JP2004131677A - Divalent metal silicate phosphor, method for producing the same, and phosphor paste composition and vacuum ultraviolet light-excited light-emitting element by using the same - Google Patents

Divalent metal silicate phosphor, method for producing the same, and phosphor paste composition and vacuum ultraviolet light-excited light-emitting element by using the same Download PDF

Info

Publication number
JP2004131677A
JP2004131677A JP2002332900A JP2002332900A JP2004131677A JP 2004131677 A JP2004131677 A JP 2004131677A JP 2002332900 A JP2002332900 A JP 2002332900A JP 2002332900 A JP2002332900 A JP 2002332900A JP 2004131677 A JP2004131677 A JP 2004131677A
Authority
JP
Japan
Prior art keywords
phosphor
metal silicate
divalent metal
silicate phosphor
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002332900A
Other languages
Japanese (ja)
Inventor
Kohei Matsuda
松田 康平
Takayuki Hisamune
久宗 孝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP2002332900A priority Critical patent/JP2004131677A/en
Priority to KR10-2003-0017366A priority patent/KR20030076397A/en
Priority to US10/391,627 priority patent/US6899825B2/en
Publication of JP2004131677A publication Critical patent/JP2004131677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a divalent metal silicate phosphor emitting blue color light and improved with light-emitting efficiency, a phosphor paste composition and a VUV-excited light-emitting element having high luminosity by using the improved phosphor. <P>SOLUTION: This phosphor paste composition is provided by incorporating a specific amount of chlorine in the crystalline matrix of an Eu-activated divalent metal silicate phosphor expressed by compositional formula: CaMgSi<SB>2</SB>O<SB>6</SB>:Eu, making its particle size small and using the phosphor. The VUV-excited light-emitting element is provided by forming its phosphor film with the above phosphor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、波長200nm以下の真空紫外線(VUV)及び紫外線(UV)による励起によって青色に発光する2価金属珪酸塩蛍光体、及びにその製造方法、並びにこの蛍光体を含有する蛍光体ペースト組成物及び真空紫外線励起発光素子(VUV励起発光素子)及び蛍光ランプに関する。
【0002】
【従来の技術】
近年、スキャナーの読みとり用光源等に使われる希ガスランプやプラズマディスプレイパネル(PDP)等に代表されるように、Ar、Xe、He、Ne、若しくは、これらの混合ガス等の希ガスをガラス等によって形成された外囲器中に封入し、その希ガスの放電によって放射されるVUVにより外囲器内部のVUV用蛍光体からなる蛍光膜を励起して発光させる構造のVUV励起発光素子の開発が盛んに行われている。
【0003】
VUV励起発光素子の代表例である希ガスランプは、ガラス製の細管内にXe、Xe−Ne等の希ガスが封入されていて、その管の内壁面には、VUVにより励起されると発光するVUV用蛍光体からなる蛍光膜が形成されている。この希ガスランプの電極間に電気エネルギーを印加すると、該ガラス細管内に希ガス放電が起こり、その時放射されるVUVにより管の内壁面に形成されている蛍光膜が励起されて可視光を発する。
【0004】
また、VUV励起発光素子の他の代表例であるPDPは原理的には、前記のVUV励起の希ガスランプを更に小さくし、異なる3色の希ガスランプをストライプ状、もしくはマトリックス状に並べたものと考えることが出来る。つまり、狭い放電空間(セル)がストライプ状、もしくはマトリックス状に配置されたものである。各セルには電極が設けられ、各セルの内部にはVUV用蛍光体からなる蛍光膜が形成されている。各セル内にはXe、Xe−Ne、He−Xe,He−Ne−Xe等の希ガスが封入されて、セル内の電極から電気エネルギーを印加すると、セル内に希ガス放電が起こってVUVが放射され、このVUVによりセル内の蛍光膜が励起されて可視光を発し、この発光によって画像が表示される。フルカラーPDPの場合、VUV励起によりそれぞれ赤、青、緑に発光する蛍光体を蛍光膜とする各セルをストライプ状もしくはマトリックス状に配置することにより、フルカラーの表示を行うことが出来る。
【0005】
そして、これらVUV励起発光素子の蛍光膜形成用の蛍光体としては(Y,Gd)BO:Eu等の赤色発光蛍光体、LaPO:Ce,Tb、(Ba,Sr)MgAl1017:Eu,Mn、ZnSiO:Mn等の緑色発光蛍光体、BaMgAl1017:Eu等の青色発光蛍光体等が所望の発光色に応じてそれぞれ単独もしくは混合して用いられている。(電子材料誌 1997年12月号 工業調査会社等参照)。VUV励起発光素子の蛍光膜として実用されている、これらVUV用の実用蛍光体の中、青色成分として主として実用されている蛍光体はBaMgAl1017:Euの組成をもった、通称BAMと略称されているアルミン酸塩蛍光体であるが、このBAM蛍光体はVUVを照射して励起した時の発光輝度が高く、また青色としての色純度が良好であるものの、この蛍光体を用いたVUV励起発光素子の蛍光膜形成時におけるベーキング工程での輝度劣化(ベーキング劣化)が大きいことと、VUV励起発光素子を駆動させてVUVに長時間晒らされた際の経時的な発光輝度の低下(VUV劣化)が大きいといった欠点を有しており、ベーキング劣化やVUV劣化がより少ない青色発光のVUV励起用蛍光体の開発が望まれている。
【0006】
この様な問題の改善策として、ベーキング劣化やVUV劣化の比較的少ない青色発光蛍光体の1つに、Euを付活剤とし、その組成式がCaMgSi:Euで表される2価金属の珪酸塩蛍光体が報告されている(Proceedings of The 8th International Display Workshops2001pp.1115参照)。しかしながら、この蛍光体は従来の青色蛍光体であるBAMに比べ輝度が低いことが問題であり、実用可能なレベルに向け輝度の改善検討が行われている。
【0007】
また、この様な品質への影響の大きい蛍光体の製造法に付いて見ると、当蛍光体ではCaの原料としてはCaCOを、Mgの原料としてはMgCOやMgCO・2Mg(OH)を、Siの原料としてはSiOを、またEuの原料としてはEuを使用することが一般的方法として紹介されている。しかしながら一方ではこれら原料のみを調合、焼成しても青色蛍光体として満足の行く発光強度を持った組成式CaMgSi:Euで表される2価金属の珪酸塩蛍光体蛍光体は生成できないことが知られている。
【0008】
これに対し、この2価金属の珪酸塩蛍光体蛍光体を製造する別な方法としてEuの代わりにEuFを使用する方法が紹介され、色純度がよく、比較的強い青色発光を示す蛍光体が得られるという報告がなされている。
しかしながら、希ガスランプやPDPといったVUV励起発光素子に、実用上問題の無い程度に均一で緻密な蛍光膜を形成するためには、蛍光体粒子に適正な粉体特性を持たせることが必要であり、具体的にはコールターカウンター法によって測定した粒径が、10μm以下、好ましくは1〜7μm程度、より好ましくは1〜4μm程度の小粒子であること更に、その粒度分布についてはσlog(L)とσlog(S)が0.5以下であることが望ましい。従来知られているEuF3を使用した製造方法では、得られる蛍光体粒子の粒径が大きくなりすぎ、上記の様な蛍光膜を形成するに相応しい粉体特性の範囲のものが得られていないのが現状である。
【0009】
またこの蛍光体の場合、ベーキング劣化やVUV劣化の程度が比較的少ないとは言え、従来の青色蛍光体であるBAM(BaMgAl1017:Eu)と比較して輝度が低いことも問題である。
【0010】
更に、AC型のPDPでは、塗布された蛍光体の帯電傾向によって放電開始電圧が影響を受け変化することが知られている。例えば正帯電しやすいBAMや(Y,Gd)BO:Euでは放電開始電圧が低く、負帯電しやすいZnSiO:Mnで高い。回路面からは放電開始電圧が低い方が望ましい。従来の製法で作製したCaMgSi:Euは、負帯電しやすく、放電開始に高圧を要する。これもまたCaMgSi:EuがPDPに実用化されない一因であった。ここで言う帯電傾向は、その物質のブローオフ帯電量を測定することで評価することが出来る。具体的には蛍光体粉末とポバール樹脂ビーズを混合、振とうし両者に摩擦帯電を発生させ、そのブローオフ帯電量を測定することで蛍光体粉末の帯電量を評価した。
【0011】
【発明が解決しようとする課題】
本発明は上記のような状況に鑑みてなされたもので、従来のものよりも発光輝度が高く、希ガスランプやPDPといったVUV励起発光素子の蛍光膜形成に好ましい粉体特性(粒度特性)を有する粒径の小さな青色発光の2価金属珪酸塩蛍光体及びその製造方法、並びにこの改善蛍光体を用いた蛍光体ペースト組成物及びVUV励起発光素子を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者等は、組成式CaMgSi:Euで表される、Euを付活剤とした珪酸塩蛍光体ついて種々検討したところ、従来のEu付活2価金属珪酸塩蛍光体の母体中に塩素を特定量含有させた場合、又は蛍光体原料を少なくとも1回以上800℃以上焼成する工程において、蛍光体原料中に塩素化合物もしくは塩素を含有させることによりEu付活2価金属珪酸塩蛍光体を製造した場合、VUV励起下での発光輝度が向上することを見出した。また上記の改善仕様により、従来の仕様では出来なかったVUV励起発光素子蛍光膜を形成するに適した比較的小さい粒径の蛍光体の製造が可能となり、また更に蛍光体粒子の重量中央粒径D50が7μm以下でかつσlog(L)とσlog(S)が0.5以下にコントロールされた場合は、驚くべきことに、ブローオフによる帯電傾向が正帯電となり易い蛍光体が得られることも、併せて見出すことが出来た。
【0013】
更にこの改善された蛍光体を用いた蛍光体ペースト組成物を使用することにより、VUV励起発光素子に蛍光膜を形成する事が可能となるとともに、青色成分の輝度が改善されたVUV励起発光素子となることを見出した。
本発明者等はこのCaMgSi:Euで表される蛍光体について、上記の様に改善の諸仕様を見出し、本発明に至った。
即ち、下記の構成を採用することによって本発明の上記目的は達成される。
【0014】
(1)基本組成が、一般式(Ca1−x−uEuII )O・a(Mg1−vZn)O・bSiO・wMIIIで表され、かつ塩素を含有していることを特徴とする2価金属珪酸塩蛍光体。
{但し、上記式中、MIIはバリウム(Ba)およびストロンチウム(Sr)の中の少なくとも1種の金属元素を表し、MIIIはランタン(La)、イットリウム(Y)、セリウム(Ce)、インジウム(In)およびビスマス(Bi)の中の少なくとも1種の金属元素を表し、a、b、x、u、vおよびwはそれぞれ0.9≦a≦1.1、1.9≦b≦2.2、5×10−3≦x≦10−1及び0≦u+v+w≦4×10−1なる条件を満たす数を表す。}
(2)蛍光体に含有されている塩素の量が、20000ppm以下であることを特徴とする(1)記載の2価金属珪酸塩蛍光体。
【0015】
(3)コールター・カウンター法で測定した重量中央粒径D50が、1〜7μmの範囲内にあることを特徴とする(1)または(2)記載の2価金属珪酸塩蛍光体。
(4)コールター・カウンター法で測定した重量中央粒径D50が、1〜4μmの範囲内にあることを特徴とする(3)記載の2価金属珪酸塩蛍光体。
(5)コールター・カウンター法で測定したσlog(L)とσlog(S)が、0.5以下であることを特徴とする(3)または(4)記載の2価金属珪酸塩蛍光体。
【0016】
(6)ポバール樹脂に対する相対的なブローオフ帯電量が、正帯電となることを特徴とする(1)〜(5)のいずれか1項に記載の2価金属珪酸塩蛍光体。
(7)前記の2価金属珪酸塩蛍光体の製造方法において、蛍光体原料を少なくとも1回以上800℃以上焼成する工程で、蛍光体原料中に塩素化合物もしくは塩素を含有させることを特徴とする前記(1)〜(6)の何れか1項目に記載の2価金属珪酸塩蛍光体の製造方法。
(8)蛍光体原料中に含有されている塩素の量が、0.001wt%以上であることを特徴とする(7)記載の2価金属珪酸塩蛍光体の製造方法。
(9)蛍光体原料中に含有させる塩素化合物として、塩化アンモニウムを使用することを特徴とする(7)及び(8)記載の2価金属珪酸塩蛍光体の製造方法。
【0017】
(10)バインダーを溶解した溶媒中に蛍光体を分散させてなる蛍光体ペースト組成物において、上記蛍光体が、(1)〜(6)のいずれか1項記載の2価金属珪酸塩蛍光体であること、もしくは(7)〜(9)のいずれか1項記載の製造方法により製造された2価金属珪酸塩蛍光体であることを特徴とする蛍光体ペースト組成物。
(11)蛍光膜が形成された外囲器内に封入されている希ガスの放電によって放射される真空紫外線により、該蛍光膜を励起して発光させる紫外線励起発光素子において、上記蛍光膜が、(1)〜(6)のいずれか1項に記載の2価金属珪酸塩蛍光体もしくは(7)〜(9)のいずれか1項記載の製造方法により製造された2価金属珪酸塩蛍光体により形成されていることを特徴とする真空紫外線励起発光素子。
【0018】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の蛍光体を製造するには、化学量論的に(Ca1−x−uEuII )O・a(Mg1−vZn)O・bSiO・wMIII{但し、上記式中、MIIはBaおよびSrの中の少なくとも1種の金属元素を表し、MIIIはLa、Y、Ce、InおよびBiの中の少なくとも1種の金属元素を表し、a、b、w、x、uおよびvはそれぞれ0.9≦a≦1.1、1.9≦b≦2.2、5×10−3≦x≦10−1及び0≦u+v+w≦4×10−1なる条件を満たす数を表す。以下、同様である。}となる割合で、蛍光体を構成するCa、Mg、Si、Eu、Zn及びMII、MIIIで表される各金属元素の酸化物、または高温で上記各金属の酸化物に変わり得る炭酸塩、硫酸塩等の上記各金属の化合物からなる蛍光体原料混合物をアルミナ坩堝等の耐熱容器に充填して、還元性雰囲気で、800℃以上好ましくは1000〜1400℃の温度で2〜40時間かけて1回以上焼成を行う。この蛍光体原料を少なくとも1回以上800℃以上で焼成する工程において、蛍光体原料中に塩素化合物もしくは塩素を含有させる。
其の後更に、最終的に使用される蛍光体の蛍光膜形成での性能等の必要性に応じ、この焼成物に分散、水洗、乾燥、篩分け等の後処理を施しても良い。
【0019】
蛍光体原料を少なくとも1回以上800℃以上焼成する工程において、蛍光体原料中に塩素化合物もしくは塩素が含有させた本発明の製造法により作製されたEu付活の2価金属珪酸塩蛍光体は、従来のEu付活の2価金属珪酸塩蛍光体よりもVUV励起での発光輝度が高く、また更に重量中央粒径D50が1〜6μmと従来のEu付活の2価金属珪酸塩蛍光体よりも粒径が小さくなることが判った。
【0020】
なお本発明の蛍光体の製造において、蛍光体原料に含有させる塩素供給源としては、例えば塩素化合物としてLiCl,NaCl,KCl等のアルカリ金属塩化物、CaCl,MgCl等のアルカリ土類金属塩化物があるが、アルカリ金属塩化物については、焼成後の出来あがり蛍光体の粒子について、融着凝集粒子の発生を招きやすい。一方アルカリ土類塩化物は蛍光体母体を構成する金属を含んでおり、母体構成への影響もあるので含有させる量にも因るが、好ましくない。
この様な欠点を有しないものとして、焼成時アルカリ物の影響が少ないものとして塩化アンモニウム NHClが好ましい。また塩化アンモニウム用いた場合、所望の比較的小さな粒子で融着凝集粒子の少ない蛍光体を得ることができ、希ガスランプやPDPといったVUV励起発光素子の緻密な蛍光膜を形成するために必要で適正な粉体特性である、具体的にはコールターカウンター法によって測定した粒径が、10μm以下、好ましくは1〜7μm程度、より好ましくは1〜4μm程度の小粒子で更に、その粒度分布についてはσlog(L)とσlog(S)が0.5以下のものを得る事ができる。
【0021】
また蛍光体原料に含有させる塩素の量については、蛍光粒子の結晶への本発明の効果が及ぶ最小限の量である0.001wt%以上を含有させる必要がある。好ましい具体的な含有量については、用いる塩化化合物の種類にも影響される。
【0022】
なお本発明の蛍光体の製造にあたっては、本発明の目的である塩素含有での効果とは別に、基本となる蛍光体の組成構成での品質に与える影響も大きいので、下記の技術的事項を十分考慮する必要がある。
