WO2005083035A1 - Method for producing silicate phosphor and vacuum ultraviolet excited light-emitting device - Google Patents

Method for producing silicate phosphor and vacuum ultraviolet excited light-emitting device Download PDF

Info

Publication number
WO2005083035A1
WO2005083035A1 PCT/JP2005/003091 JP2005003091W WO2005083035A1 WO 2005083035 A1 WO2005083035 A1 WO 2005083035A1 JP 2005003091 W JP2005003091 W JP 2005003091W WO 2005083035 A1 WO2005083035 A1 WO 2005083035A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
silicate phosphor
emitting device
excited light
halide
Prior art date
Application number
PCT/JP2005/003091
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiko Nakamura
Keiji Ono
Susumu Miyazaki
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2005083035A1 publication Critical patent/WO2005083035A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon

Definitions

  • the present invention relates to a method for producing a silicate phosphor, a silicate phosphor obtained by the method, and a vacuum ultraviolet ray excited light emitting device containing the silicate phosphor.
  • the silicate phosphor is used for an ultraviolet-excited light-emitting element such as a fluorescent lamp, a cathode-ray-excited light-emitting element such as a cathode ray tube, a plasma display panel (PDP), and a vacuum ultraviolet-excited light-emitting element such as a rare gas lamp.
  • an ultraviolet-excited light-emitting element such as a fluorescent lamp
  • a cathode-ray-excited light-emitting element such as a cathode ray tube
  • a plasma display panel (PDP) plasma display panel
  • a vacuum ultraviolet-excited light-emitting element such as a rare gas lamp.
  • the Gay phosphor is oxidized Kei arsenide, calcium carbonate, strontium carbonate, oxide It is obtained by a method in which europium and basic magnesium carbonate are mixed, and the resulting mixture is calcined in a reducing atmosphere (for example, Japanese Patent Application Laid-Open No. 2003-186364).
  • An object of the present invention is to provide a method for producing a silicate phosphor having high luminance and a vacuum ultraviolet ray excited light emitting device.
  • the present inventors have studied a method for producing a silicate phosphor, and as a result, have completed the present invention.
  • the present invention provides a method for producing a silicate phosphor including the steps (i) and (ii).
  • the present invention provides a silicate phosphor obtained by the above-mentioned production method. Further, the present invention provides a vacuum ultraviolet ray excited light emitting device containing a silicate phosphor obtained by the above-mentioned production method.
  • the method for producing a silicate phosphor according to the present invention includes a step (i) of mixing a metal compound and an octalogenide.
  • the metal compound used in step ⁇ is an element contained in the product silicate phosphor
  • Si Si, Ca, Sr, Ba, Mg, Eu, Mn, Zn
  • at least one hydroxide, carbonate, nitric acid of these elements It is a compound that becomes an oxide in a firing step described later, such as a salt or an oxalate, or at least one oxide of these elements.
  • metal compounds examples include
  • Kei-containing compounds such as silica gel [S i 0 2 ⁇ xH 2 ⁇ ]
  • Calcium oxide [C A_ ⁇ ] calcium ⁇ beam compounds such as calcium carbonate [CaCO s]
  • Strontium oxide [S R_ ⁇ ] strontium compounds such as strontium carbonate [S r C_ ⁇ 3]
  • Barium oxide [B A_ ⁇ ] barium of compounds such as barium carbonate [B AC0 3]
  • Magnesium compounds such as magnesium oxide [MgO], basic magnesium carbonate [(MgC_ ⁇ 3) 4 M g (OH) 2 ⁇ 5H 2 0 ],
  • Europium compounds such as europium oxide [Eu 2 ⁇ 3 ],
  • Manganese compounds such as manganese oxide [Mn_ ⁇ 2],
  • the metal compound may be a mixture thereof, or may be a compound of two or more of the above elements.
  • 96 £ 11. .. When manufacturing the blue phosphor represented by 4 1 ⁇ 3 i 2 ⁇ 6 , the metal compound is calcined.
  • 96 £ 1. . ⁇ ) ⁇ 4 ⁇ [83 1 2 0 6 become Compound It may be, for example, a mixture of a calcium compound, a magnesium compound, a silicon compound, and an europium compound.
  • the metal compound is an element (Si, Ca, Sr, Ba, Mg, Eu, Mn, Zn), such as hydroxide, carbonate, nitrate, oxalate, etc.
  • these compounds may be calcined before drying or firing described below. The calcination may be performed under the condition that water (adhering water) is removed from these compounds or crystallization water is removed from these compounds to form oxides. For example, temperature: 600 ° C. or more, It may be performed under a condition of less than 900 ° C.
  • the calcination may be performed in any of an oxidizing atmosphere (such as an air atmosphere) and a reducing atmosphere.
  • an oxidizing atmosphere such as an air atmosphere
  • the metal compound is an organic salt such as oxalate
  • the calcination may be usually performed in an oxidizing atmosphere (such as an air atmosphere). It is preferable that the metal compound used in the step ⁇ contains a gay oxide.
  • BET specific surface area is usually 1 O m ⁇ g or more, preferably 1 0 O m 2 Z g or more on, still more preferably 2 0 O m 2 Z g or more, and usually 4 0 O m 2 / g or less.
  • a metal compound containing silicon oxide having a high BET specific surface area as a raw material, a silicate phosphor with higher luminance can be obtained.
  • the halide used in the step ⁇ is, for example, an ammonium halide or a metal halide. Examples of the halogenated ammonium include ammonium fluoride, ammonium chloride, and ammonium bromide.
  • Metal halides are halides of one or more of the metals contained in the product silicate phosphor, such as metal chlorides such as magnesium chloride, calcium chloride, and strontium chloride.
  • Metal fluorides such as magnesium fluoride, calcium fluoride, and strontium fluoride; and metal bromides such as magnesium bromide, calcium bromide, and strontium bromide.
  • the halide is preferably a metal chloride or ammonium chloride, and more preferably a metal chloride.
  • the amount of the halide is usually 1% by weight or more, preferably 3% by weight or more based on the total amount of the metal compound and the halide in terms of dry weight. And at most 50% by weight, preferably at most 20% by weight.
  • the halide may be a powder or an aqueous solution.
  • the mixing in the step (i) may be performed either continuously or batchwise.
  • the mixing may be performed by either a dry method or a wet method. Further, in the mixing, the entire amount of the metal compound and the entire amount of the halide may be mixed at once, or they may be separately mixed.
  • Dry mixing may be performed using, for example, a pole mill, a V-type mixer, or a stirrer, and wet mixing may be performed using a pole mill or a stirrer.
