WO2005084540A1 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2005084540A1
WO2005084540A1 PCT/JP2004/019365 JP2004019365W WO2005084540A1 WO 2005084540 A1 WO2005084540 A1 WO 2005084540A1 JP 2004019365 W JP2004019365 W JP 2004019365W WO 2005084540 A1 WO2005084540 A1 WO 2005084540A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic resonance
echo
magnetic field
image
echoes
Prior art date
Application number
PCT/JP2004/019365
Other languages
English (en)
French (fr)
Inventor
Yo Taniguchi
Shinji Kurokawa
Hisaaki Ochi
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2006510615A priority Critical patent/JP4504974B2/ja
Priority to US10/586,732 priority patent/US7626388B2/en
Publication of WO2005084540A1 publication Critical patent/WO2005084540A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • G01R33/4824MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56509Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling

Definitions

  • the present invention relates to a magnetic resonance imaging technique.
  • a nuclear magnetic resonance imaging (MRI) apparatus generates nuclear magnetic resonance in a hydrogen atom nucleus in an arbitrary plane crossing a subject, and generates a nuclear magnetic resonance signal force. It is an image diagnostic apparatus.
  • MRI nuclear magnetic resonance imaging
  • a slice gradient magnetic field that specifies a plane on which a tomographic image of a subject is to be obtained is applied, and at the same time, an excitation pulse that excites a magnetic field in the plane is applied.
  • a phase encoding gradient magnetic field and a readout gradient magnetic field that are perpendicular to each other in the tomographic plane are applied between the excitation and the acquisition of the echo.
  • the measured echoes are placed in k-space, where the horizontal axis is kx and the vertical axis is ky, and image reconstruction is performed by inverse Fourier transform.
  • a pulse for generating an echo and each gradient magnetic field are applied based on a pulse sequence set in advance.
  • Various pulse sequences are known depending on the purpose.
  • GE gradient echo
  • FIG. 1A shows a pulse sequence of a GE radial scan (for example, see Non-Patent Document 1).
  • the operation of this pulse sequence is as follows.
  • a high frequency magnetic field (RF) pulse 202 for magnetizing excitation at a resonance frequency f0 of protons is applied along with the applied mark of the slice gradient magnetic field pulse 201 in the z direction, and nuclear magnetic resonance is applied to a proton of a certain slice in the target object. Induce a phenomenon. Then, after applying the gradient magnetic field pulses 203, 204, 205 for dephase, the nuclear magnetic field is applied while applying the readout gradient magnetic field pulses 206, 207. The sound signal (echo) 208 is measured. After the echo measurement, rephase gradient magnetic field pulses 209, 210, and 211 are applied to return the phase of the magnetic field to prepare for the next excitation.
  • RF magnetic field
  • the above procedure is repeated Ne times with a repetition time TR, and Ne echoes are measured.
  • the gradient magnetic field pulses 204 and 205 for the diffuse, the read-out gradient magnetic field pulses 206 and 207, and the gradient magnetic field pulses 209 and 210 each change in intensity as shown in FIG. 1 (A).
  • the gradient magnetic field pulse 204 for dephase and the gradient magnetic field pulse 209 for rephase are from -Ne / 2 to Ne / 2-1
  • the gradient magnetic field pulse 205 for dephase and the gradient magnetic field pulse 210 for rephase are from 0 to 0.
  • the readout gradient pulse 206 changes from Ne / 2 to Ne / 2-1
  • the readout gradient pulse 207 changes from 0 to 1 via Ne / 2, one step each. .
  • Each of the measured echoes is arranged in k-space as shown in Fig. 1 (B).
  • the figure shows an example where Ne is 128.
  • one echo occupies one line passing through the origin O, and each echo is arranged at equal intervals in the rotation direction.
  • the difference ⁇ ⁇ between the angles of adjacent echoes is ⁇ / Ne radians.
  • image reconstruction is performed by two-dimensional inverse Fourier transform.
  • the number of samples per echo and the number of echoes are usually set to N.
  • the photographing time is reduced, and the time resolution is improved. For example, if only the odd-numbered echoes are measured in FIG. 1B, the number of echoes will be 64, and the shooting time will be 1/2.
  • Non-Special Publication 1 E. Mark Haacke, et al .: Re Magnetic Resonancelmaging-Physical Principles and Sequence Design ⁇ Wiley—Liss, pp.303—330, 1999
  • Non-Patent Document 2 Jackson JI, Meyer CH, Nishimura DG: Selection of a Convolution Function for Fourier Inversion Using Gridding, IEEE Trans.Med.Imaging, Vol. 10, No. 3, pp. 473-478, 1991
  • the spatial resolution is reduced and artifacts are generated.
  • the k-space in this case is as shown in FIG. In the figure, a dotted line 215 indicates that the corresponding echo is not measured.
  • the number of sample points in the k-space is insufficient, so that the spatial resolution of the reconstructed image is reduced and artifacts are generated. That is, if the number of echoes is reduced to improve the time resolution, there is a problem that artifacts occur and the image quality deteriorates.
  • An object of the present invention is to provide a magnetic resonance imaging technique that can efficiently suppress artifacts generated in radial scanning.
  • a magnetic resonance imaging apparatus of the present invention has the following features.
  • a control device for applying a high-frequency magnetic field and a gradient magnetic field to a subject placed in a static magnetic field to control a pulse sequence for detecting a magnetic resonance signal generated from the subject; And a control unit for controlling a pulse sequence for performing a radial scan, and (2) a control for collecting an image echo by executing the pulse sequence a plurality of times. (3) performing the pulse sequence a plurality of times to collect reference echoes located between the image echoes in the k-space, and performing the following: The reference echo into multiple groups Dividing the image; (2) obtaining an estimation coefficient using the reference echo and the image echo positioned before and after the reference echo; and (3) using the estimation coefficient to obtain an image in k-space. Estimating an unmeasured echo positioned between the echoes.
  • a control device for applying a high-frequency magnetic field and a gradient magnetic field to a subject placed in a static magnetic field to control a pulse sequence for detecting a nuclear magnetic resonance signal generated from the subject.
  • the control device (1) detects the nuclear magnetic resonance signal that scans the k space radially, (2) shoots a plurality of images, (3) uses a sliding window, (4) performs the scanning. Is performed skipping n times, and artifacts are suppressed by a temporal filter.
  • FIG. 3 is a block diagram showing a schematic configuration of the magnetic resonance imaging apparatus.
  • 101 is a magnet that generates a static magnetic field
  • 102 is a coil that generates a gradient magnetic field
  • 103 is a subject (for example, a living body)
  • the subject 103 is a static magnetic field generated by the magnet 101.
  • the sequencer 104 sends commands to the gradient magnetic field power supply 105 and the high frequency magnetic field generator 106 to generate a gradient magnetic field and a high frequency magnetic field, respectively.
  • the high-frequency magnetic field is applied to the inspection target 103 through the probe 107.
  • the signal generated from the inspection target 103 is received by the probe 107 and detected by the receiver 108.
  • a nuclear magnetic resonance frequency hereinafter referred to as a detection reference frequency
  • the detected signal is sent to the computer 109, where signal processing such as image reconstruction is performed.
  • the result is displayed on display 110. If necessary, the detected signal and the measurement conditions can be stored in the storage medium 111.
  • the static magnetic field space There is an electrocardiograph 114 connected to the sensor 104, which can measure the electrocardiographic waveform of the subject 103. The measured electrocardiographic waveform is taken into the sequencer 104.
  • the shim coil 112 is used.
  • the shim coil 112 is composed of a plurality of channels, and is supplied with current by a shim power supply 113.
  • the sequencer 104 sends a command to the shim power supply 113 to generate an additional magnetic field from the coil 112 to correct the non-uniformity of the static magnetic field.
  • sequencer 104 normally controls each device to operate at a timing and intensity programmed in advance.
  • nose sequences those describing the high-frequency magnetic field, the gradient magnetic field, and the timing and intensity of signal reception are called “nose sequences”.
  • a GE sequence shown in FIG. 1 is used as a pulse sequence.