また、本発明の2価金属珪酸塩蛍光体は、母体結晶の組成を表す上記a値及びb値がそれぞれ1.0及び2.0からずれるに従って結晶性の不完全な蛍光体や異相が形成される確率が高くなり発光輝度が次第に低下するので、得られる蛍光体の発光輝度の点で上記a値及びb値はそれぞれ0.9≦a≦1.1及び1.9≦b≦2.2の範囲を満たす数であることが好ましく、特にa値及びb値がそれぞれa=1.0及びb=2.0であることが特に好ましい。Euの付活量を表す上記x値に関しては、この値が0.1を越えると、上記組成とは異なった異相を形成し蛍光体の輝度を低下させ、5×10−3よりも小さいと発光中心の量が不足し、得られる蛍光体の発光強度が低くなってしまうのでいずれも好ましくない。
従って、Euの付活量(x値)は得られる蛍光体の発光輝度の点から、5×10−3≦x≦1×10−1の範囲を満たす数であるのが好ましい。また、金属元素MII、Znおよび金属元素MIIIを含有量の総量(u+v+w)が4×10−1より多いとMII、ZnおよびMIIIを全く含有しない蛍光体よりも発光輝度が低下するので好ましくない。従って、金属元素MII、Znおよび金属元素MIIIの総量は0≦(u+v+w)≦4×10−1の範囲を満たす数であるのが好ましい。
【0023】
本発明の蛍光体ペースト組成物は、バインダー樹脂が溶解した溶媒中に、上記の本発明の2価金属珪酸塩蛍光体を加えて十分に混練りし、溶媒の量を調節することによって、その用途に応じた適当な粘度のペースト状にすることにより製造することができる。本発明の蛍光体を含有した蛍光体ペースト組成物を製造する際のバインダー樹脂としては、エチルセルロース、ニトロセルロース、ポリエチレンオキサイド、アクリル樹脂等が使用され、また、ペーストの粘度調整のために使用される溶媒としては水、酢酸ブチル、ブチルカルビトール、テルピネオール等の溶媒が使用される。また本発明の蛍光体ペースト組成物中の蛍光体としては、その目的、用途に応じて本発明の2価金属珪酸塩蛍光体とこれ以外の組成の蛍光体との混合蛍光体を用いても良いことはいうまでもない。
【0024】
また、本発明のVUV励起発光素子は、ガラスなどからなる外囲器内の所定の場所に本発明の蛍光体ペースト組成物を塗布し乾燥した後、ベーキングして蛍光膜を形成することによって上記本発明の2価金属珪酸塩蛍光体からなる蛍光膜が形成される以外は従来のVUV励起発光素子と同様にして製造される。
このようにして得られた本発明の2価金属珪酸塩蛍光体は、従来の2価金属珪酸塩蛍光体に比べて粒径が小さく改善されているため、従来の2価金属珪酸塩蛍光体では球径が大きすぎて蛍光膜形成が難しかったVUV励起発光素子用の蛍光体としての利用が可能となった。更に、本発明の2価金属珪酸塩蛍光体は、従来の2価金属珪酸塩蛍光体に比べ発光輝度が高く、又更にこの蛍光体を用いた蛍光体ペースト組成物で形成される蛍光膜を有するVUV励起発光素子についても、従来のものより輝度の高いものを得ることができる。
【0025】
【実施例】
次に実施例により本発明を説明する。
〔実施例1A〕
CaCO       0.98 モル
MgCO3       1.0  モル
SiO        2.0  モル
Eu       0.01 モル
NHCl       0.2  モル
塩素を2.2wt%含有した上記比率の蛍光体原料を十分に混合した後、300gをアルミナ坩堝に充填し、還元性雰囲気中で、最高温度1150℃で昇降温時間を含め14時間かけて焼成した。この焼成物に篩いがけの処理を施して、組成式が(Ca0.98Eu0.02)O・MgO・2SiOで塩素を13000ppm含有し、ポバール樹脂に対する相対的なブローオフ帯電量が1.8μC/gと正帯電になる、実施例1AのEu付活2価金属珪酸塩蛍光体を得た。
【0026】
なお、本発明の蛍光体中の塩素含有量は次のようにして導出した。まず、硝酸銀1%、グリセリン50%及び純水49%の混合溶液に、本発明の蛍光体をホウ酸及び炭酸ナトリウムにて溶解させた溶液を添加して塩化銀を析出させ、その塩化銀による溶液の濁度を分光光度計により測定する。この溶液の濁度を、硝酸銀1%、グリセリン50%及び純水49%の混合溶液に既定量の塩素を直接添加して作られた標準添加溶液と濁度を比較することにより塩素の量を定量した。
【0027】
このようにして得られた実施例1Aの蛍光体の粉末を、直径12mm、深さ1mmの円柱状の窪みを持ったセルに充填し、その上をガラス板で押し詰めして平らな粉末の蛍光面を作製し、この蛍光面に146nmの真空紫外線を照射して励起し発光させてそのときの発光輝度と発光色の色度点を測定し、刺激和(発光輝度/y値)を導出したところ、これと同様にして測定した下記比較例1Aの刺激和値100%に対して、116%の値であった。
なお、青色蛍光体の輝度はその発光色(CIE表色系による色度座標のy値)に比例して大きく変化するので、発光色のy値の異なる青色発光蛍光体間での発光効率を比較する簡便な方法として、発光色を色度座標(x,y)で表したときのy値で輝度を割った(輝度/y)値(以下、「刺激和」と呼ぶ)で比較することが一般に行われる。以後、蛍光体の発光効率の比較はこの刺激和値によって行う。
【0028】
またこの実施例1Aの蛍光体の粒度分布をコールター・カウンター法により導出したところ、重量中央粒径(D50)は3.9μm、σlog(L)=0.38、σlog(S)=0.45であった。
ここでDnとは小粒径の方から重量基準で累積n%の粒子径を示したものであり、σlog(L)とσlog(S)は、それぞれσlog(L)=log(D84.1/D50)とσlog(S)=−log(D15.9/D50)で表される値である。σlog(L)はD50よりも大粒径の方の粒度分布、σlog(S)はD50よりも小粒径の方の粒度分布を示す値であり、ともにこの数値が大きいほど粒度分布の広がりが大きいことを表している。
【0029】
〔実施例1B〕
30重量%の実施例1AのEu付活2価金属珪酸塩蛍光体、10重量%のブチルカルビトール、53重量%のブチルカルビトールアセテートおよび7重量%のエチルセルロースを十分に混練することにより、実施例1Bの蛍光体ペースト組成物を作製した。
【0030】
〔実施例1C〕
上記のようにして得られた実施例1Bの蛍光体ペースト組成物を幅2mmのガラス板上に塗布し、120℃で30分乾燥後500℃で30分焼成することにより、ガラス板上に蛍光膜を形成した。このガラス板を外径4mmのガラス管内に保持し、このガラス管の両端にニッケルの電極を付け、管内を真空に排気した後、Ne98%−Xe2%のガスを50torr封入して、実施例1CのVUV励起発光素子(希ガスランプ)を作製した。実施例1Bの蛍光体ペースト組成物により形成された蛍光膜は、従来の塩素を含まない蛍光体CaMgSiでは、球径が大きすぎ粗い蛍光膜となったものとは異なり、緻密でムラのないものであることが目視により確認された。また実施例1CのVUV励起発光素子は実用上問題なく使用できるものであった。
【0031】
〔実施例2A〕
CaCO       0.98 モル
MgCO       1.0  モル
SiO        2.0  モル
Eu       0.01 モル
NHCl       0.2  モル
塩素を2.2wt%含有した上記比率の蛍光体原料を十分に混合した後、16gをアルミナ坩堝に充填した以外は実施例1Aと同様にして、組成式が(Ca0.98Eu0.02)O・MgO・2SiOで塩素を200ppm含有し、ポバール樹脂に対する相対的なブローオフ帯電量が14.1μC/gと正帯電になる、実施例2AのEu付活2価金属珪酸塩蛍光体を得た。
【0032】
この実施例2Aの蛍光体を実施例1Aと同様にして、146nmの真空紫外線で励起して発光させた時の発光輝度並びに発光色の色度点を測定し、その刺激和を求めたところ、下記比較例1Aの刺激和値100%に対して、132%の値であった。
またこの実施例2Aの蛍光体の粒度分布をコールター・カウンター法により導出したところ、重量中央粒径(D50)は6.0μm、σlog(L)=0.43、σlog(S)=0.43であった。
【0033】
〔実施例2B〕
実施例1Aの蛍光体に代えて実施例2Aの蛍光体を用いた以外は実施例1Bの蛍光体ペースト組成物と同様にして、実施例2Bのペースト組成物を製造した。
【0034】
〔実施例2C〕
実施例1Bの蛍光体ペースト組成物に代えて実施例2Bの蛍光体ペースト組成物を用いた以外は実施例1Cと同様にして、実施例2CのVUV励起発光素子を得た。実施例2Bの蛍光体ペースト組成物により形成された蛍光膜は緻密でムラのないものであることが目視により確認され、実施例2CのVUV励起発光素子は実用上問題なく使用できるものであった。
【0035】
〔比較例1A〕
CaCO3       0.98 モル
MgCO       1.0  モル
SiO        2.0  モル
EuF        0.02 モル
塩素を含有していない上記比率の蛍光体原料を十分に混合した後、16gをアルミナ坩堝に充填した以外は実施例1Aと同様にして、組成式が(Ca0.98Eu0.02)O・MgO・2SiOで塩素を含有していない、ポバール樹脂に対する相対的なブローオフ帯電量が−13.6μC/gと負帯電になる、比較例1AのEu付活2価金属珪酸塩蛍光体を得た。
【0036】
この比較例1Aの蛍光体を実施例1Aと同様にして、146nmの真空紫外線で励起して発光させた時の発光輝度並びに発光色の色度点を測定して刺激和を求め、その値を100%とし、刺激和の基準とした。
またこの比較例1Aの蛍光体の粒度分布をコールター・カウンター法により導出したところ、重量中央粒径(D50)は8.5μm、σlog(L)=0.59、σlog(S)=0.66で、所望の特性まで達していなかった。
【0037】
〔比較例1B〕
実施例1Aの蛍光体に代えて比較例1Aの蛍光体を用いた以外は実施例1Bの蛍光体ペースト組成物と同様にして比較例1Bのペースト組成物を製造した。
【0038】
〔比較例1C〕
実施例1Bの蛍光体ペースト組成物に代えて比較例1Bの蛍光体ペースト組成物を用いた以外は実施例1CのVUV励起発光素子と同様にして比較例1CのVUV励起発光素子を得た。比較例1Bの蛍光体ペースト組成物により形成された蛍光膜にはピンホール、ムラ、剥離個所が多数存在したため、比較例1CのVUV励起発光素子は実用可能なものとはならなかった。
【0039】
〔比較例2A〕
CaCO3       0.98 モル
MgCO       1.0  モル
SiO        2.0  モル
Eu       0.01 モル
塩素を含有していない上記比率の蛍光体原料を十分に混合した後、16gをアルミナ坩堝に充填した以外は実施例1Aと同様にして、組成式が(Ca0.98Eu0.02)O・MgO・2SiOで塩素を含有しておらず、ポバール樹脂に対する相対的なブローオフ帯電量が−9.6μC/gと負帯電になる、比較例2AのEu付活2価金属珪酸塩蛍光体を得た。
【0040】
この比較例2Aの蛍光体を実施例1Aと同様にして、146nmの真空紫外線で励起して発光させた時の発光輝度並びに発光色の色度点を測定し、その刺激和を求めたところ、上記比較例1Aの刺激和値100%に対して、9%の値であった。
またこの比較例2Aの蛍光体の粒度分布をコールター・カウンター法により導出したところ、重量中央粒径(D50)は41.4μm、σlog(L)=0.53、σlog(S)=1.09で、粒径は極めて大きくまた粒度分布についても極めて広かった。
比較例2Aの蛍光体は発光強度が非常に弱いため、蛍光体としての使用を満足させるものではなかった。
【0041】
〔実施例3A〕
CaCO       0.98 モル
MgCO       1.0  モル
SiO        2.0  モル
Eu       0.01 モル
NHCl       0.2  モル
塩素を2.2wt%含有した上記比率の蛍光体原料を十分に混合した後、300gをアルミナ坩堝に充填し、還元性雰囲気中で、最高温度1150℃で昇降温時間を含め14時間かけて焼成した。この焼成物に粗篩を施した後、この焼成物200gを純水400g及び5φのアルミナボール400gとともに容量1000mlのガラスポットに詰めて混合し、回転数19.1Hzで16時間の湿式ボールミルを行った。この分散処理の後、乾燥および篩いの処理を施して、組成式が(Ca0.98Eu0.02)O・MgO・2SiOで塩素を760ppm含有し、ポバール樹脂に対する相対的なブローオフ帯電量が30.9μC/gと正帯電になる、実施例3AのEu付活2価金属珪酸塩蛍光体を得た。
【0042】
この実施例3Aの蛍光体を実施例1Aと同様にして、146nmの真空紫外線で励起して発光させた時の発光輝度並びに発光色の色度点を測定し、その刺激和を求めたところ、上記比較例1Aの刺激和値100%に対して、104%の値であった。
またこの実施例3Aの蛍光体の粒度分布をコールター・カウンター法により導出したところ、重量中央粒径(D50)は2.9μm、σlog(L)=0.27、σlog(S)=0.30であった。
【0043】
〔実施例3B〕
実施例1Aの蛍光体に代えて実施例3Aの蛍光体を用いた以外は実施例1Bの蛍光体ペースト組成物と同様にして、実施例3Bのペースト組成物を製造した。
【0044】
〔実施例3C〕
実施例1Bの蛍光体ペースト組成物に代えて実施例3Bの蛍光体ペースト組成物を用いた以外は実施例1Cと同様にして、実施例3CのVUV励起発光素子を得た。実施例3Bの蛍光体ペースト組成物により形成された蛍光膜は緻密でムラのないものであることが目視により確認され、実施例3CのVUV励起発光素子は実用上問題なく使用できるものであった。
【0045】
〔比較例4A〕
CaCO3       0.98 モル
MgCO       1.0  モル
SiO        2.0  モル
Eu       0.01 モル
NHHF      0.05 モル
塩素を含有していない上記比率の蛍光体原料を十分に混合した後は、実施例3Aと同様にして、組成式が(Ca0.98Eu0.02)O・MgO・2SiOで塩素を含有しておらず、ポバール樹脂に対する相対的なブローオフ帯電量が−10.4μC/gと負帯電になる、比較例4AのEu付活2価金属珪酸塩蛍光体を得た。
【0046】
この比較例4Aの蛍光体を実施例1Aと同様にして、146nmの真空紫外線で励起して発光させた時の発光輝度並びに発光色の色度点を測定し、その刺激和を求めたところ、上記比較例1Aの刺激和値100%に対して、98%の値であった。
またこの比較例4Aの蛍光体の粒度分布をコールター・カウンター法により導出したところ、重量中央粒径(D50)は7.7μm、σlog(L)=0.37、σlog(S)=0.56であった。
【0047】
〔比較例4B〕
実施例1Aの蛍光体に代えて比較例4Aの蛍光体を用いた以外は実施例1Bの蛍光体ペースト組成物と同様にして、比較例4Bのペースト組成物を製造した。
【0048】
〔比較例4C〕
実施例1Bの蛍光体ペースト組成物に代えて比較例4Bの蛍光体ペースト組成物を用いた以外は実施例1CのVUV励起発光素子と同様にして比較例4CのVUV励起発光素子を得た。比較例4Bの蛍光体ペースト組成物により形成された蛍光膜にはピンホール、ムラ、剥離個所が多数存在したため、比較例4CのVUV励起発光素子は実用可能なものとはならなかった。
【0049】
【発明の効果】
本発明は、上記の構成を採用することにより、従来のEu付活2価金属珪酸塩蛍光体よりも発光輝度が向上し、粒径の小さな蛍光体が提供でき、この蛍光体を蛍光膜として用いることにより、発光輝度の高いVUV励起発光素子の提供が可能となった。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a divalent metal silicate phosphor that emits blue light when excited by vacuum ultraviolet (VUV) and ultraviolet (UV) light having a wavelength of 200 nm or less, a method for producing the same, and a phosphor paste composition containing the phosphor. The present invention relates to an object, a vacuum ultraviolet ray excited light emitting element (VUV excited light emitting element), and a fluorescent lamp.
[0002]
[Prior art]
In recent years, rare gases such as Ar, Xe, He, Ne, or a mixed gas of these gases are used as glass, as represented by rare gas lamps and plasma display panels (PDPs) used as light sources for reading scanners. Of a VUV-excited light-emitting element having a structure in which a fluorescent film made of a VUV phosphor inside the envelope is excited by VUV emitted by the discharge of the rare gas to emit light by being enclosed in the envelope formed by the method described above. Is being actively conducted.
[0003]
A rare gas lamp, which is a typical example of a VUV-excited light emitting device, has a rare gas such as Xe or Xe-Ne sealed in a thin tube made of glass, and the inner wall surface of the tube emits light when excited by VUV. A phosphor film made of a VUV phosphor is formed. When electric energy is applied between the electrodes of the rare gas lamp, a rare gas discharge occurs in the glass tube, and the VUV emitted at that time excites the fluorescent film formed on the inner wall surface of the tube to emit visible light. .
