WO2005083500A1 - 光機能導波路、光変調器、アレイ導波路回折格子及び分散補償回路 - Google Patents

光機能導波路、光変調器、アレイ導波路回折格子及び分散補償回路 Download PDF

Info

Publication number
WO2005083500A1
WO2005083500A1 PCT/JP2005/001460 JP2005001460W WO2005083500A1 WO 2005083500 A1 WO2005083500 A1 WO 2005083500A1 JP 2005001460 W JP2005001460 W JP 2005001460W WO 2005083500 A1 WO2005083500 A1 WO 2005083500A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical
optical path
substrate
core
Prior art date
Application number
PCT/JP2005/001460
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Tsuda
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to US10/573,888 priority Critical patent/US7756376B2/en
Priority to CA002539851A priority patent/CA2539851A1/en
Priority to DE602005010535T priority patent/DE602005010535D1/de
Priority to EP05709581A priority patent/EP1677138B1/en
Publication of WO2005083500A1 publication Critical patent/WO2005083500A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • G02B6/12021Comprising cascaded AWG devices; AWG multipass configuration; Plural AWG devices integrated on a single chip
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2519Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using Bragg gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern

Definitions

  • the present invention relates to an optical function waveguide, an optical modulator, an arrayed waveguide diffraction grating, and a dispersion compensation circuit, which are compact, energy-saving, and capable of adjusting the phase of light or adjusting the optical path length or wavefront at high speed.
  • a conventional quartz waveguide type optical modulator has a configuration in which a heater is provided in the vicinity of an optical waveguide and a phase modulation unit that changes the refractive index of quartz with temperature is provided in an interference system.
  • the refractive index temperature coefficient of the quartz is 1.1 X 10- 5 [1 / ° C] low, therefore, the temperature change of 50 ° C to cause a phase change of Oite ⁇ to the communication wavelength of 1.55 micron band
  • a waveguide length (heater length) of about 970 microns was required even if this was allowed.
  • the time required for the temperature change is several tens of milliseconds, and the energy required for the temperature rise is more than 100 mW, and additional effects such as an increase in crosstalk due to thermal interference between modulators and a large cooling mechanism are required.
  • the challenge was to create problems.
  • a material having a large temperature coefficient of refractive index is filled in a groove structure in an optical waveguide by a conventional technique to reduce power consumption of a modulator (for example, see Non-Patent Document 1).
  • Non-Patent Document 1 Yasuaki Hashizume and 4 other authors, Proceedings of the 2002 IEICE General Conference, March 27, 2002, C-3-10, P142
  • the present invention provides an optical functional waveguide, an optical modulator, an arrayed waveguide diffraction grating, and a dispersion compensation circuit capable of controlling the phase of light or adjusting the optical path length at high speed with small size and energy saving.
  • the purpose is to provide.
  • the optical function waveguide of the present invention comprises a substrate, a clad formed on the substrate, a core formed in the clad to be an optical path, and a predetermined distance along the optical path.
  • a plurality of groove structures which are formed so as to separate the optical path and are filled with a material having a different refractive index temperature coefficient from the core, and a plurality of groove structures formed along the optical path.
  • a heater electrode formed at a position between them.
  • the optical function waveguide of the present invention includes a substrate, a clad formed on the substrate, a core formed in the clad to be an optical path, and a predetermined distance along the optical path.
  • a plurality of groove structures, each of which is formed so as to separate the optical path with a gap therebetween, is filled with a material having a refractive index different from that of the core, and has a lens shape, and is formed along the optical path.
  • a heater electrode formed at a position between the plurality of groove structures.
  • the groove interface force can also suppress the amount of reflected light coupled to the waveguide.
  • An optical modulator of the present invention includes the above-mentioned optical function waveguide, and modulates the amplitude or phase of light.
  • an arrayed waveguide diffraction grating of the present invention includes the above-mentioned optical function waveguide in a slab waveguide.
  • the dispersion compensation circuit of the present invention includes two arrayed waveguide diffraction gratings connected in cascade.
  • the optical function waveguide is provided in the vicinity of the connection portion.
  • a dispersion compensation circuit of the present invention includes a mirror in a waveguide arranged near a spectrum plane, and the above-mentioned optical function waveguide arranged near the mirror.
  • the optical function waveguide of the present invention includes a substrate, a clad formed on the substrate, a core formed in the clad to be an optical path, and a predetermined distance along the optical path.
  • a plurality of groove structures formed so as to divide the optical path by leaving a gap therebetween and filled with a material having a refractive index different from that of the core and two or more refractive indexes different from each other.
  • the optical function waveguide of the present invention includes a substrate, a clad formed on the substrate, a core formed in the clad to be an optical path, and a predetermined distance along the optical path.
  • a plurality of wedge-shaped groove structures which are formed so as to divide the optical path by separating the optical path and which are filled with a material having a different refractive index from the core, and which are formed along the optical path.
  • a heater electrode formed at a position between the plurality of groove structures.
  • the first effect is that it is possible to configure an optical functional waveguide such as a small-sized, low-power-consumption, and high-speed optical modulator. At the same time, crosstalk due to thermal interference between modulations, which are additional problems, can be reduced, and the cooling mechanism can be downsized.
  • the second effect is that a waveguide type lens with a variable focal length is realized by controlling the temperature by applying to a groove structure having a lens shape, and various optical function waveguides such as a dispersion compensation circuit are realized. become.
  • the third effect is that the optical path length of the waveguide can be finely adjusted by controlling the refractive index of the material filling the groove structure provided in the waveguide.
  • a fourth effect is that the coupling efficiency can be increased by providing a groove structure having a lens function on the slab waveguide side of the coupling portion between the slab waveguide and the single-mode waveguide array.
  • FIG. 1 is a diagram showing a configuration of an optical function waveguide according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of an optical function waveguide according to a second embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of an optical function waveguide according to a third embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of an optical function waveguide according to a fourth embodiment of the present invention.
  • FIG. 5 is a top view showing a configuration of an optical function waveguide according to a fifth embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of an optical modulator according to a sixth embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of an optical modulator according to a seventh embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of an optical function waveguide according to an eighth embodiment of the present invention.
  • FIG. 9 is a diagram showing a configuration of an optical function waveguide according to a ninth embodiment of the present invention.
  • FIG. 10 is a top view showing a configuration of an optical function waveguide according to a tenth embodiment of the present invention.
  • FIG. 11 is a top view showing a configuration of a dispersion compensation circuit according to an eleventh embodiment of the present invention.
  • FIG. 12 is a top view showing a configuration of a dispersion compensation circuit according to a twelfth embodiment of the present invention.
  • FIG. 13 is a top view showing a configuration of an optical function waveguide according to a thirteenth embodiment of the present invention.
  • FIG. 14 is a top view showing a configuration of an optical function waveguide according to a fourteenth embodiment of the present invention.
  • FIG. 15 is a top view showing a configuration of an optical function waveguide according to a fifteenth embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of an optical function waveguide according to a first embodiment of the present invention.
  • FIG. 1A is a cross-sectional view
  • FIG. 1B is a top view.
  • the optical function waveguide of the present embodiment includes a substrate 11, a quartz waveguide clad 12, a quartz waveguide core 13, a groove structure 14, a filling material 15, and a heater electrode 16.
  • This optical function waveguide functions as a phase modulator for an optical modulator.
  • the filling material 15 filled in the groove structure 14 is a transparent material in the wavelength region of the guided light, and is realized by a material different from the quartz waveguide core 13 or a material having a different composition. Tallylate), polyimide, epoxy resin, silicone resin and the like are suitable.
  • the refractive index temperature coefficient of these materials is generally about 10 to 100 times that of quartz. Refractive index temperature coefficient of the quartz 1.1 X 10 one 5 [1Z ° C] low, therefore, allows the temperature change of 50 ° C to cause a phase change in the availability Te ⁇ to the communication wavelength of 1.55 micron band However, a waveguide length (heater length) of about 970 microns is required. Assuming that the temperature coefficient of the refractive index of the material to be filled is 50 times that of quartz, and if the temperature change is 10 ° C, the length of the groove formation portion can be 184.3 microns.
  • the effective refractive index of the optical waveguide 1.45, average 9.7 micron groove width, average 9.7 microns groove spacing, the number of grooves 10, if the refractive index variation with ⁇ 2.75 X 10- 3, waveguide on each side
  • the loss due to external reflection is 0.00008dB and is negligible.
  • radiation mode occurs at the interface.
  • the loss due to the combination is about 0.5 dB.
  • the heater electrode 16 since the heater electrode 16 is formed at a position between the plurality of groove structures 14 formed along the optical path, the temperature of the filling material 15 changes rapidly with a small amount of energy with a small amount of energy. Can be done.
  • the groove width of the groove structure 14 in the light propagation direction is preferably narrow to reduce the power loss which is usually set to about 3 to 20 microns.
  • the interval between the groove structures 14 is set to about 3-100 microns. It is desirable that the groove width and the groove interval be randomly changed so that a micro-resonant structure is not formed by light reflected at the interface.
  • FIG. 2 is a diagram showing a configuration of an optical function waveguide according to a second embodiment of the present invention.
  • FIG. 2A is a cross-sectional view
  • FIG. 2B is a top view.
  • the groove structure 14 is arranged to be inclined with respect to the direction of the optical path formed by the quartz waveguide core 13 when viewed from above. Thus, the amount of reflected light that couples from the groove interface to the waveguide can be suppressed.
  • FIG. 3 is a diagram showing a configuration of an optical function waveguide according to a third embodiment of the present invention.
  • FIG. 3A is a cross-sectional view
  • FIG. 3B is a top view.
  • the optical function waveguide of the present embodiment is such that the shape of the groove structure 14 is trapezoidal when viewed from above. Thus, the amount of reflected light that is coupled from the groove interface to the waveguide can also be suppressed.
  • FIG. 4 is a diagram showing a configuration of an optical function waveguide according to a fourth embodiment of the present invention.
  • FIG. 4A is a cross-sectional view
  • FIG. 4B is a top view.
  • the optical function waveguide of the present embodiment has a trapezoidal shape of the groove structure 14 when viewed from the side (that is, when a cross-sectional view along the optical path is viewed). This can also suppress the amount of reflected light that couples from the groove interface to the waveguide.
  • FIG. 5 is a top view showing a configuration of an optical function waveguide according to a fifth embodiment of the present invention.
  • the optical function waveguide of the present embodiment is provided with a filling material injection port 17 for pouring the filling material 15 into the groove structure 14 at the time of manufacturing.
  • the filling material injection port 17 is provided on both sides of the optical path, and the filling material 15 is alternately poured from both sides of the optical path, so that the heater electrode 16 is continuous without overlapping the groove structure 14. It can be arranged in a way. Since the upper surface of the groove structure 14 is not flat, it is difficult to arrange the heater electrode 16 so as to overlap the groove structure 14.
  • FIG. 6 is a diagram showing a configuration of an optical modulator according to a sixth embodiment of the present invention.
  • the optical modulator of the present embodiment is a Mach-Zehnder interferometric modulator, and includes a directional coupling unit 21, a phase modulation unit 22, and an optical waveguide 23.
  • FIG. 7 is a diagram illustrating a configuration of an optical modulator according to a seventh embodiment of the present invention.
  • the optical modulator according to the present embodiment is another type of Mach-Zehnder interferometric modulator and includes a phase modulator 22, an optical waveguide 23, and a Y branch 24.
  • the phase modulation unit 22 the optical function waveguide according to the first to fifth embodiments is used. This embodiment has the same effects as the sixth embodiment.
  • FIG. 8 is a diagram showing a configuration of an optical function waveguide according to an eighth embodiment of the present invention.
  • FIG. 8A is a cross-sectional view
  • FIG. 8B is a top view.
  • the optical function waveguide of this embodiment includes a substrate 11, a quartz waveguide clad 12, a quartz waveguide core 13, a heater electrode 16, a groove structure 31, a filling material 32, and a quartz waveguide clad 12 and a quartz waveguide core. 13 is composed of a quartz slab waveguide 33.
  • This optical function waveguide functions not as a single mode waveguide but as a phase modulator for a slab waveguide.
  • the temperature of the substrate 11 is controlled, and the refractive index of the filling material 32 is controlled.
  • the amount of change is small compared to that of the filling material 32, so that it can be usually ignored.
  • the effective refractive index of the quartz slab waveguide 33 and the refractive index of the filling material 32 are the same, there is almost no effect on light propagating through the quartz slab waveguide 33, but the temperature rises or falls. This causes the refractive index of the filling material 32 to relatively increase or decrease, and exerts a convex lens effect or a concave lens effect on the propagating light.
  • the temperature coefficient of the refractive index of the filling material 32 is negative, it acts as a concave lens or a convex lens.
  • the focal length can be controlled by the temperature.
  • the temperature of the filling material by controlling the temperature of the filling material, the wavefront of light propagating in the slab waveguide can be controlled. That is, the spread angle of the propagating light can be controlled.
  • the control range can be designed by increasing or decreasing the number of groove structures 31.
  • the boundary surface must be By tilting with respect to the optical axis, it is possible to avoid to a large extent.
  • the boundary surface in the top view is a curve, it is not effective to incline the boundary surface, and a straight line indicating the boundary surface in the cross-sectional view is inclined.
  • FIG. 9 is a diagram showing a configuration of an optical function waveguide according to a ninth embodiment of the present invention.
  • FIG. 9A is a cross-sectional view
  • FIG. 9B is a top view.
  • the optical function waveguide of the present embodiment includes a substrate 11, a quartz waveguide clad 12, a quartz waveguide core 13, a heater electrode 16, a groove structure 41, a filling material 42, a quartz waveguide clad 12, and a quartz waveguide core. 13 is composed of a quartz slab waveguide 33.
  • the shape of the groove structure 41 is a concave lens. In this case, the effect of the lens and the change of the focal length on the temperature are opposite to those in the case of a convex lens.
  • a plano-convex lens type, a plano-concave lens type, a meniscus lens type, and the like further, a spherical lens type, an aspherical lens type, and in some cases, a lens type combining a spherical surface and an aspherical surface, etc. Needless to say, it can be adopted. You can also combine a number of these lens structures! Needless to say!
  • FIG. 10 is a top view showing the configuration of the optical function waveguide according to the tenth embodiment of the present invention.
  • the optical function waveguide of the present embodiment is such that a groove structure 51 and a filler material 52 are two-dimensionally arranged in a quartz slab waveguide 33.
  • illustration of the heater electrode is omitted.
  • FIG. 11 is a top view showing the configuration of the dispersion compensating circuit according to the eleventh embodiment of the present invention.
  • the dispersion compensating circuit of the present embodiment includes a first arrayed waveguide diffraction grating 61 and a second arrayed waveguide diffraction grating 65, and more specifically, a slab waveguide 62, an array waveguide 63, and a slab waveguide 64. , Slab waveguide 67, groove structure 68, and filling material 69.
  • a plano-convex lens-shaped groove structure 68 is arranged near the spectral plane. Light incident on the first arrayed waveguide diffraction grating 61 is split on a spectral plane.
  • the dispersion of the dispersion compensation circuit becomes zero.
  • the dispersion value can be set to a desired value by changing the shape and the number of the groove structures 68. It is also possible to vary the amount of dispersion by controlling the temperature of the entire substrate. Of course, it goes without saying that only the groove structure 68 may be locally heated and controlled. The amount of dispersion that can be set varies depending on the design parameters of the first and second arrayed waveguide gratings 61 and 65.
  • First and second array waveguide diffraction in which the time window width corresponding to the difference between the minimum optical path length and the maximum optical path length in 63 and array waveguide 66 is wider than the rise time and fall time of the incident light pulse and the outgoing light pulse
  • the free spectral range of the gratings 61 and 65 is wider than the spectrum width of the optical signal, and the condition is determined.
  • FIG. 12 is a top view showing the configuration of the dispersion compensation circuit according to the twelfth embodiment of the present invention.
  • the dispersion compensating circuit of the present embodiment obtains the same characteristics as those of the eleventh embodiment in a reflection type configuration, and includes a single arrayed waveguide diffraction grating 71, specifically, a slab waveguide 72. , The array waveguide 73, the slab waveguide 74, the mirror 75, the groove structure 76, and the filling material 77.
  • the shape of the mirror 75 may be linear, but usually a circular mirror having an appropriate curvature is used to control the dispersion value when there is no temperature change.
  • the loss is increased as compared with the eleventh embodiment, but the device is downsized, and the initial dispersion value can be set by the mirror curvature.
  • FIG. 13 is a top view showing the configuration of the optical function waveguide according to the thirteenth embodiment of the present invention.
  • the optical function waveguide of the present embodiment includes a quartz waveguide clad 12, a quartz waveguide core 13, a first groove structure 81, a second groove structure 82, and a third groove structure 83.
  • the geometric length of each waveguide (# 11- # 3) is equal to AB.
  • the optical length (optical path length) varies depending on the value of the effective refractive index.
  • the first, second, and third groove structures 81, 82, and 83 provided in each of the waveguides (# 1 to # 3) are filled with materials having different refractive indices, so that the optical path of AB can be improved.
  • the geometric length may be equal but the optical length may be different due to the non-uniformity of the waveguide fabrication process.
  • such a fluctuation is measured, and the refractive index of the material filled in the first, second, and third groove structures 81, 82, and 83 is controlled so as to compensate for the fluctuation.
  • the waveguides of adjacent arrays need to have different optical path lengths by a constant optical path length, but similarly deviate from the desired optical path length due to the non-uniformity of the fabrication process.
  • the optical path length difference can be made constant by providing a groove structure in each waveguide and filling a material having a controlled refractive index.
  • FIG. 14 is a top view showing the configuration of the optical function waveguide according to the fourteenth embodiment of the present invention.
  • the optical function waveguide of the present embodiment includes a single mode waveguide 91, a tapered waveguide 92, A slab waveguide and a single-mode waveguide array are often used in a multiplexing / demultiplexing circuit and include a slab waveguide 93 and a lens-shaped groove structure 94.
  • the lens-shaped groove structure 94 By providing the lens-shaped groove structure 94, the light incident on the slab waveguide 93 and entering between the single-mode waveguides 91 is also efficiently transmitted to the single-mode waveguide 91 by the lens function of the groove structure 94. It is possible to lead to 91, and it is possible to reduce the loss of the multiplexing / demultiplexing circuit.
  • the amplitude of the incident light differs depending on the location of the slab waveguide force (the center is strong and the end is weak). Therefore, the spacing between the first, fifth and single mode waveguides 91— # 1—1 # 5 is adjusted. Adjust the size of the 1st-5th groove structure 94 # 1 # 1 # 5 according to the distance (make the center smaller and make the ends larger). It is also possible to make the coupling efficiency from the waveguide 93 to the first-first-fifth single-mode waveguide 91 # 11- # 5 equal.
  • FIG. 15 is a top view showing the configuration of the optical function waveguide according to the fifteenth embodiment of the present invention.
  • the optical function waveguide of the present embodiment includes a heater electrode 16, a single mode input waveguide 101, a taper waveguide 102, a slab waveguide 103, a first single mode output waveguide 104a, and a second single mode output.
  • the waveguide 104b is composed of a wedge-shaped or trapezoidal groove structure 105 and a filling material 106.
  • the wedge-shaped groove structures 105 are arranged in the same direction. Therefore, the present embodiment is an IX2 optical switch realized by changing the waveguide direction of light by controlling the temperature of the filling material 106.
  • the temperature By controlling the temperature, it is possible to switch the power for outputting the light incident on the single-mode input waveguide 101 from either the first single-mode output waveguide 104a or the second single-mode output waveguide 104b. It goes without saying that the number of output waveguides can be increased. If the position of the output waveguide is farther away, only a small change in angle is required, so that the required temperature change can be reduced. Needless to say, it is possible to configure a 2 ⁇ 2 switch—an N ⁇ N switch by combining the IX 2 switches.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)

Abstract

 小型、省エネで高速に光の位相制御又は光路長の調節ができる光機能導波路を提供することを課題として、本発明の光機能導波路は、基板11、石英導波路クラッド12、石英導波路コア13、溝構造14、充填材料15、及びヒータ用電極16からなる。溝構造14に充填される充填材料15は、導波する光の波長領域で透明な樹脂などの材料であり、屈折率温度係数が石英の10倍~100倍程度である。ヒータ用電極16が、光路に沿って形成されている複数の溝構造14の間の位置に形成されているために、充填材料15の温度を少ないエネルギーで高速に大きく変化させることができる。  

Description

明 細 書
光機能導波路、光変調器、アレイ導波路回折格子及び分散補償回路 技術分野
[0001] 本発明は、小型、省エネで高速に光の位相制御又は光路長若しくは波面の調節が できる光機能導波路、光変調器、アレイ導波路回折格子及び分散補償回路に関す る。
背景技術
[0002] 従来の石英導波路型光変調器は、光導波路近傍にヒータを設けて石英の屈折率 を温度変化させる位相変調部を干渉系に具備する構成である。この構成では、石英 の屈折率温度係数が 1.1 X 10— 5 [ 1/°C]と低 、ため、 1.55ミクロン帯の通信波長に おいて πの位相変化を引き起こすために 50°Cの温度変化を許容しても 970ミクロン 程度の導波路長 (ヒータ長)が必要であった。温度変化に要する時間は数十 ms必要 であり、また、温度上昇に必要なエネルギーは lOOmW以上になり、変調器間の熱的 干渉によるクロストークの増大、冷却機構の大型化などの付加的な問題が生じること が課題であった。また、従来の技術で屈折率の温度係数の大きな材料を光導波路中 の溝構造に充填し、変調器の消費電力を下げることが報告されている (例えば、非特 許文献 1参照)。
非特許文献 1:橋詰泰彰他 4名著「2002年電子情報通信学会総合大会講演論文集 」、 2002年 3月 27日、 C— 3— 10、 P142
発明の開示
発明が解決しょうとする課題
[0003] しかし、ヒータ部位置が溝構造力 離れて 、るため、スイッチング時間の速さが十分 ではない。また、これらの構造の可変焦点距離の導波路型レンズへの適用及び光偏 向型スィッチへの適用は行われて ヽな 、。
[0004] 本発明は、上記問題点に鑑み、小型、省エネで高速に光の位相制御又は光路長 の調節ができる光機能導波路、光変調器、アレイ導波路回折格子及び分散補償回 路を提供することを目的とする。 課題を解決するための手段
[0005] 本発明の光機能導波路は、基板と、該基板上に形成されているクラッドと、該クラッ ドの中に形成されていて光路となるコアと、光路に沿って所定の間隔を空けて光路を 分断するように形成されて ヽて前記コアとは屈折率温度係数が異なる材料が充填さ れている複数の溝構造と、光路に沿って形成されている該複数の溝構造の間の位置 に形成されて ヽるヒータ電極とを備える。
[0006] また、本発明の光機能導波路は、基板と、該基板上に形成されているクラッドと、 該クラッドの中に形成されていて光路となるコアと、光路に沿って所定の間隔を空け て光路を分断するように形成されて ヽて前記コアとは異なる屈折率の材料が充填さ れており形状がレンズ型である複数の溝構造と、光路に沿って形成されている該複 数の溝構造の間の位置に形成されているヒータ電極とを備える。
[0007] また、前記複数の溝構造の内の少なくとも 1つの端面が光路に垂直な位置から傾 V、て 、ることで、溝界面力も導波路に結合する反射光量を抑制することができる。
[0008] また、本発明の光変調器は、上記光機能導波路を備え光の振幅又は位相を変調 するものである。
[0009] また、本発明のアレイ導波路回折格子は、スラブ導波路中に上記光機能導波路を 備える。
[0010] また、本発明の分散補償回路は、 2つのアレイ導波路回折格子が縦列接続されて
Vヽる接続部近傍に上記光機能導波路を備える。
[0011] また、本発明の分散補償回路は、スペクトル面近傍に配置されている導波路内の ミラーと、該ミラーの近傍に配置されて ヽる上記光機能導波路とを備える。
[0012] また、本発明の光機能導波路は、基板と、該基板上に形成されているクラッドと、 該クラッドの中に形成されていて光路となるコアと、光路に沿って所定の間隔を空け て光路を分断するように形成されて 、て前記コアとは異なる屈折率であってかつそれ ぞれが互いに異なる 2以上の屈折率を有する材料が充填されている複数の溝構造と を備える。
[0013] また、前記溝構造は、スラブ導波路と単一モード導波路との結合部分のスラブ導 波路側に設けられていることで、損失を低減することができる。 [0014] また、本発明の光機能導波路は、基板と、該基板上に形成されているクラッドと、 該クラッドの中に形成されていて光路となるコアと、光路に沿って所定の間隔を空け て光路を分断するように形成されて ヽて前記コアとは異なる屈折率の材料が充填さ れており形状がくさび型である複数の溝構造と、光路に沿って形成されている該複数 の溝構造の間の位置に形成されているヒータ電極とを備える。
発明の効果
[0015] 本発明による効果は下記の通りである。
[0016] 第 1の効果は、小型で低消費電力、かつ、高速な光変調器等の光機能導波路を構 成することが可能な点である。また、同時に付加的な問題である変調間の熱的干渉 によるクロストークの低減や冷却機構の小型化も可能になる。
[0017] 第 2の効果は、レンズ形状を持つ溝構造に適用し温度制御することによって可変焦 点距離の導波路型レンズが実現され、分散補償回路等、各種光機能導波路を実現 可會 になる。
[0018] 第 3の効果は、導波路中に設けた溝構造に充填する材料の屈折率を制御すること で、導波路の光路長を微調することが可能である。
[0019] 第 4の効果は、スラブ導波路と単一モード導波路アレイの結合部のスラブ導波路側 にレンズ作用を有する溝構造を設けることによって結合効率を高めることが可能にな る。 本明細書は本願の優先権の基礎である特願 2004-054903の明細書及び Z又は 図面に記載される内容を包含する。
図面の簡単な説明
[0020] [図 1]図 1は、本発明の第 1実施の形態による光機能導波路の構成を示す図である。
[図 2]図 2は、本発明の第 2実施の形態による光機能導波路の構成を示す図である。
[図 3]図 3は、本発明の第 3実施の形態による光機能導波路の構成を示す図である。
[図 4]図 4は、本発明の第 4実施の形態による光機能導波路の構成を示す図である。
[図 5]図 5は、本発明の第 5実施の形態による光機能導波路の構成を示す上面図で ある。 [図 6]図 6は、本発明の第 6実施の形態による光変調器の構成を示す図である。
[図 7]図 7は、本発明の第 7実施の形態による光変調器の構成を示す図である。
[図 8]図 8は、本発明の第 8実施の形態による光機能導波路の構成を示す図である。
[図 9]図 9は、本発明の第 9実施の形態による光機能導波路の構成を示す図である。
[図 10]図 10は、本発明の第 10実施の形態による光機能導波路の構成を示す上面 図である。
[図 11]図 11は、本発明の第 11実施の形態による分散補償回路の構成を示す上面 図である。
[図 12]図 12は、本発明の第 12実施の形態による分散補償回路の構成を示す上面 図である。
[図 13]図 13は、本発明の第 13実施の形態による光機能導波路の構成を示す上面 図である。
[図 14]図 14は、本発明の第 14実施の形態による光機能導波路の構成を示す上面 図である。
[図 15]図 15は、本発明の第 15実施の形態による光機能導波路の構成を示す上面 図である。
符号の説明
基板
12 石英導波路クラッド
13 石英導波路コア
14 溝構造
15 充填材料
16 ヒータ用電極
17 充填物注ぎ込み口
21 方向性結合部
22 位相変調部
23 光導波路 溝構造
充填材料
スラブ導波路
石英スラブ導波路 溝構造
充填材料
溝構造
充填材料
第 1アレイ導波路回折格子 スラブ導波路
アレイ導波路
スラブ導波路
第 2アレイ導波路回折格子 アレイ導波路
スラブ導波路
溝構造
充填材料
アレイ導波路回折格子 スラブ導波路
アレイ導波路
スラブ導波路
ミラー
溝構造
充填材料
第 1溝構造
第 2溝構造
第 3溝構造
単一モード導波路 92 テーパ導波路
93 スラブ導波路
94 溝構造
101 単一モード入力導波路
102 テーパ導波路
103 スラブ導波路
104 単一モード出力導波路
105 溝構造
106 充填材料
発明を実施するための最良の形態
[0022] 以下、添付図面を参照しながら本発明の好適な実施の形態について詳細に説明 する。
[0023] 図 1は、本発明の第 1実施の形態による光機能導波路の構成を示す図である。図 1 (a)は断面図であり、図 1(b)は上面図である。本実施の形態の光機能導波路は、基板 11、石英導波路クラッド 12、石英導波路コア 13、溝構造 14、充填材料 15、及びヒー タ用電極 16からなる。この光機能導波路は光変調器用の位相変調部として機能する 。溝構造 14に充填される充填材料 15は、導波する光の波長領域で透明な材料であ り、石英導波路コア 13とは異なる材料又は異なる組成の材料で実現され、 PMMA( ポリメチルメタタリレート)、ポリイミド、エポキシ榭脂、シリコーン榭脂等が適当である。 また、これらの材料の水素をフッ素で置換した有機材料でも良い。これらの材料の屈 折率温度係数は、一般に、石英の 10倍一 100倍程度である。石英の屈折率温度係 数は 1.1 X 10一5 [ 1Z°C]と低 、ため、 1.55ミクロン帯の通信波長にお 、て πの位相 変化を引き起こすために 50°Cの温度変化を許容しても 970ミクロン程度の導波路長 (ヒータ長)が必要である。充填する材料の屈折率温度係数が石英の 50倍であると仮 定し、温度変化を 10°Cとすれば、溝形成部の長さは 184.3ミクロンで良い。例えば、 光導波路の実効屈折率を 1.45、溝幅を平均 9.7ミクロン、溝間隔を平均 9.7ミクロン、 溝数を 10、屈折率変化量を ± 2.75 X 10— 3とすれば、各面で導波路外に反射される ことに起因する損失は、 0.00008dBであり無視できる。また、界面で放射モードに結 合することに起因する損失は約 0.5dBである。本実施の形態ではヒータ用電極 16が 、光路に沿って形成されている複数の溝構造 14の間の位置に形成されているため に、充填材料 15の温度を少な 、エネルギーで高速に大きく変化させることができる。 溝構造 14の光伝搬方向の溝幅は、通常 3— 20ミクロン程度に設定される力 損失を 下げるためには狭い方がよい。また、溝構造 14相互の間隔は 3— 100ミクロン程度に 設定される。溝幅及び溝間隔は界面で反射する光によって微小共振構造が形成さ れにく 、ように、ランダムに変化させることが望まし 、。
[0024] 図 2は、本発明の第 2実施の形態による光機能導波路の構成を示す図である。図 2 (a)は断面図であり、図 2(b)は上面図である。本実施の形態の光機能導波路は、上か ら見たときに石英導波路コア 13によって形成される光路の方向に対して溝構造 14を 傾けて配置するものである。これによつて、溝界面から導波路に結合する反射光量を 抑帘 Uすることができる。
[0025] 図 3は、本発明の第 3実施の形態による光機能導波路の構成を示す図である。図 3 (a)は断面図であり、図 3(b)は上面図である。本実施の形態の光機能導波路は、上か ら見たときに溝構造 14の形を台形にするものである。これによつて、やはり溝界面か ら導波路に結合する反射光量を抑制することができる。
[0026] 図 4は、本発明の第 4実施の形態による光機能導波路の構成を示す図である。図 4 (a)は断面図であり、図 4(b)は上面図である。本実施の形態の光機能導波路は、横か ら見たときに (すなわち、光路に沿った断面図を見たときに)溝構造 14の形を台形に するものである。これによつて、やはり溝界面から導波路に結合する反射光量を抑制 することができる。
[0027] 図 5は、本発明の第 5実施の形態による光機能導波路の構成を示す上面図である 。本実施の形態の光機能導波路は、製造時に溝構造 14に充填材料 15を注ぎ込む ための充填物注ぎ込み口 17を設けるものである。このように充填物注ぎ込み口 17を 光路に対して両側に設けて光路に対して両側から交互に充填材料 15を注ぎ込む構 成にすることでヒータ用電極 16を溝構造 14と重ならずに連続的に配置することがで きる。なお、溝構造 14の上面は平坦ではないためヒータ用電極 16を溝構造 14と重 ねて配置することは困難である。 [0028] 図 6は、本発明の第 6実施の形態による光変調器の構成を示す図である。本実施 の形態の光変調器は、マッハツェンダー干渉型変調器であり、方向性結合部 21、位 相変調部 22、及び光導波路 23からなる。位相変調部 22には、第 1一第 5実施の形 態による光機能導波路を用いる。温度変化が 1Z5 ( = 10°CZ50°C)になるのでスィ ツチング時間は数分の一に短縮される。また、消費電力は、加熱部分長が約 1Z5 ( 184.3ミクロン Z970ミクロン)になることもあって、 1Z20以下に低減される。
[0029] 図 7は、本発明の第 7実施の形態による光変調器の構成を示す図である。本実施 の形態の光変調器は、他のタイプのマッハツェンダー干渉型変調器であり、位相変 調部 22、光導波路 23、及び Y分岐 24からなる。位相変調部 22には、第 1一第 5実 施の形態による光機能導波路を用いる。本実施の形態も第 6実施の形態と同様の効 果がある。
[0030] 図 8は、本発明の第 8実施の形態による光機能導波路の構成を示す図である。図 8 (a)は断面図であり、図 8(b)は上面図である。本実施の形態の光機能導波路は、基板 11、石英導波路クラッド 12、石英導波路コア 13、ヒータ用電極 16、溝構造 31、充填 材料 32、並びに石英導波路クラッド 12及び石英導波路コア 13による石英スラブ導 波路 33からなる。この光機能導波路は、単一モード導波路ではなくスラブ導波路用 の位相変調部として機能する。基板 11の温度を制御し、充填材料 32の屈折率を制 御する。石英導波路クラッド 12及び石英導波路コア 13の屈折率も変化する力 充填 材料 32に比較して変化量が僅かであるため通常は無視することが可能である。ある 温度で、石英スラブ導波路 33の実効屈折率と充填材料 32の屈折率が同じであれば 、石英スラブ導波路 33を伝搬する光に対してほとんど影響を及ぼさないが、温度を 上昇又は下降させると充填材料 32の屈折率が相対的に増加又は減少し、凸レンズ 作用又は凹レンズ作用を伝搬光に及ぼす。もちろん、充填材料 32の屈折率の温度 係数が負であれば、凹レンズ作用又は凸レンズ作用を及ぼす。また、焦点距離も温 度によって制御可能である。これにより、充填材料の温度を制御することによって、ス ラブ導波路中を伝搬する光の波面を制御できる。すなわち、伝搬光の広がり角を制 御することができる。制御範囲は溝構造 31の数を増減させて設計可能である。特に、 反射光や共振特性を避ける必要があれば、第 2— 4実施の形態と同様に、境界面を 光軸に対して傾けることによってかなりの程度まで避けることが可能である。ただし、 本実施の形態では上面図における境界面は曲線となるのでこれを傾けても効果的で はなぐ断面図において境界面を示す直線を傾けることになる。
[0031] 図 9は、本発明の第 9実施の形態による光機能導波路の構成を示す図である。図 9 (a)は断面図であり、図 9(b)は上面図である。本実施の形態の光機能導波路は、基板 11、石英導波路クラッド 12、石英導波路コア 13、ヒータ用電極 16、溝構造 41、充填 材料 42、並びに石英導波路クラッド 12及び石英導波路コア 13による石英スラブ導 波路 33からなる。本実施の形態では溝構造 41の形状を凹レンズ状にした。この場合 は、温度に対するレンズ作用や焦点距離の変化が凸レンズ状の場合の反対になる。
[0032] また、平凸レンズ型、平凹レンズ型、及びメニスカスレンズ型など、更に、これらの球 面レンズ型、非球面レンズ型、及び場合によっては球面と非球面とを組み合わせたレ ンズ型などを採用しても良いことは言うまでもない。また、これらのレンズ構造を複数 組み合わせても良!、ことは言うまでもな!/、。
[0033] 図 10は、本発明の第 10実施の形態による光機能導波路の構成を示す上面図であ る。本実施の形態の光機能導波路は、石英スラブ導波路 33に溝構造 51及び充填材 料 52を二次元並列に配置するものである。ここではヒータ電極の図示を省略している
[0034] 図 11は、本発明の第 11実施の形態による分散補償回路の構成を示す上面図であ る。本実施の形態の分散補償回路は、第 1アレイ導波路回折格子 61及び第 2アレイ 導波路回折格子 65からなり、さらに具体的には、スラブ導波路 62、アレイ導波路 63 、スラブ導波路 64、アレイ導波路 66、スラブ導波路 67、溝構造 68、及び充填材料 6 9からなる。ここでは平凸レンズ形状の溝構造 68をスペクトル面近傍に配置する。第 1 アレイ導波路回折格子 61に入射した光がスペクトル面上に分光される。スペクトル面 が丁度平面になるとき分散補償回路の分散は 0になる。溝構造 68の形状、個数、を 変えることによって分散値を所望の値に設定することが可能である。また、基板全体 の温度を制御して分散量を可変することも可能である。もちろん、溝構造 68の部分の み局所的に加熱して制御しても良いことは言うまでもない。設定可能な分散量は、第 1、第 2アレイ導波路回折格子 61、 65の設計パラメータで変化するが、アレイ導波路 63及びアレイ導波路 66における最小光路長と最大光路長の差に対応する時間窓 幅が入射光パルス及び出射光パルスの立ち上がり時間及び立ち下がり時間よりも広 ぐ第 1、第 2アレイ導波路回折格子 61、 65のフリースべクトラルレンジが光信号のス ベクトル幅よりも広 、条件力 決定される。
[0035] 図 12は、本発明の第 12実施の形態による分散補償回路の構成を示す上面図であ る。本実施の形態の分散補償回路は、第 11実施の形態と同様の特性を反射型構成 で得るものであり、 1つのアレイ導波路回折格子 71からなり、具体的には、スラブ導波 路 72、アレイ導波路 73、スラブ導波路 74、ミラー 75、溝構造 76、及び充填材料 77 力もなる。ミラー 75の形状は直線状でも良いが、通常は温度変化無しの場合の分散 値を制御するために適当な曲率を持つ円形ミラーを利用する。本実施の形態は第 1 1実施の形態と比べて損失は増えるがデバイスは小型化され、ミラー曲率によって初 期分散値を設定可能となる。
[0036] 図 13は、本発明の第 13実施の形態による光機能導波路の構成を示す上面図であ る。本実施の形態の光機能導波路は、石英導波路クラッド 12、石英導波路コア 13、 第 1溝構造 81、第 2溝構造 82、及び第 3溝構造 83からなる。各導波路( # 1一 # 3) の幾何学的長さは ABで等しい。しかしながら、光学的長さ (光路長)は実効屈折率 の値によって変化する。本実施の形態では、各導波路( # 1一 # 3)に設けられた第 1 、第 2、第 3溝構造 81、 82、 83に異なる屈折率を有する材料を充填することによって ABの光路長を微調する。 ABが非常に長い場合、導波路作製プロセスの不均一性 によって幾何学的長さが等しいが光学的長さが異なってしまう場合がある。本実施の 形態の構成では、このような揺らぎを測定し、それを補償するように第 1、第 2、第 3溝 構造 81、 82、 83に充填する材料の屈折率を制御する。あるいは、アレイ導波路回折 格子では、隣接するアレイの導波路は一定の光路長ずつ異なる光路長である必要 があるが、同様に作製プロセスの不均一性によって所望の光路長からずれる。この場 合にも各導波路に溝構造を設けて屈折率を制御した材料を充填することによって光 路長差を一定にすることができる。
[0037] 図 14は、本発明の第 14実施の形態による光機能導波路の構成を示す上面図であ る。本実施の形態の光機能導波路は、単一モード導波路 91、テーパ導波路 92、スラ ブ導波路 93、及びレンズ形状の溝構造 94からなり、合分波回路で利用されることが 多 、スラブ導波路と単一モード導波路アレイの結合部である。レンズ形状の溝構造 9 4を設けることによって、スラブ導波路 93側力も入射し単一モード導波路 91の間に入 射する光も、溝構造 94のレンズ作用によって高効率に単一モード導波路 91に導くこ とが可能であり、合分波回路の損失を低減することが可能である。また、一般にスラブ 導波路力 入射される光は振幅が場所によって異なるので(中央が強く端が弱くなる )、第 1一第 5単一モード導波路 91— # 1一 # 5の間隔を調整し(中央の間隔を狭く端 の間隔を広くする)、第 1一第 5溝構造 94 # 1一 # 5の大きさをその間隔に合わせて 調整して(中央を小さく端を大きくする)スラブ導波路 93から第 1一第 5単一モード導 波路 91 # 1一 # 5への結合効率を等しくすることも可能である。
[0038] 図 15は、本発明の第 15実施の形態による光機能導波路の構成を示す上面図であ る。本実施の形態の光機能導波路は、ヒータ用電極 16、単一モード入力導波路 101 、テーパ導波路 102、スラブ導波路 103、第 1単一モード出力導波路 104a、第 2単 一モード出力導波路 104b、くさび型、すなわち、台形の溝構造 105及び充填材料 1 06からなる。このくさび型の溝構造 105はそのくさび型の方向を揃えて配置する。こ のため本実施の形態は、充填材料 106の温度制御により光の導波方向を変化させる ことによって実現される I X 2光スィッチである。温度制御によって、単一モード入力 導波路 101に入射した光を第 1単一モード出力導波路 104a又は第 2単一モード出 力導波路 104bの何れから出力する力切り替えることが可能である。出力導波路数を 増やすことができることは言うまでもない。出力導波路の位置を遠ざければ、角度変 化が僅かで済むので、必要な温度変化量を減らすことが可能である。また、 I X 2スィ ツチを組み合わせて 2 X 2スィッチ一 N X Nスィッチを構成することが可能であることも 言うまでもない。
[0039] なお、本発明は上記実施の形態に限定されるものではない。 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明 細書にとり入れるものとする。

Claims

請求の範囲
[1] 基板と、
該基板上に形成されているクラッドと、
該クラッドの中に形成されて ヽて光路となるコアと、
光路に沿って所定の間隔を空けて光路を分断するように形成されていて前記コアと は屈折率温度係数が異なる材料が充填されている複数の溝構造と、
光路に沿って形成されて ヽる該複数の溝構造の間の位置に形成されて ヽるヒータ 電極と
を備えることを特徴とする光機能導波路。
[2] 基板と、
該基板上に形成されているクラッドと、
該クラッドの中に形成されて ヽて光路となるコアと、
光路に沿って所定の間隔を空けて光路を分断するように形成されていて前記コアと は異なる屈折率の材料が充填されており形状がレンズ型である複数の溝構造と、 光路に沿って形成されて ヽる該複数の溝構造の間の位置に形成されて ヽるヒータ 電極と
を備えることを特徴とする光機能導波路。
[3] 前記複数の溝構造の内の少なくとも 1つの端面が光路に垂直な位置力 傾いてい ることを特徴とする請求項 1又は 2記載の光機能導波路。
[4] 請求項 1記載の光機能導波路を備え光の振幅又は位相を変調することを特徴とす る光変調器。
[5] スラブ導波路中に請求項 2記載の光機能導波路を備えることを特徴とするアレイ導 波路回折格子。
[6] 2つのアレイ導波路回折格子が縦列接続されている接続部近傍に請求項 2記載の 光機能導波路を備えることを特徴とする分散補償回路。
[7] スペクトル面近傍に配置されて 、る導波路内のミラーと、
該ミラーの近傍に配置されている請求項 2記載の光機能導波路と
を備えることを特徴とする分散補償回路。
[8] 基板と、
該基板上に形成されているクラッドと、
該クラッドの中に形成されて ヽて光路となるコアと、
光路に沿って所定の間隔を空けて光路を分断するように形成されていて前記コアと は異なる屈折率であってかつそれぞれが互いに異なる 2以上の屈折率を有する材料 が充填されて ヽる複数の溝構造と
を備えることを特徴とする光機能導波路。
[9] 前記溝構造は、スラブ導波路と単一モード導波路との結合部分のスラブ導波路側 に設けられていることを特徴とする請求項 2記載の光機能導波路。
[10] 基板と、
該基板上に形成されているクラッドと、
該クラッドの中に形成されて ヽて光路となるコアと、
光路に沿って所定の間隔を空けて光路を分断するように形成されていて前記コアと は異なる屈折率の材料が充填されており形状がくさび型である複数の溝構造と、 光路に沿って形成されて ヽる該複数の溝構造の間の位置に形成されて ヽるヒータ 電極と
を備えることを特徴とする光機能導波路。
PCT/JP2005/001460 2004-02-27 2005-02-02 光機能導波路、光変調器、アレイ導波路回折格子及び分散補償回路 WO2005083500A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/573,888 US7756376B2 (en) 2004-02-27 2005-02-02 Optical functional waveguide, optical modulator, arrayed waveguide grating, and dispersion compensation circuit
CA002539851A CA2539851A1 (en) 2004-02-27 2005-02-02 Optical functional waveguide, optical modulator, arrayed waveguide grating, and dispersion compensation circuit
DE602005010535T DE602005010535D1 (de) 2004-02-27 2005-02-02 Optischer funktionaler wellenleiter, optischer modulator, array-wellenleiter-beugungsgitter und dispersions-kompensationsschaltung
EP05709581A EP1677138B1 (en) 2004-02-27 2005-02-02 Optical functional waveguide, optical modulator, array waveguide diffraction grating, and dispersion compensation circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004054903A JP3721565B2 (ja) 2004-02-27 2004-02-27 光機能導波路、光変調器、アレイ導波路回折格子及び分散補償回路
JP2004-054903 2004-02-27

Publications (1)

Publication Number Publication Date
WO2005083500A1 true WO2005083500A1 (ja) 2005-09-09

Family

ID=34908815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001460 WO2005083500A1 (ja) 2004-02-27 2005-02-02 光機能導波路、光変調器、アレイ導波路回折格子及び分散補償回路

Country Status (7)

Country Link
US (1) US7756376B2 (ja)
EP (1) EP1677138B1 (ja)
JP (1) JP3721565B2 (ja)
AT (1) ATE412200T1 (ja)
CA (1) CA2539851A1 (ja)
DE (1) DE602005010535D1 (ja)
WO (1) WO2005083500A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029547A (ja) * 2011-07-26 2013-02-07 Nippon Telegr & Teleph Corp <Ntt> アレイ導波路回折格子型光分散補償器
JP2013029546A (ja) * 2011-07-26 2013-02-07 Nippon Telegr & Teleph Corp <Ntt> 光分散補償器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811747B2 (ja) 2006-06-29 2011-11-09 国立大学法人大阪大学 分散補償器及び分散補償方法
JP4385168B2 (ja) 2006-08-04 2009-12-16 学校法人慶應義塾 回折格子及び分散補償回路
JP4945475B2 (ja) * 2008-02-19 2012-06-06 日本電信電話株式会社 可変分散補償器
JP5086208B2 (ja) * 2008-08-26 2012-11-28 日本電信電話株式会社 波長可変フィルタおよびそれを用いた光信号モニタ
JP5086207B2 (ja) * 2008-08-26 2012-11-28 日本電信電話株式会社 光信号モニタ
WO2011044317A2 (en) * 2009-10-07 2011-04-14 Aidi Corporation Athermal silicon photonics array waveguide grating (awg) employing different core geometries in the array waveguides
US9967050B2 (en) 2013-07-16 2018-05-08 Nippon Telegraph And Telephone Corporation Optical signal processing device
CN104267463B (zh) * 2014-10-23 2016-03-02 重庆大学 一种正交狭缝光波导结构及制造方法
US10962712B2 (en) 2015-06-03 2021-03-30 Lg Innotek Co., Ltd. Optical array waveguide grating-type multiplexer and demultiplexer and camera module comprising the same
JP2018101004A (ja) * 2016-12-19 2018-06-28 富士通株式会社 光分岐導波路及び光モジュール
CN112612148B (zh) * 2020-12-09 2023-02-07 中国科学院微电子研究所 一种光器件及其制作方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248141A (ja) * 1988-03-30 1989-10-03 Hitachi Ltd 光偏向装置
JPH05289117A (ja) * 1992-04-10 1993-11-05 Kobe Steel Ltd 光走査装置
JPH07318994A (ja) * 1993-06-08 1995-12-08 Nippon Steel Corp 高調波発生素子
JPH09152522A (ja) * 1995-11-30 1997-06-10 Sumitomo Electric Ind Ltd 光ファイバ整列部品と光導波路基板との接続構造
JPH10239645A (ja) * 1997-02-26 1998-09-11 Nippon Telegr & Teleph Corp <Ntt> 波長可変グレーティング導波路
JPH11167035A (ja) * 1997-12-04 1999-06-22 Oki Electric Ind Co Ltd 光機能素子と光結合方法
JP2000029079A (ja) * 1998-07-08 2000-01-28 Nippon Telegr & Teleph Corp <Ntt> 熱光学スイッチ
JP2001116937A (ja) * 1999-10-21 2001-04-27 Hitachi Cable Ltd 光波長合分波器
JP2001272561A (ja) * 2000-01-21 2001-10-05 Nippon Telegr & Teleph Corp <Ntt> 偏波無依存導波路型光回路
US6459533B1 (en) 2000-06-26 2002-10-01 Nortel Networks Limited Tuneable optical filters
JP2003084319A (ja) * 2001-09-13 2003-03-19 Fujitsu Ltd 光学装置
JP2003098559A (ja) * 2001-09-26 2003-04-03 Fujitsu Ltd 光偏向素子及び光スイッチ
JP2003167221A (ja) * 2001-11-30 2003-06-13 Hitachi Cable Ltd 導波路型光素子
JP2003279910A (ja) * 2002-01-21 2003-10-02 Furukawa Electric Co Ltd:The 可変分散補償器およびその可変分散補償器を用いた可変分散補償デバイス
JP2004045747A (ja) * 2002-07-11 2004-02-12 Furukawa Electric Co Ltd:The 光モジュールおよびその光モジュールを用いた分散スロープ補償器
JP2004054903A (ja) 2002-05-16 2004-02-19 Ntt Docomo Inc オンライン認証装置、オンライン認証システム、及びオンライン認証方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE502139C2 (sv) * 1992-12-09 1995-08-28 Ellemtel Utvecklings Ab Elektriskt styrbar filteranordning
US5502590A (en) 1993-06-08 1996-03-26 Nippon Steel Corporation Harmonic wave generating element for coherent light having short wavelength
US5940548A (en) 1996-07-10 1999-08-17 Nippon Telegraph And Telephone Corporation Guided-wave circuit with optical characteristics adjusting plate, method for producing it, and apparatus for producing optical characteristics adjusting plate
EP1452897A3 (en) * 1996-09-02 2005-02-16 Nippon Telegraph and Telephone Corporation Optical signal processing apparatus and optical signal processing method
US6263127B1 (en) * 1999-05-13 2001-07-17 Lucent Technologies Inc. Free-space/arrayed-waveguide router
US6424755B1 (en) 1999-07-02 2002-07-23 Nortel Networks Limited Slotted monolithic optical waveguides
US6549696B1 (en) 1999-08-10 2003-04-15 Hitachi Cable, Ltd. Optical wavelength multiplexer/demultiplexer
US6324204B1 (en) * 1999-10-19 2001-11-27 Sparkolor Corporation Channel-switched tunable laser for DWDM communications
US6546161B2 (en) 2000-01-21 2003-04-08 Nippon Telegraph And Telephone Corporation No polarization dependent waveguide type optical circuit
US6950577B2 (en) * 2002-07-01 2005-09-27 Intel Corporation Waveguide-based Bragg gratings with spectral sidelobe suppression and method thereof
US7245792B2 (en) 2002-08-16 2007-07-17 Intel Corporation Silicon-based tunable single passband optical filter
US7245793B2 (en) * 2002-11-19 2007-07-17 Nippon Telegraph And Telephone Corporation Optical waveguide circuit

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248141A (ja) * 1988-03-30 1989-10-03 Hitachi Ltd 光偏向装置
JPH05289117A (ja) * 1992-04-10 1993-11-05 Kobe Steel Ltd 光走査装置
JPH07318994A (ja) * 1993-06-08 1995-12-08 Nippon Steel Corp 高調波発生素子
JPH09152522A (ja) * 1995-11-30 1997-06-10 Sumitomo Electric Ind Ltd 光ファイバ整列部品と光導波路基板との接続構造
JPH10239645A (ja) * 1997-02-26 1998-09-11 Nippon Telegr & Teleph Corp <Ntt> 波長可変グレーティング導波路
JPH11167035A (ja) * 1997-12-04 1999-06-22 Oki Electric Ind Co Ltd 光機能素子と光結合方法
JP2000029079A (ja) * 1998-07-08 2000-01-28 Nippon Telegr & Teleph Corp <Ntt> 熱光学スイッチ
JP2001116937A (ja) * 1999-10-21 2001-04-27 Hitachi Cable Ltd 光波長合分波器
JP2001272561A (ja) * 2000-01-21 2001-10-05 Nippon Telegr & Teleph Corp <Ntt> 偏波無依存導波路型光回路
US6459533B1 (en) 2000-06-26 2002-10-01 Nortel Networks Limited Tuneable optical filters
JP2003084319A (ja) * 2001-09-13 2003-03-19 Fujitsu Ltd 光学装置
JP2003098559A (ja) * 2001-09-26 2003-04-03 Fujitsu Ltd 光偏向素子及び光スイッチ
JP2003167221A (ja) * 2001-11-30 2003-06-13 Hitachi Cable Ltd 導波路型光素子
JP2003279910A (ja) * 2002-01-21 2003-10-02 Furukawa Electric Co Ltd:The 可変分散補償器およびその可変分散補償器を用いた可変分散補償デバイス
JP2004054903A (ja) 2002-05-16 2004-02-19 Ntt Docomo Inc オンライン認証装置、オンライン認証システム、及びオンライン認証方法
JP2004045747A (ja) * 2002-07-11 2004-02-12 Furukawa Electric Co Ltd:The 光モジュールおよびその光モジュールを用いた分散スロープ補償器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUAKI HASHIDUME ET AL., THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, GENERAL CONFERENCE, LECTURE PAPERS, 2002, vol. C-3, no. 10, 27 March 2002 (2002-03-27), pages 142

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029547A (ja) * 2011-07-26 2013-02-07 Nippon Telegr & Teleph Corp <Ntt> アレイ導波路回折格子型光分散補償器
JP2013029546A (ja) * 2011-07-26 2013-02-07 Nippon Telegr & Teleph Corp <Ntt> 光分散補償器

Also Published As

Publication number Publication date
JP2005242214A (ja) 2005-09-08
US7756376B2 (en) 2010-07-13
EP1677138B1 (en) 2008-10-22
EP1677138A4 (en) 2007-12-05
CA2539851A1 (en) 2005-09-09
EP1677138A1 (en) 2006-07-05
JP3721565B2 (ja) 2005-11-30
US20070211982A1 (en) 2007-09-13
DE602005010535D1 (de) 2008-12-04
ATE412200T1 (de) 2008-11-15

Similar Documents

Publication Publication Date Title
WO2005083500A1 (ja) 光機能導波路、光変調器、アレイ導波路回折格子及び分散補償回路
Okamoto Recent progress of integrated optics planar lightwave circuits
KR100686920B1 (ko) 열광학 폴리머를 포함하는 광소자
US7072117B2 (en) Micro-lens array
US8867873B2 (en) Arrayed waveguide grating
US6922508B2 (en) Optical switching apparatus with adiabatic coupling to optical fiber
US6775437B2 (en) Temperature compensated optical waveguide structures
US20010046363A1 (en) Variable optical attenuators and optical shutters using a coupling layer in proximity to an optical waveguide (II)
US20020159703A1 (en) Optical apparatus and method having predetermined group velocity dispersion
KR100783363B1 (ko) 가변 도파로 브래그 격자 소자
CA2479178C (en) Multichannel integrated tunable thermo-optic lens and dispersion compensator
US6856732B2 (en) Method and apparatus for adding/droping optical signals in a semiconductor substrate
US20030016937A1 (en) Variable optic attenuator by waveguide bend loss
CN116540354A (zh) 基于亚波长孔阵列辅助的多模干涉型片上双偏振波导交叉器
CN102692681A (zh) 具有温度偏振补偿的反射型阵列波导光栅
US7106923B1 (en) Dispersion compensator
KR100281552B1 (ko) 열광학 효과를 이용한 집적광학형 가변 광감쇄기
Kokubun Waveguide filters and related technologies: issues and solutions for practical use in transmission systems
WO2001038922A2 (en) Analog optical switch using an integrated mach-zehnder interferometer having a movable phase shifter
KR101423978B1 (ko) 열광학 가변 광감쇄기
KR100583648B1 (ko) 직선 도파로형 열광학 가변 광 감쇄기
CN202614980U (zh) 一种具有温度偏振补偿的反射型阵列波导光栅
CN106371172A (zh) 一种阵列波导光栅
CA2392600A1 (en) Tunable fabry-perot filter having a movable tuning element
WO2001067166A1 (en) Variable optical attenuators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2539851

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005709581

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005709581

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10573888

Country of ref document: US

Ref document number: 2007211982

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10573888

Country of ref document: US