  • the TR of this pulse sequence is 4 ms, and the number of repetitions is 72 times, which is a total of 72 times by adding 8 times for reference in addition to the conventional 64 times.
  • the k-space arrangement of the echo is as shown by the solid line in FIG.
  • the echo 213 of the thick line is a reference echo.
  • An estimation coefficient is obtained using this echo, and an unmeasured echo 212 indicated by a dotted line is estimated.
  • the total number of echoes after estimation is 128. This procedure will be described with reference to the flowchart of FIG.
  • 128 echoes including the unmeasured echo 212 are divided into eight groups including 17 echoes (step 401). As shown in Fig. 5, the echo at the boundary between groups is included in two adjacent groups. In FIG. 5, both groups include an echo 214 at the boundary of the first group 301 and the second group 302. It is also assumed that the reference echoes 213 are measured so as to be located one by one at the center of each group.
  • an estimation coefficient A [al, a2] for estimating the unmeasured echo 212 in each group is represented by a reference echo R (row vector) and two echoes Sl and S2 before and after the reference echo R (row vector). (Step 402) using the following equation (1).
  • A RS- (1)
  • S [S1, S2] "T (a'T is the transposed matrix of a), and S- is the pseudo inverse of S.
  • an unmeasured echo is estimated by the following equation (2) using the estimation coefficient A for each block (step 403).
  • Su is an unmeasured echo
  • S ' [S'1, S'2] "T
  • S'l and S'2 are echoes before and after Su.
  • each echo is divided into N p parts at substantially equal intervals and processed as shown by a dotted line 303 in FIG.
  • the number of reference echoes is preferably eight or more.
  • one estimation coefficient must be used to estimate the echo contained in a wide range of 90 degrees, and the estimation result with sufficient accuracy cannot be obtained.
  • the number of reference echoes is set to eight or more, the range of the echo estimated by one estimation coefficient becomes 45 degrees or less, and an estimation result with almost sufficient accuracy can be obtained.
  • the estimation accuracy improves as the number of reference echoes increases, but the measurement time increases accordingly. Therefore, it is usually most effective to set the number of reference echoes to approximately eight.
  • gridding is performed by combining the measured echo and the unmeasured echo estimated by the above processing, and then an image is reconstructed by inverse Fourier transform (step 404).
  • FIG. 7 shows a result of actually applying the above processing.
  • 64 echoes and 8 reference echoes were measured, and 56 unmeasured echoes were estimated.
  • the number of echo sampling points was 129, and each echo was divided into seven parts and estimation processing was performed.
  • 7A is an image of the processing result of the present invention
  • B is an image of a result of reconstruction using only the measured 64 echoes
  • C is a result of measuring 128 echoes. This is the image of the reconstructed result.
  • Fig. 7B there are many radial artifacts in the background due to low echo.
  • Fig. 7A radial artifacts were almost invisible and image quality was greatly improved. As a result, almost the same image quality was obtained as in the case of measuring all 128 echoes shown in Fig. 7C.
  • the unmeasured echo is measured as a reference, an echo force estimation coefficient adjacent to the reference is obtained, and the unmeasured echo is estimated.
  • the echo measured as a reference is only a part of the unmeasured echo, so the imaging time hardly increases, and the estimation coefficient is calculated using the reference. Therefore, if no reference is used, unmeasured echoes can be estimated more accurately than simple data complementation. This makes it possible to realize a magnetic resonance imaging apparatus capable of suppressing artifacts without substantially extending the imaging time.
  • the magnitude of the gradient magnetic field is changed such that scanning is performed by skipping three echoes in the k space in the ⁇ direction at a time.
  • FIG. 8A shows a schematic diagram of the scanning order.
  • the frame rate is 4 fps.
  • the frame rate is set to 32 fps by updating every eight echoes using a sliding window.
  • gridding is performed, and as shown in FIG. 8 (B), the image is rearranged on a grid-like k-space 802, and then image reconstruction is performed by two-dimensional inverse Fourier transform.
  • the frequency of the radial artifact changes to a high frequency.
  • a time filter low-pass filter
  • FIG. 9 shows, as an example of artifact filtering, a result 901 obtained by frequency-decomposing a moving image reconstructed by skipping three k-space scans in the time direction and a time filter 902 used.
  • the horizontal axis represents frequency
  • the vertical axis represents amplitude.
  • Reference numeral 903 denotes a frequency component of a radial artifact seen in this moving image.
  • FIG. 10 shows a shooting result (first frame of a moving image) according to the present invention.
  • A in Fig. 10 shows an image (0 skips) when power is applied without using any of the three filters, the time filter (low-pass filter), and the suppression of artifacts due to undersampling.
  • B of Fig. 10 is an image when scanning is performed by skipping three pixels and a time filter (low noise filter) is applied. It can be seen that radial artifacts are suppressed.
  • FIG. 10 (C) is an image obtained by scanning with three scan lines, applying a time filter (low-pass filter), and suppressing artifacts due to undersampling. It is clear that artifacts at the edge of the image, which is only caused by radial artifacts due to data gaps, are suppressed.
  • N is the number of N skipped N
  • Ne is the value of how many times the frame rate increases when echo sharing is performed.
  • FIG. 11 shows an imaging procedure according to the present invention.
  • parameters of a photographing sequence are input (step 1101).
  • N value of N skips is determined according to the equation (3) (step 1102).
  • an echo is acquired using the sequence of FIG. 1A (step 1103).
  • scanning is performed differently so that scanning lines do not overlap by the required number of frames.
  • a temporal filter (low-pass filter) is applied to obtain an image in which radial artifacts are suppressed (step 1105).
  • the suppression of artifacts due to undersampling is also used, the artifacts are suppressed by applying a corresponding time filter (low-pass filter).
  • the filtering can be performed by operating the frequency of the radial artifact due to the data gap in the radial scan, a remarkable effect that the radial artifact can be suppressed can be expected.
  • the present invention it is possible to realize a magnetic resonance imaging apparatus capable of efficiently suppressing artifacts generated in radial scanning.
  • a magnetic resonance imaging apparatus capable of efficiently suppressing artifacts generated in radial scanning.
  • it can be applied to inspection devices and the like using magnetic resonance imaging technology, and is particularly significant in the medical field.
  • FIG. 1 is a diagram illustrating a pulse sequence and k-space of a conventional GE radial scan.
  • FIG. 2 is a view for explaining a conventional radial scan k-space.
  • FIG. 3 is a diagram showing a configuration example of a nuclear magnetic resonance imaging apparatus to which the present invention is applied.
  • FIG. 4 is a diagram illustrating a k-space of a radial scan according to the present invention. (Example 1)
  • FIG. 5 is a diagram for explaining an echo arrangement at the time of estimation of an unmeasured echo in the present invention.
  • FIG. 6 is a view showing a flowchart for estimation of an unmeasured echo in the present invention. (Example 1)
  • FIG. 7 is a diagram showing an unmeasured echo estimation result according to the present invention. (Example 1)
  • FIG. 8 is a view for explaining a scan order of N skips according to the present invention. (Example 2)
  • FIG. 9 is a diagram showing a frequency component and a time filter (low-pass filter) of a moving image reconstructed by skipping three k-space scans. (Example 2)
  • FIG. 10 is a view for explaining a photographing result according to the present invention. (Example 2)
  • FIG. 11 is a view for explaining a shooting procedure in the present invention. (Example 2)
  • 101 a magnet for generating a static magnetic field
  • 102 a gradient coil, 103, an object, 104, a sequencer, 105, a gradient power supply, 106, a high-frequency magnetic field generator, 107, a probe, 108, a receiver, 109 ⁇ Calculator, 110... Display, 111... Storage media, 112... Simcoil, 113 ⁇ Sim power supply, 114 ⁇ Electrocardiograph, 115... Examiner, 116 ⁇ Bed, 117... Cape , 118 ... Switch, 201 ... Slice gradient magnetic field pulse, 202 ... High frequency magnetic field pulse for magnetic excitation, 203 ... Phase encoding gradient magnetic field pulse, 206, 207 ...