[0004]
In principle, a PDP, which is another typical example of a VUV-excited light-emitting device, has the above-mentioned VUV-excited rare gas lamps further reduced in size, and rare gas lamps of three different colors are arranged in stripes or in a matrix. Can be thought of. That is, narrow discharge spaces (cells) are arranged in a stripe or a matrix. Each cell is provided with an electrode, and a fluorescent film made of a VUV phosphor is formed inside each cell. Each cell is filled with a rare gas such as Xe, Xe-Ne, He-Xe, He-Ne-Xe, etc. When electric energy is applied from an electrode in the cell, a rare gas discharge occurs in the cell and VUV occurs. Is emitted, and the fluorescent film in the cell is excited by the VUV to emit visible light, and an image is displayed by the emitted light. In the case of a full-color PDP, full-color display can be performed by arranging the cells each having a phosphor film that emits red, blue, and green light by VUV excitation in a stripe shape or a matrix shape.
[0005]
The phosphor for forming the fluorescent film of these VUV excitation light emitting elements is (Y, Gd) BO3: Red light-emitting phosphor such as Eu, LaPO4: Ce, Tb, (Ba, Sr) MgAl10O17: Eu, Mn, Zn2SiO4: Green light-emitting phosphor such as Mn, BaMgAl10O17: Blue light-emitting phosphors such as Eu are used alone or in combination depending on the desired emission color. (See Electronic Materials Magazine December 1997 Issue, Industrial Research Company, etc.). Among these practical phosphors for VUV, which are practically used as a fluorescent film of a VUV excitation light emitting device, the phosphor mainly used as a blue component is BaMgAl.10O17: An aluminate phosphor having a composition of Eu and abbreviated as BAM, which has a high emission luminance when excited by irradiation with VUV and has a color purity of blue. Although good, the VUV-excited light-emitting device using this phosphor has a large luminance deterioration (baking deterioration) in a baking step when forming a fluorescent film, and the VUV-excited light-emitting device is driven to be exposed to VUV for a long time. There is a drawback that the emission luminance decreases significantly (VUV deterioration) over time when the light emission is performed, and it is desired to develop a blue-emitting VUV excitation phosphor with less baking deterioration and VUV deterioration.
[0006]
As a remedy for such a problem, one of blue-emitting phosphors having relatively little baking deterioration and VUV deterioration is to use Eu as an activator and its composition formula is CaMgSi.2O6: A divalent metal silicate phosphor represented by Eu has been reported (see Procedures of The 8th International Display Workshops 2001 pp. 1115). However, this phosphor has a problem that its luminance is lower than that of BAM, which is a conventional blue phosphor, and improvement of the luminance to a practical level has been studied.
[0007]
Looking at the method for producing a phosphor having a large influence on such quality, the phosphor used in this phosphor is CaCO 23And MgCO as a raw material of Mg3And MgCO3・ 2Mg (OH)2And SiO as a raw material of Si2And Eu as a raw material of Eu2O3Is introduced as a general method. However, on the other hand, a composition formula CaMgSi having a satisfactory emission intensity as a blue phosphor even when these materials are prepared and fired.2O6: It is known that a divalent metal silicate phosphor represented by Eu cannot be produced.
[0008]
On the other hand, as another method for producing this divalent metal silicate phosphor, Eu is used.2O3EuF instead of3Is reported, and it has been reported that a phosphor having good color purity and relatively strong blue emission can be obtained.
However, in order to form a uniform and dense fluorescent film on a VUV-excited light emitting device such as a rare gas lamp or a PDP without practical problems, it is necessary to give the phosphor particles appropriate powder characteristics. In particular, the particle size measured by the Coulter counter method is 10 μm or less, preferably about 1 to 7 μm, and more preferably about 1 to 4 μm. Further, regarding the particle size distribution, σlog (L) And σlog (S) are desirably 0.5 or less. In the conventionally known manufacturing method using EuF3, the particle size of the obtained phosphor particles is too large, and a powder having a range of powder characteristics suitable for forming a phosphor film as described above has not been obtained. Is the current situation.
[0009]
Further, in the case of this phosphor, although the degree of baking deterioration and VUV deterioration is relatively small, BAM (BaMgAl) which is a conventional blue phosphor is used.10O17: Eu) is also a problem.
[0010]
Further, it is known that in an AC type PDP, the discharge starting voltage is affected by the tendency of the applied phosphor to be charged and changes. For example, BAM or (Y, Gd) BO3: Zn in Eu has a low firing voltage and is easily negatively charged2SiO4: High in Mn. From the viewpoint of the circuit, it is desirable that the discharge starting voltage is low. CaMgSi manufactured by conventional manufacturing method2O6: Eu is easily negatively charged and requires a high pressure to start discharge. This is also CaMgSi2O6: Eu was one reason that PDP was not put into practical use. The charging tendency mentioned here can be evaluated by measuring the blow-off charge amount of the substance. Specifically, the phosphor powder and the Poval resin beads were mixed and shaken to generate triboelectric charging, and the charge amount of the phosphor powder was evaluated by measuring the blow-off charge amount.
[0011]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and has a powder characteristic (grain size characteristic) that has a higher emission luminance than conventional ones and is preferable for forming a fluorescent film of a VUV excitation light emitting element such as a rare gas lamp or a PDP. It is an object of the present invention to provide a blue-emitting divalent metal silicate phosphor having a small particle size, a method for producing the same, a phosphor paste composition using the improved phosphor, and a VUV-excited light emitting device.
[0012]
[Means for Solving the Problems]
The present inventors have proposed the composition formula CaMgSi2O6: Various investigations were made on silicate phosphors containing Eu as an activator represented by Eu, and when a specific amount of chlorine was contained in the matrix of a conventional Eu-activated divalent metal silicate phosphor, or In the step of firing the phosphor raw material at least once at 800 ° C. or higher, when a Eu-activated divalent metal silicate phosphor is produced by incorporating a chlorine compound or chlorine into the phosphor raw material, the phosphor under VUV excitation It has been found that the light emission luminance is improved. Further, the above-mentioned improved specification makes it possible to produce a phosphor having a relatively small particle diameter suitable for forming a VUV-excited light-emitting device fluorescent film, which was not possible with the conventional specification, and furthermore, the weight median particle diameter of the phosphor particles. When D50 is 7 μm or less and σlog (L) and σlog (S) are controlled to 0.5 or less, surprisingly, it is possible to obtain a phosphor whose charging tendency by blow-off tends to be positively charged. I was able to find out.
[0013]
Further, by using the phosphor paste composition using the improved phosphor, it becomes possible to form a phosphor film on the VUV excitation light emitting device, and the VUV excitation light emitting device with improved blue component luminance I found that.
The present inventors have proposed that this CaMgSi2O6: With respect to the phosphor represented by Eu, various specifications for improvement were found as described above, and the present invention was reached.
That is, the above object of the present invention is achieved by adopting the following configuration.
[0014]
(1) The basic composition is represented by the general formula (Ca1-x-uEuxMII u) O ・ a (Mg1-vZnv) O.bSiO2・ WMIIIAnd a chlorine-containing divalent metal silicate phosphor.
{However, in the above formula, MIIRepresents at least one metal element among barium (Ba) and strontium (Sr);IIIRepresents at least one metal element among lanthanum (La), yttrium (Y), cerium (Ce), indium (In) and bismuth (Bi), and a, b, x, u, v and w each represent 0.9 ≦ a ≦ 1.1, 1.9 ≦ b ≦ 2.2, 5 × 10-3≦ x ≦ 10-1And 0 ≦ u + v + w ≦ 4 × 10-1Represents a number that satisfies the following condition: }
(2) The divalent metal silicate phosphor according to (1), wherein the amount of chlorine contained in the phosphor is 20,000 ppm or less.
[0015]
(3) The divalent metal silicate phosphor according to (1) or (2), wherein the weight median particle diameter D50 measured by the Coulter counter method is in the range of 1 to 7 μm.
(4) The divalent metal silicate phosphor according to (3), wherein the weight median particle diameter D50 measured by the Coulter counter method is in the range of 1 to 4 μm.
(5) The divalent metal silicate phosphor according to (3) or (4), wherein σlog (L) and σlog (S) measured by the Coulter counter method are 0.5 or less.
[0016]
(6) The divalent metal silicate phosphor according to any one of (1) to (5), wherein the blow-off charge relative to the Poval resin is positive.
(7) In the method for producing a divalent metal silicate phosphor, the phosphor raw material contains a chlorine compound or chlorine in the step of firing the phosphor raw material at least once at 800 ° C. or more. The method for producing a divalent metal silicate phosphor according to any one of the above (1) to (6).
(8) The method for producing a divalent metal silicate phosphor according to (7), wherein the amount of chlorine contained in the phosphor raw material is 0.001 wt% or more.
(9) The method for producing a divalent metal silicate phosphor according to (7) or (8), wherein ammonium chloride is used as the chlorine compound contained in the phosphor material.
[0017]
(10) In a phosphor paste composition obtained by dispersing a phosphor in a solvent in which a binder is dissolved, the phosphor is a divalent metal silicate phosphor according to any one of (1) to (6). Or a divalent metal silicate phosphor produced by the production method according to any one of (7) to (9).
(11) An ultraviolet-excitation light-emitting element that excites and emits the fluorescent film by vacuum ultraviolet rays emitted by discharge of a rare gas sealed in the envelope in which the fluorescent film is formed, wherein the fluorescent film is The divalent metal silicate phosphor according to any one of (1) to (6) or the divalent metal silicate phosphor produced by the production method according to any one of (7) to (9) A VUV-excited light emitting device characterized by being formed by:
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
To produce the phosphor of the present invention, stoichiometrically (Ca1-x-uEuxMII u) O ・ a (Mg1-vZnv) O.bSiO2・ WMIII{However, in the above formula, MIIRepresents at least one metal element of Ba and Sr;IIIRepresents at least one metal element among La, Y, Ce, In and Bi, and a, b, w, x, u and v are respectively 0.9 ≦ a ≦ 1.1, 1.9 ≦ b ≦ 2.2, 5 × 10-3≦ x ≦ 10-1And 0 ≦ u + v + w ≦ 4 × 10-1Represents a number that satisfies the following condition: Hereinafter, the same applies. 、, Ca, Mg, Si, Eu, Zn and MII, MIIIA phosphor raw material mixture comprising a compound of each metal such as an oxide of each metal element represented by or a carbonate or a sulfate which can be converted into an oxide of each of the above metals at a high temperature into a heat-resistant container such as an alumina crucible. Then, firing is performed at least once in a reducing atmosphere at a temperature of 800 ° C. or more, preferably 1000 to 1400 ° C., for 2 to 40 hours. In the step of firing the phosphor material at least once at 800 ° C. or more, a chlorine compound or chlorine is contained in the phosphor material.
Thereafter, the fired product may be further subjected to post-treatments such as dispersion, washing, drying, and sieving according to the necessity such as the performance of the finally used phosphor in forming a phosphor film.
[0019]
In the step of firing the phosphor material at least once at 800 ° C. or more, the Eu-activated divalent metal silicate phosphor produced by the production method of the present invention in which a chlorine compound or chlorine is contained in the phosphor material is used. The conventional Eu-activated divalent metal silicate phosphor has a higher emission luminance under VUV excitation than the conventional Eu-activated divalent metal silicate phosphor, and has a weight median particle diameter D50 of 1 to 6 μm. It was found that the particle size was smaller than that.
[0020]
In the production of the phosphor of the present invention, as a chlorine supply source to be contained in the phosphor raw material, for example, an alkali metal chloride such as LiCl, NaCl, and KCl as a chlorine compound;2, MgCl2There is an alkaline earth metal chloride such as that described above. However, the alkali metal chloride is likely to cause fusion-aggregated particles of the phosphor particles which are completed after firing. On the other hand, the alkaline earth chloride contains a metal constituting the phosphor matrix, and has an effect on the matrix composition.
As a material which does not have such a disadvantage and is less affected by an alkaline substance during firing, ammonium chloride @ NH4Cl is preferred. In addition, when ammonium chloride is used, a desired phosphor having a relatively small particle size and a small amount of coagulated particles can be obtained, which is necessary for forming a dense fluorescent film of a VUV excitation light emitting device such as a rare gas lamp or a PDP. Suitable powder characteristics, specifically, small particles having a particle size of 10 μm or less, preferably about 1 to 7 μm, more preferably about 1 to 4 μm, as measured by the Coulter counter method. σlog (L) and σlog (S) of 0.5 or less can be obtained.
[0021]
Further, the amount of chlorine contained in the phosphor raw material must be 0.001 wt% or more, which is the minimum amount that the effect of the present invention exerts on the crystal of the fluorescent particles. The preferred specific content is also affected by the type of chloride compound used.
[0022]
In the production of the phosphor of the present invention, apart from the effect of containing chlorine, which is the object of the present invention, the quality of the composition of the basic phosphor greatly affects the quality. It is necessary to consider enough.
Further, in the divalent metal silicate phosphor of the present invention, as the a value and the b value representing the composition of the host crystal deviate from 1.0 and 2.0, respectively, an incompletely crystallized phosphor or heterophase is formed. Since the probability of light emission increases and the emission luminance gradually decreases, the values a and b are 0.9 ≦ a ≦ 1.1 and 1.9 ≦ b ≦ 2 in terms of the emission luminance of the obtained phosphor. It is preferable that the number satisfies the range of 2, and it is particularly preferable that the a value and the b value are a = 1.0 and b = 2.0, respectively. Regarding the above-mentioned x value representing the activation amount of Eu, when this value exceeds 0.1, a different phase different from the above-mentioned composition is formed, the luminance of the phosphor is reduced, and 5 × 10-3If it is smaller than this, the amount of the luminescent center becomes insufficient, and the luminescent intensity of the obtained phosphor is lowered, so that both are not preferable.
Therefore, the activation amount (x value) of Eu is 5 × 10 5 from the viewpoint of the emission luminance of the obtained phosphor.-3≦ x ≦ 1 × 10-1Is preferably a number that satisfies the range. The metal element MII, Zn and metal element MIIIThe total amount of the content (u + v + w) is 4 × 10-1More than MII, Zn and MIIIIt is not preferable because the emission luminance is lower than that of a phosphor containing no chromium. Therefore, the metal element MII, Zn and metal element MIIIIs 0 ≦ (u + v + w) ≦ 4 × 10-1Is preferably a number that satisfies the range.
[0023]
The phosphor paste composition of the present invention is obtained by adding the above-described divalent metal silicate phosphor of the present invention to a solvent in which the binder resin is dissolved, kneading the mixture sufficiently, and adjusting the amount of the solvent to thereby form the phosphor paste composition. It can be manufactured by forming a paste having an appropriate viscosity according to the use. Ethyl cellulose, nitrocellulose, polyethylene oxide, acrylic resin and the like are used as a binder resin when producing the phosphor paste composition containing the phosphor of the present invention, and also used for adjusting the viscosity of the paste. As the solvent, a solvent such as water, butyl acetate, butyl carbitol, and terpineol is used. Further, as the phosphor in the phosphor paste composition of the present invention, a mixed phosphor of the divalent metal silicate phosphor of the present invention and a phosphor of other composition may be used depending on the purpose and application. It goes without saying that it is good.
[0024]
Further, the VUV-excited light-emitting device of the present invention is obtained by applying the phosphor paste composition of the present invention to a predetermined location in an envelope made of glass or the like, drying the applied paste, and baking to form a phosphor film. It is manufactured in the same manner as the conventional VUV-excited light emitting device except that a phosphor film made of the divalent metal silicate phosphor of the present invention is formed.
The divalent metal silicate phosphor of the present invention thus obtained has a smaller particle diameter than the conventional divalent metal silicate phosphor and is improved. Thus, the use as a phosphor for a VUV-excited light-emitting device, which was difficult to form a fluorescent film due to a too large sphere diameter, became possible. Further, the divalent metal silicate phosphor of the present invention has higher emission luminance than the conventional divalent metal silicate phosphor, and furthermore, a phosphor film formed of a phosphor paste composition using this phosphor is used. As for the VUV-excited light-emitting device having the same, it is possible to obtain a device having higher luminance than the conventional device.
[0025]
【Example】
Next, the present invention will be described with reference to examples.
[Example 1A]
CaCO3{0.98} mol
MgCO3{1.0} mol
SiO2{2.0} mol
Eu2O3{0.01} mol
NH4Cl 0.2 mol
After sufficiently mixing the phosphor material in the above ratio containing 2.2 wt% of chlorine, 300 g is filled in an alumina crucible and fired in a reducing atmosphere at a maximum temperature of 1150 ° C. for 14 hours including a temperature rise / fall time. did. This baked product is subjected to a sieving process, and the composition formula is (Ca0.98Eu0.02) O ・ MgO ・ 2SiO2Thus, the Eu-activated divalent metal silicate phosphor of Example 1A containing 13,000 ppm of chlorine and having a positive charge of a blow-off charge of 1.8 μC / g relative to the Poval resin was obtained.
[0026]
The chlorine content in the phosphor of the present invention was derived as follows. First, a solution in which the phosphor of the present invention is dissolved in boric acid and sodium carbonate is added to a mixed solution of 1% of silver nitrate, 50% of glycerin and 49% of pure water to precipitate silver chloride. The turbidity of the solution is measured with a spectrophotometer. The turbidity of this solution was determined by comparing the turbidity with a standard addition solution prepared by directly adding a predetermined amount of chlorine to a mixed solution of silver nitrate 1%, glycerin 50% and pure water 49%. Quantified.
[0027]
The thus-obtained phosphor powder of Example 1A was filled in a cell having a cylindrical recess having a diameter of 12 mm and a depth of 1 mm, and the cell was pressed down with a glass plate to form a flat powder. A phosphor screen is prepared, and the phosphor screen is irradiated with vacuum ultraviolet rays of 146 nm to excite and emit light, and the emission luminance and the chromaticity point of the emission color at that time are measured to derive a sum of stimulation (emission luminance / y value). As a result, the value was 116% with respect to 100% of the stimulus sum value of Comparative Example 1A, which was measured in the same manner.
Note that the luminance of the blue phosphor changes greatly in proportion to its emission color (y value of chromaticity coordinates according to the CIE color system), so that the luminous efficiency between the blue emission phosphors having different y values of the emission color is reduced. As a simple method of comparison, the emission color is compared by a value (luminance / y) obtained by dividing the luminance by the y value when expressed in chromaticity coordinates (x, y) (hereinafter referred to as “stimulus sum”). Is generally performed. Hereinafter, comparison of the luminous efficiency of the phosphor is performed based on the sum of the stimuli.
[0028]
When the particle size distribution of the phosphor of Example 1A was derived by the Coulter counter method, the weight median particle diameter (D50) was 3.9 μm, σlog (L) = 0.38, σlog (S) = 0.45. Met.
Here, Dn indicates the particle size of n% cumulative on a weight basis from the smaller particle size, and σlog (L) and σlog (S) are respectively σlog (L) = log (D84.1 / D50) and σlog (S) = − log (D15.9 / D50). σlog (L) is a value indicating a particle size distribution of a larger particle size than D50, and σlog (S) is a value indicating a particle size distribution of a smaller particle size than D50. It indicates that it is big.
[0029]
[Example 1B]
30% by weight of Eu activated divalent metal silicate phosphor of Example 1A, 10% by weight of butyl carbitol, 53% by weight of butyl carbitol acetate and 7% by weight of ethylcellulose were thoroughly kneaded. The phosphor paste composition of Example 1B was prepared.
[0030]
[Example 1C]
The phosphor paste composition of Example 1B obtained as described above is applied on a glass plate having a width of 2 mm, dried at 120 ° C. for 30 minutes, and then baked at 500 ° C. for 30 minutes, whereby the fluorescent light is applied on the glass plate. A film was formed. This glass plate was held in a glass tube having an outer diameter of 4 mm, nickel electrodes were attached to both ends of the glass tube, and the inside of the tube was evacuated to vacuum. Then, a gas of 98% Ne-Xe 2% was filled with 50 torr, and Example 1C VUV-excited light-emitting device (rare gas lamp) was manufactured. The phosphor film formed by the phosphor paste composition of Example 1B is the same as the conventional chlorine-free phosphor CaMgSi.2O6Was visually confirmed to be dense and non-uniform unlike a phosphor film having a too large sphere diameter and a coarse phosphor film. Further, the VUV-excited light emitting device of Example 1C could be used without any practical problem.
[0031]
[Example 2A]
CaCO3{0.98} mol
MgCO3{1.0} mol
SiO2{2.0} mol
Eu2O3{0.01} mol
NH4Cl 0.2 mol
After sufficiently mixing the phosphor material in the above ratio containing 2.2 wt% of chlorine, 16 g was filled in an alumina crucible, and the composition formula was changed to (Ca) in the same manner as in Example 1A.0.98Eu0.02) O ・ MgO ・ 2SiO2Thus, the Eu-activated divalent metal silicate phosphor of Example 2A containing 200 ppm of chlorine and having a positive charge of 14.1 μC / g relative to the poval resin was obtained.
[0032]
When the phosphor of Example 2A was excited by 146 nm vacuum ultraviolet rays to emit light in the same manner as in Example 1A, the emission luminance and the chromaticity point of the emission color were measured. The value was 132% with respect to 100% of the stimulus sum value of Comparative Example 1A below.
When the particle size distribution of the phosphor of Example 2A was derived by the Coulter counter method, the weight median particle diameter (D50) was 6.0 μm, σlog (L) = 0.43, σlog (S) = 0.43. Met.
[0033]
[Example 2B]
A paste composition of Example 2B was produced in the same manner as the phosphor paste composition of Example 1B except that the phosphor of Example 2A was used instead of the phosphor of Example 1A.
[0034]
[Example 2C]
A VUV excitation light-emitting device of Example 2C was obtained in the same manner as in Example 1C, except that the phosphor paste composition of Example 2B was used instead of the phosphor paste composition of Example 1B. It was visually confirmed that the phosphor film formed of the phosphor paste composition of Example 2B was dense and uniform, and the VUV-excited light-emitting device of Example 2C could be used without any practical problem. .
[0035]
[Comparative Example 1A]
CaCO3{0.98} mol
MgCO3{1.0} mol
SiO2{2.0} mol
EuF3{0.02} mol
After sufficiently mixing the phosphor material in the above ratio not containing chlorine, 16 g was charged into an alumina crucible, and the composition formula was changed to (Ca) in the same manner as in Example 1A.0.98Eu0.02) O ・ MgO ・ 2SiO2Thus, the Eu-activated divalent metal silicate phosphor of Comparative Example 1A containing no chlorine and having a negative charge of -13.6 μC / g relative to the poval resin was obtained.
[0036]
In the same manner as in Example 1A, the phosphor of Comparative Example 1A was excited with vacuum ultraviolet rays of 146 nm to emit light, and the luminous luminance and the chromaticity point of the luminescent color were measured to obtain the stimulus sum. 100% was used as the standard for the sum of stimulation.
When the particle size distribution of the phosphor of Comparative Example 1A was derived by the Coulter counter method, the weight median particle size (D50) was 8.5 μm, σlog (L) = 0.59, σlog (S) = 0.66. And did not reach the desired properties.
[0037]
[Comparative Example 1B]
A paste composition of Comparative Example 1B was produced in the same manner as the phosphor paste composition of Example 1B, except that the phosphor of Comparative Example 1A was used instead of the phosphor of Example 1A.
[0038]
[Comparative Example 1C]
A VUV-excited light-emitting device of Comparative Example 1C was obtained in the same manner as the VUV-excited light-emitting device of Example 1C, except that the phosphor paste composition of Comparative Example 1B was used instead of the phosphor paste composition of Example 1B. Since the phosphor film formed of the phosphor paste composition of Comparative Example 1B had many pinholes, unevenness, and peeling points, the VUV-excited light emitting device of Comparative Example 1C was not practical.
[0039]
[Comparative Example 2A]
CaCO3{0.98} mol
MgCO3{1.0} mol
SiO2{2.0} mol
Eu2O3{0.01} mol
After sufficiently mixing the phosphor material in the above ratio not containing chlorine, 16 g was charged into an alumina crucible, and the composition formula was changed to (Ca) in the same manner as in Example 1A.0.98Eu0.02) O ・ MgO ・ 2SiO2Thus, the Eu-activated divalent metal silicate phosphor of Comparative Example 2A containing no chlorine and having a negative charge of -9.6 μC / g relative to the Poval resin was obtained.
[0040]
When the phosphor of Comparative Example 2A was excited by 146 nm vacuum ultraviolet rays to emit light in the same manner as in Example 1A, the emission luminance and the chromaticity point of the emission color were measured. The value was 9% with respect to 100% of the stimulus sum value of Comparative Example 1A.
When the particle size distribution of the phosphor of Comparative Example 2A was derived by the Coulter counter method, the weight median particle size (D50) was 41.4 μm, σlog (L) = 0.53, σlog (S) = 1.09. The particle size was very large and the particle size distribution was very wide.
Since the phosphor of Comparative Example 2A had a very low emission intensity, it was not satisfactory for use as a phosphor.
[0041]
[Example 3A]
CaCO3{0.98} mol
MgCO3{1.0} mol
SiO2{2.0} mol
Eu2O3{0.01} mol
NH4Cl 0.2 mol
After sufficiently mixing the phosphor material in the above ratio containing 2.2 wt% of chlorine, 300 g is filled in an alumina crucible and fired in a reducing atmosphere at a maximum temperature of 1150 ° C. for 14 hours including a temperature rise / fall time. did. After sieving the calcined product, 200 g of the calcined product was mixed with 400 g of pure water and 400 g of 5φ alumina balls in a glass pot having a capacity of 1000 ml, mixed, and subjected to a wet ball mill at a rotation speed of 19.1 Hz for 16 hours. Was. After this dispersion treatment, drying and sieving treatments are performed, and the composition formula becomes (Ca0.98Eu0.02) O ・ MgO ・ 2SiO2Thus, the Eu-activated divalent metal silicate phosphor of Example 3A containing 760 ppm of chlorine and having a positive charge of 30.9 μC / g relative to the poval resin was obtained.
[0042]
When the phosphor of Example 3A was excited by 146 nm vacuum ultraviolet rays to emit light in the same manner as in Example 1A, the emission luminance and the chromaticity point of the emission color were measured. The value was 104% with respect to the stimulus sum value of 100% in Comparative Example 1A.
When the particle size distribution of the phosphor of Example 3A was derived by the Coulter counter method, the weight median particle diameter (D50) was 2.9 μm, σlog (L) = 0.27, σlog (S) = 0.30. Met.
[0043]
[Example 3B]
A paste composition of Example 3B was produced in the same manner as the phosphor paste composition of Example 1B, except that the phosphor of Example 3A was used instead of the phosphor of Example 1A.
[0044]
[Example 3C]
A VUV-excited light-emitting device of Example 3C was obtained in the same manner as in Example 1C, except that the phosphor paste composition of Example 3B was used instead of the phosphor paste composition of Example 1B. It was visually confirmed that the phosphor film formed of the phosphor paste composition of Example 3B was dense and uniform, and the VUV-excited light emitting device of Example 3C could be used without any practical problem. .
[0045]
[Comparative Example 4A]
CaCO3{0.98} mol
MgCO3{1.0} mol
SiO2{2.0} mol
Eu2O3{0.01} mol
NH4HF2{0.05} mol
After sufficient mixing of the phosphor raw materials in the above ratio not containing chlorine, the composition formula was changed to (Ca) in the same manner as in Example 3A.0.98Eu0.02) O ・ MgO ・ 2SiO2Thus, the Eu-activated divalent metal silicate phosphor of Comparative Example 4A containing no chlorine and having a negative charge of -10.4 μC / g relative to the poval resin was obtained.
[0046]
When the phosphor of Comparative Example 4A was excited with 146 nm vacuum ultraviolet rays to emit light in the same manner as in Example 1A, the emission luminance and the chromaticity point of the emission color were measured, and the sum of the stimuli was determined. The value was 98% with respect to the stimulus sum value of 100% in Comparative Example 1A.
When the particle size distribution of the phosphor of Comparative Example 4A was derived by the Coulter counter method, the weight median particle diameter (D50) was 7.7 μm, σlog (L) = 0.37, σlog (S) = 0.56. Met.
[0047]
[Comparative Example 4B]
A paste composition of Comparative Example 4B was produced in the same manner as the phosphor paste composition of Example 1B except that the phosphor of Comparative Example 4A was used instead of the phosphor of Example 1A.
[0048]
[Comparative Example 4C]
A VUV-excited light-emitting device of Comparative Example 4C was obtained in the same manner as the VUV-excited light-emitting device of Example 1C, except that the phosphor paste composition of Comparative Example 4B was used instead of the phosphor paste composition of Example 1B. Since the phosphor film formed of the phosphor paste composition of Comparative Example 4B had many pinholes, unevenness, and peeling portions, the VUV excitation light emitting device of Comparative Example 4C was not practical.
[0049]
【The invention's effect】
According to the present invention, by adopting the above configuration, the emission luminance is improved as compared with the conventional Eu-activated divalent metal silicate phosphor, and a phosphor having a small particle size can be provided. This phosphor is used as a phosphor film. By using this, it has become possible to provide a VUV-excited light-emitting element having high emission luminance.

Claims (11)

基本組成が、一般式(Ca1−x−uEuII )O・a(Mg1−vZnv)O・bSiO・wMIIIで表され、かつ塩素を含有していることを特徴とする2価金属珪酸塩蛍光体。
{但し、上記式中、MIIはバリウム(Ba)およびストロンチウム(Sr)の中の少なくとも1種の金属元素を表し、MIIIはランタン(La)、イットリウム(Y)、セリウム(Ce)、インジウム(In)およびビスマス(Bi)の中の少なくとも1種の金属元素を表し、a、b、x、u、vおよびwはそれぞれ0.9≦a≦1.1、1.9≦b≦2.2、5×10−3≦x≦10−1及び0≦u+v+w≦4×10−1なる条件を満たす数を表す。}
The basic composition is represented by the general formula (Ca 1-x- Eu x M II u ) Oa (Mg 1-v Znv) ObSiO 2 wM III and contains chlorine. Divalent metal silicate phosphor.
In the above formula, M II represents at least one metal element among barium (Ba) and strontium (Sr), and M III represents lanthanum (La), yttrium (Y), cerium (Ce), indium. (In) and at least one metal element in bismuth (Bi), wherein a, b, x, u, v and w are 0.9 ≦ a ≦ 1.1 and 1.9 ≦ b ≦ 2, respectively. .2, 5 × 10 −3 ≦ x ≦ 10 −1 and 0 ≦ u + v + w ≦ 4 × 10 −1 . }
蛍光体に含有されている塩素の量が、20000ppm以下であることを特徴とする請求項1記載の2価金属珪酸塩蛍光体。2. The divalent metal silicate phosphor according to claim 1, wherein the amount of chlorine contained in the phosphor is 20,000 ppm or less. 前記蛍光体のコールター・カウンター法で測定した重量中央粒径D50が、1〜7μmの範囲内にあることを特徴とする請求項1または2記載の2価金属珪酸塩蛍光体。The divalent metal silicate phosphor according to claim 1 or 2, wherein the phosphor has a weight median particle diameter D50 measured by a Coulter counter method within a range of 1 to 7 µm. コールター・カウンター法で測定した重量中央粒径D50が、1〜4μmの範囲内にあることを特徴とする請求項3記載の2価金属珪酸塩蛍光体。4. The divalent metal silicate phosphor according to claim 3, wherein a weight median particle diameter D50 measured by a Coulter counter method is in a range of 1 to 4 [mu] m. コールター・カウンター法で測定した粒度分布において、σlog(L)とσlog(S)が0.5以下であることを特徴とする請求項3または4記載の2価金属珪酸塩蛍光体。5. The divalent metal silicate phosphor according to claim 3, wherein σlog (L) and σlog (S) are 0.5 or less in a particle size distribution measured by a Coulter counter method. ポバール樹脂に対する相対的なブローオフ帯電量が、正帯電となることを特徴とする請求項1〜5のいずれか1項に記載の2価金属珪酸塩蛍光体。The bivalent metal silicate phosphor according to any one of claims 1 to 5, wherein the amount of blow-off charge relative to the Poval resin is positive. 前記2価金属珪酸塩蛍光体の製造方法において、蛍光体原料を少なくとも1回以上800℃以上焼成する工程で、蛍光体原料中に塩素化合物もしくは塩素を含有させることを特徴とする請求項1〜6のいずれか1項に記載の2価金属珪酸塩蛍光体の製造方法。The method for producing a divalent metal silicate phosphor, wherein the phosphor raw material contains a chlorine compound or chlorine in the step of firing the phosphor raw material at least once at 800 ° C. or higher. 7. The method for producing a divalent metal silicate phosphor according to any one of 6. 前記蛍光体原料中に含有されている塩素の量が、0.001wt%以上であることを特徴とする請求項7記載の2価金属珪酸塩蛍光体の製造方法。The method for producing a divalent metal silicate phosphor according to claim 7, wherein the amount of chlorine contained in the phosphor raw material is 0.001 wt% or more. 前記蛍光体原料中に含有させる塩素化合物として、塩化アンモニウムを使用することを特徴とする請求項8及び9記載の2価金属珪酸塩蛍光体の製造方法。10. The method for producing a divalent metal silicate phosphor according to claim 8, wherein ammonium chloride is used as the chlorine compound contained in the phosphor raw material. バインダーを溶解した溶媒中に蛍光体を分散させてなる蛍光体ペースト組成物において、上記蛍光体が、請求項1〜6のいずれか1項記載の2価金属珪酸塩蛍光体であること、もしくは請求項7〜9のいずれか1項記載の製造方法により製造された2価金属珪酸塩蛍光体であることを特徴とする蛍光体ペースト組成物。In a phosphor paste composition obtained by dispersing a phosphor in a solvent in which a binder is dissolved, the phosphor is the divalent metal silicate phosphor according to any one of claims 1 to 6, or A phosphor paste composition, which is a divalent metal silicate phosphor produced by the production method according to any one of claims 7 to 9. 蛍光膜が形成された外囲器内に封入されている希ガスの放電によって放射される真空紫外線により、該蛍光膜を励起して発光させる紫外線励起発光素子において、上記蛍光膜が、請求項1〜6のいずれか1項に記載の2価金属珪酸塩蛍光体もしくは請求項7〜9のいずれか1項記載の製造方法により製造された2価金属珪酸塩蛍光体により形成されていることを特徴とする真空紫外線励起発光素子。2. An ultraviolet-excitation light-emitting element that excites and emits a fluorescent film by vacuum ultraviolet rays emitted by discharge of a rare gas sealed in an envelope on which the fluorescent film is formed, wherein the fluorescent film is formed. 10. The divalent metal silicate phosphor according to any one of claims 6 to 6 or the divalent metal silicate phosphor produced by the production method according to any one of claims 7 to 9. Characteristic vacuum ultraviolet light excitation light emitting element.
JP2002332900A 2002-03-22 2002-10-10 Divalent metal silicate phosphor, method for producing the same, and phosphor paste composition and vacuum ultraviolet light-excited light-emitting element by using the same Pending JP2004131677A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002332900A JP2004131677A (en) 2002-10-10 2002-10-10 Divalent metal silicate phosphor, method for producing the same, and phosphor paste composition and vacuum ultraviolet light-excited light-emitting element by using the same
KR10-2003-0017366A KR20030076397A (en) 2002-03-22 2003-03-20 Bivalent metal silicate phosphor and process for its production, and a phosphor paste composition and a vacuum ultraviolet ray excitation type light-emitting device employing such a phosphor
US10/391,627 US6899825B2 (en) 2002-03-22 2003-03-20 Bivalent metal silicate phosphor and process for its production, and a phosphor paste composition and a vacuum ultraviolet ray excitation type light-emitting device employing such a phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332900A JP2004131677A (en) 2002-10-10 2002-10-10 Divalent metal silicate phosphor, method for producing the same, and phosphor paste composition and vacuum ultraviolet light-excited light-emitting element by using the same

Publications (1)

Publication Number Publication Date
JP2004131677A true JP2004131677A (en) 2004-04-30

Family

ID=32290212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332900A Pending JP2004131677A (en) 2002-03-22 2002-10-10 Divalent metal silicate phosphor, method for producing the same, and phosphor paste composition and vacuum ultraviolet light-excited light-emitting element by using the same

Country Status (1)

Country Link
JP (1) JP2004131677A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083035A1 (en) * 2004-02-27 2005-09-09 Sumitomo Chemical Company, Limited Method for producing silicate phosphor and vacuum ultraviolet excited light-emitting device
JP2005272831A (en) * 2004-02-27 2005-10-06 Sumitomo Chemical Co Ltd Method for producing silicate phosphor
JP2006070187A (en) * 2004-09-03 2006-03-16 Hitachi Ltd Silicate phosphor, light emission device and display device using the light emission device
KR100667937B1 (en) * 2005-02-01 2007-01-11 삼성에스디아이 주식회사 Plasma display panel
WO2007091615A1 (en) * 2006-02-09 2007-08-16 Ube Industries, Ltd. Method for production of blue-light-emitting fluorescent material
KR101422046B1 (en) * 2005-04-01 2014-07-23 미쓰비시 가가꾸 가부시키가이샤 Alloy powder for aw material of inorganic functional material and phosphor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083035A1 (en) * 2004-02-27 2005-09-09 Sumitomo Chemical Company, Limited Method for producing silicate phosphor and vacuum ultraviolet excited light-emitting device
JP2005272831A (en) * 2004-02-27 2005-10-06 Sumitomo Chemical Co Ltd Method for producing silicate phosphor
JP2006070187A (en) * 2004-09-03 2006-03-16 Hitachi Ltd Silicate phosphor, light emission device and display device using the light emission device
KR100667937B1 (en) * 2005-02-01 2007-01-11 삼성에스디아이 주식회사 Plasma display panel
KR101422046B1 (en) * 2005-04-01 2014-07-23 미쓰비시 가가꾸 가부시키가이샤 Alloy powder for aw material of inorganic functional material and phosphor
US8801970B2 (en) 2005-04-01 2014-08-12 Mitsubishi Chemical Corporation Europium- and strontium-based phosphor
KR101471883B1 (en) * 2005-04-01 2014-12-12 미쓰비시 가가꾸 가부시키가이샤 Alloy powder for aw material of inorganic functional material and phosphor
WO2007091615A1 (en) * 2006-02-09 2007-08-16 Ube Industries, Ltd. Method for production of blue-light-emitting fluorescent material
JP4844567B2 (en) * 2006-02-09 2011-12-28 宇部興産株式会社 Method for producing blue-emitting phosphor
CN101374926B (en) * 2006-02-09 2012-08-29 宇部兴产株式会社 Method for production of blue-light-emitting fluorescent material
US8372308B2 (en) 2006-02-09 2013-02-12 Ube Industries, Ltd. Production method of blue light-emitting phosphor

Similar Documents

Publication Publication Date Title
JP4396016B2 (en) Aluminate phosphor, phosphor paste composition, and vacuum ultraviolet light-excited light emitting device
JPH101666A (en) Aluminate salt fluorescent substance, its production and vacuum ultraviolet light-exciting light-emitting element
US6899825B2 (en) Bivalent metal silicate phosphor and process for its production, and a phosphor paste composition and a vacuum ultraviolet ray excitation type light-emitting device employing such a phosphor
JP2004131677A (en) Divalent metal silicate phosphor, method for producing the same, and phosphor paste composition and vacuum ultraviolet light-excited light-emitting element by using the same
JP4157324B2 (en) Alkaline earth aluminate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP2002194346A (en) Method for producing aluminate fluorescent substance
JP3856356B2 (en) Phosphor paste composition and vacuum ultraviolet light-excited light emitting device
JP2004051919A (en) Method for manufacturing phosphor, phosphor and plasma display panel
JP4046542B2 (en) Calcium silicate / magnesium phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP4032173B2 (en) Phosphor and light emitting device
JP4146173B2 (en) Bivalent metal silicate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device using the same
JP2003027054A (en) Aluminosilicate phosphor excitable with vacuum ultraviolet ray, method for producing the same, and vacuum-ultraviolet-ray-excitable luminescent element using the same
JP2004231930A (en) Bivalent metal silicate phosphor, its production method as well as phosphor paste composition and vacuum ultraviolet ray-excited light emitting element using the phosphor
JP2008050390A (en) Vacuum ultraviolet excitation aluminate phosphor and vacuum ultraviolet excitation light emitting device using the same
JP2004231786A (en) Phosphor and light-emitting device
JP4178942B2 (en) Method for producing silicate phosphor
JP4058864B2 (en) Phosphors for vacuum ultraviolet light-emitting devices
JP4517783B2 (en) Rare earth boroaluminate phosphor and light emitting device using the same
JP4244265B2 (en) Aluminate phosphor, phosphor paste composition, and vacuum ultraviolet light-excited light emitting device
JP2007099909A (en) Mixed phosphor, phosphor paste composition and vacuum ultraviolet light-excited light emitting element
JP2005154770A (en) Green light-emitting phosphor for vacuum ultraviolet-excited light-emitting device, method of preparing the same, and light-emitting device including the same
JP4601241B2 (en) Alkaline earth aluminate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP4014442B2 (en) Alkaline earth aluminate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP2004067739A (en) Alkaline earth aluminate phosphor, phosphor paste composition, and vacuum ultraviolet-excited luminescent element
JP2004244477A (en) Alkaline earth aluminate phosphor, method for producing the same, phosphor paste composition and vacuum-ultraviolet-excited light-emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050909

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

A131 Notification of reasons for refusal

Effective date: 20071120

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A02