  • the resulting mixture is usually dried directly, or the solid is recovered by solid-liquid separation such as filtration or centrifugation, and dried. Drying may be performed using, for example, an evaporator or a spray dryer.
  • the drying temperature is usually at least 20 ° C, preferably at least 90 ° C, and is at most 300 ° C, preferably at most 200 ° C.
  • the method for producing a silicate phosphor of the present invention includes a step (ii) of firing the mixture obtained in the step (i).
  • the calcination in the step (ii) is performed, for example, using nitrogen (N 2 ) containing about 0.1% to about 10% by volume of hydrogen, and argon (Ar) containing about 0.1% to about 10% by volume of hydrogen. What is necessary is just to perform under a reducing atmosphere.
  • the firing temperature is usually 900 to 1400 ° C, and the firing time is usually 0.5 to 50 hours. Further, in the production method of the present invention, a flux may be added to the mixture before firing, and the mixture may be fired.
  • the phosphor obtained by firing may be subjected to treatments such as grinding, washing, and classification.
  • the pulverization may be performed using, for example, a pole mill, a jet mill, or the like. Washing May be performed, for example, by washing with water. Further, the phosphor or treated phosphor may be further fired. By firing, a phosphor having higher luminance can be obtained. When firing is performed twice or more, the above-mentioned halide may be added to the fired product obtained in the firing step and fired.
  • the silicate phosphor obtained by the above method is usually particles, has high crystallinity, and has high brightness. Further, this silicate phosphor has excellent color purity. The silicate phosphor emits light when excited by ultraviolet rays, cathode rays or X-rays in addition to vacuum ultraviolet rays.
  • M 1 is at least one selected from the group consisting of Ca Sr and Ba
  • M 2 is at least one selected from the group consisting of Mg and Zn
  • m is 0 5 or more and 3.5 or less
  • n is 0.5 or more and 2.5 or less.
  • a substance containing at least one selected from the group consisting of EuMn as an activator by the above method a silicate phosphor having excellent luminance can be obtained. .
  • the device includes an electrode in addition to the phosphor described above
  • Examples of the vacuum ultraviolet ray excited light emitting display device include a PDP, a rare gas lamp, etc.
  • a PDP is exemplified. Usually, it includes a back substrate, a phosphor layer, a transparent electrode, a bus electrode, a dielectric layer, and a surface substrate.A method of manufacturing such a PDP is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-195428. of Steps (I) to (IV) are included.
  • the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
  • the BET specific surface area of the metal compound (silicon oxide) was determined by the nitrogen adsorption method.
  • Reference example 1 The BET specific surface area of the metal compound (silicon oxide) was determined by the nitrogen adsorption method.
  • Calcium carbonate (Ube Material Industries, Ltd., CAC0 3) carbonate stolons lithium (manufactured by Sakai Chemical Industry Co., Ltd., S r C_ ⁇ 3), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., Eu 2 0 3), basic carbonate magnesium (Kyowa chemical industry stock Company, Ltd., (MgC_ ⁇ 3) 4 M (OH) 2 ⁇ 5 ⁇ 2 0), oxidation Kei arsenide (Japan Aeroji Le Co., Ltd., S I_ ⁇ 2, BET specific surface area: 200m 2 / g) was mixed so that the molar ratio of Ca: Sr: Eu: Mg: Si was 0.782: 0.10: 0.008: 1: 2.
  • the obtained mixture was put in an alumina port, and then the alumina port was set in a firing furnace.
  • the mixture Atmosphere: 2 vol% H 2 containing argon gas, from room 1 Heating time to 165 ° C: 2 hours and 30 minutes, holding time at 1 165 ° C: 2 hours, and calcined by the formula C a Q .892 S
  • S i 2 0 6 a phosphor
  • Calcium carbonate (Ube Material Industries, Ltd., C AC_ ⁇ 3), carbonate strike opening Nchiumu (manufactured by Sakai Chemical Industry Co., Ltd., S r C_ ⁇ 3), europium oxide (manufactured by Shin-Etsu Chemical Industry Co., Ltd., Eu 2 ⁇ 3 ), basic magnesium carbonate (manufactured by Kyowa chemical industry Co., Ltd., Ltd., (MgC_ ⁇ 3) 4 Mg (OH) 2 ⁇ 5 ⁇ 2 0), oxidation Kei arsenide (Japan Aero Jill Co., Ltd., S i 0 2, BET specific surface area : 20 Om 2 / g) so that the molar ratio of Ca: Sr: Eu: Mg: Si becomes 0.892: 0.10: 0.008: 1: 2 to form a metal compound. obtained, then, a metal compound, Anmoniumu chloride as halide (manufactured by Wako Pure chemical Industries, Ltd., NH
  • Calcium carbonate (Ube Material Industries, Ltd., CaC0 3), chloride strike opening Nchiumu hexahydrate (manufactured by Sakai Chemical Industry Co., Ltd., S rC 1 2 ⁇ 6 ⁇ 2 0), oxidized user port Piumu (Shin-Etsu Chemical Co., Ltd.
  • Calcium carbonate (Ube Material Co., Ltd., CaC_ ⁇ 3), carbonate strike opening Nchiumu (manufactured by Sakai Chemical Industry Co., Ltd., S r C0 3), europium oxide (Shin-Etsu Chemical Industry Co., Ltd., Eu 2 ⁇ 3), basic magnesium carbonate (manufactured by Kyowa chemical industry Co., Ltd., Ltd., (MgC_ ⁇ 3) 4 Mg (OH) 2 ⁇ 5 ⁇ 2 ⁇ ), oxidation Kei arsenide (Japan Aero Jill Co., Ltd., S i 0 2, BET specific surface area: 20 OrnVg) was mixed so that the molar ratio of Ca: Sr: Eu: Mg: Si was 0.778: 0.20: 0.012: 1: 2.
  • Calcium carbonate (Ube Material Industries, Ltd., C AC_ ⁇ 3), carbonate strike opening Nchiumu (manufactured by Sakai Chemical Industry Co., Ltd., S r C_ ⁇ 3), europium oxide (manufactured by Shin-Etsu Chemical Industry Co., Ltd., Eu 2 ⁇ 3 ), basic magnesium carbonate (manufactured by Kyowa chemical industry Co., Ltd., Ltd., (MgC_ ⁇ 3) 4 Mg (OH) 2 ⁇ 5 ⁇ 2 0), oxidation Gay arsenide (Japan Aero Jill Co., Ltd., S i 0 2, BET specific surface area : 200m / g) to mix the metal compound by mixing so that the molar ratio of Ca: Sr: Eu: Mg: Si becomes 0.788: 0.20: 0.012: 1: 2. And then the metal compound and a halide Was mixed with ammonium chloride (manufactured by Wako Pure Chemical Industries, Ltd., NH 4 C
  • Oxidation Gay arsenide (Japan Aerojiru Co., Ltd., S I_ ⁇ 2, BET specific surface area: 20 0m 2 / g) in place of the oxide gay arsenide (Co. Admatechs made, S I_ ⁇ 2, BET specific surface area: 1 5
  • the same operation as in Example 3 was performed except that ⁇ 25 m 2 Zg) was used.
  • the resulting phosphor (C a .. 788 S r .. 2 .Eu.,. 12 Mg S i 2 0 6) is blue and emitting light, the luminance was 1 1 1.
  • Oxidation Kei arsenide (Japan Aerojiru Co., Ltd., S I_ ⁇ 2, BET specific surface area: 20 OmVg) instead of, oxidation Kei arsenide (Co. Admatechs made, S I_ ⁇ 2, BET specific surface area: 2 ⁇ 5m 2 Zg ) Was performed, except that) was used.
  • the resulting phosphor (C a .. 788 S r .. 2 .Eu ... 12 Mg S i 2 0 6) emits a blue luminance was 106.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

Disclosed is a method for producing a silicate phosphor. Also disclosed is a vacuum ultraviolet excited light-emitting device. The method for producing a silicate phosphor includes (i) a step for mixing a metal compound and a halide, and (ii) a step for firing the resulting mixture. The silicate phosphor contains a compound which is obtained by this method and represented by the formula (1) below, and at least one selected from the group consisting of Eu and Mn as an activator. mM1O·nM2O·2SiO2 (1) [In the formula (1), M1 represents at least one selected from the group consisting of Ca, Sr and Ba; M2 represents at least one selected from the group consisting of Mg and Zn; m is not less than 0.5 and not more than 3.5; and n is not less than 0.5 and not more than 2.5.]

Description

明 細 書 ケィ酸塩蛍光体の製造方法および真空紫外線励起発光素子 技術分野  Technical Field Manufacturing method of silicate phosphor and vacuum ultraviolet ray excited light emitting device
本発明は、 ケィ酸塩蛍光体の製造方法、 その方法により得られるケィ酸塩蛍 光体、 およびそのケィ酸塩蛍光体を含む真空紫外線励起発光素子に関する。 背景技術  The present invention relates to a method for producing a silicate phosphor, a silicate phosphor obtained by the method, and a vacuum ultraviolet ray excited light emitting device containing the silicate phosphor. Background art
ケィ酸塩蛍光体は、 蛍光灯のような紫外線励起発光素子、 ブラウン管のよう な陰極線励起発光素子、 プラズマディスプレイパネル (P D P ) 、 希ガスラン プのような真空紫外線励起発光素子等に用いられ、 例えば、 式 C a„.855 S r gs E u0.05M S i 206で表されるものが知られている。 このゲイ酸塩蛍光体は、 酸化ケィ素、 炭酸カルシウム、 炭酸ストロンチウム、 酸化ユーロピウム、 塩基 性炭酸マグネシウムを混合し、 得られる混合物を還元雰囲気下、 焼成する方法 により得られる。 (例えば、 特開 2 0 0 3— 1 8 3 6 4 4号公報) 。 The silicate phosphor is used for an ultraviolet-excited light-emitting element such as a fluorescent lamp, a cathode-ray-excited light-emitting element such as a cathode ray tube, a plasma display panel (PDP), and a vacuum ultraviolet-excited light-emitting element such as a rare gas lamp. , those represented by the formula C a ". 855 S r gs E u 0. 05 MS i 2 0 6 are known. the Gay phosphor is oxidized Kei arsenide, calcium carbonate, strontium carbonate, oxide It is obtained by a method in which europium and basic magnesium carbonate are mixed, and the resulting mixture is calcined in a reducing atmosphere (for example, Japanese Patent Application Laid-Open No. 2003-186364).
一方、 P D Pの性能向上の観点から、 蛍光体の輝度向上が不可欠であり、 高 い輝度をもつケィ酸塩蛍光体の製造方法が求められている。 発明の開示  On the other hand, from the viewpoint of improving the performance of PDP, it is essential to increase the luminance of the phosphor, and a method for producing a silicate phosphor having high luminance is required. Disclosure of the invention
本発明の目的は、 高い輝度をもつケィ酸塩蛍光体の製造方法および真空紫外 線励起発光素子を提供することにある。  An object of the present invention is to provide a method for producing a silicate phosphor having high luminance and a vacuum ultraviolet ray excited light emitting device.
本発明者らは、 ケィ酸塩蛍光体の製造方法について検討した結果、 本発明を 完成するに至った。  The present inventors have studied a method for producing a silicate phosphor, and as a result, have completed the present invention.
すなわち本発明は、 工程(i)および (i i)を含むケィ酸塩蛍光体の製造方法を 提供する。  That is, the present invention provides a method for producing a silicate phosphor including the steps (i) and (ii).
( i )金属化合物と八ロゲン化物を混合する工程、  (i) a step of mixing a metal compound and an octalogenide,
( ii )得られる混合物を焼成する工程。  (ii) firing the resulting mixture.
また本発明は、 上記の製造方法により得られるケィ酸塩蛍光体を提供する。 さらに本発明は、 上記の製造方法により得られるケィ酸塩蛍光体を含む真空 紫外線励起発光素子を提供する。 発明を実施するための形態 Further, the present invention provides a silicate phosphor obtained by the above-mentioned production method. Further, the present invention provides a vacuum ultraviolet ray excited light emitting device containing a silicate phosphor obtained by the above-mentioned production method. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のケィ酸塩蛍光体の製造方法は、 金属化合物と八ロゲン化物を混合す る工程(i)を含む。  The method for producing a silicate phosphor according to the present invention includes a step (i) of mixing a metal compound and an octalogenide.
工程 ωで用いる金属化合物は、 製品であるケィ酸塩蛍光体に含まれる元素 The metal compound used in step ω is an element contained in the product silicate phosphor
(S i、 C a、 S r、 B a、 Mg、 Eu、 Mn、 Z n) の少なくとも 1つの化 合物であり、 例えば、 これらの元素の少なくとも 1つの水酸化物、 炭酸塩、 硝 酸塩、 シユウ酸塩のような、 後述する焼成工程にて酸化物となる化合物、 また は、 これらの元素の少なくとも 1つの酸化物である。 (Si, Ca, Sr, Ba, Mg, Eu, Mn, Zn), for example, at least one hydroxide, carbonate, nitric acid of these elements It is a compound that becomes an oxide in a firing step described later, such as a salt or an oxalate, or at least one oxide of these elements.
金属化合物の例としては、 Examples of metal compounds include
酸化ケィ素 〔S i 02〕 、 シリカゲル 〔S i 02 · xH2〇〕 のようなケィ素 化合物、 Oxide Kei containing [S i 0 2], Kei-containing compounds such as silica gel [S i 0 2 · xH 2 〇],
酸化カルシウム 〔C a〇〕 、 炭酸カルシウム 〔CaCOs〕 のようなカルシ ゥム化合物、 Calcium oxide [C A_〇], calcium © beam compounds such as calcium carbonate [CaCO s],
酸化ストロンチウム 〔S r〇〕 、 炭酸ストロンチウム 〔S r C〇3〕 のよう なストロンチウム化合物、 Strontium oxide [S R_〇], strontium compounds such as strontium carbonate [S r C_〇 3],
酸化バリウム 〔B a〇〕 、 炭酸バリウム 〔B aC03〕 のようなバリウム化 合物、 Barium oxide [B A_〇], barium of compounds such as barium carbonate [B AC0 3],
酸化マグネシウム 〔MgO〕 、 塩基性炭酸マグネシウム 〔 (MgC〇3) 4M g (OH) 2 · 5H20〕 のようなマグネシウム化合物、 Magnesium compounds such as magnesium oxide [MgO], basic magnesium carbonate [(MgC_〇 3) 4 M g (OH) 2 · 5H 2 0 ],
酸化ユーロピウム 〔Eu23〕 のようなユーロピウム化合物、 Europium compounds such as europium oxide [Eu 23 ],
酸化マンガン 〔Mn〇2〕 のようなマンガン化合物、 Manganese compounds such as manganese oxide [Mn_〇 2],
酸化亜鉛 〔Zn〇〕 のような亜鉛化合物である。  It is a zinc compound such as zinc oxide [Zn〇].
金属化合物は、 これらの混合物であってもよく、 また前記元素 2種以上の化合 物であってもよい。 The metal compound may be a mixture thereof, or may be a compound of two or more of the above elements.
例えば、 式〇3。.96£ 11。.。41^ 3 i 26で示される青色蛍光体を製造する場 合、 金属化合物は、 焼成にょり〇&。.96£ 1。.{)4^[83 1206となる化合物でぁ ればよく、 例えば、 カルシウム化合物、 マグネシウム化合物、 ケィ素化合物、 ユー口ピウム化合物の混合物である。 For example, Equation 〇3. 96 £ 11. .. When manufacturing the blue phosphor represented by 4 1 ^ 3 i 26 , the metal compound is calcined. 96 £ 1. . {) § 4 ^ [83 1 2 0 6 become Compound It may be, for example, a mixture of a calcium compound, a magnesium compound, a silicon compound, and an europium compound.
また、 金属化合物が、 元素 (S i、 C a、 S r、 B a、 M g、 E u、 M n、 Z n ) の水酸化物、 炭酸塩、 硝酸塩、 シユウ酸塩のような、 高温で分解して酸 化物になる化合物である場合、 後述の乾燥または焼成の前に、 これらの化合物 を仮焼してもよい。 仮焼は、 これら化合物から水 (付着水) を除去したり、 こ れら化合物から結晶水を除去して酸化物にする条件で行えばよく、 例えば、 温 度: 6 0 0 °C以上、 9 0 0 °C未満の条件下で行えばよい。 金属化合物が水酸化 物、 または炭酸塩、 硝酸塩のような無機塩である場合、 仮焼は酸化性雰囲気 (大気雰囲気等) 、 還元性雰囲気のいずれで行ってもよい。 金属化合物がシュ ゥ酸塩のような有機塩である場合、 仮焼は、 通常、 酸化性雰囲気 (大気雰囲気 等) で行えばよい。 工程 ωで用いる金属化合物は、 酸化ゲイ素を含むことが好ましい。 酸化ケ ィ素は、 B E T比表面積が通常 1 O m^ g以上、 好ましくは 1 0 O m2Z g以 上、 さらに好ましくは 2 0 O m2Z g以上であり、 また通常 4 0 O m2/ g以下 である。 原料として B E T比表面積が高い酸化ケィ素を含む金属化合物を用い ることにより、 より高い輝度をもつゲイ酸塩蛍光体が得られる。 工程 ωで用いるハロゲン化物は、 例えば、 ハロゲン化アンモニゥム、 金属 ハロゲン化物である。 ハロゲン化アンモニゥムとしては、 フッ化アンモニゥム、 塩化アンモニゥム、 臭化アンモニゥムが挙げられる。 金属ハロゲン化物として は、 製品であるケィ酸塩蛍光体に含まれる金属のうちの 1つ以上の金属のハロ ゲン化物であり、 例えば、 塩化マグネシウム、 塩化カルシウム、 塩化ストロン チウムのような金属塩化物、 フッ化マグネシウム、 フッ化カルシウム、 フッ化 ストロンチウムのような金属フッ化物、 臭化マグネシウム、 臭化カルシウム、 臭化ストロンチウムのような金属臭化物が挙げられる。 これらのうち、 ハロゲ ン化物は、 好ましくは金属塩化物、 塩化アンモニゥムであり、 さらに好ましく は金属塩化物である。 ハロゲン化物の量は、 乾燥重量換算で、 金属化合物とハ ロゲン化物の合計量に対して、 通常、 1重量%以上、 好ましくは 3重量%以上 であり、 また 50重量%以下、 好ましくは 20重量%以下である。 ハロゲン化 物は、 粉末であっても、 水溶液であってもよい。 In addition, when the metal compound is an element (Si, Ca, Sr, Ba, Mg, Eu, Mn, Zn), such as hydroxide, carbonate, nitrate, oxalate, etc. When the compounds are decomposed into oxides by the above, these compounds may be calcined before drying or firing described below. The calcination may be performed under the condition that water (adhering water) is removed from these compounds or crystallization water is removed from these compounds to form oxides. For example, temperature: 600 ° C. or more, It may be performed under a condition of less than 900 ° C. When the metal compound is a hydroxide or an inorganic salt such as a carbonate or a nitrate, the calcination may be performed in any of an oxidizing atmosphere (such as an air atmosphere) and a reducing atmosphere. When the metal compound is an organic salt such as oxalate, the calcination may be usually performed in an oxidizing atmosphere (such as an air atmosphere). It is preferable that the metal compound used in the step ω contains a gay oxide. Oxide Ke I arsenide, BET specific surface area is usually 1 O m ^ g or more, preferably 1 0 O m 2 Z g or more on, still more preferably 2 0 O m 2 Z g or more, and usually 4 0 O m 2 / g or less. By using a metal compound containing silicon oxide having a high BET specific surface area as a raw material, a silicate phosphor with higher luminance can be obtained. The halide used in the step ω is, for example, an ammonium halide or a metal halide. Examples of the halogenated ammonium include ammonium fluoride, ammonium chloride, and ammonium bromide. Metal halides are halides of one or more of the metals contained in the product silicate phosphor, such as metal chlorides such as magnesium chloride, calcium chloride, and strontium chloride. Metal fluorides such as magnesium fluoride, calcium fluoride, and strontium fluoride; and metal bromides such as magnesium bromide, calcium bromide, and strontium bromide. Of these, the halide is preferably a metal chloride or ammonium chloride, and more preferably a metal chloride. The amount of the halide is usually 1% by weight or more, preferably 3% by weight or more based on the total amount of the metal compound and the halide in terms of dry weight. And at most 50% by weight, preferably at most 20% by weight. The halide may be a powder or an aqueous solution.
例えば、 式〇&。.96£ 11。.。41^83 i26で示される青色蛍光体の製造では、 CaC 12、 Ca〇、 Mg〇、 S i〇2、 Eu23を、 CaC 12と。&〇のモル 比が 1 : 3であること、 および C a : Eu : Mg : S iのモル比が 0. 96 : 0. 04 : 1 : 2であることを満足するように、 混合すればよい。 こうして得 られる混合物は、 C aC 12: C a〇: Euz03: MgO: S i 02の重量比が 26. 64 : 40. 32 : 7. 04 : 40 : 60であり、 ハロゲン化物 (C a C 12) の含有量が 15重量%である。 工程(i)の混合は、 連続、 バッチいずれで行ってもよい。 また混合は、 乾式、 湿式いずれで行ってもよい。 さらに、 混合では、 金属化合物の全量とハロゲン 化物の全量を一括して混合してもよく、 これらを分けて混合してもよい。 For example, the formula 〇 &. 96 £ 11. .. 4 1 ^ 83 in the manufacture of a blue phosphor represented by i 26, CaC 1 2, Ca_〇, Mg_〇, the S I_〇 2, Eu 23, CaC 1 2 and. & 〇 molar ratio of 1: 3, and the molar ratio of Ca: Eu: Mg: Si are 0.96: 0.04: 1: 2. Good. The mixtures thus obtained, C aC 1 2: C A_〇: Eu z 0 3: MgO: S i 0 weight ratio of 2 is 26.64: 40.32: 7.04: 40:60, halides the content of (C a C 1 2) is 15 wt%. The mixing in the step (i) may be performed either continuously or batchwise. The mixing may be performed by either a dry method or a wet method. Further, in the mixing, the entire amount of the metal compound and the entire amount of the halide may be mixed at once, or they may be separately mixed.
乾式混合は、 例えば、 ポールミル、 V型混合機、 攪拌装置などを用いて行え ばよく、 湿式混合は、 ポールミル、 攪拌装置を用いて行えばよい。  Dry mixing may be performed using, for example, a pole mill, a V-type mixer, or a stirrer, and wet mixing may be performed using a pole mill or a stirrer.
湿式混合の場合、 得られる混合物は、 通常、 直接乾燥するか、 濾過や遠心分 離のような固液分離により固体を回収し、 これを乾燥する。 乾燥は、 例えば、 エバポレー夕一、 スプレードライヤーを用いて行えばよい。 乾燥温度は、 通常 20°C以上、 好ましくは 90°C以上であり、 また 300°C以下、 好ましく 20 0°C以下である。 本発明のケィ酸塩蛍光体の製造方法は、 工程(i)にて得られる混合物を焼成 する工程(ii)を含む。  In the case of wet mixing, the resulting mixture is usually dried directly, or the solid is recovered by solid-liquid separation such as filtration or centrifugation, and dried. Drying may be performed using, for example, an evaporator or a spray dryer. The drying temperature is usually at least 20 ° C, preferably at least 90 ° C, and is at most 300 ° C, preferably at most 200 ° C. The method for producing a silicate phosphor of the present invention includes a step (ii) of firing the mixture obtained in the step (i).
工程(ii)の焼成は、 例えば、 水素を約 0. 1体積%〜約 10体積%含む窒素 (N2) 、 水素を約 0. 1体積%〜約 10体積%含むアルゴン (Ar) のよう な還元雰囲気下で行えばよい。 焼成温度は、 通常 900〜 1400°Cであり、 焼成時間は、 通常 0. 5〜50時間である。 また、 本発明の製造方法では、 焼 成前の混合物にフラックスを添加し、 これを焼成してもよい。 The calcination in the step (ii) is performed, for example, using nitrogen (N 2 ) containing about 0.1% to about 10% by volume of hydrogen, and argon (Ar) containing about 0.1% to about 10% by volume of hydrogen. What is necessary is just to perform under a reducing atmosphere. The firing temperature is usually 900 to 1400 ° C, and the firing time is usually 0.5 to 50 hours. Further, in the production method of the present invention, a flux may be added to the mixture before firing, and the mixture may be fired.
焼成して得られる蛍光体には、 粉碎、 洗浄、 分級のような処理を施してもよ い。 粉砕は、 例えば、 ポールミル、 ジェットミル等を用いて行えばよい。 洗浄 は、 例えば、 水洗により行えばよい。 さらに、 蛍光体または処理された蛍光体 は、 さらに、 焼成してもよい。 焼成することにより、 より高い輝度をもつ蛍光 体が得られる。 焼成を 2回以上行う場合、 焼成工程により得られる焼成物に、 前記のハロゲン化物を添加し、 これを焼成してもよい。 前記の方法により得られるケィ酸塩蛍光体は、 通常、 粒子であり、 結晶性が 高く、 高い輝度をもつ。 また、 このケィ酸塩蛍光体は色純度に優れる。 このケ ィ酸塩蛍光体は、 真空紫外線の他、 紫外線、 陰極線あるいは X線により励起さ れ、 発光する。 The phosphor obtained by firing may be subjected to treatments such as grinding, washing, and classification. The pulverization may be performed using, for example, a pole mill, a jet mill, or the like. Washing May be performed, for example, by washing with water. Further, the phosphor or treated phosphor may be further fired. By firing, a phosphor having higher luminance can be obtained. When firing is performed twice or more, the above-mentioned halide may be added to the fired product obtained in the firing step and fired. The silicate phosphor obtained by the above method is usually particles, has high crystallinity, and has high brightness. Further, this silicate phosphor has excellent color purity. The silicate phosphor emits light when excited by ultraviolet rays, cathode rays or X-rays in addition to vacuum ultraviolet rays.
さらに、 式(1)  Furthermore, equation (1)
mM'O · nM20 · 2 S i 02 (1) mM'O nM 2 0 2 S i 0 2 (1)
〔式(1)中、 M1は Ca S rおよび B aからなる群より選ばれる少なくとも 1 つであり、 M2は Mgおよび Znからなる群より選ばれる少なくとも 1つであ り、 mは 0. 5以上 3. 5以下、 nは 0. 5以上 2. 5以下である。 〕 により表される化合物、 および付活剤として Eu Mnからなる群より選ばれ る少なくとも 1つを含む物質を、 前記方法により製造すれば、 優れた輝度をも っケィ酸塩蛍光体が得られる。 [In the formula (1), M 1 is at least one selected from the group consisting of Ca Sr and Ba, M 2 is at least one selected from the group consisting of Mg and Zn, and m is 0 5 or more and 3.5 or less, and n is 0.5 or more and 2.5 or less. And a substance containing at least one selected from the group consisting of EuMn as an activator by the above method, a silicate phosphor having excellent luminance can be obtained. .
なお、 前記の式 Ca .g6Eu„.MMgS i26で示される蛍光体は、 式(1)にお いて、 M1が Ca M2が Mg、 付活剤が Euであり、 m= 1 n=lを満足 するものである。 また、 実施例に示す式 S rQ.1()C a .892 Eu Mg S i 26で 示される蛍光体は、 式(1)において M1が S rと Ca M2が Mg、 付活剤が E uであり、 m=l n= 1を満足するものである。 本発明の真空紫外線励起発光表示素子は、 前記の方法により得られる蛍光体 を含むものであり、 通常、 前記の蛍光体以外に電極を含む。 真空紫外線励起発 光表示素子としては、 PDP、 希ガスランプなどが挙げられる。 次に、 PDP を例示する。 PDPは、 通常、 背面基板、 蛍光体層、 透明電極、 バス電極、 誘 電体層および表面基板を含む。 このような P DPの製造方法は、 例えば、 特開 平 10— 195428号公報に開示され、 次の工程(I)〜(IV)を含む。 (I) 緑色発光用蛍光体、 赤色発光用蛍光体、 および青色発光用蛍光体、 それ ぞれの蛍光体について、 蛍光体、 バインダー (セルロース系化合物、 ポリビニ ルアルコール) および有機溶媒を混合して、 蛍光体ペーストを調製する工程、Incidentally, the above formula Ca. G6 Eu ". Phosphor represented by M MgS i 26 is have you to equation (1) is M 1 is the Ca M 2 Mg, activator Eu, m = those satisfying 1 n = l. also, the formula S r Q shown in example. 1 () C a. 892 Eu Mg S i 2 〇 phosphor represented by 6, M in formula (1) 1 S r and Ca M 2 is Mg, activator is E u, fluorescence is to satisfy m = ln = 1. VUV-excited light-emitting display device of the present invention, obtained by the method In general, the device includes an electrode in addition to the phosphor described above Examples of the vacuum ultraviolet ray excited light emitting display device include a PDP, a rare gas lamp, etc. Next, a PDP is exemplified. Usually, it includes a back substrate, a phosphor layer, a transparent electrode, a bus electrode, a dielectric layer, and a surface substrate.A method of manufacturing such a PDP is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-195428. of Steps (I) to (IV) are included. (I) Phosphor for green light emission, phosphor for red light emission, phosphor for blue light emission, and each phosphor mixed with phosphor, binder (cellulose-based compound, polyvinyl alcohol) and organic solvent Preparing a phosphor paste,
(II) 背面基板の内面の、 隔壁で仕切られ、 アドレス電極を備えたストライブ 状の基板表面と隔壁面に、 青色発光用、 緑色発光用および赤色発光用の(I)で 調製した蛍光体ペーストを、 それぞれ (スクリーン印刷などによって) 塗布し、 約 300°C〜約 600°Cの温度範囲で焼成し、 蛍光体層を形成する工程、 (II) The phosphor prepared in (I) for blue light emission, green light emission and red light emission on the stripe-shaped substrate surface provided with address electrodes and the partition surface on the inner surface of the rear substrate, which is partitioned by partitions. Applying paste (by screen printing, etc.) and baking at a temperature range of about 300 ° C to about 600 ° C to form a phosphor layer,
(III) 得られた蛍光体層に、 これと直交する方向の透明電極およびバス電極 を備え、 内面に誘電体層と保護層を設けた表面ガラス基板を重ねて接着するェ 程、  (III) a step of laminating and bonding a surface glass substrate provided with a transparent electrode and a bus electrode in the direction orthogonal to the obtained phosphor layer and having a dielectric layer and a protective layer on the inner surface thereof,
(IV) 背面基板と表面ガラス基板に囲まれた内部を排気して減圧の希ガス (X e、 Neなど) を封入し、 放電空間を形成する工程。 実施例  (IV) A process of evacuating the interior surrounded by the rear substrate and the front glass substrate, filling a reduced pressure rare gas (Xe, Ne, etc.), and forming a discharge space. Example
本発明を実施例により詳しく説明するが、 本発明はこれらの実施例に限定さ れるものではない。 金属化合物 (酸化ケィ素) の BET比表面積は窒素吸着法 により求めた。 参照例 1  The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The BET specific surface area of the metal compound (silicon oxide) was determined by the nitrogen adsorption method. Reference example 1
炭酸カルシウム (宇部マテリアルズ株式会社製、 CaC03) 炭酸ストロン チウム (堺化学工業株式会社製、 S r C〇3) 、 酸化ユーロピウム (信越化学 工業株式会社製、 Eu203) 、 塩基性炭酸マグネシウム (協和化学工業株式会 社製、 (MgC〇3) 4M (OH) 2· 5Η20) 、 酸化ケィ素 (日本ァエロジ ル株式会社製、 S i〇2、 BET比表面積: 200m2/g) を C a : S r : E u : Mg : S iのモル比が 0. 892 : 0. 10 : 0. 008 : 1 : 2になる ように混合した。 Calcium carbonate (Ube Material Industries, Ltd., CAC0 3) carbonate stolons lithium (manufactured by Sakai Chemical Industry Co., Ltd., S r C_〇 3), europium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., Eu 2 0 3), basic carbonate magnesium (Kyowa chemical industry stock Company, Ltd., (MgC_〇 3) 4 M (OH) 2 · 5Η 2 0), oxidation Kei arsenide (Japan Aeroji Le Co., Ltd., S I_〇 2, BET specific surface area: 200m 2 / g) was mixed so that the molar ratio of Ca: Sr: Eu: Mg: Si was 0.782: 0.10: 0.008: 1: 2.
〔焼成〕 (Fired)
得られた混合物をアルミナポートに入れ、 次いでアルミナポートを焼成炉内 に設置した。 混合物を、 雰囲気: 2体積%H2含有アルゴンガス、 室温から 1 165 °Cまで昇温時間: 2時間 30分、 1 165 °Cの保持時間: 2時間の条件 で焼成して、 式 C aQ.892 S
Figure imgf000008_0001
S i 206で示される化合物 (蛍光 体) を得た。 〔蛍光体の輝度評価〕
The obtained mixture was put in an alumina port, and then the alumina port was set in a firing furnace. The mixture Atmosphere: 2 vol% H 2 containing argon gas, from room 1 Heating time to 165 ° C: 2 hours and 30 minutes, holding time at 1 165 ° C: 2 hours, and calcined by the formula C a Q .892 S
Figure imgf000008_0001
To give a compound represented by S i 2 0 6 a (phosphor). (Brightness evaluation of phosphor)
得られた蛍光体は、 6. 7 P a (5 X 10— 2To r r) 以下の真空槽内でェ キシマ 146 nmランプ (ゥシォ電機社製、 H0012型) を用いて真空紫外 線を照射したとき、 青色を発光した。 このときの輝度を 100とする。 実施例 1 The resulting phosphor, 6. 7 P a (5 X 10- 2 To rr) following E in a vacuum chamber screeching 146 nm lamp (Ushio Denki Co., H0012 type) was irradiated with vacuum ultraviolet ray using When it emitted blue light. The luminance at this time is assumed to be 100. Example 1
炭酸カルシウム (宇部マテリアルズ株式会社製、 C aC〇3) 、 炭酸スト口 ンチゥム (堺化学工業株式会社製、 S r C〇3) 、 酸化ユーロピウム (信越化 学工業株式会社製、 Eu23) 、 塩基性炭酸マグネシウム (協和化学工業株式 会社製、 (MgC〇3) 4Mg (OH) 2· 5Η20) 、 酸化ケィ素 (日本ァエロ ジル株式会社製、 S i 02、 BET比表面積: 20 Om2/g) を C a : S r : Eu : Mg : S iのモル比が 0. 892 : 0. 10 : 0. 008 : 1 : 2にな るように混合して金属化合物を得、 次いで、 この金属化合物と、 ハロゲン化物 として塩化アンモニゥム (和光純薬工業株式会社製、 NH4C 1) を混合して、 塩化ァンモニゥムを 7重量%含む混合物を得た。 Calcium carbonate (Ube Material Industries, Ltd., C AC_〇 3), carbonate strike opening Nchiumu (manufactured by Sakai Chemical Industry Co., Ltd., S r C_〇 3), europium oxide (manufactured by Shin-Etsu Chemical Industry Co., Ltd., Eu 23 ), basic magnesium carbonate (manufactured by Kyowa chemical industry Co., Ltd., Ltd., (MgC_〇 3) 4 Mg (OH) 2 · 5Η 2 0), oxidation Kei arsenide (Japan Aero Jill Co., Ltd., S i 0 2, BET specific surface area : 20 Om 2 / g) so that the molar ratio of Ca: Sr: Eu: Mg: Si becomes 0.892: 0.10: 0.008: 1: 2 to form a metal compound. obtained, then, a metal compound, Anmoniumu chloride as halide (manufactured by Wako Pure chemical Industries, Ltd., NH 4 C 1) were mixed to obtain a mixture containing chloride Anmoniumu 7 wt%.
得られた混合物について、 参照例 1の 〔焼成〕 と同じ操作を行って、 式 Ca 0.892 S r0.10Eu 0.008Mg S i 206で示される蛍光体を得た。 この蛍光体について、 参照例 1の 〔蛍光体の輝度評価〕 と同じ条件で評価した。 この蛍光体は青色を 発光し、 輝度が 106であった。 実施例 2 The resulting mixture is subjected to the same procedure as Reference Example 1 [calcination], to give a formula Ca 0. 892 S r 0. 10 Eu 0. 008 phosphor represented by Mg S i 2 0 6. This phosphor was evaluated under the same conditions as in Reference Example 1 [Evaluation of Luminance of Phosphor]. This phosphor emitted blue light and had a luminance of 106. Example 2
炭酸カルシウム (宇部マテリアルズ株式会社製、 CaC03) 、 塩化スト口 ンチウム 6水和物 (堺化学工業株式会社製、 S rC 12 · 6Η20) 、 酸化ユー 口ピウム (信越化学工業株式会社製、 Eu23) 、 塩基性炭酸マグネシウム (協和化学工業株式会社製、 (MgC〇3) 4Mg (OH) 2 · 5Η20) 、 酸化 ケィ素 (日本ァエロジル株式会社製、 S i 02、 BET比表面積: 20 OmV g) 各出発原料を C a : S r : Eu : Mg : S iのモル比が 0. 892 : 0. 10 : 0. 008 : 1 : 2になるように混合して、 塩化ストロンチウム 7重 量%を含む混合物を得た。 Calcium carbonate (Ube Material Industries, Ltd., CaC0 3), chloride strike opening Nchiumu hexahydrate (manufactured by Sakai Chemical Industry Co., Ltd., S rC 1 2 · 6Η 2 0), oxidized user port Piumu (Shin-Etsu Chemical Co., Ltd. Ltd., Eu 23), basic magnesium carbonate (manufactured by Kyowa chemical industry Co., Ltd., (MgC_〇 3) 4 Mg (OH) 2 · 5Η 2 0), oxidized Keimoto (Nippon Aerojiru Ltd., S i 0 2 , BET specific surface area: 20 OmV g) Mix each starting material so that the molar ratio of Ca: Sr: Eu: Mg: Si becomes 0.892: 0.10: 0.008: 1: 2, and strontium chloride 7 weight % Was obtained.
得られた混合物について、 参照例 1の 〔焼成〕 と同じ操作を行って、 式 Ca 。.892 S
Figure imgf000009_0001
i26で示される蛍光体を得た。 この蛍光体について、 参照例 1の 〔蛍光体の輝度評価〕 と同じ条件で評価した。 この蛍光体は青色を 発光し、 輝度が 123であった。 参照例 2 .
The obtained mixture was subjected to the same operation as [calcination] in Reference Example 1 to obtain a compound of the formula Ca. . 892 S
Figure imgf000009_0001
to obtain a phosphor represented by i 26. This phosphor was evaluated under the same conditions as in Reference Example 1 [Evaluation of Luminance of Phosphor]. This phosphor emitted blue light and had a luminance of 123. Reference example 2.
炭酸カルシウム (宇部マテリアルズ株式会社製、 CaC〇3) 、 炭酸スト口 ンチウム (堺化学工業株式会社製、 S r C03) 、 酸化ユーロピウム (信越化 学工業株式会社製、 Eu23) 、 塩基性炭酸マグネシウム (協和化学工業株式 会社製、 (MgC〇3) 4Mg (OH) 2 · 5Η2〇) 、 酸化ケィ素 (日本ァエロ ジル株式会社製、 S i 02、 BET比表面積: 20 OrnVg) を C a : S r : Eu : Mg: S iのモル比が 0. 788 : 0. 20 : 0. 012 : 1 : 2にな るように混合した。 Calcium carbonate (Ube Material Co., Ltd., CaC_〇 3), carbonate strike opening Nchiumu (manufactured by Sakai Chemical Industry Co., Ltd., S r C0 3), europium oxide (Shin-Etsu Chemical Industry Co., Ltd., Eu 23), basic magnesium carbonate (manufactured by Kyowa chemical industry Co., Ltd., Ltd., (MgC_〇 3) 4 Mg (OH) 2 · 5Η 2 〇), oxidation Kei arsenide (Japan Aero Jill Co., Ltd., S i 0 2, BET specific surface area: 20 OrnVg) was mixed so that the molar ratio of Ca: Sr: Eu: Mg: Si was 0.778: 0.20: 0.012: 1: 2.
得られた混合物について、 参照例 1の 〔焼成〕 と同じ操作を行って、 式 C a 0.788 S r0.20Eu0.012Mg S i 206で示される蛍光体を得た。 この蛍光体について、 参照例 1の 〔蛍光体の輝度評価〕 と同じ条件で評価した。 この蛍光体は青色を 発光し、 輝度が 104であった。 実施例 3 The resulting mixture is subjected to the same procedure as Reference Example 1 [calcination], to give the formula C a 0. 788 S r 0 . 20 Eu 0. 012 phosphor represented by Mg S i 2 0 6. This phosphor was evaluated under the same conditions as in Reference Example 1 [Evaluation of Luminance of Phosphor]. This phosphor emitted blue light and had a luminance of 104. Example 3
炭酸カルシウム (宇部マテリアルズ株式会社製、 C aC〇3) 、 炭酸スト口 ンチウム (堺化学工業株式会社製、 S r C〇3) 、 酸化ユーロピウム (信越化 学工業株式会社製、 Eu23) 、 塩基性炭酸マグネシウム (協和化学工業株式 会社製、 (MgC〇3) 4Mg (OH) 2 · 5Η20) 、 酸化ゲイ素 (日本ァエロ ジル株式会社製、 S i 02、 BET比表面積: 200m/g) を C a : S r : E u: M g: S iのモル比が 0. 788 : 0. 20 : 0. 012 : 1 : 2にな るように混合して金属化合物を得、 次いで、 この金属化合物と、 ハロゲン化物 として塩化アンモニゥム (和光純薬工業株式会社製、 NH4C 1) を混合して、 塩化アンモニゥムを 7重量%含む混合物を得た。 Calcium carbonate (Ube Material Industries, Ltd., C AC_〇 3), carbonate strike opening Nchiumu (manufactured by Sakai Chemical Industry Co., Ltd., S r C_〇 3), europium oxide (manufactured by Shin-Etsu Chemical Industry Co., Ltd., Eu 23 ), basic magnesium carbonate (manufactured by Kyowa chemical industry Co., Ltd., Ltd., (MgC_〇 3) 4 Mg (OH) 2 · 5Η 2 0), oxidation Gay arsenide (Japan Aero Jill Co., Ltd., S i 0 2, BET specific surface area : 200m / g) to mix the metal compound by mixing so that the molar ratio of Ca: Sr: Eu: Mg: Si becomes 0.788: 0.20: 0.012: 1: 2. And then the metal compound and a halide Was mixed with ammonium chloride (manufactured by Wako Pure Chemical Industries, Ltd., NH 4 C 1) to obtain a mixture containing 7% by weight of ammonium chloride.
得られた混合物について、 参照例 1の 〔焼成〕 と同じ操作を行って、 式 Ca 0.788 S r0.20Eu0.012Mg S i 206で示される蛍光体を得た。 この蛍光体について、 参照例 1の 〔蛍光体の輝度評価〕 と同じ条件で評価した。 この蛍光体は青色を 発光し、 輝度が 1 14であった。 実施例 4 The resulting mixture is subjected to the same procedure as Reference Example 1 [calcination], to give a formula Ca 0. 788 S r 0. 20 Eu 0. 012 phosphor represented by Mg S i 2 0 6. This phosphor was evaluated under the same conditions as in Reference Example 1 [Evaluation of Luminance of Phosphor]. This phosphor emitted blue light and had a luminance of 114. Example 4
酸化ゲイ素 (日本ァエロジル株式会社製、 S i〇2、 BET比表面積: 20 0m2/g) の代わりに、 酸化ゲイ素 (株式会社アドマテックス製、 S i〇2、 BET比表面積: 1 5〜25m2Zg) を用いた以外、 実施例 3と同じ操作を 行った。 得られた蛍光体 (C a。.788 S r。.2。Eu。,。12Mg S i 206) は、 青色を発 光し、 輝度が 1 1 1であった。 実施例 5 Oxidation Gay arsenide (Japan Aerojiru Co., Ltd., S I_〇 2, BET specific surface area: 20 0m 2 / g) in place of the oxide gay arsenide (Co. Admatechs made, S I_〇 2, BET specific surface area: 1 5 The same operation as in Example 3 was performed except that 〜25 m 2 Zg) was used. The resulting phosphor (C a .. 788 S r .. 2 .Eu.,. 12 Mg S i 2 0 6) is blue and emitting light, the luminance was 1 1 1. Example 5
酸化ケィ素 (日本ァエロジル株式会社製、 S i〇2、 BET比表面積: 20 OmVg) の代わりに、 酸化ケィ素 (株式会社アドマテックス製、 S i〇2、 BET比表面積: 2〜5m2Zg) を用いた以外、 実施例 3と同じ操作を行つ た。 得られた蛍光体 (C a。.788 S r。.2。Eu。.。12Mg S i 206) は、 青色を発光し、 輝度が 106であった。 Oxidation Kei arsenide (Japan Aerojiru Co., Ltd., S I_〇 2, BET specific surface area: 20 OmVg) instead of, oxidation Kei arsenide (Co. Admatechs made, S I_〇 2, BET specific surface area: 2~5m 2 Zg ) Was performed, except that) was used. The resulting phosphor (C a .. 788 S r .. 2 .Eu ... 12 Mg S i 2 0 6) emits a blue luminance was 106.

Claims

請求の範囲 The scope of the claims
I. 工程(i)および(ii)を含むゲイ酸塩蛍光体の製造方法。 I. A method for producing a gaylate phosphor comprising steps (i) and (ii).
(i)金属化合物と八ロゲン化物を混合する工程、  (i) a step of mixing a metal compound and an octalogenide,
(ii)得られる混合物を焼成する工程。  (ii) firing the resulting mixture.
2.. 金属化合物は、 S i、 Ca、 S r、 Ba、 Mg、 Eu、 Mnおよび Znか らなる群より選ばれる少なくとも 1つの元素の化合物を含む請求項 1記載 の方法。  2. The method according to claim 1, wherein the metal compound includes a compound of at least one element selected from the group consisting of Si, Ca, Sr, Ba, Mg, Eu, Mn and Zn.
3. 金属化合物は、 酸化ゲイ素を含む請求項 2記載の方法。  3. The method according to claim 2, wherein the metal compound includes a gay oxide.
4. 酸化ケィ素は、 BET比表面積が 10m2/g以上である請求項 3記載の 方法。 4. The method according to claim 3, wherein the silicon oxide has a BET specific surface area of 10 m 2 / g or more.
5. ハロゲン化物は、 ハロゲン化アンモニゥム、 金属ハロゲン化物からなる群 より選ばれる少なくとも 1つである請求項 1〜 4のいずれかに記載の方法。 5. The method according to claim 1, wherein the halide is at least one selected from the group consisting of an ammonium halide and a metal halide.
6. ハロゲン化物は、 ハロゲン化アンモニゥムである請求項 5記載の方法。 6. The method according to claim 5, wherein the halide is a halogenated ammonium.
7. ハロゲン化物は、 塩ィ匕アンモニゥムである請求項 6記載の方法。 7. The method according to claim 6, wherein the halide is salted ammonia.
8. 請求項 1記載の方法により得られ、 かつ、 式 α)  8. Obtained by the method of claim 1 and having the formula α)
mM^ · nM20 · 2 S i 02 (1) mM ^ nM 2 0 2 S i 0 2 (1)
〔式(1)中、 M1は Ca、 S rおよび B aからなる群より選ばれる少なくと も 1つであり、 M2は Mgおよび Z nからなる群より選ばれる少なくとも 1つであり、 mは 0. 5以上 3· 5以下、 nは 0. 5以上 2. 5以下であ る。 〕 ·τ[In the formula (1), M 1 is at least one selected from the group consisting of Ca, S r and Ba; M 2 is at least one selected from the group consisting of Mg and Zn; m is 0.5 or more and 3.5 or less, and n is 0.5 or more and 2.5 or less. · Τ ,
により表される化合物、 および付活剤として Eu、 Mnからなる群より選 ばれる少なくとも 1つを含むケィ酸塩蛍光体。  And a silicate phosphor containing at least one selected from the group consisting of Eu and Mn as an activator.
9. 請求項 1記載の方法により得られるケィ酸塩蛍光体を含む真空紫外線励起 発光素子。 9. A vacuum ultraviolet-excited light emitting device containing a silicate phosphor obtained by the method according to claim 1.
10. 請求項 1記載の方法により得られるケィ酸塩蛍光体の真空紫外線励起発 光素子としての使用。  10. Use of a silicate phosphor obtained by the method according to claim 1 as a vacuum ultraviolet ray excited light emitting device.
I I. 請求項 8記載のケィ酸塩蛍光体を含む真空紫外線励起発光素子。  I I. A VUV-excited light-emitting device comprising the silicate phosphor according to claim 8.
12. 請求項 8記載のケィ酸塩蛍光体の真空紫外線励起発光素子としての使用。  12. Use of the silicate phosphor according to claim 8 as a VUV-excited light emitting device.
PCT/JP2005/003091 2004-02-27 2005-02-18 Method for producing silicate phosphor and vacuum ultraviolet excited light-emitting device WO2005083035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004053333 2004-02-27
JP2004-053333 2004-02-27

Publications (1)

Publication Number Publication Date
WO2005083035A1 true WO2005083035A1 (en) 2005-09-09

Family

ID=34908736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003091 WO2005083035A1 (en) 2004-02-27 2005-02-18 Method for producing silicate phosphor and vacuum ultraviolet excited light-emitting device

Country Status (2)

Country Link
TW (1) TW200528537A (en)
WO (1) WO2005083035A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209206A (en) * 2009-03-10 2010-09-24 Ube Material Industries Ltd Blue light-emitting phosphor
US20110006325A1 (en) * 2007-12-07 2011-01-13 Tsutomu Ishii Phosphor and led light-emitting device using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400319B (en) * 2009-07-08 2013-07-01 Epistar Corp Phosphor material and the manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210880A (en) * 1975-07-15 1977-01-27 Matsushita Electric Ind Co Ltd Fluorescent substances
JPS56155280A (en) * 1980-04-11 1981-12-01 Toshiba Corp Bluish green-luminescent fluorescent substance
JPS646087A (en) * 1987-06-30 1989-01-10 Hitachi Ltd Synthesis of fluophor
JPH04293990A (en) * 1990-12-10 1992-10-19 Gte Prod Corp Manganese-activated zinc silicogermanate phosphor and its manufacture
WO2002083814A1 (en) * 2001-04-18 2002-10-24 Shandong Lunbo Ind. & Comm. Group Co Limited Alkali earth aluminate-silicate photoluminescent pigment which is activated by rare-earth elements
JP2004131677A (en) * 2002-10-10 2004-04-30 Kasei Optonix Co Ltd Divalent metal silicate phosphor, method for producing the same, and phosphor paste composition and vacuum ultraviolet light-excited light-emitting element by using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210880A (en) * 1975-07-15 1977-01-27 Matsushita Electric Ind Co Ltd Fluorescent substances
JPS56155280A (en) * 1980-04-11 1981-12-01 Toshiba Corp Bluish green-luminescent fluorescent substance
JPS646087A (en) * 1987-06-30 1989-01-10 Hitachi Ltd Synthesis of fluophor
JPH04293990A (en) * 1990-12-10 1992-10-19 Gte Prod Corp Manganese-activated zinc silicogermanate phosphor and its manufacture
WO2002083814A1 (en) * 2001-04-18 2002-10-24 Shandong Lunbo Ind. & Comm. Group Co Limited Alkali earth aluminate-silicate photoluminescent pigment which is activated by rare-earth elements
JP2004131677A (en) * 2002-10-10 2004-04-30 Kasei Optonix Co Ltd Divalent metal silicate phosphor, method for producing the same, and phosphor paste composition and vacuum ultraviolet light-excited light-emitting element by using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110006325A1 (en) * 2007-12-07 2011-01-13 Tsutomu Ishii Phosphor and led light-emitting device using the same
TWI394816B (en) * 2007-12-07 2013-05-01 Toshiba Kk A phosphor and a light emitting device using the same
US8487330B2 (en) * 2007-12-07 2013-07-16 Kabushiki Kaisha Toshiba Phosphor and LED light-emitting device using the same
US9169436B2 (en) 2007-12-07 2015-10-27 Kabushiki Kaisha Toshiba Phosphor and LED light emitting device using the same
US9660149B2 (en) 2007-12-07 2017-05-23 Kabushiki Kaisha Toshiba Phosphor and LED light emitting device using the same
JP2010209206A (en) * 2009-03-10 2010-09-24 Ube Material Industries Ltd Blue light-emitting phosphor

Also Published As

Publication number Publication date
TW200528537A (en) 2005-09-01

Similar Documents

Publication Publication Date Title
JP2009074090A (en) Phosphor for vacuum-ultraviolet ray-excited light-emitting element
JP2005272831A (en) Method for producing silicate phosphor
JP2003096448A (en) Fluorescent substance for vacuum ultraviolet-excited light-emitting element
KR101573104B1 (en) Light-emitting laminate
WO2005083035A1 (en) Method for producing silicate phosphor and vacuum ultraviolet excited light-emitting device
US7410599B2 (en) Stable green phosphor and plasma display panel using the same
WO2005019375A1 (en) Phosphor and vacuum ultraviolet excited light emitting element
JP2002194346A (en) Method for producing aluminate fluorescent substance
JP4222099B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4572588B2 (en) Phosphor for UV-excited light emitting device
JP5380790B2 (en) Alkaline earth metal aluminate phosphor and fluorescent lamp using the same
WO2004111155A1 (en) Ultraviolet excited light-emitting device
JP4228628B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4325364B2 (en) Method for manufacturing phosphor
JP2002348570A (en) Vacuum ultraviolet-excited fluorescent substance and method for producing the same
JP2005060670A (en) Silicate phosphor
JP2009120681A (en) Rare earth phosphorus vanadate phosphor and vacuum ultraviolet-excitable light-emitting device using the same
JP4622135B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP2008050390A (en) Vacuum ultraviolet excitation aluminate phosphor and vacuum ultraviolet excitation light emitting device using the same
JP2003183644A (en) Method of production for silicate fluorescent substance
JP2003261868A (en) Manufacturing method for silicate fluorescent material
JP4232559B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP2006206619A (en) Phosphor
JP2005089688A (en) Preparation process of silicate phosphor
JP3994775B2 (en) Phosphor for vacuum ultraviolet light-excited light emitting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase