の期間はクランク角で見ると 1 8 0 ° であるが、 V形 6気筒 内燃機関では各気筒の吸気の間隔は 1 2 0 ° であり、 吸気タイミングが連続する 気筒の吸気行程は互いにオーバラップを生ずるが、 低リフト時には、 図 2 2に示 される如くに、 吸気弁 8が開く期間が短くなるので吸気弁 8が開く期間のオーバ ラップは無く、 各気筒毎に吸気圧を変更して気筒吸入空気量の調節が可能である。 また、 バイパス空気制御弁 1 6の下流の分配通路部 2 0 B、 2 0 Cの容積は主 空気通路部 2 O Aに比べ小さいのでパイパス空気制御弁 1 6の開度を変更するこ とで速やかに各気筒の吸入空気量を調節できる。
ここで、 吸気通路 2のスロッ トル弁 3は、 パイパス空気通路 2 0から空気を供 給するために必要な負圧が得られる程度に絞っておく。
このとき必要な負圧は一 1 3 k P a程度であり、 通常のリフト量調節無しの内 燃機関では一 5 3 k P a程度なのでリフト量調節無しの内燃機関に対し絞り損失 が低減される。
また、 バイパス空気制御弁 1 6から吸気ポート 2 C (燃焼室 9 ) に空気が吸入 されるまでには時間遅れがあるため、 バイパス空気制御弁 1 6の開度は、 調節し たい気筒の吸気行程より少し早めに変更するようにする。
上述のように、 バイパス空気制御弁 1 6の開度をリフトばらつきによる気筒吸 入空気量の変動を減少させるように各気筒の吸気行程に同期させて調節すること により、 図 5 ( d ) のように気筒吸入空気量のばらつきを低減することができる。 ここで、 パイパス空気通路 2 0に設けられるパイパス空気制御弁 1 6から吸気 ポート 2 C (燃焼室 9 ) に空気が達するまでの遅れが大きいと気筒吸入空気量の 制御性 (応答性) が悪化するので、 パイパス空気通路 2 0の空気流速を高めるた めにパイパス空気通路 2 0にはある程度空気を流しておくことが望ましい。
図 8は、 吸入空気量 (総吸入空気量) に対する吸気通路 2とパイパス空気通路 2 0の吸入空気量の分担を示す。 総吸入空気量が少なくなるにしたがってバイパ ス空気通路 2 0を介して気筒 # 1〜# 6に吸入される吸入空気量の割合を増やし、 その割合を総吸入空気量の少ないアイ ドル状態では最大にすることにより、 パイ パス空気通路 2 0の空気流速を確保する。 パイパス空気通路 2 0の通過空気量が 制限されるため、 総吸入空気量が多い状態では、 吸気通路 2からも空気を流して 必要吸入空気量を供給できるようにする。
また、 パイパス空気制御弁 1 6から吸気ポート 2 C (燃焼室 9 ) に空気が達す るまでの遅れを小さくして気筒吸入空気量の制御応答性を向上させるためには、 パイパス空気制御弁 1 6下流の分配通路部 1 0 B、 1 0 Cの容積はなるべく小さ くすることが望ましい。
[第 2実施形態]
本第 2実施形態では、 各気筒 # 1〜# 6の吸入空気量を調節するための手段と して、 前記パイパス空気通路 2 0に設けられたバイパス空気制御弁 1 6に代えて、 図 9に示される如くに、 吸気通路 2の分岐通路部 2 Bに気筒毎にポート空気制御 弁 3 6が設けられている。 各気筒のポート空気制御弁 3 6は共通の回転軸に取り 付けられてモータ 3 7により同時に駆動できるようにされている。 なお、 図では 片方のパンクのみが示されているが、 もう一方のパンクも同じ構成である。 モー タ 3 7は各気筒毎 (各制御弁 3 6毎) に設けても良いが、 構成を簡素化するため に 1個のモータで複数気筒のポート空気制御弁を駆動するようにされている。 ま た、 ポート空気制御弁 3 6を設ける場合、 スロットル弁 3は廃止してもよい。 上記のような構成のもとで、 第 1実施形態と同様に、 気筒間空気量偏差検出手 段 1 4 0により気筒間空気量偏差を検出し、 気筒別吸入空気補正量算出手段 1 5 0がその気筒間空気量偏差に基づいて、 各気筒の気筒間空気量偏差を減少させる ベく各気筒毎に吸入空気量の補正量を算出するとともに、 気筒別吸入空気量制御 手段 1 7 0が捕正量算出手段 1 5 0により算出された各気筒の補正量に応じて前 記ポート空気制御弁 3 6の開度を制御することにより、 各気筒 # 1〜# 6の吸入 空気量が均一化される。
これを、 図 1 0を参照して説明する。
図 1 0において、 (a ) はポート空気制御弁 3 6による気筒吸入空気量の調節 を実施しない場合の気筒吸入空気量であり、 (b ) はポート空気制御弁 3 6の開 度 (同一モータ 3 7で駆動する気筒は共通) を示している。
リフトばらつきにより気筒吸入空気量の少ない気筒の吸気タイミングではポー ト空気制御弁 3 6の開度を大きくし、 (c ) のように吸気ポート 2 Cでの吸気圧 を高めることで必要な気筒吸入空気量を得られるようにする。 また、 気筒吸入空 気量の多い気筒の吸気タイミングではポート空気制御弁 3 6の開度を小さくし吸 気ポート 2 Cでの吸気圧を低くすることで気筒吸入空気量を制限する。 これによ り、 (d ) に示される如くに各気筒 # 1〜# 6の吸入空気量を均一化することが できる。
さらに、 図 1 1のように、 吸気通路 2におけるスロッ トル弁 3より下流部分の 分岐通路部 2 B (サージタンク 2 3を含む) の容積が小さい内燃機関では、 ポー ト空気制御弁 3 6を設けず、 スロッ トル弁 3の開度を各気筒の吸気行程に合わせ て変更し気筒吸入空気量のばらつきを補正するようにしてもよい。
図 1 1において、 (a ) は気筒吸入空気量の補正を実施しない場合の気筒吸入 空気量であり、 (b ) はスロッ トル弁 3の開度を示している。 スロッ トル弁 3は モータにより駆動される。 リフ トばらつきにより、 気筒吸入空気量の少ない気筒 の吸気タイミングではスロッ トル弁 3の開度を大きくし、 (c ) のように吸気ポ 一ト 2 Cにおける吸気圧を高めることで必要な気筒吸入空気量を得られるように する。 また、 気筒吸入空気量の多い気筒の吸気タイミングではスロッ トル弁 3の 開度を小さくし吸気ポート 2 Cでの吸気圧を低くすることで気筒吸入空気量を制 限する。 これにより、 (d ) に示される如くに、 各気筒の吸入空気量を均一化す ることができる。
ここで、 スロットル弁 3から吸気ポート 2 C (燃焼室 9 ) に空気が導入される までには時間遅れがあるため、 スロッ トル弁 3の開度は、 調節したい気筒の吸気 行程に対し前述の時間遅れを見込んで少し早めに変更するようにする。
[第 3実施形態]
図 1 3は、 本第 3実施形態において吸入空気量制御を司る空気量制御手段 1 0 0 Bの機能ブロック図である。 空気量制御手段 1 0 0 Bは、 第 1実施形態のもの (図 4参照) と同様に、 前記電制スロッ トル弁 3の開度制御を行うスロッ トル開 度制御手段 1 1 0と、 前記吸気弁リフト量調節機構 1 1による吸気弁リフト量の 制御を行う吸気弁リフト量制御手段 1 3 0と、 各気筒 # 1〜# 6に吸入される吸 入空気量の気筒間差を検出する気筒間空気量偏差検出手段 1 4 0と、 該検出手段 1 4 0により検出された気筒間空気量偏差に基づいて、 各気筒の気筒間空気量偏 差を減少させるベく各気筒毎に吸入空気量の補正量を算出する気筒別吸入空気補 正量算出手段 1 5 0と、 該補正量算出手段 1 5 0により算出された各気筒の補正 量に応じて前記パイパス空気制御弁 1 6の開度を制御する気筒別吸入空気量制御 手段 1 7 0と、 を備える。
なお、 前記吸気弁リフト量調節機構 1 1と吸気弁リフト量制御手段 1 3 0とで 吸気弁リフト量調節手段 1 2 0が構成され、 また、 前記パイパス空気制御弁 1 6 と気筒別吸入空気量制御手段 1 7 0とで気筒別吸入空気量調節手段 1 6 0が構成 される。
上記構成加え、 本実施形態では、 気筒吸入空気量の補正量 (気筒別の空気制御 弁開度補正量又は空気制御弁開度) を記憶するための記憶手段 1 8 0、 及び、 前 記補正量が前記記憶手段 1 8 0に記憶されているか否かを判定する学習状態判定 手段 1 9 0が備えられる。 なお, 前記記憶手段 1 8 0は、 電源 O F Fでも記憶デ ータを保持できる不揮発メモリで構成されている。
気筒別吸入空気補正量算出手段 1 5 0は、 エアフローセンサ 4により検出され る吸入空気量等に基づき、 低リフト制御状態において気筒吸入空気量の補正量 (空気制御弁の開度) を外乱が少なく精度良く算出できる運転条件になったと判 断されたとき、 前記補正量 (学習補正量) を記憶手段 1 8 0に記憶する。 学習状 態判定手段 1 9 0は前記学習補正量が記憶手段 1 8 0に書き込まれているか否か を判定する。 そして、 次回再び低リフト制御状態になったときに、 気筒別吸入空 気補正量算出手段 1 5 0は、 直ちに記憶手段 1 8 0に記憶された学習補正量を読 み出し、 この読み出された学習補正量に基づいて、 気筒別吸入空気量制御手段 1 2 0が制御量 (空気制御弁の開度) を設定するようにされる。
このように補正量を学習することにより、 気筒吸入空気量の補正制御に要する 時間を短縮でき、 直ちに低リフト制御が可能となるので燃費等を改善することが できる。 次に、 本実施形態の気筒吸入空気量のばらつき補正手順の具体例について図 1 4を参照して説明する。
低負荷時で気筒吸入空気量の補正を一度も実施していない状態 (補正のための 気筒別の空気制御弁の開度算出値が R AM I 6 0に書きこまれていない状態) で は、 (e ) の ( i ) のように吸気弁 8のリフト量を高リフトに設定しておく。 これは高リフトでは吸気弁 8 _吸気ポート 2 C間の開口面積が大きいのでリフ ト量ばらつきによる開口面積ばらつき分が開口面積に占める割合が小さくなり、 よってトルクや空燃比の変動割合も小さくなるので運転性や排気エミッション特 性の悪化を防止できることによる。
ここで、 空気制御弁とは、 第 1実施形態ではバイパス空気制御弁 1 6であり、 第 2実施形態では、 ポート空気制御弁 3 6もしくはスロッ トル弁 3を指している 以下は、 第 1実施形態 (図 1 ) と同じ構成 (パイパス空気制御弁 1 6有り) の内 燃機関 1に適用した場合について説明する。
第 1実施形態では、 スロットル弁 3が設けられるが、 前述の低負荷時で高リフ トの状態では、 (b ) のようにスロットル弁 3は絞っておくか全閉とする。 この ようなアイ ドル時等の極低負荷の状態ではの吸入空気は主にバイパス空気通路 2 0から供給するようにする。 これは前述したように気筒吸入空気量のばらつき補 正を実施する場合にパイパス空気通路 2 0の流速を高めて補正制御の応答性を向 上させるためである。
以下は、 第 1、 第 2実施形態と共通の動作であり、 (a ) において、 始動後、 低負荷で気筒空気量ばらつき検出のための空燃比センサ 1 4が活性した後に、
( c ) のように気筒吸入空気量のばらつきを空燃比センサ 1 4で検出しながら気 筒毎に空気制御弁 1 6の開度を調節し気筒吸入空気量のばらつき補正を開始する c ここで補正制御には一定の時間を要するので気筒吸入空気量のばらつき幅が許容 レベル以上に増大しないように、 (d ) のように気筒吸入空気量のばらつき補正 を実施しつつ、 (e ) のように吸気弁 8のリフト量を徐々に減少させるようにす る。 このときリフト量が減少していくと、 吸入空気の圧力が一定の場合は気筒吸 入空気量が減少するので、 空気制御弁 1 6の開度を徐々に大きくしていき必要な 吸入空気量が得られるようにする。 本実施形態では、 気筒吸入空気量補正のための空気制御弁 1 6の補正開度の計 算を実施していないときは気筒吸入空気量のばらつきの影響が少ない高リフト状 態とし、 その後、 気筒吸入空気量のばらつき捕正を実施しつつ徐々に吸気弁のリ フト量を減少させるので、 ( f ) のように気筒空気ばらつき幅を増大させること 無く低リフト化が可能となる。
ここで、 始動時に吸気弁 8のリフト量を小さくすると気筒内にガス流動が発生 し、 燃焼を改善する効果があるので、 空気制御弁の補正開度計算を実施していな い場合でも (e ) の ( i i ) のように始動時のみ低リフトで運転するようにして もよい。
次に、 図 1 4のタイミングチャートを参照しながら前記補正制御について説明 する。 始動時に、 (g ) に示される気筒ばらつき学習状態をチ ックし、 空気制 御弁の気筒別補正量 (学習補正量) が記憶手段 1 8 0に記憶されているか否か (学習終了か学習未終了か) を判定する。 気筒ばらつき学習状態については後述 する。
学習未終了のときは、 (c ) のように気筒吸入空気量のばらつきの影響が少な ぃ高リフト状態とする。
このとき、 前述したように空燃比センサ 1 4により高リフト状態での各気筒の 空燃比を検出して予め各気筒の燃料嘖射弁 5のばらつき分を求めておくようにし てもよい。
その後、 低負荷時で低リフトとしたい運転状態になったとき、 (e ) のように 気筒吸入空気量のばらつき補正を実施しつつ徐々に吸気弁のリフト量を減少させ る。
ここで、 吸入空気量のばらつき補正を実施するときには、 前述したように各気 筒の燃料噴射弁 5のばらつき分の影響を除去するために高リフト状態での各気筒 の空燃比より空燃比補正係数を求め、 検出した各気筒の空燃比に掛けることによ り気筒吸入空気量のばらつき分を精度良く求めるようにしても良い。
気筒吸入空気量のばらつき補正を実施中に、 (d ) のように気筒ばらつき学習 条件が成立したとき、 (f ) のように気筒ばらつき補正量を気筒ばらつき学習値 として記憶手段 1 8 0に気筒毎に記憶する。 気筒ばらつき学習条件としては、 外 乱等によらず精度良く気筒ばらつき補正量を算出できる条件として、 気筒ばらつ き補正中で、 空燃比センサ 1 4により検出される各気筒の空燃比ばらつき幅が所 定範囲内で、 機関回転数、 負荷がほぼ一定の状態 (アイ ドル又は一定速走行等) などがある。
気筒ばらつき学習値 (補正量) を記憶手段 1 8 0に記憶したとき、 (g ) のよ うに気筒ばらつき学習状態を示すフラグをセット (学習終了と) する。
気筒ばらつき学習補正量および学習状態を示すフラグは機関停止状態 (電源 O F F ) でも記憶手段 1 8 0に保持される。
走行状況等で、.運転状態の変動がある場合は、 気筒ばらつき学習条件が不成立 となり学習補正量の記憶は行わない。 そのとき低リフトで走行中であれば、 それ 以前に記憶された気筒ばらつき補正量の学習値を空気制御弁の開度とする。 ここで第 1実施形態の構成では、 (b ) のように低リフト運転中は気筒ばらつ き補正実施のためパイパス空気通路 2 0から空気を導入できるよう吸気ポート 2 Cに必要負圧が得られ程度にスロッ トル弁 3の開度を制御する。
また、 加速等でリフト量が大きくなつたときには、 リフト量の気筒ばらつきの 影響度は小さくなること、 及び、 第 1実施形態の構成では負圧が減少するとパイ パス空気通路 2 0の空気流速が低下して制御応答性が低下することから気筒ばら つき補正を停止するようにしても良い。
そして、 次回の始動時に、 学習状態フラグをチェックし、 セットされていれば (学習終了後であれば) 、 (e ) のようにアイ ドル状態となって直ちに空気制御 弁 1 6の開度を記憶手段 1 8 0に記憶された気筒ばらつき補正量に設定する。 こ れにより、 一度気筒吸入空気量の補正量を記憶すると、 以後の補正量の算出が不 要となり、 直ちに低リフト化が可能となるので燃費等を改善することができる。 ここで、 再び気筒ばらつき学習条件が成立したときは、 気筒ばらつき補正量の 学習値を更新するようにし、 磨耗等によるリフト量の経時変化にも対応できるよ うにする。
続いて、 図 1 9のフローチャートを参照しながら、 コントロールユニット 1 0 0が実行する、 気筒吸入空気量のばらつき補正のための制御プログラム (吸気量 制御ルーチン) を説明する。 本制御プログラムはコントロールュニット 1 6内の R OM 2 4 0内に格納されており、 所定制御周期をもって繰り返し実行される。 図示の吸気量制御ルーチンでは、 まず、 ステップ 3 0 0で本制御に必要な空燃 比センサ 1 4、 吸入空気量センサ 1 9、 吸気圧センサ 1 7、 スロットル弁 3、 リ ンク機構部 1 2、 モータ 1 1 A等から成るリフト量調節機構 1 1の故障が検出さ れているか否かをチヱックする。 これら部品の故障検出は別途実施されているも のとする。 故障が検出されていないとき、 ステップ 3 1 0で気筒空気ばらつき学 習が終了しているか (後述する学習終了フラグがセットされて'いるか) を判定す る。
ステップ 3 1 0で気筒ばらつき学習が終了していれば、 ステップ 3 2 0で気筒 空気ばらつきの補正実施条件が成立しているかを判定する。 気筒空気ばらつきの 補正実施条件としては、 低負荷時であり吸気弁 8を低リフトとする場合等である。 その他に始動時では回転が急変するので気筒空気ばらつき補正の制御性が悪化す る場合があるので始動時では気筒空気ばらつきの補正実施条件が成立しないよう にしてもよい。 気筒空気ばらつきの補正実施条件がが不成立の時は、 そのときの 運転状態に応じたリフト量とする。 気筒空気ばらつきの補正実施条件が成立して いるときは、 気筒空気ばらつきの補正を実施するためパイパス空気通路 2 0から 空気を導入する必要があるため、 ステップ 3 3 0で吸気通路に所定の負圧が生じ るようにスロットル弁 3の開度を設定する (スロットル弁 3が設けられている場 合のみ) 。 スロットル弁 3の開度は、 例えば吸入空気量の関数として設定してお き、 吸気圧センサ 1 7の検出圧力から大気圧との差圧が所定値になるようにスロ ットル弁 3の開度をフィードパック補正するようにする。
ステップ 3 4 0では、 気筒空気ばらつきの補正実施条件が成立してから初回の 制御であるかを判定する。 初回である場合、 気筒空気ばらつき補正量の計算がま だ実施されていないので、 記憶手段 1 8 0に記憶されている気筒空気ばらつきの 学習補正量を空気制御弁 1 6の開度とする。
次にステップ 3 6 0で吸気弁のリフト量を低リフトとして運転を行う。
ステップ 3 4 0で気筒空気ばらつきの補正実施条件が成立してから初回の制御 でない場合は気筒ばらつき補正量 (空気制御弁 1 6開度) が計算されているので ステップ 3 8 0で吸気弁のリフト量を低リフトとして運転を行う。 ステップ 3 9 0から 4 0 0が気筒空気ばらつきの補正部で、 磨耗等によるリフト量の経年変化 に対応できるよう、 検出された気筒空燃比により逐次気筒空気ばらつきの補正を 実施する。
ステップ 3 9 0で該当気筒の空燃比と全気筒の平均空燃比を比較し、 該当気筒 の空燃比が大きくリーンである場合には、 該当気筒の吸入空気量が多いのでステ ップ 4 0 0で該当気筒の空気制御弁 1 6開度を小さくして該気筒の吸入空気量を 減少させる。 ステップ 3 9 0で該当気筒の空燃比が平均空燃比に対し小さくリッ チである場合には、 該当気筒の吸入空気量が少ないのでステップ 3 9 5で該当気 筒の空気制御弁 1 6開度を大きくして該気筒の吸入空気量を増加させる。
なお、 空気制御弁 1 6の開度制御は、 空気制御弁 1 6から気筒への空気流入遅 れを見込んだタイミングで実施する。
次にステップ 4 3 0で気筒空気ばらつきの学習条件が成立しているかを判定す る。 気筒空気ばらつきの学習条件としては、 外乱等によらず精度良く気筒ばらつ き捕正量を算出できる条件とし、 空燃比センサ 1 4により検出された各気筒の空 燃比ばらつき幅が所定範囲内で、 機関回転数、 負荷がほぼ一定の状態であるとき などである。
気筒空気ばらつきの学習条件が成立している場合は、 ステップ 4 4 0でそのと きの空気制御弁 1 6開度を気筒ばらつきの学習補正量として記憶手段 1 8 0に記 憶する。 またこのとき学習が完了したことを示す学習終了フラグをセットする。 ステップ 3 1 0で気筒空気ばらつきの学習が終了していないときは、 ステップ 4 1 0で機関回転数、 負荷が一定な定常運転であるか、 また空燃比センサ 1 4が 活性状態であること等を判定し成立していれば吸気弁 8のリフト量を徐々に減少 させる。 このとき同時にステップ 3 9 0から 4 0 0までの気筒空気ばらつきの補 正制御を実施し、 気筒吸入空気量のばらつき量の増加を抑制する。
ステップ 3 0 0又はステップ 4 0 0が不成立のときは気筒空気ばらつきの補正 ができない状態であるため、 ステップ 4 2 0で吸気弁のリフト量を気筒空気ばら つきの影響が少ない高リフトに固定して運転を実施する。 このときエンジン吸入 空気量の制御は第 1実施形態ではスロットル弁 3で、 第 2実施形態ではポート空 気制御弁 3 6又はスロットル弁 3で実施する。 [第 4実施形態]
前述の実施形態では気筒吸入空気量のばらつきを補正しているが、 吸気弁リフ ト量調節機構を有する内燃機関では低リフト時にリンク機構部 1 2を構成する部 品の加工誤差により、 図 2 0のように吸気弁リフト量に対する気筒吸入空気量の 特性が理想的な直線特性からずれることによって運転性の悪化等を引き起こすと いう問題が生じる。
本第 4実施形態では、 エアフローセンサ 1 9の検出空気量により空気制御弁 1 6の開度を調節することにより、 吸気弁リフト量に対する気筒吸入空気量の特性 が直線となるようにして運転性の低下を防止する。
本実施形態では、 図 2 0の破線で示される気筒空気ばらつき補正制御を図 2 1 に示されるフローチャートにしたがって実施する。
ステップ 3 9 0から 4 0 0は、 図 1 9に示されるフローチャートと同様である が、 ステップ 4 5 0でエアフローセンサ 1 9による吸入空気量の検出値 (検出空 気量) と吸気弁 8のリフト量に応じて予め定められた吸入空気量の目標値 (目標 空気量) とを比較し、 吸入空気量の検出値が目標値より.大きい場合は、 ステップ 4 6 0で全気筒の空気制御弁 1 6の開度を減少させる。 吸入空気量の検出値が目 標値より小さい場合はステップ 4 7 0で全気筒の空気制御弁 1 6の開度を増加さ せる。 これにより気筒吸入空気量を目標値とすることができるので、 リフト量に 応じたトルクを発生させることができ、 低リフトでの運転性が向上する。
ここで、 気筒吸入空気量がほぼ目標値に近い値となったときの空気制御弁 1 6 の開度を記憶手段 1 8 0にリフト量に対するテーブルデータとして記憶しておき、 その後再び同一運転状態となったときに記憶された空気制御弁 1 6の開度に直ち に設定できるので、 補正制御の応答性が向上し運転性をより改善できる。

Claims

請 求 の 範 囲
1 . 吸気弁のリフト量を調節するための吸気弁リフト量調節手段と、 各気筒に 吸入される吸入空気量の気筒間差を検出する気筒間空気量偏差検出手段と、 該検 出手段により検出された気筒間空気量偏差に基づいて、 各気筒の気筒間空気量偏 差を減少させるベく各気筒毎に吸入空気量の補正量を算出する気筒別吸入空気補 正量算出手段と、 該補正量算出手段により算出された各気筒の補正量に応じて各 気筒の吸入空気量を調節する気筒別吸入空気量調節手段と、 を備えることを特徴 とする多気筒内燃機関の吸気制御装置。
2 . 前記気筒別吸入空気補正量算出手段により算出された各気筒の補正量を記 憶する記憶手段と、 該記憶手段に前記補正量が記憶されているか否かを判定する 学習状態判定手段と、 を備え、 前記吸気弁リフト量調節手段は、 前記学習状態判 定手段により前記補正量が記憶されていないと判定されたとき、 吸気弁リフト量 を、 該吸気弁リフト量の可動範囲の最小値より大きく設定することを特徴とする 請求項 1に記載の多気筒内燃機関の吸気制御装置。
3 . 前記吸気弁リフト量調節手段が、 吸気弁リフト量を、 該吸気弁リフト量の 可動範囲の最小値より大きく設定しているもとで、 所定の気筒吸入空気量補正条 件が成立したとき、 前記気筒別吸入空気量補正手段は、 各気筒の吸入空気量の補 正量を算出し、 前記気筒別吸入空気量調節手段は、 前記補正手段により算出され た各気筒の補正量に基づいて、 各気筒の吸入空気量を調節するとともに、 前記吸 気弁リフト量調節手段は、 吸気弁リフト量を徐々に減少させることを特徴とする 請求項 2に記載の多気筒内燃機関の吸気装置。
4 . 吸気弁のリフト量を調節するための吸気弁リフト量調節手段と、 吸入空気 量検出手段と、 各気筒の吸入空気量を調節する気筒別吸入空気量調節手段と、 を 備え、 前記気筒別吸入空気量調節手段は、 前記吸入空気量検出手段により検出さ れた検出空気量と吸気弁リフト量に応じて予め設定された目標空気量とを比較し て、 前記検出空気量が前記目標空気量より小さい場合は気筒吸入空気量を大きく し、 前記検出空気量が前記目標空気量より大きい場合は気筒吸入空気量を小さく することを特徴とする多気筒内燃機関の吸気制御装置。
5 . 前記気筒別吸入空気量調節手段は、 外部の空気を各気筒に導く吸気通路に 設けられたスロッ トル弁及びノ又は前記吸気通路の主吸気通路部をバイパスして 前記吸気通路の下流部分を形成する分岐通路部に接続されるバイパス空気通路と、 該パイパス空気通路に設けられたパイパス空気制御弁と、 を有し、 該バイパス空 気制御弁の開度を、 各気筒の吸気行程に同期させて変更することを特徴とする請 求項 1に記載の吸気制御装置。
6 . 前記気筒別吸入空気量調節手段は、 気筒に吸入される総吸入空気量が小さ くなるにしたがって前記バイパス空気通路を介して気筒に吸入される空気量の割 合が大きくなるように、 前記パイパス空気制御弁の開度を設定することを特徴と する請求項 5に記載の吸気制御装置。
7 . 前記パイパス空気通路は、 その下流部分がシリンダへッド内に形成されて いることを特徴とする請求項 5に記載の吸気制御装置。
8 . 前記パイパス空気通路は、 その下流端が吸気弁の傘状弁体部分を指向する ように形成されていることを特徴とする請求項 5に記載の吸気制御装置。
9 . 前記気筒別吸入空気量調節手段は、 外部の空気を各気筒に導く吸気通路に 設けられたスロッ トル弁又は前記吸気通路の下流部分を形成する分岐通路部に設 けられた空気制御弁を有し、 前記スロットル弁又は前記空気制御弁の開度を、 各 気筒の吸気行程に同期させて変更することを特徴とする請求項 1に記載の吸気制 御装置。
PCT/JP2004/003019 2004-03-09 2004-03-09 多気筒内燃機関の吸気制御装置 WO2005085616A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006519082A JPWO2005085616A1 (ja) 2004-03-09 2004-03-09 多気筒内燃機関の吸気制御装置
PCT/JP2004/003019 WO2005085616A1 (ja) 2004-03-09 2004-03-09 多気筒内燃機関の吸気制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/003019 WO2005085616A1 (ja) 2004-03-09 2004-03-09 多気筒内燃機関の吸気制御装置

Publications (1)

Publication Number Publication Date
WO2005085616A1 true WO2005085616A1 (ja) 2005-09-15

Family

ID=34917855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003019 WO2005085616A1 (ja) 2004-03-09 2004-03-09 多気筒内燃機関の吸気制御装置

Country Status (2)

Country Link
JP (1) JPWO2005085616A1 (ja)
WO (1) WO2005085616A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000836A (ja) * 2008-06-18 2010-01-07 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
US7650221B2 (en) 2006-05-10 2010-01-19 Toyota Jidosha Kabushiki Kaisha Ejector system for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193749U (ja) * 1987-06-01 1988-12-13
JPH1113493A (ja) * 1997-06-20 1999-01-19 Fuji Heavy Ind Ltd エンジンの吸気制御装置
JP2003113719A (ja) * 2002-08-09 2003-04-18 Hitachi Ltd 内燃機関の制御装置とスワール発生装置
JP2003254100A (ja) * 2002-03-05 2003-09-10 Hitachi Unisia Automotive Ltd 内燃機関の可変動弁装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193749U (ja) * 1987-06-01 1988-12-13
JPH1113493A (ja) * 1997-06-20 1999-01-19 Fuji Heavy Ind Ltd エンジンの吸気制御装置
JP2003254100A (ja) * 2002-03-05 2003-09-10 Hitachi Unisia Automotive Ltd 内燃機関の可変動弁装置
JP2003113719A (ja) * 2002-08-09 2003-04-18 Hitachi Ltd 内燃機関の制御装置とスワール発生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650221B2 (en) 2006-05-10 2010-01-19 Toyota Jidosha Kabushiki Kaisha Ejector system for vehicle
JP2010000836A (ja) * 2008-06-18 2010-01-07 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
US8200385B2 (en) 2008-06-18 2012-06-12 Toyota Jidosha Kabushiki Kaisha Power output apparatus, control method thereof, and vehicle

Also Published As

Publication number Publication date
JPWO2005085616A1 (ja) 2007-08-30

Similar Documents

Publication Publication Date Title
US7484504B2 (en) Air-fuel ratio control system and method for internal combustion engine
EP2284378B1 (en) Engine control apparatus
JPH11210509A (ja) 内燃機関のバルブ開閉特性制御装置
US8695568B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality determination device
US8443656B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection device for multi-cylinder internal combustion engine and abnormality detection method therefor
JP4766074B2 (ja) 内燃機関の燃料噴射制御装置
JP5644291B2 (ja) 内燃機関の燃料噴射量制御装置
WO2012014328A1 (ja) 内燃機関の燃料噴射量制御装置
US9790873B2 (en) Air-fuel ratio control apparatus for an internal combustion engine
WO2005085616A1 (ja) 多気筒内燃機関の吸気制御装置
JP2000097088A (ja) 内燃機関の燃料噴射量制御装置
US10563595B2 (en) Control device of internal combustion engine
JP4415864B2 (ja) 内燃機関の制御装置
JP4900347B2 (ja) 内燃機関の制御装置
JP2017008770A (ja) 内燃機関の制御装置
JP7493885B2 (ja) 内燃機関の制御装置
JP2013238111A (ja) 内燃機関の空燃比制御装置
JP5260770B2 (ja) エンジンの制御装置
JP4888397B2 (ja) 内燃機関の空燃比制御装置
JP4299218B2 (ja) 内燃機関の空燃比制御装置
JP2009275694A (ja) 内燃機関の制御装置
JP2008157093A (ja) 内燃機関
JP2006009704A (ja) 筒内噴射式内燃機関の燃料噴射制御装置
JP2022059349A (ja) 内燃機関の制御装置
JP3161248B2 (ja) Egr装置付内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006519082

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase