WO2005084565A1 - Vorrichtung zur ansteuerung körperlicher strukturen - Google Patents

Vorrichtung zur ansteuerung körperlicher strukturen Download PDF

Info

Publication number
WO2005084565A1
WO2005084565A1 PCT/EP2005/002386 EP2005002386W WO2005084565A1 WO 2005084565 A1 WO2005084565 A1 WO 2005084565A1 EP 2005002386 W EP2005002386 W EP 2005002386W WO 2005084565 A1 WO2005084565 A1 WO 2005084565A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
actuators
frame
target
target device
Prior art date
Application number
PCT/EP2005/002386
Other languages
English (en)
French (fr)
Inventor
Michael Vogele
Original Assignee
Medical Intelligence Medizintechnik Gmbh
Arc Seibersdorf Research Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medical Intelligence Medizintechnik Gmbh, Arc Seibersdorf Research Gmbh filed Critical Medical Intelligence Medizintechnik Gmbh
Priority to EP05715797A priority Critical patent/EP1722698B1/de
Priority to US10/591,821 priority patent/US10206708B2/en
Priority to AT05715797T priority patent/ATE547987T1/de
Priority to JP2007501242A priority patent/JP5050244B2/ja
Priority to CA2558576A priority patent/CA2558576C/en
Publication of WO2005084565A1 publication Critical patent/WO2005084565A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3405Needle locating or guiding means using mechanical guide means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3405Needle locating or guiding means using mechanical guide means
    • A61B2017/3409Needle locating or guiding means using mechanical guide means including needle or instrument drives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms

Definitions

  • Control device for control physical structures
  • the invention relates to a device for controlling physical structures, in particular for introducing puncture needles or surgical probes.
  • Such a device is known in the basic concept from WO 97/20515 of the inventor, this target device having proven itself in many operative or stereotactic interventions with precise control of points on or in the body.
  • CT computer tomography
  • the aiming devices still used in practice mostly consist of a solid guide tube which is attached to a stereotactic frame made of metal brackets or bows, e.g. B. according to US-A-52 57 998, US-A-51 76 689 or US-A-52 01 742.
  • These devices do not fully meet the above requirements, since these target devices with a heavy stereotactic frame very reproducible positioning make difficult.
  • the stereotactic accuracy often suffers from repeated interventions because the device has to be changed for each patient. Since the conventional target devices are also bound to a solid frame, the variability is often restricted.
  • This also applies to the control or approach to the different entry points with the target device suspended on this frame, in particular in the case of a stereotactic intervention, the individual body sections of the patient being reconstructed into a 3D object with corresponding stereotactic spatial coordinates on the processing computer and transferred to a monitor in the operating room become.
  • This virtual image is calibrated to the patient in the operating room using a passive mechanical arm coupled to the monitor, at the end of which there is a probe.
  • This patient calibration is carried out by moving to several points, e.g. B. anatomically significant points or by X-ray calibration points (markers) on the patient or on the calibration device. After corresponding correlation to the reconstructed 3D object on the screen, the computer is able to fit this 3D object into this virtual space.
  • puncture needles are inserted directly into the tumor tissue to be irradiated and then the tumor is irradiated directly by radioactive substances, starting from the needle tip.
  • pins puncture needles
  • the object of the invention is to create a device for controlling physical structures which fulfills the above requirements, in particular to provide precise, reproducible and variable guidance for medical instruments with a simple structure.
  • the attachment of two actuators which are preferably arranged directly one above the other, each with an adjustment arm that can be moved in the XY plane, enables any desired spatial positioning and exact alignment of the target device.
  • the actuators can be controlled separately or alternately in their X and / or Y axes or operated remotely, so that the target device can be adjusted precisely and quickly by means of these actuators in order to enable a targeted setting of the target device in the spatial axes.
  • This enables a very precise targeting of intervention or target locations previously determined, for example in the CT, of rooms next to the operating room, so that the radiation exposure of the operating theater staff is significantly reduced and the interventions customary in neurosurgery are made easier by the precise guidance of instruments , in particular puncture needles or surgical probes is achieved.
  • the arrangement of the actuators as flat boxes one above the other and the configuration of the adjustment arms cranked towards the patient are particularly expedient here, since the desired spatial points in the coordinate system can thereby be approached as reference planes, similar to the imaging methods.
  • the aiming device in this case has in particular a guide tube with spherical heads at the ends in order to be able to support the instruments as far as possible. This aiming device thus enables the instruments to be inserted in an exact position setting relative to one another. After the bracket z. B.
  • the fine positioning of the instruments can be carried out by the remotely controllable actuators from another room, in order to reduce the radiation exposure of the personnel in an advantageous manner during radiation therapy.
  • a simulation can also be carried out, e.g. the needle or probe tip is moved around in the area of the stereotactic frame by means of the actuators, the position in or on the virtual patient being observable on the monitor.
  • Fig. 1 is a perspective view of a device with a base plate, two base holders with
  • Fig. 2 is a perspective view in the opposite direction as in Fig. 1 with a somewhat enlarged view of the target device.
  • a base plate 1 made of rustproof, magnetizable steel is connected on its underside to an operating table, for example with metal claws which are screwed to the base plate 1.
  • the base plate 1 can be adjusted in a horizontal and vertical direction with respect to the operating table, with high strength being ensured.
  • the parts of the holder carrying the aiming device 10 each consist of a base holder 2, articulated holding rods 3 and 4, each of which has a bearing 5 at the free end for fastening actuators 6 for the aiming device 10.
  • the base holder 2 can be anchored mechanically, magnetically or pneumatically at any point on the base plate 1, for which purpose a frame-like frame 1a is provided which spans the patient.
  • the articulated connection of the holding rods .3 and4 can be fixed in each case by means of locks, for example with the hand gags shown here, so that the power transmission and thus the position fixing of the actuators 6 with their adjusting arms 7 which are movable in the XY plane is ensured.
  • a guide tube 9 for a medical instrument 8 for controlling a target tissue Z is mounted on ball heads 9a.
  • a probe or an insertion tube for adaptation to the instrument 8 used can be introduced into the guide tube 9, in particular a puncture needle 8 provided with a stop for axial adjustment, as shown here.
  • the axial position of the instrument 8 can also be fixed exactly by a clamping device.
  • the two base holders 2 or the frame 1a are pre-positioned on the base plate 1 by means of markings 1b, then e.g.
  • the staff can leave the radiation room and precisely control the desired target point Z by remote control of the actuators 6.
  • the entry point and the entry direction of the target device 10 are thus finely adjusted by fine adjustment of the adjustment arms 7 in the XY plane.
  • the entire target device 10 can be set in advance in relation to the stereotactic frame 1a and thus both to the calibration device and to the patient by means of a simulation (without patients).
  • the patient is then fitted into the frame 1a in exactly the same way as it was scanned in the CT.
  • the navigation system is now calibrated and the target device 10 in a stereotactically correct manner appropriate.
  • a probe can now be inserted into the already adjusted target device 10 and, if necessary, the probe can be readjusted.
  • the readjustment can, if necessary, be carried out quickly since the probe has almost the correct position due to the pre-adjustment and the instrument can be readjusted quickly and exactly to the target location Z by the actuators 6.
  • the aiming device 10 with the guide tube 9 can be mounted on the two adjusting arms 7 of the actuators 6 arranged one above the other also Fig. 2) arranged.
  • the actuators 6 can thus move the adjustment arms 7 in the longitudinal and / or transverse direction, so that the guide tube 9 can be pivoted and also displaced in almost any angular position around the target device 10 by the actuators 6 in the X and / or Y direction to shift as well as to rotate their axes of rotation.
  • the target device 10 is pivoted here to the top left into the inclined position shown.
  • the instrument 8 inserted into the guide tube 9 is also pivoted, so that another target can now be controlled from the originally aimed target Z.
  • the lower actuator 6 could be shifted transversely to the left in order to make the guide tube 9 steeper and thus to achieve fine adjustment of the target direction of a relatively thin puncture needle.
  • the mounting of the actuators 6 is shown in more detail. These are connected to the base holders 2 via the holding rods 3 and 4 with ball joints. The ball joints can be locked by actuating a lock using the hand toggle. It should be pointed out that the spatial position of the guide tube 9 for guiding the instrument 8 can be set as desired by the arrangement of the target device 10 on the two actuators 6, a sensitive adjustment being made possible by the actuators 6. A setting of the target device 10 is thus possible in any spatial manner.
  • the target device 10 can also be lowered towards the patient by lowering the holding rods 3 and 4 in order to be brought as close as possible to the target location Z and to avoid bending of the thin needles.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Radiation-Therapy Devices (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Für einen einfachen Aufbau einer Vorrichtung zur Ansteuerung körperlicher Strukturen mit variabler und präziser Führung medizinischer Instrumente, insbesondere zur Einführung von Punktionsnadeln oder Operationssonden, mit einer Grundplatte (1), wenigstens einem auf der Grundplatte (1) angebrachten Basishalter (2) und daran gelenkig befestigten Haltestäben (3, 4) zur Halterung und Positionierung einer Zieleinrichtung (10) für ein medizinisches Instrument (8), wird vorgeschlagen, dass die Zieleinrichtung (10) an zwei Verstellärmen (7) gelagert ist, die jeweils mit einem Stellantrieb (6) am freien Ende der Haltestäbe (3, 4) in X- und/oder Y-Ebene bewegbar sind.

Description

Beschreibung
Vorrichtung zur Ansteueruno; körperlicher Strukturen
Die Erfindung betrifft eine Vorrichtung zur Ansteuerung körperlicher Strukturen, insbesondere zur Einführung von Punktionsnadeln oder Operationssonden.
Eine derartige Vorrichtung ist im Grundkonzept aus der WO 97/20515 des Erfinders bekannt, wobei sich diese Zielvorrichtung bei vielen operativen oder stereotaktischen Eingriffen mit genauer Ansteuerung von Punkten am oder im Körper bewährt hat. Vor allem durch die Einbeziehung moderner Computertechnologien wie Computer- Tomographie (CT) ist es möglich geworden, die erforderlichen Eintrittsorte, Eintrittstiefen und Eintrittsrichtungen der medizinischen Instrumente exakt festzulegen, so dass auch eine Zielvorrichtung zur Führung dieser Instrumente der erhöhten Genauigkeit gerecht wird. Mittels der z. B. durch CT ermittelten Patientendaten und Parameter soll dann ein Instrument an den definierten Zielpunkt am oder im Körper gebracht werden können.
Wesentlich bei derartigen Zielvorrichtungen zur Führung medizinischer Instrumente sind eine hohe Zielgenauigkeit und eine schnelle Reproduzierbarkeit. Die weiterhin in der Praxis verwendeten Zielvorrichtungen bestehen meist aus einer massiven Führungsröhre, welche an einen stereotaktischen Rahmen aus Metall-Bügeln oder -Bogen angebracht ist z. B. gemäß der US-A-52 57 998, US-A-51 76 689 oder US-A-52 01 742. Diese Vorrichtungen entsprechen nicht voll den vorstehend genannten Erfordernissen, da diese Zielvorrichtungen mit einem schweren stereotaktischen Rahmens eine reproduzierbare Positionierung sehr schwierig gestalten. Die stereotaktische Genauigkeit leidet bei wiederholten Eingriffen oftmals darunter, da für jeden Patienten die Vorrichtung umgestellt werden muss. Da zudem die herkömmlichen Zielvorrichtungen an einen massiven Rahmen gebunden sind, ist oftmals die Variabilität eingeschränkt. Dies gilt auch für das Ansteuern oder Anfahren der unterschiedlichen Eintrittsorte mit der an diesem Rahmen aufgehängten Zielvorrichtung, insbesondere bei einem stereotaktischen Eingriff, wobei die einzelnen Körperschnitte des Patienten zu einem 3D-Objekt mit entsprechenden stereotaktischen Raumkoordinaten am Bearbeitungscomputer rekonstruiert und auf einen Monitor im Operationssaal transferiert werden. Dieses virtuelle Bild wird im Operationssaal auf den Patienten mit Hilfe eines mit dem Monitor gekoppelten, passiven mechanischen Armes, an dessen Ende sich eine Sonde befindet, geeicht. Diese Patienteneichung erfolgt durch Anfahren mehrerer Punkte, z. B. anatomisch signifikante Punkte oder durch Röntgen-Eichpunkte (Marker) am Patienten bzw. an der Eichvorrichtung. Nach entsprechender Korrelation zum rekonstruierten 3D-Objekt am Bildschirm ist es dem Computer möglich, dieses 3D-Objekt in diesen virtuellen Raum einzupassen. Der Operateur/Chirurg kann sich während des Eingriffes mit Hilfe von rekonstruiertem 3D-Objekt und mehreren zweidimensionalen Bildern, die immer die Sondenspitze anzeigen, orientieren. Auch bei der Strahlen-Therapie werden Punktionsnadeln (sog. Pins) direkt in das zu bestrahlende Tumorgewebe vorgeschoben und anschließend erfolgt eine direkte Bestrahlung des Tumors durch radioaktive Substanzen, ausgehend von der Nadelspitze. Es gilt in diesem Fall, wenigstens eine Nadei exakt an einen Punkt (z. B. Tumormitte) vorzuschieben und dabei vitale Strukturen zu umgehen und zu schützen. Durch den Einsatz computergestützter Navigationssysteme ist es zwar möglich geworden, entscheidende Verbesserungen auf diesem Gebiet zu erzielen, da auf dem Bildschirm anstatt der Lage der Sondenspitze nun die Lage der Nadelspitze im oder am Körper angezeigt wirdrDie Anforderung einer schnellen und einfachen Reproduzierbarkeit bedarf jedoch noch Verbesserungen an der Zielvorrichtung, um die Verstellung in allen drei Raumebenen exakt beibehalten zu können. Selbst für einen geübten Bediener ist dies sehr schwierig, z.B. wegen kleinen, unbewussten Handbewegungen. Aus diesem Grund muss die Nadel oftmals wieder zurückgezogen und korrigiert werden. Sowohl der hohe Zeitaufwand, als auch die Korrektur sind daher patientenbelastend, zumal es oftmals zu minimalen Verbiegungen der extrem dünnen Nadeln kommen kann. Da jedoch Verbiegungen der Nadel vom Computer nicht registriert oder berechnet werden können, liefert der Computer eine Fehlinformation über die momentane Lage der Nadelspitze im Raum, was erhebliche Folgen haben kann.
Demzufolge liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zur Ansteuerung körperlicher Strukturen zu schaffen, die vorstehende Anforderungen erfüllt, insbesondere bei einem einfachen Aufbau eine präzise, reproduzierbare und variable Führung für medizinische Instrumente zu schaffen.
Diese Aufgabe wird gelöst durch eine Vorrichtung mit den Merkmalen des Anspruches 1.
Durch die Anbringung von zwei bevorzugt direkt übereinander angeordneten Stellantrieben mit je einem in X-Y-Ebene bewegbaren Verstellarm ist eine beliebige räumliche Positionierung und exakte Ausrichtung der Zieleinrichtung möglich. Dabei sind die Stellantriebe gesondert oder auch wechselweise in ihren X- und/oder Y-Achsen ansteuerbar oder fernbedienbar, so dass durch diese Stellantriebe die Zieleinrichtung exakt und schnell verstellt werden kann, um eine zielgerichtete Einstellung der Zieleinrichtung in den Raumachsen zu ermöglichen. Damit ist eine sehr präzise Anpeilung von vorher beispielsweise im CT festgelegten Eingriffs- oder Zielorten auch von Räumen neben dem Operationssaal möglich, so dass eine wesentliche Reduzierung der Strahlenbelastung des OP-Personals und eine Erleichterung der in der Neurochirurgie üblichen Eingriffe durch die exakte Führung von Instrumenten, insbesondere Punktionsnadeln oder Operationssonden erzielt wird.
Bevorzugte Ausführungsbeispiele sind Gegenstand der Unteransprüche. Zweckmäßig ist hierbei insbesondere die Anordnung der Stellantriebe als flache Boxen übereinander und die zum Patienten hin gekröpfte Gestaltung der Verstellarme, da hierdurch die gewünschten Raumpunkte im Koordinatensystem, ähnlich wie bei den bildgebenden Verfahren als Referenzebenen angefahren werden können. Die Zieleinrichtung weist hierbei insbesondere ein Führungsrohr mit endseitigen Kugeiköpfen auf, um die Instrumente möglich weit abstützen zu können. Diese Zieleinrichtung ermöglicht somit das Einführen der Instrumente in exakter Lageeinstellung zueinander. Nachdem die Halterung z. B. etwa auf Tumormitte manuell voreingestellt ist, kann die Feinpositionierung der Instrumente durch die femsteuerbaren Stellantriebe von einem anderen Raum aus erfolgen, um die Strahlenbelastung des Personals bei einer Strahlentherapie in vorteilhafter Weise zu reduzieren. Nachdem die Zielvorrichtung vorjustiert wurde, kann auch eine Simulation durchgeführt werden, indem z.B. mittels der Stellantriebe die Nadeloder Sondenspitze im Bereich des stereotaktischen Rahmens umhergeführt wird, wobei auf dem Monitor die Lage im oder am virtuellen Patienten beobachtet werden kann.
Nachfolgend wird ein bevorzugtes Ausführungsbeispiel anhand der Zeichnungen beschrieben. Hierbei zeigen:
Fig. 1 eine Perspektivansicht einer Vorrichtung mit Grundplatte, zwei Basishaltem mit
Grund- und Haltestäben, die mit Kugelgelenken verbunden sind;
Fig. 2 eine Perspektivansicht in entgegengesetzter Richtung wie in Fig. 1 mit etwas vergrößerter Darstellung der Zieleinrichtung.
Zur Halterung einer Zieleinrichtung 10 ist eine aus nichtrostendem, magnetisierbarem Stahl gefertigte Grundplatte 1 an ihrer Unterseite mit einem Operationstisch verbunden, beispielsweise mit Metallklauen, die mit der Grundplatte 1 verschraubt sind. Die Grundplatte 1 kann gegenüber dem OP-Tisch in horizontaler und in vertikaler Richtung verstellt werden, wobei eine hohe Festigkeit gewährleistet ist. Die die Zieleinrichtung 10 tragenden Teile der Halterung bestehen jeweils aus einem Basishalter 2, damit gelenkig verbundenen Haltestäben 3 und 4, die am freien Ende jeweils eine Lagerung 5 zur Befestigung von Stellantrieben 6 für die Zieleinrichtung 10 aufweisen. Der Basishalter 2 kann an jeder Stelle der Grundplatte 1 mechanisch, magnetisch oder pneumatisch verankert werden, wobei hierzu ein gerüstartiger Rahmen 1a vorgesehen ist, der den Patienten überspannt. Die gelenkige Verbindung der Haltestäbe .3 und4 ist jeweils mittels Arretierungen, z.B. mit den hier dargestellten Handknebeln fixierbar, so dass die Kraftübertragung und damit die Lagefixierung der Stellantriebe 6 mit ihren in X-Y-Ebene beweglichen Verstellarmen 7 gewährleistet ist.
An den freien Enden der beiden abgekröpften Verstellarme 7 ist ein Führungsrohr 9 für ein medizinisches Instrument 8 zur Ansteuerung eines Zielgewebes Z an Kugelköpfen 9a gelagert. In das Führungsrohr 9 kann eine Sonde oder ein Einlagerohr zur Anpassung an das verwendete Instrument 8 eingebracht werden, insbesondere eine mit einem Anschlag zur Axialeinstellung versehene Punktionsnadel 8, wie dies hier dargestellt ist. Die Axialposition des Instrumentes 8 kann auch durch eine Klemmeinrichtung exakt fixiert werden. Zur Vorjustierung der Zieleinrichtung 10 werden die beiden Basishalter 2 oder der Rahmen 1a auf der Grundplatte 1 mittels Markierungen 1b vorpositioniert, dann z.B. eine Sonde in die Führung 9 eingeführt und anschließend die Sonde so lange im virtuellen Raum herumgeführt, bis die Sondenspitze etwa am gewünschten Eintrittspunkt liegt und die Projektionsiinie (= Verlängerung der Sondenspitze entlang der Sondenachse) deckungsgleich mit der Vorschubrichtung ist (welche sich am Bildschirm ablesbar zeigt).
Dann kann das Personal den Bestrahlungsraum verlassen und durch Fernbedienung der Stellantriebe 6 den gewünschte Zielpunkt Z exakt ansteuern. Bei diesem Vorgang wird somit durch Feineinstellung der Verstellarme 7 in X-Y-Ebene der Eintrittspunkt und die Eintrittsrichtung der Zieleinrichtung 10 feinjustiert. Dabei kann vorab durch eine Simulation (ohne Patienten) die gesamte Zieleinrichtung 10 in Relation zum stereotaktischen Rahmen 1a und damit sowohl zur Eichvorrichtung als auch zum Patienten exakt eingestellt werden. Beim Eingriff wird dann der Patient auf exakt gleiche Art und Weise in den Rahmen 1a eingepasst, wie er im CT gescannt wurde. Es wird nun das Navigationssystem geeicht und die Zieleinrichtung 10 auf stereotaktisch korrekte Weise angebracht. Zur Kontrolle kann nun nochmals eine Sonde in die bereits justierte Zieleinrichtung 10 eingebracht, und wenn nötig, kann die Sonde nachjustiert werden. Die Nachjustierung ist, falls erforderlich, rasch durchführbar, da die Sonde durch die Vorjustierung schon beinahe die korrekte Lage hat und das Instrument durch die Stellantriebe 6 rasch und exakt auf den Zielort Z nachgestellt werden kann.
Nach Erreichen des Zielpunktes Z mit der Nadelspitze kann somit die eigentliche Bestrahlung des Tumors beginnen. Nach einmaliger Simulation und Vorjustierung der Sonde kann der Eingriff am Patienten beliebig oft wiederholt werden. Von wesentlicher Bedeutung hierbei ist die Lagerung der Zieleinrichtung 10 mit dem Führungsrohr 9 an den beiden Verstellarmen 7 der übereinander angeordneten Stellantriebe 6. Diese Stellantriebe 6 mit je einem X- und Y-Antriebselement (vorzugsweise Gewindespindeln) in Form eines Kreuzschlittens werden direkt übereinander (vgl. auch Fig. 2) angeordnet. Die Stellantriebe 6 können somit die Verstellarme 7 in Längs- und/oder Querrichtung verfahren, so dass das Führungsrohr 9 in nahezu jede Winkelposition schwenkbar sowie auch verschiebbar angeordnet ist, um die Zieleinrichtung 10 durch die Stellantriebe 6 in X- und/oder Y-Richtung zu verschieben sowie auch um deren Rotationsachsen zu drehen. In Fig. 2 ist die Zieleinrichtung 10 hier nach links oben in die gezeigte Schrägposition geschwenkt. Dabei wird das in das Führungsrohr 9 eingesteckte Instrument 8 ebenfalls mitverschwenkt, so dass von dem ursprünglich angepeilten Ziel Z nunmehr ein anderes Ziel angesteuert werden kann. Hierzu könnte beispielsweise der untere Stellantrieb 6 quer nach links verschoben werden, um das Führungsrohr 9 steiler zu stellen und damit eine millimetergenaue Feineinstellung der Zielrichtung einer relativ dünnen Punktionsnadel zu erreichen.
Im rechten Teil der Fig. 2 ist die Halterung der Stellantriebe 6 näher dargestellt. Diese sind über die Haltestäbe 3 und 4 mit Kugelgelenken mit den Basishaltern 2 verbunden. Die Kugelgelenke sind dabei arretierbar, indem eine Arretierung mittels des Handknebels betätigt wird. Es sei darauf hingewiesen, dass durch die Anordnung der Zieleinrichtung 10 an den beiden Stellantrieben 6 die räumliche Lage des Führungsrohrs 9 zur Führung des Instruments 8 beliebig eingestellt werden kann, wobei eine feinfühlige Verstellung durch die Stellantriebe 6 ermöglicht wird. Somit ist eine Einstellung der Zieleinrichtung 10 in räumlich beliebiger Weise möglich. Auch kann hierbei durch Absenken der Haltestäbe 3 und 4 die Zieleinrichtung 10 zum Patienten hin abgesenkt werden, um möglichst nahe an dem Zielort Z gebracht zu werden und Verbiegungen der dünnen Nadeln zu vermeiden.

Claims

Ansprüche:
1. Vorrichtung zur Ansteuerung körperlicher Strukturen, insbesondere zur Einführung von Punktionsnadeln oder Operationssonden, mit einer Grundplatte (1), wenigstens einem auf der Grundplatte (1) angebrachten Basishalter (2) und daran gelenkig befestigten Haltestäben (3, 4) zur Halterung und Positionierung einer Zieleinrichtung (10) für ein medizinisches Instrument (8), dadurch gekennzeichnet, dass die Zieleinrichtung (10) an zwei Verstellarmen (7) gelagert ist, die jeweils mit einem Stellantrieb .(6) am freien Ende der Haltestäbe (3, 4) in X- und/oder Y-Ebene bewegbar sind.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Verstellarme (7) zum Patienten hin abgekröpft sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an den freien Enden der Verstellarme (7) ein Führungsrohr (9) für das medizinische Instrument (8) gelagert ist, insbesondere über Kugelköpfe (9a).
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Grundplatte (1) einen gerüst- oder portalartigen Rahmen (1a) aufweist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Grundplatte (1) Markierungen (1b) zur Repositionierung des Rahmens (1a) aufweist, der auf der Grundplatte (1) magnetisch, pneumatisch oder mechanisch verankerbar sind.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zwei Stellantriebe (6) direkt übereinander angeordnet sind, die vorzugsweise als flache Boxen ausgebildet sind.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Stellantriebe (6) jeweils einen Kreuzschlitten für die Verstellung des jeweiligen Verstellarmes (7) in X-Y-Ebene aufweisen, insbesondere mit fernbedienbaren Gewindespindeln.
PCT/EP2005/002386 2004-03-06 2005-03-07 Vorrichtung zur ansteuerung körperlicher strukturen WO2005084565A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05715797A EP1722698B1 (de) 2004-03-06 2005-03-07 Vorrichtung zur ansteuerung körperlicher strukturen
US10/591,821 US10206708B2 (en) 2004-03-06 2005-03-07 Device for controlling corporeal structures
AT05715797T ATE547987T1 (de) 2004-03-06 2005-03-07 Vorrichtung zur ansteuerung körperlicher strukturen
JP2007501242A JP5050244B2 (ja) 2004-03-06 2005-03-07 立体構造物を制御するための装置
CA2558576A CA2558576C (en) 2004-03-06 2005-03-07 An apparatus for controlling corporeal structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202004003646U DE202004003646U1 (de) 2004-03-06 2004-03-06 Vorrichtung zur Ansteuerung körperlicher Strukturen
DE202004003646.0 2004-03-06

Publications (1)

Publication Number Publication Date
WO2005084565A1 true WO2005084565A1 (de) 2005-09-15

Family

ID=34917110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002386 WO2005084565A1 (de) 2004-03-06 2005-03-07 Vorrichtung zur ansteuerung körperlicher strukturen

Country Status (7)

Country Link
US (1) US10206708B2 (de)
EP (1) EP1722698B1 (de)
JP (1) JP5050244B2 (de)
AT (1) ATE547987T1 (de)
CA (1) CA2558576C (de)
DE (1) DE202004003646U1 (de)
WO (1) WO2005084565A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773411A (zh) * 2010-03-19 2010-07-14 福州浩联医疗科技有限公司 穿刺定位装置
DE202011109495U1 (de) 2011-12-27 2013-01-08 Isys Medizintechnik Gmbh Nadelführung
DE202012002296U1 (de) 2012-03-10 2013-03-11 Isys Medizintechnik Gmbh Vorrichtung zum Nadelvorschub
DE202012010230U1 (de) 2012-10-26 2013-10-28 Isys Medizintechnik Gmbh Instrumentenführung

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006004703B4 (de) * 2006-01-31 2016-08-04 MedCom Gesellschaft für medizinische Bildverarbeitung mbH Verfahren und Anordnung zum Betreiben eines Positionierungsroboters
US20120143213A1 (en) * 2009-08-14 2012-06-07 Elekta Ab (Publ) Surgical Apparatus
JP2013121407A (ja) * 2011-12-09 2013-06-20 Ndc Co Ltd 顕微鏡を吊り下げた移動ユニット
US10274553B2 (en) 2013-03-15 2019-04-30 Canon U.S.A., Inc. Needle placement manipulator with attachment for RF-coil
DE202013007831U1 (de) * 2013-09-04 2014-09-05 Isys Medizintechnik Gmbh Vorrichtung zur Anbringung von medizinischen Zielvorrichtungen u. dgl.
DE102013111935A1 (de) * 2013-10-30 2015-04-30 Rg Mechatronics Gmbh Rahmen zum Halten eines Chirurgieroboters, Verwendung eines solchen Rahmens in einem Chirurgieroboter-System, sowie Chirurgieroboter-System mit einem solchen Rahmen
JP6467434B2 (ja) 2014-02-27 2019-02-13 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッドThe Brigham and Women’s Hospital, Inc. 載置装置
US10251670B2 (en) 2014-05-09 2019-04-09 Canon U.S.A., Inc. Positioning apparatus
WO2016040817A1 (en) 2014-09-12 2016-03-17 Canon U.S.A., Inc. Needle positioning apparatus
DE202015003206U1 (de) 2015-05-03 2016-05-10 Isys Medizintechnik Gmbh Vorrichtung zur Positionierung von sterilen lnstrumenten
US9867673B2 (en) 2015-07-14 2018-01-16 Canon U.S.A, Inc. Medical support device
US10639065B2 (en) 2015-07-21 2020-05-05 Canon U.S.A., Inc. Medical assist device
JP6630835B2 (ja) 2016-01-29 2020-01-15 キヤノン ユーエスエイ,インコーポレイテッドCanon U.S.A.,Inc ツール配置マニピュレータ
WO2018075671A1 (en) 2016-10-19 2018-04-26 Canon U.S.A. Inc. Placement manipulator and attachment for positioning a puncture instrument
CN108283514A (zh) * 2018-03-22 2018-07-17 袁峰 一种三维椎间孔导向器
JP7332621B2 (ja) 2018-04-13 2023-08-23 アイシス メディツィンテクニック ゲーエムベーハー 医療ロボット
CN113397706A (zh) * 2018-12-29 2021-09-17 华科精准(北京)医疗科技有限公司 一种手术导航系统
CN114271917B (zh) * 2022-01-24 2023-12-26 山东第一医科大学(山东省医学科学院) 一种心血管造影装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176689A (en) 1988-12-23 1993-01-05 Medical Instrumentation And Diagnostics Corporation Three-dimensional beam localization apparatus for stereotactic diagnoses or surgery
US5201742A (en) 1991-04-16 1993-04-13 Hasson Harrith M Support jig for a surgical instrument
US5257998A (en) 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
US5281232A (en) * 1992-10-13 1994-01-25 Board Of Regents Of The University Of Arizona/ University Of Arizona Reference frame for stereotactic radiosurgery using skeletal fixation
WO1997020515A1 (de) 1995-12-04 1997-06-12 Michael Vogele Vorrichtung zur ansteuerung körperlicher strukturen
US6106511A (en) * 1993-05-14 2000-08-22 Sri International Methods and devices for positioning a surgical instrument at a surgical site
WO2001034017A2 (en) * 1999-11-12 2001-05-17 Microdexterity Systems, Inc. Manipulator
WO2002062199A2 (en) * 2001-01-16 2002-08-15 Microdexterity Systems, Inc. Surgical manipulator
US20040024387A1 (en) * 2002-04-15 2004-02-05 Shaharam Payandeh Devices for positioning implements about fixed points

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2982248A (en) * 1958-07-09 1961-05-02 American Home Prod Monkey chair
US4407625A (en) * 1981-05-15 1983-10-04 Westinghouse Electric Corp. Multi-arm robot
US6406472B1 (en) * 1993-05-14 2002-06-18 Sri International, Inc. Remote center positioner
DE19544559C1 (de) * 1995-11-30 1997-07-03 Knorr Bremse Systeme Zweiteilige Bremsscheibe, insbesondere für Nutzfahrzeug-Scheibenbremsen
US7371210B2 (en) * 1998-02-24 2008-05-13 Hansen Medical, Inc. Flexible instrument
AU1825400A (en) * 1998-11-23 2000-06-13 Microdexterity Systems, Inc. Surgical manipulator
CA2307063A1 (en) * 2000-04-28 2001-10-28 David A. Egan System using anthropometric frame for measurement of bony spatial relationships

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176689A (en) 1988-12-23 1993-01-05 Medical Instrumentation And Diagnostics Corporation Three-dimensional beam localization apparatus for stereotactic diagnoses or surgery
US5257998A (en) 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
US5201742A (en) 1991-04-16 1993-04-13 Hasson Harrith M Support jig for a surgical instrument
US5281232A (en) * 1992-10-13 1994-01-25 Board Of Regents Of The University Of Arizona/ University Of Arizona Reference frame for stereotactic radiosurgery using skeletal fixation
US6106511A (en) * 1993-05-14 2000-08-22 Sri International Methods and devices for positioning a surgical instrument at a surgical site
WO1997020515A1 (de) 1995-12-04 1997-06-12 Michael Vogele Vorrichtung zur ansteuerung körperlicher strukturen
WO2001034017A2 (en) * 1999-11-12 2001-05-17 Microdexterity Systems, Inc. Manipulator
WO2002062199A2 (en) * 2001-01-16 2002-08-15 Microdexterity Systems, Inc. Surgical manipulator
US20040024387A1 (en) * 2002-04-15 2004-02-05 Shaharam Payandeh Devices for positioning implements about fixed points

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773411A (zh) * 2010-03-19 2010-07-14 福州浩联医疗科技有限公司 穿刺定位装置
DE202011109495U1 (de) 2011-12-27 2013-01-08 Isys Medizintechnik Gmbh Nadelführung
DE202012002296U1 (de) 2012-03-10 2013-03-11 Isys Medizintechnik Gmbh Vorrichtung zum Nadelvorschub
DE102013004062A1 (de) 2012-03-10 2013-09-12 Isys Medizintechnik Gmbh Vorrichtung zum Nadelvorschub
DE202012010230U1 (de) 2012-10-26 2013-10-28 Isys Medizintechnik Gmbh Instrumentenführung

Also Published As

Publication number Publication date
CA2558576C (en) 2014-08-12
EP1722698B1 (de) 2012-03-07
US10206708B2 (en) 2019-02-19
EP1722698A1 (de) 2006-11-22
DE202004003646U1 (de) 2005-09-01
US20070276407A1 (en) 2007-11-29
JP5050244B2 (ja) 2012-10-17
JP2007527290A (ja) 2007-09-27
CA2558576A1 (en) 2005-09-15
ATE547987T1 (de) 2012-03-15

Similar Documents

Publication Publication Date Title
EP1722698B1 (de) Vorrichtung zur ansteuerung körperlicher strukturen
EP1296609B1 (de) Medizinische vorrichtung für stereotaxie und patientenpositionierung
EP0871407B1 (de) Vorrichtung zur ansteuerung körperlicher strukturen
DE69828011T2 (de) Vorrichtung zur Halterung eines chirurgischen Instruments
DE102014214935A1 (de) Verfahren zum Betreiben eines medizinisch-robotischen Geräts
DE102015102776A1 (de) Medizinisches Instrumentarium und Verfahren
DE102008013615A1 (de) Verfahren und Markierungsvorrichtung zur Markierung einer Führungslinie eines Eindringungsinstruments, Steuerungseinrichtung und Aufnahmesystem
DE19536180C2 (de) Verfahren und Vorrichtungen zur Lokalisierung eines Instruments
DE102010040987A1 (de) Verfahren zum Platzieren eines Laparoskopieroboters in einer vorgebbaren Relativlage zu einem Trokar
DE102015201067B4 (de) Bestimmung eines Winkels zwischen zwei Teilen eines Knochens
EP2911606A1 (de) Instrumentenführung
DE2139433A1 (de) Geraet fuer stereotaktische gehirnoperationen
DE102009017243B4 (de) System zur Bestimmung von Abweichungen der vorherbestimmten Lage eines unsichtbaren Merkmals aufgrund von Verformungen bei Implantaten
EP1675520A1 (de) Vorrichtung zur platzierung von instrumenten oder implantaten in körperorgane
DE102007029199B4 (de) Verfahren zum Ausrichten eines Zielführungssystems für eine Punktion und Röntgenangiographiesystem nebst Verfahren zum technischen Unterstützen der Zielführung
EP2919654A1 (de) Röntgenologischer arbeitsplatz
EP3622908B1 (de) Ausrichtelement zum ausrichten einer nadelführung; ausrichtanordnung; führungsanordnung; behandlungsanordnung sowie verfahren
DE19614644A1 (de) Vorrichtung zur Lagerung eines Patienten für eine stereotaktisch gezielte Strahlentherapie
DE102016214319A1 (de) Biopsieeinheit
DE102015207119A1 (de) Interventionelle Positionierungskinematik
DE102010020275A1 (de) Operationshalterung, weit verschwenkbar
DE202011109495U1 (de) Nadelführung
WO2003005922A1 (de) Fixierungsring zur kopffixierung
DE102009025247A1 (de) Verfahren zur Erzeugung eines Röntgenbildes eines in einem Patienten platzierten Implantats und Medizinsystem
DE102009011610B4 (de) Verfahren zur Erzeugung eines Röntgenbildes der Körperregion eines Patienten mit einer bestimmten Projektionsachse

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007501242

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2558576

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005715797

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005715797

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10591821

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10591821

Country of ref document: US