Abstract

 エコー数の不足したラジアルスキャンで発生するアーチファクトを効率良く抑制し得る磁気共鳴イメージング装置を提供する。  未計測のエコーのうち一部だけをリファレンス用エコーとして計測し、リファレンスエコーと隣り合うエコーから推定係数を求め、未計測エコーを推定係数を用いて推定するよう構成されている。

Description

明 細 書
磁気共鳴イメージング装置
技術分野
[0001] 本発明は、磁気共鳴イメージング技術に関する。
背景技術
[0002] 核磁気共鳴イメージング (MRI)装置は、被検体を横切る任意の平面内の水素原 子核に核磁気共鳴を起こさせ、発生する核磁気共鳴信号力 その平面内における 断層像を得る医用画像診断装置である。
[0003] 一般的には、被検体の断層像を得ようとする平面を特定するスライス傾斜磁場を印 加すると同時にその平面内の磁ィ匕を励起させる励起パルスを与え、これにより励起さ れた磁化が収束する段階で発生する核磁気共鳴信号 (エコー)を得る。磁化に位置 情報を与えるため、励起からエコーを得るまでの間に、断層面内で互いに垂直な方 向の位相エンコード傾斜磁場とリードアウト傾斜磁場を印加する。計測されたエコー は、横軸を kx、縦軸を kyとする k空間に配置され、逆フーリエ変換によって画像再構 成が行われる。
[0004] エコーを発生させるためのパルスと各傾斜磁場は、あら力じめ設定されたパルスシ 一ケンスに基づいて印加されるようになっている。このパルスシーケンスは、 目的に応 じて種々のものが知られている。例えば、グラディエントエコー(GE)タイプの高速撮 影法は、そのノ ルスシーケンスを繰り返して作動させ、繰り返しごとに位相エンコード 傾斜磁場を順次変化させることにより、 1枚の断層像を得るために必要な数のエコー を順次計測して 、く方法である。
[0005] 図 1の(A)に、 GE系ラジアルスキャンのパルスシーケンスを示す(例えば、非特許 文献 1参照)。このパルスシーケンスの動作は、以下のとおりである。
[0006] z方向のスライス傾斜磁場パルス 201の印カロとともにプロトンの共鳴周波数 f 0の磁 化励起用高周波磁場 (RF)パルス 202を印加し、対象物体内のあるスライスのプロト ンに核磁気共鳴現象を誘起する。そして、ディフェーズ用傾斜磁場パルス 203、 204 、 205を印加した後、リードアウト傾斜磁場パルス 206、 207を印加しながら核磁気共 鳴信号 (エコー) 208を計測する。エコー計測後、リフェーズ傾斜磁場パルス 209、 2 10、 211を印加して磁ィ匕の位相を戻し、次の励起に備える。
[0007] 以上の手順を、繰返し時間 TRで Ne回繰り返し、 Ne個のエコーを計測する。ディフ エーズ用傾斜磁場パルス 204、 205、リードア外傾斜磁場パルス 206、 207、リフエ ーズ傾斜磁場パルス 209、 210は、それぞれ、図 1の(A)のように繰返しごとに強度 が変化する。図のシーケンスの場合、ディフェーズ用傾斜磁場パルス 204とリフエ一 ズ傾斜磁場パルス 209は- Ne/2から Ne/2— 1まで、ディフェーズ用傾斜磁場パルス 205とリフエーズ傾斜磁場パルス 210は 0から Ne/2を経て— 1まで、リードアウト傾斜 磁場パルス 206は Ne/2から Ne/2— 1まで、リードアウト傾斜磁場パルス 207は 0か ら Ne/2を経て 1までそれぞれ 1ステップずつ変化する。
[0008] 計測された各エコーは、図 1の(B)のように、 k空間上に配置される。図には、 Neが 128の場合を例として示す。 k空間上で 1つのエコーは原点 Oを通る 1本のラインを占 め、各エコーは回転方向に等間隔に配置される。隣り合うエコーの角度の差 Δ Θは、 π /Neラジアンである。
[0009] この k空間をグリッディングによって格子状の空間に変換した (例えば、非特許文献 2参照)後、 2次元逆フーリエ変換によって画像再構成が行われる。 1画像当たりの撮 影時間は、 TRとエコー数の積となる。例えば、 TR=4msとして 128エコーで 1枚の 画像を再構成した場合、 512ミリ秒である。
[0010] 画素数が N X Nの画像を再構成するためには、通常、 1エコー当たりのサンプル数 とエコー数をともに Nとする。エコー数を Nよりも小さくした場合、撮影時間が短縮され 、時間分解能が向上する。例えば、図 1の (B)で奇数番目のエコーだけを計測した場 合、エコー数は 64となり、撮影時間は 1/2となる。
[0011] 非特千文献 1 : E. Mark Haacke, et al.: ¾agnetic Resonancelmaging - Physical Principles and Sequence Design · Wiley— Liss, pp.303— 330, 1999
非特許文献 2 : Jackson JI, Meyer CH, Nishimura DG : Selection of a Convolution Function for Fourier Inversion Using Gridding, IEEE Trans. Med. Imaging, Vol. 10, No. 3, pp. 473-478, 1991
発明の開示 発明が解決しょうとする課題
[0012] しかしながら、上述したような方法で時間分解能を向上させた場合には、空間分解 能低下やアーチファクトの発生が見られる。この場合の k空間は、図 2のようになる。 図において、点線 215は該当するエコーを計測していないことを示す。図 1の(B)と 比較して k空間上のサンプル点が不足して 、るため、再構成画像の空間分解能低下 やアーチファクトの発生が見られることになる。すなわち、時間分解能向上のために エコー数を減らすと、アーチファクトが発生して画質が低下する問題を有する。
[0013] また、図 1の (A)に示すような、スライス傾斜磁場パルス印力!]からエコー計測までの 手順を、繰り返し時間 TRで繰り返し、 1枚の画像を得るのに必要なエコーを計測する 。各エコーは、図 1の(B)のように k空間上に配置される。グリッディングを行い、図 8 の(B)のように格子状の k空間 802上に配置しなおした後、 2次元逆フーリエ変換に よって画像再構成される。 1画像当たりの撮影時間は、例えば、 TR=4msとして 64 エコーを取得した場合、 0.256秒である。心臓を撮影する場合には、心周期が約 1秒 と心臓の動きが撮影時間に対して無視できな 、。リアルタイムに撮影を行わな 、場合 には、心電同期などの方法で心臓の動きの影響を抑制することが可能だが、リアルタ ィムに撮影を行う場合には、撮影中に対象が大きく動き、アーチファクトが生じる。
[0014] 本発明の目的は、ラジアルスキャンで発生するアーチファクトを効率良く抑制し得る 磁気共鳴イメージング技術を提供することにある。
課題を解決するための手段
[0015] 上記目的を達成するために、本発明の磁気共鳴イメージング装置は、下記に示す ような特徴を有する。
[0016] 1.静磁場の中に置かれた被検体に、高周波磁場、傾斜磁場を印加して、前記被 検体から発生する磁気共鳴信号を検出するパルスシーケンスを制御する制御装置と 、前記信号を処理する演算装置とを有し、前記制御装置は、(1)ラジアルスキャンを 実施するパルスシーケンスの制御と、 (2)前記パルスシーケンスを複数回実行して画 像用エコーを収集する制御と、 (3)前記パルスシーケンスを複数回実行して k空間上 で前記画像用エコーの間に位置するリファレンスエコーを収集する制御とを行い、前 記演算装置は、(1)前記画像用エコーと前記リファレンスエコーを複数のグループに 分割する処理と、(2)前記リファレンスエコーとその前後に位置する前記画像用ェコ 一を用いて推定係数を求める処理と、(3)前記推定係数を用いて k空間上で前記画 像用エコーの間に位置する未計測のエコーを推定する処理とを行うことを特徴とする
[0017] 2.静磁場の中に置かれた被検体に、高周波磁場、傾斜磁場を印加して、前記被 検体から発生する核磁気共鳴信号を検出するパルスシーケンスを制御する制御装 置を有し、前記制御装置は、(l) k空間を放射状に走査する前記核磁気共鳴信号を 検出すること、(2)複数枚数撮影すること、(3)スライディングウィンドウを用いること、( 4)前記走査を n個飛ばしに行い、時間フィルタによりアーチファクトを抑制することを 特徴とする。
発明の効果
[0018] 本発明によれば、ラジアルスキャンで発生するアーチファクトを効率良く抑制し得る 磁気共鳴イメージング装置を実現できる。
発明を実施するための最良の形態
[0019] 以下、本発明の実施例について、図面を参照して詳述する。
[0020] (実施例 1)
図 3は、磁気共鳴メージング装置の概略構成を示すブロック図である。
[0021] 図 3において、 101は静磁場を発生するマグネット、 102は傾斜磁場を発生するコ ィル、 103は被検体 (例えば、生体)であり、被検体 103はマグネット 101の発生する 静磁場空間内に設置される。また、シーケンサ 104は、傾斜磁場電源 105と高周波 磁場発生器 106に命令を送り、それぞれ傾斜磁場および高周波磁場を発生させる。 高周波磁場は、プローブ 107を通じて検査対象 103に印加される。検査対象 103か ら発生した信号はプローブ 107によって受波され、受信器 108で検波が行われる。 検波の基準とする核磁気共鳴周波数 (以下、検波基準周波数と記す。)は、シーケン サ 104によりセットされる。検波された信号は計算機 109に送られ、ここで画像再構成 などの信号処理が行われる。
[0022] その結果は、ディスプレイ 110に表示される。必要に応じて、記憶媒体 111に検波 された信号や測定条件を記憶させることもできる。また、静磁場空間内にはシーケン サ 104に接続された心電計 114があり、被検体 103の心電波形を計測することがで きる。計測された心電波形は、シーケンサ 104に取り込まれる。また、静磁場均一度 を調整する必要があるときは、シムコイル 112を使う。シムコイル 112は複数のチヤネ ルからなり、シム電源 113により電流が供給される。静磁場均一度調整時には各シム コイルに流れる電流をシーケンサ 104により制御する。シーケンサ 104は、シム電源 1 13に命令を送り、静磁場不均一を補正するような付加的な磁場をコイル 112より発生 させる。
[0023] なお、シーケンサ 104は、通常、予めプログラムされたタイミング、強度で各装置が 動作するように制御を行う。上記プログラムのうち、特に、高周波磁場、傾斜磁場、信 号受信のタイミングや強度を記述したものはノ ルスシーケンスと呼ばれている。
[0024] 本実施例では、パルスシーケンスとして、図 1に示す GE系のシーケンスを使用する 。このパルスシーケンスの TRは 4ms、繰返し回数は従来の繰返し回数 64回に加え て、リファレンス用の 8回をカ卩えて計 72回とし、 72個のエコーを計測する。エコーの k 空間配置は、図 4に示す実線のとおりである。
[0025] 図 4で、実線で示したエコーのうち、太い線のエコー 213はリファレンス用エコーで ある。このエコーを用いて推定係数を求め、点線で示した未計測のエコー 212を推 定する。推定後のエコーは全部で 128個になる。この手順を、図 6のフローチャートに 従って説明する。
[0026] まず、未計測エコー 212を含む 128個のエコーを 17個のエコーを含む 8個のグル ープに分割する(ステップ 401)。図 5に示すように、グループの境界のエコーは隣接 する 2個のグループに含まれるようにする。図 5では、 1番目のグループ 301と 2番目 のグループ 302の境界にあるエコー 214が両方のグループに含まれている。また、リ ファレンスエコー 213は、各グループの中心に 1個ずつ位置するよう計測されている ものとする。
[0027] 次に、各グループで未計測エコー 212を推定するための推定係数 A= [al、 a2]を 、リファレンスエコー R (行ベクトル)とその前後の 2個のエコー Sl、 S2(それぞれ列べク トル)を用いて、以下の(1)式により求める(ステップ 402)。
[0028] A=RS- (1) ここで、 S= [S1、 S2] "T(a'Tは aの転置行列)、 S-は Sの pseudo inverse (擬似逆行 列)である。
[0029] 次に、ブロックごとにこの推定係数 Aを用いて未計測のエコーを、以下の(2)式で推 定する(ステップ 403)。
[0030] Su=AS, (2)
ここで、 Suは未計測エコー、 S' = [S' 1、 S'2] "Tであり、 S' lと S'2は Suの前後のェコ 一である。
[0031] 以上の処理において、各エコーは、図 5に点線 303で示すように、ほぼ等間隔に N p個のパートに分割されて処理される。図には、 Np = 3の場合を示した。エコーを分 割することにより、 1個のエコー全体を用いて処理を行うよりも精度の良い推定結果が 得られる。分割される最適なパートの数は、通常、ほぼ 7個程度である。エコーのサン プリング数力 129偶の場合、 f列免ば、、 18、 18、 18、 21、 18、 18、 18力らなるノ ー卜 に分割するのが良い。
[0032] また、リファレンスエコーの数は、 8以上とするのが良い。例えば、リファレンスエコー の数を 4とした場合、 k空間は 4個のグループに分割され、 1個のグループが占める Θ の範囲は、 360度 Z4 = 90度となる。この場合、 1個の推定係数で 90度の広範囲に 含まれるエコーを推定しなければならず、十分な精度の推定結果が得られない。これ に対して、リファレンスエコーの数を 8以上にした場合には、 1個の推定係数で推定す るエコーの範囲は、 45度以下になり、ほぼ十分な精度の推定結果が得られる。ただ し、推定精度は、リファレンスエコーの数を多くするほどよくなるが、計測時間がその 分長くなるため、通常は、リファレンスエコーの数をほぼ 8程度とするのが最も効果的 である。
[0033] 最後に、計測したエコーと以上の処理によって推定された未計測のエコーを組合 せてグリッディングをした後、逆フーリエ変換によって画像を再構成する (ステップ 404 )。
[0034] 図 7に、以上の処理を実際に適用した結果を示す。 64個のエコーと 8個のリファレン スエコーを計測し、 56個の未計測エコーを推定した。エコーのサンプリング点数は 1 29であり、各エコーを 7個のパートに分割して推定処理を行った。 [0035] 図 7の Aは、それぞれ本発明の処理結果の画像、 Bは、計測した 64個のエコーの みを用いて再構成した結果の画像、 Cは、 128個のエコーを計測して再構成した結 果の画像である。図 7Bは、エコーが少ないため背景に放射状のアーチファクトが多 数見られる。これに対して、図 7Aでは、放射状のアーチファクトがほとんど見えなくな り、画質が大幅に向上した。その結果、図 7Cに示す 128個すベてのエコーを計測し た場合とほぼ同等の画質が得られた。
[0036] 以上のように、本実施例によれば、未計測のエコーのうち一部だけをリファレンスと して計測し、リファレンスと隣り合うエコー力 推定係数を求め、未計測のエコーを推 定係数を用いて推定する構成とすることにより、リファレンスとして計測するエコーが 未計測のエコーのうち一部だけであるため、撮影時間がほとんど増加せず、また、リ ファレンスを用いて推定係数を求めるため、リファレンスを用いな ヽ単純なデータ補 完と比較して未計測のエコーを精度よく推定できる。それにより、撮影時間をほとんど 延長することなくアーチファクトを抑制することが可能な磁気共鳴イメージング装置を 実現できる。
[0037] (実施例 2)
図 1の(A)に示したパルスシーケンスにおいて、スライス傾斜磁場パルス印加から エコー計測までの手順を、例えば、繰り返し時間 TR=4msで繰り返し、 64エコーで 一枚の画像が得られるように傾斜磁場の大きさを変化させる。
[0038] 本実施例では、傾斜磁場の大きさは、 k空間を Θ方向に 3エコーずつ飛ばして走査 するように変化させる。図 8の (A)に、その走査順序の模式図を示す。この時点では、 フレームレートは 4fpsである。スライディングウィンドウを用い、 8エコーずつ更新する ことによりフレームレートを 32fpsにする。その後、グリッディングを行い、図 8の(B)の ように、格子状の k空間 802上に配置しなおした後、 2次元逆フーリエ変換によって画 像再構成を行う。
[0039] k空間 801の走査を 3個飛ばしに行なったことにより、放射状アーチファクトの周波 数が高周波に変化する。放射状アーチファクトの周波数を高周波に変化させることに より、時間フィルタ(ローパスフィルタ)を用いて放射状アーチファクトを抑制することが 可能となる。 [0040] さらに、画像辺縁部のアンダーサンプリングによるアーチファクトを抑制する場合に は、スライディングウィンドウを適用する前のデータにおいて、隣り合うフレームの走査 ラインが重ならな 、ようにずらして取得したデータを用いる。これらの時系列データに 対して時間フィルタ(ローノ スフィルタ)を適用することによりアンダーサンプリングによ るアーチファクトを抑制することが可能となる。
[0041] 図 9に、アーチファクトのフィルタリングの一例として、 k空間の走査を 3個飛ばしに 行って再構成した動画像を時間方向に周波数分解した結果 901と、使用した時間フ ィルタ 902を示す。図 9において、横軸は周波数を表し、縦軸は振幅を表す。 903は 、この動画像に見られる放射状アーチファクトの周波数成分である。動画像の周波数 成分 901に対して時間フィルタ 902を適用することにより、放射状アーチファクトの周 波数成分 903を 0にすることができ、放射状アーチファクトを除去することが可能とな る。
[0042] 図 10に、本発明による撮影結果 (動画の 1フレーム目)を示す。図 10の (A)は、 3個 飛ばし、時間フィルタ(ローパスフィルタ)、アンダーサンプリングによるアーチファクト の抑制のいずれも使用しな力つた場合の画像 (0個飛ばし)である。図 10の(B)は、 3 個飛ばしで走査し、時間フィルタ(ローノ スフィルタ)を適用した場合の画像である。 放射状アーチファクトが抑制されているのがわかる。図 10の(C)は、 3個飛ばしで走 查し、時間フィルタ(ローパスフィルタ)を適用し、さらにアンダーサンプリングによるァ ーチファクトの抑制を行えるような走査ラインで取得した画像である。データのギヤッ プによる放射状アーチファクトだけでなぐ画像辺縁部のアーチファクトが抑制されて いることがわ力る。
[0043] 本実施例では、 3個飛ばしで走査を行う場合にっ 、て説明した力 何個飛ばしで走 查を行うべきか、ということは、以下の(3)式を用いて決定することができる。
[0044] (N+ l) =Ne/2 (3)
ここで、 Nは N個飛ばしの N、 Neはエコーシェアをした場合にフレームレートが何倍 になるかという値である。
[0045] (3)式は、次のように導かれる。エコーシェアによりフレームレートを Ne倍にした場 合、データのギャップが周期 NeZFで変化することになり、それにともない周波数 F ZNeの放射状アーチファクトが生じる(ここで、 Fはフレームレート)。 N個飛ばしの走 查の場合は走査ラインが一周するために必要なエコーの数が 1Z (N+ 1)に減少す るために、データのギャップの変化の周波数が(N+ 1)倍になり、それにともない放 射状アーチファクトの周波数力 SFZNe X (N+ 1)になる。これが高周波(ナイキスト周 波数 FZ2)になるという条件 (FZNe X (N+ 1) =F/2)から、(3)式の条件が導か れる。
[0046] 図 11に、本発明における撮影手順を示す。まず、撮影準備として、撮影シーケンス のパラメータを入力する (ステップ 1101)。
[0047] 次に、(3)式に従って、 N個飛ばしの N値を決定する (ステップ 1102)。
[0048] 次に、図 1 (A)のシーケンスを用いてエコーを取得する(ステップ 1103)。このとき、 図 8に示されるように、 N個飛ばしに走査を行う(図 8の例の場合は、 N= 3)。また、ァ ンダーサンプリングによるアーチファクトの抑制を併用する場合には、必要なフレーム 数だけ走査ラインが重ならな 、ように互 、違いに走査を行う。
[0049] 次に、画像更新に必要なエコーが取得された段階で、画像再構成を行う(ステップ
1104)。
[0050] 最後に、時間フィルタ(ローパスフィルタ)をかけて放射状アーチファクトが抑制され た画像を取得する (ステップ 1105)。また、アンダーサンプリングによるアーチファクト の抑制を併用する場合には、対応する時間フィルタ(ローパスフィルタ)をかけてァー チファクトを抑制する。
[0051] 本実施例によれば、ラジアルスキャンにおけるデータのギャップによる放射状ァー チファクトの周波数を操作してフィルタをかけることができるため、放射状アーチファタ トを抑制できるという顕著な効果が期待できる。
産業上の利用可能性
[0052] 本発明によれば、ラジアルスキャンで発生するアーチファクトを効率良く抑制し得る 磁気共鳴イメージング装置を実現できる。また、磁気共鳴イメージング技術を用いて 検査装置等に適用でき、特に医療分野における意義は大きい。
図面の簡単な説明
[0053] [図 1]従来の GE系ラジアルスキャンのパルスシーケンスと k空間を説明する図。 [図 2]従来のラジアルスキャンの k空間を説明する図。
[図 3]本発明が適用される核磁気共鳴イメージング装置の構成例を示す図。
[図 4]本発明におけるラジアルスキャンの k空間を説明する図。(実施例 1)
[図 5]本発明における未計測エコー推定の際のエコー配置を説明する図。(実施例 1
)
[図 6]本発明における未計測エコー推定のためのフローチャートを示す図。(実施例 1 )
[図 7]本発明による未計測エコー推定結果を示す図。(実施例 1)
[図 8]本発明における N個飛ばしの走査順序を説明する図。(実施例 2)
[図 9]k空間の走査を 3個飛ばしに行って再構成した動画像の周波数成分と時間フィ ルタ(ローパスフィルタ)を示す図。(実施例 2)
[図 10]本発明による撮影結果を説明する図。(実施例 2)
[図 11]本発明における撮影手順を説明する図。(実施例 2)
符号の説明
101…静磁場を発生するマグネット、 102…傾斜磁場コイル、 103· ··被検体、 104 …シーケンサ、 105…傾斜磁場電源、 106…高周波磁場発生器、 107…プローブ、 108· ··受信器、 109· ··計算機、 110…ディスプレイ、 111…記憶媒体、 112…シムコ ィル、 113· ··シム電源、 114· ··心電計、 115…検査者、 116· ··ベッド、 117…ケープ ル、 118…スィッチ、 201· ··スライス傾斜磁場パルス、 202…磁ィ匕励起用高周波磁場 パルス、 203· ··位相エンコード傾斜磁場パルス、 206、 207· ··リードアウト傾斜磁場 ノ ノレス、 208· ··ェ =3一、 209一 211· --ジフェーズ傾斜磁場ノ ノレス、 212· ··未計 ¾ェ 一、 213· ··リファレンス用エコー、 214· ··グループの境界にあるエコー、 302· ··グル ープ、 303…パート分割線、 901〜k空間の走査を 3個飛ばしに行って再構成した動 画像の周波数成分、 902· ··時間フィルタ、 903〜k空間の走査を 3個飛ばしに行って 再構成した動画像に見られる放射状アーチファクトの周波数成分。

Claims

請求の範囲
[1] 静磁場の中に置かれた生体に、高周波磁場、傾斜磁場を印カロして、前記生体から 発生する磁気共鳴信号を検出するパルスシーケンスを制御する制御装置と、前記信 号を処理する演算装置とを有し、前記制御装置は、(1)ラジアルスキャンを実施する パルスシーケンスの制御と、 (2)前記ノ ルスシーケンスを複数回実行して画像用ェコ 一を収集する制御と、 (3)前記パルスシーケンスを複数回実行して k空間上で前記画 像用エコーの間に位置するリファレンスエコーを収集する制御とを行い、前記演算装 置は、(1)前記画像用エコーと前記リファレンスエコーを複数のグループに分割する 処理と、(2)前記リファレンスエコーとその前後に位置する前記画像用エコーを用い て推定係数を求める処理と、(3)前記推定係数を用いて k空間上で前記画像用ェコ 一の間に位置する未計測のエコーを推定する処理とを行うことを特徴とする磁気共 鳴イメージング装置。
[2] 請求項 1に記載の磁気共鳴イメージング装置において、前記リファレンスエコーは、 前記複数のグループの各々の中心に 1個ずつ位置するよう計測されていることを特 徴とする磁気共鳴イメージング装置。
[3] 請求項 1に記載の磁気共鳴イメージング装置にお!、て、前記演算装置は、前記画 像用エコーと前記リファレンスエコーの各々を複数のパートに分割して処理するよう 構成したことを特徴とする磁気共鳴イメージング装置。
[4] 請求項 3に記載の磁気共鳴イメージング装置において、分割される前記パートの数 がほぼ 7個であることを特徴とする磁気共鳴イメージング装置。
[5] 請求項 1に記載の磁気共鳴イメージング装置において、前記リファレンスエコーの 数力 ほぼ 8であることを特徴とする磁気共鳴イメージング装置。
[6] 静磁場の中に置かれた被検体に、高周波磁場、傾斜磁場を印加して、前記被検体 カゝら発生する核磁気共鳴信号を検出するパルスシーケンスを制御する制御装置を有 し、前記制御装置は、(l) k空間を放射状に走査する前記核磁気共鳴信号を検出す ること、(2)複数枚数撮影すること、(3)スライディングウィンドウを用 、ること、(4)前 記走査を n個飛ばしに行ない、時間フィルタによりアーチファクトを抑制することを特 徴とする核磁気共鳴を用いた検査装置。
[7] 請求項 6に記載の核磁気共鳴を用いた検査装置において、前記制御装置は、前 記(3)で、 n個飛ばしの n値の設定により、アーチファクトの周波数をナイキスト周波数 付近に制御することを特徴とする核磁気共鳴を用いた検査装置。
[8] 請求項 6に記載の核磁気共鳴を用いた検査装置にお 、て、前記制御装置は、前 記(1)、 (2)で、スキャンラインを間引き、間引き方を画像間で変化させることにより、 アーチファクトを周期的に変化させるよう前記走査を行なうことを特徴とする核磁気共 鳴を用いた検査装置。
PCT/JP2004/019365 2004-03-04 2004-12-24 磁気共鳴イメージング装置 WO2005084540A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006510615A JP4504974B2 (ja) 2004-03-04 2004-12-24 磁気共鳴イメージング装置
US10/586,732 US7626388B2 (en) 2004-03-04 2004-12-24 Magnetic resonance imager

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-060143 2004-03-04
JP2004060143 2004-03-04
JP2004061856 2004-03-05
JP2004-061856 2004-03-05

Publications (1)

Publication Number Publication Date
WO2005084540A1 true WO2005084540A1 (ja) 2005-09-15

Family

ID=34921673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019365 WO2005084540A1 (ja) 2004-03-04 2004-12-24 磁気共鳴イメージング装置

Country Status (3)

Country Link
US (1) US7626388B2 (ja)
JP (2) JP4504974B2 (ja)
WO (1) WO2005084540A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253733A (ja) * 2007-04-06 2008-10-23 Ge Medical Systems Global Technology Co Llc Mri装置およびその制御方法
JP2008284225A (ja) * 2007-05-18 2008-11-27 Toshiba Corp 磁気共鳴画像診断装置
US9201129B2 (en) 2006-09-13 2015-12-01 Kabushiki Kaisha Toshiba Magnetic-resonance image diagnostic apparatus and method of controlling the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251064B1 (en) 1998-12-11 2001-06-26 Enteric Medical Technologies, Inc. Method for creating valve-like mechanism in natural body passageway
JP5203730B2 (ja) * 2008-01-28 2013-06-05 株式会社東芝 磁気共鳴診断装置
DE102010012599B4 (de) * 2010-03-24 2012-04-19 Siemens Aktiengesellschaft Erstellung eines Bilddatensatzes mittels einer radialen Abtastung mit Hilfe einer Magnetresonanzanlage
US10180482B2 (en) 2012-06-05 2019-01-15 Koninklijke Philips N.V. Channel by channel artifact reduction in parallel MRI
EP4201304A1 (en) * 2012-10-24 2023-06-28 Nidek Co., Ltd. Ophthalmic analysis apparatus
DE102014200006B4 (de) * 2014-01-02 2015-12-03 Siemens Aktiengesellschaft Rekonstruktion von fehlenden Magnetresonanz-Rohdaten
KR101836235B1 (ko) * 2016-05-27 2018-03-08 한국과학기술원 자기공명영상 생성 방법 및 장치
JP7055601B2 (ja) * 2017-06-26 2022-04-18 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
JP7237612B2 (ja) * 2018-01-30 2023-03-13 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置及び画像処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343620A (ja) * 1993-05-18 1994-12-20 Philips Electron Nv 磁気共鳴画像化の方法及び装置
JPH08243088A (ja) * 1995-03-04 1996-09-24 Philips Electron Nv Mr方法および該方法を実施するためのmr装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329925A (en) * 1991-11-14 1994-07-19 Picker International, Inc. Reduced scan time cardiac gated magnetic resonance cine and flow imaging
US5485086A (en) * 1994-07-26 1996-01-16 The Board Of Trustees Of The Leland Stanford Junior University Continuous fluoroscopic MRI using spiral k-space scanning
EP0769151A1 (en) * 1995-05-02 1997-04-23 Koninklijke Philips Electronics N.V. Method of and device for magnetic resonance imaging of objects
EP1047951B1 (en) * 1997-12-12 2011-03-30 Wisconsin Alumni Research Foundation Rapid acquisition magnetic resonance imaging using radial projections
JP3699304B2 (ja) * 1999-08-13 2005-09-28 ジーイー横河メディカルシステム株式会社 磁気共鳴撮像装置
CN1973211A (zh) * 2004-05-14 2007-05-30 皇家飞利浦电子股份有限公司 涉及k-空间中心过度采样的非笛卡尔轨迹的对比度预备mri
JP4347788B2 (ja) * 2004-12-01 2009-10-21 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343620A (ja) * 1993-05-18 1994-12-20 Philips Electron Nv 磁気共鳴画像化の方法及び装置
JPH08243088A (ja) * 1995-03-04 1996-09-24 Philips Electron Nv Mr方法および該方法を実施するためのmr装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9201129B2 (en) 2006-09-13 2015-12-01 Kabushiki Kaisha Toshiba Magnetic-resonance image diagnostic apparatus and method of controlling the same
JP2008253733A (ja) * 2007-04-06 2008-10-23 Ge Medical Systems Global Technology Co Llc Mri装置およびその制御方法
JP2008284225A (ja) * 2007-05-18 2008-11-27 Toshiba Corp 磁気共鳴画像診断装置

Also Published As

Publication number Publication date
JP4871399B2 (ja) 2012-02-08
JP2010131421A (ja) 2010-06-17
US7626388B2 (en) 2009-12-01
JP4504974B2 (ja) 2010-07-14
US20080231272A1 (en) 2008-09-25
JPWO2005084540A1 (ja) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4871399B2 (ja) 磁気共鳴イメージング装置
JP6998218B2 (ja) 動き検出を用いるmr撮像
US8073522B2 (en) Method and magnetic resonance apparatus for dynamic magnetic resonance imaging
JP5980126B2 (ja) 単一および多重チャネル受信コイルを用いた同時マルチスライス磁気共鳴画像法
JP6691797B2 (ja) 磁気共鳴イメージング装置
Posse et al. Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging
JP4612000B2 (ja) 磁気共鳴イメージング装置
US9476956B2 (en) Magnetic resonance imaging apparatus with correction of magnetic field gradient waveform distortion
US10849561B2 (en) Systems and methods for reducing respiratory-induced motion artifacts for accelerated imaging
WO2010104855A2 (en) Apparatus and method for magnetic resonance imaging with high spatial and temporal resolutions
JP5536358B2 (ja) 磁気共鳴イメージング装置及び感度補正方法
WO2018114554A1 (en) Dixon-type water/fat separation mr imaging
JP4330247B2 (ja) 核磁気共鳴イメージング装置
JP2004089275A (ja) 磁気共鳴イメージング装置における位相補正方法
JPH10201736A (ja) 磁気共鳴を用いた検査装置
JP4678916B2 (ja) 磁気共鳴イメージング装置
Guo et al. Sorted Golden-step phase encoding: an improved Golden-step imaging technique for cardiac and respiratory self-gated cine cardiovascular magnetic resonance imaging
WO2015152957A1 (en) Inverse imaging with magnetic resonance imaging using blipped gradient encoding
WO2019063574A1 (en) DIXON TYPE WATER / GREASE SEPARATION MAGNETIC RESONANCE IMAGING WITH ENHANCED FAT OFFSET CORRECTION
EP4012434A1 (en) Dixon-type water/fat separation mr imaging
EP4261557A1 (en) Mr imaging using partial echo acquisition
JP4068114B2 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510615

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10586732

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase